

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2008 by Solid Quality Mentors

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Control Number: 2007931455

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 2 1 0 9 8 7

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to tkinput@microsoft.com.

Microsoft, Microsoft Press, Active Directory, ActiveX, Excel, FrontPage, InfoPath, Microsoft
Dynamics, MSDN, Natural, OneNote, Outlook, PowerPoint, SharePoint, SQL Server, Visio, Visual
Basic, Visual C#, Visual C++, Visual SourceSafe, Visual Studio, Windows, Windows Server, and
Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. Other product and company names mentioned herein may be the
trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

s and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Ken Jones
Developmental Editor: Karen Szall
Project Editor: Maria Gargiulo
Editorial Production: nSight, Inc.

Body Part No. X13-92845

Exam 70-441: Pro: Designing Database Solutions by
Using Microsoft® SQL Server™ 2005

Objective Chapter and Lesson

Designing Database Testing and Code Management Procedures (1.0)

Design a unit test plan for a database.
n Assess which components should be unit tested.
n Design tests for query performance.
n Design tests for data consistency.
n Design tests for application security.
n Design tests for system resources utilization.
n Design tests to ensure code coverage.

n Chapter 10, Lesson 1
n Chapter 10, Lesson 2
n Chapter 10, Lesson 3
n Chapter 10, Lesson 4
n Chapter 10, Lesson 5
n Chapter 10, Lesson 6

Create a performance baseline and benchmarking strategy for a database.
n Establish performance objectives and capacity planning.
n Create a strategy for measuring performance changes.
n Create a plan for responding to performance changes.
n Create a plan for tracking benchmark statistics over time.

n Chapter 11, Lesson 1
n Chapter 11, Lesson 2
n Chapter 11, Lesson 3
n Chapter 11, Lesson 4

Create a plan for deploying a database.
n Select a deployment technique.
n Design scripts to deploy the database as part of application setup.
n Design database change scripts to apply application patches.
n Design scripts to upgrade database data and objects.

n Chapter 12, Lesson 1
n Chapter 12, Lesson 2
n Chapter 12, Lesson 2
n Chapter 12, Lesson 2

Control changes to source code.
n Set file permissions.
n Set and retrieve version information.
n Detect differences between versions.
n Encrypt source code.
n Mark groups of objects, assign version numbers to them, and devise a method to track changes.

n Chapter 13, Lesson 2
n Chapter 13, Lesson 3
n Chapter 13, Lesson 4
n Chapter 13, Lesson 5
n Chapter 13, Lesson 6

Designing an Application Solution for SQL Server 2005 (2.0)

Select and design SQL Server services to support business needs.
n Select the appropriate services to use to support business needs.
n Design a SQL Web services solution.
n Design a Notification Services solution to notify users.
n Design a Service Broker solution for asynchronous database applications.
n Design a Microsoft Distributed Transaction Coordinator (MS DTC) solution for distributed transactions.
n Design a Reporting Services solution.
n Design an Integration Services solution.
n Design a SQL Server core service solution.
n Design a SQL Server Agent solution.
n Design a DatabaseMail solution.

n Chapter 1, Lesson 1
n Chapter 1, Lesson 3
n Chapter 1, Lesson 4
n Chapter 1, Lesson 3
n Chapter 1, Lesson 3
n Chapter 1, Lesson 4
n Chapter 1, Lesson 3
n Chapter 1, Lesson 2
n Chapter 1, Lesson 2
n Chapter 1, Lesson 2

Design a logical database.
n Design a normalized database.
n Optimize the database design by denormalizing.
n Design data flow architecture.
n Optimize queries by creating indexes.
n Design table width.
n Design index-to-table-size ratio.

n Chapter 2, Lesson 2
n Chapter 2, Lesson 3
n Chapter 2, Lesson 4
n Chapter 4, Lesson 1
n Chapter 4, Lesson 2
n Chapter 4, Lesson 2

Design an application solution to support security.
n Design and implement application security.
n Design the database to enable auditing.
n Design objects to manage user access.
n Design data-level security that uses encryption.

n Chapter 8, Lesson 1
n Chapter 8, Lesson 2
n Chapter 9, Lesson 4
n Chapter 8, Lesson 2

Design an application solution that uses appropriate database technologies and techniques.
n Design a solution for storage of XML data in the database.
n Choose appropriate languages.
n Design a solution for scalability.
n Design interoperability with external systems.
n Develop aggregation strategies.

n Chapter 5, Lesson 1
n Chapter 5, Lesson 2
n Chapter 5, Lesson 3
n Chapter 5, Lesson 4
n Chapter 5, Lesson 5
M

Note: Exam objectives are subject to change at any time without prior notice and at
Microsoft’s sole discretion. Please visit the Microsoft Learning Certif ication Web site
(www.microsoft.com/learning/mcp/) for the most current listing of exam objectives.

Design an application solution that supports reporting.
n Design a snapshot strategy.
n Design the schema.
n Design the data transformation.
n Design indexes for reporting.
n Choose programmatic interfaces.
n Evaluate use of reporting services.
n Decide which data access method to use.

n Chapter 15, Lesson 2
n Chapter 15, Lesson 2
n Chapter 15, Lesson 2
n Chapter 15, Lesson 2
n Chapter 15, Lesson 3
n Chapter 15, Lesson 1
n Chapter 15, Lesson 2

Design data distribution.
n Design a DatabaseMail solution for distributing data.
n Design SQL Server Agent alerts.
n Specify a Web services solution for distributing data.
n Specify a Reporting Services solution for distributing data.
n Specify a Notification Services solution for distributing data.

n Chapter 14, Lesson 1
n Chapter 14, Lesson 2
n Chapter 14, Lesson 3
n Chapter 14, Lesson 4
n Chapter 14, Lesson 5

Designing Database Objects (3.0)

Design objects that define data.
n Design user-defined data types.
n Design tables that use advanced features.
n Design indexes.
n Specify indexed views to meet business requirements.

n Chapter 3, Lesson 2
n Chapter 2, Lesson 5
n Chapter 4, Lesson 3
n Chapter 4, Lesson 4

Design objects that retrieve data.
n Design views.
n Design user-defined functions.
n Design stored procedures.

n Chapter 6, Lesson 1
n Chapter 6, Lesson 3
n Chapter 6, Lesson 2

Design objects that extend the functionality of a server.
n Design scalar user-defined functions to extend the functionality of the server.
n Design CLR user-defined aggregates.
n Design stored procedures to extend the functionality of the server.

n Chapter 7, Lesson 2
n Chapter 7, Lesson 4
n Chapter 7, Lesson 1

Design objects that perform actions.
n Design DML triggers.
n Design DDL triggers.
n Design WMI triggers.
n Design Service Broker applications.
n Design stored procedures to perform actions.

n Chapter 7, Lesson 3
n Chapter 7, Lesson 3
n Chapter 14, Lesson 2
n Chapter 1, Lesson 1
n Chapter 7, Lesson 4

Designing a Database (4.0)

Design attributes.
n Decide whether to persist an attribute.
n Specify domain integrity by creating attribute constraints.
n Choose appropriate column data types and sizes.

n Chapter 3, Lessons 4 and 5
n Chapter 3, Lesson 4
n Chapter 3, Lesson 1

Design entities.
n Define entities.
n Define entity integrity.
n Normalize tables to reduce data redundancy.
n Establish the appropriate level of denormalization.

n Chapter 3, Lessons 3 and 4
n Chapter 3, Lessons 3 and 4
n Chapter 2, Lesson 2
n Chapter 2, Lesson 3

Design entity relationships (ER).
n Specify ER for referential integrity.
n Specify foreign keys.
n Create programmable objects to maintain referential integrity.

n Chapter 3, Lesson 3
n Chapter 3, Lesson 3
n Chapter 3, Lesson 5

Design database security.
n Define database access requirements.
n Specify database object security permissions.
n Define schemas to manage object ownership.
n Specify database objects that will be used to maintain security.
n Design an execution context strategy.

n Chapter 9, Lesson 1
n Chapter 9, Lesson 3
n Chapter 9, Lesson 2
n Chapter 9, Lesson 4
n Chapter 9, Lesson 5

Developing Applications That Use SQL Server Support Services (5.0)

Develop applications that use Reporting Services.
n Specify subscription models, testing reports, error handling, and server impact.
n Design reports.
n Specify data source configuration.
n Optimize reports.

n Chapter 15, Lesson 3
n Chapter 15, Lesson 3
n Chapter 15, Lesson 4
n Chapter 15, Lesson 4

Develop applications for Notification Services.
n Create Notification Services configuration and application files.
n Configure Notification Services instances.
n Define Notification Services events and event providers.
n Configure the Notification Services generator.
n Configure the Notification Services distributor.
n Test the Notification Services application.
n Create subscriptions.
n Optimize Notification Services.

n Chapter 16, Lesson 1
n Chapter 16, Lesson 1
n Chapter 16, Lesson 2
n Chapter 16, Lesson 3
n Chapter 16, Lesson 3
n Chapter 16, Lesson 4
n Chapter 16, Lesson 5
n Chapter 16, Lesson 6

Develop packages for Integration Services.
n Select an appropriate Integration Services technology or strategy.
n Create Integration Services packages.
n Test Integration Services packages.

n Chapter 17, Lesson 3
n Chapter 17, Lesson 1
n Chapter 17, Lesson 2

About the Authors

Dejan Sarka
Dejan Sarka, mentor and director of Adriatic operations for
Solid Quality Mentors, develops database and business intelli-
gence applications and spends the rest of his time training and
mentoring. He is a frequent speaker at top international confer-
ences including TechEd, SqlDevCon, and PASS, as well as
regional Microsoft events such as the NT Conference, the big-
gest Microsoft conference in Central and Eastern Europe. Dejan
founded the Slovenian SQL Server and .NET Users Group. As a
guest author, he has contributed to Inside Microsoft SQL Server
2005: T-SQL Querying (Microsoft Press, 2006) and Inside
Microsoft SQL Server 2005: T-SQL Programming (Microsoft Press,
2006). Dejan has also developed two courses for Solid Quality
Mentors: Data Modeling Essentials and Data Mining with SQL
Server 2005.

Adolfo Wiernik
Adolfo Wiernik, a mentor and director of operations in Latin
America for Solid Quality Mentors, is passionate about service
orientation, design patterns, and integrating the .NET platform
with SQL Server to generate new services and businesses. He
worked as lead architect at the Microsoft .NET Center Central
America and at the Microsoft Technology Center in Tel Aviv,
Israel. Founder and organizer of the Costa Rica .NET User
Group, Adolfo was recognized by Microsoft as an influencer in
Central America and received the Best Regional Director Latin
America 2004 award. He coauthored Microsoft SQL Server 2005: Database Essentials Step by Step
(Microsoft Press, 2006), Microsoft SQL Server 2005: Applied Techniques Step by Step (Microsoft
Press, 2006), and MCTS Self-Paced Training Kit (Exam 70-431): Microsoft SQL Server 2005—
Implementation and Maintenance (Microsoft Press, 2006) and served as the subject matter
expert for Microsoft Learning Clinic 2783, Designing the Data Tier for Microsoft SQL Server
2005. Adolfo is a regular speaker at local and international industry events.
v

vi About the Authors
Javier Loria
Javier Loria, a Solid Quality Mentors mentor based in Costa
Rica, began his professional career in 1992 as a software devel-
oper and system engineer. His career evolved rapidly to include
training, especially in the XML and OLAP worlds, and he has
trained customers across Latin America. Javier currently spends
most of his time as a software architect and business intelligence
architect, assisting Latin American clients. Named a SQL Server
MVP in 2001 Javier is also an MCT, MCSE, MCSD, MCDBA, and
MCAD. He co-wrote Microsoft Course 2782: Designing Microsoft
SQL Server 2005 Databases; MCTS Self-Paced Training Kit (Exam
70-431): Microsoft SQL Server 2005—Implementation and Maintenance (Microsoft Press, 2006);
and Microsoft SQL Server 2005: Database Essentials Step by Step (Microsoft Press, 2006).

Andy Leonard
Andy Leonard, a mentor for Solid Quality Mentors, is a SQL
Server database developer, MVP, and engineer, as well as the
founder and manager of VSTeamSystemCentral.com, a community
dedicated to Visual Studio Team System and Team Foundation
Server users. Andy’s experience includes database development
using SQL Server 6.5, 7.0, 2000, and 2005; data warehouse
development using SQL Server 2000 and SQL Server 2005;
Web application architecture and development with Visual
Basic .Net, ASP, and ASP.NET; SQL Server Integration Services
(SSIS); and test-driven database development. Andy is also a
trainer and author.

About the Authors vii
Francisco A. González
Francisco A. González is a Solid Quality Mentors data platform
architect based in Spain and works in the integration and busi-
ness intelligence (BI) fields. He earned his master’s degree in
computer science at the University of Murcia, Spain, and at Ken-
nesaw State University in Georgia. His master’s project was an
automatic support answerer that used BizTalk Server and SQL
Server BI technologies. Now, he combines his work with Solid
Quality Mentors with the subject of his PhD thesis: systems
integration and business processes. Francisco is an MCT and
MCP in BizTalk Server and SQL Server and presented a session
on ETL at Microsoft’s first Business Intelligence conference in
Seattle, Washington.

Jesús López
Jesús López, a mentor for Solid Quality Mentors, focuses on
developing database and .NET applications, teaching SQL Server
and .NET courses, and mentoring clients in areas ranging from
SQL Server optimization to security design. A Visual Basic MVP
for three years, Jesús has presented at several conferences for his
MVP colleagues in Spain and participated in webcasts and con-
ferences in Latin America and Spain. Before working for Solid
Quality Mentors, he worked for the Spanish Air Force as a data-
base architect and solutions developer, as an independent
instructor for MOC courses, and as an independent consultant.

Contents at a Glance
1 Selecting and Designing SQL Server Services to

Support Business Needs . 1

2 Designing a Logical Database . 29

3 Designing a Physical Database . 57

4 Designing a Database for Performance . 99

5 Using Appropriate Database Technologies and
Techniques for Your Application . 125

6 Designing Objects That Retrieve Data . 151

7 Designing Objects That Extend Server Functionality 185

8 Designing a Secure Application Solution . 225

9 Designing a Secure Database . 251

10 Designing a Unit Test Plan for a Database . 287

11 Creating a Database Benchmarking Strategy . 323

12 Creating a Plan for Deploying a Database . 355

13 Controlling Changes to Source Code . 385

14 Designing for Data Distribution . 417

15 Designing Applications That Support Reporting and
Use Reporting Services . 443

16 Developing Applications for Notification Services. 491

17 Developing Packages for Integration Services . 531

Case Scenario Answers . 573
ix

Table of Contents
Introduction . xxv

1 Selecting and Designing SQL Server Services to
Support Business Needs . 1

Before You Begin .2
Lesson 1: Selecting the Appropriate Services .3

Practice: Selecting the Appropriate Services to Support Business Needs5
Lesson 2: Evaluating Core, SQL Server Agent, and Database Mail Solutions6

Transact-SQL Enhancements. .6
Considerations for Using CLR Integration .8
Using SQL Server Agent .9
Using Database Mail .10
Practice: Selecting an Appropriate Programming Language11

Lesson 3: Using Advanced Services .13
SQL Server Web Services. .13
Using Service Broker .14
Replication Enhancements .16
Implementing Distributed Transactions .16
Practice: Using Advanced Database Engine Features .18

Lesson 4: Evaluating Other Services .20
Notification Services .20
Reporting Services .21
Analysis Services .22
Integration Services .24

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!
xi

xii Table of Contents
Practice: Using Other Services . 26
Case Scenario: Select SQL Server Services to Support Business Needs 27
Chapter Summary. 27

2 Designing a Logical Database . 29

Before You Begin . 29
Lesson 1: Systematically Approaching Design Stages . 31

Key Steps and Best Practices for Data Modeling . 32
Object Role Modeling and the Conceptual Model . 33
Entity Relationship and the Logical Model . 35
Practice: Opening Models . 37

Lesson 2: Designing a Normalized Database . 38
First Normal Form. 38
Second Normal Form . 40
Third Normal Form . 41
Practice: Normalizing the Database. 42

Lesson 3: Optimizing the Database Design by Denormalizing 45
Practice: Denormalizing the Database. 47

Lesson 4: Designing the Data Flow Architecture . 49
Data Flow for OLTP Applications . 49
Data Flow for Business Intelligence Applications. 50

Lesson 5: Supertypes and Subtypes . 52
Supertypes and Subtypes . 52
Modeling Hierarchies . 53
Practice: Supertypes, Subtypes, and Hierarchies . 54

Case Scenario: Design a Logical Database . 56
Chapter Summary. 56

3 Designing a Physical Database . 57

Before You Begin . 58
Lesson 1: Choosing Column Data Types and Sizes. 59

System Data Types . 59
Best Practices for Data Types and Sizes. 64
Practice: Choosing Appropriate Data Types . 65

Table of Contents xiii
Lesson 2: Designing User-Defined Data Types .66
T-SQL Aliases (UDDTs) .66
CLR User-Defined Types (UDTs) .66
Best Practices for User-Defined Data Types .70
Practice: Creating User-Defined Data Types .71

Lesson 3: Defining Entities and Entity and Referential Integrity74
Designing and Creating Entities. .74
Entity Integrity .76
Referential Integrity .77
Special Attributes .79
Practice: Defining Entities and Entity and Referential Integrity 80

Lesson 4: Defining Domain Integrity and Business Rules .84
Default Constraints. .84
Check Constraints. .84
Practice: Implementing Domain Integrity .86

Lesson 5: Creating Programmable Objects to Maintain Integrity90
DML Triggers. .90
Practice: Creating DML Triggers and Testing Data Integrity93

Case Scenario: Design a Physical Database .96
Chapter Summary .97

4 Designing a Database for Performance . 99

Before You Begin . 100
Lesson 1: Optimizing Queries by Creating Indexes . 101

The Basics of Optimizing Queries . 101
Maintaining Statistics . 102
Practice: Selecting Columns to Index . 103

Lesson 2: Designing Indexes . 105
Clustered and Nonclustered Indexes . 105
Creating Indexes. 108
Practice: Designing Indexes . 109

Lesson 3: Specifying Indexed Views . 113
Indexing a Computed Column. 113
Indexing a View . 114

xiv Table of Contents
Practice: Specifying Indexed Views . 116
Lesson 4: Partitioning a Table . 119

Understanding Table Partitioning . 119
Practice: Partitioning a Table. 121

Case Scenario: Design a Database for Performance . 124
Chapter Summary. 124

5 Using Appropriate Database Technologies and
Techniques for Your Application. 125

Before You Begin . 126
Lesson 1: Using XML Data in Databases. 127

XML Data Type Usage . 127
XML Indexes. 128
Practice: Using XML Data in a Database . 129

Lesson 2: Choosing Languages . 133
CLR vs. T-SQL. 133
CLR and T-SQL vs. Other Languages . 134
Practice: Choosing Appropriate Languages . 135

Lesson 3: Designing for Scalability . 137
Scaling Up . 137
Scaling Out. 140
Developing Aggregation Strategies. 142
Practice: Using Bulk Insert . 143

Lesson 4: Designing Interoperability with External Systems 146
Synchronous Methods . 146
Asynchronous Methods . 147
Practice: Linking to Excel 2007 . 148

Case Scenario: Implement Database Technologies and Techniques
for Your Application . 150
Chapter Summary. 150

6 Designing Objects That Retrieve Data . 151

Before You Begin . 152
Lesson 1: Designing Views . 153

Choosing Between the Different Types of Views . 153

Table of Contents xv
Practice: Designing Views . 162
Lesson 2: Designing Stored Procedures. 165

What Type of Stored Procedure Do You Need? . 166
What Type of Data Will the Stored Procedure Return? 167
Defining Input, Output, and Optional Parameters for
the Stored Procedure. 167
Defining the Status Value the Stored Procedure Returns 169
Designing Error Handling Routines . 169
Executing Under the Right Security Context . 170
Practice: Creating and Modifying a Stored Procedure 171

Lesson 3: Designing User-Defined Functions . 173
What Type of UDF Do You Need? . 175
What Type of Data Will the UDF Return?. 179
Defining Input Parameters for the UDF . 180
Designing Error Handling Routines . 180
Executing Under the Right Security Context . 181
Practice: Designing User-Defined Functions . 181

Case Scenario: Designing Objects That Retrieve Data . 183
Chapter Summary . 184

7 Designing Objects That Extend Server Functionality 185

Before You Begin . 185
Lesson 1: Creating and Designing Stored Procedures. 187

Understanding Stored Procedures. 187
Creating T-SQL Stored Procedures . 187
Changing and Deleting T-SQL Stored Procedures . 192
Designing T-SQL Stored Procedures . 193
Creating CLR Stored Procedures . 195
Practice: Creating a T-SQL Stored Procedure to Add Employees 199

Lesson 2: Designing Scalar User-Defined Functions . 204
Creating T-SQL Scalar Functions . 204
Creating CLR Scalar Functions . 205
UDF Properties . 206
Practice: Creating a CLR User-Defined Function to Extract E-Mail. 207

xvi Table of Contents
Lesson 3: Designing DML and DDL Triggers . 210
Creating DML Triggers . 210
Creating DDL Triggers . 212
Practice: Using a Trigger to Create a Deleted-Rows Table 214

Lesson 4: Designing CLR User-Defined Aggregates. 217
Programming User-Defined Aggregates . 217
User-Defined Aggregate Attributes . 219
Practice: Creating a User-Defined Aggregate . 220

Case Scenario: Adding an Audit Trail. 223
Chapter Summary. 224

8 Designing a Secure Application Solution . 225

Before You Begin . 225
Lesson 1: Securing Components of a SQL Server Solution . 226

SQL Server Authentication Modes . 227
Authorization Strategy . 228
Securing HTTP Endpoints . 230
CLR Integration Security . 230
Guidelines for Replication Security . 231
Linked Servers Security . 232
SQL Server Agent and DatabaseMail. 232
Designing Security for Notification Services . 233
Designing Security for Reporting Services . 234
Designing Security for Analysis Services . 235
Designing Security for Integration Services . 237
Practice: Securing a SQL Server Solution . 238

Lesson 2: Designing the Database to Enable Auditing and Encryption 240
Considerations for an Auditing Strategy. 240
Auditing Events, Techniques, Tools, and Storage . 241
Data Protection . 244
Data Encryption . 244
Practice: Using Event Notifications to Audit DDL Events 246

Case Scenario: Design a Secure Application Solution. 248
Chapter Summary. 249

Table of Contents xvii
9 Designing a Secure Database . 251

Before You Begin . 251
Lesson 1: Designing a Database-Access Strategy. 252

Managing Principals . 254
Practice: Designing a Database-Access Strategy . 258

Lesson 2: Managing Schemas . 260
Defining Schemas . 260
Guidelines for Managing Schemas . 260
Schemas and Database Roles . 261
Schemas and Object Ownership . 262
Practice: Using Schemas and Name Resolution . 263

Lesson 3: Specifying Database Object Security Permissions. 267
Statement Permissions. 268
Checking Object Permissions . 270
Practice: Verifying Statement Permissions and Hierarchy 272

Lesson 4: Managing Objects That Access Data . 275
Using Programmable Objects to Maintain Security . 275
What Are Ownership Chains?. 276
Practice: Using Ownership Chains . 277

Lesson 5: Designing an Execution-Context Strategy . 280
What Is the Execution Context? . 280
Module Signing . 281
Practice: Defining the Execution Context. 282

Case Scenario: Design a Secure Database . 284
Chapter Summary . 285

10 Designing a Unit Test Plan for a Database . 287

Before You Begin . 288
Lesson 1: Assessing Which Components to Unit Test . 289

Goals of Unit Testing . 290
Planning for Unit Testing. 290
Creating the Testing Script . 291
Example: How to Write Unit Testing Code with T-SQL 291

xviii Table of Contents
Creating a Setup Testing Script. 294
Creating a Teardown Testing Script . 295
Validating the Testing, Setup, and Teardown Scripts. 295
Creating or Setting Up a Test Database . 295
Setting Up Testing Data . 296
Executing the Unit Test . 296
Evaluating the Test Result . 297
Practice: Creating a Unit Testing Script and a Testing Database 297

Lesson 2: Designing Tests for Query Performance . 301
How to Design a Test . 301
Writing a Test to Validate Query Performance. 303
Practice: Designing a Testing Script and Setting Performance Goals 304

Lesson 3: Designing Tests for Data Consistency . 306
Testing Values of Attributes. 306
Validating Foreign Key Constraints . 306
Validating Custom Constraints . 307
Writing a Test to Validate Data Consistency . 307
Practice: Validating Data Consistency in a UDF . 308

Lesson 4: Designing Tests for Application Security. 310
Validating the Existence of Permissions, Principals, and Roles. 310
Validating the Execution Context for Specific Permissions,
Principals, and Roles . 310
Writing a Test to Validate Application Security . 310
Practice: Validating Whether a User Has Been Created 311

Lesson 5: Designing Tests for System Resources Use . 313
Setting Performance Goals . 313
Using Performance Goals to Evaluate Performance
Counters and Metrics . 314
Practice: Choosing Performance Counters and Metrics 314

Lesson 6: Designing Tests to Ensure Code Coverage . 317
Setting a Goal for Code Coverage . 317
Meeting Code-Coverage Test Requirements . 317
Writing a Test to Validate Code Coverage . 317

Table of Contents xix
Practice: Designing a Test to Ensure Code Coverage . 319
Case Scenario: Design a Unit Test Plan for a Database . 320
Chapter Summary . 321

11 Creating a Database Benchmarking Strategy . 323

Before You Begin . 323
Lesson 1: Establishing Performance Objectives and Capacity Planning 324

Establishing Performance Objectives . 324
Performance Modeling . 325
Capacity Planning. 328
Practice: Setting Performance Objectives. 330

Lesson 2: Creating a Strategy for Measuring Performance Changes 333
Generating a Representative Baseline . 333
Measuring a Baseline . 333
Measuring Performance Changes . 334
Monitoring the Test Environment . 334
Implementing Performance Measuring Techniques . 335
Using SQL Server Profiler . 338
Practice: Measuring Performance Changes . 339

Lesson 3: Creating a Plan for Responding to Performance Changes 341
Setting Goals . 341
Determining What Has Changed. 341
Determining How Change Affects the System . 343
Responding to Performance Changes . 343
Issues That Can Affect Performance and Scalability . 344
Practice: Responding to Performance Changes . 345

Lesson 4: Creating a Plan for Tracking Benchmark Statistics Over Time 348
Setting Goals . 348
Continued Testing and Performance Measuring. 349
Generating and Documenting Best Practices. 350
Practice: Creating a Plan . 351

Case Scenario: Create a Performance Baseline and Benchmarking Strategy 352
Chapter Summary . 353

xx Table of Contents
12 Creating a Plan for Deploying a Database . 355

Before You Begin . 356
Lesson 1: Selecting a Deployment Technique . 357

Deploying with the SSMS Copy Database Wizard. 357
Customizing the SSIS Package Created by the Copy Database Wizard. 361
Deploying with T-SQL Scripts . 364
Deploying with the Import and Export Wizard . 365
Deploying with SSIS . 367
Deploying with the SQLCmd Utility . 368
Practice: Detaching and Attaching a Database . 369

Lesson 2: Practical Deployment Considerations . 372
Deploying Securely . 372
Creating an Object-Change Strategy. 376
Creating a Data-Change Strategy . 378
Creating an Audit Trail . 378
Defining Change Control . 380
Creating a Project-Management Methodology. 380
Practice: Deploying to SQL Server Express by Using Backup and Restore . . 381

Case Scenario: Deploying a Database . 383
Chapter Summary. 384

13 Controlling Changes to Source Code. 385

Before You Begin . 385
Lesson 1: Managing Source Code Changes. 387

SQL Server Management Studio and Source Control . 387
Adding the Project to Source Control . 389
Working with a Source-Controlled Database Project . 393
Practice: Managing Changes to Source Code . 395

Lesson 2: Setting File Permissions . 397
Visual SourceSafe User Permissions and Rights . 397
Folder Permissions . 398
Opening Visual SourceSafe–Controlled Projects . 398
Optional Practice: Setting Source Control File Permissions 398

Table of Contents xxi
Lesson 3: Setting and Retrieving Version Information . 400
Practice: Set Version Information. 403

Lesson 4: Detecting Differences Between Versions . 404
Practice: Detect Version Differences . 406

Lesson 5: Encrypting Source Code . 408
Practice: Source Code Encryption . 412

Lesson 6: Tracking Changes to Groups of Objects . 413
Case Scenario: Controlling Changes to Source Code . 414
Chapter Summary . 415

14 Designing for Data Distribution . 417

Before You Begin . 417
Lesson 1: Designing a DatabaseMail Solution for Distributing Data 419

DatabaseMail Architecture . 419
Enabling DatabaseMail . 420
DatabaseMail Accounts, Profiles, and Security . 421
Sending Messages . 422
Practice: Sending E-Mail Messages by Using DatabaseMail 422

Lesson 2: Designing SQL Server Agent Alerts. 425
Defining Alerts . 425
Designing WMI Triggers . 426
Defining and Notifying Operators . 427
Creating User-Defined Events . 428
Practice: Creating a SQL Server Agent Alert . 428

Lesson 3: Specifying a Web Services Solution for Distributing Data. 430
Creating and Defining SQL Server Web Services . 430
SQL Server Web Services Security . 431
Guidelines for Using SQL Server Web Services . 432
Practice: Creating a SQL Server Web Service. 432

Lesson 4: Specifying a Reporting Services Solution for Distributing Data 434
Reporting Services Delivery Options. 434
Reporting Services Subscriptions. 434
Distributing Data by Using Data-Driven Subscriptions 435
Creating a Data-Driven Subscription . 435

xxii Table of Contents
Practice: Specifying SSRS Options for Distributing Data 437
Lesson 5: Specifying a Notification Services Solution for Distibuting Data 438

Notification Services Architecture . 438
Scale-Out Options . 439
Defining Notification Services Applications . 440
Practice: Identifying When to Use a Notification Services Solution 440

Case Scenario: Design a Distributed Data Solution. 441
Chapter Summary. 442

15 Designing Applications That Support Reporting and
Use Reporting Services . 443

Before You Begin . 444
Lesson 1: Evaluating the Use of Reporting Services and Designing Reports 445

Evaluating Reporting Services Uses . 445
Designing Reporting Services Reports . 449
Practice: Creating a Report with the Report Wizard . 451

Lesson 2: Designing a Snapshot Strategy, Schema, Indexes,
and Data Transformations . 455

Reporting Services Real-Time Requirements . 455
Designing the Snapshot Strategy . 456
Designing the Schema . 460
Designing Indexes. 463
Designing the Data Transformation . 465
Practice: Creating a Purchasing Summary Report . 468

Lesson 3: Designing Programmatic Interfaces and the
Data Access Method for Reporting . 472

Querying Tables Directly . 472
Using Views to Support Reports . 473
Using Stored Procedures . 476
Practice: Creating a Row-Filtered Report . 478

Lesson 4: Optimizing Reports . 482
Report Caching . 482
Report Snapshots . 483
Specifying Subscription Models . 484

Table of Contents xxiii
Practice: Optimizing Report Performance . 485
Case Scenario: Building a Reporting Services Infrastructure
for a SharePoint Portal . 488
Chapter Summary . 489

16 Developing Applications for Notification Services. 491

Before You Begin . 492
Lesson 1: Configuring Notification Services Instances and Applications. 493

Configuring Notification Services Instances . 493
Configuring Notification Services Applications . 498
Practice: Configuring Notification Services Applications and Instances 502

Lesson 2: Defining Notification Services Events and Event Providers 506
Defining Event Classes. 506
Defining Event Providers. 507
Practice: Using Event Providers and Event Classes . 509

Lesson 3: Configuring the Notification Services Generator and Distributor 512
Configuring the Notification Services Generator . 512
Configuring the Notification Services Distributor . 513
Practice: Configuring the Generator and Distributor . 514

Lesson 4: Testing the Notification Services Application . 516
Creating and Registering a New Instance and Compiling
Your Application . 516
Exploring Your Instance and Application Objects . 518
Removing the Instance and Application. 518
Practice: Testing Your Application . 519

Lesson 5: Creating Subscriptions . 521
Defining the Subscription Class . 521
Subscription Management Interfaces . 523
Practice: Subscription in Notification Services . 524

Lesson 6: Optimizing Notification Services. 526
Optimizing Event Data . 526
Optimizing Subscriptions . 527
Optimizing Notifications. 527
Practice: Optimizing Notification Services Solutions . 528

xxiv Table of Contents
Case Scenario: Design a Notification Services Application . 529
Chapter Summary. 529

17 Developing Packages for Integration Services . 531

Before You Begin . 531
Lesson 1: Creating Integration Services Packages . 533

What Is a Package? . 533
Control Flow . 535
Data Flow . 540
Practice: Creating an SSIS Package . 544

Lesson 2: Debugging and Testing SSIS Packages . 553
Running SSIS Packages . 553
Debugging SSIS Packages . 554
Testing SSIS Packages . 557
Practice: Debugging Control Flow and Data Flow. 558

Lesson 3: Selecting an Appropriate SSIS Technology or Strategy 565
SSIS ETL Design Patterns . 565
SSIS: Beyond ETL . 569

Case Scenario: Building an SSIS ETL Infrastructure . 571
Chapter Summary. 571

Case Scenario Answers . 573

Index . 583

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Introduction
This training kit is designed for software developers who plan to take Microsoft Certified IT
Professional (MCITP) Exam 70-441: Designing Database Solutions by Using Microsoft SQL
Server 2005. The primary objective of this exam is to certify that developers and database
administrators know how to design efficient database solutions for Microsoft SQL Server
2005. We assume that before you begin using this kit, you have spent at least three years doing
dedicated database work. This work should include writing Transact-SQL (T-SQL) queries,
implementing programming objects, optimizing databases, and designing and implementing
databases on conceptual, logical, and physical levels. The Preparation Guide for Exam 70-441
is available at http://www.microsoft.com/learning/exams/70-441.mspx.

The labs in this training kit will use SQL Server 2005 Enterprise Edition, and a 180-day eval-
uation edition is included on the companion DVD. If you do not have access to this software,
you can download a 180-day trial of SQL Server 2005 through http://www.microsoft.com/sql
/downloads/trial-software.mspx. You can also consider purchasing SQL Server 2005 Develop-
ment Edition, which contains all required features.

By using this training kit, you will learn how to do the following:

n Design database testing and code management procedures.

n Design an application solution for SQL Server 2005.

n Design database objects.

n Design a database.

n Develop applications that use SQL Server support services.

Hardware Requirements
We recommend that you use a test workstation, test server, or staging server to complete the
exercises in each practice. However, it would be beneficial for you to have access to production-
ready data in your organization. If you need to set up a workstation to complete the practice
exercises, the following are the minimum system requirements:

n Personal computer with a 600 MHz Pentium III–compatible or faster processor

n 512 MB of RAM or more (1 GB or higher recommended)

n 350 MB of free hard disk space for the SQL installation

n 450 MB of additional free hard disk space if you plan to install SQL Server Books Online
and sample databases
xxv

xxvi Introduction
n 3 GB of additional free hard disk space for Microsoft Visual Studio 2005

n CD-ROM drive or DVD-ROM drive

n Super VGA (1,024 x 768) or higher-resolution video adapter and monitor

n Keyboard and Microsoft mouse or compatible pointing device

Software Requirements
Note that you will need SQL Server 2005 and, in some cases, Visual Studio 2005 to complete
the labs included with each chapter. Although these products can be installed on a production
server, you are not recommended to do so. Instead, install these products and execute the labs
in each chapter on a single development computer. The following software is required to com-
plete the lab exercises.

n One of the following operating systems:

q Microsoft Windows Server 2003, Standard Edition SP1

q Windows Server 2003, Enterprise Edition SP1

q Windows Server 2003, Datacenter Edition SP1

q Microsoft Windows XP Professional SP2

q Windows Vista Business

q Windows Vista Ultimate

q Windows Vista Enterprise

n SQL Server 2005. For instructions on downloading and installing SQL Server 2005
Enterprise Edition, see the “Installing SQL Server” section of this Introduction.

n SQL Server 2005 Samples and SQL Server Client Tools.

n Visual Studio 2005. A 90-day evaluation edition of Visual Studio 2005 Professional
Edition is available for download from the MSDN Web site at http://msdn2.microsoft
.com/en-us/vstudio/bb188238.aspx. You can also use Visual Studio 2005 Express Edition,
Microsoft Visual Basic 2005 Express Edition, or Microsoft Visual C# 2005 Express
Edit ion. You can download Visual Studio Express edit ions from http://
msdn.microsoft.com/vstudio/express. Ideally, you should also have access to Microsoft
Visual Studio 2005 Team Foundation Server. A trial version can be downloaded from
http://www.microsoft.com/downloads/details.aspx?FamilyID=d5c12289-f4e4-49a9-
9235-ab2f6d4ca097&DisplayLang=en.

Introduction xxvii
NOTE Install Visual Studio 2005 Service Pack 1, Service Pack 1 Update, and SQL Server
2005 Service Pack 2 for Windows Vista

If you are running Windows Vista, it is recommended that you download and install Visual
Studio 2005 Service Pack 1 (SP1) and Visual Studio 2005 Service Pack 1 Update for Windows
Vista. Visual Studio 2005 SP1 is available for download from http://www.microsoft.com/down-
loads/details.aspx?familyid=bb4a75ab-e2d4-4c96-b39d-37baf6b5b1dc&displaylang=en. (This
download is good for Visual Studio 2005 Standard Edition, Professional Edition, and Team
Edition). Visual Studio Express Editions SP1 is available for download from http://
www.microsoft.com/downloads/details.aspx?familyid=7B0B0339-613A-46E6-AB4D-
080D4D4A8C4E&displaylang=en.

Visual Studio 2005 Service Pack 1 Update for Windows Vista for all editions of Visual Studio
can be downloaded from http://www.microsoft.com/downloads/details.aspx?familyid=90e2942d-
3ad1-4873-a2ee-4acc0aace5b6&displaylang=en.

You can also view the Visual Studio 2005 update for Vista release notes at http://support
.microsoft.com/kb/929470.

For Windows Vista, you also need SQL Server 2005 Service Pack 2. You can download SQL
Server 2005 SP2 from http://technet.microsoft.com/en-us/sqlserver/bb426877.aspx.

n The AdventureWorks database, available as a separate download with the SQL Server 2005
samples from http://www.microsoft.com/downloads/details.aspx?FamilyID=e719ecf7-9f46-
4312-af89-6ad8702e4e6e&DisplayLang=en.

n Microsoft Office Visio or, if you do not have Office 2007, Visio 2007 Viewer, available for
download from http://www.microsoft.com/downloads/details.aspx?FamilyID=d88e4542-
b174-4198-ae31-6884e9edd524&DisplayLang=en.

n If you do not have Microsoft Office 2007, you can use Office 2007 data connectivity com-
ponents to access Office files. You will use Microsoft Excel files in some labs. You can
download Office 2007 data connectivity components from http://www.microsoft.com/
downloads/details.aspx?familyid=7554F536-8C28-4598-9B72-EF94E038C891&display-
lang=en.

n Microsoft Internet Explorer 6.0 SP1 or later.

n Internet Information Services (IIS) 5.0 or later.

n Internet Information Services (IIS) 5.0 or later with Simple Mail Transport Protocol
(SMTP) virtual server installed.

xxviii Introduction
Installing SQL Server 2005
SQL Server 2005 Enterprise Edition is required to run some of the code samples provided in
this book. A 180-day evaluation edition is available on the companion DVD. Alternatively, to
download and install a free 180-day evaluation edition of SQL Server 2005 Enterprise Edition,
perform the following steps:

1. Browse to http://www.microsoft.com/sql/downloads/trial-software.mspx and click the
Download SQL Server 2005 link.

You will need to complete a registration form that requires you to have a .NET passport
account.

2. Read and follow the instructions on the download page to download the SQL Server 2005
Enterprise Evaluation Edition. Locate the correct download file for your environment.

3. Once the install executable has been downloaded to your local machine, execute the
downloaded file (SQLEVAL.EXE) and click Run to extract the setup files to your local
development computer.

4. Browse to the location to which you extracted the setup files. Execute Setup.exe from the
Servers folder to begin the installation process.

5. Select I Accept The Licensing Terms And Conditions and click Next.

6. Click Install from the Installing Prerequisites dialog box. Once complete, click Next to
continue.

7. The installation will then perform a system configuration check. From the Welcome dia-
log box, click Next to begin the installation.

8. Once the System Configuration Check is complete, click Next.

9. Type name and company information in the Registration Information dialog box and
click Next to continue.

10. Click Next to accept the defaults from the Feature Selection dialog box.

11. Click Next and accept the defaults from the Instance Name dialog box.

12. Click Next and accept the defaults from the Logon Information dialog box.

13. Click Next and accept the defaults from the Error And Usage Report Settings dialog box.

14. Click Install from the Ready To Install dialog box and wait for the installation to complete.

15. You will also have to download and install the AdventureWorks database, which is refer-
enced in some of the chapter labs.

Installing Visual Studio 2005
Visual Studio 2005 Professional Edition is required to run some of the code samples provided
in this book. To download and install a free 90-day evaluation edition of Visual Studio 2005
Professional Edition, perform these steps:

Introduction xxix
1. Browse to http://msdn2.microsoft.com/en-us/vstudio/bb188238.aspx and click the Down-
load link for the Visual Studio 2005 Professional 90-day trial. You will need to complete
a registration form that requires you to have a .NET passport account.

2. Read and follow the instructions on the download page to download the Visual Studio
2005 Evaluation Edition. Locate the correct download file for your environment.

3. Once the ISO image file has been downloaded to your local computer, copy it to a blank
DVD-R, which will result in an exact copy of the installation media. Even though this
copy is fully functional, the license is valid for only 90 days.

4. Once copied to a DVD-R, you can browse to the DVD drive and begin the installation by
executing the Setup.exe file.

5. Click Install Visual Studio 2005. The installation will begin by copying required setup
files to a temporary directory. When it is complete, click Next to continue the installation.

6. Select the I Accept The Licensing Terms And Conditions check box and click Next to
continue the installation.

7. Click Install from the Select Features To Install dialog box and accept the default instal-
lation. Once complete, click Next to continue.

The installation will take several minutes to complete, and the time will vary, depending
on the speed of your development computer.

Installing the AdventureWorks Database
You can download and install a sample database for Adventure Works, a fictional retailer that
is referenced in some of the labs in this book. To install the sample database, perform the fol-
lowing steps:

1. Browse to http://www.microsoft.com/downloads/details.aspx?FamilyID=e719ecf7-9f46-4312-
af89-6ad8702e4e6e&DisplayLang=en.

2. Select the appropriate download for your computer system (x86, x64 or IA64) and fol-
low the instructions on the download page to run the Case-Insensitive Collation DB
installation package (AdventureWorksDBCI.msi).

3. Once the installation package has finished downloading, double-click the executable file
and click Run to execute the Installer.

4. Click Next from the Welcome dialog box.

5. Click the I Accept The Terms In The License Agreement and click Next from the License
dialog box.

6. Click Next and accept the defaults in the Destination Folder dialog box.

7. Click Install from the Ready To Install dialog box.

8. Click Finish on the Wizard Completed page.

xxx Introduction
Case Scenarios and the 70-441 Exam
All 200 practice test questions included on the companion CD are based on case scenarios and
assess the understanding of the information presented. Each case scenario describes a ficti-
tious company that has an existing IT structure and is facing increasing needs or having prob-
lems and asks the exam candidate to decide on solutions. Each case scenario is self-contained,
describing both business and technical details, both of which you need to analyze.

To understand case scenarios and questions based on case scenarios, it is recommended that
the exam candidate read through each case scenario and the questions for this scenario
quickly for the first time, to identify the major challenges of the fictitious company. Before
answering each question, read the business and technical requirements details that relate to
that specific question. Read the scenarios and the questions thoroughly to absorb all the rele-
vant information.

Case Scenario Structure
Each case scenario begins by describing the background of a fictitious company, including a
brief company overview, a detailed description of the existing environment, and plans for
changes. This background information also includes problems that the company is currently
facing. Because this exam involves designing a SQL Server solution, only the relevant technical
details are included in case scenarios. You should focus on business problems in case scenar-
ios; however, do not neglect technical details when they are provided.

After you understand the company’s background, move to the business and technical require-
ments in the case scenario. Business requirements should drive your solution design. Techni-
cal requirements involve details about security, performance, data integrity, versioning, and
other requests that your solution has to satisfy.

Using the CD and DVD
A companion CD and an evaluation software DVD are included with this training kit. The com-
panion CD contains the following:

n Practice tests You can practice for the 70-441 certification exam by using tests created
from a pool of 200 realistic exam questions. These questions give you many different
practice exams to ensure that you’re prepared to take the real thing.

n Practice Files Many chapters in this book include samples with T-SQL and .NET code,
Visio, Excel, and other files associated with the practice exercises at the end of every les-
son. For each exercise, a complete solution is provided for your review. To install the
practice files on your hard disk, run Setup.exe in the Practice_Files folder on the compan-
ion CD. The default installation folder is \My Documents\Microsoft Press\MCITP Self-
Paced Training Kit Exam 70-441.

Introduction xxxi
n An eBook An electronic version (eBook) of this book is included for times when you
don’t want to carry the printed book with you. The eBook is in Portable Document For-
mat (PDF), and you can view it by using Adobe Acrobat or Adobe Acrobat Reader, avail-
able from http://www.adobe.com.

The evaluation software DVD contains a 180-day evaluation edition of SQL Server 2005 Enter-
prise Edition, needed to run the practice files in this book.

How to Install the Practice Tests
To install the practice test software from the companion CD on your hard disk, perform the
following steps:

1. Insert the companion CD into your CD drive and accept the license agreement. A CD
menu appears.

IMPORTANT If the CD menu doesn’t appear

If the CD menu or the license agreement doesn’t appear, AutoRun might be disabled on your
computer. Refer to the Readme.txt f ile on the CD-ROM for alternative installation instruc-
tions.

2. Click the Practice Tests item and follow the instructions on the screen.

How to Use the Practice Tests
To start the practice test software, follow these steps:

1. Click Start, select All Programs, and choose Microsoft Press Training Kit Exam Prep.

A window appears that shows all the Microsoft Press training kit exam prep suites
installed on your computer.

2. Double-click the practice test that you want to use.

Practice Test Options
When you start a practice test, you choose whether to take the test in Certification Mode,
Study Mode, or Custom Mode.

n Certification Mode Closely resembles the experience of taking a certification exam.
The test has a set number of questions, it’s timed, and you can’t pause and restart the
timer.

n Study Mode Creates an untimed test in which you can review the correct answers and
the explanations after you answer each question.

n Custom Mode Gives you full control over the test options so that you can customize
them as you like. You can click OK to accept the defaults, or you can customize the num-

xxxii Introduction
ber of questions you want, how the practice test software works, which exam objectives
you want the questions to relate to, and whether you want your lesson review to be
timed. If you’re retaking a test, you can select whether you want to see all the questions
again or only those questions you missed or didn’t answer.

In all modes, the user interface you see when taking the test is essentially the same but with
different options enabled or disabled, depending on the mode.

After you click OK, your practice test starts.

n To take the test, answer the questions and use the Next, Previous, and Go To buttons to
move from question to question.

n After you answer an individual question, if you want to see which answers are correct—
along with an explanation of each correct answer—click Explanation.

n If you’d rather wait until the end of the test to see how you did, answer all the questions,
and then click Score Test. You’ll see a summary of the exam objectives you chose and the
percentage of questions you answered correctly overall and per objective. You can print
a copy of your test, review your answers, or retake the test.

When you review your answer to an individual practice test question, a References section lists
where in the training kit you can find the information that relates to that question and pro-
vides links to other sources of information. After you click Test Results to score your entire
practice test, you can click the Learning Plan tab to see a list of references for every objective.

How to Uninstall the Practice Tests
To uninstall the practice test software for a training kit, use the Add Or Remove Programs
option in Windows Control Panel.

Microsoft Certified Professional Program
The Microsoft certifications provide the best method to prove your command of current
Microsoft products and technologies. The exams and corresponding certifications are devel-
oped to validate your mastery of critical competencies as you design and develop, or imple-
ment and support, solutions with Microsoft products and technologies. Computer
professionals who become Microsoft certified are recognized as experts and are sought after
industry-wide. Certification brings a variety of benefits to the individual and to employers and
organizations.

Introduction xxxiii
IMPORTANT All the Microsoft certifications

For a full list of Microsoft certif ications, go to http://www.microsoft.com/learning/mcp/default.asp.

Technical Support
Every effort has been made to ensure the accuracy of this book and the contents of the com-
panion CD. If you have comments, questions, or ideas regarding this book or the companion
CD, please send them to Microsoft Press by using either of the following methods:

E-mail: tkinput@microsoft.com

Postal Mail:

Microsoft Press
Attn: MCITP Self-Paced Training Kit (Exam 70-441): Designing Database Solutions by Using
Microsoft SQL Server 2005 Editor
One Microsoft Way
Redmond, WA 98052–6399

For additional support information regarding this book and the CD-ROM (including answers
to commonly asked questions about installation and use), visit the Microsoft Press Technical
Support Web site at http:/www.microsoft.com/learning/support/books. To connect directly to
the Microsoft Knowledge Base and enter a query, visit http://support.microsoft.com/search. For
support information regarding Microsoft software, please visit http://support.microsoft.com.

Evaluation Edition Software Support
The 180-day evaluation edition provided with this training kit is not the full retail product and
is provided only for the purposes of training and evaluation. Microsoft and Microsoft Techni-
cal Support do not support this evaluation edition.

Information about any issues relating to the use of this evaluation edition with this training kit
is posted to the Support section of the Microsoft Press Web site at http://www.microsoft.com
/learning/support/books. For information about ordering the full version of any Microsoft soft-
ware, please call Microsoft Sales at (800) 426-9400 or visit the Microsoft Web site at http://
www.microsoft.com.

Chapter 1

Selecting and Designing SQL Server
Services to Support Business Needs

Microsoft SQL Server 2005 is far more than a relational database management system
(RDBMS). Providing multiple services, tools, and components, SQL Server 2005 is a compre-
hensive platform for enterprise applications. When developing modern applications, a key
success factor is selecting the appropriate services to support business needs. To make the
best use of SQL Server 2005 services, you must understand their capabilities and limitations
and how they fit into the complete SQL Server architecture.

In this first chapter, you will get an overview of the services and components included in the
SQL Server 2005 platform, from the database engine’s core services to mail and replication
components as well as advanced notification, reporting, and analysis services. You will see
how these services and components fit into an enterprise solution, and you will explore impor-
tant considerations for their usage.

Exam objectives in this chapter:
n Select and design SQL Server services to support business needs.

q Select the appropriate services to use to support business needs.

q Design a SQL Web services solution.

q Design a Notification Services solution to notify users.

q Design a Service Broker solution for asynchronous database applications.

q Design a Microsoft Distributed Transaction Coordinator (MS DTC) solution for
distributed transactions.

q Design a Reporting Services solution.

q Design an Integration Services solution.

q Design a SQL Server core service solution.

q Design a SQL Server Agent solution.

q Design a DatabaseMail solution.

n Design objects that perform actions.

q Design Service Broker applications.
1

2 Chapter 1 Selecting and Designing SQL Server Services to Support Business Needs
Before You Begin
To complete the lessons in this chapter, you must have:

n A general understanding of multi-tiered, asynchronous, and service-oriented architec-
tures.

n A general understanding of the relational model and relational database systems.

n A general understanding of business intelligence.

n Knowledge of Transact-SQL language elements.

Lesson 1: Selecting the Appropriate Services 3
Lesson 1: Selecting the Appropriate Services

Estimated lesson time: 20 minutes

SQL Server supports online transactional processing (OLTP), data warehousing (DW), and
e-commerce applications. It also supports a variety of business intelligence (BI) applica-
tions, including data integration, reporting, online analytical processing (OLAP), and data
mining solutions. By thoroughly understanding the SQL Server architecture, you can select
the correct component or service for a specific business problem. Figure 1-1 illustrates the
components of SQL Server 2005.

Figure 1-1 SQL Server 2005 components

Table 1-1 briefly describes each of these components.

Table 1-1 Describing SQL Server 2005 Components

Component Description

Database Engine The database engine comprises the core services of SQL Server and is
responsible for storing, processing, and securing data. You use the database
engine to create relational databases for OLTP data and to build data ware-
houses for BI applications. In SQL Server 2005, the engine includes many
new features, including common language runtime (CLR) integration and
support for extensible Markup Language (XML) and Web services.

Service
Broker

Replication
Full-Text
Search

Database Engine

Reporting
Services

Analysis
Services

Integration
Services

Notification
Services

SQL Server
Agent

4 Chapter 1 Selecting and Designing SQL Server Services to Support Business Needs
Service Broker Service Broker extends the database engine’s capabilities by providing
native support for queuing and messaging applications. You can use Service
Broker to build reliable asynchronous applications easily within a single
database or a single instance as well as asynchronous applications in a dis-
tributed environment.

Replication You use replication to copy data and database objects between distributed
databases. With its set of replication technologies, SQL Server synchronizes
and maintains consistency between databases.

Full-Text Search Full-Text Search (FTS) enables you to run full-text queries against character
data in your SQL Server tables. FTS enables fast indexing for keyword-
based queries that can include words and phrases or multiple forms of
words and phrases.

SQL Server Agent SQL Server Agent is a database administration tool for scheduling and exe-
cuting regular jobs such as database backups and integrity checks for con-
figuring alerts and for sending messages to operators.

Integration Services SQL Server Integration Services (SSIS)—the platform’s extraction, transfor-
mation, and loading (ETL) platform—handles data integration and transfor-
mation. With Integration Services, you can extract data from a variety of
sources, including XML data files, flat files, and relational data sources, and
then load the data into different destinations while performing transforma-
tions in real time.

Reporting Services SQL Server Reporting Services (SSRS) is a server-based platform for manag-
ing reports from relational and multidimensional data sources. Users can
view reports in different formats and subscribe to reports by using a variety
of delivery channels. In addition, with Reporting Services, developers can
prepare a semantic model of a database, and end users can then use this
report model to build ad hoc reports themselves.

Analysis Services SQL Server Analysis Services delivers OLAP and data mining functionality
for BI applications. Analysis Services supports multidimensional structures
with detail and aggregated data from multiple sources in a single unified
logical model. It also provides rich metadata that supports additional calcu-
lations, Key Performance Indicators (KPIs), translations, actions, and differ-
ent perspectives for flexible data analysis. In addition, Analysis Services
provides a variety of data mining models that support all the most popular
data mining algorithms.

Notification
Services

Notification Services enables you to develop applications that generate and
send notifications to subscribers based on specified events or on a sched-
ule. You can send notifications, which can be richly formatted, to many dif-
ferent devices.

Table 1-1 Describing SQL Server 2005 Components

Component Description

Lesson 1: Selecting the Appropriate Services 5
Practice: Selecting the Appropriate Services to Support Business Needs
In this practice, you will perform the conceptual exercise of choosing the appropriate technology.

Exam Tip When answering an exam question with more than one correct answer, be aware that
it is not always possible to determine all correct answers directly from the question. Sometimes you
have to think carefully about what additional services you need for a real-life solution.

� Exercise: Use an Appropriate Technology

In this conceptual exercise, you will select appropriate SQL Server 2005 services for an analyt-
ical system.

You are designing an analytical system. Your system has to include a data warehouse,
three OLAP cubes, and two data mining models. Which SQL Server 2005 services would
you use for these tasks? Remember to consider using services that might not be men-
tioned but that you would use in a real-life solution.

Suggested Answer

For the data warehouse, you should use the database engine. A data warehouse is typi-
cally stored on a RDBMS. For OLAP cubes and data mining models, use Analysis Ser-
vices. You should also anticipate usage of Integration Services for the ETL tasks.

Quick Check
1. Which component would you use to create asynchronous distributed applications?

2. How could you enable end users to create ad hoc reports themselves?

3. Which of the following features are new in SQL Server 2005? (Choose all that apply.)

A. CLR integration

B. Full-Text Search

C. SQL Server Agent

D. Service Broker

E. Replication

Quick Check Answers
1. You can use Service Broker for asynchronous, distributed, and loosely coupled

applications.

2. Reporting Services report models enable end users to create reports by themselves.

3. The correct answers are A and D. CLR integration and Service Broker are new in
SQL Server 2005; Full-Text Search, SQL Server Agent, and replication are also part
of SQL Server 2000, although they are enhanced in SQL Server 2005.

6 Chapter 1 Selecting and Designing SQL Server Services to Support Business Needs
Lesson 2: Evaluating Core, SQL Server Agent, and
Database Mail Solutions

Estimated lesson time: 25 minutes

SQL Server 2005 introduces many database-engine enhancements that make it even easier for
you to write efficient code. This lesson helps you evaluate the use of core engine improvements
such as the new Transact-SQL (T-SQL) elements, XML data support, and CLR integration. In
addition, the lesson covers considerations for using SQL Server Agent and Database Mail.

Transact-SQL Enhancements
SQL Server 2005 substantially extends the functionality of the T-SQL language. The most
important new features include:

n Common table expressions (CTEs).

n Ranking functions.

n New large object (LOB) and XML data types.

n Statement operators.

n Structured exception handling.

n DDL triggers and event notifications.

A CTE is a temporary result set stored during the execution of a SELECT, INSERT, UPDATE,
or DELETE statement. You can use CTEs instead of derived tables (subqueries in a FROM
clause) or instead of views and table-valued functions to simplify coding logic and improve
performance. Unlike the case with derived tables, you declare CTEs before the main SELECT
statement in the new WITH clause, and CTEs are available immediately after the declaration
in the main query or in following CTEs. You can reference a CTE multiple times, for example,
to join it to itself in the main query. If you wanted to use a derived table for the same purpose,
you would have to declare it twice, which could lead to a suboptimal execution plan. In addi-
tion, you can easily write a recursive query by using a recursive CTE to retrieve hierarchical
data.

Ranking functions return positional information about rows in a result set. They can return a
ranking value for each row in a partition or in the entire result set. SQL Server 2005 includes
four ranking functions: ROW_NUMBER, RANK, DENSE_RANK, and NTILE.

In SQL Server 2000, varchar, nvarchar, and varbinary data types stored up to 8,000 bytes of
data. For large text, Unicode text, and pictures, you had to use text, ntext, and image types.
However, working with these large object types was somewhat awkward because only a lim-
ited number of system functions support these types. In SQL Server 2005, the database engine
now supports a MAX length specification for the varchar, nvarchar, and varbinary data types.

Lesson 2: Evaluating Core, SQL Server Agent, and Database Mail Solutions 7
When you specify MAX, the data types can store the same size data as text, ntext, and image
types (up to 2 gigabytes) but process the same way as when they store shorter strings. This
technology provides a unified LOB programming model.

IMPORTANT Deprecated types

Microsoft intends to drop support for the text, ntext, and image data types in upcoming releases of
SQL Server. For this reason, Microsoft recommends that you stop using these data types.

The new XML data type is a natural choice for storing XML documents and fragments in a
database. You can validate XML values against an XML schema from a pre-defined XML
schema collection. By using the XQuery language, you can query XML data, and, with SQL
Server extensions to XQuery, you can modify XML data. You can use the XML data type as you
would any other data type; therefore, you can store XML instances in columns, variables, or
stored procedure parameters.

The new statement operators in SQL Server 2005 are:

n OUTPUT, which enables you to retrieve the original and/or new rows affected by a data-
modification operator and store them in a table or table variable.

n APPLY, which you use in the FROM clause to invoke a table-valued function for each row
returned by an outer-table expression or query.

n PIVOT and UNPIVOT operators, which enable you to transform column values of a
rowset into columns and vice versa. You can use PIVOT for cross-tabulation reports.
UNPIVOT performs the opposite operation by rotating columns of a rowset into column
values.

n TOP(expression), an enhanced TOP operator. In earlier versions of SQL Server, you could
use only an integer constant as a TOP parameter; if you needed to use an expression as
a parameter value, you had to generate dynamic SQL.

Error handling is much easier in SQL Server 2005. You now have a structured exception-
handling mechanism through the new TRY . . . CATCH construct. You do not need to test
the @@error after each statement; instead, you can handle the errors that can occur in a
block of T-SQL code at run time in a uniform way by using TRY . . . CATCH logic.

SQL Server 2005 is not limited to data-modification language (DML) triggers anymore. Now,
you can create a trigger on any data-definition language (DDL) event as well. The DDL triggers
fire when a user executes DDL statements such as CREATE, ALTER, or DROP. You can use
them to prevent dangerous DDL operations or to audit operations performed by developers.

For auditing DDL operations, event notifications provide an asynchronous alternative to DDL
triggers. Event notifications send information about T-SQL DDL statements and SQL Trace
events to a Service Broker service. The event notifications execute asynchronously after the
operation ends.

8 Chapter 1 Selecting and Designing SQL Server Services to Support Business Needs
Considerations for Using CLR Integration
Developers often need to extend the functionality of T-SQL database applications to interact
better with the operating system and environment. Before SQL Server 2005, you could enrich
T-SQL by using extended stored procedures and Component Object Model (COM) classes.
However, a malfunctioning extended stored procedure could compromise the database engine
or even stop the SQL Server service. SQL Server now features integration with the CLR compo-
nent of the Microsoft .NET Framework. This CLR integration gives developers a rich program-
ming model, the power of the .NET Framework library, improved safety and security compared
to extended procedures, improved performance in some situations compared to T-SQL, and
streamlined development through the standardized Microsoft Visual Studio .NET environment.

Using .NET languages such as Microsoft Visual Basic and Microsoft Visual C#, you can write
programmatic objects for SQL Server databases. You can still write some programmatic
objects in T-SQL. Table 1-2 lists which objects you can write in .NET CLR languages and which
you can write in T-SQL.

Using CLR objects can still pose a security risk if a database administrator (DBA) does not
know what the objects do and has no knowledge of Code Access Security (CAS) in .NET.
When SQL Server 2005 is installed, the integrated CLR is disabled by default, and a DBA must
enable it explicitly by using the sp_configure system stored procedure. Let’s look at some other
points you should evaluate when considering using CLR objects.

CLR objects do not rely on external dependencies. For CLR objects, the complete assemblies
are stored in a database—unlike COM objects and extended stored procedures, which rely on
external libraries. Therefore, CLR objects run in the same process as the database engine,
which ensures better performance and safety compared to running an additional process for
COM objects and extended procedures. In addition, the CLR carefully manages its own
objects to prevent compromising the database engine, unless you explicitly configure the CLR
to bypass the safety features.

You can control the resources that CLR objects can access by using CAS. CAS can be com-
plicated, but in SQL Server, the CAS permissions are grouped into three sets—SAFE,
EXTERNAL_ACCESS, and UNSAFE—which enables effective administration. By granting

Table 1-2 Programmatic Objects and Languages

Object CLR Languages Transact-SQL

Stored procedure X X

User-defined function X X

Trigger X X

User-defined aggregate X

User-defined data type X

Lesson 2: Evaluating Core, SQL Server Agent, and Database Mail Solutions 9
the EXTERNAL _ACCESS or even UNSAFE permission set to an assembly, you are poten-
tially bypassing the built-in security features of the CLR. Not all .NET Framework classes are
available for use inside SQL Server because some classes, such as windowing classes, are not
appropriate for server-side use.

SQL Server versions earlier than 2005 do not support the CLR, so if you need to maintain
backward compatibility, you cannot use the integrated CLR. You also need to pay special atten-
tion to code performance when developing CLR objects. If a developer builds a problem into
a user-defined data type, a DBA can do nothing to improve the performance in production.

Using the integrated CLR is appropriate in the following scenarios:

n Extending functionality You cannot write user-defined aggregates or user-defined data
types (except simple aliases) in T-SQL.

n Accessing external resources If you need to access external resources such as Web ser-
vices, the file system, the Windows event logs, or network resources from SQL Server,
you should use the CLR. However, you need to understand how to use CAS before allow-
ing the CLR code to access external resources.

n Performing complex processing The managed code of the CLR performs much better
than T-SQL for CPU-intensive functions and procedures that feature complex logic.

n Replacing extended stored procedures Use the CLR in place of extended procedures
unless you must maintain backward compatibility.

Here are scenarios in which you should use T-SQL instead of the CLR:

n Querying the database T-SQL is designed specifically for direct data access and manip-
ulation, and it excels in performing database operations.

n Performing row-by-row processing You might consider using CLR code instead of T-SQL
cursors. However, T-SQL set-based operations, such as updating a set of rows, per-
form magnitudes better than row operations, even if you write them in one of the
.NET languages.

n Availability of T-SQL functions, operators, and expressions If T-SQL offers an avail-
able function, operator, or expression, you should not rewrite the functionality in the
CLR. For example, for expanding hierarchies, use CTEs; for calculating averages, use
the T-SQL AVG function.

Using SQL Server Agent
SQL Server Agent is a Microsoft Windows service that you can use for scheduling the execu-
tion of regular administrative tasks and routine maintenance operations. You can also use it for
automated administration—for the programmed response to predictable administrative
responsibilities or server events. Note that SQL Server Agent is disabled by default during the
SQL Server installation; you can enable it by using the Configuration Manager or the Surface

10 Chapter 1 Selecting and Designing SQL Server Services to Support Business Needs
Area Configuration tool. SQL Server Agent can notify an operator if a predictable event
occurred or a scheduled job finished; you should make good use of this capability.

SQL Server Agent provides valuable functionality for the following tasks:

n Performing regular maintenance operations All production databases should have a
regular backup plan, for example. Other important regular maintenance operations
include reorganizing or rebuilding indexes and checking the integrity of databases.

n Performing regular business tasks In many businesses, DBAs have to perform regular
processes on specific schedules. These processes can include ETL, end-of-period consol-
idation, and other resource-intensive operations that you need to execute during the
peak hours. You can use SQL Server Agent jobs to schedule these processes to execute
on a recurring basis at a specified time.

n Responding to alerts SQL Server Agent responds to a recognized alert by notifying an
operator or executing a scheduled job. You can set up alerts on SQL Server error mes-
sages written in the Windows Event Log, on SQL Server performance conditions, or on
Windows Management Instrumentation (WMI) events.

In earlier SQL Server versions, SQL Server Agent could execute T-SQL, command prompt,
ActiveX, and replication steps. In addition to those tasks, in SQL Server 2005, SQL Server
Agent can execute SQL Server Analysis Services command and query steps and Integration
Services package steps.

Using Database Mail
Although earlier versions of SQL Server were limited to Messaging Application Programming
Interface (MAPI) components for sending e-mail, SQL Server 2005 introduces Database Mail,
which uses the standard Simple Mail Transfer Protocol (SMTP) to send e-mail.

IMPORTANT SQL Mail is deprecated

SQL Server provides SQL Mail (the MAPI messaging component) for backward compatibility only.
Microsoft will remove this feature in a future release of SQL Server.

The following Database Mail characteristics make a strong case for using the component:

n Reliability The component that delivers mail runs in a separate process outside SQL
Server. SQL Server will queue messages even if the external process fails. You can specify
more than one SMTP server to use and thus have failover accounts. Database Mail is fully
supported on a Windows cluster.

n Scalability Database Mail delivers messages in a background asynchronous process
using Service Broker queues. You can define multiple mail profiles within a SQL Server
instance, and each profile can have multiple failover accounts. Database Mail is sup-
ported on 64-bit versions of SQL Server; SQL Mail is not.

Lesson 2: Evaluating Core, SQL Server Agent, and Database Mail Solutions 11
n Security Database Mail is disabled by default upon installation of SQL Server. You can
enable it by using the Surface Area Configuration tool. To send Database Mail, you must
be a member of the new DatabaseMailUserRole database role in the msdb database.
Database Mail also enforces security for mail profiles: You can choose which msdb users
have access to a profile. Database Mail enforces a configurable limit on the attachment
file size and maintains a list of prohibited file extensions.

n Supportability To configure a Database Mail profile, you do not need an external client
application such as Microsoft Outlook. Database Mail provides logging to msdb tables
and the Windows event logs. In addition, you can easily audit Database Mail through
copies of sent messages and attachments stored in the msdb database.

Practice: Selecting an Appropriate Programming Language
In this practice, you will perform the conceptual exercise of deciding which type of code to use.

� Exercise: Transact-SQL vs. CLR Code

In this exercise, decide whether to use T-SQL or CLR code.

You have some CLR assemblies in your database. You do not have documentation for the
assemblies. You need to retrieve information about classes and methods in your assem-
blies. Would you do this with T-SQL or with CLR code?

Suggested Answer

In this case, use CLR code. You can retrieve some information about assemblies with T-
SQL code, with SELECT statements from sys.assemblies, sys.assembly files, and
sys.assembly_modules catalog views. However, it is very easy to find all metadata infor-
mation on an assembly with CLR code, with System.Reflection classes.

Quick Check
1. How should you store a very long string so that you can extract a substring starting

at the one-millionth character?

2. You need to expand the hierarchy of a Bill of Materials stored in a table that refer-
ences itself. Which technique should you use?

A. T-SQL with the WHILE statement

B. CLR table-valued function

C. Common table expression (CTE)

D. T-SQL cursor

3. Can you set up a SQL Server Agent alert that will fire when the % Processor Time
counter of the Processor performance monitor object exceeds the value of 90?

12 Chapter 1 Selecting and Designing SQL Server Services to Support Business Needs
Quick Check Answers
1. You should use the varchar(MAX) or nvarchar(MAX) data type for storing the long

string.

2. The correct answer is C. Although a CLR function, if written well, should perform
better for row operations than a T-SQL cursor or WHILE loop, you could never
reach the performance of a CTE. In addition, a CTE is probably easier to write,
although this depends on your knowledge of programming languages. In addition,
a CTE requires less code than a CLR function.

3. No. You can set up SQL Server Agent alerts only on SQL Server performance con-
ditions and only on SQL Server performance objects. However, you could set up
this alert in Windows System (Performance) Monitor.

Lesson 3: Using Advanced Services 13
Lesson 3: Using Advanced Services

Estimated lesson time: 25 minutes

The database engine in SQL Server 2005 provides various advanced services that you can
include in your applications. In this lesson, you will gather core information about SQL Server
Web services, Service Broker, replication, and distributed transactions. With this information,
you will be able to determine when to use these advanced services.

SQL Server Web Services
The native protocol for accessing a database in SQL Server is Tabular Data Stream (TDS). TDS
is a proprietary protocol for Windows-based clients, which commonly also use Microsoft Data
Access Components (MDAC). You install the MDAC stack on client computers. However,
Web-based clients need a more open communications protocol.

In SQL Server 2000 and earlier versions, you can achieve Web-based access to SQL Server
through SQLXML 3.0, which is a middle-tier component, but you also have to use Microsoft
Internet Information Services (IIS). The SQL Server 2005 database engine provides native
XML Web services by using established open standards. These standards include Hypertext
Transfer Protocol (HTTP), a core and platform-neutral protocol behind the Web; Simple
Object Access Protocol (SOAP), which defines how to use XML and HTTP to access services,
objects, and servers regardless of operating system; and Web Services Definition Language
(WSDL), an XML document format you can use to describe Web-based services. Figure 1-2
illustrates the two environments for Web-based access to SQL Server: through SQLXML 3.0,
MDAC, and TDS, or through the native Web services in SQL Server 2005.

Figure 1-2 Alternatives for Web-based access to SQL Server 2005

In SQL Server 2005, HTTP endpoints serve as the gateway through which HTTP-based clients
can query the server. After you establish an HTTP endpoint, you can expose stored procedures
and user-defined functions as Web methods. A Web service is a collection of Web methods

SQL Server

SQLXML
IIS

MDAC TDS

HTTP/
SOAP

Win client

SOAP client

14 Chapter 1 Selecting and Designing SQL Server Services to Support Business Needs
that you design to use together. SQL Server can also consume Web services, but you have to
design the consumer procedures by using a .NET language and CLR integration.

HTTP endpoints use the SOAP open protocol, which provides interoperability. If your clients
use an operating system other than Windows, using HTTP endpoints is your obvious choice.
HTTP endpoints use the http.sys kernel mode driver, which provides better performance than
IIS-based solutions. However, HTTP endpoints do not scale out because they use the database
engine directly. Consider security issues with HTTP endpoints also. You should not expose
your database to the Internet directly; if you must provide access to your database over the
Internet, use other technologies that include the middle tier, such as ASP.NET Web services.

IMPORTANT HTTP listener

HTTP support requires the HTTP listener, called the http.sys driver, which is available only on oper-
ating systems Microsoft Windows Server 2003 and Windows XP Service Pack 2 or later.

Here are some scenarios in which you should consider using HTTP endpoints:

n Providing reports for internal use You can easily create stored procedures to retrieve
data and expose it through HTTP endpoints. Then, internal users can connect to the
URL of the HTTP endpoint and use a Web browser to display the data.

n Using XML If your applications can process data as XML, you can use an HTTP end-
point to exchange data in XML format instead of in relational format.

n Using Service-Oriented Architecture (SOA) Many modern applications use SOA, and
HTTP endpoints conform to the SOA.

You should not use SQL Server native Web services in the following situations:

n Using the Windows 2000 operating system HTTP endpoints are supported for Windows
Server 2003 and Windows XP Service Pack 2 (SP2) or later operating systems only.

n Performing real-time transaction processing HTTP endpoints do not perform as well as
connecting to SQL Server by using TDS and ADO.NET, for example. Therefore, you
should not use HTTP endpoints when you need fast, mission-critical response times.

n Using LOBs When you serialize large object (LOB) data in XML format, you can con-
sume significant processing power. Transporting this data can require a lot of network
bandwidth.

n Using middle-tier business logic You can accommodate the demands of large-scale
business logic better by using middle-tier components.

Using Service Broker
Many modern applications can benefit from asynchronous processing. SQL Server Service
Broker is a new technology in SQL Server 2005 that helps you build reliable, scalable, and
loosely coupled distributed applications. Service Broker also provides messaging between

Lesson 3: Using Advanced Services 15
SQL Server 2005 instances. Server Broker is a SQL Server alternative to Microsoft Messaging
Queue (MSMQ) service.

Traditional messaging systems such as MSMQ store messages in memory or in their own mes-
sage store. However, Service Broker stores messages in hidden tables inside a database. This
database integration prevents inconsistency between a database and a message store. Messages
are backed up when you back up the database. You secure Service Broker objects as you do any
other database object. In addition, database integration of Service Broker, which can handle
messages up to 2 GB in size, enables automatic resource management by the SQL Server data-
base engine. Service Broker messages are automatically involved in transaction management.

One of Service Broker’s most useful features is automatic activation. Service Broker activation
starts a new queue reader (for example, a stored procedure) when there is work for the queue
reader to perform. For activation outside the database, Service Broker generates an activation
event. However, Service Broker cannot deliver messages between heterogeneous systems; in
such cases, you will need to use another system, such as MSMQ.

Appropriate scenarios for SQL Server Broker usage include:

n Scaling out You can divide the workload among multiple SQL Server instances or
implement asynchronous processing within a single instance to shorten interactive
response time. For example, you can process triggers asynchronously. A trigger can
queue a message instead of processing some commands; the program that implements
the service performs the work in a separate transaction. Another example is large-scale
batch processing. You can store the data to be processed in a Service Broker queue and
process it periodically by using a program that reads from the queue.

n Improving reliability and availability In a distributed system, you can improve reliability
and availability by using Service Broker. If one of the servers in a distributed system fails,
Service Broker can send messages to a working server, and the application can continue
processing.

n Consolidating data for client applications You can have an application consolidate data
from multiple databases onto a single screen. You can send requests from an application
to different services in parallel. When the services respond, your application can collect
the responses and display the results.

n Auditing Event notifications use the Service Broker infrastructure for asynchronous
processing of various events. You can use event notifications to implement asynchro-
nous auditing, which has less impact on the database engine than synchronous auditing
solutions, such as solutions that use DDL triggers.

n Maintaining cached data SQL Server 2005 can also send query notifications. Query
notifications inform an application that maintains data in its own cache that the cached
data is outdated so that the application can refresh its cache. An application has to sub-
scribe to query notifications by using ADO.NET classes. Again, SQL Server uses the Ser-
vice Broker infrastructure to enable query notifications.

16 Chapter 1 Selecting and Designing SQL Server Services to Support Business Needs
Replication Enhancements
SQL Server replication is a well-known technology for implementing low-overhead distributed
solutions. You can use replication to improve availability and scalability. SQL Server 2005 pro-
vides many replication enhancements, including enhancements in replication security and
performance. The most important enhancements include:

n Peer-to-peer topology You can view this topology as an asynchronous distributed
application. All nodes in a peer-to-peer topology are peers. Each node publishes and sub-
scribes to the same schema and data, although the same row can be changed at only one
location at a time. The peer-to-peer topology is best suited for server environments
requiring high availability and read scalability.

n Schema changes You can now replicate DDL operations easily. You do not need to use
special stored procedures for adding and dropping columns, and schema changes are no
longer limited to adding and dropping columns.

n Heterogeneous replication In SQL Server 2005, Oracle publishers beginning with ver-
sion 8.0.5 are supported out of the box. In addition, you can use Oracle and IBM DB2 as
push subscribers of transactional and snapshot replication.

n Replicating over the Internet With merge replication, you can synchronize sites over
the Web by using the Hypertext Transfer Protocol Secure (HTTPS) protocol. HTTPS
merge replication supports SQL Server Mobile Edition subscribers as well. If you need to
implement transactional replication over the Web, you can use a virtual private network
(VPN) connection to SQL Server.

SQL Server 2005 still supports snapshot, transactional, and merge replication. Snapshot repli-
cation is most appropriate when data changes are substantial but infrequent. Snapshot repli-
cation is also commonly used for initialization of other types of replication. Consider using
transactional replication when you want to propagate the changes from publishers to subscrib-
ers with low latency. Transactional replication supports updating subscribers; however,
because updating conflicts can occur, use subscribers that make only occasional changes.
Consider using merge replication when you want to enable multiple subscribers to update the
same data and propagate those changes to the publisher and to other subscribers. Subscribers
can be offline most of the time; they need connection to the publisher only when they are
merging the data. With merge data, conflicts might occur when users update the same data at
more than one node; you have to be prepared to detect and solve these conflicts.

Implementing Distributed Transactions
A distributed transaction updates data on two or more computers in a network. Database man-
agement systems such as SQL Server that are included in a transaction are called resource man-
agers. Management of the transaction between the resource managers is the duty of a server
component called the transaction manager. Each computer involved in a distributed transaction

Lesson 3: Using Advanced Services 17
has a local transaction manager, and those transaction managers interact with other transac-
tion managers.

An application manages a distributed transaction in a similar manner to how it manages a local
transaction; at the end of the transaction, the application has to decide whether to commit or
roll back the transaction. The transaction manager controls the distributed commit to mini-
mize the risk that some resource managers might successfully commit while others roll back
the transaction because of a network or other failure. The transaction manager safeguards the
transaction by using a two-phase commit. The two phases are called prepare and commit. Dur-
ing both phases, the transaction manager communicates with resource managers. If any
resource manager reports a failure to prepare, the transaction manager sends a rollback com-
mand to each resource manager and indicates the failure of the commit to the application.

The MSDTC is a service you use as a distributed transaction manager for the Windows plat-
forms. In a distributed environment with SQL Server instances, you must consider whether to
manage distributed transactions through T-SQL or through the database application program-
ming interface (API). If you use T-SQL distributed transactions, you need only the following
few T-SQL statements to control the transactions:

n Statements that start a distributed transaction. You can start the distributed transaction
in the following ways:

q You can start an explicit distributed transaction by using the BEGIN DISTRIB-
UTED TRANSACTION statement.

q Inside a local transaction, you can execute a distributed query.

q You can use the SET REMOTE_PROC_TRANSACTIONS ON statement and then
call a remote stored procedure.

n Statements that perform distributed queries against linked servers or that execute
remote procedure calls against remote servers.

n Standard statements that complete the transaction (COMMIT TRANSACTION, COM-
MIT WORK, ROLLBACK TRANSACTION, or ROLLBACK WORK).

Database interfaces (APIs) that support distributed transactions include ADO.NET, ODBC,
OLE DB, ADO, and even DB Library. However, when you use the .NET Framework 2.0 Data
Provider for SQL Server (SqlClient) with SQL Server 2005, you get promotable transactions.
Promotable transactions optimize distributed transactions by deferring the creation of a dis-
tributed transaction until you need it. If only one resource manager is required, no distributed
transaction occurs.

Note that if you use immediate updating subscribers with transactional replication, you use
distributed transactions as well. When you update the data at a subscriber, the changes are
propagated immediately to the publisher using the two-phase commit. If you use queued
updating subscribers, the changes are stored in a queue and then applied asynchronously at
the publisher.

18 Chapter 1 Selecting and Designing SQL Server Services to Support Business Needs
Practice: Using Advanced Database Engine Features
In this practice, you will perform the conceptual exercise of selecting the best SQL Server 2005
Database Engine service or feature.

� Exercise: Use the Appropriate Technology

In this exercise, decide which advanced database engine feature to use to solve a business
problem.

1. You want to offload your production system, so you decide to use an additional SQL
Server instance for reporting. You want to have a copy of the data on the reporting server
available with low latency. Which technology would you use?

2. You need to make your data available to your domain users while they are traveling. They
need to create simple reports from the latest data. What can you do to help them?

Suggested Answers

1. You should use transactional replication to make a copy of the data available on the
reporting server. Distributed transactions do not help you in a scenario like this; whether
you query the data on the reporting server via distributed transactions or local transac-
tions, you are still adding to the server load. Service Broker is not appropriate because
you need only a copy of the data; you do not need any further processing on the report-
ing server. In addition, you would have to change your applications to use either distrib-
uted transactions or Service Broker. Setting up a transactional replication solution in this
case is only an administrative task.

2. You can implement HTTP endpoints to make the data that users need available to them
through stored procedures exposed as Web methods. You have known (domain) users
only, so this is not a security risk because you can control the exposure of HTTP end-
points.

Quick Check
1. In your company, sales representatives need to start visiting customers directly,

instead of having just phone communication. They will use laptop computers to
insert new data during or right after the visit. They want to continue using the
existing sales application. However, their laptop computers will be disconnected
most of the time. Which of the following technologies would you use?

A. Service Broker

B. Transactional replication

C. Distributed transactions

D. Merge replication

2. Can you consume query notifications inside a T-SQL stored procedure?

Lesson 3: Using Advanced Services 19
Quick Check Answers
1. The correct answer is D, merge replication. You can install SQL Server Express

edition and create a copy of the sales database on their laptop computers. You
can install sales the application as well. Then you can replicate only the tables
they need to update. Your main production server would become the publisher,
and all laptop computers would become subscribers. They can connect to the
central server in the evening and merge the data. Distributed transactions do not
help you in a scenario like this; for distributed transactions, they would need a
constant connection. Service Broker is not appropriate because this would be a
more complicated solution that would involve application changes. Setting up a
merge replication solution in this case is only an administrative task. Transac-
tional replication is not appropriate because you would have to use updating
subscribers, and for updates from subscribers, transactional replication uses dis-
tributed transactions.

2. No, you cannot consume query notifications with T-SQL; you need a .NET appli-
cation for this task.

20 Chapter 1 Selecting and Designing SQL Server Services to Support Business Needs
Lesson 4: Evaluating Other Services

Estimated lesson time: 20 minutes

Besides the database engine, SQL Server 2005 includes other services that enable you to create
enterprise applications, as discussed in Lesson 1, “Selecting the Appropriate Services to Sup-
port Business Needs.” In this lesson, you will get an overview of considerations for using SQL
Server 2005 Notification Services, Reporting Services, Analysis Services, and Integration Ser-
vices. Chapter 15, “Designing Applications That Support Reporting and Use Reporting Ser-
vices,” Chapter 16, “Developing Applications for Notification Services,” and Chapter 17,
“Developing Packages for Integration Services,” provide in-depth coverage of designing solu-
tions using Reporting Services, Notification Services, and Integration Services, respectively.
Designing for Analysis Services, a BI component, is beyond the scope of this book. To learn
more about business intelligence components in SQL Server 2005, refer to the Microsoft Busi-
ness Intelligence Web site at http://www.microsoft.com/bi/.

Notification Services
Communication is a key element in modern applications. Sometimes you need an alerting
application and an event-based notification system to communicate with your customers,
employees, and even computers. Notification Services is a programming framework for creat-
ing applications that generate and send notifications as well as a platform for hosting those
applications. A Notification Services application manages subscriptions, collects events, gen-
erates notifications, and then renders and distributes the notifications by using external deliv-
ery services, including SMTP. Using Notification Services, which provides many elements for
building notification applications out of the box, you can reduce development time. Here are
some considerations for deciding whether to implement a Notification Services solution:

n Data A Notification Services application stores its data in SQL Server databases. There-
fore, you can control the access to the data and optimize performance of the Notification
Services databases as you do for other databases.

n Events Notification Services supports three standard event providers: File System
Watcher, which is triggered when an XML file is added to a watched folder; SQL Server
Event Provider, which uses a T-SQL query to get the data from a SQL Server database
and then uses stored procedures to create events based on this data; and Analysis Ser-
vices Event Provider, which uses a multidimensional expressions (MDX) query to gather
data from an Analysis Services cube and submits the data as events to an application. In
addition, you can develop custom event providers. Notification Services applications use
rules for generating notifications based on events. You can focus on the definition of the
rules instead of on the implementation details.

Lesson 4: Evaluating Other Services 21
n Scalability Notification Services applications use set-oriented techniques for processing to
support a large number of subscribers. In addition, Notification Services can scale out and
run on different SQL Server instances. In addition to standard notification-by-notification
formatting and delivery, you can use digest delivery and multicast delivery. You use
digest delivery to group multiple notifications in a single message for an individual sub-
scriber. You use multicast delivery to format a notification only once and then send it to
multiple subscribers.

n Formatting Notification Services includes a standard Extensible Stylesheet Language
Transformations (XSLT) content formatter. It works with one XSLT file for each device
type and locale. You can also develop custom content formatters.

n Delivery Notification Services applications do not deliver messages; instead, they use
delivery channels. A delivery channel packages the notifications appropriately for its
protocol and sends them to the delivery services. Standard delivery channels include the
SMTP protocol, the extensible HTTP protocol, and the File protocol. You can develop
additional delivery channels.

n Tracking and retrying Notification Services retains notification delivery information.
For each type of notification, you can configure a retry schedule.

n Processing Notification Services is appropriate for sending notifications asynchro-
nously; it is not useful for asynchronous processing. For asynchronous processing sce-
narios, you should use Service Broker.

Reporting Services
As the need to extract information from data grows, database administrators and developers
face increasing pressure to provide ever more reporting and analysis features in their business
applications. SQL Server Reporting Services helps you create, organize, and manage reports
efficiently and securely. In addition, Reporting Services can hold one or more snapshots of the
data. These snapshots can lower the demand on the production systems from reporting que-
ries, but they also might introduce another problem: Reports from the snapshots might not
show the latest data. You can access the report over a local network or over the Internet; you
can use different rendering formats, including HTML, XML, PDF, and Microsoft Office Excel;
and you can even use different delivery mechanisms. In a pull delivery scenario, end users can
request reports from a local portal. If a portal does not exist yet, they can use Report Manager,
a Web-based report access and management tool shipped with Reporting Services. In a push
delivery scenario, you can deliver reports through e-mail, files on a shared folder, or through
a custom delivery channel.

Scenarios for using Reporting Services include business reporting, ad hoc reporting, reports
embedded in applications or intranet portals, and Internet reporting. If you use snapshots of
data, consider how old the data can become before losing its usefulness. You can also generate

22 Chapter 1 Selecting and Designing SQL Server Services to Support Business Needs
the reports on a specific schedule, for example, during off-peak hours. When implementing a
Reporting Services solution, consider the following issues:

n Reporting Services has its own security model, independent of SQL Server security.

n Queries from reports put additional burden on your database. You might want to sepa-
rate the production and the reporting databases, for example, by using a copy of the pro-
duction database (managed with replication) for reporting.

n Snapshots of data need additional disk space in Reporting Services databases.

n You can scale out Reporting Services by having several Reporting Services instances
share the same Reporting Services database.

n You can create reports from relational sources, XML, SAP, Integration Services, and Anal-
ysis Services OLAP cubes and through ODBC drivers and OLE DB providers. Reports
from OLAP cubes are typically extremely fast.

End users typically create ad hoc reports. However, end users do not want to write queries
because they do not know query languages such as T-SQL and MDX or the database schema.
Besides that, users need the data described in terms of entities and attributes, using business
terms they understand. They also do not want to spend too much time on report layout or on
working with a complex tool such as Microsoft Business Intelligence Development Studio
(BIDS) Report Designer. You can solve these problems by implementing report models.

A report model is a semantic layer of metadata stored in the Reporting Services database that
describes the data from a business point of view, adding properties that enable the quick and
easy authoring of reports. A report model is not something an end user would prepare. When
you complete the model, you can deploy it to your report server as you would deploy a report,
and your analysts can then start writing their own ad hoc reports by using the Report Builder,
a light development tool that ships with Reporting Services.

Analysis Services
Reporting Services, even with its report models, does not solve all the reporting problems
businesses face today. Report Builder still requires advanced users, and the reports might still
run against the production database, putting further processing burden on it. The analysis
process is too slow. Although end users can change the reports by themselves, they still have
to move back to the development environment (Report Builder or even Visual Studio) when-
ever they want to change the structure of a report, such as changing the attribute that defines
the columns for a pivot table. Running a report might be too slow as well, and the number of
the reports can quickly grow into the hundreds.

Beyond adding managed reports to your analysis arsenal, you can create a SQL Server Analysis
Services solution to give users online analytical processing (OLAP) and data mining capabilities.
With OLAP, the end user can change the view (the report) online inside a client tool without

Lesson 4: Evaluating Other Services 23
having to go back to the report development environment, and the server will respond with
lightning speed. Therefore, OLAP means both changing and running reports in real time.

The two pillars of an OLAP system are the star schema and aggregations. If you want to change
the pivot table inside your client in real time, your client tool must know the database schema
in advance. The tool needs to guide you through selecting the appropriate attributes to use for
groupings (rows and columns in a pivot table) and the attributes to use for summarizing data.
The typical relational schema is too complicated and does not give enough information to the
client tool. An OLAP client tool instead uses the star schema to create the user interface in real
time and enables simple reporting for end users. Figure 1-3 shows a typical star schema, pre-
pared for sales analysis; notice that its structure resembles a star, hence its name.

Figure 1-3 A star schema

You cannot change the schema of the production database; thus, to create an Analysis Services
OLAP solution, you must create redundant data. Typically, you create several star schemas,
each one covering a different business process, in a relational database called a data warehouse.
A data warehouse contains cleansed data, collected over time, and merged from multiple pro-
duction sources. Cleansing the data might include correcting invalid data on a source, present-
ing data consistently among different sources (for example, you might have gender
represented in one source with the numbers 1 and 2 and, in other sources, with the letters F
and M), removing duplicate rows, and similar tasks. From the data warehouse, you create

Time_Dim

PK TimeKey

TheDate
DayOfWeek
Month
Year
Quarter
DayOfYear
Holiday
Weekend
YearMonth
WeekOfYear

Sales_Fact

PK,FK5
PK,FK1
PK,FK4
PK,FK3
PK,FK2

TimeKey
CustomerKey
ShipperKey
ProductKey
EmployeeKey

RequiredDate
LineItemFreight
LineItemTotal
LineItemQuantity
LineItemDiscount

Customer_Dim

PK CustomerKey

CustomerID
CompanyName
ContactName
ContactTitle
Address
City
Region
PostalCode
Country
Phone
Fax

Employee_Dim

PK EmployeeKey

EmployeeID
EmployeeName
HireDate

Shipper_Dim

PK ShipperKey

ShipperID
ShipperName

PK

Product_Dim

ProductKey

ProductID
ProductName
SupplierName
CategoryName
ListUnitPrice

24 Chapter 1 Selecting and Designing SQL Server Services to Support Business Needs
OLAP cubes inside Analysis Services. OLAP cubes are based on star schemas; because you
browse them like you would navigate through a multidimensional hypercube, they are called
cubes. Analysis Services databases are optimized for browsing. In an Analysis Services data-
base, you prepare aggregates commonly used for the reporting, such as sales total, in advance.

Traditionally, OLAP cubes have had quite poor metadata. They just inherited star schemas
from a data warehouse. In SQL Server 2005, Analysis Services databases feature much richer
metadata—providing even more metadata than in a SQL Server database. Therefore, you can
model a database from either the SQL Server database engine or Analysis Services. Because
you can start your database modeling from either component, Analysis Services 2005 intro-
duces the new term Unified Dimensional Model (UDM) instead of OLAP cube.

In OLAP cubes, through star schemas, you are still preparing a model in advance. Although
end users can change the view online, they cannot find complex patterns and rules. This is the
territory of data mining. Data mining is a set of mathematical methods that do not suppose
any model in advance; they search for a model in the data. Data mining includes many differ-
ent algorithms.

UDM (OLAP) and data mining solutions are clearly valuable for analysis, but consider the fol-
lowing issues as you evaluate your system design options:

n Preparing a consolidated data warehouse takes a lot of time and effort.

n You get plenty of redundant data in data warehouse and Analysis Services databases.

n Maintaining a data warehouse, OLAP cubes, and data mining models is additional
administrative work.

n You administer Analysis Services databases separately from SQL Server databases. You
need to set up security for the Analysis Services databases, back them up, and monitor
and occasionally optimize their performance.

n Especially for data mining, you need a lot of knowledge in your company. Developers of
data mining solutions should understand your business thoroughly, and your business
analysts should understand the different data mining algorithms you can choose to
implement.

Exam Tip How do you decide when it is time to invest in a data warehousing and OLAP solution
rather than using a reporting solution, which is typically much easier to implement? Besides the
lightning speed and freedom of analyses you get with OLAP, the key point is that in a data ware-
house, you collect data over space and time. If you need historical data, consolidated from multiple
sources, then a simple reporting solution is not the correct solution.

Integration Services
SQL Server Integration Services is a platform that enables you to build data integration solutions.
You typically use Integration Services to extract, transform, and load data into data warehouses.

Lesson 4: Evaluating Other Services 25
When working with Integration Services, a unit of execution is called a package. A package is
an organized collection of connections, control flow, data flows, event handlers, variables, and
configurations. A package can execute complex ETL tasks, including merging data from het-
erogeneous sources, populating a data warehouse, performing simple and intelligent data
cleansing, and standardizing data.

Exam Tip There is a plethora of possibilities for disseminating the data in SQL Server 2005.
Make sure you understand the strengths and weaknesses of each possibility.

When evaluating whether to use Integration Services, consider the following:

n Automation A SQL Server Agent job step can execute an Integration Services package.
n Merging An Integration Services package can merge data from heterogeneous sources,

including relational databases, flat files, OLAP cubes, XML files, and Web services.
n Performance Integration Services packages are very efficient. After you read the data

from a source, you perform a series of transformations in memory buffers and write the
data to a destination only once. You do not need to stage the data in temporary or per-
manent tables. Nevertheless, be careful not to overstress production servers when you
read and write large amounts of data or perform complex transformations on a produc-
tion server.

n Scale out Integration Services packages execute as a client application. You can easily
scale out the execution of packages to multiple computers. In addition, you can write
transformed data from a single package to multiple destinations in parallel without hav-
ing to reread or stage the data.

n Transformations Integration Services packages support complex transformations. You
can add derived data, get additional data or check existing data with lookups from ref-
erence tables, perform fuzzy lookups when you do not have exact matches in reference
tables, and add your own transformations through a Visual Basic .NET script or through
a custom transformation component.

n Intelligence You can use Integration Services packages for intelligent data cleansing.
You achieve intelligence in cleansing through data mining transformations when you
check the data for outliers against an existing data mining model.

n Security You can store Integration Services packages in SQL Server (in the msdb data-
base) or in the file system. You have to secure the packages through pre-defined Integra-
tion Services roles and NTFS permissions or SQL Server permissions, depending on the
storage you use. In addition, encrypt sensitive information, such as connection strings,
inside a package. You can also digitally sign a package.

26 Chapter 1 Selecting and Designing SQL Server Services to Support Business Needs
Practice: Using Other Services
In this practice, you will perform the conceptual exercise of selecting the best additional SQL
Server 2005 service.

� Exercise: Use the Appropriate Service and Feature

In this exercise, decide which additional service shipped with SQL Server 2005 you would use
for a business intelligence solution.

The sales department of your company needs to analyze the sales data. They are check-
ing whether there are any problems with sales of any category of products, of any spe-
cific group of customers, or of any sales channel. If they find a problem, they have to
investigate until they find whether the product, customer, or sales channel is problem-
atic. They have to perform many different analyses in quite a short time. What can you
do to help them?

Suggested Answer

This is a typical problem for Analysis Services UDM cubes. The analyses the sales depart-
ment is performing start with aggregated data such as product categories, and they have
to investigate to the base data. They have to perform numerous analyses in a short time.
You should prepare UDM cubes and give the analysts OLAP client tools such as Office
Excel.

Quick Check
1. Your users complain that when they need a new report, they have to wait three

days for it. Some of them already started to create their own reports using Excel.
However, these reports are not available to their colleagues. What can you do to
mitigate their problems?

2. You find out that the reports your advanced users want to create would occasion-
ally use two different data sources, and the data from those sources is not stan-
dardized. What can you do?

Quick Check Answers
1. You can deploy a Reporting Services solution. You can prepare report models to

help the advanced users (users who are already using Excel) use Report Builder to
create reports. Then, those users can deploy the reports to a company portal and
make them available to colleagues.

2. You can create a third, consolidated database and populate it by using an Integra-
tion Services package that reads the data from both sources and then merges and
standardizes the data.

Lesson 4: Evaluating Other Services 27
Case Scenario: Select SQL Server Services to Support
Business Needs

You are a database developer for a small company that distributes products from a single
supplier to known customers. Currently, you transfer product data from your supplier to
your database overnight. You have a fast and reliable link to your supplier, and your business
application accesses the transferred and local data through stored procedures. Your busi-
ness application is outsourced, so any modifications cost a lot of money and take a signifi-
cant amount of time, neither of which your company can afford. However, your company has
all the latest Microsoft software available.

Once a month, you send reports that include five years of payment history to your customers.
At the end of the month, you create a staging database that contains the history data, and your
reports run against this staging database. Preparing the staging database takes 10 hours. How-
ever, more and more customers have asked for fast access to their payment history over the
Internet anytime and anywhere. Then one day, your supplier makes multiple changes to some
products throughout the day, and you realize that your day-old data is not current enough any-
more. Your supplier has implemented a Web service that uses Web methods to expose the lat-
est data about the products, and you start thinking about the possibilities.

1. How can you enable your customers to see their payment history over the Internet?

2. How can you incorporate the data from the supplier’s online database so that you always
have the latest product information?

Chapter Summary
n SQL Server 2005 is more than just a relational database management system; it is a com-

prehensive platform for building enterprise applications.

n The database engine is not limited to the Transact-SQL language and relational data any-
more, although SQL Server 2005 features powerful enhancements to these traditional
features. Through new CLR and XML integration, you can work with object-oriented lan-
guages and XML data.

n With SQL Server 2005, you have many ways to work with distributed data, including
distributed queries, replication, and Integration Services. In addition, you can distribute
processing synchronously and asynchronously by using distributed transactions and
Service Broker.

n SQL Server 2005 is a complete business intelligence platform, providing Reporting Ser-
vices for classical reports, Analysis Services for OLAP and data mining analysis, and Inte-
gration Services for ETL processes.

Chapter 2

Designing a Logical Database
Databases are central to information systems, and a structure called a data model—also known
as a schema—specifies a database. Changes in this structure can have a radical and expensive
impact on the programs that use it. Therefore, it is important to think through your database
design thoroughly in advance and develop a design that will satisfy business needs, perform
adequately, behave predictably, and enable extensibility and data reusability.

In this chapter, you will learn how to design a normalized database to support online transac-
tional processing (OLTP) applications and how to denormalize the design to support busi-
ness intelligence (BI) applications. You will also see how to plan the data flow, how to use
advanced table features such as supertype and subtype tables, and how to model hierarchies.

Exam objectives in this chapter:
n Design a logical database.

q Design a normalized database.

q Optimize the database design by denormalizing.

q Design data flow architecture.

n Design objects that define data.

q Design tables that use advanced features.

Before You Begin
To complete the lessons in this chapter, you must have:

n Knowledge of the Transact-SQL data definition language (DDL) elements.

n The SQL Server 2005 AdventureWorks and AdventureWorksDW sample databases
installed. Sample databases are available with SQL Server 2005 Enterprise Edition but
are not a part of the default installation. Alternatively, you can install sample databases
from http://msdn2.microsoft.com/en-us/library/ms143739.aspx.
29

30 Chapter 2 Designing a Logical Database
n Microsoft Visual Studio 2005 or Microsoft Visual C# 2005 Express Edition installed.
You can download Visual C# 2005 Express Edition for free from http://
msdn.microsoft.com/vstudio/express/. (Optionally, you can have Microsoft Visual Stu-
dio Team System or Microsoft Visual Studio Team Edition for Database Professionals
installed.) You can f ind more information about these products at http://
msdn2.microsoft.com/en-us/teamsystem/aa718803.aspx.

n Microsoft Office Visio or Visio 2007 Viewer, available as a free download from http://
www.microsoft.com/downloads/details.aspx?FamilyID=d88e4542-b174-4198-ae31-
6884e9edd524&DisplayLang=en.

Lesson 1: Systematically Approaching Design Stages 31
Lesson 1: Systematically Approaching Design Stages

Estimated lesson time: 20 minutes

A database and an application together provide a comprehensive picture of a real-world sys-
tem. Data modeling is a structure design process. Often, you can move forward with data mod-
eling in parallel with functional design. You explore your choices by using analysis,
abstraction, experience, heuristics, and creativity. There are always many candidate solutions;
to find the best one, you have to approach the design systematically. Developing a data model
is an iterative process: you develop a model, check it with domain experts, and refine the
model. When your model is prepared, it can serve as an effective communication tool between
domain experts and developers.

The most important data model is the relational model, which represents data in the form of
two-dimensional tables consisting of rows and columns. This model is a simple, yet rigorously
defined, concept of how users perceive data. Each table represents a real-world entity (person,
place, thing, or event) about which you collect information. In mathematics, the relational
model is based on set theory; mathematically, each table represents a set. Edgar F. Codd of
IBM contrived the relational model in 1969, explaining a relational database as a collection of
tables. The organization of data into relational tables is the logical view of the database. The
way the database software physically stores the data on a computer disk system is the internal
view of the database; it differs from product to product.

In the planning phase, according to the Microsoft Solutions Framework (MSF) process model,
you deal with three distinguishable data-modeling phases. Each phase yields a phase schema.
The three phases, schemas, and methods you use in a specific phase are as follows:

n Conceptual phase As a database designer, in this phase, you collect all business require-
ments and rules in cooperation with business domain experts. You create a conceptual
schema by using the object role modeling (ORM) method. An ORM diagram documents
a business problem. You can also use the entity relationship (ER) method in this phase,
especially the Integration Definition for Information Modeling (IDEF1X) method,
although it is a less expressive method than ORM and does not allow the diagramming
of all possible business rules. Alternatively, you could use Unified Modeling Language
(UML), although this language suits application design better than database design.

n Logical phase During the logical phase, you represent data that is already grouped log-
ically in entities by adding attributes and relationships between entities. ER diagrams
document this relational design. The most-used ER models are the Extended ER model
and the IDEF1X model, both supported by Microsoft Office Visio.

32 Chapter 2 Designing a Logical Database
n Physical phase You implement the relational model physically, in a database on a rela-
tional database management system (RDBMS) such as Microsoft SQL Server. No matter
which method you use for implementation (automatically via a tool or manually), you
have to prepare DDL statements for creating database objects in a language that your
RDBMS understands.

In addition to these phases, when you are modeling a database, you can start with another
schema, called the external schema, that usually comes from the application design process
but that can be a good starting point for data modeling. The external schema shows how your
system will be used. A common way to show the external schema is by using UML Use Case
diagrams. Table 2-1 shows all four stages in a condensed format.

Key Steps and Best Practices for Data Modeling
The first step in developing a data model is identifying requirements. You must communicate
with domain experts, key stakeholders, and even end users to gather all the information you
need. You can help yourself by using UML Use Case diagrams, if they already exist, and exist-
ing reports. You can then create a conceptual model, which documents all business require-
ments and rules as facts. From the conceptual model, you create a logical model. Alternatively,
you can create a logical model directly, without the conceptual model. In either case, check the
conceptual or logical model with domain experts and refine it as needed. Iterate through the
model at least a couple of times.

From the logical model, you create a physical model. The design process is not finished here,
though. Next, you refine the physical model according to security, performance, auditing,
availability, and scalability needs. Finally, you build a prototype to test the database design.

For smaller projects, you can skip some of these steps. However, for larger projects, you should
implement all of these steps, including creating a conceptual model. Here are additional best
practices for data modeling:

Table 2-1 Data Modeling Stages

External Phase Conceptual
Phase

Logical Phase Physical Phase

Focus Analyze business
needs, verify UI
and reporting
needs

Capture business
requirements

Document
relational design

Implement
relational design

Roles involved Domain expert,
application
designer

Domain expert,
database designer

Database designer Database designer,
developer

Methodology UML ORM ER DDL

Lesson 1: Systematically Approaching Design Stages 33
n Be especially careful with the scope of the project. Many projects fail because the scope
is not well defined. Alternatively, many developers use scope expansion as an excuse for
their bad work. Your customers simply cannot know everything they need in advance.
Even if they did know everything they needed today, you have to consider that business
changes quickly. Therefore, you must be prepared for several iterations during the
design process. Three iterations in refining the model is normal; more iterations than
that usually means the scope was not well defined, or the customer requested features
that should be part of a different project.

n Choose the appropriate methodology. ER diagrams are an informal standard for the
database part of documenting a project, so the ER method should be one of your
selected methodologies. In addition, ORM, which is more expressive than the ER model,
is useful for presenting complex rules.

n Use a professional database-modeling tool. Tools such as Visio for Enterprise Architects
enable forward engineering—creating a logical model from a conceptual model and then
creating a physical model from the logical model. Make sure you are familiar with the
tool before you start your design.

n Include your physical model, the DDL scripts, in a source control system. You can use Visual
Studio Team System for source control.

n Start with a strict relational model, but be prepared to make some compromises to satisfy
business needs. For example, usually you have to denormalize some data to achieve sat-
isfactory performance. (You will learn about denormalization in Lesson 3, “Optimizing
the Database Design by Denormalizing.”) Document such compromises thoroughly.

n Use free models as a starting point. You can find free models in books and on the Web.
Check existing models if you upgrade an application. An upgraded application must
provide all the features of the old application; otherwise, users will not be satisfied.

Object Role Modeling and the Conceptual Model
In our natural, speaking language, we use statements of fact or, in logic, propositions about
entities of interest asserted to be true. For example, it is a fact that Lubor Kollar was employed
by Tailspin Toys on March 19, 2004. The idea behind ORM is that you simply write down all
the facts. The tool then converts those facts to a conceptual ORM diagram and produces log-
ical and physical diagrams out of that ORM diagram. ORM pictures the world in terms of
objects that play roles. Data elements are not combined into tables a priori. Descriptions of
data-element relationships serve as input to a table-building algorithm. ORM thereby incor-
porates normalization into the methodology. (You will learn about normalization in the next
lesson.)

ORM verbalizes the relevant data as elementary facts. It uses no attributes; attributes are facts
related to entities. In ORM, you distinguish between two types of objects. An entity object is the
one you can uniquely identify; however, you cannot write down a concrete value of the object

34 Chapter 2 Designing a Logical Database
unless you use values of attributes of the object. ORM represents entity objects as named
ellipses. The Value object is a scalar attribute, which enables you to write down any concrete
value the object can take. In ORM, you represent a value object as a dotted or dashed ellipse
(~ attribute). Relationships between objects (that is, roles the objects play) are represented by
lines and subdivided boxes that establish connections. For example, in the following para-
graph, you have a collection of facts you gathered through an interview with a domain expert.

The system you are developing must support sales. Customers send orders. Each order can con-
tain multiple products, and a single product can appear on multiple orders. A customer orders
a product in a quantity with or without a discount. A single customer presumably and hope-
fully sends multiple orders. Each product has a name, a unit of measurement, and a price. For
each customer, you need to collect the customer’s name, address, and tax number. Tax numbers
are unique. An order always has a date and a known customer. You must provide a way to
identify customers, products, and orders.

Figure 2-1 shows the ORM model for the facts in the preceding paragraph.

Figure 2-1 ORM model that supports the sales application

When you create an ORM model, follow the Conceptual Schema Design Procedure (CSDP). If
you follow the procedure exactly, ORM guarantees a fully normalized model. (You will learn
about normalization in Lesson 2, “Designing a Normalized Database.”) The seven steps of the
CSDP are:

Customers
(CustomerId)

Orders
(OrdersId)

Products
(ProductId)

CustomerName

ProductName

OrderDate

Address

TaxNo

Unit

Price
QuantityDiscount

include / are on

P

are located on / is of

have / is of

have / names

send / are sent by

“Order Details”

is of / have have / is on

have / evaluates

are measured in / is the measure for

have / names

are sent on / is the date of

Lesson 1: Systematically Approaching Design Stages 35
1. Transform familiar information examples into elementary facts, and apply quality checks.

2. Draw the fact types, and apply a population check (that is, write down examples) for
each fact.

3. Check for entity types that should be combined, and note any arithmetic derivation.

4. Add uniqueness constraints, and check arity of fact types. Arity means how many objects
are involved in the proposition. Typical facts are binary; they involve two objects. You
can also have unary, ternary, and quaternary facts. You must check whether you can
decompose facts of larger arity to more elementary facts.

5. Add mandatory role constraints, and check for logical derivations.

6. Add value, set comparison, and subtype constraints.

7. Add other constraints, and perform final checks.

Entity Relationship and the Logical Model
The ER model is a top-down approach to data modeling, supported by a widely used diagram-
ming convention. An entity is a thing that you can distinctly identify and that is of business
interest; an entity in an ER model has three properties:

n You can uniquely identify each representation of an entity.

n Each representation of an entity plays an important role in the system it lives in. (It has
to have a reason to be there.)

n You can describe each representation of an entity by using one or more attributes (data
elements such as name, age, and quantity).

You classify entities into different entity sets. An entity set is a set of entity instances (occur-
rences) of the same type. Entity sets, therefore, are not always disjoint. (A company employee
can belong to the employees and managers sets.) A database consists of a collection of entity
sets; it also includes information about relationships between the entity sets.

Relationships are associations between entities. A relation is a subset of the cross products of
the entity sets involved in the relationship. Each entity set in a relationship has a role or a func-
tion that the entity plays in the relationship. For example, person has the role of employee in
the relationship works for company; company has the role of employer. The degree of a relation-
ship is the number of entities associated in the relationship. Binary associations can be classi-
fied according to cardinality (one-to-one, one-to-many, many-to-many) and optionality
(mandatory or optional).

Entities are the objects of interest, so you must have some information about them that is of
interest. Each entity instance is described by a set of attributes that define its qualities, charac-
teristics, or properties and the values of the attributes. For each attribute, there are a number
of legal or permitted values. These sets of legal values are value sets or domains of that
attribute. Relationships can also have relevant information about them.

36 Chapter 2 Designing a Logical Database
Because you represent entities by the values of their attribute set, the set of attribute values
must be different for each entity instance. A group of attributes (or possibly one attribute) used
for identifying entities in an entity set is called an entity key. Similarly, each relationship
instance in a relationship set needs to be identified. The identification is always based on the
primary keys of the entity sets involved in the relationship set. Sometimes you cannot
uniquely identify the entities in an entity set by the values of their own attributes; such entities,
which require a relationship to be identified, are called weak entities. We call normal entities
strong or regular entities.

There is no single graphical representation of an ER model. However, all ER diagrams look
similar. Entities are diagrammed as rectangles. Attributes can be diagrammed as ovals
attached to the rectangle that they belong to, or they can be listed inside the rectangle or
even listed separately. Relationships can be diagrammed as diamonds or shown as connect-
ing lines. They can show cardinality and optionality, either explicitly with numbers or with
crow’s feet symbols.

Figure 2-2 shows an IDEF1X ER model, on the left, and an Extended ER model, on the right,
for the same sales database in the ORM lesson example.

Figure 2-2 IDEF1X and Extended ER models that support the sales application

When you are doing ER modeling directly (not from an ORM source model), you must study
the description of the business problem. You start with entities, identifying nouns. Then you
find relationships, identifying verbs. You look for typical verbs such as “is,” which leads to
investigation of the hierarchical structure (you will learn about supertypes and subtypes in
Lesson 5, “Supertypes and Subtypes”), or “has” and other verbs, which lead to investigation
of the relational structure. You then allocate attributes to entities, identifying adjectives. You
identify primary and foreign keys, and, for foreign key associations, you identify cardinality
and optionality. Your product is an ER model; however, you need to analyze the ER
attributes—forgetting the attributes leads to missed entities.

PK

Customers

CustomerId

CustomerName
TaxNo
Address

PK

Orders

OrderId

CustomerId
OrderDate

CustomerId

CustomerName
TaxNo (AK1)
Address

Customers

OrderId

CustomerId (FK)
OrderDate

Orders

PK

Products

ProductId

ProductName
Unit
Price

PK,FK1
PK,FK2

OrderDetails

OrderId
ProductId

Discount
Quantity

ProductId

ProductName
Unit
Price

Products

OrderId (FK)
ProductId (FK)

Discount (O)
Quantity

OrderDetails

Lesson 1: Systematically Approaching Design Stages 37
On the Companion Disc You will f ind all the models for this chapter on the companion CD in
the C:\My Documents\Microsoft Press\TK70-441\Chapter02\Practice folder.

Practice: Opening Models
In this practice, you will examine ORM and ER models.

� Exercise: Open and Examine Models

In this exercise, you check whether it is possible to reconstruct statements that describe a busi-
ness problem from a conceptual and a logical database model.

1. On the companion CD, navigate to the C:\My Documents\Microsoft Press\TK70-441
\Chapter02\Practice folder, and open the Ch02_Sales_ORM.bmp file. Check the facts
and how they are diagrammed.

2. Open the Ch02_Sales_IDEF1XER.vsd and Ch02_Sales_ExtendedER.vsd files. Try to re-
create the original propositions from the example.

Quick Check
You have to prepare a database model to support an application for managing projects.
You collect the following information: each project has a single customer, each project
can have many activities, and each project can have many employees assigned to it. In
addition, you want to follow the time spent (in hours) on projects by specific employees
and by activity for each day. Using this information, answer the following questions:

1. List the entities you can find from the description of the problem.

2. What is the cardinality of the relationship between projects and activities?

Quick Check Answers
1. You should find the following entities: projects, customers, activities, employees as

strong entities, and project details as a weak entity.

2. The relationship between projects and activities is many-to-many.

38 Chapter 2 Designing a Logical Database
Lesson 2: Designing a Normalized Database

Estimated lesson time: 25 minutes

Tables representing propositions about entities of one type (that is, representing a single
set) are fully normalized. Correct and complete mapping of a conceptual ORM model to a
logical model yields fully normalized tables. Properly designed entities in an ER model lead
to fully normalized tables as well. However, both ORM and ER modeling start with the busi-
ness description of a problem; it is possible to miss some dependencies between entities and
leave some tables denormalized. Of course, there could also be a bug in the tool that pro-
duces the DDL script from the ORM and ER models. However, any denormalization can
lead to update anomalies. Data integrity and consistency are fundamental for databases.
Remember that a database holds propositions, and propositions are facts. If propositions
are not true, they are not facts; they are falsehoods. You need a logical method that yields a
fully normalized database.

Normalization is the process of redesigning the model to unbundle any overlapping entities.
The process involves decomposition; however, decomposition cannot yield a loss of informa-
tion. You perform the decomposition by applying a linear progression of rules called normal
forms. Normalization eliminates redundancy and incompleteness. Note the part that design-
ers frequently overlook: normalization eliminates incompleteness, not just redundancy. Many
normal forms (NFs) are defined; the first six are called first NF, second NF, third NF, Boyce-
Codd NF, fourth NF, and fifth NF. If a database is in fifth NF, the database is fully normalized.
Only the first three NFs are important; usually, if a database is in third NF, it is in fifth NF as
well. You should understand the normalization form and use it to perform a final check of
your database design, checking the model you created by using other methods.

First Normal Form
Imagine a table such as the one that Table 2-2 shows. The table holds information about sales.
In this case, only the OrderId column is part of the primary key.

Table 2-2 Table Before First NF

OrderId CustomerId OrderDate Items

1 1 2006.10.22 Nt Nuts q=5, Bo Bolts q=10

2 1 2006.10.24 Sc Screws q=12

3 2 2006.09.15 Nt Nuts q=3, Sc Screws q=3

4 3 2006.10.22 Bo Bolts q=5

Lesson 2: Designing a Normalized Database 39
With a design like this, you can have the following anomalies:

n Insert How do you insert a customer without an order?
n Update If item Bo is renamed, how do you perform an update?
n Delete If order 3 is deleted, the data for customer 2 is lost.
n Select How do you calculate the total quantity of bolts?

Note that only update and select anomalies deal with redundancy: they are problematic
because the table contains redundant data. Insert and delete anomalies deal with incomplete-
ness of the model. The rule for first NF is, “A table is in first normal form if all columns are
atomic.” This means there can be no multi-valued columns—columns that would hold a col-
lection such as an array or another table. First NF is somewhat redundant with the definition
of a relational table or of a relation. A table is a relation if it fulfills the following conditions:

n Values are atomic. The columns in a relational table are not a repeating group or arrays.
n Columns are of the same kind. All values in a column come from the same domain.
n Rows are unique. There is at least one column or set of columns, the values of which

uniquely identify each row in the table.
n The order of columns is insignificant. You can share the same table without worrying

about table organization.
n The sequence of rows is insignificant. A relational table can be retrieved in a different

order and sequence.
n Each column must have a unique name. This is required because the order of columns

is not significant.

You can see in the example in Table 2-2 that the last column is multi-valued; it holds an array
of items. Before starting with decomposition, let us briefly review the textual notation of a rela-
tional table. Remember the earlier example proposition, “Lubor Kollar was employed by Tail-
spin Toys on March 19, 2004.” In a general form, you can write “Employee with (Name) was
employed by (Company) on (EmploymentDate).” This generalized form of a proposition is a
predicate. Terms in parentheses are value placeholders (entity attributes). A predicate defines
the structure of a table. You can write the structure briefly as:

Employees(EmpId, EmployeeName, CompanyId, EmploymentDate)

Underlined columns form the primary key. Actually, they form a candidate key, and a table can
have multiple candidate keys. You could underline all candidate keys and double underline
the primary key.

You decompose the table shown in Table 2-2 on the Items column. Every item leads to a new
row, and every atomic piece of data of a single item (ProductId, ProductName, Quantity) leads
to a new column. After the decomposition, you have multiple rows for a single order; therefore,
you have to expand the primary key. You can compose the new primary key from the OrderId
and ProductId columns. However, suppose you can allow multiple products on a single order,

40 Chapter 2 Designing a Logical Database
each time with a different discount, for example. Thus, you cannot use ProductId as part of the
primary key. However, you can add the ItemId attribute and use it as a part of the new primary
key. A decomposed table in first normal form would look like this:

Orders(OrderId, CustomerId, OrderDate, ItemId, ProductId, Quantity,
ProductName)

Before moving to second NF, you have to understand a common misconception about first NF.
You might have heard or read that you should not have a repeating group of columns. How-
ever, this advice is incorrect; repeating groups means you should not have a repeating group
(that is, a collection) in a single column. For example, imagine this table:

Employees(EmployeeId, EmployeeName, Child1, Child2)

This table is perfectly in first NF. This design has a built-in constraint, allowing only employees
who have two children. If you do not allow unknown (NULL) values for the Child1 and Child2
attributes, then you allow employees with exactly two children. This kind of constraint is not
typical for business; nevertheless, it is a constraint built into the model, which is in first NF.
Such constraints are rare, and a repeating group of columns typically represents a hidden col-
lection. Take care not to decompose such groups automatically before checking whether this
is a special constraint.

Second Normal Form
After achieving first NF, the decomposed table from Table 2-2 looks like Table 2-3.

You still have the following anomalies:

n Insert How do you insert a customer without an order?
n Update If customer 1 changes the order date for order 1, how do you perform the

update? (In many places, possible inconsistencies could exist.)
n Delete If you delete order 3, the data for customer 2 is lost.

To achieve second NF, a table must be in first NF, and every non-key column must be fully
functionally dependent on the entire primary key. This means that no column can depend on
part of the primary key only. In the example in Table 2-3, you know the customer and the

Table 2-3 Table in First NF

OrderId CustomerId OrderDate ItemID ProductId Quantity ProductName

1 1 2006.10.22 1 Nt 5 Nuts

1 1 2006.10.22 2 Bo 10 Bolts

2 1 2006.10.24 1 Sc 12 Screws

3 2 2006.09.15 1 Nt 3 Nuts

3 2 2006.09.15 2 Sc 3 Screws

Lesson 2: Designing a Normalized Database 41
order date if you know the value of the OrderId column; you do not need to know anything
about ProductId, which is part of the primary key. The CustomerId and OrderDate columns
depend on part of the primary key only—OrderId. To achieve second NF, you need to decom-
pose the table into two tables:

Orders(OrderId, CustomerId, OrderDate)
OrderDetails(OrderId, ItemId, ProductId, Quantity, ProductName)

In the Orders table, you leave attributes that depend on OrderId only; then you introduce a
new table, OrderDetails, to hold the other attributes. When achieving first NF, you are convert-
ing values from a multi-valued attribute to rows and changing the primary key; for second and
all other NFs, you decompose tables into more tables. Second NF deals with relationships
between columns that are part of a key and other columns.

After decomposing to multiple tables, you must have some common value that enables you to
join the tables in queries; otherwise, you would lose some information. The decomposition
has to be lossless. Of course, you need relationships between tables. A relationship is an asso-
ciation between two or more tables. Relationships are expressed in the data values of the pri-
mary and foreign keys. A primary key is a column or columns in a table whose values uniquely
identify each row in the table. A foreign key is a column or columns whose values are the same
as the primary key of another table—in other words, a copy of the primary key from another
relational table. The relationship is made between two relational tables by matching the values
of the foreign key with the values of the primary key.

Third Normal Form
After achieving second NF, the decomposed tables from Table 2-3 look like the tables in Table
2-4 and Table 2-5. Note that in the Orders table (Table 2-4), another attribute, CustomerName,
is added to show that normalization violations can appear in any table.

Table 2-4 Orders Table in Second NF

OrderId CustomerId CustomerName OrderDate

1 1 Tailspin Toys 2006.10.22

2 1 Tailspin Toys 2006.10.24

3 2 Wingtip Toys 2006.09.15

Table 2-5 OrderDetails Table in Second NF

OrderId ItemId ProductId Quantity ProductName

1 1 Nt 5 Nuts

1 2 Bo 10 Bolts

2 1 Sc 12 Screws

42 Chapter 2 Designing a Logical Database
Second NF solves the update anomaly (if customer 1 changes the order date for order 1); how-
ever, you still have the following anomalies:

n Insert How do you insert a customer without an order?
n Delete If you delete order 3, the data for customer 2 is lost.

To achieve third NF, a table must be in second NF, and every non-key column must be non-
transitively dependent on the primary key. For example, in Table 2-4, from OrderId, you can
find CustomerId; then from CustomerId, you can get transitively to the CustomerName
attribute value. Similarly, in Table 2-5, you can get transitively to ProductName through Pro-
ductId from OrderId and ItemId. If you think of the rule for third NF from the non-key
attributes point of view, it simply means you should have no functional dependencies between
non-key columns. Non-key columns must depend on keys only. In the examples in Table 2-4
and Table 2-5, CustomerName depends on CustomerId, and ProductName depends on Pro-
ductId. Thus, to achieve third NF, you must create new tables for dependencies between non-
key columns:

Customers(CustomerId, CustomerName)
Orders(OrderId, CustomerId, OrderDate)
Products(ProductId, ProductName)
OrderDetails(OrderId, ItemId, ProductId, Quantity)

This schema is free from all the update anomalies you had before normalization. However, it
is not free from all update anomalies. For example, the schema itself cannot prevent you from
inserting an unreasonable order date. (You will learn more about additional constraints in
Chapter 3, “Designing a Physical Database.”) Note that this schema is also essentially the same
(except for a couple of attributes omitted for the sake of brevity) as you received by using the
ORM and ER approach. As mentioned earlier, use normalization for final checking and refin-
ing of your model.

Practice: Normalizing the Database
You are developing a database model that will support an application for managing projects
(as in the Quick Check in Lesson 1, “Systematically Approaching Design Stages”). You collect
the following information: each project has a single customer, each project can have many
activities, and each project can have many employees assigned to it. You want to follow time
spent (in hours) on projects by specific employee by activity for each day. Your initial design is:

3 1 Nt 3 Nuts

3 2 Sc 3 Screws

Table 2-5 OrderDetails Table in Second NF

OrderId ItemId ProductId Quantity ProductName

Lesson 2: Designing a Normalized Database 43
Projects(ProjectId, ProjectName, CustomerId, CustomerName,
 Activities(Activity1Id, Activity1Name, É, ActivityNId,
 ActivityNName), Employees(Employee1Id, Employee1Name, É,
 EmployeeNId, EmployeeNName), WorkDate, TimeSpent)

� Exercise 1: Achieve the First Normal Form

In this exercise, you will bring this model to first NF. To achieve first NF, you need to eliminate
all attributes that are collections.

1. Check the Activities part of the table. Is this a collection?

2. Check the Employees part of the table. Is this a collection?

Your model should look like this:
Projects(ProjectId, ItemId, ProjectName, CustomerId, CustomerName,
 ActivityId, ActivityName, EmployeeId, EmployeeName, WorkDate,
 TimeSpent)

� Exercise 2: Achieve the Second Normal Form

In this exercise, you will bring this model to second NF. To achieve second NF, you must make
sure your model does not contain attributes that depend on only part of the primary key.

1. The complete primary key in the table you created in Exercise 1, “Achieve the First Nor-
mal Form,” consists of ProjectId and ItemId.

2. Do you really need both columns to find CustomerId and CustomerName associated
with a project?

Your model should look like this:
Projects(ProjectId, ProjectName, CustomerId, CustomerName)
 ProjectDetails(ProjectId, ItemId, ActivityId, ActivityName,
 EmployeeId, EmployeeName, WorkDate, TimeSpent)

� Exercise 3: Achieve the Third Normal Form

In this exercise, you will bring this model to third NF. To achieve third NF, you need to look
at dependencies between non-key attributes.

1. Is there any dependency between CustomerId and CustomerName?

2. Is there any dependency between ActivityId and ActivityName?

3. Is there any dependency between EmployeeId and EmployeeName?

Your model should now look like this:
Projects(ProjectId, ProjectName, CustomerId)
 ProjectDetails(ProjectId, ItemId, ActivityId, EmployeeId,
 WorkDate, TimeSpent)
Customers(CustomerId, CustomerName)
Activities(ActivityId, ActivityName)
Employees(EmployeeId, EmployeeName)

44 Chapter 2 Designing a Logical Database
Exam Tip Be sure to understand the difference between second and third normal forms.

Quick Check
1. What is the difference between second and third NFs?

2. Why would you normalize a database?

Quick Check Answers
1. Second NF deals with dependencies between non-key and key columns. Third NF

deals with internal dependencies between pairs of non-key columns.

2. You normalize a database to prevent anomalies by eliminating redundancy and
incompleteness.

Lesson 3: Optimizing the Database Design by Denormalizing 45
Lesson 3: Optimizing the Database Design by
Denormalizing

Estimated lesson time: 20 minutes

You implement normalization with a specific purpose: to maintain data integrity. However, in
a real-life project, you typically have to bring back some data redundancy either for perfor-
mance reasons or to maintain a history.

A fully normalized schema shows current state only. For example, in an invoicing application
that is in a fully normalized design, you keep a customer’s address only in the Customers
table. Suppose that a customer moves and you update that customer’s address with the new
one. A few days later, the same customer reports that he accidentally lost some printed
invoices during the move and asks you to print copies of lost invoices. It would be impossible
to print exact copies of the invoices if you do not maintain some history about the customer’s
address. You can solve this problem by maintaining a copy of customer address information
on the invoice date in the Invoices table. Similarly, customers can change their name, so you
also need to maintain a copy of customer names as part of the invoice data in the Invoices
table.

During the normalization process, you decompose tables into more tables. The more tables
you have, the more joins you have to perform in your queries, and joins have a negative impact
on performance. To help, you can replicate a foreign key from the first child table to the second
one. Take the invoicing system example again. Say you have an Employees parent table, and
you add the EmployeeId column to the Customers table to serve as the foreign key because
every customer has an account manager. Now, your typical queries must find invoices together
with customer account manager data, requiring you to join three tables—Invoices, Customers,
and Employees. However, if you replicate the EmployeeId column in the Invoices table, you
can achieve the same goal and satisfy the same query by joining only the Invoices and Employ-
ees tables.

The best way to boost performance in a normalized system is to use derived data. For example,
before creating an invoice item, you must check whether a product is in stock. You can always
calculate levels and states from events, but what if you had to aggregate all the events for the
current year just to tell a customer the product he or she wants to buy is out of stock? The cus-
tomer would probably never return. You can solve this problem by maintaining total quantity
in stock in a column in the Products table and by maintaining a separate ProductsIn-
Warehouses table that holds the quantity of products in stock in your warehouses (if you have
multiple warehouses).

Finally, you might have many queries that aggregate sales across customers. In a fully normal-
ized system, you would have to aggregate all invoice details for a single customer multiple

46 Chapter 2 Designing a Logical Database
times. You can greatly improve performance by maintaining the year-to-date sales summary in
a column in the Customers table. Figure 2-3 shows ER diagrams of the invoicing database
before normalization, and Figure 2-4 shows ER diagrams after denormalization.

Figure 2-3 Part of the invoicing database before denormalization

Figure 2-4 Part of the invoicing database after denormalization

Still, denormalization brings the danger of update anomalies back to the database. Therefore,
you have to do it deliberately. You should document any denormalization thoroughly. To make
sure your application correctly maintains denormalized data, you need to use transactions
appropriately. A transaction is the smallest unit of work that must either complete entirely or
not at all. For example, in the Invoices system, a transaction might mean an insertion to a table

PK

Employees

EmployeeId

EmployeeName

PK

Customers

CustomerId

CustomerName
Address
CityId
EmployeeIdFK1

PK

Invoices

InvoiceId

CustomerId
InvoiceDate

FK1

PK

Products

ProductId

ProductName
Price

PK

Warehouses

WarehouseId

WarehouseName

PK,FK1
PK

InvoiceDetails

InvoiceId
ItemId

ProductId
Quantity
Discount
WarehouseId

FK2

FK3

PK

Employees

EmployeeId

EmployeeName

PK

Customers

CustomerId

CustomerName
CustomerAddress
CityId
EmployeeId
YTDSales

FK1

PK

Invoices

InvoiceId

CustomerId
InvoiceDate
EmployeeId
CustomerName
CustomerAddress

FK1

PK

Products

ProductId

ProductName
Price
TotalInStock

PK

Warehouses

WarehouseId

WarehouseName

PK,FK1
PK

InvoiceDetails

InvoiceId
ItemId

ProductId
Quantity
Discount
WarehouseId

FK2

FK3

PK,FK1
PK,FK2

ProductsInWarehouses

WarehouseId
ProductId

QuantityInStock

Lesson 3: Optimizing the Database Design by Denormalizing 47
such as InvoiceDetails, which must be followed immediately by an update of the derived-level
column TotalInStock in the Product table or a StockLevel column in the ProductsIn-
Warehouses table, depending where you maintain the stock level information. If one of those
actions fails, the entire transaction is rolled back to ensure data consistency. An even better
choice for maintaining denormalized data, however, is to leave that task to the RDBMS. You
can do this by introducing data manipulation language (DML) triggers. A RDBMS fires a trig-
ger automatically as part of a transaction. In the invoices example, a DML trigger for insert,
update, and delete on the InvoiceDetails table can maintain the TotalInStock column and the
ProductsInWarehouses table. In addition, you should have procedures in place to rebuild the
derived data from scratch. You can always rebuild this data from events tables in case of incon-
sistency between the sum of events and states.

IMPORTANT Maintain denormalized data in transactions

After a denormalization, you have to make sure to maintain the denormalized data in transactions.
For example, you have to correct the stock level any time you sell a product in a single transaction.

For reports and analysis, a better practice than maintaining aggregate information in an OLTP
database is to introduce a data warehouse, which is based on a somewhat denormalized mul-
tidimensional model and a Microsoft Online Analytical Processing (OLAP) system. An OLAP
database management system typically takes care of the aggregations for you.

Practice: Denormalizing the Database
In the previous practice, you prepared a fully normalized model for the Projects database. In
this practice, you will denormalize this model to improve performance. Your current design is:

Projects(ProjectId, ProjectName, CustomerId)
 ProjectDetails(ProjectId, ItemId, ActivityId, EmployeeId,
 WorkDate, TimeSpent)
 Customers(CustomerId, CustomerName)
 Activities(ActivityId, ActivityName)
 Employees(EmployeeId, EmployeeName)

� Exercise 1: Denormalize to Maintain History

In this exercise, you will perform the denormalization to maintain history.

Your company requires your system to maintain a customer’s name from the time that
you started a project for a customer. A customer can later change the name. How would
you achieve this requirement?

Suggested Answer

In the Customers table, you maintain the current name only. Therefore, you have to add
the customer name to the Projects table.

48 Chapter 2 Designing a Logical Database
In addition, it is always a good practice to have the information about the date when the
name was valid. Therefore, you should add the start date in the Projects table as well.
Note that you would probably already have the start date of a project in a real-life design.

Your improved design should look similar to the following. (The denormalized attributes
are StartDate and CustomerName.)
Projects(ProjectId, ProjectName, CustomerID, StartDate, CustomerName)

� Exercise 2: Denormalize for Performance

In this exercise, you will perform the denormalization to improve performance.

You have performance problems with a report that calculates total time spent on a
project. Because you are tracking multiple projects, you run this report multiple times a
day. How would you improve report performance?

Suggested Answer

The problem is that you have to aggregate project detail rows, in which you have the
information about time spent or each activity on a project. You have to add a column to
hold the total time spent in the Projects table.

Your improved design should look similar to the following. (Denormalized attribute that
you should add in this exercise is TotalTimeSpent.)
Projects(ProjectId, ProjectName, CustomerId, StartDate,
 CustomerName, TotalTimeSpent)

Quick Check
1. What are some benefits of denormalization?

2. What problems can you encounter when you decide to introduce some denormal-
ization into your model?

Quick Check Answers
1. Some benefits of denormalization are improved performance, the need for fewer

joins, and the ability to maintain history information.

2. When you denormalize a database, you can encounter problems with data consis-
tency, especially with aggregated data, which must be updated for any single event.

Lesson 4: Designing the Data Flow Architecture 49
Lesson 4: Designing the Data Flow Architecture

Estimated lesson time: 10 minutes

When you design a database, consider data flow. Prepare your data model and document pos-
sible data flow before you start the physical implementation of any databases. Data flow
includes flow from the database to the middle tier and clients, flow to copies of data, and flow
for archiving purposes.

Data Flow for OLTP Applications
In OLTP applications, the application typically uses data-access components such as
ADO.NET to maintain the flow of data from a database to the middle tier or clients. However,
as a data modeler, you must be prepared for multiple copies of data that can exist at the same
time. For example, an application can implement a disconnected model in which it brings data
to the client and then disconnects, only to reconnect later to make changes to that data. How-
ever, in the meantime, another user might have accessed that same data, making his or her
changes. With multiple copies of data, you can expect update conflicts. Thus, you need to have
a solution for resolving conflicts when the same piece of data is updated independently in
multiple places.

One solution is to store a copy of the data in application cache. For example, you can use the
ADO.NET DataSet object and persist part of the data about a client. An application can cache
the data in other objects, such as any of the .NET collections, as well. An application is respon-
sible for resolving update conflicts that stem from its own cache. However, a distributed appli-
cation could need a copy of a database stored in relational format in a RDBMS on a
disconnected client. Merge replication is the mechanism in SQL Server for such needs. Merge
replication comes with plenty of built-in conflict-resolving procedures, and you can add your
own. In any case, you must document the resolution process thoroughly, including details
about the resolving algorithm. In addition, if you use merge replication, you should have a
plan for merging data. You perform merging between a single subscriber and a publisher at a
time. With hundreds of subscribers, you could get in trouble with your time window for merg-
ing if you do not give your merge process plenty of time. Remember that in the same time win-
dow, you usually have to accomplish other maintenance tasks, such as backups, as well.

Many OLTP applications perform intensive work on a small part of the data only. Stale data is
more or less read-only, used just for queries. This old data has a different maintenance plan; for
example, you do not need to check the integrity of your database with DBCC CHECKDB on
old data as often as on current data, which undergoes heavy modification activity. You can
speed up maintenance of the current data by moving the old data to an archive. You can imple-
ment the archive in multiple ways:

50 Chapter 2 Designing a Logical Database
n An application can perform the archiving at the end of a period—such as at the end of a
fiscal year.

n You can use a data warehouse.

n You can create archive tables in a different filegroup of the OLTP database or even in a
different database.

n In SQL Server 2005, you can partition a table and create archive partitions in separate
filegroups. You will learn more about table partitioning in Chapter 3, “Designing a Phys-
ical Database.”

Data Flow for Business Intelligence Applications
Data flow for OLTP applications typically does not involve transformations. For BI applica-
tions, just copying the data makes less sense. It is more valuable to do some data preparation
in advance so that the data can serve better for analysis. For example, in a data warehouse, you
use a multidimensional data model that includes merged and cleansed data. In addition, even
simple reports on the same structure as it is in the OLTP database can benefit from copies of
data. With copies of data, you can improve performance because you implement load balanc-
ing and diminish locking contention. Plan the data flow for BI applications in advance. Again,
for extracting, transforming, and loading (ETL) data, you typically have a limited time window
during off-peak hours.

SQL Server 2005 comes with many methods for data distribution and transformation that you
can use for BI applications.

n Snapshot isolation With this isolation level, SQL Server uses the tempdb system data-
base to maintain the version of a row just before it is updated. SQL Server drops the old
rows immediately after no connection uses them anymore. With snapshot-isolation lev-
els, readers do not block writers, so you diminish locking contention. However, you have
to devote special attention to tempdb.

n Database snapshots You can use these read-only snapshots of a source database as the
source for reports, reducing locking contention. You must create and drop database
snapshots, preferably with the help of SQL Server Agent scheduled jobs.

n Transactional replication This type of replication is especially useful when you need a
copy of the data in a different server with low latency. Although you can improve the rep-
lication with your own procedures that can do some data transformation, replication is
more suited for maintaining copies of data.

n SQL Server Reporting Services Reporting Services can keep its own snapshots of data.
You can prepare these snapshots in advance, before end users start to execute reports.
Note that you must consider Reporting Services security; it has its own security model.

n SQL Server Integration Services This tool is especially useful for complex transforma-
tions and for merging data from multiple sources. SQL Server Integration Services (SSIS)

Lesson 4: Designing the Data Flow Architecture 51
is a perfect tool for maintaining data warehouses. However, you cannot achieve low
latency with SSIS; typically, you load a data warehouse in off-peak hours.

n SQL Server Analysis Services Analysis Services can pull data directly from the source
database. For OLAP applications, you typically have to transform and merge data; there-
fore, in most cases, you would choose to create a data warehouse and use SSIS for the
ETL process.

n Additional tools SQL Server 2005 provides other tools you can use for data flow to BI
applications, even though they are not primarily designed for that purpose. For example,
to create a copy of data for BI applications, you could use the Copy Database Wizard,
snapshot replication, backup and restore, log shipping, and detaching and attaching a
database.

No matter which method you select, you must plan your data flow during the data-modeling
phase of your project and document it thoroughly.

Quick Check
1. Which is the best method for maintaining data flow?

2. What problems can you expect when you have multiple copies of updateable data
at a time?

Quick Check Answers
1. There is no simple answer to this question. When you investigate which method

would be best for your environment, consider your latency requirements, your
need for transformations, security issues, tool availability, existing knowledge in
your company, transactional consistency, and more.

2. You should be prepared for update conflicts.

52 Chapter 2 Designing a Logical Database
Lesson 5: Supertypes and Subtypes

Estimated lesson time: 20 minutes

In this final lesson, you learn about supertypes and subtypes. Many times, you have a hierar-
chy in your data, but you do not know the number of hierarchy levels in advance. Let’s look at
how to model this kind of problem.

Supertypes and Subtypes
Two entities are of distinct types if they have no attributes in common. It is possible for entities
to have both common and distinct attributes. If they have a common identifier (that is, a com-
mon primary key), they have a special supertype-subtype relationship: they are neither dis-
tinct nor the same. You use supertypes and subtypes to represent different levels of entity
generalization. Normalization and denormalization are about breaking down and assembling.
Supertyping and subtyping are about generalization and specialization. Think of normaliza-
tion as widening and subtyping as deepening. When you analyze your business problem, the
verb is usually leads to a supertype/subtype relationship. For example, a company is a cus-
tomer, and a person is a customer as well. Obviously, companies and persons have something
in common.

In the companies/persons example, you started with a bottom-up approach. You can continue
this generalization further. For example, both customers and suppliers are partners. You could
also start from the top and discover specializations. The question is where to stop with this
process. It is easy to find where to stop when you use the top-down approach: specialization
makes sense only if subtypes have additional attributes. With the bottom-up approach, you
could finish with just a few entities—for example, with subjects, objects, and events. Theoreti-
cally, you should stop when you reach abstract objects, objects that do not exist in the real
world. For example, a computer table is a table, and a table is furniture; however, when you
come to a store, you do not order “a piece of furniture.” Still, sometimes it is good to have a
supertype just to share common identification (that is, a common primary key). This enables
you to gather all the information for a supertype for advanced analysis. A practical approach is
to stop when you have a problem naming the supertype. If you cannot name it quickly, prob-
ably nobody would need to perform analysis on that supertype.

If you overlooked supertypes and subtypes when you analyzed your business problem or if
you are working on refining an existing model, you can still identify them from the existing
model. A huge table with sparse known values and many NULL values is a candidate for spe-
cialization. Check whether those unknown values are really unknown or whether they are
simply meaningless for some rows. If they are meaningless, you can get rid of them when you
introduce subtypes. Using the bottom-up approach from an existing model is possible only if

Lesson 5: Supertypes and Subtypes 53
the model stays with a naming convention; otherwise, you have to re-analyze the business
problem. Tables that have many columns with similar or even the same names probably need
a supertype table.

Modeling Hierarchies
A business problem can introduce something that, from a business perspective, is a called a
hierarchy. For example, an employee organizational chart is a hierarchy. A bill of materials is
another hierarchy. From a mathematical point of view, hierarchies are actually graphs and
trees. In graph theory, a graph is a set of nodes (also called points or vertices) connected by
links (called lines or edges). In a graph, you can arrive at a node through different paths. You
can travel in any direction. Links can have different weights. Paths can make cycles. A tree is a
special kind of graph in which any two nodes are connected by exactly one path. A forest is a
graph in which any two nodes are connected by at most one path; a forest is, of course, a set
of trees. An employee hierarchy is usually a tree, and a bill of materials is a directed, acyclic
graph.

You can model a tree or a forest by using a single table that contains two columns connected
by a foreign key. Figure 2-5 shows the Employees table with a hierarchy modeled. A manager
is also an employee, so there is a row for each manager in the table. Each employee has a
unique EmployeeId. Employees also have managers; this structure is modeled through the
ManagerId column. A foreign key connecting the Employees table to itself uses EmployeeId as
the parent and ManagerId as the child column. A single manager, who is an employee, can
manage multiple employees. You can denote the highest-ranking employee by using a Man-
agerId value of unknown (NULL) or one that is the same as the EmployeeId value.

Figure 2-5 Employees table with hierarchy—a tree

For modeling a graph, you need two tables. Figure 2-6 shows a model for bill of materials. You
need a table for parts (materials, semi-products, products) and a separate one for bill of mate-
rials, which joins parts into assemblies. The BillOfMaterials table has a primary key made up
of the PartId and AssemblyId columns; both are parts, so you have two foreign keys from the
BillOfMaterials table to the Parts table.

PK

Employees

EmployeeId

EmployeeName
ManagerIdFK1

54 Chapter 2 Designing a Logical Database
Figure 2-6 Parts and BillOfMaterials tables with hierarchy—a graph

To present the data to end users, you have to resolve the hierarchies. In previous versions of
SQL Server, this was a tedious job. You needed a loop to resolve a hierarchy, implemented
either through a WHILE construct or with recursion. In SQL Server 2005, you can use recur-
sive common table expressions (CTEs) to resolve hierarchies. CTEs also perform better than
loops.

Practice: Supertypes, Subtypes, and Hierarchies
You have a fully normalized model (as before the denormalization practice) for your database
that supports project management applications. You discover that the business has expanded
to offer support and training services, and you need to include these services in your database
design. Support and training are services similar to projects, and each service can have its own
hierarchy. For example, a project can be part of a bigger project, which can include training
and support. Your current design is:

Projects(ProjectId, ProjectName, CustomerId, StartDate, CustomerName, TotalTimeSpent)
ProjectDetails(ProjectId, ItemId, ActivityId, EmployeeId,
 WorkDate, TimeSpent)
Customers(CustomerId, CustomerName)
Activities(ActivityId, ActivityName)
Employees(EmployeeId, EmployeeName)

� Exercise 1: Find Supertypes and Subtypes

In this exercise, you need to find supertypes and subtypes.

1. Find supertypes and subtypes.

Services are the supertypes of projects.

2. You have to change all references to the projects to services. Change the name of the
Projects and ProjectDetails tables to Services and ServiceDetails. Change the names of
the ProjectId and ProjectName attributes to ServiceId and ServiceName.

3. Add the service type to distinguish between services. You should add a lookup table for
different service types.

Your improved design should look like the following.
Services(ServiceId, ServiceName, ServiceTypeId, CustomerId,
 StartDate, CustomerName, TotalTimeSpent)
ServiceTypes(ServiceTypeId, TypeName)

Parts

PK PartId

PartName
Unit

BillOfMaterials

PK,FK1
PK,FK2

PartId
AssemblyId

Quantity

Lesson 5: Supertypes and Subtypes 55
ServiceDetails(ServiceId, ItemId, ActivityId, EmployeeId,
 WorkDate, TimeSpent)

This design might surprise you; you might have expected explicit subtype tables for
projects, training, and support. However, in the business problem description, there is
no information about specific attributes for each service type. Introducing subtype tables
would just complicate the design; all you need is a column that shows service type. This
is an example of subtypes hidden, or stored implicitly, in a supertype; if there is no addi-
tional information about subtypes, they collapse to a single status attribute of a super-
type.

IMPORTANT Find supertypes in the conceptual design stage

If your database was already in production, then you could not change the names of the
tables and columns so easily. Changing the names would probably lead to changes in your
application as well. Therefore, it is very important to f ind supertypes in advance, in the con-
ceptual design stage.

� Exercise 2: Find Hierarchies

In this exercise, you need to find hierarchies.

1. You need to model the hierarchy (tree) of the services.

What you need is a column for the identification of the parent service.

2. In addition, add a foreign key between the ServiceId and ParentServiceId columns.

Your improved design should look similar to this:
Services(ServiceId, ServiceName, ServiceTypeId, ParentServiceId,
 CustomerId, StartDate, CustomerName, TotalTimeSpent)

IMPORTANT Remember foreign keys

In this brief notation, the foreign key is not explicitly shown. However, you should not forget
about it.

Quick Check
1. How do supertypes and subtypes differ from graphs and trees?

2. How would you model a road system?

Quick Check Answers
1. Supertypes and subtypes show hierarchy in the structure; graphs and trees show

hierarchy in the data.

2. You should model a road system as a graph with cities as nodes.

56 Chapter 2 Designing a Logical Database
Case Scenario: Design a Logical Database
Tailspin Toys needs reports about outstanding debts. However, some of its customers are its
suppliers as well. The company needs to see how much Tailspin Toys owes a partner as well as
how much a partner owes Tailspin Toys. Currently, the company has two separate tables: Cus-
tomers and Suppliers. In addition, its daily maintenance operations take too much time to per-
form in the off-peak operations window. The organization keeps all invoice history in two
tables: Invoices and InvoiceDetails. Tailspin Toys updates its data for the current fiscal year
only; all other data is just for analysis.

1. How can you generate a report that shows the complete picture of operations with a
partner?

2. How can you speed up daily maintenance tasks so that they complete within the avail-
able window?

Chapter Summary
n When you design a database, you should do it as a formal process.

n For conceptual modeling, use ORM.

n ER models are standard for the logical level. ER diagrams are usually part of the applica-
tion documentation.

n Check your model by using normalization.

n Denormalize for performance and history. Denormalize deliberately and thoroughly
document your denormalization changes.

n Plan your data flow at design time.

n Take special care to find supertypes and subtypes during the design process; retrofitting
an existing database to accommodate missed supertype and subtype relationships can
be difficult.

n When talking about hierarchies, be sure to distinguish between graphs and trees and
model each type appropriately.

Chapter 3

Designing a Physical Database
In Chapter 2, “Designing a Logical Database,” you learned how to design the data model on
the conceptual and logical levels. Now, it is time to move forward and design the database on
the physical level. In this chapter, you will learn how to select appropriate data types, includ-
ing data types you create (that is, user-defined data types—UDDTs). Then, you will learn how
to create tables and add computed columns to attributes that you defined at the logical level.
You might sometimes even decide to persist and index a computed column. By now, you
should realize the importance of constraints, but you will also learn how to implement entity,
referential, and domain integrity as well as business rules by using constraints and triggers.

Exam objectives in this chapter:
n Design objects that define data.

q Design user-defined data types.

n Design attributes.

q Decide whether to persist an attribute.

q Specify domain integrity by creating attribute constraints.

q Choose appropriate column data types and sizes.

n Design entities.

q Define entities.

q Define entity integrity.

n Design entity relationships (ER).

q Specify ER for referential integrity.

q Specify foreign keys.

q Create programmable objects to maintain referential integrity.
57

58 Chapter 3 Designing a Physical Database
Before You Begin
To complete the lessons in this chapter, you must have:

n Knowledge of the Transact-SQL data-definition language (DDL) elements.

n The Microsoft SQL Server 2005 AdventureWorks and AdventureWorksDW sample data-
bases installed. Sample databases are available with SQL Server 2005 Enterprise edition
but are not a part of the default installation. Alternatively, you can install the sample
databases from http://msdn2.microsoft.com/en-us/library/ms143739.aspx.

n Microsoft Visual Studio 2005 or Microsoft Visual Basic or C# .NET 2005 Express edition
installed. You can download Visual Studio Express editions for free from http://
msdn.microsoft.com/vstudio/express/. (Optionally, you can have Microsoft Visual Studio
Team System or Microsoft Visual Studio Team edition for Database Professionals
installed.) You can f ind more information about these products at http://
msdn2.microsoft.com/en-us/teamsystem/aa718803.aspx.

IMPORTANT Practices in this chapter build upon each other

Beginning with Lesson 2, “Designing User-Def ined Data Types,” the lesson practices build upon
each other; to move to the next practice, you need to f inish the previous one.

Lesson 1: Choosing Column Data Types and Sizes 59
Lesson 1: Choosing Column Data Types and Sizes

Estimated lesson time: 20 minutes

Every attribute you model at a logical level has a domain of possible values. You express
domains as data types on the physical level. Domains comprise the things we can talk about.
For example, if we are talking about cars, we do not talk about flying. Logically, domains
include all possible integrity constraints. However, implementing all possible constraints in
data types on the physical level would be difficult because you probably would have to create
hundreds of data types. In addition, you would have huge problems if some constraints
changed. Users of your data types would also then have to learn how to use all the constraints.
Therefore, having some common, defined data types that you can use immediately is usually
best. The tradeoff here is that defined types implement basic constraints only; you must use
other mechanisms to implement additional constraints.

All database management systems and programming languages come with a set of built-in
data types. If you studied the models in the previous chapter that were created using Microsoft
Visio for Enterprise Architects, you might have noticed that attributes already have data types.
It is a good practice to think of data types in advance, when you design a database on a con-
ceptual level. In Visio, you can use so-called portable or physical data types. Physical data
types should match the destination database system. The examples in Chapter 2 use SQL
Server 2005 physical data types.

System Data Types
You should always thoroughly understand what physical data types your system provides and
their limitations. In addition, you have to detect whether your data is strictly structured, semi-
structured, or unstructured. Structured data has a rigid form. Entities with structured data typ-
ically have a well-defined schema, which does not change much over time. Tables that repre-
sent structured entities have columns with system data types that occupy a mostly known
amount of storage. Semi-structured data has an internal structure; however, this structure
changes over time, can be quite complex, and can occupy a lot of space. Unstructured data can
be literally anything: images, long texts, movies, and so on. SQL Server 2005 provides system
data types for all kinds of data.

Numeric System Data Types
Numeric data types can store integers or decimal values. They can store an exact representa-
tion of a number or an extremely close approximation of the value. In business applications,
you should typically use data types that store exact values. However, approximate data types
can store much larger values than fixed data types. Table 3-1 shows a condensed overview of

60 Chapter 3 Designing a Physical Database
numeric data types, their limitations (that is, the range of values they accept), whether they are
approximate or exact, and the space they consume in bytes.

String Data Types
String data types can store non-Unicode and Unicode strings. Non-Unicode strings have fixed
collation; you can use the database’s default collation or specify a different collation for each
column separately. With non-Unicode strings, every character occupies a single byte. In Uni-
code data types, you can store strings with different collations in different rows of a single col-
umn. As always, however, nothing is cost-free: with Unicode types, every character occupies
two bytes. In addition, string data types can occupy a fixed or variable number of bytes. Vari-
able string data types occupy an additional two bytes of storage for a hidden in-row pointer to
the location of the column in a row. Large data types have their own section later in this lesson.
SQL Server 2005 string data types for small strings are:

Table 3-1 Numeric Data Types

Type Range Exact Storage

Bit 0 to 1 Yes Up to 8-bit columns in 1 byte
(for instance, 10-bit columns
use 2 bytes)

Tinyint 0 to 255 Yes 1 byte

Smallint -215 to 215-1 Yes 2 bytes

Int -231 to 231-1 Yes 4 bytes

Bigint -263 to 263-1 Yes 8 bytes

Numeric and
Decimal

-1038 to 1038, depending on
precision (p) and scale (s)

Yes p 1 to 9: 5 bytes;
p 10 to 19: 9 bytes;
p 20 to 28: 13 bytes;
p 29 to 38: 17 bytes*

Smallmoney -214,748.3648 to 214,748.3647 Yes 4 bytes

Money -922,337,203,685,477.5808 to
922,337,203,685,477.5807

Yes 8 bytes

Real -3.40E + 38 to -1.18E-38, 0 and
1.18E-38 to 3.40E + 38

No 4 bytes

Float(n) -1.79E+308 to -2.23E-308, 0 and
2.23E-308 to 1.79E+308

No Depending on value (n)
n 1 to 24: 4 bytes; n 25 to 53: 8
bytes

* With SQL Server 2005 Service Pack 2 (SP2) Enterprise Edition, you can define variable storage
for numeric and decimal data types.

Lesson 1: Choosing Column Data Types and Sizes 61
n Char(n) A non-Unicode data type with fixed length. For example, if you define
Char(10), all values will occupy exactly 10 bytes, even if they are shorter. You can define
the number n in a range from 1 to 8,000; thus, you can store up to 8,000 characters in
this type.

n Varchar(n) A non-Unicode data type with variable-length storage. You can define the
number n in a range from 1 to 8,000; thus, you can store up to 8,000 characters in this
type.

n Nchar(n) A fixed-length Unicode data type. You can define the number n in a range
from 1 to 4,000; thus, you can store up to 4,000 characters in this type, which will
occupy up to 8,000 bytes.

n Nvarchar(n) A variable-length Unicode data type. You can define the number n in a
range from 1 to 4,000; thus, you can store up to 4,000 characters in this type, which will
occupy up to 8,000 bytes.

Binary Strings
Binary data types do not have any constraint on the domain of possible values that you can
store, except for the length. There are two small binary data types: binary(n) and varbinary(n).
As with small string data types, you can specify the number n in a range from 1 to 8,000.

Datetime Data Types
SQL Server 2005 still does not support separate Date and Time date types. In both data types
that support dates and times, you always get both date and time. This makes working with
dates and times more difficult. SQL Server has many built-in datetime functions for handling
date and time data. See SQL Server 2005 Books Online: Date and Time Functions (Transact-
SQL) at http://msdn2.microsoft.com/en-us/library/ms186724.aspx for a list of those functions.
The two datetime data types in SQL Server are:

n Smalldatetime You can store dates from January 1, 1900, through June 6, 2079, in a col-
umn of this data type, with one-minute accuracy. The smalldatetime data type occupies 4
bytes of storage.

n Datetime You can store dates from January 1, 1753, through December 31, 9999, in a
column of this data type, with 3.33-millisecond accuracy. The datetime data type occu-
pies 8 bytes of storage.

Exam Tip Be sure you know the datetime functions in SQL Server 2005.

62 Chapter 3 Designing a Physical Database
Large Data Types
Large data types can store up to 2 gigabytes (GB)—up to 231-1 bytes—of data. Large data types
are appropriate for unstructured data. There are two kinds (three kinds, if you count the XML
data type in this category) of large data types: old and new. Old types existed in previous ver-
sions of SQL Server and are primitive in terms what you can do with them. Most string func-
tions do not work with them, for example. New SQL Server 2005 types support all string
functions.

The old large data types are:

n Text This variable-length non-Unicode data type has a maximum length of 231-1
(2,147,483,647) characters.

n Ntext This variable-length Unicode data type has a maximum length of 230-1
(1,073,741,823) characters.

n Image This variable-length binary data type can hold from 0 through 231-1
(2,147,483,647) bytes.

SQL Server 2005 introduces a new length specifier for the varchar, nvarchar, and varbinary
data types. The max specifier expands the storage capabilities of these data types up to 231-1
(2,147,483,647) bytes. These new data types have many advantages over the old ones. Besides
supporting more functions, the new data types enable you to declare variables, which you can-
not do with the old types. In AFTER triggers, you can reference the new large data type col-
umns in the Inserted and Deleted tables. The UPDATE statement supports chunked update
with the new Write method when you use the large data types. Microsoft even plans to discon-
tinue support of old large data types in future versions of SQL Server.

Besides string functions, you can create full-text indexes on large and small string data types.
With full-text indexes, you get additional full-text search predicates, which expand the func-
tionality of string data types.

XML Data Type
The new XML data type stores Unicode strings in XML format. XML is a worldwide standard
for storing semi-structured data. XML, which is always Unicode, is also the de facto standard
for exchanging data between applications. You could store XML as simple text by using the
nvarchar(MAX) type. However, plaintext representation means you have no knowledge of the
structure built into an XML document. You could decompose the text, store it in multiple rela-
tional tables, and use relational technologies to manipulate the data. However, relational struc-
tures are quite static and are not easy to change. The XML data type in SQL Server 2005
attaches functionality to the type that can support a wide variety of XML technologies. For
example, you can validate values of an XML data type column (XML documents and frag-
ments) against an XML schema collection, which can include multiple XSD schemas. XML val-
idated against a schema is called typed XML.

Lesson 1: Choosing Column Data Types and Sizes 63
There are many good examples of when to use the XML data type, such as the following:

n If the structure is volatile but you still need to validate the data against some pre-defined
structure, the XML data type is your choice.

n XML is hierarchically organized, so you might find it easier to store hierarchies in the
XML type compared to using the adjacency model (presented in Chapter 2) and com-
mon table expressions (CTEs).

n The XML data type works well if you need to modify or retrieve parts of the data based
on its structure. Remember that XML is a large data type. Because the XML data type
supports the XQuery language for traversing XML nodes and properties through vari-
ous methods for browsing and updating the XML document, modifying and retrieving
data is much more efficient than with other large data types.

n Besides full-text indexes, the XML data type supports specific XML indexes.

n You can use the XML data type for a variable. For example, you can pass an array as a
parameter to a stored procedure with the help of the XML data type.

Other Data Types
Other data types in SQL Server include types you cannot easily classify in the groups intro-
duced so far. Here are brief descriptions of those other data types:

n Sql_variant This type stores values of various SQL Server 2005–supported data types
except text, ntext, image, timestamp, and sql_variant types. A column of type sql_variant
might contain rows of different data types; however, before performing operations on
sql_variant values, you must cast the value to the base data type. The sql_variant type can
occupy up to 8,016 bytes.

n Timestamp and its synonym, rowversion SQL Server automatically generates unique
binary numbers within a database for a column of this data type. A new value is gener-
ated for every insert or update of a row. Use timestamp for version-stamping table rows,
to determine whether any value in the row has changed since the last time you read it.
Storage is 8 bytes.

n Uniqueidentifier This is a 16-byte global unique identifier (GUID). You can generate the
value with the NEWID or NEWSEQUENTIALID functions.

n Table This is a special data type that you can use to store a temporary result set for later
processing; typically, you would use it for a set of rows returned as the result set of a
table-valued function. You cannot use this data type for columns of a table; you can use
it for variables and functions only.

n Cursor This is a data type for variables or stored procedure OUTPUT parameters that
contain a reference to a cursor; you can use it to pass cursors from one procedure to
another. Because you should generally not use cursors in your T-SQL code in applica-
tions anyway, your usage of this data type should be limited.

64 Chapter 3 Designing a Physical Database
IMPORTANT Generating duplicate timestamps

You can generate duplicate timestamp values by using a SELECT INTO statement in which a time-
stamp column is in the SELECT list. You should not use timestamp columns when you are copying
existing data.

Best Practices for Data Types and Sizes
The first and very basic best practice for data types is to use the smallest possible data types
that can hold the range of values you need. Bigger data types can mean wasted space and, thus,
reduced performance of your database. However, you should also anticipate growth of your
database. If you know, for example, that you are going to run out of possible values of the int
data type in six months, select the bigint type at the beginning.

Exam Tip The initial preference should be to use smaller data types.

Use fixed-string data types for strings that do not vary much in length or for very short strings.
(Remember the two bytes of overhead that variable data types require.) Larger strings often
vary considerably in length; therefore, variable-length data types are more appropriate. If you
need to support multilanguage applications, you should use Unicode data types. However, if
your database is very large and you know that all values of a column will have the same colla-
tion, you should use a non-Unicode data type so that you avoid the storage and performance
overhead of storing two bytes for a single character.

If you need to support dates beyond the range of built-in datetime data types, or if you need
better accuracy, you have to use numeric data types and create your own date and time logic
in your application or create common language runtime (CLR) user-defined data types, which
are described in Lesson 2, “Designing User-Defined Data Types.” For example, if you need
one-millisecond accuracy, you can store the time in a bigint column where the integer value
means the number of milliseconds from 24:00. In addition, never forget that you have the time
part in your datetime columns, even if you work only with dates.

In addition, be careful not to overuse the XML data type. It is so easy to say that your schema
is volatile; however, often that simply means you did not spend enough time analyzing your
business problem, so you missed the schema behind it. It is harder to implement constraints
on an XML data type column than on multiple separate columns of smaller data types, and
you already know that constraints are crucial for data integrity.

 If backward compatibility is not an issue, choose the new varchar(MAX), nvarchar(MAX), and
varbinary(MAX) data types over the old text, ntext, and image data types. Last, avoid using the
sql_variant data type. Strong typing is one of the most important pillars of building reliable
applications.

Lesson 1: Choosing Column Data Types and Sizes 65
Practice: Choosing Appropriate Data Types
In this practice, you will strengthen your mastery of system data types by answering a few
questions.

� Exercise: Choose the Best Data Type

In this exercise, you select the appropriate data type or answer general questions about data
types.

1. Which data types are appropriate for unstructured data?

2. Which data types would you use for storing exact numbers?

3. Can you list the data types that you cannot use in table definitions?

4. What is the maximum number of bytes you can store in a single column? Which data
types support this maximum?

Quick Check
You are creating a table and must make several decisions based on the information in the
following questions.

1. You must store three-character abbreviations of month names. Which data type
would you use?

A. Varchar(3)
B. Char(3)
C. Real
D. Nvarchar(MAX)

2. You have to support a multilanguage application. Which data types can help you?

3. You have to store large numeric values; however, they can be approximate. Which
data type would you use?

Quick Check Answers
1. The correct answer is B: you should use char(3) in this case.

2. You have to use Unicode data types—nchar(n), nvarchar(n), and nvarchar(MAX).
You should avoid using ntext, which is deprecated.

3. You would use the float data type.

66 Chapter 3 Designing a Physical Database
Lesson 2: Designing User-Defined Data Types

Estimated lesson time: 30 minutes

In SQL Server 2000 and earlier, you can create UDDTs. However, these types are just aliases for
existing system data types. In SQL Server 2005, you can create full-fledged user-defined types
(UDTs) by using CLR code. Let’s look at how to create T-SQL aliases and then see how to use
CLR code to define UDTs.

IMPORTANT CREATE TYPE vs. T-SQL aliases

Using the sp_addtype system stored procedure to create T-SQL aliases is deprecated and will be
removed from future SQL Server versions. Use the CREATE TYPE command instead.

T-SQL Aliases (UDDTs)
T-SQL aliases do not really bring anything new to a database; you can always use native system
types instead. However, these aliases are a nice way to standardize data types for attributes that
appear in many tables. For example, you have attributes for addresses in multiple entities,
such as Customers, Employees, and Warehouses. You want to be sure that the address line
attributes are always nvarchar(50) and not once char(30) and other times nvarchar(70). You can
force standard types by creating a T-SQL alias, as the following code example shows:

CREATE TYPE StandardAddress
 FROM nvarchar(50) NULL;
GO

You can then use this type for all addresses. As you can see, you can also specify whether the
type allows unknown (NULL) values. You could define some basic constraints for the type as
well by binding a Default or a Rule to the type. However, defaults and rules as independent
objects are deprecated in favor of constraints, so you should not use this feature.

Exam Tip On the exam, do not select answers that use deprecated features if another answer
uses the new syntax (unless you are asked to choose all possible correct answers). Although the
deprecated feature might be a correct answer for SQL Server 2005 and previous versions of the
database management system, it will not be available for future versions.

CLR User-Defined Types (UDTs)
When we are describing a business problem, we implicitly use domains. In fact, you can
describe any business problems with relations (as relational tables) and domains. Domains
comprise the things we can talk about; relations comprise the truths we utter about those

Lesson 2: Designing User-Defined Data Types 67
things. Domains and relations are necessary and sufficient—logically, we do not need anything
else. According to the book Practical Issues in Database Management by Fabian Pascal (Addison-
Wesley Professional, 2000), a domain consists of the following:

n A name.

n One or more named possible representations:

q One is physically stored.

q At least one is declared to the users.

n Type constraints.

n A set of operators permissible on the type’s values.

Domains constrain possible values of an attribute through a set of permissible operations and
through specific type constraints. Actually, in domains, you could implement every constraint
you need except one. The only additional constraint you need is the one that helps you
uniquely identify every entity instance in an entity set—that is, every row in a table—namely, a
primary key. If every constraint on the relation is a logical consequence of the definition of keys
and domains, then the relation is in domain-key normal form (DKNF). This is the ultimate nor-
mal form; a relation in DKNF is free of all modification anomalies. However, there is no simple
algorithm to produce DKNF; you have to implement it programmatically through your own
data types.

Putting all constraints in a data type seems attractive at first glance. After all, you get a database
that is free from all anomalies. However, having too many constraints in a data type is not prac-
tical. First, you do not know who the user of your data type is going to be or whether the con-
straints are going to be acceptable for all possible users. Second, constraints change over time.
If a constraint is volatile, the most painful change process possible is if the constraint is built
into the data type. Imagine what Microsoft changing the definition of the integer data type
would mean for millions of databases and applications around the world.

This short theoretical introduction should give you the basic idea underlying best practices for
using CLR types: the KISS principle (“Keep It Simple, Simon!”). However, logical reasons are
not the only reasons to stick with the KISS principle. Another problem for potential users of
your data type is that they have to learn what operations your type supports, what these oper-
ations do, and how to call them. For standard data types, you know the answers from previous
experience or school or because the operations are standard or even defined in mathematics.
For example, you know that you can add, subtract, and multiply integers; however, division is
not defined on the integer domain. Remember the datetime data type? Because it is a little more
complex and not standard, you immediately have more problems and need to have additional
knowledge when you work with it. Finally, if your data type code is not efficient, you cannot
improve performance later when you design and tune a database that uses this type.

To make this a bit easier to understand, Microsoft subscribed standard names and parameters
for a couple of basic operations for CLR data types. A data type needs at least a selector and a

68 Chapter 3 Designing a Physical Database
mutator operation if you want to make it useful. In addition, a data type for relational data-
bases must know how to deal with unknown values. When you create a CLR data type, you
create a structure or a class in the .NET code. The names of the prescribed operations are
ToString and Parse, implemented as methods, and Null and IsNull, implemented as properties.
If you create your code with Visual Studio 2005 Professional edition or later, you can use a SQL
Server Project template for CLR objects, which provides prebuilt code for the prescribed oper-
ations. Otherwise, you need to create an empty Class Library project and carefully create the
methods and properties manually.

The following code shows an example of a data type for e-mail addresses. To make the exam-
ple more understandable, the data type has implemented only the prescribed operations. In
addition, because the type uses reference objects (.NET strings) and not just value objects,
you have to implement your own binary serialization (serializing means persisting in object-
oriented programming—or OOP—terminology) by implementing the IBinarySerialize inter-
face, which has Read and Write methods. If your type would use value types only, such as
integers, SQL Server would know how to serialize it automatically. You define the serialization
method by attributes in the beginning of the type definition. From the code, you can see that
the Parse method accepts a string as parameter, and the ToString method returns a string; this
is the default way of updating and retrieving values from CLR UDTs—through strings. Finally,
notice in the Parse method that the input string is validated against a regular expression. If the
regular expression is 100 percent correct and allows valid e-mail addresses only, then in a col-
umn of this data type, no one can insert anything but a valid e-mail address.

//C#
using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;
using System.Text;
using System.Text.RegularExpressions;
using System.IO;

[Serializable]
[Microsoft.SqlServer.Server.SqlUserDefinedType(Format.UserDefined,
MaxByteSize = 8000)]
public struct EmailCS : INullable, IBinarySerialize
{
 // Regular expression used to parse values that are of the form
somebody@somecompany.domain
 private static readonly Regex RegExParser
 = new Regex(@"^([\w-]+\.)*?[\w-]+@[\w-]+\.([\w-]+\.)*?[\w]+$",
 RegexOptions.CultureInvariant);

 // Internal member for the e-mail address
 private StringBuilder parsedemail;
 // Internal member to show whether the value is null

Lesson 2: Designing User-Defined Data Types 69
 private bool m_Null;

 // Constructor for a known value
 public EmailCS(string value)
 {
 this.parsedemail = new StringBuilder();
 this.parsedemail.Append(value);
 this.m_Null = false;
 }

 // Default selector method
 public override string ToString()
 {
return this.parsedemail.ToString();
 }

 // Handling Null values
 public bool IsNull
 {
 get
 {
 return m_Null;
 }
 }

 public static EmailCS Null
 {
 get
 {
 EmailCS h = new EmailCS();
 h.m_Null = true;
 return h;
 }
 }

 // Default mutator method
 public static EmailCS Parse(SqlString s)
 {
 if (s.IsNull)
 return Null;

 // Check whether the input value is matching the regex pattern
 string value = s.ToString();
 Match m = RegExParser.Match(value);
 // If the input value is not in correct format or is too long,
 // throw an exception
 if (!m.Success || value.Length > 4000)
 throw new ArgumentException(
 "Invalid format for e-mail address. "
 + "Format is somebody@somecompany.domain, "
+ "length has to be max. 4000 characters.");

 // Everything ok

70 Chapter 3 Designing a Physical Database
 EmailCS u = new EmailCS(value);
 return u;
 }

 // User-defined serialization
 public void Read(BinaryReader r)
 {
 parsedemail = new StringBuilder(r.ReadString());
 }

 public void Write(BinaryWriter w)
 {
 w.Write(this.parsedemail.ToString());
 }
}

On the Companion Disc This chapter includes many code examples. You will f ind all the code
on the companion CD in the C:\My Documents\Microsoft Press\TK70-441\Chapter03\folder.

From Visual Studio, you can deploy assemblies in a database and create data types and other
CRL objects directly. However, in production, a database administrator controls the deploy-
ment by using T-SQL, a procedure you will see how to perform in the practice at the end of this
lesson.

Best Practices for User-Defined Data Types
For T-SQL aliases, the best practice is clear: use them to standardize data types for repeating
attributes in your company. For CLR data types, the most important best practice is to keep
them simple.

In addition, when you create a CLR data type for a production environment, you have to watch
for many more problems than the ones that the preceding e-mail example shows. How does
your type sort? How does it compare values? These are important questions. You do not want
to surprise your users when they use your type in WHERE, JOIN, or ORDER BY clauses. In
addition, because the default input and output of your data type are strings, you have to ensure
that your type works in all possible collations. Note that you must call the default output
method (ToString) explicitly; otherwise, you get the value returned as a binary stream. This is
an optimization. You put the burden of deserialization on the client application, which must
know how to perfect it. (It must know the definition of the UDT through a reference in a
project.) Also, be aware of limitations of CLR types: user-defined serialization is limited to
8,000 bytes in SQL Server 2005.

Lesson 2: Designing User-Defined Data Types 71
Practice: Creating User-Defined Data Types
In this practice, you will create a T-SQL alias and two CLR UDTs and use them for a variable.
You can use them for tables as well, which you’ll see in the practice for Lesson 3, “Defining
Entities and Entity and Referential Integrity.”

IMPORTANT Remaining practices build upon each other

For the remaining practices in this chapter, you need to prepare a database and turn on CLR inte-
gration. In addition, you have to copy the assemblies from the companion CD to your local hard
drive. Finally, because the remaining practices in this chapter build on each other, please do not
delete your work after you f inish a practice exercise.

� Exercise 1: Setup

In this first exercise, you prepare the infrastructure for the practice by installing the compan-
ion CD and creating a new practice database.

1. Install the complete companion CD on your computer and browse to C:\My Docu-
ments\Microsoft Press\TK70-441\Chapter03\Sql folder to find the suggested CLR
solution. (Alternatively, you can copy the CLR solutions with source and compiled code
for this chapter to your local hard drive.)

2. In SQL Server Management Studio (SSMS), in a new query window, create a database for
this chapter and turn on the CLR integration by using T-SQL code. (Alternatively, you
could turn on CLR integration by using the Surface Area Configuration tool.) Your code
should look like this:
USE master;
GO
EXEC sp_configure 'clr enabled', 1;
RECONFIGURE;
GO
IF DB_ID(N'TK441Ch03') IS NULL
 CREATE DATABASE TK441Ch03;
GO

3. Click Execute from the SQL Editor toolbar.

� Exercise 2: Create T-SQL Aliases

Create a type to standardize all addresses. Your type should allow a maximum of 50
characters. You do not know in which country it is going to be used, so you need to be
prepared to accept any collation. Finally, an address is not always required, so you need
to allow unknown values. In the query window, your code should look like this:
USE TK441Ch03;
GO
CREATE TYPE StandardAddress

72 Chapter 3 Designing a Physical Database
 FROM nvarchar(50) NULL;
GO

� Exercise 3: Create CLR UDTs

Now you need to import assemblies to your database and create CLR UDTs. As a database
administrator (DBA), you need to perfect these tasks by using T-SQL.

1. Import both Visual Basic and C# assemblies. Use the SAFE permission set.

In the query window, your code should look like this:
USE TK441Ch03;
GO
CREATE ASSEMBLY Ch03CS
FROM 'C:\My Documents\Microsoft Press\TK70-441\Chapter03\Ch03CS\bin\Debug\Ch03CS.dll'
WITH PERMISSION_SET = SAFE;
GO
CREATE ASSEMBLY Ch03VB
FROM 'C:\My Documents\Microsoft Press\TK70-441\Chapter03\Ch03VB\bin\Ch03VB.dll'
WITH PERMISSION_SET = SAFE;
GO

2. Now, create the data types by using code that looks like this:
CREATE TYPE dbo.EmailCS
EXTERNAL NAME Ch03CS.EmailCS;
GO
CREATE TYPE dbo.EmailVB
EXTERNAL NAME Ch03VB.EmailVB;
GO

� Exercise 4: Test the CLR UDTs

Finally, test how your CLR UDTs work. Test both Visual Basic and C# UDTs. There is no spe-
cial need to test the T-SQL alias, but you are welcome to do it as well. Test the data types for reg-
ular, unknown, wrong, and too-long values. The following code example shows tests for the
C# type only.

1. Test for an unknown value:
DECLARE @myemail EmailCS;
SET @myemail = NULL;
SELECT @myemail;
GO

2. Test for a wrong value:
DECLARE @myemail EmailCS;
SET @myemail = N'wrong#address';
GO

3. Test for a value that is too long:
DECLARE @myemail EmailCS;
SET @myemail = REPLICATE(N'a',4000)+N'@a.com'
GO

Lesson 2: Designing User-Defined Data Types 73
4. Test for a correct value:

DECLARE @myemail EmailCS;
SET @myemail = N'dsarka@solidq.com'
SELECT @myemail, @myemail.ToString();
GO

Quick Check
1. Why would you use a CLR user-defined type?

2. How would you create a T-SQL alias? Select the correct answer.

A. EXEC sp_create type

B. EXEC sp_addtype

C. CREATE TABLE t1 (c1 WITH TYPE)

D. CREATE TYPE

Quick Check Answers
1. Besides standardization, one of the most important reasons to use a CLR UDT

would be constraints. If a constraint is extremely important and not volatile, you
might decide to implement it in a CLR data type. In addition, you might want to
create CLR data types to alleviate T-SQL or Microsoft .NET programming for stan-
dard problems. For example, you could create a data type Point, which could
already have built-in knowledge of how to calculate geometrical distance between
two points in a multidimensional space.

2. The correct answer is D. You would use CREATE TYPE to create a T-SQL alias.

74 Chapter 3 Designing a Physical Database
Lesson 3: Defining Entities and Entity and Referential
Integrity

Estimated lesson time: 30 minutes

After you’ve selected your conceptual and logical design and data types (and created them, if
you need user-defined data types), it is time to create tables. Designing tools such as Office
Visio feature forward engineering, so you can create a database and database objects directly
from the tool. However, you can also simply create a script and then move from design to such
development tools as Visual Studio Team System for Database Professionals. Probably the bet-
ter practice is to move to development tools because they enable version control, development
of a whole application rather than just the database part of it, creation of test data and unit test
procedures, and more. You should still use design tools for documentation of your application
and database. This lesson assumes that you are going to switch from graphical tools to T-SQL
code. You will learn how to design and create entities, design entity and referential integrity,
and use special types of columns.

Designing and Creating Entities
You already designed entities on the logical level. So what is left to design on the physical level?
In an ideal world, the physical level should be just an implementation of the logical level. How-
ever, when you get to the physical level, you have to deal with concrete products and their
strengths and weaknesses. To make your database perform well, you need to understand the
database management system you are working with and refine your logical design.

SQL Server stores data in a fundamental unit called a page, which has a fixed size of 8 kilobytes
(KB). SQL Server reads and writes whole pages. For space management, SQL Server uses
extents. An extent consists of eight physically contiguous pages, so it has a fixed size of 64 KB.
SQL Server maintains two types of extents: mixed and uniform. Up to eight objects can share
a mixed extent. Each object can own one or more pages in the extent. However, only one
object can own a uniform extent. For a new table or index, SQL Server allocates pages from
mixed extents. When the table or index reaches the size of eight pages, SQL Server switches
to use uniform extents for further allocations. If you create an index on an existing table that
has enough rows to generate eight pages in the index, all allocations to the index are in uni-
form extents.

SQL Server allocates table and index rows on pages. A row typically cannot span multiple
pages. Because SQL Server stores some internal metadata on pages as well, the actual maxi-
mum size of a row is 8,060 bytes. However, SQL Server 2005 relaxes this restriction for tables
with varchar, nvarchar, varbinary, sql_variant, or CLR UDT columns. The length of each col-
umn is still a maximum 8,000 bytes; the combined width, however, can exceed the 8,060-byte

Lesson 3: Defining Entities and Entity and Referential Integrity 75
limit. In SQL Server 2000, you can define a table with variable columns that together exceed
8,060 bytes in metadata; however, when you try to insert a row that would exceed 8,060 bytes,
you get an error. SQL Server 2005 does not return an error; instead, it stores the variable-
length data that exceeds 8,060 bytes in additional row-overflow data pages.

SQL Server stores large value types—varchar(MAX), nvarchar(MAX), varbinary(MAX), and
XML—and large object (LOB) data types (text, ntext, and image) in separate pages and stores
only a 16-byte pointer in the data row to indicate where SQL Server can find the actual data.
However, if the values are small, you can store them or at least part of them in data rows. You
control this behavior by using two options in the sp_tableoption system stored procedure: the
large value types out of row option for large value types and the text in row option for large object
types.

IMPORTANT Text in row option

The text in row option is deprecated and will be removed in a future version of SQL Server. Store
large data by using the varchar(MAX), nvarchar(MAX), or varbinary(MAX) data types.

This short introduction to internal storage should help you design your entities. Be careful
about row length. You can store more, shorter rows (versus long rows) in a single page. If
SQL Server has to read fewer pages for the same number of rows, you get better perfor-
mance. Variable-length columns typically enable you to use the 8-KB page space better. How-
ever, if the columns together exceed 8,060 bytes and SQL Server stores them in row-
overflow units, your application might take a performance hit. Working with large objects is
typically slower than working with in-row data; nevertheless, you can speed up processing
by storing smaller LOBs in rows. For more internal data-storage details, see the book Inside
Microsoft SQL Server 2005: The Storage Engine by Kalen Delaney (Microsoft Press, 2006).

With this information, you are ready to create tables for your database. You create tables by
using the CREATE TABLE T-SQL command. The complete syntax of the command is quite
complex; part of it is shown here to give you the overall impression of everything you must
define for your tables. For the complete syntax, see SQL Server Books Online: CREATE TABLE
(Transact-SQL) at http://msdn2.microsoft.com/en-us/library/ms174979.aspx.

CREATE TABLE
 [database_name . [schema_name] . | schema_name .] table_name
 ({ <column_definition> | <computed_column_definition> }
 [<table_constraint>] [,...n])
 [ON { partition_scheme_name (partition_column_name) | filegroup
 | "default" }]
 [{ TEXTIMAGE_ON { filegroup | "default" }]
[;]

<column_definition> ::=
column_name <data_type>
 [COLLATE collation_name]

76 Chapter 3 Designing a Physical Database
 [NULL | NOT NULL]
 [
 [CONSTRAINT constraint_name] DEFAULT constant_expression]
 | [IDENTITY [(seed , increment)] [NOT FOR REPLICATION]
]
 [ROWGUIDCOL] [<column_constraint> [...n]]

<data type> ::=
[type_schema_name .] type_name
 [(precision [, scale] | max |
 [{ CONTENT | DOCUMENT }] xml_schema_collection)]
É

You can see that in a single statement, you can define columns and their data types and nul-
lability, computed columns, all kinds of constraints, and more. However, in your real project
code, keep the base table definition relatively simple and not too cluttered. For example, you
can define columns with their data types and nullability in the CREATE TABLE statement only
and then add constraints later by using separate ALTER TABLE statements. For data types,
you can use your user-defined data types just as you use system data types.

Entity Integrity
Tables represent sets. By definition, sets consist of unique elements. Therefore, you need some-
thing to identify each row of a table uniquely. This is what entity integrity is about—uniquely
identifying rows in a table. You identify a row by its key value. You can have one or more col-
umns or combinations of columns that identify each row uniquely. Therefore, you can have
multiple candidate keys. You select one of them for your primary identifying schema and call
it the primary key. SQL Server has two constraints for entity integrity: the Unique constraint for
candidate keys and the Primary Key constraint for primary keys. You can have multiple Unique
constraints and one Primary Key constraint per table.

Theoretically, every table should have a primary key. However, database management systems
do not strictly enforce the Primary Key constraint. The only reason for this is purely practical.
Imagine you need to import data from a text file. If you had a Primary Key constraint for your
table, you would have to cleanse the data in your text file before the import. Cleansing text files
is much less practical than cleansing data in a SQL Server table. Nevertheless, in production,
all your tables should have a primary key.

A primary key has two required properties—uniqueness and applicability—and two desired
properties: stability and minimality. If you want to track changes for an entity over time, as you
do in data warehousing scenarios, stability becomes a required and not just a desired property.
For best performance, your primary key should be as minimal as possible.

Lesson 3: Defining Entities and Entity and Referential Integrity 77
In many books and forums, you can find an old discussion about which type of key is better:
natural or surrogate. A natural key has a logical relationship with other attributes of an entity.
A surrogate key is the one a designer creates and adds to the attributes of an entity. Typically,
a surrogate key is a simple sequential number. However, this discussion does not make much
sense. You cannot strictly distinguish between natural and surrogate keys. For example, is a
social security ID (SSID) natural or surrogate? Somebody invented it, and this person was just
as natural as the current designer of a database is. A better definition of natural keys is that
“a key is natural if the attribute it represents is used for identification independently of the
database.” Nevertheless, do not worry too much about this distinction. If you have some-
thing unique, applicable, stable, and short in your table, use it. If not, add a sequential num-
ber for the primary reference schema, and you will have all required and desired properties
for your primary key.

The required applicability property of a primary key means that all values must be known.
SQL Server enforces this rule by prohibiting columns that allow NULL values from participat-
ing in Primary Key constraints. You can create Unique constraints on nullable columns; how-
ever, for Unique constraints, all NULL values are the same value. For example, if you create a
Unique constraint on a single nullable column, you can insert only a single row with a NULL
value in that column. Additional rows with a NULL value in that column would yield a Unique
constraint violation.

Physically, Primary Key and Unique constraints create unique indexes. A Primary Key con-
straint creates a clustered index by default, and a Unique constraint creates a nonclustered
index by default. You will learn more about indexes in the next chapter; for now, just use the
defaults.

Referential Integrity
As you learned in Chapter 2, you implement relationships between entities by using foreign
keys. A foreign key is a column or columns whose values are the same as the primary key of
another table—in other words, a copy of the primary key from another relational table. SQL
Server helps you enforce rules for the relationships with the Foreign Key constraint.

There are four standard ANSI rules for enforcing relationships between entities; each rule
implements four sub-rules. Two sub-rules deal with the primary (parent) table, and two deal
with the secondary (child) table. The two sub-rules for the child table are immutable:

n You cannot insert a row in the child table if there is no related row in the parent table.

n You cannot update the foreign key column or columns in the child table in a way that
would leave them without a related row in the parent table.

78 Chapter 3 Designing a Physical Database
The two sub-rules for the primary table differ based on standard rules for referential integrity.
The four standard rules and the implementation of sub-rules are:

n No Action rule

q You cannot delete a row in the primary table if it has related rows in the child table.

q You cannot update the primary key column or columns in the primary table if they
have related rows in the child table that would become orphaned.

n Cascade rule

q If you delete a row in the primary table, you have to delete all related rows in the
child table.

q If you update a primary key in the parent table, you have to update foreign keys in
all related tables to the same new value.

n Set Null rule

q If you delete a row in the primary table, you have to set to unknown (NULL) value
all foreign keys of related rows.

q If you update a primary key in the parent table, you have to set to unknown
(NULL) value all foreign keys of related rows.

n Set Default rule

q If you delete a row in the primary table, you have to set to a pre-defined default
value all foreign keys of related rows.

q If you update a primary key in the parent table, you have to set to a pre-defined
default value all foreign keys of related rows.

In short, whatever you do, you should never leave rows in the child table orphaned. The For-
eign Key constraint in SQL Server 2005 enables you to implement all four rules. However, you
should typically use only the No Action rule. The Cascade rule is useful for cascade deletes
only, in case you want to implement a strong relationship between the parent and the child
tables, a relationship in which the child table rows make no sense without parent rows. For
example, order-line details cannot exist without an order; therefore, if you delete an order, you
should delete all of its line items. If you use cascade updates, it means your primary key in the
parent table is not stable, and this is not a good practice. The Set Null and Set Default rules are
useful for maintaining history of the child table; however, if you maintain history in a data
warehouse, you do not need these rules.

A Foreign Key constraint must reference a Primary Key or Unique constraint. A Foreign Key con-
straint can refer to the table itself. This way, you can model graphs, trees, and hierarchies, as
you saw in Chapter 2.

Lesson 3: Defining Entities and Entity and Referential Integrity 79
Special Attributes
You already know the special timestamp (and its synonym, rowversion) and uniqueidentifier data
types. You can use two additional special types of attributes in your table design: columns with
the Identity property and computed columns.

Identity Columns
Simple sequential numbers are very practical for a primary key. Because they are so commonly
used, SQL Server has an automatic mechanism for assigning sequential numbers. You mark a
column for auto-numbering by adding the Identity property to it when you create a table. SQL
Server treats identity values in a way similar to variables—they are not part of a transaction. If
a transaction is rolled back, the identity value is not rolled back but instead is used by SQL
Server; the next insert gets the next sequential value, and you get a gap in the sequence. In
addition, SQL Server does not reuse automatically deleted identity values; again, you can get
gaps in your sequence.

Exam Tip Do not forget that with the Identity property, you can get gaps in your sequences.

If you want to fill the gaps manually, you have to use the SET IDENTITY_INSERT command to
turn the manual identity insert to ON. Then, you can insert explicit values in the identity col-
umn. In addition, SQL Server has several functions that help you work with identity values:

n The IDENT_SEED function returns the seed (the initial) value.

n The IDENT_INCR function returns the increment value you specified during the cre-
ation of the identity column.

n You can use the IDENTITY function (do not mix it with the Identity property) in a
SELECT statement with an INTO clause to insert an identity column into a new table.

n The IDENTITY_SCOPE function returns the last identity value inserted into an identity
column in the same scope (that is, in the same module, such as stored procedure, trigger,
function, or batch).

n The IDENT_CURRENT function returns the last identity value generated for a specified
table or view in any session and any scope.

n The @@IDENTITY function returns the last identity value inserted, regardless of the
scope of the table.

With the DBCC CHECKIDENT command, you can check the current identity value for the
specified table and change the identity value. You can also use DBCC CHECKIDENT to set a
new seed value manually for the identity column.

80 Chapter 3 Designing a Physical Database
Computed Columns
You can define a column as an expression that can use other columns in the same table. This
is a computed column. The expression can use other noncomputed columns, constants, func-
tions, variables, and any combination of these connected by one or more operators. You cannot
use a subquery in the expression. Computed columns can make writing queries easier and
more standardized. Computed columns are virtual columns unless you explicitly specify you
want to materialize them. To store a computed column physically, use the PERSISTED keyword
in the CREATE TABLE and ALTER TABLE statements. SQL Server updates the value of com-
puted columns when any columns are part of their calculation change. If you define a com-
puted column as persisted, you can create an index on a computed column that is
deterministic but not precise. If a computed column references a CLR function, the database
engine cannot verify whether the function is truly deterministic. In this case, you can persist
the computed column and then create indexes on it. (You will learn more about indexes in
Chapter 4, “Designing a Database for Performance.”) Persist a computed column if users fre-
quently use it. You should index it if the users use it for search expressions, for ordering, or for
joining. However, consider the extra space the persisted computed column takes and how fre-
quently you update the values of this column.

Practice: Defining Entities and Entity and Referential Integrity
In this practice, you will start with just part of the CREATE TABLE syntax to create a table with
column definitions only. Then you will refine your table by adding Primary Key and Foreign
Key constraints and a computed column.

IMPORTANT Practices build upon each other

To work successfully with this practice, you need to have f inished the practices from the previous
lesson.

� Exercise 1: Create a Simple Table

In this exercise, you will create a table by using system-supplied data types and the user-
defined data types that you created in the Lesson 2 practice, “Creating User-Defined Data
Types.”

1. Create an Employees table. At this time, you need an identification for each employee, an
identification for each employee’s manager, employee first and last name, two lines for an
address, company and private e-mail addresses, and a column for education level. (You
will store integer values from 1 to 5 in this column.)

2. Use a standardized data type for address lines and EmailCS and EmailVB data types for
e-mail addresses.

Lesson 3: Defining Entities and Entity and Referential Integrity 81
3. Do not allow unknown values for the identification column, first and last name, educa-
tion level ID, and company e-mail. In a new query window, your code should look like
this:
USE TK441Ch03;
GO
CREATE TABLE dbo.Employees
(EmployeeId int NOT NULL,
 ManagerId int NULL,
 FirstName nvarchar(30) NOT NULL,
 LastName nvarchar(30) NOT NULL,
 AddressLine1 StandardAddress NULL,
 AddressLine2 StandardAddress NULL,
 CompanyEmail EmailCS NOT NULL,
 PrivateEmail EmailVB NULL,
 EducationLevelId tinyint NOT NULL);
GO

� Exercise 2: Entity Integrity

In this exercise, you need to alter the Employees table from Exercise 1, “Create a Simple Table,”
to add a Primary Key and a Unique constraint.

1. In the Employees table, the EmployeeId must be the primary reference schema. Imple-
ment this rule by using a Primary Key constraint. In a new query window, your code
should look like this:
USE TK441Ch03;
GO
ALTER TABLE dbo.Employees
 ADD CONSTRAINT PK_Employees PRIMARY KEY (EmployeeId);
GO

2. In addition, the company e-mail address must also be unique. Try to enforce this rule by
using a Unique constraint. In a new query window, your code should look like this:
ALTER TABLE dbo.Employees
 ADD CONSTRAINT UC_Employees_CompanyMail UNIQUE (CompanyEmail);
GO

However, this code should raise an error, number 1919: “Column ‘CompanyEmail’ in table
‘Employees’ is of a type that is invalid for use as a key column in an index.” The problem is with
your EmailCS user-defined data type. Because it is created in a very simplified way, it does not
tell SQL Server that the serialized representation of the value is byte ordered. (Use the IsByte-
Ordered attribute in the definition of your data type.) SQL Server cannot create an index on
this column because it cannot determine the correct order. This example shows you again that
working with CLR user-defined types can be complex. You will solve this problem later in this
chapter in a different way.

82 Chapter 3 Designing a Physical Database
� Exercise 3: Design a Foreign Key and Identity and Computed Columns

In this exercise, you will use the Identity property to generate identification values for the
EmployeeId column of the Employees table automatically. You will then create a computed
column to compute the bonus percentage based on the education of an employee. Finally, you
need to denote the manager–employee hierarchy in your Employees table. Do not forget to re-
create the Primary Key constraint as well.

1. Use the Identity property for your EmployeeId column. Note that you cannot change the
Identity property by using the ALTER TABLE statement; you must drop and re-create the
table. Plan your identity values carefully.

2. Add a computed column to calculate an employee’s bonus percentage based on his or
her education level. The bonus formula is five percent additional pay for each education
level higher than level 1. (That is, for level 1, you get 0 percent; for level 2, you get 5 per-
cent; for level 3, you get 10 percent; and so on.) Do not persist the computed column.

3. Create the Foreign Key constraint between the ManagerId and EmployeeId columns. Do
not forget to re-create the Primary Key constraint first because the Foreign Key constraint
must reference it. Your complete code should look like this:
USE TK441Ch03;
GO
DROP TABLE dbo.Employees;
GO
CREATE TABLE dbo.Employees
(EmployeeId int IDENTITY NOT NULL,
 ManagerId int NULL,
 FirstName nvarchar(30) NOT NULL,
 LastName nvarchar(30) NOT NULL,
 AddressLine1 StandardAddress NULL,
 AddressLine2 StandardAddress NULL,
 CompanyEmail EmailCS NOT NULL,
 PrivateEmail EmailVB NULL,
 EducationLevel tinyint NOT NULL,
 BonusPct AS (EducationLevel-1)*5
);
GO
-- Recreate the Primary Key
ALTER TABLE dbo.Employees
 ADD CONSTRAINT PK_Employees PRIMARY KEY (EmployeeId);
GO
-- Adding a Foreign key constraint
ALTER TABLE dbo.Employees
 ADD CONSTRAINT FK_Employees_MgrEmployee FOREIGN KEY (ManagerId)
 REFERENCES dbo.Employees (EmployeeId);
GO

Lesson 3: Defining Entities and Entity and Referential Integrity 83
Quick Check
1. In the table defined with the following code, can you define a Primary Key constraint?

CREATE TABLE dbo.Mytable
(id int NULL,
 name nvarchar(30) NULL);

2. What kind of entity integrity constraint could you define?

3. If you use only fixed-length data types in your table definition, can a row span
more than 8,060 bytes?

Quick Check Answers
1. All columns in the table are nullable, so you cannot define a Primary Key constraint

on this table.

2. You could use a Unique constraint on the ID column, for example.

3. No, a row cannot span more than 8,060 bytes if you use only fixed-length data
types in your table definition.

84 Chapter 3 Designing a Physical Database
Lesson 4: Defining Domain Integrity and Business Rules

Estimated lesson time: 25 minutes

Data integrity does not end with entity- and referential-integrity rules. You must also limit your
attribute values to values from only specific domains, and you need to make them comply with
more or less advanced business rules. You already learned how to limit the domain of possible
values by using CLR UDTs. However, you also learned that working with CLR UDTs can get
quite complicated. In this lesson, you will learn how to implement domain integrity and busi-
ness rules with the help of Check and Default constraints.

Default Constraints
Default constraints are not real constraints because they do not constrain anything. However,
they help you insert correct values when you do not specify explicit values. In this way, they
help you maintain domain integrity, so you could count them in the set of constraints.

Default constraints are applicable for INSERT statements only. You can have a single Default
constraint per column. You can use system-supplied values for the defaults with the help of
system functions. If a column does not allow unknown values and does not have a Default con-
straint definition, you must explicitly specify a value for the column, or you will get an error
when inserting a row. If you specify an explicit value for a column, this value is inserted. If you
want to insert the default value explicitly, you can use the DEFAULT keyword as the value
placeholder. To insert default values in all columns, you can use the DEFAULT VALUES clause
of the INSERT statement. Note that in this case, all columns must either have a Default con-
straint assigned or allow NULL values.

Use Default constraints when you have a column with an obvious and frequent default value.
You can use a Default constraint for a column that does not allow NULL values and if you have
an application (probably a legacy application) that does not insert values in this column
explicitly.

Check Constraints
A Check constraint restricts the domain of possible values for a column. SQL Server enforces
Check constraints for every INSERT and UPDATE statement. You can have multiple Check con-
straints defined on a single column; a value in the column has to adhere to all of them. You can-
not create a Check constraint on timestamp/rowversion, text, ntext, or image columns.

A Check constraint can be any logical expression that returns true or false. The syntax of a
Check constraint expression is similar to expressions you use in the WHERE clause. However,
a Check constraint cannot contain subqueries. If you need a subquery in a Check constraint,

Lesson 4: Defining Domain Integrity and Business Rules 85
you can create a scalar user-defined function (UDF) that returns a Boolean value, depending
on evaluation of a subquery in the body of the function.

Check constraints can be as simple as checking a range of values. For example, in the Employ-
ees table from the practices in this chapter, you could use a simple Check constraint to limit the
possible values for the EducationLevel column to a range of 1 to 5:

ALTER TABLE dbo.Employees
 ADD CONSTRAINT CK_Employees_EducationLevel
 CHECK (EducationLevel BETWEEN 1 AND 5);

The question is what to do when you do not know the allowed range in advance or when you
add values to the allowed range dynamically. In addition, the number of values in this range
could be very large, up to countable infinity. It would not be very practical to modify the Check
constraint whenever a new possible value appears. You can use lookup tables in such cases.
Lookup tables typically consist of only two columns: a column that identifies each row (and
thus every allowed value in a domain) and a column that gives the name to the value. The iden-
tification column is the primary key of the lookup table. In the original entity, the entity for
which you are designing the constraint, you hold only the identification column as the foreign
key. You add the Foreign Key constraint to enforce the range-integrity rule automatically.

Check constraints as a domain-integrity mechanism overlap a bit with CLR user-defined types
(UDTs). The e-mail CLR C# and Visual Basic UDTs enforce proper e-mail addresses with the
help of a regular expression evaluated in the Parse method of the type. Besides other problems
with the CLR UDT that you have already seen, there is another issue. The UDT code is not
reusable (unless you consider copying and pasting the code as reusing the code). Evaluations
against regular expressions are common needs for character strings in a database. Unfortu-
nately, T-SQL does not support regular expressions natively. This is where CLR integration
can show its strength. You can easily create a CLR function that validates an input string
against a regular expression.

//C#
using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;
using System.Text.RegularExpressions;

public partial class CLRFunctions
{
 // Validate input string against regular expression
 [SqlFunction(IsDeterministic = true, DataAccess = DataAccessKind.None)]
 public static SqlBoolean RegExMatchCS
 (SqlString inpStr, SqlString regExStr)
 {
 if (inpStr.IsNull || regExStr.IsNull)
 return SqlBoolean.Null;

86 Chapter 3 Designing a Physical Database
 else
 return (SqlBoolean)Regex.IsMatch(
 inpStr.Value, regExStr.Value,
 RegexOptions.CultureInvariant);}
};

On the Companion Disc This chapter includes many code examples. You will f ind all the code
from this chapter on the companion CD in the C:\My Documents\Microsoft Press\TK70-441
\Chapter03\folder.

You can see that CLR functions are public static (shared in Visual Basic) methods of a public
class in the CLR code. If you want to learn more about writing CLR code for use inside SQL
Server, see Inside Microsoft SQL Server 2005: T-SQL Programming by Itzik Ben-Gan, Dejan Sarka,
and Roger Wolter (Microsoft Press, 2006).

With the help of this CLR function, you can now change your e-mail addresses to use native
varchar or nvarchar data types, and you can validate the e-mail addresses against a regular
expression by using a Check constraint that uses this function. You will do so in the following
practice.

Practice: Implementing Domain Integrity
In this practice, you will use various domain-integrity techniques.

IMPORTANT Practices build upon each other

To work successfully with this practice, you need to have f inished the practices from Lessons 2
and 3.

� Exercise 1: Create a Lookup Table

In this exercise, you will create a lookup table for the education-level attribute. You will use this
table in the following exercise to limit the possible values the education-level attribute can
accept by using a Foreign Key constraint.

Create the EducationLevels lookup table. It should have only two columns: one for the
ID and one for the name of the education level. Insert five rows for five possible levels:
Partial High School, High School, Partial College, Bachelors, and Graduate Degree. Your
code should look like this:
USE TK441Ch03;
GO
CREATE TABLE dbo.EducationLevels
(EducationLevelId tinyint NOT NULL PRIMARY KEY,
 EducationLevelName nvarchar(20) NOT NULL);
GO

Lesson 4: Defining Domain Integrity and Business Rules 87
INSERT INTO dbo.EducationLevels(EducationLevelId, EducationLevelName)
 VALUES(1,N'Partial High School');
INSERT INTO dbo.EducationLevels(EducationLevelId, EducationLevelName)
 VALUES(2,N'High School');
INSERT INTO dbo.EducationLevels(EducationLevelId, EducationLevelName)
 VALUES(3,N'Partial College');
INSERT INTO dbo.EducationLevels(EducationLevelId, EducationLevelName)
 VALUES(4,N'Bachelors');
INSERT INTO dbo.EducationLevels(EducationLevelId, EducationLevelName)
 VALUES(5,N'Graduate Degree');
GO

� Exercise 2: Domain Integrity, Part 1

In this exercise, you will use the lookup table to limit the possible values in the education-level
attribute. You will add a Default constraint to this attribute: the default education level should
be Partial High School. You will re-create the Employees table without CLR UDTs.

1. Re-create the Employees table. Use the nvarchar(100) data type for the e-mail addresses.
Add a Default constraint for the education-level attribute in the CREATE TABLE state-
ment. Your code should look like this:
DROP TABLE dbo.Employees;
GO
CREATE TABLE dbo.Employees
(EmployeeId int IDENTITY NOT NULL,
 ManagerId int NULL,
 FirstName nvarchar(30) NOT NULL,
 LastName nvarchar(30) NOT NULL,
 AddressLine1 StandardAddress NULL,
 AddressLine2 StandardAddress NULL,
 CompanyEmail nvarchar(100) NOT NULL,
 PrivateEmail nvarchar(100) NULL,
 EducationLevelId tinyint NOT NULL DEFAULT 1,
 BonusPct AS (EducationLevelId-1)*5
);
GO

2. Add a Foreign Key constraint to limit the possible values of the EducationLevelId column
of the Employees table. Do not forget to add the Primary Key and the other Foreign Key
(the one for the hierarchy) constraints:
ALTER TABLE dbo.Employees
 ADD CONSTRAINT FK_Employees_EducationLevel FOREIGN KEY (EducationLevelId)
 REFERENCES dbo.EducationLevels (EducationLevelId);
GO
-- Recreate the Primary Key
ALTER TABLE dbo.Employees
 ADD CONSTRAINT PK_Employees PRIMARY KEY (EmployeeId);
GO
-- Recreate the hierarchy Foreign key
ALTER TABLE dbo.Employees

88 Chapter 3 Designing a Physical Database
 ADD CONSTRAINT FK_Employees_MgrEmployee FOREIGN KEY (ManagerId)
 REFERENCES dbo.Employees (EmployeeId);
GO

� Exercise 3: Domain Integrity, Part 2

In this exercise, you will use the CLR functions inside Check constraints to validate e-mail
addresses against a regular expression. Finally, try to add the Unique constraint on the com-
pany e-mail address.

1. Create the C# and Visual Basic functions. You should already have assemblies imported
in the database. If you have not performed this task yet, see the “User-Defined Data
Types” practice in Lesson 2. Your code for cataloging the CLR functions should be:
CREATE FUNCTION dbo.RegExMatchCS
 (@inpstr AS NVARCHAR(MAX), @regexstr AS NVARCHAR(MAX))
RETURNS BIT
EXTERNAL NAME Ch03CS.CLRFunctions.RegExMatchCS;
GO
-- Create the VB CLR function
CREATE FUNCTION dbo.RegExMatchVB
 (@inpstr AS NVARCHAR(MAX), @regexstr AS NVARCHAR(MAX))
RETURNS BIT
EXTERNAL NAME Ch03VB.CLRFunctions.RegExMatchVB;
GO

2. Use the C# function for the company e-mail address Check constraint and the Visual
Basic function for the personal e-mail address constraint:
ALTER TABLE dbo.Employees
 ADD CONSTRAINT CK_Employees_CompanyEmail
 CHECK (dbo.RegExMatchCS(CompanyEmail,
 N'^([\w-]+\.)*?[\w-]+@[\w-]+\.([\w-]+\.)*?[\w]+$')
 = CAST(1 AS bit));
GO
ALTER TABLE dbo.Employees
 ADD CONSTRAINT CK_Employees_PrivateEmail
 CHECK (dbo.RegExMatchVB(PrivateEmail,
 N'^([\w-]+\.)*?[\w-]+@[\w-]+\.([\w-]+\.)*?[\w]+$')
 = CAST(1 AS bit));
GO

3. Now when you have e-mail addresses in columns that use the system nvarchar data type,
you can try to add the Unique constraint on the company e-mail address attribute. This
time, you should succeed.
ALTER TABLE dbo.Employees
 ADD CONSTRAINT UC_Employees_CompanyMail UNIQUE (CompanyEmail);
GO

Lesson 4: Defining Domain Integrity and Business Rules 89
Quick Check
1. In the preceding practice, you used a Foreign Key constraint to implement domain

integrity. Could you use a Check constraint to implement referential integrity?

2. Can you temporarily disable a constraint?

Quick Check Answers
1. Yes, you could use a Check constraint to implement referential integrity. You would

have to create a Boolean scalar UDF that would query the parent table with a
search parameter and return true if a single row in the parent table is found. Then
you would have to add a Check constraint to the child table. In the Check con-
straint, you would need to create an expression, which would call the UDF, using
the foreign key column as a parameter and evaluate to true if the UDF returns true.
However, creating a simple Foreign Key constraint would be much simpler and
more effective.

2. Yes, you can temporarily disable Check and Foreign Key constraints to avoid check-
ing existing data when you add a constraint or to improve performance when you
run large batch jobs.

90 Chapter 3 Designing a Physical Database
Lesson 5: Creating Programmable Objects to Maintain
Integrity

Estimated lesson time: 25 minutes

Sometimes business rules are too complex to implement by using constraints. In addition,
constraints cannot span a database boundary. You cannot have, for example, a parent table in
one database and a child table in another with a Foreign Key constraint between them. In such
cases, you must implement your constraints through program code. You can write this code in
the middle tier, called the data-access layer. However, the closer the constraints are to the data,
the harder it is to circumvent them. You can program the constraints in SQL Server stored pro-
cedures. However, an application could still bypass stored procedures. You have another
option: put your constraints in data-modification language (DML) triggers.

DML triggers are a special kind of stored procedure. SQL Server executes them automatically
instead of or after a DML statement. Previous versions of SQL Server support only DML trig-
gers; SQL Server 2005 also supports DDL triggers. You will learn more about stored proce-
dures in Chapter 6, “Designing Objects That Retrieve Data,” and more about DDL triggers in
Chapter 7, “Designing Objects That Extend Server Functionality and Perform Actions.” In this
lesson, you will learn how you can use DDL triggers to enforce data integrity.

DML Triggers
SQL Server supports two categories of DML triggers:

n AFTER triggers fire after an INSERT, UPDATE, or DELETE statement.

n INSTEAD OF triggers execute instead of an INSERT, UPDATE, or DELETE statement.

A trigger is always part of the same transaction as the statement that caused a trigger to fire.
You can roll back the transaction from the trigger body if you encounter a business-rule viola-
tion. In the body of a trigger, you can reference columns of other tables and, thus, enforce more
complex rules than with Check constraints. In the body of a trigger, you have access to the state
before the modification through a special temporary Deleted table and to the state after the
modification through a special temporary Inserted table. Triggers can also cascade changes to
other tables. However, constraints typically perform better; if you can implement the same rule
with a constraint, you should use a constraint.

It is crucial to understand the order of integrity checks:

1. INSTEAD OF triggers fire instead of the actual statement.

2. Default constraints are applied.

3. Nullability is checked.

Lesson 5: Creating Programmable Objects to Maintain Integrity 91
4. Foreign Key constraints are enforced.

5. Primary Key and Unique constraints are checked.

6. AFTER triggers fire.

All integrity checks, but AFTER triggers are checked before the actual modification takes place.
That is why you have to roll back a transaction in the body of a trigger explicitly if a rule is vio-
lated. It is a good practice to inform the client application with an error message if a rollback
occurs. You can raise ad hoc errors, some system errors, and custom error messages. You can
add custom error messages by using the sp_addmessage system stored procedure. If you per-
form some corrective action in the body of a trigger and thus execute another data modifica-
tion statement, you should use structured exception handling (by the TRY . . . CATCH
structure) to catch exceptions your corrective action might produce.

Exam Tip Be sure to understand the implications of the order of the integrity check on
performance.

You can define a DML trigger for INSERT, UPDATE, and DELETE actions. You can define one
trigger per action, or you can define a single trigger for multiple actions. You can define a single
INSTEAD OF trigger per action and multiple AFTER triggers per action.

The primary purpose of INSTEAD OF triggers is to enable views that would not be updateable
to support updates. If a view is defined on multiple base tables, inserts, updates, and deletes
cannot reference more than one base table. However, you can bypass this limitation with
INSTEAD OF triggers. They fire in place of the triggering action. In the body of the trigger, you
have to reprogram data modification actions to reference a single base table per DML state-
ment. In the body of an INSTEAD OF trigger, you have access to the Inserted and Deleted
tables as well. You can also use INSTEAD OF triggers for efficient batch updates; you can let a
part of the batch succeed and reject the other part, logging the rejected part.

You can program triggers in T-SQL or CLR code. A trigger can perform nearly any action you
can imagine. There is a short list of disallowed T_SQL commands in a trigger:

n CREATE, ALTER, and DROP DATABASE

n RESTORE DATABASE and RESTORE LOG

n RECONFIGURE

Additionally, you cannot use the following T-SQL commands in the body of a DML trigger
when used against the table or view that is the target of the triggering action:

n CREATE, ALTER, and DROP INDEX

n DBCC DBREINDEX

n DROP TABLE

92 Chapter 3 Designing a Physical Database
n ALTER PARTITION FUNCTION

n ALTER TABLE to add, modify, or drop columns; to switch partitions; and to add or drop
Primary Key and Unique constraints

A trigger can call a stored procedure. Be careful when you design a trigger and consider per-
formance implications. If you design a performance problem into a trigger, you slow down all
data modification actions. Be aware that a data modification action can modify a single row or
multiple rows; your triggers should be prepared for both possibilities. You can improve perfor-
mance of an UPDATE trigger if you check the columns updated and fire it only if a user
updated specific columns. You can check which columns were updated by using an IF
UPDATE() clause or the COLUMNS_UPDATED function.

A trigger can perform a data modification action on another table; because this table can have
some DML triggers defined as well, you get nested triggers. Nesting triggers is enabled by
default; you can disable it for a complete instance by using the sp_configure stored procedure
on the server level. You can nest triggers up to 32 levels in depth. If you exceed this depth, SQL
Server rolls back the complete transaction. You can use the @@NESTLEVEL system function
to check the level of nesting in the body of a trigger. When you have nested triggers, you might
encounter a situation in which you would fire the same trigger again directly or indirectly. This
would be a recursive trigger. Recursive triggers are disabled by default. You can enable them on
the database level by using the ALTER DATABASE command.

Trigger Security
Triggers execute under the context of the user who calls the trigger (that is, the user who exe-
cuted the original statement that caused the trigger to fire by default). Be aware of the possi-
bility of malicious code in the body of a trigger. For example, in the body of a trigger, an
attacker could add a GRANT statement to gain elevated privileges. If such a malicious trigger
fires in the context of a privileged user such as dbo, the execution of the GRANT statement
succeeds, and the attacker gets permissions. Check the code of the triggers in your databases
regularly. You can get information about all triggers on your database by querying the sys.trig-
gers and sys.server_triggers catalog views:

SELECT type, name, parent_class_desc FROM sys.triggers
UNION
SELECT type, name, parent_class_desc FROM sys.server_triggers;

You can check the code of a trigger by querying the sys.sql_modules catalog view. You can also
disable execution of selected dangerous triggers or even execution of all triggers on a database
or server.

Lesson 5: Creating Programmable Objects to Maintain Integrity 93
Practice: Creating DML Triggers and Testing Data Integrity
In this chapter’s final practice, you will create an AFTER DML trigger. You will also test all the
data-integrity checks you implemented throughout the practices in this chapter.

IMPORTANT Practices build upon each other

To work successfully with this practice, you need to have f inished the practices from Lessons 2
through 4.

� Exercise 1: Create a DML Trigger

In this exercise, you create a DML trigger.

Part of the Tailspin Toys mission statement is to promote education. The company policy
is to disallow the employment of more than two employees with a partial high school
education at the same time. In this exercise, you have to implement this rule. You can
enforce the rule by using a trigger that counts the number of rows that have the lowest
education levels in the EducationLevelID column (one). The code should look like this:
CREATE TRIGGER EmployeesEducationLevel
 ON dbo.Employees
AFTER INSERT, UPDATE
AS
IF (SELECT COUNT(EducationLevelId)
 FROM dbo.Employees
 WHERE EducationLevelId = 1) > 2
 BEGIN
 RAISERROR ('Maximally two employees with Partial High School are allowed!', 16, 10);
 ROLLBACK TRANSACTION;
 END;
GO

� Exercise 2: Test Data Integrity

Now that you have all data integrity checks in place, it is time to test them.

1. Insert a valid manager:
INSERT INTO dbo.Employees
(ManagerId,
 FirstName,
 LastName,
 AddressLine1,
 AddressLine2,
 CompanyEmail,
 PrivateEmail,
 EducationLevelId)
VALUES
(NULL,
 N'Lubor',
 N'Kollar',
 N'Lubor''s Address line 1',

94 Chapter 3 Designing a Physical Database
 N'Lubor''s Address line 2',
 N'lubor@tailspintoys.com',
 N'lubor@adventure-works.com',
 5);

2. Test the Default constraint by inserting a valid employee without specifying the Educa-
tionLevelId column:
INSERT INTO dbo.Employees
(ManagerId,
 FirstName,
 LastName,
 AddressLine1,
 AddressLine2,
 CompanyEmail,
 PrivateEmail)
VALUES
(1,
 N'Janko',
 N'Cajhen',
 N'Janko''s Address line 1',
 N'Janko''s Address line 2',
 N'janko@tailspintoys.com',
 N'janko@adventure-works.com');
GO

3. Insert a valid employee. Specify the default education level explicitly:
INSERT INTO dbo.Employees
(ManagerId,
 FirstName,
 LastName,
 AddressLine1,
 AddressLine2,
 CompanyEmail,
 PrivateEmail,
 EducationLevelId)
VALUES
(1,
 N'Barbara',
 N'Sankovic',
 N'Barbara''s Address line 1',
 N'Barbara''s Address line 2',
 N'barbara@tailspintoys.com',
 N'barbara@adventure-works.com',
 1);

4. Check the trigger. Try to insert a third employee with the lowest education level:
INSERT INTO dbo.Employees
(ManagerId,
 FirstName,
 LastName,
 AddressLine1,
 AddressLine2,

Lesson 5: Creating Programmable Objects to Maintain Integrity 95
 CompanyEmail,
 PrivateEmail,
 EducationLevelId)
VALUES
(1,
 N'Rick',
 N'Byham',
 N'Rick''s Address line 1',
 N'Rick''s Address line 2',
 N'rick@tailspintoys.com',
 N'rick@adventure-works.com',
 1);

5. Check the Foreign Key constraint of the education-level attribute. Try to update the Edu-
cationLevelId to a value that does not exist in the lookup table:
UPDATE dbo.Employees
 SET EducationLevelId = 6
 WHERE EmployeeId = 2;

6. Check the ring constraint, the Foreign Key constraint that implements hierarchy. Try to
update the ManagerId column to a nonexistent manager:
UPDATE dbo.Employees
 SET ManagerId = -1
 WHERE EmployeeId = 2;

7. Test the e-mail Check constraint by trying to update the company e-mail address to a non-
valid value:
UPDATE dbo.Employees
 SET CompanyEmail = N'janko#cajhen'
 WHERE EmployeeId = 2;

8. Test data type constraint. Try to update the company e-mail address to a too-long value:
UPDATE dbo.Employees
 SET CompanyEmail = REPLICATE(N'a',99)+N'@a.com'
 WHERE EmployeeId = 2;

9. Check the Unique constraint on the company e-mail address attribute by trying to
update an address to a duplicate value:
UPDATE dbo.Employees
 SET CompanyEmail = N'janko@tailspintoys.com'
 WHERE EmployeeId = 3;

10. Finally, check the data. Be sure to check the bonus-percentage attribute computed col-
umn to see whether the computed value is correct:
SELECT EmployeeId,
 ManagerId,
 FirstName,
 LastName,
 AddressLine1,
 AddressLine2,

96 Chapter 3 Designing a Physical Database
 CompanyEmail,
 PrivateEmail,
 BonusPct
 FROM dbo.Employees;
GO

� Exercise 3: Clean Up

Finally, clean up your SQL Server.

Cleanup code:
USE master;
DROP DATABASE TK441Ch03;
GO
EXEC sp_configure 'clr enabled', 0;
RECONFIGURE;
GO

Quick Check
1. How could you make a view updateable?

2. How can you enforce cross-database referential integrity?

Quick Check Answers
1. You can use INSTEAD OF triggers to make a view updateable.

2. You can use programmable objects, such as DML triggers, to enforce cross-database
referential integrity.

Case Scenario: Design a Physical Database
Tailspin Toys has a table that holds information about its partners. In the same table, Tailspin
Toys inserts departments of companies, subsidiaries, and enterprises. The company would
like to track the hierarchy of its partners, but the number of levels in the hierarchy of its part-
ners is not known in advance. In addition, some rows in the Partners table have a known tax
ID. Tax ID is not applicable for departments, and for some partners that are suppliers only,
Tailspin Toys does not know the tax ID. The company would like to ensure that known tax IDs
are unique. Given these goals, answer the following questions:

1. How can you implement a partner hierarchy?

2. How can you enforce uniqueness for known tax IDs?

Lesson 5: Creating Programmable Objects to Maintain Integrity 97
Chapter Summary
n You start the physical design of a database by choosing appropriate data types for your

entity attributes.

n You can standardize your design by using T-SQL user-defined data types (UDDTs).

n You can achieve the ultimate domain-key normal form (DKNF) by using CLR user-
defined types (UDTs).

n Programming a broadly useful CLR type is not an easy task.

n In your database, implement entity, referential, and domain integrity by using con-
straints.

n If you cannot use constraints to implement integrity and business rules, you can use
DML triggers.

Chapter 4

Designing a Database for
Performance

After you create a physical database, you need to prepare it to achieve the performance that
your applications and end users need. Although maintaining performance is an ongoing task,
and many database administrators (DBAs) perform this task regularly, you should understand
indexing and partitioning strategies so that you can deliver an acceptable solution and mini-
mize future work and dissatisfaction. In this chapter, you will learn how to design efficient
indexes that optimize query performance and how to create a partitioning strategy.

Exam objectives in this chapter:
n Design a logical database.

q Optimize queries by creating indexes.

q Design table width.

q Design index-to-table-size ratio.

n Design objects that define data.

q Design indexes.

q Specify indexed views to meet business requirements.
99

100 Chapter 4 Designing a Database for Performance
Before You Begin
To complete the lessons in this chapter, you must have:

n A good understanding of logical and physical database design.

n Knowledge of Microsoft SQL Server database objects.

n Knowledge of the Transact-SQL (T-SQL) language.

n The SQL Server 2005 AdventureWorks and AdventureWorksDW sample databases
installed. Sample databases are available with SQL Server 2005 Enterprise edition but
are not a part of the default installation. Alternatively, you can install the sample data-
bases from http://msdn2.microsoft.com/en-us/library/ms143739.aspx.

n SQL Server 2005 Enterprise edition, Enterprise Evaluation edition, or Developer edition.
With other editions, you will not be able to check how the query optimizer uses an
indexed view even though you do not reference the view explicitly in a query.

IMPORTANT Practices in this chapter build upon each other

Beginning with Lesson 2, “Designing Indexes,” the lesson practices build upon each other; to move
to the next practice, you need to f inish the previous one.

Lesson 1: Optimizing Queries by Creating Indexes 101
Lesson 1: Optimizing Queries by Creating Indexes

Estimated lesson time: 20 minutes

Imagine you are searching for a word in a book. You go to the index, where you can easily find
the pages on which the word you are searching for appears because the words in an index are
sorted alphabetically. You can turn to those pages and read everything associated with the
searched word. However, what would happen if the book did not have an index? You would
have to read the book from the beginning, page by page, to find all occurrences of the word
you are looking for.

The same logic applies to SQL Server when it searches for a value of an attribute. If you index
that attribute, SQL Server can perform an index seek; if not, SQL Server must read all pages.
In SQL Server terminology, reading all pages is called a table scan. Indexes are the most impor-
tant tool that a database developer or administrator can use to improve performance.

The Basics of Optimizing Queries
Searching for a single value of an attribute is not the only way that SQL Server can benefit from
indexes. However, you cannot optimize all types of queries. For example, a query such as the
following cannot be optimized at all.

SELECT * FROM table

With this query, you are asking SQL Server to read the complete table, and doing a table scan
is the most efficient method for completing this task. Remember that you can never improve
performance by using database tools such as indexes as much as you can spoil the perfor-
mance in your application with poorly written code. In addition, if your T-SQL queries are
inside stored procedures (that is, if your application uses stored procedures), you can improve
the queries without having to recompile and redeploy the complete application. As long as the
results from the procedures are the results the application is expecting, you can alter the code
of the procedures as you want.

Exam Tip Do not forget that stored procedures can also help you optimize database perfor-
mance. You can improve queries inside procedures without redeploying the application.

Following is a list of types of queries and query parts that can benefit from indexes. (Because
the query optimizer in SQL Server is arguably the most complex part of SQL Server, and it is
always being improved, this list is probably not exhaustive, but it provides general guidelines
for indexing.)

102 Chapter 4 Designing a Database for Performance
n Exact searches for the value of an attribute in the WHERE predicate (for example,
WHERE PrimaryKeyColumn = value). Note that these kinds of queries are not only
typical for SELECT statements, they are frequent for UPDATE and DELETE statements
as well.

n Exact searches for the value of an attribute compared to a list of possible values (such as
the WHERE predicate with the IN operator).

n Approximate string searches that use the LIKE operator, especially searches for matching
rows that start with a specific character string such as “xyz%.”

n Range searches in the WHERE predicate such as searches that use the BETWEEN
operator.

n Queries that join multiple tables such as queries that use the JOIN or APPLY operators.

n Queries that return sorted row sets by using ORDER BY. Sorting a huge row set without
an index is a highly inefficient operation.

n Simple aggregate queries such as queries that use the MAX aggregate function.

n Grouped aggregate queries that use GROUP BY or PIVOT operators.

n Primary Key and Unique constraint checks. Note that Primary Key and Unique con-
straints physically create unique indexes.

n Foreign Key constraint checks. If you delete or update a row in the parent table, SQL
Server must check whether the row has associated rows in a child table.

n The SELECT part of a query, which can benefit from indexes as well. If you have an
explicit column list in the SELECT part of a query, SQL Server considers covering a
query with nonclustered indexes. You will learn more about types of indexes and cov-
ered queries in Lesson 2.

You can see that many types of queries can benefit from indexes. Thus, you might be tempted
to index all possible attributes. However, SQL Server has to maintain all the indexes you cre-
ate. So the more indexes you have, the slower the updates are. Consider the typical usage of
your data when you design indexes. You can use SQL Server Profiler to capture queries from
the production system and then analyze the Profiler traces to find typical patterns of your data
usage.

Maintaining Statistics
Imagine again that you are searching for a word in a book. If the word appears frequently on
many pages—that is, if the word is dense in the book—going back to the index for each page
that the searched word appears on and then going to that page is less efficient than reading the
entire book. Again, the same is true for SQL Server searches. If the value you are searching for
is dense, a table scan is more efficient than an index seek. The important thing to consider is
the density of the searched values. If the index is unique or nearly unique, it is very selective,
and SQL Server is probably using it a lot.

Lesson 1: Optimizing Queries by Creating Indexes 103
Exam Tip Remember that density is a term connected with searched values, and selectivity is a
term connected with indexes.

SQL Server must decide in advance which indexes it should use when it executes a query.
Therefore, SQL Server must know before the search the density of searched values and the
selectivity of the indexes. Statistical pages provide this information to the query optimizer.
SQL Server collects statistics about individual columns (single-column statistics) or sets of col-
umns (multicolumn statistics). SQL Server can collect the statistics automatically, or you can
force the collection manually by using CREATE STATISTICS and UPDATE STATISTICS T-SQL
statements. In addition, you can manually update all existing statistics in a database by using
the sp_updatestats system stored procedure.

Automatically gathering statistical information is the default for SQL Server 2005; you can
disable it for a specific database by using the ALTER DATABASE statement. However, it is a
best practice to let SQL Server collect the statistics automatically and add or update statistics
manually only in specific cases when automatic gathering, which works with samples of
data, is not precise enough. If statistical information is old, SQL Server might decide to use
a table scan instead of an index seek because the query optimizer cannot be sure that the
statistics are still valid. Therefore, if you know you have an index, you know your query is
not poorly written, and SQL Server still does not use the index, you should first check the
statistics for problems.

Practice: Selecting Columns to Index
In this conceptual practice, you must determine the appropriate columns to index to improve
the given queries.

� Exercise 1: Select Columns to Index

1. Which columns would you index to improve performance of the following query?
SELECT ColumnA, SUM(ColumnB)
FROM schema.table
GROUP BY ColumnA

2. Which columns would you index to improve performance of the following query?
UPDATE schema.table SET ColumnA = value
WHERE PrimaryKeyColumn = value

3. Which columns would you index to improve performance of the following query?
SELECT ColumnA, ColumnB
FROM schema.table
ORDER BY ColumnB

104 Chapter 4 Designing a Database for Performance
Suggested Answers

1. This query would benefit from an index on ColumnA.

2. This query would benefit from an index on PrimaryKeyColumn. Any other indexes
would deteriorate performance of this query.

3. This query would benefit from an index on ColumnB. In addition, if the index would be
a nonclustered index, you could include ColumnA in the index to cover the query with
the index. This would improve the performance even more.

Quick Check
1. What is the prerequisite for efficient indexing?

2. How many indexes do you need on a database?

Quick Check Answers
1. The prerequisite for efficient indexing is efficient queries.

2. It is impossible to answer such a general question without thorough knowledge of
data-usage patterns, which you can determine by using SQL Server Profile to trace
operations.

Lesson 2: Designing Indexes 105
Lesson 2: Designing Indexes

Estimated lesson time: 30 minutes

Now that you have reviewed the basics of query optimization, you are ready to delve deeper
into designing indexes. In this lesson, you will learn more about different types of indexes and
the most important guidelines for index design.

Clustered and Nonclustered Indexes
A table without a clustered index is stored as a heap. It has a single partition by default. If a
table has multiple partitions, each partition has a heap structure. Special system pages called
Index Allocation Map (IAM) pages point to data pages used by the heap of a table. SQL Server
uses IAM pages for reading the data from a heap. Because IAM pages define the sequence of
reads, SQL Server returns data unordered unless you specify the ORDER BY clause in your
query.

 SQL Server organizes indexes in balanced trees (B-trees). The structure resembles an inverse
tree. Each page in the tree is called a node; the top node is the root node. The bottom-level
nodes are leaf nodes. Between the root node and the leaf nodes, an index can have multiple
intermediate levels. SQL Server starts all index searches from the root node, then traverses
through intermediate-level nodes, and finishes a search in an index in a leaf node. On a leaf-
node page, all the index key values and pointers to data pages are in a nonclustered index, and
all the data is in a clustered index. (You will learn more about clustered and nonclustered
indexes in a moment.) Root and intermediate-level node pages contain pointers to index
pages. The search is quicker if there is less disk input/output (IO)—that is, if SQL Server has to
read fewer pages. You can immediately conclude that an index is more effective if it has fewer
intermediate levels. Fewer intermediate levels means the key of the index must be short.

There are two main types of indexes: clustered and nonclustered. If a table is clustered (that is,
if it has a clustered index), the logical order of rows and pages is based on the index. The
clustered index includes data pages—in other words, the clustered index is the table itself.
Therefore, you can have only one clustered index per table. When you create a clustered
index, the physical order is similar or the same as the logical order. However, there is still no
guarantee of the order of the rows returned unless you specify the ORDER BY clause in your
query. For example, SQL Server might start reading data pages somewhere in the middle of
the table if the physical disk head is currently there. In addition, over time the physical order
of rows and pages can become less and less aligned with the logical order as SQL Server allo-
cates new pages wherever free space in a database is available. This is known as logical frag-
mentation of an index. You can eliminate logical fragmentation by re-creating the index,
rebuilding it, or reorganizing it. For more information about managing index fragmentation,

106 Chapter 4 Designing a Database for Performance
see the description of the ALTER INDEX command in SQL Server 2005 Books Online at
http://technet.microsoft.com/en-us/sqlserver/bb428874.aspx.

Exam Tip Using the ORDER BY clause is the only guaranteed way to have SQL Server return a
row set in a specif ic order.

You can have up to 249 nonclustered indexes on a table. A nonclustered index has the same
B-tree structure as a clustered index. However, the data rows are not sorted in the order of
the nonclustered index. In addition, leaf-level pages are index pages, not data pages. Leaf-
level pages include key values and pointers to rows. If you build a nonclustered index on a
heap, the pointer is the row ID. SQL Server maintains row IDs internally; they are not
exposed to queries. If you build a nonclustered index on a clustered table, the pointer is the
clustered index key.

This structure might seem a bit less efficient for data retrieval because to find a specific row,
after SQL Server traverses all levels of the nonclustered index, it must traverse all levels of the
clustered index as well. However, the index structure is typically very flat, so this performance
price is quite low. On the other hand, unless you change the clustered key, SQL Server does
not have to update nonclustered indexes if a row moves because of table update or mainte-
nance. If index keys are long, you have fewer rows on leaf-node pages. Thus, you need more
leaf-node pages, which in turn results in more intermediate levels, which makes indexing less
efficient. Having a short key is especially important for clustered indexes because the key
appears on leaf pages of all nonclustered indexes.

Unique and Composite Indexes
When you create an index, you can specify it as unique, meaning that the values of the key are
unique. Unique indexes reject non-unique values when you insert or update the data, thus
working as constraints. However, you should use constraints to constrain something, and use
indexes only to boost performance. After all, Primary Key and Unique constraints are physi-
cally implemented with unique indexes. A clustered index is always unique internally, even if
you create it on a non-unique column. Suppose you have, for example, a simple table such as
the one that Table 4-1 shows:

Table 4-1 Simple Table

ID LastName

17 Kollar

34 Kollar

2 Cajhen

Lesson 2: Designing Indexes 107
The values in the ID column are unique, while the values in the LastName column are not. You
could create a clustered index on the LastName column and a nonclustered index on the ID
column. The leaf level of the nonclustered index would look like Table 4-2.

Now imagine that you are searching for ID 17. You get the LastName Kollar. You then go to the
clustered index, and you get two rows; however, because the ID is unique, you should be able
to find the exact row you are looking for. That is why SQL Server always creates a clustered
index as unique internally by adding a sequential number to the duplicate values. Therefore,
the leaf node of the nonclustered index from the example would really look like Table 4-3.

Adding this information to identify rows uniquely in a clustered index widens the clustered
key and, thus, makes all indexes less effective. Therefore, it is a good practice to create clus-
tered indexes on unique columns. The SQL Server defaults are not that bad after all, right? The
Primary Key constraint creates a clustered index by default.

You are not limited to a single column for an index key. You can create indexes with composite
keys defined on multiple columns. You can have up to 16 columns in a composite key; how-
ever, altogether, the key cannot exceed 900 bytes. Use composite indexes to support queries
that use multiple columns in their search arguments, to support GROUP BY columns, and to
reduce the number of indexes you need to maintain. However, you should have the most selec-
tive column first for quick searches of single rows or small row sets. Indexes with composite
keys are less efficient in searches but better for covered queries. In addition, to create covering
indexes without affecting the key, you can include columns on the leaf-level nodes of an index
in SQL Server 2005.

Indexes with Included Columns
An index is covering a query if SQL Server finds all information the query needs in an index. In
this case, SQL Server does not have to traverse to data pages to fulfill the query requirements.

Table 4-2 Leaf Node of a Nonclustered Index on the ID Column

Key ClusteredKey

2 Cajhen

17 Kollar

34 Kollar

Table 4-3 The Real Leaf Node of a Nonclustered Index on the ID Column

Key ClusteredKey

2 Cajhen

17 Kollar

34 Kollar0001

108 Chapter 4 Designing a Database for Performance
Such a query is a covered query. Clustered indexes cannot be covering indexes because they
include data pages. Because you typically have shorter rows on leaf nodes of a nonclustered
index compared to rows on data pages, SQL Server has to read fewer pages to return the same
amount of rows. Thus, covered queries can be more effective. In SQL Server 2005, you can
include one or more columns on the leaf-level nodes of a nonclustered index to cover queries.

Theoretically, you could include all non-key columns in an index. This would make no sense;
reading from this index would be no faster than reading from data pages, whether data pages
are organized as a heap or as a clustered index. Therefore, carefully and deliberately choose
which columns to include in an index. If you want to cover a frequent query, and you need one
more column to cover it, include it in an index. However, check the performance of other que-
ries because the index could become less effective due to wider rows on the leaf nodes.

The included columns do not count in the 16-column and 900-byte limits. You need at least
one key column for an index, and you can have up to 1,023 non-key (included) columns. With
included columns, you can have more covering indexes, while you still maintain small and effi-
cient keys.

XML and Full-Text Indexes
XML data type columns can contain up to 2 gigabytes (GB) of data. Shredding this amount of
data for a single column of each row when executing a query can be quite inefficient. To make
queries more efficient, you can index an XML column by using XML indexes. XML indexes are
new in SQL Server 2005, as is the XML data type. (You will learn more about XML indexes in
Chapter 5, “Using Database Technologies and Techniques for Your Application,” which covers
guidelines for working with XML data.)

In addition to regular SQL Server indexes, you can define special full-text indexes on character
data. A full-text index is a token-based functional index. SQL Server does not maintain full-text
indexes; the Microsoft Full-Text Engine for SQL Server (MSFTESQL) service maintains them.
The structure of a full-text index is not a B-tree. MSFTESQL builds an inverted, stacked, com-
pressed index structure based on individual tokens from the text you are indexing. When you
have full-text indexes, you can use the additional T-SQL full-text predicates CONTAINS and
FREETEXT as well as the CONTAINSTABLE and FREETEXT table table-valued functions in
your queries. Full-text indexes and full-text searches are beyond the scope of this book; to
learn more about them, see the “Full-Text Search Concepts” chapter in SQL Server 2005
Books Online at http://msdn2.microsoft.com/en-us/library/ms142547.aspx.

Creating Indexes
You create indexes explicitly by using the CREATE INDEX statement or implicitly through
constraints by using the CREATE TABLE or ALTER TABLE statement. By default, you create,
drop, and alter indexes in offline mode. This means that SQL Server holds exclusive locks on

Lesson 2: Designing Indexes 109
the underlying data and associated indexes during the index data-definition language (DDL)
operations. In SQL Server 2005, you can perform DDL operations on indexes in online mode.
If you use the ONLINE option when you create an index, SQL Server allows concurrent user
access to the underlying heap or clustered index data and any associated nonclustered
indexes during the index creation. The same is true for altering and dropping an index. How-
ever, these online operations do not come free. During online index operations, SQL Server
uses the snapshot isolation framework and, thus, puts a lot of burden on the tempdb database.
In addition, online index operations are limited to SQL Server 2005 Enterprise edition only.

When you create indexes, follow these guidelines:

n Create the clustered index first. If you create nonclustered indexes on a heap and then
later create a clustered index, SQL Server has to re-create all nonclustered indexes.

n Create a clustered index on a single small and unique column if possible. Update the col-
umns of a clustered index infrequently, if at all.

n Consider supporting range queries with clustered indexes. Do not forget that even range
queries can be more efficient with nonclustered indexes if the nonclustered indexes
cover the query.

n Clustered indexes are very efficient in supporting ORDER BY and GROUP BY queries.

n Most of the time, you should create an index on Foreign Key columns. Do not forget that
the Foreign Key constraint does not create an index as Primary Key and Unique con-
straints do.

n Nonclustered indexes are especially efficient for queries that return small or singleton
row sets.

n Nonclustered indexes can cover queries. You can add included columns to improve
query covering.

n If you perform online index operations, be prepared for this operation to take longer than
an offline one. In addition, monitor your tempdb database for space and performance.

n Index DDL operations can cause the transaction log to fill up quickly. To make sure that
SQL Server can roll back the index operation, you cannot truncate the transaction log
until SQL Server completes the index operation; however, you can back up the log dur-
ing the index operation. Take care to have enough space in the transaction log when you
perform index operations.

Practice: Designing Indexes

IMPORTANT Remaining practices build upon each other

Beginning with this practice, the practices in this chapter build upon each other. You should not
delete your work after you f inish this practice.

110 Chapter 4 Designing a Database for Performance
In this practice, you will create different indexes on a table and check different execution plans
you get for the same query.

On the Companion Disc This chapter includes many code examples. You will f ind all the code
from this chapter on the companion CD in the C:\My Documents\Microsoft Press\TK70-441
\Chapter04\Sql folder.

� Exercise 1: Create the Infrastructure and a Clustered Index

To prepare the infrastructure for this practice, you first need to create a test database and a
populated table. In addition, you will test the clustered index.

1. Create a test database and a test table based on the Person.Contact table from the
AdventureWorks database. Include ContactId, Title, FirstName, LastName, Suffix, Email-
Address, and Phone columns. Populate the table with the data from the Person.Contact
table. Your code should look like this:
IF DB_ID(N'TK441Ch04') IS NULL
 CREATE DATABASE TK441Ch04;
GO
-- Create a populated table
USE TK441Ch04;
GO
CREATE TABLE dbo.MyContacts
(ContactId int NOT NULL,
 Title nvarchar(16) NULL,
 FirstName nvarchar(100) NOT NULL,
 LastName nvarchar(100) NOT NULL,
 Suffix nvarchar(200) NULL,
 EmailAddress nvarchar(100) NULL,
 Phone nvarchar(50) NULL);
GO
INSERT INTO dbo.MyContacts
SELECT ContactId, Title,
 FirstName, LastName,
 Suffix, EmailAddress,
 Phone
 FROM AdventureWorks.Person.Contact;
GO

2. In SQL Server Management Studio (SSMS), turn on the actual execution plan. Search for
the contact with ContactId equal to 1,350. Retrieve the ContactId, FirstName, and Last-
Name columns. Check the execution plan. You should see a Table Scan operator. Your
query should look like this:
SELECT ContactId,
 FirstName, LastName
 FROM dbo.MyContacts
 WHERE ContactId = 1350;
GO

Lesson 2: Designing Indexes 111
3. Create a unique clustered index on the ContactId column. Repeat the query from the
previous task and check the execution plan. You should see a Clustered Index Seek oper-
ator. Your INDEX-CREATION command should look like this:
CREATE UNIQUE CLUSTERED INDEX CL_Mycontacts_ContactId
 ON dbo.MyContacts(ContactId);
GO

4. Try to insert a duplicate row. The unique index should reject the action. Your INSERT
command should look like this:
INSERT INTO dbo.MyContacts
(ContactId, Title,
 FirstName, LastName,
 Suffix, EmailAddress,
 Phone)
VALUES
(1350, 'Mr',
 'Janko', 'Cajhen',
 NULL, 'janko@tailspintoys.com',
 '398-555-0132');
GO

� Exercise 2: Create a Nonclustered Index

Now you will add a nonclustered index to your table and check the query execution plan with-
out and with an index.

1. Search for the contact with LastName Guzik. You should get a Clustered Index Scan oper-
ator in the execution plan. Your code should look like this:
SELECT ContactId,
 FirstName, LastName
 FROM dbo.MyContacts
 WHERE LastName = 'Guzik';
GO

2. Create a nonclustered index on the LastName column. Search for the contact with Last-
Name Guzik again. This time in the execution plan, you should get an Index Seek opera-
tor for the nonclustered index seek and a Key Lookup operator for the lookup in the
clustered index for actual data pages. Your index-creation code should look like this:
CREATE NONCLUSTERED INDEX NCL_Mycontacts_LastName
ON dbo.MyContacts(LastName);
GO

� Exercise 3: Include a Column in a Nonclustered Index

In this practice, you include a column in the leaf-level nodes of a nonclustered index.

Re-create a nonclustered index on the LastName column; this time, include the First-
Name column in the index. Search for the contact with LastName Guzik. You should get
an Index Seek operator in the execution plan. This means that SQL Server found all data

112 Chapter 4 Designing a Database for Performance
needed for the query in the nonclustered index. Your index re-creation and query code
should look like this:
DROP INDEX dbo.MyContacts.NCL_Mycontacts_LastName;
GO
CREATE NONCLUSTERED INDEX NCL_Mycontacts_LastName
 ON dbo.MyContacts(LastName)
 INCLUDE(FirstName);
GO
-- Repeat the contact Guzik query
SELECT ContactId,
 FirstName, LastName
 FROM dbo.MyContacts
 WHERE LastName = 'Guzik';
GO

Quick Check
1. Which of the queries from the preceding practice was the most effective?

2. Your nonclustered index with an included column had LastName as the key col-
umn and FirstName as the included column. However, the query used the
ContactId column in the SELECT list as well. Why could this query be covered
with the nonclustered index?

Quick Check Answers
1. The last query, the covered query, was the most efficient because it used the least

amount of disk IO.

2. The ContactId column is the key of the clustered index. The key of the clustered
index appears on leaf-level nodes of all nonclustered indexes. That is why the non-
clustered index was able to cover the query.

Lesson 3: Specifying Indexed Views 113
Lesson 3: Specifying Indexed Views

Estimated lesson time: 25 minutes

You already know that you can specify a computed column when you create a table. The com-
puted column is a virtual column. However, you can index this column and thus materialize
it—if you meet some prerequisites. The problem is that when you index a computed column,
SQL Server must maintain this index the same way it has to maintain other indexes. To find
the value it has to update, SQL Server has to have a deterministic and precise path to that
value. The following prerequisites ensure that SQL Server is able to update the index on a com-
puted column.

Views are, in their simplest appearance, just a saved and named SELECT statement and rep-
resent a virtual table. You can use them in place of tables. Views do not have data by default
and are thus virtual objects as well. Similarly, as you can index a computed column, you can
index and materialize a view. However, you have to meet even more strict prerequisites to
index a view. You will learn more about views in Chapter 6, “Designing Objects That Retrieve
Data.” In this lesson, you will learn how to index a computed column and a view.

Indexing a Computed Column
If you want to index a computed column, you have to meet the following prerequisites:

n Ownership requirements All functions referenced in an expression of a computed table
must have the same owner as the owner of the table where the computed column is.

n Determinism requirements The computed column expression must be deterministic
(that is, must return the same result for the same input). An expression is deterministic if:

q All functions used in the expression are deterministic and precise. For example,
the SQRT built-in function is always deterministic, and GETDATE is always non-
deterministic.

q All columns in the expression come from the same table.

q The expression does not use data from multiple rows. Therefore, if you use an
aggregate function in the expression, the expression is nondeterministic.

q The expression has no system or user data access.

q If you use a common language runtime (CLR) function in the expression, the
expression still has to be deterministic, and the compute column has to be marked
as PERSISTED when you create the table.

114 Chapter 4 Designing a Database for Performance
n Precision requirements The expression must be precise. It is precise if you do not use
the float or real data types in the definition of the expression and if the expression does
not return a float or real data type.

You can create an index on a computed column with a deterministic but imprecise
expression if you mark the column as PERSISTED.

n Data type requirements You cannot index a computed column for which the expres-
sion returns text, ntext, or image data types.

n SET option requirements You must have correct SET options for your connection when
you create the index. The correct options are:

q NUMERIC_ROUNDABORT must be set to OFF.

q ANSI_NULLS, ANSI_PADDING, ANSI_WARNINGS, ARITHABORT, CONCAT
_NULL_YIELDS_NULL, and QUOTED_IDENTIFIER options must be set to ON.

Indexing a View
The SELECT statement in the view definition can be quite complex. For example, it can
involve multiple joins or aggregates. If you reference such a view in multiple queries, your data-
base performance could be less than satisfactory. You can improve the performance by creat-
ing a clustered index on the view. This way, you materialize the view, and SQL Server
maintains the index as any other index. In addition, in Enterprise edition, SQL Server can use
the indexed view even if you do not reference it directly in your queries. Therefore, you might
improve the performance of existing queries without changing the application’s code.

Indexed views are not so useful if you have write-intensive applications because SQL Server
must maintain them as it does any other index. In addition, if you do not use aggregate queries
or queries with multiple joins, the performance benefit is minor.

To be able to create an index on the view, you have to meet the following prerequisites:

n You have to create the view with the SCHEMABINDING option. This option prevents
changes to the structure of the underlying tables unless you drop the view.

n Even if you use a user-defined function in a view, you have to create the function with the
SCHEMABINDING option.

n The ANSI_NULLS and QUOTED_IDENTIFIER options must have been set to ON when
you create the view.

n When you create the underlying tables, the tables you reference in your view, the
ANSI_NULLS option must have been set to ON.

n The view must reference base tables only.

n All tables referenced by the view must be in the same database as the view.

Lesson 3: Specifying Indexed Views 115
n All base tables must have the same owner as the view.

n You have to reference all objects with two-part names.

n All functions used in the view definition must be deterministic.

n If the view definition uses an aggregate function, the SELECT list must also include
COUNT_BIG (*).

n If you use CLR functions in the view definition, they have to meet the following pre-
requisites:

q CLR functions cannot be part of the key of the clustered index.

q CLR functions and methods of CLR user-defined types used in the view definition
must have the DETERMINISTIC and the PRECISE properties set to TRUE, the
DATA ACCESS property to NO SQL, and the EXTERNAL ACCESS property to NO.

n The SELECT statement in the view definition cannot contain:

q An asterisk in the column definition. (That is, you cannot use SELECT * FROM.)

q A derived table, a common table expression (CTE), or subqueries.

q Rowset functions (such as OPENQUERY).

q UNION, EXCEPT, or INTERSECT operators.

q Outer or self joins.

q A TOP clause.

q An ORDER BY clause.

q A DISTINCT keyword.

q A COUNT aggregate function. COUNT_BIG(*) is allowed.

q The AVG, MAX, MIN, STDEV, STDEVP, VAR, or VARP aggregate functions or a CLR
user-defined aggregate function.

q A SUM function that references a nullable expression.

q The OVER clause, which includes ranking or aggregate window functions.

q The full-text predicates CONTAINS or FREETEXT.

q A COMPUTE or COMPUTE BY clause.

q The CROSS APPLY or OUTER APPLY operator.

q The PIVOT or UNPIVOT operator.

q Table hints and join hints.

q Direct references to XQuery expressions. However, you can use XQuery expres-
sions in a user-defined function (UDF) used in the view definition.

n If GROUP BY is specified, the view SELECT list must contain a COUNT_BIG(*) expres-
sion, and the view definition cannot specify HAVING, CUBE, or ROLLUP.

n You cannot include text, ntext, or image columns in the view.

116 Chapter 4 Designing a Database for Performance
In addition, when you are creating the index, you have to meet the following prerequisites:

n SET option requirements: you need to have correct SET options for your connection
when you create the index. The correct options are the same as they are if you want to
create an index on a computed column:

q NUMERIC_ROUNDABORT must be set to OFF.

q ANSI_NULLS, ANSI_PADDING, ANSI_WARNINGS, ARITHABORT, CONCAT
_NULL_YIELDS_NULL, and QUOTED_IDENTIFIER options must be set to ON.

q The IGNORE_DUP_KEY option must be set to OFF.

n If your SELECT statement in the view definition specifies a GROUP BY clause, the key of
the unique clustered index can reference only columns specified in the GROUP BY
clause.

n Imprecise expressions can be part of the key column of an indexed view unless an impre-
cise expression forms the value of an index key column and references a stored column
in a base table underlying the view. This column can be a regular stored column or a per-
sisted computed column.

n You must be the owner of the view you are indexing.

You might think that indexed views are too much trouble because of this long list of prerequi-
sites. Nevertheless, you do not have to worry too much about the SET options if you leave the
defaults intact. In addition, the query optimizer is quite smart, and it can calculate the average
from the view if you use SUM and COUNT_BIG aggregate functions. Many decision-support
queries can benefit greatly from indexed views. The following practice shows you that it is not
so difficult to deal with indexed views.

Practice: Specifying Indexed Views

IMPORTANT Practices build upon each other

To work successfully with this practice, you need to have f inished the practice from Lesson 2,
“Designing Indexes.”

This practice will help you understand that indexing a view is not that difficult. Be sure to have
the actual execution plan available.

� Exercise 1: Build the Base Query

You have to prepare statistics on the Title column in the dbo.MyContacts table. You are inter-
ested in how many titles are NULL and how many are NOT NULL in your table.

Prepare the query. The query is not your typical basic query because you have to use the
CASE expression. In the query, use the COUNT_BIG(*) function—instead of COUNT(*)—
because you are going to use the same query for the view. In the execution plan, you

Lesson 3: Specifying Indexed Views 117
should get a Clustered Index Scan of the dbo.MyContacts table. Your query should look
like this:
USE TK441Ch04;
GO
SELECT CASE
 WHEN Title IS NULL THEN 0
 WHEN Title IS NOT NULL THEN 1
 END AS TitleNum,
 COUNT_BIG(*) AS TitleStatistics
 FROM dbo.MyContacts
GROUP BY CASE
 WHEN Title IS NULL THEN 0
 WHEN Title IS NOT NULL THEN 1
 END;
GO

� Exercise 2: Create an Indexed View

Create and index a view based on the query in Exercise 1, “Build the Base Query.” Then test it.

1. Create the view by using the following code:
CREATE VIEW dbo.TitleStats
WITH SCHEMABINDING
AS
SELECT CASE
 WHEN Title IS NULL THEN 0
 WHEN Title IS NOT NULL THEN 1
 END AS TitleNum,
 COUNT_BIG(*) AS TitleStatistics
 FROM dbo.MyContacts
GROUP BY CASE
 WHEN Title IS NULL THEN 0
 WHEN Title IS NOT NULL THEN 1
 END;
GO

2. Index the view by using the CREATE UNIQUE CLUSTERED INDEX statement:
CREATE UNIQUE CLUSTERED INDEX TitleStats_TitleNum
 ON dbo.TitleStats(TitleNum);
GO

3. Test your indexed view. If you are using SQL Server 2005 Enterprise edition, Enterprise
Evaluation edition, or Developer edition, you can execute the same query you used in
Exercise 1, and SQL Server should use the view. You should get a Clustered Index Scan
operator operating on the view, even though the query references the base table. If you
do not have any of the editions mentioned, you can still reference the view in your que-
ries directly and thus make queries more effective.

118 Chapter 4 Designing a Database for Performance
Quick Check
1. You have a query that groups data. Groups are based on a very selective column,

which means you get nearly as many groups as there are base rows. Would this
query benefit from an indexed view?

2. You have a view that joins customers, orders, and order details base tables. Based
on this view, you create another view that aggregates order details amounts per
customer. Can you index the second view, the one that aggregates data?

Quick Check Answers
1. No, a query such as this would not benefit much from an indexed view.

2. No, a view has to reference base tables only if you want to index it.

Lesson 4: Partitioning a Table 119
Lesson 4: Partitioning a Table

Estimated lesson time: 20 minutes

In your application, you might need to access a huge table. The data in the table is likely to be
used in many different ways. For example, you might need to insert single rows as well as do
some bulk inserts. To achieve minimally logged bulk insert, your table should have no rows or
indexes, and you should use the Bulk_Logged or Simple recovery model for the database.
Unfortunately, most of the tables already have data and indexes. However, there might be logic
in your business application that partitions the data in the table horizontally.

In SQL Server 2000 and earlier versions, you can create multiple tables and then refer to the
complete data through a view that unites rows from all base tables. This is called a partitioned
view. If the base tables are located in multiple instances of SQL Server, even on multiple boxes,
this would be a distributed partitioned view. In SQL Server 2005, you can still perform partition-
ing this way. However, SQL Server 2005 introduces a new feature called table partitioning.
With table partitioning, you can have multiple physical partitions of a single table, stored on
multiple filegroups of the same database. In the application, you refer to the table as if it were
not partitioned because you refer to it by its logical name.

IMPORTANT Partitioned views deprecated

Because of table partitioning, partitioned views in a single database are deprecated.

Understanding Table Partitioning
To implement table partitioning, you have to prepare a couple of new objects in advance.
Namely, you have to prepare a partition function and a partition scheme. A partition function
serves as a guideline for the rows; it defines how the rows are mapped to partitions based on
the values of partitioning columns. A partition scheme maps each partition specified by the
partition function to a filegroup.

The partitioning column determines how a table is partitioned. The partition function sepa-
rates data in ranges of values of the partitioned column. In SQL Server 2005, you can have up
to 1,000 partitions per table. You do not have to have a filegroup for each partition; through a
partition scheme, you can map multiple or even all partitions to a single filegroup.

Table partitioning is especially useful for sliding-windows scenarios, which are very common
for data warehouses. For example, you might need to bulk load new data by the end of each
month and then delete or move to the archive the oldest month’s data. You can switch parti-
tions from one table to another table if certain conditions are met. You can bulk insert new data
to an empty table, turn on minimally logged bulk insert, and then switch the data of this table
to a single partition of the partitioned table by using the ALTER TABLE statement. Similarly,

120 Chapter 4 Designing a Database for Performance
you can switch the oldest partition of the partitioned table to an empty table and then use the
TRUNCATE TABLE command to clear the old data efficiently.

Table partitioning can also improve join performance in some scenarios. If you have an equi-
join between two partitioned tables, their partitioning columns are the same as the columns
on which you perform the join, and the tables use the same partition function, then the query
optimizer can perform the join between the partitions themselves.

Using Aligned Indexes
If you do not specify a separate partition scheme when you create an index on a partitioned
table, SQL Server automatically partitions the index by using the same partition scheme and
partitioning column you used for the table partitioning. Such an index is called an aligned
index. Aligning indexes are especially useful in sliding-windows scenarios. With aligned
indexes, switching partitions is only a metadata operation. In addition, you can support joins
efficiently between partitions of two collocated partition tables with aligned indexes.

You can design index partitioning independently of table partitioning so the indexes are not
aligned. This strategy could be useful if the base table is not partitioned, or your table partici-
pates in collocated joins with multiple tables. When you partition a unique index, you must
have the partitioning column among the columns used in the index key.

Exam Tip Opt for aligned indexes unless you have a good reason for a different decision.

Switching Partitions
Switching partitions is a very efficient operation for moving blocks of data. However, you must
meet the following prerequisites:

n General requirements If you are adding a table as a partition to an existing partitioned
table or moving a partition from one partitioned table to another, you must create the
receiving partition in advance, and it must be empty. If you are reassigning a partition to
form one nonpartitioned table, you must create the table in advance that is receiving the
partition, and it must be empty. If you want to switch a partition from one table to
another, you have to partition both tables on the same column.

n Structure requirements In short, both the source and the target table of the partition
switching must have the same structure.

n Constraint requirements You have to take care that you switch the data in a single par-
tition of the target table. For example, if you are adding a nonpartitioned table as a par-
tition to an existing partitioned table, you must have a Check constraint defined on the
column of the source table that corresponds to the partition key of the target table. The
Check constraints must ensure that all the data from the source table fits into a single par-
tition of the destination table.

Lesson 4: Partitioning a Table 121
n Index requirements Indexes on both source and destination tables have to be aligned
with the tables.

Practice: Partitioning a Table

IMPORTANT Practices build upon each other

To work successfully with this practice, you should have f inished the practice from Lesson 3, “Spec-
ifying Indexed Views.”

In this practice, you will implement table partitioning on the dbo.MyContacts table that you
created in Exercise 1 of the Lesson 2 practice “Designing Indexes.” You will create two addi-
tional tables with the same schema and then switch partitions between the original and these
two new tables.

� Exercise 1: Prepare the Infrastructure

First, you have to create a partition function, a partition scheme, and two new tables.

1. Prepare a partition function that will partition a table based on the ContactId integer col-
umn. The function should split the data into three partitions: ContactId <= 10,000; Con-
tactId > 10,000 and <= 20,000; and ContactId > 20,000. Note the special syntax for the
partition function. Your code should look like this:
USE TK441Ch04;
GO
CREATE PARTITION FUNCTION pf_ContactId (int)
AS RANGE RIGHT
FOR VALUES (10000, 20000);
GO

2. Prepare a partition scheme that will map all partitions to a single, Primary filegroup.
Your code should look like this:
CREATE PARTITION SCHEME ps_ContactId
AS PARTITION pf_ContactId
ALL TO ([PRIMARY]);
GO

3. Create two tables, one for old contacts and one for new contacts. Make sure you have a
Check constraint in the table for the new contacts that ensures that all of the data for this
table can be mapped to the last partition of the original contacts table. Insert a row in the
new contacts table. Your code should look like this:
CREATE TABLE dbo.OldContacts
(ContactId int NOT NULL,
 Title nvarchar(16) NULL,
 FirstName nvarchar(100) NOT NULL,
 LastName nvarchar(100) NOT NULL,
 Suffix nvarchar(200) NULL,

122 Chapter 4 Designing a Database for Performance
 EmailAddress nvarchar(100) NULL,
 Phone nvarchar(50) NULL);
GO
CREATE TABLE dbo.NewContacts
(ContactId int NOT NULL CHECK (ContactId > 20000),
 Title nvarchar(16) NULL,
 FirstName nvarchar(100) NOT NULL,
 LastName nvarchar(100) NOT NULL,
 Suffix nvarchar(200) NULL,
 EmailAddress nvarchar(100) NULL,
 Phone nvarchar(50) NULL);
GO
INSERT INTO dbo.NewContacts
(ContactId, Title,
 FirstName, LastName,
 Suffix, EmailAddress,
 Phone)
VALUES
(20001, 'Mr',
 'Janko', 'Cajhen',
 NULL, 'janko@tailspintoys.com',
 '398-555-0132');
GO

� Exercise 2: Re-Create and Partition the Original Table and Switch Partitions

Now you will re-create and partition the original contacts table. Then, you will switch a parti-
tion from this table to the old contacts table and switch the data from the new contacts table
in a partition of the original table. Note that you will have to drop the schema-bound indexed
view from the previous exercise first.

1. Drop the indexed view you created in Exercise 2 of the Lesson 3 practice “Specifying
Indexed Views.” Re-create the dbo.MyContacts table. Create it on the partitioning
scheme you created in the previous exercise. Insert the data:
DROP VIEW dbo.TitleStats;
GO
DROP TABLE dbo.MyContacts;
GO
CREATE TABLE dbo.MyContacts
(ContactId int NOT NULL,
 Title nvarchar(16) NULL,
 FirstName nvarchar(100) NOT NULL,
 LastName nvarchar(100) NOT NULL,
 Suffix nvarchar(200) NULL,
 EmailAddress nvarchar(100) NULL,
 Phone nvarchar(50) NULL)
ON ps_ContactId(ContactId);
GO
INSERT INTO dbo.MyContacts
SELECT ContactId, Title,
 FirstName, LastName,
 Suffix, EmailAddress,

Lesson 4: Partitioning a Table 123
 Phone
 FROM AdventureWorks.Person.Contact;
GO

2. Check how the data is partitioned by using the $PARTITION function:
SELECT ContactId,
 $PARTITION.pf_ContactId(ContactId) AS PartitionNo
 FROM dbo.MyContacts
ORDER BY ContactId;
GO

3. Switch the first partition to the old contacts table:
ALTER TABLE dbo.MyContacts SWITCH PARTITION 1 TO dbo.OldContacts;
GO

4. Switch the data from the new contacts table to the third partition of the partitioned con-
tacts table:
ALTER TABLE dbo.NewContacts SWITCH TO dbo.MyContacts PARTITION 3
GO

5. Recheck the partitions of the partitioned table, the data in the new contacts table, and
the data in the old contacts table:
SELECT ContactId,
 $PARTITION.pf_ContactId(ContactId) AS PartitionNo
 FROM dbo.MyContacts
ORDER BY ContactId;
SELECT ContactId
 FROM dbo.OldContacts;
SELECT ContactId
 FROM dbo.NewContacts;
GO

6. Clean up your SQL Server installation:
USE master;
DROP DATABASE TK441Ch04;
GO

Quick Check
1. Why do you need a Check constraint on a nonpartitioned table if you want to

switch the data from this table to a partition of a partitioned table?

2. Can you use table partitioning across instances of SQL Server?

Quick Check Answers
1. A Check constraint guarantees that all data from the nonpartitioned table fits into

a single partition of the partitioned table.

2. No, you can partition a table in one database of one instance of SQL Server only.

124 Chapter 4 Designing a Database for Performance
Case Scenario: Design a Database for Performance
Users of the Tailspin Toys database complain that their regular reports, which aggregate sales
data based on EmployeeId, perform too slowly. You are using SQL Server 2005 Enterprise edi-
tion. However, you cannot change the legacy application to redirect the aggregate queries to an
aggregate table. In addition, your end users do not understand why the query that retrieves
employee details (that is, EmployeeId, EmployeeName, and social security ID [SSID] columns
from the Employees table) performs so poorly. You research the indexes and discover that you
have a clustered Primary Key on the EmployeeId column and a nonclustered index on the
EmployeeName column.

1. How can you improve the performance of the aggregate query?

2. How can you improve the performance of the employee-details query?

Chapter Summary
n Indexes are the most efficient database tool for improving performance.

n For poorly written queries, indexes do not help.

n Take special care when you choose the key of a clustered index.

n You can cover more queries with included columns in nonclustered indexes.

n Indexed views can improve performance of aggregate queries and of queries that use
multiple joins.

n For large tables, consider partitioning.

Chapter 5

Using Appropriate Database
Technologies and Techniques for
Your Application

The relational model is appropriate for business applications because it enforces data integrity.
This enforcement comes through data types, the database schema, constraints, and program-
matic code. However, constraints have a drawback as well—they constrain. That is their pur-
pose. Sometimes, however, you need a bit more relaxed schema. This chapter begins its
coverage of using appropriate database technologies and techniques for your application
needs by showing you how to use XML inside a database properly and efficiently. This chapter
also discusses when to use common language runtime (CLR) languages inside a database and
when Transact-SQL (T-SQL) code is more appropriate.

In addition, you never know how large your database is going to grow, so you need to design
for scalability. Scalability can act as a synonym for performance in the database world, so this
training kit discusses it throughout. In this chapter, you will get a general overview of scalabil-
ity with some small concrete examples. Another consideration when deciding which technol-
ogies and techniques are appropriate for your application solution is how your database is
going to communicate with the outer world. There are many techniques for interoperability,
including distributed queries, replication, and Microsoft SQL Server Integration Services
(SSIS). In this chapter, you will get an overview of different interoperability methods, and you
will focus on query notifications in the related practice. Finally, this chapter reviews different
aggregation techniques.

Exam objectives in this chapter:
n Design an application solution that uses appropriate database technologies and techniques.

q Design a solution for storage of XML data in the database.

q Choose appropriate languages.

q Design a solution for scalability.

q Design interoperability with external systems.

q Develop aggregation strategies.
125

126 Chapter 5 Using Appropriate Database Technologies and Techniques for Your Application
Before You Begin
To complete the lessons in this chapter, you must have:

n Knowledge of Microsoft SQL Server database objects.

n Knowledge of the Transact-SQL language.

n The SQL Server 2005 AdventureWorks and AdventureWorksDW sample databases
installed. Sample databases are available with SQL Server 2005 Enterprise edition but
are not a part of the default installation. Alternatively, you can install sample databases
from http://msdn2.microsoft.com/en-us/library/ms143739.aspx.

n Microsoft Office 2007 data connectivity components installed. If you do not have Office
2007, you can download Office 2007 data connectivity components from http://
www.microsoft.com/downloads/details.aspx?familyid=7554F536-8C28-4598-9B72-
EF94E038C891&displaylang=en/.

Lesson 1: Using XML Data in Databases 127
Lesson 1: Using XML Data in Databases

Estimated lesson time: 30 minutes

XML technology is incredibly popular among developers. Some database developers and
administrators have concerns about the widespread use of XML, but many application devel-
opers complain that the relational model is constraining, so they prefer the open possibilities
they have with XML. It is true that the relational model constrains. Nevertheless, this con-
straining has its purpose: it enforces data integrity, which is crucial for databases, especially if
you are talking about databases that support online transactional processing (OLTP) business
applications. This database, the OLTP database, is where the data is collected in the enterprise.
If the data is not correct at this point, no application or business intelligence (BI) system can
help you. Relational databases are the heart of modern IT systems. You can implement some
constraints, such as schema validation, for XML as well; however, constraints enforced in a
relational database can be more complex and are usually easier to implement. As in a relational
database management system (RDBMS), the constraints are typically more ready to imple-
ment. Therefore, the concerns about XML technologies are reasonable.

Be aware of potential data integrity problems; opt to use XML in your database deliberately.
Whenever you need constraints to enforce business rules, the relational schema is the answer.
However, one big problem with the relational schema is the evolution of the schema. Typically,
a schema change is quite expensive, even meaning, often, having to upgrade an application. If
the schema is changing frequently, a slightly more relaxed model, such as the XML model,
combined with or in the relational model, can be the correct answer. However, do not forget
that often when it seems the schema is constantly changing, it simply means that the problem
analysis was not done correctly at design time. You can find a plethora of examples of inap-
propriate use of XML in relational databases. For example, you can find instances in which
customers have a relational table, and their orders are stored in an XML column in the Cus-
tomers table. However, the schema of the orders is very well known (you can even define
design patterns for sales documents), and the constraints are very important because you are
dealing with money here!

XML Data Type Usage
You just looked at the customers–orders example of when using XML is not appropriate.
Imagine now a different example. Suppose you have to support a retail store with tens, if not
hundreds of thousands, of different products on shelves. You can group these products in cat-
egories. All products have some common attributes such as product ID, name, unit of mea-
sure, and price. However, some attributes change from group to group. For example, for fruit
juices, you should store the percentage of Recommended Daily Allowance (RDA) of vitamins.
For mobile phones, you are interested in whether customers have a digital camera. If you had

128 Chapter 5 Using Appropriate Database Technologies and Techniques for Your Application
to worry about only those two categories, you could simply model subtypes. However, you can
have tens of categories, and you might need to add a new category at any time. Using subtypes,
you would quickly reach a very complex model, which would be hard to maintain. Many appli-
cations like to use a special Entity-Attribute-Value (EAV) table approach in situations such as
this. However, the EAV approach has a big disadvantage: it can be quite complex to implement
even simple constraints, such as attaching a correct attribute to the right article, without using
triggers. You could end up storing in your database a predicate such as, “My orange juice has
a digital camera.” Another solution might be using a CLR user-defined type (UDT) for storing
a collection of category attributes. However, this would not be a standard solution, and,
depending on your UDT, it might get quite complex to retrieve separate scalar values from it.
In short, this situation is a good candidate for using the XML data type. With the XML data
type, new in SQL Server 2005, you get a reasonable compromise for all your goals:

n You get a quite open and dynamic schema.

n You have a standard solution. (XML is standard.)

n You can implement simple constraints, such as schema validation, without using pro-
grammatic code.

There are some other viable options for storing XML inside a database. These options include
sparse data, hierarchical data, and data with inherent order. In addition, if you already have
XML data stored in files in the file system, you could benefit from automatic validation by stor-
ing this data in SQL Server. SQL Server 2005 also supports XML indexes, so browsing your
XML data could be faster in SQL Server than in the file system.

You might also decide to shred your XML data in relational tables by using scalar columns.
Consider shredding your XML data if you need constraints that you cannot implement in an
XML schema. Also, shred your XML data if you plan to reuse it for analysis. Standard BI sys-
tems, including reporting and online analytical processing (OLAP) systems, typically cannot
perform analyses on XML data directly. Finally, you might want to persist your application
objects by using XML instead of binary serialization, thus gaining the ability to query the
objects by using a standard language (XQuery) without having to de-serialize them first.

XML Indexes
The XML data type is a binary large object (BLOB), meaning it can store up to 2 gigabytes (GB)
of data. In most cases, your XML values should be small to keep up the performance of your
database. For large XML values, you might consider using XML indexes. XML indexes can be
especially useful if you query your XML data with XQuery often, and you are retrieving only
small parts from large XML values. As with any other indexes, consider the price of maintain-
ing XML indexes as you consider your design strategy.

The first index you create on an XML column is the Primary XML index. The Primary XML
index indexes all tags, values, and paths for the XML instances of an XML column. For you to

Lesson 1: Using XML Data in Databases 129
be able to create this index, your base table must have a clustered primary key. After you have
the Primary XML index, you can add three types of secondary XML indexes: Path, Property,
and Value. If your queries typically search for a path in your XML instances, the Path second-
ary XML index might be a good option. The exist() XML data type method, for example, uses
path expressions. The Property XML index clusters paths within XML instances, so it is appro-
priate for scenarios in which you search for multiple values from your XML instances. If you
are commonly searching for values in your XML instances without knowing the element or
attribute names that contain those values, consider using a Value secondary XML index.
Finally, you can use full-text indexes on XML columns as well. However, full-text indexes do
not know anything about XML semantics, so it is probably more efficient to use XML indexes
instead.

Exam Tip For XML data type columns, you need to have a valid, considered reason to use full-
text indexes rather than XML indexes.

Practice: Using XML Data in a Database
In this practice, you will learn how to use the XML data type to build a dynamic database
schema.

On the Companion Disc This chapter includes many code examples. You will f ind all the code
from this chapter on the companion CD in the C:\My Documents\Microsoft Press\TK70-441
\Chapter05\Sql folder.

� Exercise 1: Prepare the XML Schema Collection

1. Start by creating a new database for practices in this chapter:
USE master;
GO
IF DB_ID(N'TK441Ch05') IS NULL
 CREATE DATABASE TK441Ch05;
GO

2. Your task in this practice is to create an XML schema collection of simple schemas for
mobile phones and fruit juices, with each schema allowing a single element only. (The
HasCamera bit flag for mobile phones and the RDA integer for fruit juices.) You do not
have to type XSD documents manually; you can help yourself with the new FOR XML.
XMLSCHEMA(‘target namespace URI’) option. Therefore, you can create empty tables
and use SELECT . . . FOR XML to get the schema you need. Just as you can create an
XML schema collection from a variable, you can store results from your SELECT . . . FOR
XML statements in a variable and create a schema collection from the variable. Finally,
drop the auxiliary tables. Your code should look like this:

130 Chapter 5 Using Appropriate Database Technologies and Techniques for Your Application
USE TK441Ch05;
GO
-- Auxiliary tables:
CREATE TABLE dbo.MobilePhones
(HasCamera bit NOT NULL);
GO
CREATE TABLE dbo.FruitJuices
(RDA int NOT NULL);
GO
-- Create the schema collection.
-- Store the schemas in a variable and create the collection.
-- Note the XMLSCHEMA('target namespace') part.
DECLARE @mySchema nvarchar(max);
SET @mySchema = N'';
SET @mySchema = @mySchema +
 (SELECT *
 FROM dbo.MobilePhones
 FOR XML AUTO, ELEMENTS, XMLSCHEMA('MobilePhones'));
SET @mySchema = @mySchema +
 (SELECT *
 FROM dbo.FruitJuices
 FOR XML AUTO, ELEMENTS, XMLSCHEMA('FruitJuices'));
SELECT CAST(@mySchema AS xml);
CREATE XML SCHEMA COLLECTION ProductCategories AS @mySchema;
GO
-- Clean up the auxiliary tables.
DROP TABLE dbo.MobilePhones;
DROP TABLE dbo.FruitJuices;
GO

3. Check your schema collection by querying the sys.xml_schema_collections,
sys.xml_schema_namespaces, and sys.xml_schema_components catalog views:
-- Retrieve information about the schema collection.
SELECT * FROM sys.xml_schema_collections
 WHERE name = 'ProductCategories';
-- Retrieve information about the namespaces in the schema collection.
SELECT n.*
 FROM sys.xml_schema_namespaces n
 INNER JOIN sys.xml_schema_collections c
 ON n.xml_collection_id = c.xml_collection_id
WHERE c.name = 'ProductCategories';
-- Retrieve information about the components in the schema collection.
SELECT cp.*
 FROM sys.xml_schema_components cp
 INNER JOIN sys.xml_schema_collections c
 ON cp.xml_collection_id = c.xml_collection_id
 WHERE c.name = 'ProductCategories';
GO

Lesson 1: Using XML Data in Databases 131
� Exercise 2: Validate the XML Schema Collection

1. Now that you have your schema collection, you need to create the Products table with
ProductId (int), ProductName (nvarchar), Category (nvarchar), and DynamicAttributes
(xml) attributes. Verify that Category can accept the values MobilePhones and FruitJuices
only and that the DynamicAttributes XML column is validated against the Product-
Categories schema collection. The code should look like this:
CREATE TABLE dbo.Products
(ProductId int NOT NULL IDENTITY PRIMARY KEY,
 ProductName nvarchar(30) NOT NULL,
 Category nvarchar(30) NOT NULL
 CHECK(Category = N'MobilePhones' OR
 Category = N'FruitJuices'),
 DynamicAttributes xml(ProductCategories));
GO

2. You are not finished with your constraints yet. You need to ensure that you have the cor-
responding XML for each product category. SQL Server lets you insert XML data as long
as it complies with any of the schemas in the schema collection. You need an additional
Check constraint that checks whether you have the correct namespace in your XML, the
namespace that belongs to the specific category. You can check the namespace by using
the value() method of the XML data type; however, you cannot use XML data type meth-
ods in Check constraints. Therefore, you have to create a user-defined function (UDF) to
retrieve the namespace first. Your code should look like this:
-- Function to retrieve the namespace.
CREATE FUNCTION dbo.ChkNamespace(@chkcol xml)
 RETURNS nvarchar(1000)
AS
BEGIN
 RETURN @chkcol.value('namespace-uri((/*)[1])','nvarchar(1000)')
END;
GO
-- Add the constraint.
ALTER TABLE dbo.Products ADD CONSTRAINT ck_Namespace
 CHECK (dbo.ChkNamespace(DynamicAttributes) = Category);
GO

3. Finally, test your solution by trying to insert a valid mobile phone, fruit juice, and one or
more invalid rows:
-- Valid mobile phone
INSERT INTO dbo.Products
 (ProductName, Category, DynamicAttributes)
VALUES (N'Mobile phone 1', N'MobilePhones',
 N'<dbo.MobilePhones xmlns="MobilePhones">
 <HasCamera>1</HasCamera>
 </dbo.MobilePhones>');
-- Valid fruit juice
INSERT INTO dbo.Products
 (ProductName, Category, DynamicAttributes)

132 Chapter 5 Using Appropriate Database Technologies and Techniques for Your Application
VALUES (N'Orange juice', N'FruitJuices',
 N'<dbo.FruitJuices xmlns="FruitJuices">
 <RDA>50</RDA>
 </dbo.FruitJuices>');
-- Invalid insert - RDA for a mobile phone
INSERT INTO dbo.Products
 (ProductName, Category, DynamicAttributes)
VALUES (N'Mobile phone 1', N'MobilePhones',
 N'<dbo.MobilePhones xmlns="MobilePhones">
 <RDA>25</RDA>
 </dbo.MobilePhones>');
GO
-- Check the data.
SELECT *
 FROM dbo.Products;
GO

Quick Check
1. Would you use the XML data type to store invoice details in your Invoices table?

2. You are using the exist() XML data type method in a WHERE clause for a single
XML data type column in a table; however, you use the method in multiple
SELECT statements. How can you improve the performance of those queries?

Quick Check Answers
1. This is a classic example of inappropriate use of the XML data type. Invoice details

have a well-known structure that does not change much. Because you are dealing
with money, take care to implement constraints strictly. In addition, invoice details
are usually the starting point for sales analysis.

2. You have to create a Primary XML index and secondary for Path XML index on
your XML data type column.

Lesson 2: Choosing Languages 133
Lesson 2: Choosing Languages

Estimated lesson time: 15 minutes

In SQL Server 2005, you are not limited to using the T-SQL language only, as you are with ear-
lier versions of the database system. Now in your database, you can use CLR languages, COM
languages, the C family of languages, XQuery, and, through the OPENQUERY and OPEN-
ROWSET functions, any other language that your remote OLE DB source supports. The deci-
sion about which language to use for your particular application scenario is not very
complicated. Nevertheless, a wrong decision could lead to poor performance and security
problems. In this lesson, you will learn the key guidelines about which language to use in
which situation.

CLR vs. T-SQL
Remember: T-SQL is the primary language of SQL Server. CLR code cannot replace T-SQL
code; CLR can only supplement it. T-SQL is still the only language for data manipulation.
Even in CLR procedures, if you read or write data, you must do it with standard T-SQL data-
modification language (DML) commands. To build solid applications, learn T-SQL fluently
and use its set-oriented techniques to manipulate the data. For example, compared to T-SQL
cursors, CLR code that moves row by row through a DataReader object might be a couple of
times faster. However, if you can rewrite your cursor into a set-oriented command, this com-
mand will likely perform a hundred times better. Thus, the vast majority of code in your
database should be T-SQL code.

That said, CLR code performs better for CPU-intensive operations such as string manipula-
tions and intensive calculations. Therefore, it might be more appropriate for scalar UDFs. In
addition, you can create in CLR two types of objects that you cannot create in T-SQL: user-
defined aggregate functions and UDTs. CLR code also is not limited to SQL Server. By using
CLR code, you can access other resources such as file system, registry, and network resources.
However, consider security issues when your assemblies are not marked with the SAFE per-
mission set, which allows database access only.

IMPORTANT Set operations

Row-by-row operations typically perform better in the CLR than in T-SQL code; however, if you
manage to change the code to a set-based operation, T-SQL code performs magnitudes better.

T-SQL has another limitation in that you cannot consume Web services and query notifica-
tions from T-SQL. You might think that these tasks would be another reason to introduce CLR
code in your database. First, however, think twice about why you want to consume Web ser-
vices and query notifications in your database. These tasks are typically for middle-tier code.

134 Chapter 5 Using Appropriate Database Technologies and Techniques for Your Application
Remember that your stored procedures should not be very complex and should deal mostly
with data manipulation; your middle-tier code should deal with business logic such as work-
flow logic.

CLR and T-SQL vs. Other Languages
To browse XML in your database, you can use XQuery inside T-SQL statements. This is an
additional language to learn. However, in some cases, you might be able to use CLR code
instead of XQuery. If you are already familiar with CLR languages such as Microsoft Visual
Basic .NET or C# .NET, you might consider using the ADO.NET DataSet object to handle your
XML data type columns. The DataSet is represented in XML, and the transition from XML to
tabular representation of the same data is seamless in CLR code. Reading XML data from a
CLR database table-valued UDF that uses a T-SQL SELECT statement to retrieve the data and
then return it in tabular format is far less efficient than simply using a SELECT statement with
embedded XQuery directly on the data. Still, if performance is not an issue, you are familiar
with CLR languages, and you have to do something quickly and do not have time to learn
XQuery, this might be an option.

Another language you can use in your database is Component Object Model (COM). You
can use OLE Automation objects in your database with the help of OLE automation proce-
dures (sp_OA* procedures). For example, with the sp_OACreate system procedure, you can
instantiate a COM object. However, this is not a good choice; COM code is not managed
code. You need sysadmin permissions to instantiate an OLE Automation object. In addition,
OLE Automation procedures are disabled in SQL Server 2005 by default. You can use the Sur-
face Area Configuration tool to enable them. Nevertheless, if you are using OLE Automation
procedures, consider replacing those components with managed-code CLR procedures
immediately.

You can also extend the functionality of SQL Server through extended stored procedures. The
Microsoft Extended Stored Procedure application programming interface (API) gives you a
server-based interface that consists of C and C++ functions and macros used to build applica-
tions. Like the code of OLE Automation objects, the code of extended procedures is not man-
aged. For example, extended procedures compete for the same memory space with SQL
Server. Therefore, extended procedures are quite dangerous, so consider replacing them with
CLR procedures immediately.

IMPORTANT Extended stored procedures deprecated

Extended stored procedures are deprecated and will be removed in future versions of SQL Server.

You probably already know that, through the OPENQUERY and OPENROWSET functions,
you can reach any OLE DB data source. You can use these functions in your T-SQL code.
However, you should take care that you use them to retrieve only a rowset (that is, a tabular,

Lesson 2: Choosing Languages 135
two-dimensional form of the result). For example, SQL Server Analysis Services Unified
Dimensional Model (UDM) cubes use the Multidimensional Expressions (MDX) language,
and MDX can return multiple dimensions in the result. Thus, make sure you return two
dimensions from the MDX statements that you use as parameters to the OPENQUERY and
OPENROWSET functions. Analysis Services also uses the Data Mining Extensions (DMX)
language for browsing data mining models. The DMX SELECT statement returns a table;
however, this table can have one or more nested tables. Nested tables are not allowed in the
relational model and are not supported within T-SQL. Instead, you can use the DMX FLAT-
TENED keyword to return a relational table. To repeat: if you are accessing an external OLE
DB source, take care to return data in relational format. As a final note, ad hoc distributed
queries via the OPENROWSET, and OPENDATASOURCE functions are disabled in SQL
Server 2005 by default.

Practice: Choosing Appropriate Languages
In this conceptual practice, select the appropriate language for specific tasks.

� Exercise: Choose Appropriate Languages

In the SQL Server 2005 Books Online topic, “CLR Stored Procedures,” at http://
msdn2.microsoft.com/en-us/library/ms131094(SQL.90).aspx, you will find the following
CLR procedure example:
using System;
using System.Data.SqlTypes;
using System.Data.SqlClient;
using Microsoft.SqlServer.Server;

public class StoredProcedures
{
 [Microsoft.SqlServer.Server.SqlProcedure]
 public static void PriceSum(out SqlInt32 value)
 {
 using(SqlConnection connection =
 new SqlConnection("context connection=true"))
 {
 value = 0;
 connection.Open();
 SqlCommand command = new SqlCommand(
 "SELECT Price FROM Products", connection);
 SqlDataReader reader = command.ExecuteReader();

 using (reader)
 {
 while(reader.Read())
 {
 value += reader.GetSqlInt32(0);
 }
 }

136 Chapter 5 Using Appropriate Database Technologies and Techniques for Your Application
 }
 }
}

If you are not familiar with C#, you can also find a Visual Basic example of the procedure
in Books Online in the same topic, “CLR Stored Procedures,” at http://
msdn2.microsoft.com/en-us/library/ms131094(SQL.90).aspx. However, the code is quite
simple, so you should be able to recognize the purpose of this procedure even if you are
not familiar with CLR languages. Do you see any problems with this example?

Suggested Answer

This is an example of improper use of a CLR procedure. Why would you read the data
and summarize the price by looping through a DataReader if you can do it directly by
using a T-SQL SELECT statement with the SUM aggregate function? In addition, the
SELECT statement inside the CLR procedure is referring to a table by a single-part name
only, which is a bad practice. Finally, what business meaning does summing prices have?
This example shows you how careful you have to be if you want to create solid applica-
tions. Note that the purpose of this example in Books Online is to show how to return
output parameters from CLR procedures; it is not intended to show any kind of best
practices.

Quick Check
1. You need to implement an aggregate function to perform a calculation in your data-

base. Which language strategy would you use?

A. XQuery

B. CLR integration

C. T-SQL UDF

D. Extended procedure

2. In a T-SQL SELECT statement, you want to use the OPENQUERY function to
browse data from the Analysis Services UDM cube. What issues should you con-
sider for such a query?

Quick Check Answers
1. The correct answer is B. With T-SQL and XQuery, you cannot create user-defined

aggregate functions. You could create an extended procedure to calculate the kur-
tosis; however, extended procedures are dangerous and deprecated. Therefore, you
should use CLR integration.

2. For querying an AS UDM cube, you have to use MDX language; you have to use an
MDX query inside your T-SQL query as a parameter for the OPENQUERY T-SQL
function. Your MDX query has to return two dimensions only.

Lesson 3: Designing for Scalability 137
Lesson 3: Designing for Scalability

Estimated lesson time: 30 minutes

Scalability is a very broad term. Nearly everything you do has some impact on scalability. In
short, scalability in the IT world means how well your solution can adapt to increased
demands. Many times, scalability essentially means performance, although performance is not
the only factor that affects the scalability of a system. Your solution should also be able to sur-
vive business changes, so a scalable system would include change-management procedures as
well. This lesson focuses on designing for scalability from the SQL Server point of view. You
will get an overview of technologies and methodologies for scaling up (that is, scaling a single
SQL Server instance) and for scaling out (that is, scaling to additional SQL Server instances
and other services shipped with SQL Server). In addition, because aggregations are an impor-
tant point of scalability, you will learn guidelines for aggregation strategies.

Scaling Up
You begin scaling up by fortifying your hardware. SQL Server, depending on edition, can use
any hardware you can afford. Commonly, you start strengthening your hardware by adding
memory. You can also benefit from multiple CPUs, the appropriate redundant array of inde-
pendent disks (RAID) configuration, and the proper operating system. For example, if you
plan to use more than 16 GB of RAM, consider using the 64-bit edition of Microsoft Windows
Server 2003.

One of the most important features of SQL Server is that it can grow with your needs through
different editions. This means that when your business sees increased demand, you might be
able to fulfill those demands by upgrading your current edition of SQL Server to a more scal-
able one. Table 5-1 summarizes the various SQL Server 2005 editions, describing their
intended use.

Table 5-1 SQL Server 2005 Editions

Edition Description

Express Edition SQL Server Express Edition replaces Microsoft SQL Server Desktop
Engine 2000 (MSDE). This edition is free for download, use, distri-
bution, and embedding in applications. It is an easy-to-use, light-
weight, and embeddable version of SQL Server. This edition is
suitable for embedding with applications. You can download it from
http://www.microsoft.com/downloads/details.aspx?FamilyID=
220549b5-0b07-4448-8848-dcc397514b41&DisplayLang=en.

138 Chapter 5 Using Appropriate Database Technologies and Techniques for Your Application
Database Design for Scalability
Neither hardware nor editions of SQL Server 2005 can help you if you select a poor database
and application architecture. For OLTP applications, you should pursue as normalized a data-
base design as possible, with few exceptions of denormalized aggregate data (for example, for
levels and states). Poor logical design leads to poor performance and, thus, to poor scalability.
For analytical applications, consider creating special analytical databases very early in the
design process. You should also plan database indexes from the beginning. However, make
checking your index schema a regular maintenance task in production. You can always drop,
modify, or add indexes based on your data usage. SQL Server Profiler is the tool that helps you
trace and analyze your workload, and Database Tuning Advisor helps you select appropriate

Express Edition with
Advanced Services

Another free edition, this version of Express Edition includes Full-
Text Search and Reporting Services. It is especially useful as a stan-
dalone (not embedded) database management system for small busi-
ness. You can download it from http://www.microsoft.com/
downloads/details.aspx?FamilyID=4c6ba9fd-319a-4887-bc75-
3b02b5e48a40&DisplayLang=en.

Workgroup Edition SQL Server Workgroup Edition has no limits on database size or on
concurrent user access. This edition is suitable for branch offices,
Web servers, and smaller companies.

Standard Edition SQL Server Standard Edition is probably the most widespread edi-
tion. It is suitable for small, medium, and in particular cases, even
enterprise-level business. It has integrated business intelligence and
high-availability features. Standard Edition is also available on 64-bit
platforms.

Enterprise Edition SQL Server Enterprise Edition offers the highest level of perfor-
mance and high availability features for transactional and BI applica-
tions. It is suitable for companies of any size, especially for large
enterprises. Similar to Standard Edition, if a 32-bit platform is not
enough for your needs, you can obtain a 64-bit Enterprise Edition.

Compact Edition SQL Server Compact Edition replaces SQL Server 2000 Mobile Edi-
tion. This edition works on Microsoft Windows platforms for tablet
PCs, mobile phones, pocket PCs, and desktops. It is free and
intended for use with mobile applications.

Developer Edition SQL Server Developer Edition includes the full set of features, just
like Enterprise Edition. However, you can license it for development,
test, and demo purposes only.

Table 5-1 SQL Server 2005 Editions

Edition Description

Lesson 3: Designing for Scalability 139
indexes. For large tables, consider using table partitioning, which is especially useful with
aligned indexes.

Physically, you can spread a database across multiple filegroups on multiple disk drives. Con-
sider using filegroups for reducing the time you need for maintaining your database. You can
store current, highly updateable data that needs frequent integrity checks and backups on a
small filegroup and archive stale data that needs less maintenance on one or more filegroups.
This way, you work with your frequent maintenance tasks on smaller subsets of your data.
This strategy—using filegroups for administrative purposes—works well with large table parti-
tioning. Through your partitioning scheme, you can move stale data onto partitions on archive
filegroups. In addition, you can also use multiple filegroups to improve query performance.
You can place a table on one filegroup on one disk and an index for that table on another file-
group on another disk to achieve better parallelism. However, for query performance reasons,
consider using hardware RAID. SQL Server 2005 can perform parallel reads even on a single
filegroup.

When designing for scalability, you also need to take special care when you decide to use CLR
code in your database. If you build a performance problem into your user-defined type, for
example, there’s no technique for solving the problem. However, CLR code can speed up CPU-
intensive operations, comparable to T-SQL code.

If you notice locking contention between read and update commands in your growing system,
consider using snapshot isolation levels—either SNAPSHOT or READ_COMMITTED
_SNAPSHOT isolation. When you use snapshot isolation levels, readers do not block writers
because readers read the old version of the rows. Nevertheless, snapshot isolation levels are
not a general solution because they also come with a price. SQL Server maintains old versions
of rows in the tempdb system database, so you need to make sure you prevent tempdb from
becoming a bottleneck.

To help reduce locking contention, you can also use Database Snapshots for some of your que-
rying. As always, this technique has its price as well. SQL Server has to copy pages from the
production database to the snapshot database before it writes the first time after the snapshot
creation to a page in the production database. This could hurt the performance of updates. In
addition, data in snapshots can become obsolete quickly.

Scaling Application Queries
From the database point of view, the most important part of the application design is queries
that an application sends to the database management system. No index can help if your appli-
cation sends a query such as SELECT * FROM table. For a query like this, SQL Server always
performs a table scan. Your queries should follow at least this short list of best practices:

n Always include a WHERE clause in your queries. Query optimization starts with the
WHERE clause. Never return more rows than your end user actually needs.

140 Chapter 5 Using Appropriate Database Technologies and Techniques for Your Application
n Always use an explicit column list; do not use SELECT * queries. With an explicit col-
umn list, the query has a better possibility of being covered with an index. In addition,
such a query is less prone to errors.

n Always refer to an object by its two-part name. This way, you prevent ambiguity with
schema name resolution and, thus, speed up the query.

Consider this list as a minimal (not exhaustive) set of best practices. In addition, consider
using stored procedures as much as possible. If written correctly, stored procedures are the
fastest way of working with SQL Server.

You can also scale performance when you import data from text files, which is common for
data you collect automatically. For such imports, try to use minimally logged bulk insert
instead of single-row INSERT statements. Besides using a recovery model other than Full for
your database, to achieve minimally logged bulk insert, you need to make sure your table
meets some strict prerequisites; namely, it has to be empty or have no indexes. This is easily
achievable if you use table partitioning—just import data into a new table and then switch par-
titions to assign the new table data pages to your partitioned table. You can perform a bulk
insert in a variety of ways, as the following list shows; it is up to you to select the one that best
suits your needs:

n BULK INSERT T-SQL command

n INSERT . . . SELECT . . . FROM OPENROWSET(BULK . . .) command

n Bcp.exe command prompt utility

n SQL Server Integration Services Bulk Insert task

Scaling Out
When scaling up is not sufficient, you have plenty of possibilities for scaling out. You can scale
out transactional and analytical data. In addition, you can scale out by using message queuing
techniques.

For scaling out a transactional, normalized database, you can use distributed partitioned
views. You can think of this technique as manual table partitioning. You can partition a table
horizontally and create multiple tables on multiple instances of SQL Server, then UNION ALL
data back together through distributed partitioned views. Your servers have to be connected
through linked servers for this technique to work. Distributed partitioned views are especially
useful if you can distribute your user connections on multiple servers in a way that most of the
users use local data. However, you should be careful with this technique. If your users use
mostly remote data, not the data from the SQL Server instance they connect to, you could actu-
ally slow down queries. In addition, do not forget that constraints cannot span databases and
instances.

Lesson 3: Designing for Scalability 141
If your application needs to send many notifications, consider using SQL Server Notification
Services (SSNS). SSNS enables digest and multicast deliveries. In a digest delivery, you can
combine multiple similar notifications for a single subscriber into one digest message. In a
multicast delivery, you send the same notification to a list of subscribers in a single notifica-
tion, so the content formatter formats a notification only once. Both digest and multicast deliv-
ery are much more efficient than single notification delivery. An SSNS solution is thus much
more efficient than using DatabaseMail, for example. Use DatabaseMail for administrative pur-
poses only, such as informing database administrators (DBAs) about the outcome of sched-
uled jobs.

Although application data caching is not strictly a database solution, you should not forget
that you can also use it to scale out. The Microsoft .NET DataSet object is designed for data
caching on the middle or client tier. You can use it efficiently with ASP.NET applications, for
example.

Message Queuing
If you spread your data across multiple SQL Server instances, or even across multiple database
management systems, and if you can implement your transactions asynchronously, you can
use message queuing instead of distributed transactions. This technology helps you finish the
local part of a transaction quickly. Instead of performing the remote part of a transaction in
real time, you can send it to a queue. The message system transfers messages to the remote
queue, where a reader application reads the queue and executes the commands.

If you use multiple, different database platforms, you can use a general message system such
as the Microsoft Message Queue (MSMQ) service. However, if you use SQL Server 2005 only,
you can use SQL Server Service Broker (SSB). SSB is much more efficient than MSMQ because
all message handling is done in SQL Server without crossing process boundaries. In addition,
you can secure SSB objects by using regular T-SQL data control language elements because
SSB objects are like any other database object. As noted, this chapter gives you a general over-
view of possible tools you can use for scalability; you will learn more about how to implement
an SSB solution in Chapter 7, “Designing Objects That Extend Server Functionality.”

Besides helping you scale out, message queuing solutions can also help you scale up. Instead
of executing all commands synchronously, you can send some as messages to a queue in the
same database and execute them later, during off-peak hours. This way, you can achieve load
balancing over time.

Analytical Applications
You have so many different options for scaling out analytical applications that you should con-
sider this scaling strategy in a very early stage of the design process. Options for scaling out for
analysis include:

142 Chapter 5 Using Appropriate Database Technologies and Techniques for Your Application
n Report snapshots SQL Server Reporting Services can save datasets that you have read.
This way, you have to read the data from the production database just once, and later
multiple users can read from the report snapshot.

n Replication You can use transactional replication to maintain a copy of selected data
from your production database in nearly real time. You can move your queries to the sub-
scription, or copy, database. This is especially useful if your queries are frequent but
short. With long queries, you can experience locking contention between your queries
and replication updates. In addition, you can replicate data to remote locations and,
thus, bring the data closer to the users.

n Data warehouses If you need to maintain historical data and merge data from multiple
sources, consider using a data warehouse. In a data warehouse, you have merged,
cleansed, historical data transformed in multiple star or snowflake schemas. Data in star
schemas is very easy to use in reports.

n UDM OLAP cubes If you want to enable your end users to perform online changes of
how they are viewing the data in their reports and analysis, use Analysis Services to cre-
ate UDM OLAP cubes. You typically build the cubes on top of your data warehouse.
OLAP gives you lightning speed for analysis tasks that need large amounts of data. In
fact, OLAP solutions are so efficient that you should consider using them with a data
warehouse even for medium and small business applications.

Exam Tip Know your data distribution options. Remember all the different possibilities for data
distribution, not just techniques mentioned in this chapter. Other options include Bcp.exe (bulk
copy utility), backup and restore, log shipping, distributed queries, and so on.

Developing Aggregation Strategies
Many analytical queries can benefit significantly from aggregations. You can prepare and main-
tain aggregations in production or analytical databases. Consider the following best practices:

n In a production database, you can maintain aggregations online. This is especially useful
for maintaining levels and states, which are actually aggregates from events. You can
maintain online aggregations in separate tables with the help of DML triggers on event
tables. You can maintain aggregations with the help of indexed views as well. However,
add aggregations to your production database deliberately because maintaining aggre-
gations means slowing down updates. For analysis, use other options for aggregating
data.

n In transactional systems, depending on your business problem, you could also intro-
duce aggregations of old data. For example, in a specific business, you might not need to
keep detailed transactions for more than six months. In such a case, you can move older

Lesson 3: Designing for Scalability 143
data from production to archive tables and store it aggregated there. This way, you
reduce the size of your database and speed up queries and administrative tasks.

n If you need aggregations for analytical purposes, consider creating them in the SQL
Server Analysis Services (SSAS) UDM. SSAS is optimized for read-only access and for
aggregate queries from star schemas. This optimization is incredibly efficient. Because
SSAS ships with SQL Server, move toward implementing an SSAS solution as soon as
possible.

n If you do not have the time, resources, or knowledge to design and implement an SSAS
solution, you can still aggregate data once and store it for multiple users with the help of
SQL Server Reporting Services (SSRS) report snapshots.

Practice: Using Bulk Insert
In this practice, you will compare the efficiency of a minimally logged bulk insert with a regu-
lar INSERT statement.

� Exercise 1: Export the Data

In this exercise, you export the data from the AdventureWorks.Person.Address table to a
text file.

Export the data. For this task, you can use the Bcp.exe command prompt utility from the
command prompt, or you can call it from SQL Server Management Studio (SSMS). The
SSMS Query Editor lets you edit SQLCMD scripts. To learn how to turn the SQLCMD
mode on, see the Books Online topic, “Editing SQLCMD Scripts with Query Editor,” at
http://msdn2.microsoft.com/en-us/library/ms174187.aspx. Your command should look
like this, assuming you have copied code from this training kit to suggested folders such
as C:\My Documents\Microsoft Press\TK70-441\Chapter05 for this chapter:
USE TK441Ch05;
GO
!!bcp AdventureWorks.Person.Address out C:\My Documents\Microsoft Press\TK70-
441\Chapter05\Ad.dat -c ÐT

Alternatively, execute the following from a command prompt:
bcp AdventureWorks.Person.Address out C:\My Documents\Microsoft Press\TK70-
441\Chapter05\Ad.dat -c ÐT

� Exercise 2: Import the Data by Using INSERT . . . SELECT

Now, you will try to import the data by using a regular T-SQL INSERT . . . SELECT statement.
But first, re-create the chapter database to make sure you start with the same conditions for
both the INSERT . . . SELECT and bulk insert techniques.

1. First, re-create a clean database and set the recovery model to BULK_LOGGED:
USE master;
DROP DATABASE TK441Ch05;
GO

144 Chapter 5 Using Appropriate Database Technologies and Techniques for Your Application
IF DB_ID(N'TK441Ch05') IS NULL
 CREATE DATABASE TK441Ch05;
GO
ALTER DATABASE TK441Ch05
 SET RECOVERY BULK_LOGGED;
GO

2. Create the destination table. It should have the same structure as the original table from
the AdventureWorks demo database:
USE TK441Ch05;
GO
CREATE TABLE dbo.Address
(AddressID int NOT NULL,
 AddressLine1 nvarchar(60) NOT NULL,
 AddressLine2 nvarchar(60) NULL,
 City nvarchar(30) NOT NULL,
 StateProvinceID int NOT NULL,
 PostalCode nvarchar(15) NOT NULL,
 rowguid uniqueidentifier,
 ModifiedDate datetime NOT NULL);
GO

3. Populate the table by using INSERT . . . SELECT:
INSERT INTO dbo.Address
SELECT *
 FROM AdventureWorks.Person.Address;
GO

4. Check the size of the transaction log. It should be more than 13 MB. Use the DBCC
SQLPERF command to check the log size: DBCC SQLPERF('Logspace'); GO

� Exercise 3: Import the Data by Using Bcp.exe

Next, you will use Bcp.exe to repeat the same import task.

1. Again, start with a clean database:
USE master;
DROP DATABASE TK441Ch05;
GO
IF DB_ID(N'TK441Ch05') IS NULL
 CREATE DATABASE TK441Ch05;
GO
ALTER DATABASE TK441Ch05
 SET RECOVERY BULK_LOGGED;
GO

2. Create the destination table. It should have the same structure as the original table from
the AdventureWorks demo database:
USE TK441Ch05;
GO
CREATE TABLE dbo.Address
(AddressID int NOT NULL,

Lesson 3: Designing for Scalability 145
 AddressLine1 nvarchar(60) NOT NULL,
 AddressLine2 nvarchar(60) NULL,
 City nvarchar(30) NOT NULL,
 StateProvinceID int NOT NULL,
 PostalCode nvarchar(15) NOT NULL,
 rowguid uniqueidentifier,
 ModifiedDate datetime NOT NULL);
GO

3. Populate the table by using Bcp.exe:
!!bcp TK441Ch05.dbo.Address in C:\My Documents\Microsoft Press\TK70-
441\Chapter05\Ad.dat -T -c ÐhTABLOCK

4. Alternatively, execute the following from a command prompt:
bcp TK441Ch05.dbo.Address in C:\TK441\Chapter05\Ad.dat -T -c ÐhTABLOCK

5. Check the size of the transaction log. It should be about 0.5MB. Use the DBCC SQLP-
ERF command to check the log size:
DBCC SQLPERF('LOGSPACE');
GO

Quick Check
1. Can you achieve load balancing over time?

2. What kinds of issues can you not correct with indexes?

Quick Check Answers
1. Yes, you can use a message queuing solution such as SQL Server Service Broker to

achieve load balancing over time.

2. Although indexes are your primary tool for improving performance in a database,
you cannot use them to solve all problems. For example, you cannot do anything
if your application sends poor queries, if you have a performance problem built
into your user-defined type, if you have a poor logical database design, and so on.

146 Chapter 5 Using Appropriate Database Technologies and Techniques for Your Application
Lesson 4: Designing Interoperability with External
Systems

Estimated lesson time: 20 minutes

Like scalability, interoperability is a broad term. SQL Server 2005 has many methods for
implementing interoperability with external systems in synchronous and asynchronous ways.
Interoperating can simply mean exporting data, or it can mean exposing procedures and func-
tions as Web methods to external applications. In this lesson, you will learn about SQL Server
tools and methods that you can use to connect SQL Server with external systems.

Synchronous Methods
When you interoperate with external systems synchronously, you exchange data and call
methods in real time, without latency. For importing and exporting data in real time, you can
use the following methods:

n With distributed queries, you can read and update data in and from heterogeneous data
sources. All you need to interoperate with a specific source is the OLE DB provider for
that source. OLE DB providers expose data in tabular format, which SQL Server can con-
sume. You can implement distributed queries in the following ways:

q You can create a permanent linked server. A linked server is a named connection
string to the external source, with authentication information for that source
stored on SQL Server. Then you can refer to linked objects with four-part names. In
addition, you can use the OPENQUERY rowset function in the FROM clause for
pass-through queries executed on the specified linked server.

q You can use ad hoc distributed queries. By default, SQL Server does not allow ad
hoc distributed queries. However, if a DBA allows them, you can use the OPEN-
ROWSET and OPENDATASOURCE rowset functions in the FROM clause for ad hoc
access to the external data.

n You can also treat bulk import, which you learned about in the previous lesson, as an
interoperability method. If you use the BULK INSERT or INSERT . . . SELECT . . . FROM
OPENROWSET(BULK . . .) T-SQL commands from your application or stored proce-
dures, then you can treat this as a synchronous method.

Besides exchanging data with other systems, you can interoperate with external systems by
calling the methods the system exposes. SQL Server provides native XML Web services by
supporting open standards such as Hypertext Transfer Protocol (HTTP), Simple Object
Access Protocol (SOAP), and Web Services Definition Language (WSDL). HTTP is the core
World Wide Web protocol and provides a platform-neutral way of exchanging data. SOAP
defines how to use XML and HTTP to access Web services and objects. With a WSDL document,

Lesson 4: Designing Interoperability with External Systems 147
you describe Web services. Through native Web services, you can expose stored procedures
and UDFs as Web methods and, thus, make them available to any application that can send a
SOAP request. You will learn more about native Web services in Chapter 14, “Designing for
Data Distribution.”

Although SQL Server can expose Web methods, it cannot consume Web methods from other
Web services through T-SQL expressions. However, you could consume Web methods from
SQL Server through CLR integration, with the help of CLR procedures and UDFs. CLR inte-
gration is not limited to consuming Web services, however; you can treat it as a general tool for
interoperability. However, be aware that using CLR objects outside SQL Server means giving
the CLR assemblies at least the EXTERNAL_ACCESS permission set. Use anything other than
the SAFE permission set extremely carefully.

Asynchronous Methods
If you interoperate with external systems asynchronously, SQL Server tools and services pro-
vide the following methods for data distribution:

n Replication Transactional replication typically has very low latency and comes quite
close to the latency of synchronous methods. SQL Server can serve as publisher or sub-
scriber for replication.

n SQL Server Integration Services (SSIS) With SSIS, you can use SQL Server as the source
or destination of data movement. In addition, SSIS provides many built-in tasks and
transformations you can use to transform the data on the way to its destination.

n SQL Server Reporting Services (SSRS) End users can subscribe to reports, and you can
deliver reports through different channels, rendering them in different formats, includ-
ing XML.

n Bcp.exe You can use the Bcp.exe bulk copy utility for asynchronous bulk import and
export of data.

IMPORTANT SSRS and data movement

Although you can use SSRS reports to export data, this is not the primary purpose of SSRS. If your
task is just data movement, without any report rendering, choose SSIS instead.

You can also use message queuing for asynchronous interoperability with external systems.
With message queuing, you are not limited to data exchange only; you can send and receive
any kind of message. As you already know, SQL Server 2005 provides SSB as a message queu-
ing system. However, for now, SSB is limited to communications between SQL Server 2005
instances only; thus, you cannot treat SSB as an interoperability tool yet.

Although you cannot use SSB to communicate with heterogeneous systems yet, SQL Server
uses it internally for another kind of interoperability. SQL Server 2005 can notify applications

148 Chapter 5 Using Appropriate Database Technologies and Techniques for Your Application
that their data cache is obsolete. With ADO.NET 2.0, an application can subscribe to SQL
Server 2005 Query Notifications through objects of the new SqlDependency or SqlNotification-
Request classes. SqlDependency is a high-level abstraction class, which enables you to issue the
SqlCommand object with a dependency. The SqlDependency object then watches for notifica-
tions of changes of the rows from the SqlCommand query definition. SqlNotificationRequest
objects can use the internal query notifications Broker queue directly. SQL Server uses
indexed-view technology for the change-detection mechanism.

Practice: Linking to Excel 2007
Later in this training kit, you will learn more about such interoperability methods as SSB and
native Web services. In this practice, however, you will implement simple synchronous data
interoperability with a Microsoft Office Excel 2007 worksheet through a linked server.

� Exercise 1: Create a Linked Server

To create a linked server to an Excel 2007 file, you cannot use the Microsoft Jet OLE DB pro-
vider anymore. You have to use the Microsoft Office 12.0 Access Database Engine OLE DB pro-
vider (Microsoft.ACE.OLEDB.12.0).

1. Create a linked server to the Excel 2007 file MyExcel2007.xlsx, which is provided on the
CD in the folder for this chapter. The following code assumes you installed the file to the
C:\My Documents\Microsoft Press\TK70-441\Chapter05folder:
USE TK441Ch05;
GO
EXEC master.dbo.sp_addlinkedserver
 @server = N'ExcelSource',
 @srvproduct=N'Excel',
 @provider=N'Microsoft.ACE.OLEDB.12.0',
 @datasrc=N'C:\My Documents\Microsoft Press\TK70-441\Chapter05\MyExcel2007.xlsx',
 @provstr=N'Excel 12.0';
GO

2. You have to provide the required security information. Because the Excel file is not pro-
tected, you must make connections without using a security context. You can use the
sp_addlinkedsrvlogin system procedure for this task:
EXEC master.dbo.sp_addlinkedsrvlogin
 @rmtsrvname = N'ExcelSource',
 @locallogin = NULL ,
 @useself = N'False';
GO

� Exercise 2: Browse the Linked Server

After establishing the linked server, you need to browse the data stored on that server—that is,
the data in your Excel 2007 file.

Lesson 4: Designing Interoperability with External Systems 149
1. Before retrieving the data, you have to obtain information about table and column
names exposed through the OLE DB provider. You can use the sp_table_ex and
sp_columns_ex system stored procedures to find this information:
EXEC sp_tables_ex ExcelSource;
EXEC sp_columns_ex ExcelSource;
GO

2. Note that Excel does not use the catalog and schema part of the name for naming its
objects. However, you still have to use the four-part name when you refer to linked
objects in T-SQL queries. You need to have three dots in the name; however, you can
omit the catalog and the schema part. You can refer to an Excel object by using the
linkedserver . . . sheet$ format. For browsing the Excel file, you can use the following
query:
SELECT ProductCategoryID,
 Name,
 ModifiedDate
 FROM ExcelSource...Sheet1$;
GO

� Exercise 3: Cleanup

Because this is the last exercise for this chapter, clean up your SQL Server instance.

Drop the database for this chapter and remove the linked server information:
USE master;
DROP DATABASE TK441Ch05;
GO
EXEC sp_droplinkedsrvlogin 'ExcelSource', NULL;
EXEC sp_dropserver 'ExcelSource';
GO

Quick Check
1. Which of the following is not an interoperability tool?

A. Distributed queries

B. Native Web services

C. Replication

D. SQL Server Service Broker

2. You want to disseminate data asynchronously on your local area network. How-
ever, you need to achieve as small a latency as possible. Which technology would
you use?

150 Chapter 5 Using Appropriate Database Technologies and Techniques for Your Application
Quick Check Answers
1. The correct answer is D. SQL Server Service Broker is limited to communication

only between SQL Server 2005 instances for now.

2. Transactional replication on local area networks typically transfers the transactions
to subscribers in just a few seconds. Therefore, you should use this technology.

Case Scenario: Implement Database Technologies and
Techniques for Your Application

Tailspin Toys has implemented an ASP.NET application for ordering. The customers are gen-
erally pleased with this application. However, they occasionally complain that the list prices
for the products in the ASP.NET application are not the same as they get on the invoices that
Tailspin Toys sends to them. Obviously, the ASP.NET cache is not refreshed frequently
enough.

The ASP.NET application is a big success. You realize this because the tables that support
orders grow quickly, 24x7. However, you are concerned because your administrative tasks on
the database, such as backups, take more and more time to complete.

1. How can you ensure current data in the ASP.NET cache?

2. What can you do to shorten the time that daily maintenance operations require?

Chapter Summary
n The XML data type is very useful for creating a dynamic schema.

n You can improve the performance of searches in an XML data type column by using
XML indexes.

n CLR code is faster than T-SQL code for CPU-intensive operations.

n Use T-SQL for all operations on data.

n Design for scalability from the beginning of the design process.

n You can use tools and techniques to scale up within a single system and to scale out
across multiple systems.

n SQL Server 2005 gives you many methods for implementing interoperability with exter-
nal application and other database management systems.

Chapter 6

Designing Objects That Retrieve
Data

Querying the database and retrieving data is possibly the most common activity executed
against databases. Being a database developer involves defining tuned queries and applying
Transact-SQL (T-SQL) constructions wisely to obtain the desired results in terms of the data
being returned, the amount of time it takes for the database to process the query, data valida-
tion, and several other factors.

However, T-SQL code cannot exist by itself. It must be packaged in special objects that define
the specific operations and context that the particular T-SQL code needs to retrieve data.
There are three types of objects that retrieve data: views, stored procedures, and user-defined
functions (UDFs).

In this chapter, you will learn the key design practices to apply when designing views, stored
procedures, and UDFs to retrieve data. You will see when to use each of these different types
of database objects, the implementation variations between them, and how to take advan-
tage of what each has to offer. This chapter does not focus on how to design (or develop) the
T-SQL code that those objects might contain. To learn how to design (or develop) the T-SQL
code that views, stored procedures, and functions might contain, read Inside Microsoft SQL
Server 2005: T-SQL Querying by Itzik Ben-Gan, Lubor Kollar, and Dejan Sarka (Microsoft
Press, 2006).

Exam objectives in this chapter:
n Design objects that retrieve data.

n Design views.

n Design user-defined functions.

n Design stored procedures.
151

152 Chapter 6 Designing Objects That Retrieve Data
Before You Begin
To complete the lessons in this chapter, you must have:

n A general understanding of the different database objects supported in Microsoft SQL
Server 2005.

n Knowledge about the T-SQL syntax required to write views, stored procedures, and user-
defined functions.

n A SQL Server 2005 instance (any edition), with the sample AdventureWorks database
installed. Sample databases are available with SQL Server 2005 Enterprise edition but
are not a part of the default installation. Alternatively, you can install sample databases
from http://msdn2.microsoft.com/en-us/library/ms143739.aspx.

IMPORTANT Practices in this chapter build upon each other

All the lesson practices in this chapter build upon each other; to move to the next practice, you
need to f inish the previous one.

Lesson 1: Designing Views 153
Lesson 1: Designing Views

Estimated lesson time: 40 minutes

Views are often called virtual tables because they can be referenced inside the T-SQL language
whenever a table name is expected. This means that SQL Server 2005 enables you to encap-
sulate (or package) a specific T-SQL query inside a view and reference it anywhere else in the
database without having to declare the T-SQL query again. For database developers, there are
several scenarios in which this is valuable:

n Hiding implementation details as a matter of security

n Code maintainability

n Code reusability

n Backward compatibility when maintaining multiple versions of client applications not
aware of changes in the database schema

In this lesson, you will look at the key design decisions to consider, depending on the sce-
nario, when designing a view to retrieve data in SQL Server 2005.

Choosing Between the Different Types of Views
T-SQL offers the CREATE VIEW statement to define any type of view. Depending on certain
implementation and deployment differences, views can be standard views, indexed views, or
partitioned views. These implementation details are also used by the SQL Server query opti-
mizer to decide the best strategy for executing the code contained in the view.

When designing views, you must have a clear understanding of the view’s purpose, the sce-
nario that it fulfills, where the data is located, and the security context under which it will exe-
cute. These details enable you to choose carefully the type of view that will provide the most
benefit according to the requirements of the scenario that you are designing for.

Designing Standard Views
You use a standard view when you want to package a T-SQL query as a unit for security,
deployment, and reusability. A standard view is the most common type of view, fitting most
scenarios.

Standard views store only the encapsulated T-SQL query code instead of storing the result-
ing data. When referenced from another query, the view is expanded in place with the actual
T-SQL query code it contains so that the SQL Server 2005 query processor compiles a single
execution plan for the whole query. Because standard views are always materialized at run
time, the execution cost is exactly the same as if the actual T-SQL query had been fed to the
query engine.

154 Chapter 6 Designing Objects That Retrieve Data
The main benefits of encapsulating a query in a view are:

n Control over what you want to make visible outside of the database to protect the inner
complexities of the database schema (this includes data structures as well as naming
conventions). Acting as an abstraction layer, a view provides a public interface to the out-
side world, and you, as the designer, decide what is exposed and how.

n By hiding the database schema, the view protects outside data consumers and client
applications from schema changes and gives database designers the ability to make
changes to inner details without affecting consumers.

The following code example uses a standard view to filter the sales data by showing only the
sales orders coming from the Northeast territory:

CREATE VIEW [Sales].[vNortheastSalesOrderHeader]
AS
SELECT *
FROM Sales.SalesOrderHeader
WHERE (TerritoryID IN
 (SELECT TerritoryID
 FROM Sales.SalesTerritory
 WHERE (Name LIKE N'Northeast')))

On the Companion Disc This chapter includes many code examples. You will f ind all the
code from this chapter on the companion CD in the C:\My Documents\Microsoft Press\TK70-441
\Chapter06\Sql folder.

Because standard views do not occupy disk storage space, you can define as many views as
needed without affecting system performance, so always design views that return just the right
amount of data.

IMPORTANT Maximum number of objects

The sum of the number of all objects in a database cannot exceed 2,147,483,647.

When designing a view, consider that it can provide different ways of looking at the data. You
can use a view to pre-combine some values, pre-aggregate data, or consolidate multiple tables
to provide a new perspective on the data.

A view represents an external interface that protects outsiders from schema changes and from
understanding the inner complexity of the physical schema or abstracts such changes and
complexity. This is an important concept and technology because it uncouples applications
from the table’s schema, which is harder to maintain and modify.

Lesson 1: Designing Views 155
Designing Indexed Views
Because standard views store only the T-SQL query instead of the result set, a standard view
might affect database performance in cases in which the T-SQL query in the view involves
complex processing of large numbers of rows, multiple levels of joining and data aggregation,
repeating patterns of queries, or repeated joins of the same tables on the same keys. In such
cases, creating an indexed view might provide better performance than using standard views.

You convert a standard view into an indexed view when you define a unique clustered index
(and optional nonclustered indexes) on the view to improve lookup performance. After you
create the unique clustered index, the query’s result set is materialized and stored in physical
storage, so there is no overhead associated with executing this costly operation at run time.
The query optimizer treats an indexed view referenced in the FROM clause as a standard view.
However, if designed correctly, the indexed view will be the least expensive path, so SQL
Server will use its index to execute the query.

IMPORTANT Clustered index on a view vs. a table

There is a big difference between a clustered index on a view and a regular clustered index on a
table. The clustered index on a view indexes a result set that might include pre-computed values,
aggregates, and data coming from multiple tables.

As you learned in Chapter 4, “Designing a Database for Performance,” adding indexes
increases the overhead on the database because the indexes require ongoing maintenance.
Therefore, give careful consideration to finding the right balance of indexes and maintenance
overhead.

BEST PRACTICES Use indexed views for infrequently changing data

Indexed views are recommended for querying infrequently changing data mostly used for read-
only purposes. If you need to execute sporadic updates on the data, consider the possibility of
dropping any indexed views before the update and re-creating the indexed views after the update
to improve update performance.

When designing indexed views, you need to take into account the same factors as when
designing table indexes. For example, the indexed view might not provide any significant per-
formance gains if its size is similar to the size of the original table. In addition, when choosing
the clustered index key, choose a key compact enough so that its size will not affect perfor-
mance when creating multiple nonclustered indexes on the view or when doing key compar-
isons to find a row.

156 Chapter 6 Designing Objects That Retrieve Data
An important benefit of using indexed views in SQL Server 2005 is that the query optimizer
might choose to reuse the index on any other query being executed even if the indexed view
is not specified in the FROM clause. Database designers need to consider creating indexed
views that can satisfy multiple queries, operations, or both.

The query optimizer might consider using the index of an indexed view only when certain
conditions are met—for example, when several session options are set to ON (ANSI_NULLS,
ANSI_WARNINGS, and others), when there is a match between the view index columns and
elements in the query, and when the index is the least expensive execution path.

IMPORTANT Using the NOEXPAND table hint to force index usage

In SQL Server 2005 Enterprise edition, indexed views are chosen automatically, even when not
specif ied on the FROM clause. However, if you are using a different edition of SQL Server 2005,
you need to specify the NOEXPAND table hint to force the use of an index. You might also choose
to specify the EXPAND VIEWS hint so that the query optimizer will not use any view indexes.

The following code example uses an indexed view to materialize several aggregated sales data.
Notice the different options that need to be set:

SET NUMERIC_ROUNDABORT OFF;
SET ANSI_PADDING, ANSI_WARNINGS, CONCAT_NULL_YIELDS_NULL, ARITHABORT,
 QUOTED_IDENTIFIER, ANSI_NULLS ON;
GO

CREATE VIEW [Sales].[vTotalSalesForAllRegions]
WITH SCHEMABINDING
AS
SELECT
 TerritoryID,
 SUM(SubTotal) AS SubTotal,
 SUM(TotalDue) AS TotalDue,
 COUNT_BIG(*) AS CountBig
FROM Sales.SalesOrderHeader
GROUP BY TerritoryID
GO

CREATE UNIQUE CLUSTERED INDEX IDX_V1
 ON [Sales].[vTotalSalesForAllRegions] (TerritoryID);
GO

There are other requirements that need to be fulfilled when designing indexed views. To
learn about them, see the “Creating Indexed Views” topic in SQL Server 2005 Books Online
at http://msdn2.microsoft.com/en-us/library/ms191432(SQL.90).aspx.

Lesson 1: Designing Views 157
Designing Partitioned Views
A partitioned view consists of a T-SQL query that consolidates the data coming from multiple
tables, called member tables. Each of these member tables has been designed to partition the
data horizontally by storing certain ranges of data based on a partitioning column. A partitioned
view provides a unified view of all the data stored in any number of member tables and hides
the complexity of querying (local or remote) database servers to provide a single consolidated
view of the data.

The partitioning column holds the values that specify where to look for a range of values.
These ranges are enforced through CHECK constraints in the partitioning column. This col-
umn can be of any data type (usually numeric types and date types), but it must be part of the
table primary key, it cannot accept nulls, and it cannot be an IDENTITY column.

The main difference—and benefit—of using a partitioned view is the declaration of CHECK
constraints on each partitioning column to filter the values that can be inserted in each mem-
ber table. (These values cannot overlap between tables.) When the view is queried, the SQL
Server 2005 query optimizer first validates the CHECK constraints on each member table so
that only the necessary tables are queried according to the lookup ranges required in the
query, resulting in a performance improvement. If no CHECK constraints are defined, this
would be the same as having a standard view.

The sample AdventureWorks database was designed to run on a single server, so all of the sales
information is consolidated in one table called SalesOrderHeader, which has a foreign key
constraint to the SalesTerritory table, as Figure 6-1 shows.

Figure 6-1 The SalesOrderHeader table and SalesTerritory table in AdventureWorks

158 Chapter 6 Designing Objects That Retrieve Data
Suppose that instead of consolidating the data in a centralized way like this, you want each of
the territories to hold its own sales data. So, you create a SalesOrderHeader table for each ter-
ritory, as Figure 6-2 shows. (This example creates a SalesOrderHeader table for the Central,
Northwest, Northeast, Southwest, and Southeast territories.)

Figure 6-2 SalesOrderHeader tables for each territory

Each table has been designed as shown in the following code sample:

CREATE TABLE [Sales].[SalesOrderHeaderCentral](
[SalesOrderID] [int] IDENTITY(1,1) NOT FOR REPLICATION NOT NULL,
[RevisionNumber] [tinyint] NOT NULL
 CONSTRAINT [DF_SalesOrderHeaderCentral_RevisionNumber] DEFAULT ((0)),
[OrderDate] [datetime] NOT NULL
 CONSTRAINT [DF_SalesOrderHeaderCentral_OrderDate] DEFAULT (getdate()),
[DueDate] [datetime] NOT NULL,
[ShipDate] [datetime] NULL,
[Status] [tinyint] NOT NULL
 CONSTRAINT [DF_SalesOrderHeaderCentral_Status] DEFAULT ((1)),
[OnlineOrderFlag] [dbo].[Flag] NOT NULL
 CONSTRAINT [DF_SalesOrderHeaderCentral_OnlineOrderFlag] DEFAULT ((1)),
[SalesOrderNumber] AS
 (isnull(N'SO'+CONVERT([nvarchar](23),[SalesOrderID],0),N'*** ERROR ***')),
[PurchaseOrderNumber] [dbo].[OrderNumber] NULL,
[AccountNumber] [dbo].[AccountNumber] NULL,
[CustomerID] [int] NOT NULL,
[ContactID] [int] NOT NULL,
[SalesPersonID] [int] NULL,

Lesson 1: Designing Views 159
[TerritoryID] [int] NOT NULL CHECK (TerritoryID BETWEEN 1 AND 10),
[BillToAddressID] [int] NOT NULL,
[ShipToAddressID] [int] NOT NULL,
[ShipMethodID] [int] NOT NULL,
[CreditCardID] [int] NULL,
[CreditCardApprovalCode] [varchar](15) NULL,
[CurrencyRateID] [int] NULL,
[SubTotal] [money] NOT NULL
 CONSTRAINT [DF_SalesOrderHeaderCentral_SubTotal] DEFAULT ((0.00)),
[TaxAmt] [money] NOT NULL
 CONSTRAINT [DF_SalesOrderHeaderCentral_TaxAmt] DEFAULT ((0.00)),
[Freight] [money] NOT NULL
 CONSTRAINT [DF_SalesOrderHeaderCentral_Freight] DEFAULT ((0.00)),
[TotalDue] AS (isnull(([SubTotal]+[TaxAmt])+[Freight],(0))),
[Comment] [nvarchar](128) NULL,
[rowguid] [uniqueidentifier] ROWGUIDCOL NOT NULL
 CONSTRAINT [DF_SalesOrderHeaderCentral_rowguid] DEFAULT (newid()),
[ModifiedDate] [datetime] NOT NULL
 CONSTRAINT [DF_SalesOrderHeaderCentral_ModifiedDate] DEFAULT (getdate()),
CONSTRAINT [PK_SalesOrderHeaderCentral_SalesOrderID] PRIMARY KEY CLUSTERED
(
 [SalesOrderID] ASC,
 [TerritoryID]
)
WITH
(
 PAD_INDEX = OFF,
 STATISTICS_NORECOMPUTE = OFF,
 IGNORE_DUP_KEY = OFF,
 ALLOW_ROW_LOCKS = ON,
 ALLOW_PAGE_LOCKS = ON
) ON [PRIMARY]
) ON [PRIMARY]

Notice that the TerritoryID column has been declared with a CHECK constraint that filters the
values that this table can hold; this table will hold values only for territories with IDs between
1 and 10.

Then, you can create a partitioned view to consolidate the data coming from all the sales ter-
ritories, as in the following code example:

CREATE VIEW [Sales].[vTotalSalesOrderHeaders]
AS
 SELECT * FROM [Sales].[SalesOrderHeaderCentral]
UNION ALL
 SELECT * FROM [Sales].[SalesOrderHeaderSouthWest]
UNION ALL
 SELECT * FROM [Sales].[SalesOrderHeaderSouthEast]
UNION ALL
 SELECT * FROM [Sales].[SalesOrderHeaderNorthWest]
UNION ALL
 SELECT * FROM [Sales].[SalesOrderHeaderNorthEast]

160 Chapter 6 Designing Objects That Retrieve Data
In case you want to look at all the sales order headers coming from all territories, you can
query the partitioned view with a query such as this:

SELECT *
FROM [Sales].[vTotalSalesOrderHeaders]

When the view is executed without a WHERE clause, the query optimizer queries each of the
member tables, as Figure 6-3 shows.

Figure 6-3 Estimated query plan for the execution of a partitioned view without a filter

However, if a WHERE clause is declared, the query optimizer validates the CHECK constraints
in the partitioning column, so only the necessary tables are queried. For example, to look for
the sales order header coming from the territory with ID 15, you would execute a query such
as this:

SELECT *
FROM [Sales].[vTotalSalesOrderHeaders]
WHERE TerritoryID = 15

The query optimizer knows that Territory ID 15 is located in the range of values coming from
the SalesOrderHeaderNortheast table.

Look at the difference in the estimated query plan for executing the partitioned view with a fil-
ter, which Figure 6-4 shows.

Lesson 1: Designing Views 161
Figure 6-4 Estimated query plan for the execution of a partitioned view with a filter

When the member tables contained inside the partitioned view are all available inside the
same database server, the partitioned view is called a local partitioned view. If at least one of the
member tables is located on a remote server, it is called a distributed partitioned view.

Federated Database Servers with Partitioned Views You can use partitioned views to
enhance the performance of a system by horizontally partitioning and spreading the load
through a set of remote servers that cooperate to share the processing load. This is a technique
called federated database servers, which you use to scale out a set of servers to support the pro-
cessing of large systems and Web sites.

IMPORTANT Scaling out vs. scaling up

Scaling out is the technique of increasing the processing power of a system by adding one or more
additional computers, or nodes, instead of strengthening the hardware of a single computer (to
scale up).

In a set of federated database servers, no matter which server is queried, they all return the
same data. This result is achieved by creating partitioned views in each of the servers that con-
solidate the local data plus the remote data from the other servers in the federation. Each fed-
erated server is known to one another through a linked server declaration.

IMPORTANT Partitioned views vs. partitioned tables

As with any other view, partitioned views encapsulate only the T-SQL query used to consolidate the
data. The partitioned view does not impose (or care about) any physical distribution of the data.
This is the main difference between partitioned views and partitioned tables.

162 Chapter 6 Designing Objects That Retrieve Data
Going back to the previous example that extended the sample AdventureWorks database, you
distributed the sales information in different member tables (one for each territory) to achieve
location independence so that each territory can manage its own SalesOrderHeader table in its
own database server. At the same time, however, you provided a consolidated view by declar-
ing the other regions as linked servers and providing a partitioned view that unions all the
data, thus creating a federation of database servers. Table 6-1 summarizes some key differ-
ences between the three types of views.

Practice: Designing Views
In this practice, you must apply the concepts from Lesson 1, “Designing Views,” to design a
standard view and an indexed view. All the practices in this chapter refer to the Production set
of tables from the AdventureWorks database, which the entity-relationship diagram (ERD) in
Figure 6-5 shows.

Table 6-1 Types of Views in SQL Server 2005

Standard View Indexed View Partitioned View

Stores T-SQL query only Stores unique clustered index Stores T-SQL query only

Can aggregate data from local
and remote tables

Contains data from local
tables

Can aggregate data from local and
remote tables

Materializes query at run time Materializes query during
index creation

Materializes query at run time

Better for simpler queries and
to encapsulate queries on fre-
quently changing data

Better for complex queries and
to encapsulate queries on
infrequently changing data

Better for queries that aggregate
data from multiple tables (local
and remote)

Always queries all referenced
objects in query

When well designed, the
index provides the material-
ized result set

Intelligently chooses which tables
to query, depending on partition-
ing column (when defined with a
CHECK constraint)

Lesson 1: Designing Views 163
Figure 6-5 Entity-relationship diagram of the Production set of tables from the AdventureWorks
database

The grayed rows in Figure 6-5 are the ones that will be needed in the following exercises.

IMPORTANT Practices build upon each other

The practices in this chapter build upon each other. You should not delete your work after you f in-
ish this practice.

� Exercise 1: Create a Standard View

In this exercise, as the database designer for AdventureWorks, you must design a view
that returns products that yield the most revenue in terms of the difference between the
price and the cost to produce. The production department is looking for products sold
at a higher price but produced at a lower cost. Make sure that the view also returns the
Category and Subcategory names for the product. Design your own view before reading
the suggested answer.

Suggested Answer

The following view satisfies the requirements:
USE [AdventureWorks]
GO
CREATE VIEW Get_Products_Estimated_Revenue
AS
SELECT
 Production.Product.ProductID,
 Production.ProductCategory.Name AS ProductCategory,
 Production.ProductSubcategory.Name AS ProductSubCategory,

164 Chapter 6 Designing Objects That Retrieve Data
 Production.Product.Name,
 Production.Product.ListPrice - Production.Product.StandardCost AS Revenue
FROM Production.Product INNER JOIN Production.ProductSubcategory ON
Production.Product.ProductSubcategoryID =
Production.ProductSubcategory.ProductSubcategoryID
INNER JOIN Production.ProductCategory ON
Production.ProductSubcategory.ProductCategoryID =
Production.ProductCategory.ProductCategoryID
WHERE (Production.Product.SellEndDate IS NULL)

� Exercise 2: Create an Indexed View

In this exercise, you decide to convert the preceding standard view into an indexed view
to improve performance when reading the ProductID, the product revenue, and the days
required to manufacture the product. You execute the following T-SQL declaration to
generate the index on the view:
CREATE UNIQUE CLUSTERED INDEX IDX_V1
 ON dbo.Get_Products_Estimated_Revenue (ProductID, Revenue, DaysToManufacture);

What modifications are required in the view’s T-SQL code declaration?

Suggested Answer

You need to make three key changes: mark the view declaration with the WITH SCHEMA-
BINDING option, include an extra column in the SELECT list returning the
COUNT_BIG(*) function, and include the DaysToManufacture column in the result set.

Quick Check
1. What type of view would you create if you needed to pre-aggregate data coming

from multiple remote database servers?

2. What is the storage cost of defining a standard view?

3. What is the storage cost of defining an indexed view?

Quick Check Answers
1. Either a standard view or a partitioned view would work for pre-aggregating data

from multiple remote database servers. Indexed views cannot be created when
data is coming from remote tables.

2. There is no storage cost with standard views. Standard views store only the T-SQL
query. This T-SQL query is executed every time the view is called, so the most up-
to-date data is retrieved.

3. Indexed views materialize the results of the query by creating an index structure.
As covered in Chapter 4, the size of the index depends on the type of index and the
columns chosen to be part of the index.

Lesson 2: Designing Stored Procedures 165
Lesson 2: Designing Stored Procedures

Estimated lesson time: 30 minutes

Views can contain only a single SELECT statement and can be used only to retrieve data.
Views are not suitable for situations in which the resulting result set (and, hence, the T-SQL
query to be executed) depends on external values, on data that needs to be validated, on deci-
sions that need to be made, or on conditions that need to be checked to construct the
expected result set dynamically. Views also are not suitable for situations in which the
expected result is not a result set but rather a scalar value. Instead, in these cases, you would
use stored procedures.

Similar to views, stored procedures do not store data. Stored procedures store the T-SQL que-
ries they contain, so they give designers the ability to package programming logic that is exe-
cuted and that queries data in real time. Unlike with views, the T-SQL code inside a stored
procedure is stored in pre-compiled format. So a query plan has already been calculated for the
stored procedure, which translates into better execution performance.

IMPORTANT Reusing programming logic

You can def ine as many stored procedures as you want without causing any toll on the system.
Look for programming logic that can be packaged to be reused by multiple programs or by other
stored procedures.

Even though stored procedures can contain any number and type of SQL statements
(except some CREATE statements), in this lesson, you will focus on designing stored proce-
dures to retrieve data. You will ignore, for now, stored procedures used to update data or for
data-definition language (DDL) operations.

When designing stored procedures, you need to consider several design questions:

n What type of stored procedure do you need?

n What type of data will the stored procedure return?

n What input, output, and optional parameters do you need to define for the stored pro-
cedure?

n What status value do you need to define for the stored procedure to return?

n What error handling routines do you need to include?

n What security context should the stored procedure execute under?

166 Chapter 6 Designing Objects That Retrieve Data
What Type of Stored Procedure Do You Need?
The first stored procedure design decision you need to make is to choose the right technology
for implementing the procedure. SQL Server 2005 supports three types of user-defined stored
procedures that return data: T-SQL stored procedures, common language runtime (CLR) stored
procedures, and extended stored procedures.

T-SQL Stored Procedures
This type of stored procedure is completely written in the T-SQL programming language, and
as explained previously, it can contain any number and type of SQL statements. This type of
stored procedure is usually used for set-based operations, for data-management language
(DML) operations, and when necessary to manipulate heavy loads of data.

CLR Stored Procedures
This type of stored procedure is written in any Microsoft .NET programming language (usually
Microsoft Visual Basic .NET or C# .NET). The main advantage of this type of procedure is that
all the .NET base class libraries are available to use, so operations that are difficult to develop
in T-SQL (such as XML manipulation, compression, encryption, string operations, complex
mathematical calculations, and so on) are very easy to implement with .NET. This type of
stored procedure is usually used to encapsulate reusable procedural code that must run inside
the database server. It is not recommended for set-based operations or to manipulate heavy
loads of data.

CLR stored procedures are outside the scope of this chapter; for more information about
them, see the “CLR Stored Procedures” topic in SQL Server 2005 Books Online at http://
msdn2.microsoft.com/en- us/library/ms131094.aspx.

Extended Stored Procedures
This type of stored procedure is usually written in the C programming language. The main
advantage of extended stored procedures is that they are compiled routines that run natively
inside the SQL Server address space. They are usually used to encapsulate complex scientific
or mathematical routines. CLR stored procedures provide a more robust and secure alterna-
tive to writing extended stored procedures.

IMPORTANT Avoid extended stored procedures

Microsoft has announced that it will remove extended stored procedures in a future version of SQL
Server and recommends that you avoid using them.

Lesson 2: Designing Stored Procedures 167
What Type of Data Will the Stored Procedure Return?
Stored procedures can return two types of data: tabular result sets and scalar values. Tabular
result sets are returned when you include a SELECT statement inside the stored procedure
code. The SELECT statement can be filtered by values coming from input parameters or from
calculated local variables.

There are two ways to return scalar values out of a stored procedure: by using OUTPUT
parameters and by setting the stored procedure return value. Remember that stored proce-
dures do not return values in place of their names, and they cannot be used directly in an
expression. You can run them only by using the EXECUTE statement.

Defining Input, Output, and Optional Parameters for the Stored
Procedure

When designing the stored procedure’s input and output parameters, take special care in
choosing the appropriate number of parameters, their names, their data types, their default
values, and their direction.

Choosing the Number of Parameters
Stored procedures are like an application programming interface (API) that the database
exposes to external applications and callers. Each stored procedure defines an operation con-
tract composed by the number of parameters that it exposes and their data types. It is called
an operation contract because once set, it should not be broken (unless you are using optional
parameters, as explained shortly). When designing a stored procedure, carefully choose how
many input, output, and optional parameters are needed. If you find yourself having to add
new input parameters (required parameters) in the life cycle of a stored procedure, consider
creating a new version of the stored procedure so that earlier clients can still use the previous
operation contract, while newer clients will support the new parameters.

Choosing the Name for a Parameter
Parameter names should be self-explanatory. The parameter name must transmit to the caller
the parameter’s intention. The recommendation is to avoid weird abbreviations and to be con-
sistent. (The same word means the same thing throughout the database.) The maximum iden-
tifier size in SQL Server 2005 is 128 characters, so there is plenty of room for good naming
practices!

Choosing the Data Type for a Parameter
The parameter’s data type constrains the type of information that can be sent into that param-
eter. The recommendation is to use the data type that best fits the type and size of information
the parameter will contain as well as providing filters to avoid overflow problems and security

168 Chapter 6 Designing Objects That Retrieve Data
issues. For example, say you are considering whether to use the integer data type, which
accepts values up to 32,000 characters long, or the tinyint data type, which accepts values up
to 128 characters long. If you know that the parameter value should never be more than 128
characters long, select the tinyint data type.

Choosing Between Input, Output, and Optional Parameters
For all parameters declared in a stored procedure, the external caller can provide input values.
These values can be consumed inside the stored procedure, but any modification to those val-
ues inside the procedure will not be reflected to the outside caller.

To pass values from inside the stored procedure to the outside caller, the parameter must be
declared as OUTPUT and called with the OUTPUT modifier. By specifying the OUTPUT mod-
ifier, the parameter is passed by reference, meaning that any changes to the parameter’s value
inside the stored procedure will be copied back to the caller.

Default values can be specified for both input and output parameters. A default value indicates
that the parameter is optional, so if the outside caller does not specify a value when calling the
stored procedure, the default value will be used. Look at the following stored procedure
parameter definition in this code example:

USE [AdventureWorks]
GO
CREATE PROCEDURE [Sales].[udpGetSalesByTerritory]
 @TerritoryID int,
 @SumTotalSubTotal money = 10000 OUTPUT,
 @SumTotalDue money OUTPUT
AS
SELECT
 @SumTotalSubTotal = SUM(SubTotal),
 @SumTotalDue = SUM(TotalDue)
FROM Sales.SalesOrderHeader
WHERE (TerritoryID = @TerritoryID) AND
 (SubTotal > @SumTotalSubTotal)

The @TerritoryID parameter is an input parameter, so the caller must supply an input value of
type int. The @SumTotalSubTotal parameter is optional, so the caller can supply a new value
of type money or use the default value of 10,000. The @SumTotalDue parameter is an OUTPUT
parameter, so the caller is not forced to supply an input value. If the caller declares the call by
specifying the OUTPUT modifier, the value is copied back to the caller after the stored proce-
dure execution.

The following code example shows how to call the preceding stored procedure:

USE [AdventureWorks]
GO
DECLARE @subTotal money, @TotalDue money;
SET @subTotal = 1

Lesson 2: Designing Stored Procedures 169
EXEC [Sales].[udpGetSalesByTerritory] 3, @subTotal OUTPUT, @TotalDue OUTPUT
PRINT @subTotal
PRINT @TotalDue

Database designers must carefully choose parameter direction to return only the necessary
information. Optional parameters are more flexible in terms of maintainability when deal-
ing with changes in the operation contract and having to maintain support to earlier calling
applications.

Defining the Status Value the Stored Procedure Returns
Every stored procedure can return an integer value known as the execution status value or
return code. By setting this return value, the stored procedure communicates any important
result state to the caller.

SQL Server 2005 does not force stored procedures to return an execution status value, nor
does it supply a list of possible values to return. When designing a stored procedure, the
designer must decide what possible values will be returned as status by the stored procedure
as well as their meaning. Outside callers must be aware of this information to understand the
return codes.

BEST PRACTICES Ensuring precision of return code

Pre-def ine a closed list of possible return codes that are consistent throughout all the stored pro-
cedures in the database to indicate different statuses and to ensure that the same return code
means exactly the same in every stored procedure.

Designing Error Handling Routines
When an error is encountered inside a stored procedure, SQL Server tries to continue execu-
tion gracefully with the next statement in the T-SQL code. Thus, an error will not stop the exe-
cution of the stored procedure. However, this does not mean that the error has been handled
or resolved.

 T-SQL in SQL Server 2005 implements several error handling constructs, including the new
TRY and CATCH technique. Explaining the new TRY and CATCH error handling technique is
outside the scope of this chapter, but the topic, “Using TRY . . . CATCH in Transact-SQL,” in
SQL Server 2005 Books Online at http://msdn2.microsoft.com/en-us/library/ms179296.aspx
offers a full explanation of this new feature.

When designing a stored procedure, you must always include error handling routines. The
error handling must focus on errors that you expect could happen (because of data validation,
for example) and errors that you do not expect to happen. (There is always a chance for some-
thing exceptional to happen, something you did not foresee or plan.)

170 Chapter 6 Designing Objects That Retrieve Data
The importance of including error handling is less focused on processing logic and more
focused on making the application more manageable, reliable, and able to detect problems
faster. Design an error handling strategy so that the database is capable of detecting errors,
handling the errors so that it can continue execution gracefully, and logging and reporting
error information to database administrators for monitoring and problem detection.

Executing Under the Right Security Context
The security execution context is the identity against which permissions to execute statements
or perform actions are checked. Usually, this identity corresponds to the identity used to log
on to the database.

In SQL Server 2005, the execution context of a session can be explicitly changed. This is called
impersonation. When a user executes a stored procedure, the stored procedure can choose to
impersonate a different identity to provide the user with more (or fewer) permissions than it
currently holds under its own identity. This allows for the interesting scenario of denying
users access to the database tables and instead granting only rights to execute stored proce-
dures. Inside each stored procedure, the user is impersonated into a new identity with the
proper rights to execute the operation and computations that the stored procedure is sup-
posed to perform.

SQL Server 2005 introduces the EXECUTE AS clause for defining the execution context. Here
is a code example of how you can apply the clause:

CREATE PROCEDURE
WITH EXECUTE AS Ôuser1Õ
AS SELECT * FROM

EXECUTE AS can be applied with four different options:

n EXECUTE AS CALLER Executes the stored procedure by using the security context of the
outside caller. This is the default.

n EXECUTE AS user_name Executes the stored procedure by using the security context of
the specified user.

n EXECUTE AS SELF Executes the stored procedure by using the security context of the
user that is creating or modifying the stored procedure.

n EXECUTE AS OWNER Executes the stored procedure by using the security context of the
user that owns the stored procedure.

For more information about EXECUTE AS, see the “Using EXECUTE AS in Modules” topic in
SQL Server 2005 Books Online at http://msdn2.microsoft.com/en-us/library/ms178106.aspx.

Lesson 2: Designing Stored Procedures 171
Practice: Creating and Modifying a Stored Procedure
In this practice, which continues with the same scenario and tables from the practice in Les-
son 1, you will create a stored procedure that retrieves a result set and then modify the stored
procedure to add error handling.

IMPORTANT Practices build upon each other

To work successfully with this practice, you need to have f inished the practice from Lesson 1.

� Exercise: Create and Modify a Stored Procedure

In this exercise, you must create a stored procedure to return the product list, so the users can
filter and sort the resultset.

1. The view you designed in Lesson 1 has been in production for a while, and now the end
user needs the ability to filter and sort the products to conduct the proper analysis on
the data more easily. You are given the task of designing a stored procedure that returns
the product category name, product subcategory name, product name, revenue (differ-
ence between product price and product cost), and the number of days required to man-
ufacture the product. The user wants to be able to filter the results by the category and
subcategory as well as by the number of days required to manufacture the product.
Design your own solution before reading the suggested answer.

2. Now, your task is to modify the Get_Products_Estimated_Revenue_By_Categories
stored procedure definition to include TRY . . . CATCH error handling code. In case of an
error, log an error into a Log table. Design your own solution before reading the sug-
gested answer that follows.

Suggested Answers

1. The following code satisfies the requirements:
USE [AdventureWorks]
GO
CREATE PROCEDURE Get_Products_Estimated_Revenue_By_Categories
(
 @ProductCategoryID INT,
 @ProductSubcategoryID INT,
 @DaysToManufacture INT
)
AS
SELECT Production.ProductCategory.Name AS ProductCategory,
 Production.ProductSubcategory.Name AS ProductSubCategory,
 Production.Product.Name,
 Production.Product.ListPrice - Production.Product.StandardCost AS Revenue,
 Production.Product.DaysToManufacture
FROM Production.Product INNER JOIN Production.ProductSubcategory ON
 Production.Product.ProductSubcategoryID =
Production.ProductSubcategory.ProductSubcategoryID

172 Chapter 6 Designing Objects That Retrieve Data
 INNER JOIN Production.ProductCategory ON
 Production.ProductSubcategory.ProductCategoryID =
Production.ProductCategory.ProductCategoryID
WHERE (Production.Product.SellEndDate IS NULL) AND
 (Production.Product.DaysToManufacture < @DaysToManufacture) AND
 (Production.ProductCategory.ProductCategoryID = @ProductCategoryID) AND
 (Production.ProductSubcategory.ProductSubcategoryID = @ProductSubcategoryID)
GROUP BY Production.ProductCategory.Name, Production.ProductSubcategory.Name,
Production.Product.Name, Production.Product.ReorderPoint,
 Production.Product.DaysToManufacture,
Production.Product.StandardCost, Production.Product.ListPrice
ORDER BY Revenue DESC, DaysToManufacture DESC, ProductCategory, ProductSubCategory

2. Create a new table called Log that contains three columns: ID, [Error Number], and
[Error Description]. Modify the stored procedure’s code to include the SELECT state-
ment inside a TRY . . . CATCH block. When the CATCH block is reached, execute an
INSERT statement to insert the required details into the newly created Log table.

Quick Check
1. What happens if a parameter that is not defined as an output parameter is called

with the OUTPUT modifier?

2. What happens if a parameter that is defined as an output parameter is not called
with the OUTPUT modifier?

3. Consider the following scenario. Mark owns the SalesOrderHeaders table in the
database. He does not grant SELECT access to anybody. John creates the GetSales-
Headers stored procedure that needs to read from the SalesOrderHeaders table.
Mary needs to execute the GetSalesHeaders stored procedure. What is the correct
setting for the EXECUTE AS clause that lets all the users perform their required
tasks?

Quick Check Answers
1. If a parameter that is not defined as an output parameter is called with the OUTPUT

modifier, the database issues an error message.

2. If a parameter that is defined as an output parameter is not called with the OUTPUT
modifier, there is no error message, and the procedure is called. However, the mod-
ified value of the parameter is not copied back into the outside caller stack frame.

3. The correct setting is EXECUTE AS OWNER because only Mark has SELECT
access on the table. Under this scenario, anybody can execute the stored proce-
dure without requiring specific permissions for the SalesOrderHeaders table.

Lesson 3: Designing User-Defined Functions 173
Lesson 3: Designing User-Defined Functions

Estimated lesson time: 45 minutes

As you saw in the previous lesson, stored procedures provide the capability to include pro-
gramming logic to generate a dynamic response—either a scalar value or a result set. In this les-
son, you will learn how UDFs offer the same functionality with a twist: the possibility for this
functionality to be called from different contexts than stored procedures.

Similar to views and stored procedures, UDFs do not store data. A UDF stores T-SQL queries
that are executed when the function is called. As with stored procedures, the T-SQL code
inside a function is stored in pre-compiled format, so a query plan has already been calculated,
which translates into better execution performance.

However, unlike stored procedures, functions enable you to reuse their result in much more
flexible ways than stored procedures do. A stored procedure is called by using the EXECUTE
statement; it’s impossible to call a stored procedure from a SELECT statement. In contrast,
UDFs can be called from multiple contexts.

Table 6-2 summarizes some of the different contexts from which UDFs can be executed.

Table 6-2 Executing User-Defined Functions in SQL Server 2005

Context Usage Example Number of Executions

FROM clause of a
SELECT statement

The result set returned by a user-
defined function can be combined
with result sets coming from other
sources by using a JOIN condition or
UNION operations.

The user-defined function is
executed once.

Column list section of a
SELECT statement

Computed and/or calculated values
can be included as part of the
returned result. Also, a user-defined
function can be used to execute vali-
dation logic on each of the values
from a column that is soon to be
returned by the function.

The user-defined function is
executed one time per row.

WHERE or HAVING
clause of a SELECT
statement

The number of rows returned by the
SELECT statement can be filtered by a
complex logic coded inside a user-
defined function.

The user-defined function is
executed one time per row.

174 Chapter 6 Designing Objects That Retrieve Data
GROUP BY clause in a
SELECT statement

Output rows from a SELECT state-
ment can be grouped according to the
result of a user-defined function. The
user-defined function must be present
in both the SELECT list and GROUP
BY clause.

The user-defined function is
executed one time per row.

ORDER BY clause in a
SELECT statement

Output rows from a SELECT state-
ment can be ordered according to the
result of a user-defined function. The
user-defined function must be present
in both the SELECT list and ORDER
BY clause.

The user-defined function is
executed one time per row.

SET clause in an
UPDATE statement

The output value of a user-defined
function can be stored in a column
when calling the UPDATE statement.

The user-defined function is
executed one time per row.

VALUES clause of an
INSERT statement

The output value of a user-defined
function can be stored in a column
when calling the INSERT statement.

The user-defined function is
executed one time per row.

CHECK constraint
definition

Complex logic coded inside the user-
defined function can validate and filter
the allowed values to be stored in the
column.

The user-defined function is
executed one time per row.

DEFAULT definitions A user-defined function can return the
value to use as default value for a col-
umn in a table when inserting new
records in the table and not providing
a value for this column.

The user-defined function is
executed one time per row.

Computed
columns

A user-defined function can return the
value to use to calculate the value for a
computed column in a table when
inserting new records in the table.
Complex logic coded inside the user-
defined function can aggregate or cal-
culate values coming from multiple T-
SQL queries inside the user-defined
function.

The user-defined function is
executed one time per row.

Table 6-2 Executing User-Defined Functions in SQL Server 2005

Context Usage Example Number of Executions

Lesson 3: Designing User-Defined Functions 175
When designing UDFs, there are several design decisions you need to consider:

n What type of UDF do you need?

n What type of data will the UDF return?

n What kind of input parameters do you need to define for the UDF?

n What error handling routines do you need to include?

n What security context should the UDF execute under?

Exam Tip Unlike stored procedures, UDFs cannot be used to perform actions that modify the
database state. The T-SQL code inside a UDF can modify its internal values (internal state) only.
Hence, statements such as INSERT, UPDATE, and DELETE are not allowed inside a UDF unless they
are used to modify local TABLE-type variables.

What Type of UDF Do You Need?
SQL Server 2005 supports UDFs written in T-SQL code or with the .NET programming lan-
guages (called CLR user-defined functions). Both programming environments support two
types of UDFs: scalar UDFs and table-valued UDFs.

Scalar User-Defined Functions
Scalar UDFs enable you to return a single scalar value. This scalar value can be either a con-
stant value or the result of a complex arithmetic calculation inside the UDF. Scalar UDFs can
be written as inline scalar UDFs when just a single T-SQL statement is used or as multistatement
scalar UDFs when multiple T-SQL statements are used inside a BEGIN-END block.

Some of the most common uses of this type of UDF are in the column list section of a SELECT
statement and in the WHERE clause of a SELECT statement. If used in the column list, the
UDF can execute validation logic on a column’s values, calculations, or computations on a col-
umn’s values or return calculated values not using a column value as input. If used in the
WHERE clause, the UDF can execute validation and filtering logic.

The following code example shows how to define a scalar UDF that calculates the total
amount of tax that a certain territory must pay:

CREATE FUNCTION Calculate_Tax_For_Territory
 (@TerritoryID INT, @TaxPercent FLOAT)
RETURNS MONEY
AS
BEGIN
 DECLARE @Tax MONEY

 SELECT @Tax = SUM(Sales.SalesOrderDetail.LineTotal)
 FROM Sales.SalesOrderDetail INNER JOIN Sales.SalesOrderHeader ON
 Sales.SalesOrderDetail.SalesOrderID = Sales.SalesOrderHeader.SalesOrderID

176 Chapter 6 Designing Objects That Retrieve Data
 WHERE (Sales.SalesOrderHeader.TerritoryID = @TerritoryID)
 RETURN @Tax * @TaxPercent
END

You can call this scalar UDF in the SELECT’s column list, as the following example shows; this
example calculates the tax for all territories in AdventureWorks:

DECLARE @TaxPercentage FLOAT
SET @TaxPercentage = 0.13

SELECT Sales.SalesTerritory.Name,
 dbo.Calculate_Tax_For_Territory(Sales.SalesTerritory.TerritoryID, @TaxPercentage) AS Tax
FROM Sales.SalesOrderDetail INNER JOIN Sales.SalesOrderHeader ON
 Sales.SalesOrderDetail.SalesOrderID = Sales.SalesOrderHeader.SalesOrderID
 INNER JOIN Sales.SalesTerritory ON
 Sales.SalesOrderHeader.TerritoryID = Sales.SalesTerritory.TerritoryID
GROUP BY Sales.SalesTerritory.Name, Sales.SalesTerritory.TerritoryID
ORDER BY Tax DESC

Notice how the dbo.Calculate_Tax_For_Territory UDF is called from the SELECT for each of
the Territory IDs.

Alternatively, you can call the UDF in the WHERE clause, as does the following code example,
which returns the cost to date, the sales to date, and the sales from last year for all territories
that pay more than $2 million in taxes:

DECLARE @TaxPercentage FLOAT
SET @TaxPercentage = 0.13

SELECT Name, CostYTD, SalesYTD, SalesLastYear
FROM Sales.SalesTerritory
WHERE
(dbo.Calculate_Tax_For_Territory(TerritoryID, @TaxPercentage) > 2000000)

Notice how the dbo.Calculate_Tax_For_Territory UDF is called from the WHERE for each of
the Territory IDs to filter which rows are returned by the SELECT query.

Table-Valued User-Defined Functions
You use a table-valued UDF whenever a view or a table is expected. Because table-valued func-
tions can be parameterized, they offer a very powerful replacement for views or stored proce-
dures.

Table-valued UDFs can be written as an inline table-valued UDF when just a single T-SQL
statement is needed or as a multistatement table-valued UDF when multiple T-SQL state-
ments are used inside a BEGIN-END block. Multistatement table-valued UDFs are called
multistatement because they do not directly return the result of executing a single SELECT
statement (as inline table-valued UDFs do) but instead return a TABLE-type variable that
needs to be defined and filled with data. Database designers must carefully define the format

Lesson 3: Designing User-Defined Functions 177
of the TABLE-type variable to be returned by the function in the RETURNS clause when cre-
ating the function. Inside the function, data must be inserted into this TABLE-type variable
only.

Multistatement table-valued UDFs are used to encapsulate complex queries that can be
pre-filtered by input parameters so that they can be called in the FROM clause of the
SELECT statement. The following code example defines a multistatement table-valued
UDF that calculates the total sales made by all sales employees in AdventureWorks and
returns the TOP N best sellers:

CREATE FUNCTION BestSellingEmployees(@TerritoryID INT = 0, @Top INT)
RETURNS @Results TABLE
(
 [Name] nvarchar(160) NOT NULL,
 TotalSales money NOT NULL,
 Territory nvarchar(50) NOT NULL
)
AS
BEGIN
 IF (@TerritoryID = 0)
 BEGIN
 INSERT @Results
 SELECT TOP(@Top)
 Person.Contact.FirstName + ' ' + Person.Contact.LastName +
 '(' + Person.Contact.EmailAddress + ')',
 SUM(Sales.SalesOrderHeader.SubTotal) AS SalesTotal,
 Sales.SalesTerritory.Name AS Territory
 FROM Person.Contact
 INNER JOIN HumanResources.Employee ON
 Person.Contact.ContactID = HumanResources.Employee.ContactID
 INNER JOIN Sales.SalesPerson ON
 HumanResources.Employee.EmployeeID = Sales.SalesPerson.SalesPersonID
 INNER JOIN Sales.SalesOrderHeader ON
 Sales.SalesPerson.SalesPersonID = Sales.SalesOrderHeader.SalesPersonID
 AND
 Sales.SalesPerson.SalesPersonID = Sales.SalesOrderHeader.SalesPersonID
 INNER JOIN Sales.SalesTerritory ON
 Sales.SalesOrderHeader.TerritoryID = Sales.SalesTerritory.TerritoryID
 GROUP BY
 Person.Contact.FirstName,
 Person.Contact.LastName,
 Person.Contact.EmailAddress,
 Sales.SalesTerritory.Name
 ORDER BY SalesTotal DESC
 END
 ELSE
 BEGIN
 INSERT @Results
 SELECT TOP(@Top)
 Person.Contact.FirstName +''+ Person.Contact.LastName +
 '('+ Person.Contact.EmailAddress +')',

178 Chapter 6 Designing Objects That Retrieve Data
 SUM(Sales.SalesOrderHeader.SubTotal) AS SalesTotal,
 Sales.SalesTerritory.Name AS Territory
 FROM Person.Contact
 INNER JOIN HumanResources.Employee ON
 Person.Contact.ContactID = HumanResources.Employee.ContactID
 INNER JOIN Sales.SalesPerson ON
 HumanResources.Employee.EmployeeID = Sales.SalesPerson.SalesPersonID
 INNER JOIN Sales.SalesOrderHeader ON
 Sales.SalesPerson.SalesPersonID = Sales.SalesOrderHeader.SalesPersonID
 AND
 Sales.SalesPerson.SalesPersonID = Sales.SalesOrderHeader.SalesPersonID
 INNER JOIN Sales.SalesTerritory ON
 Sales.SalesOrderHeader.TerritoryID = Sales.SalesTerritory.TerritoryID
 WHERE Sales.SalesTerritory.TerritoryID = @TerritoryID
 GROUP BY
 Person.Contact.FirstName,
 Person.Contact.LastName,
 Person.Contact.EmailAddress,
 Sales.SalesTerritory.Name
 ORDER BY SalesTotal DESC
 END

 RETURN
END

Notice that the @TerritoryID parameter declares a default value. This multistatement table-
valued UDF can be executed like this:

SELECT *
FROM dbo.BestSellingEmployees(5, 3)

In this example, the function returns the top three best-selling employees for the Southeast ter-
ritory. If the caller is interested in overall results that evaluate all employees in the company,
the function can be executed like this:

SELECT *
FROM dbo.BestSellingEmployees(DEFAULT, 3)

By specifying the DEFAULT keyword, the @TerritoryID parameter will use its default value
of 0.

CLR User-Defined Functions
CLR UDFs are written in any .NET programming language (usually Visual Basic .NET or C#
.NET). As with CLR stored procedures, the main advantage of this type of function is that all
the .NET base class libraries are available for use. For example, CLR functions can be used to
access external resources such as files, network resources, Web services, and other databases.
As with T-SQL UDFs, CLR UDFs can be created as CLR scalar functions or CLR table-valued
functions.

Lesson 3: Designing User-Defined Functions 179
This type of function is usually used to encapsulate reusable procedural code that must run
inside the database server. It is not recommended for set-based operations or to manipulate
heavy loads of data.

CLR UDFs are outside the scope of this chapter; for more information about them, see the
“CLR User-Defined Functions” topic in SQL Server 2005 Books Online at http://
msdn2.microsoft.com/en-us/library/ms131077.aspx.

What Type of Data Will the UDF Return?
UDFs must always return data, either as a scalar value or as a result set.

Scalar UDFs
When designing a scalar UDF, database designers should carefully choose the data type
returned by the UDF:

n To minimize the need for casting to a different type to client callers.

n So that the data type is big enough to handle all possible results.

A scalar UDF can return any SQL Server 2005 native scalar types (except the timestamp data
type) or any user-defined type created by using a .NET programming language.

Table-Valued UDFs
When designing a table-valued UDF, database designers must choose between creating it as
an inline function or as a multistatement function.

For inline functions, you specify the function’s return data type by using a TABLE return value,
and, as explained previously, only one T-SQL statement is accepted. The following code exam-
ple shows the BestSellingEmployee UDF written as an inline UDF:

CREATE FUNCTION BestSellingEmployees2(@TerritoryID INT, @Top INT)
RETURNS TABLE
AS
 RETURN SELECT TOP(@Top)
 Person.Contact.FirstName + ' ' + Person.Contact.LastName + ' (' +
Person.Contact.EmailAddress + ')' AS [Name],
 SUM(Sales.SalesOrderHeader.SubTotal) AS SalesTotal,
 Sales.SalesTerritory.Name AS Territory
 FROM Person.Contact INNER JOIN HumanResources.Employee ON
 Person.Contact.ContactID = HumanResources.Employee.ContactID
 INNER JOIN Sales.SalesPerson ON
 HumanResources.Employee.EmployeeID = Sales.SalesPerson.SalesPersonID
 INNER JOIN Sales.SalesOrderHeader ON
 Sales.SalesPerson.SalesPersonID = Sales.SalesOrderHeader.SalesPersonID AND
 Sales.SalesPerson.SalesPersonID = Sales.SalesOrderHeader.SalesPersonID
 INNER JOIN Sales.SalesTerritory ON
 Sales.SalesOrderHeader.TerritoryID = Sales.SalesTerritory.TerritoryID

180 Chapter 6 Designing Objects That Retrieve Data
 WHERE Sales.SalesTerritory.TerritoryID = @TerritoryID
 GROUP BY Person.Contact.FirstName, Person.Contact.LastName, Person.Contact.EmailAddress,
Sales.SalesTerritory.Name
 ORDER BY SalesTotal DESC

For multistatement functions, you specify the function’s return data type by using a TABLE
variable defined as a return value. The structure of this TABLE variable must be defined inside
the function declaration. Database designers should carefully define the returned table to:

n Include all expected columns in the result.

n Use a data type big enough to handle all possible results for each of the columns in the
result.

n Correctly specify column settings such as DEFAULT values, column constraints (for
instance, accept null values, primary keys, unique constraints), computed expressions
for computed columns, and so on.

IMPORTANT Defining a returned table

Make sure you take into consideration the same factors when def ining a returned table from a
table-valued UDF as when def ining a database table.

Defining Input Parameters for the UDF
Unlike stored procedures, UDFs can declare only input parameters. This means that the only
way to return more than one scalar value is to use a table-valued function. As noted earlier,
parameters can be declared as any SQL Server 2005 native scalar types (except the timestamp
data type) or as a user-defined type created with any .NET programming language.

In Lesson 2, “Designing Stored Procedures,” several recommendations were presented for
defining parameters for stored procedures, including choosing the right number of parame-
ters, names, data types, default values, and direction. The same recommendations apply for
UDFs, with some differences in the last two recommendations:

n Default values UDF parameters can declare default values (as with stored procedure
parameters). The difference is that when calling the function to execute, the DEFAULT
keyword must be specified to retrieve the default value for the parameter. This behavior
is different from using parameters with default values in stored procedures, in which
omitting the parameter also implies the default value.

n Parameter direction As specified previously, UDFs can have only input parameters.

Designing Error Handling Routines
Lesson 2 talked about error handling routines and stored procedures. When designing UDFs,
error handling routines are even more important. In contrast to an error in a stored procedure,

Lesson 3: Designing User-Defined Functions 181
which does not stop execution, an error in a UDF causes the function to stop executing, which
in turn causes the statement that called the function to be canceled.

Exam Tip The new T-SQL TRY . . . CATCH statements in SQL Server 2005 do not apply to UDFs
because they are not allowed in that context.

When using UDFs, if there is a computational error or a different type of error that needs to be
handled, the calling context needs to handle the error and decide what the proper error han-
dling action is.

Executing Under the Right Security Context
Lesson 2 explained security execution context for stored procedures, and the fact that UDFs
cannot modify the internal database state does not mean that security context is not impor-
tant. For example, UDFs can call other functions or stored procedures that do modify the data-
base state. The same considerations for stored procedure security context discussed in Lesson
2 also apply to UDFs.

Practice: Designing User-Defined Functions
In this practice, you will design a scalar UDF, using the scenario and tables from this chapter’s
previous practices as a basis.

IMPORTANT Practices build upon each other

To work successfully with this practice, you need to have f inished the practices from Lessons 1 and 2.

� Exercise: Design a Scalar User-Defined Function

In this exercise, you must create a scalar UDF to validate whether a product should be discon-
tinued. It is created as a UDF and not as a stored procedure so that it can be executed from dif-
ferent constructs and contexts.

The Product table contains a DiscontinuedDate column. This column indicates when
the product will no longer be produced. Management wants to determine which prod-
ucts need to be discontinued. You are given the task to implement a UDF to validate
whether a product should be discontinued. The required logic is that if the product price
is 0, then the product should not be discontinued. Calculate the cost per day (dividing
the product cost by the number of days to manufacture); calculate the number of units
that need to be sold to reach the cost level (dividing the product sale price by the prod-
uct cost). All products with a cost per day higher than 500 and with a handicap of having
to sell at least 1.5 to make a profit should be marked as discontinued. Design your own
scalar UDF to meet these requirements before reading the suggested answer.

182 Chapter 6 Designing Objects That Retrieve Data
Suggested Answer

The following T-SQL scalar UDF satisfies the business scenario requirements:
USE [AdventureWorks]
GO
CREATE FUNCTION SHOULD_SET_TO_DISCONTINUE
(
 @Cost MONEY,
 @Price MONEY,
 @DaysToManufacture INT
)
RETURNS BIT
AS
BEGIN
 IF (@Price = 0) RETURN 0

 DECLARE @CostPerDay MONEY, @UnitsToProfit MONEY

 IF (@DaysToManufacture = 0)
 SET @CostPerDay = @Cost
 ELSE
 SET @CostPerDay = (@Cost / @DaysToManufacture)

 SET @UnitsToProfit = (@Price / @Cost)

 IF (@CostPerDay > 500 AND @UnitsToProfit > 1.5)
 RETURN 1
 ELSE
 RETURN 0

 RETURN 0
END

Quick Check
1. What type of UDF is required to encapsulate logic to execute as a CHECK con-

straint definition?

2. List two facts that make UDFs much more agile than stored procedures.

3. What is the main difference between an inline UDF and a multistatement UDF?

Lesson 3: Designing User-Defined Functions 183
Quick Check Answers
1. In this context, SQL Server 2005 supports scalar UDFs only. Usually, the returned

value from the function is used to validate a CHECK condition to evaluate whether
it’s an allowed value.

2. There are many possible reasons UDFs can be more agile than stored procedures;
for example, UDFs can be used in different contexts and integrated with the
SELECT, INSERT, UPDATE, and DELETE syntax. In addition, table-valued UDFs
permit the creation of parameterized result sets.

3. An inline UDF contains a single T-SQL block that must return a value to the caller.
In a multistatement UDF, there could be several T-SQL blocks working together to
generate a single scalar answer or result set.

Case Scenario: Designing Objects That Retrieve Data
The end of the fiscal year is coming, so the board of directors of Tailspin Toys needs to review
the health and performance of the company throughout the year. They asked you to provide
them with aggregated annual sales and expense data for the main factory. However, after you
provided them with that information, they realized that they also needed information for the
other factories, located in China, Costa Rica, and India. Based on the preliminary analysis that
board members did, they realized that they also need to filter the information by territory and
by date so that they can analyze and compare the data from different time perspectives—by
halves, by quarters, and by individual months.

After discovering certain worrying flags in the numbers, the board of directors discovered
that the sales for the factory in China were not as expected during the second quarter of the
year. To understand the status of the situation fully, they decided to focus on specific prod-
uct sales and combine that information with different factors that might have affected sales,
such as external providers, the number of new employees hired, the number of employees
leaving the company during the specific period, and the inventories of other factories for the
same products.

1. To accomplish your first task—providing the board with aggregated annual sales and
expense data for the main factory—you decided to use an indexed view. Why?

2. Describe the overall steps you took to provide the board with the sales and expense
information it needed for all the other factories located in China, Costa Rica, and India.

184 Chapter 6 Designing Objects That Retrieve Data
3. To allow the board members to filter the information by territory and by date, what type
of object would you use to retrieve this data and why?

4. To enable the board members to focus on specific product sales and combine that infor-
mation with other factors such as external providers, the number of new employees
hired, and so on, you decided to implement a table-valued UDF instead of using a stored
procedure. Why?

Chapter Summary
n You can use views, stored procedures, and functions to retrieve data. Choose the proper

type of object according to a particular situation’s requirements and needs.

n Use a standard view when you want to package a T-SQL query as a unit for security,
deployment, and reusability.

n Stored procedures are suitable for scenarios that require the input coming from external
values and/or when the expected result might not be a result set but a scalar value.

n User-defined functions (UDFs) enable you to reuse their results in more flexible ways
than stored procedures (for instance, in the FROM clause of a SELECT statement, in the
Column list section of a SELECT statement, and in a WHERE or HAVING clause of a
SELECT statement).

n UDFs cannot be used to perform actions that modify the database state, and they can
only declare input parameters.

Chapter 7

Designing Objects That Extend
Server Functionality

Developers and database administrators (DBAs) extend the functionality of Microsoft SQL
Server by adding new database objects. These objects include user-defined types, stored pro-
cedures, user-defined functions (UDFs), triggers, and aggregates. Developers rely on these
components to create modular database solutions with elements that can be easily inter-
changed, replaced, or combined.

In this chapter, you will learn how to create database objects that perform actions and extend
the primary functionality of the database server. You will learn how to create Transact-SQL
(T-SQL) stored procedures, UDFs, and triggers. You will also learn how to program stored
procedures, UDFs, and aggregates by using the Microsoft Visual Basic .NET or C# .NET com-
mon language runtime (CLR) languages. Finally, you will see how to use Visual Basic .NET or
C# .NET code to create your own aggregate function.

Exam objectives in this chapter:
n Design objects that extend the functionality of a server.

q Design scalar user-defined functions to extend the functionality of the server.

q Design CLR user-defined aggregates.

q Design stored procedures to extend the functionality of the server.

n Design objects that perform actions.

q Design data manipulation language (DML) triggers.

q Design data definition language (DDL) triggers.

q Design WMI triggers.

q Design stored procedures to perform actions.

Before You Begin
To complete the lessons in this chapter, you must have:

n A computer that meets the hardware and software requirements for SQL Server 2005.

n SQL Server 2005 Developer Edition, Workgroup Edition, Standard Edition, or Enterprise
Edition installed.
185

186 Chapter 7 Designing Objects That Extend Server Functionality
n The SQL Server 2005 AdventureWorks OLTP sample database installed. Sample data-
bases are available with SQL Server 2005 Enterprise Edition but are not a part of the
default installation. Alternatively, you can install the sample databases from http://
msdn2.microsoft.com/en-us/library/ms143739.aspx.

n Microsoft Visual Studio 2005 or Visual Basic or C# 2005 Express Edition installed.
You can download Visual Studio Express Editions from http://msdn.microsoft.com
/vstudio/express/.

Lesson 1: Creating and Designing Stored Procedures 187
Lesson 1: Creating and Designing Stored Procedures

Estimated lesson time: 20 minutes

Stored procedures are subroutines or sets of instructions stored in the database. They are very
similar to functions or procedures of standard programming languages. However, stored pro-
cedures are not stored with the rest of the application code; they are stored in the database.

Understanding Stored Procedures
Database developers use stored procedures for three main purposes. First, stored procedures
provide access control, which enables developers to hide tables and views, providing a gate-
way to managing permissions. Second, stored procedures can help you provide data valida-
tion, which enables developers to add restrictions that would be too complex to implement
with standard database constraints (PRIMARY KEY, FOREIGN KEY, UNIQUE, CHECKS, NOT
NULL). Last, developers might use stored procedures to consolidate and centralize logic in an
application.

Before SQL Server 2005, stored procedures could be written using only T-SQL code, but now
you can also used managed code to create stored procedures and other database objects.
Stored procedures created in managed code are also called CLR stored procedures. You use
Visual Basic .NET, C# .NET, and Microsoft Visual C++ to create assemblies that are later regis-
tered in the database and used as regular T-SQL stored procedures.

Creating T-SQL Stored Procedures
In SQL Server 2005, there are three types of T-SQL stored procedures:

n System stored procedures (sp_) System stored procedures perform administrative and
informational activities. They are easily identified because they are named with the pre-
fix sp_. Microsoft provides a collection of system stored procedures for a large number
of activities, including security, database maintenance, and SQL Server Agent. Two
examples of system stored procedures are sp_helpdb and sp_configure.

n Local stored procedures Local stored procedures are stored in user databases. They are
the most common type of stored procedure.

BEST PRACTICES Naming local stored procedures

Microsoft recommends that you do not use the pref ix sp_ to name local stored procedures.
Local stored procedures with names that clash with system stored procedures cannot be run.

188 Chapter 7 Designing Objects That Extend Server Functionality
n Temporary stored procedures Temporary stored procedures are similar to local stored
procedures; however, temporary stored procedures are automatically removed when the
user session ends. Temporary stored procedures can be created locally by using the
number character (#) before the name or globally by using two number characters (##).

T-SQL stored procedures in SQL Server 2005 can include any T-SQL statement except those
included in the following list.

n ALTER FUNCTION

n ALTER VIEW

n CREATE DEFAULT

n CREATE TRIGGER

n SET PARSEONLY

n SET SHOWPLAN_XML

n ALTER TRIGGER

n CREATE AGGREGATE

n CREATE SCHEMA

n CREATE PROCEDURE

n SET SHOWPLAN_ALL

n USE

n ALTER PROCEDURE

n CREATE RULE

n CREATE FUNCTION

n CREATE VIEW

n SET SHOWPLAN_TEXT

Creating Procedure Syntax
To create a stored procedure, use the CREATE PROCEDURE statement. The statement
defines the procedure name, parameters, and contents. The syntax to create a stored proce-
dure follows:

CREATE { PROC | PROCEDURE } [schema_name.] procedure_name [; number]
 [{ @parameter [type_schema_name.] data_type }
 [VARYING] [= default] [[OUT [PUT]
] [,...n]
[WITH <procedure_option> [,...n]
[FOR REPLICATION]
AS { <sql_statement> [;][...n] | <method_specifier> }
[;]
<procedure_option> ::=
 [ENCRYPTION]
 [RECOMPILE]

Lesson 1: Creating and Designing Stored Procedures 189
 [EXECUTE_AS_Clause]

<sql_statement> ::=
{ [BEGIN] statements [END] }

<method_specifier> ::=
EXTERNAL NAME assembly_name.class_name.method_name

The following code creates a stored procedure that provides a list price of AdventureWorks
products:

CREATE PROC Sales.PriceList
AS
 SELECT ProductID
 , Name
 , ProductNumber
 , ListPrice
 FROM Production.Product
 WHERE FinishedGoodsFlag=1
 AND DiscontinuedDate IS NULL;
GO

After creating the procedure, you can run it by using the EXECUTE (or EXEC) statement. The
syntax to execute a stored procedure follows:

[{ EXEC | EXECUTE }]
 {
 [@return_status =]
 { module_name [;number] | @module_name_var }
 [[@parameter =] { value
 | @variable [OUTPUT]
 | [DEFAULT]
 }
]
 [,...n]
 [WITH RECOMPILE]
 }
[;]

An example of how to use the EXEC statement to execute the procedure that returns the price
list of AdventureWorks products is:

EXEC Sales.PriceList;

Using Parameters
To extend the functionality of stored procedures, you can use parameters. Parameters enable
you to reuse the code of the stored procedure with different variables. SQL Server supports
two types of parameters: Input and Output. Input parameters allow the caller to pass informa-
tion to the stored procedure. In contrast, output parameters allow stored procedures to pass
information back to the procedure caller.

190 Chapter 7 Designing Objects That Extend Server Functionality
To define input parameters, use the syntax @Parameter Name Type. To define output param-
eters, use @Parameter Name Type OUT or @Parameter Name Type OUTPUT. You can also
define a default value by using =VALUE syntax. The following code illustrates the use of input
and output parameters:

CREATE PROCEDURE Sales.GetPriceAndInventory
 @ProductID INT=NULL
 , @LocationID SMALLINT=60
 , @ListPrice MONEY OUTPUT
 , @Inventory SMALLINT OUTPUT

AS
 SET NOCOUNT ON;
 SELECT @ListPrice=ListPrice
 FROM Production.Product
 WHERE ProductID=@ProductID;

 SELECT @Inventory=ISNULL(Quantity,0)
 FROM Production.ProductInventory
 WHERE ProductID=@ProductID
 AND LocationID=@LocationID;
GO

To execute the stored procedure and pass the parameters, you have two options:

n Passing values by parameter name Use the syntax @Parameter = VALUE. For example,
the following syntax executes the Sales.GetPriceAndInventory stored procedure by
using parameter names.
DECLARE @Price MONEY
DECLARE @Stock SMALLINT

EXEC Sales.GetPriceAndInventory @LocationID=50
 , @ProductID=515
 , @Inventory=@Stock OUTPUT
 , @ListPrice=@Price OUTPUT
SELECT 515, 50, @Price, @Stock

n Passing values by position List the parameter values in the same order in which they are
defined in the CREATE PROCEDURE statement. The following example shows this
method:
DECLARE @Price MONEY
DECLARE @Stock SMALLINT

EXEC Sales.GetPriceAndInventory 515, 50, @Price OUTPUT, @Stock OUTPUT
SELECT 515, 50, @Price, @Stock

Lesson 1: Creating and Designing Stored Procedures 191
Using Return Codes
Stored procedures can use return values to inform callers about the status of the execution. A
return status is an optional integer that procedures use to help callers provide flow and error
control. Stored procedures support integer values only as return values, and when no value is
specified, the procedure returns 0.

IMPORTANT Use 0 as return value to indicate success

In most programming languages, a return value of 1 means success and 0 means failure. This is not
the case in T-SQL, in which the convention is to return a value of 0 when no errors are encoun-
tered; all other values indicate that an error has occurred. Follow this convention to facilitate the
use of your stored procedures.

To return a status value, use the RETURN statement, as in the following code example:

CREATE PROCEDURE Sales.GetPriceAndInventory
 @ProductID INT=NULL
 , @LocationID SMALLINT=60
 , @ListPrice MONEY OUTPUT
 , @Inventory SMALLINT OUTPUT
AS
 SET NOCOUNT ON;
 IF (@ProductID IS NULL)
 OR (@LocationID IS NULL)
 BEGIN
 RETURN 1;
 END
 SELECT @ListPrice=ListPrice
 FROM Production.Product
 WHERE ProductID=@ProductID;
 IF (@@ROWCOUNT=0)
 BEGIN
 RETURN 2;
 END
 SELECT @Inventory=ISNULL(Quantity,0)
 FROM Production.ProductInventory
 WHERE ProductID=@ProductID
 AND LocationID=@LocationID;
GO

To get the return value of the procedure, create an integer variable and assign the procedure to
it. Use the syntax @Result=StoredProcedure. The following code uses the return value defined
previously in the stored procedure.

DECLARE @Price MONEY
DECLARE @Stock SMALLINT
DECLARE @Result INT

192 Chapter 7 Designing Objects That Extend Server Functionality
EXEC @Result=Sales.GetPriceAndInventory 1500, 50, @Price OUTPUT, @Stock OUTPUT
SELECT @Result

EXEC @Result=Sales.GetPriceAndInventory 515, NULL, @Price OUTPUT, @Stock OUTPUT
SELECT @Result

Changing and Deleting T-SQL Stored Procedures
Sometimes after a stored procedure is created, you need to change or delete the saved code.
For that purpose, T-SQL offers the ALTER PROCEDURE and DROP PROCEDURE statements.

Changing Stored Procedures
When you want to replace the code stored in the database with new statements or change the
parameters of the procedure, use the ALTER PROCEDURE statement. The syntax is very sim-
ilar to the CREATE PROCEDURE statement, except that the procedure must exist in the data-
base before the command is executed.

ALTER { PROC | PROCEDURE } [schema_name.] procedure_name [; number]
 [{ @parameter [type_schema_name.] data_type }
 [VARYING] [= default] [[OUT [PUT]
] [,...n]
[WITH <procedure_option> [,...n]]
[FOR REPLICATION]
AS
 { <sql_statement> [...n] | <method_specifier> }

<procedure_option> ::=
 [ENCRYPTION]
 [RECOMPILE]
 [EXECUTE_AS_Clause]

<sql_statement> ::=
{ [BEGIN] statements [END] }

<method_specifier> ::=
EXTERNAL NAME
assembly_name.class_name.method_name

The main advantage of using the ALTER statement, instead of using a DROP and CREATE state-
ment, is that permissions assigned to the procedure before the ALTER statement will remain
assigned to the procedure. Using DROP and CREATE to replace a procedure will remove all pre-
viously assigned permissions. The following code illustrates the ALTER statement:

ALTER PROC Sales.PriceList
AS
 SELECT ProductID
 , Name
 , ProductNumber
 , ListPrice

Lesson 1: Creating and Designing Stored Procedures 193
 , Class
 FROM Production.Product
 WHERE FinishedGoodsFlag=1
 AND DiscontinuedDate IS NULL;
GO
EXEC Sales.PriceList

Deleting Stored Procedures
When you do not need a procedure, you can drop it from the database. Dropping a store pro-
cedure deletes the code stored in the database. To delete stored procedures, use the DROP
PROCEDURE statement:

DROP { PROC | PROCEDURE } { [schema_name.] procedure } [,...n]

The following code uses the DROP PROCEDURE statement to delete the PriceList stored
procedure:

DROP PROC Sales.PriceList

Designing T-SQL Stored Procedures
When designing stored procedures, consider the role they will play in the application and how
they can help you enhance the reusability, performance, and maintainability of the applica-
tion. Also consider that T-SQL is a computer language designed with a very limited purpose—
to query and manipulate data in a relational database. The following guidelines will help you
design effective stored procedures:

n One procedure, one task Programmers with little or no experience often create do-it-all
stored procedures. Do-it-all procedures reduce the performance and maintainability of
the database. In contrast, if you create stored procedures with functional cohesion, you
can greatly improve performance and maintainability. With functional cohesion, parts of
a module (in this case, a stored procedure) are grouped together because they all con-
tribute to a single well-defined task of the module.

n Validating data before beginning transaction All input parameters should be checked at
the beginning of the procedure to trap errors, eliminate unnecessary work, and reduce
security risks.

For example, assume that you want to write a stored procedure that allows name filter-
ing only if the user provides three characters and no fewer. A clever user might try to
override the limitation by using ‘%%%’ as a value. The code to enforce the rule is:
CREATE PROCEDURE Sales.GetPriceAndInventoryByName
 @Filter CHAR(3)
 , @LocationID SMALLINT=60
 , @ListPrice MONEY OUTPUT
 , @Inventory SMALLINT OUTPUT
AS

194 Chapter 7 Designing Objects That Extend Server Functionality
 SET NOCOUNT ON;
 IF (@Filter IS NULL)
 OR (@Filter NOT LIKE '[A-Z][A-Z][A-Z]')
 BEGIN
 RETURN 1
 END

BEST PRACTICES Use CLR UDFs to create sophisticated CHECK constraints

With the help of CLR UDFs, you can implement very advanced checks if you use the regular
expressions classes included in the Microsoft .NET Framework.

n Qualifying names inside stored procedures Object names used in DML SQL statements
(INSERT, UPDATE, DELETE, and SELECT) that are not qualified with the schema use,
by default, the same schema of the stored procedure. DDL SQL statements (CREATE,
ALTER, and DROP) use the default schema of the procedure caller, not of the procedure
schema. Use qualifying names to increase the maintainability of the procedure.
CREATE PROCEDURE Sales.Test
AS
 -- There is no Sales.Product table
 SELECT * FROM Product
GO
EXEC Sales.Test
-- The previous command fails
GO
CREATE TABLE Sales.Product(Test INT)
GO
-- The next command succeeds
GO
EXEC Sales.Test

n Using schemas to simplify stored procedure security Schemas enable simpler and
cleaner permissions management. Grouping stored procedures in schemas enables
DBAs to assign a single execute permission to the schema, which gives a user access to
all stored procedures in the schema.

n Considering T-SQL stored procedures for all direct access to the database Using T-SQL
stored procedures rather than directly querying the tables provides the flexibility of
changing the schema of the database without modifying the application—a security
mechanism to assign permissions at a very granular level and increase performance.

Lesson 1: Creating and Designing Stored Procedures 195
Creating CLR Stored Procedures
New in SQL Server 2005 is the ability to create stored procedures in other programming lan-
guages besides T-SQL. This feature enables programmers to take advantage of the .NET
Framework inside the database engine. Now developers can use their favorite programming
language to create static functions that are compiled and registered in the database as regular
database objects.

IMPORTANT Enabling the CLR

For security reasons, the CLR is disabled by default at the server level. To enable CLR integration,
use the clr enabled option of the sp_conf igure stored procedure. You can also use the SQL Server
Area Conf iguration (SAC) tool to enable CLR integration. For more information about enabling
CLR, review Chapter 1, “Selecting and Designing SQL Server Services to Support Business Needs.”

Three steps are required to create CLR store procedures:

n Programming the CLR stored procedure

n Debugging and testing the CLR stored procedure

n Deploying the CLR stored procedures

Programming a CLR Stored Procedure
To create a CLR stored procedure by using Visual Studio 2005, follow these steps:

1. Open Visual Studio 2005.

2. Create a new project. Click File, select New, and then click Project. In the New Project
dialog box, select your preferred programming language and a SQL Server Project.

BEST PRACTICES SQL Server project template

The SQL Server project template is included only when you install the SQL Server Client
Tools. If you do not have the client tools installed, you still can create a class project and ref-
erence the appropriate namespaces.

3. Click OK to create the project.

If the Add Database Reference dialog box is displayed, choose an available reference or
click Add New Reference. If you click Add New Reference, Visual Studio will display the
New Database Reference dialog box, as Figure 7-1 shows.

196 Chapter 7 Designing Objects That Extend Server Functionality
Figure 7-1 Configuration options in the New Database Reference dialog box

4. Configure server name, log in security configuration, and database name. Click OK to
finish the connection string configuration required to access the database.

5. If prompted by Visual Studio, configure CLR Debugging. Click OK to continue.

6. In Solution Explorer, right-click the project and select Add Test Script.

7. Name your stored procedure. Click OK to create the class file.

8. Code the content of the procedure.

The following code creates the equivalent of a Hello World message in a tabular format:
//C#
[Microsoft.SqlServer.Server.SqlProcedure]
public static void HelloWorld()
 {
 // Create the record object
 SqlDataRecord record = new SqlDataRecord(new SqlMetaData("Message",
SqlDbType.VarChar, 32));
 // Populate the row
 record.SetSqlString(0, "Hello World!");
 // Return the row
 SqlContext.Pipe.Send(record);
}

Lesson 1: Creating and Designing Stored Procedures 197
Testing and Debugging a CLR Stored Procedure
To test the CLR stored procedure, in Solution Explorer, expand the Test Scripts folder and
double-click the SQL script you created and named. Add the required code to execute the
stored procedure. For example, to test the HelloWorld CLR stored procedure, add the follow-
ing statement:

EXEC HelloWorld

To debug the CLR stored procedure by using Visual Studio 2005, navigate to the CLR stored
procedure code and set a breakpoint. To set a breakpoint, use one of the following methods:

n In the code window, click the left bar.

n Right-click the instruction and select Breakpoint-Insert Breakpoint.

n From the main menu, select Debug-Toggle Breakpoint.

n Press F9.

After setting one or more breakpoints, run your code by using one of the following methods:

n Press F5.

n Click Start Debugging from the Debug menu.

n Click the Start Debugging button from the Debug toolbar.

Figure 7-2 shows the debugging of a CLR stored procedure.

Figure 7-2 Debugging a CLR stored procedure

When debugging, use the step over (F10) command or step into (F9) command to continue
running one line at a time.

Deploying a CLR Stored Procedure
The following steps will help you deploy a CLR stored procedure:

1. Using Visual Studio 2005, change the Solution configuration from Debug to Release.
From the Project menu, select projectname Properties, click the Build tab, and then
choose Release from the Configuration drop-down list.

198 Chapter 7 Designing Objects That Extend Server Functionality
2. Build the solution. From the Build menu, click Build projectname.

3. Find the compiled assembly path. By default, Visual Studio creates projects in C:\Docu-
ments and Settings\%UserName%\My Documents\Visual Studio 2005\Projects. The
Release assembly is compiled in the subdirectory SolutionName\ProjectName\bin\Release.

4. Open SQL Server Management Studio (SSMS) and open a new database engine query.
Create the assembly by using the CREATE ASSEMBLY statement. The statement will
upload the dynamic-link library (DLL) into the database. If the assembly references
other assemblies, the server will try to upload them also.
CREATE ASSEMBLY HelloWorld from 'C:\Documents and Settings\%UserName%\My
Documents\Visual Studio 2005\Projects\Demo\Demo\bin\Release\Demo.dll'
WITH PERMISSION_SET = SAFE

Limit developer access to the production servers

5. You can deploy the project directly from Visual Studio; however, you should learn how
to deploy an assembly by using T-SQL code because most developing environments do
not have direct access to production servers. Create the stored procedure by using the
CREATE PROCEDURE statement. Use the EXTERNAL NAME option to reference the
recently created assembly.
CREATE PROCEDURE HelloWorld
AS
EXTERNAL NAME Demo.StoredProcedures.HelloWorld

Assembly Permissions
The CREATE ASSEMBLY st atement has t he PERMISSION_SET opt ion. The
PERMISSION_SET option controls the level of access granted to the assembly on one of three
levels. The first level, UNSAFE, is the most permissive. UNSAFE assemblies have access to all
resources inside and outside the SQL Server instance. The UNSAFE permission set is the only
level that supports running unmanaged code.

The second permission set level is EXTERNAL_ACCESS. Assemblies with EXTERNAL
_ACCESS permission are able to access external system resources such as files, the registry,
environmental variables, and the network.

Finally, the SAFE permission set level allows access only to the local database and restricts all
other types of access. The SAFE level is applied by default.

On the Companion Disc This chapter includes many code examples. You will f ind all the
code from this chapter on the companion CD in the C:\My Documents\Microsoft Press\TK70-441
\Chapter07\ folder.

Lesson 1: Creating and Designing Stored Procedures 199
Practice: Creating a T-SQL Stored Procedure to Add Employees
In this practice, you create a simple stored procedure that follows the best practices learned in
this lesson. The stored procedure will add a new salaried employee into the database.

� Exercise 1: Add a New SSMS Project

In this exercise, you create a new database scripts SSMS project. This project type enables you
to track SQL scripts in a centralized manner.

1. Open SSMS and connect to the default instance of the database engine.

2. Click File, select New, and then click Project. This command enables you to create the
file structure to maintain your SQL scripts.

3. Select SQL Server Scripts and name your project script AdventureWorksStoredProce-
dures. Click OK to create the project.

4. From Solution Explorer, right-click the Queries folder, and then click New Query. This
will create a new SQL script file.

5. In Solution Explorer, rename the SQLQuery1.sql file to InsertSalariedEmployee.SQL.
Press F2 or right-click and choose Rename to change the name of the file.

� Exercise 2: Create the Stored Procedure

In this exercise, you create the required code to insert a new employee into the database.
The information about employees is stored in two tables: HumanResources.Employee and
Person.Contact.

1. Select the Query Pane and change the database to AdventureWorks from the Available
Databases drop-down list.

2. Write the CREATE PROC statement and the required parameters to populate the
Employee and Contact tables. Each step in this exercise requires you to append the code
in the query window to the code provided in the previous step.
CREATE PROC HumanResources.InsertSalariedEmployee(
 @NationalIDNumber NVARCHAR(15)
 , @LoginID NVARCHAR(256)
 , @ManagerID INT
 , @CompanyTitle NVARCHAR(50)
 , @BirthDate DATETIME
 , @MaritalStatus NCHAR(1)
 , @Gender NCHAR(1)
 , @PersonalTitle NVARCHAR(8)
 , @FirstName NVARCHAR(50)
 , @MiddleName NVARCHAR(50)
 , @LastName NVARCHAR(50)
 , @PasswordHash NVARCHAR(40)
 , @PasswordSalt NVARCHAR(10)

200 Chapter 7 Designing Objects That Extend Server Functionality
 , @ContactID INT OUTPUT
 , @EmployeeID INT OUTPUT
)
AS

Notice that the ContactID and EmployeeID parameters are output parameters because
they are IDs automatically assigned by the database.

3. Write a NOCOUNT statement to prevent the stored procedure from sending messages
back to the client. The code should be:
SET NOCOUNT ON;

4. Declare an Email variable by using a 50-character-length NVARCHAR type.
-- Declare Variables
DECLARE @Email NVARCHAR(50);

5. Validate that the following variables do not hold NULL values: NationalIDNumber, Log-
inID, BirthDate, MaritalStatus, Gender, FirstName, LastName, PasswordHash, and Pass-
wordSalt. If one or more of the variables have a NULL value, return an error message and
abort the procedure execution.
-- Validation
IF @NationalIDNumber IS NULL
 OR @LoginID IS NULL
 OR @BirthDate IS NULL
 OR @MaritalStatus IS NULL
 OR @Gender IS NULL
 OR @FirstName IS NULL
 OR @LastName IS NULL
 OR @PasswordHash IS NULL
 OR @PasswordSalt IS NULL
 BEGIN
 RAISERROR('Some of the required values are NULL', 16, 1)
 RETURN 1;
 END

6. Validate @Birthdate; make sure that no employee older than 100 years old is inserted.
IF @BirthDate<DATEADD(YEAR, -100, GETDATE())
 BEGIN
 RAISERROR('Birthdate may be wrong.', 16, 1)
 END;

7. Calculate the Email variable as the FirstName of the employee plus the adventure-
works.com domain.
-- Other Operations
SELECT @Email=@FirstName+'@adventure-works.com';

Lesson 1: Creating and Designing Stored Procedures 201
8. Add the functional section of the stored procedure by first inserting the values into the
Person.Contact and the HumanResources.Employees tables. Capture the ID for both tables
and wrap the code in a single transaction, using the TRY statement to manage errors:
-- Insert Data
BEGIN TRY
 BEGIN TRAN
 INSERT Person.Contact(NameStyle, Title, FirstName, MiddleName
 , LastName, EmailAddress, EmailPromotion
 , PasswordHash, PasswordSalt)
 VALUES(0, @PersonalTitle, @FirstName, @MiddleName
 , @LastName, @Email, 0
 , @PasswordHash, @PasswordSalt);
 SET @ContactID=SCOPE_IDENTITY();

 INSERT HumanResources.Employee(NationalIDNumber, ContactID, LoginID
 , ManagerID, Title, MaritalStatus, Gender, HireDate, BirthDate
 , SalariedFlag, VacationHours, SickLeaveHours, CurrentFlag)
 VALUES(@NationalIDNumber, @ContactID, @LoginID
 , @ManagerID, @CompanyTitle, @MaritalStatus, @Gender
 , CAST(CONVERT(CHAR(10), GETDATE(), 112) AS DATETIME)
 , @BirthDate
 , 1, 0, 0,1)
 SET @EmployeeID=SCOPE_IDENTITY();
 COMMIT;
END TRY

9. Write the CATCH statement to return the error to the client, roll back any pending trans-
action and terminate the stored procedure.
BEGIN CATCH
 DECLARE @ErrorMessage NVARCHAR(4000);
 DECLARE @ErrorSeverity INT;
 DECLARE @ErrorState INT;
 SELECT @ErrorMessage = ERROR_MESSAGE()
 , @ErrorSeverity = ERROR_SEVERITY()
 , @ErrorState = ERROR_STATE();
 IF @@TRANCOUNT > 0 BEGIN
 ROLLBACK TRAN;
 END
 -- TODO: Add to the Log Table
 RAISERROR (@ErrorMessage, @ErrorSeverity, @ErrorState);
 RETURN 1;
END CATCH;

10. Return 0 if the stored procedure completes correctly.
RETURN 0;

11. Execute the code to create the stored procedure. Press F5 or click Execute on the SQL
Editor toolbar to create the procedure.

12. Save and close the query window.

202 Chapter 7 Designing Objects That Extend Server Functionality
� Exercise 3: Create the Code to Test the Stored Procedure

In this exercise, you create the required code to test the InsertSalariedEmployee stored procedure.

1. In Object Explorer, navigate to SQL Server. Click Databases, select AdventureWorks,
click Programmability, and then click Stored Procedures.

2. Right-click the HumanResources.InsertSalariedEmployee stored procedure and select
Execute StoredProcedure.

3. Add values to each of the rows in the value column. Do not add values to the ContactID
and EmployeeID rows.

4. Click OK to execute the test and create the T-SQL code required to execute the stored
procedure.

Quick Check
1. You are designing a stored procedure. Which operation should be performed first?

A. Begin the transaction.

B. Validate input parameters.

C. Execute error handling code.

D. Set the default return value.

2. You want to use schemas to group stored procedures. Which of the following will
be one of the benefits?

A. Security: you can assign Execute permission to the schema object.

B. Performance: stored procedures in user-defined schemas perform better.

C. Development: it’s easier to create stored procedures in a schema.

D. None: there are no benefits in using schemas to group stored procedures.

3. You want to create a CLR stored procedure. Which tool offers better support for
creating CLR stored procedures?

A. SQL Server Management Studio

B. SQL Server Profiler

C. SQL Server Configuration Manager

D. Visual Studio or Business Intelligence Development Studio (BIDS)

Lesson 1: Creating and Designing Stored Procedures 203
Quick Check Answers
1. The correct answer is B. Validation should be the first step in the stored procedure

for security reasons and to avoid unnecessary work in the server.

2. The correct answer is A. You can assign Execute permission to the schema object,
and schemas can be used to group database objects, including stored procedures.
Because schemas are securable, database administrators can grant the Execute per-
mission, and users will, consequently, have the Execute permission in the stored
procedures defined in the schema.

3. The correct answer is D. Visual Studio is the preferred development tool in the
Microsoft platform. Visual Studio is installed as part of the SQL Server 2005 client
tools and is sometimes referred to as BIDS.

204 Chapter 7 Designing Objects That Extend Server Functionality
Lesson 2: Designing Scalar User-Defined Functions

Estimated lesson time: 20 minutes

One interesting feature of SQL Server is the ability to create UDFs. UDFs enable developers to
create functions in SQL and CLR code; they can help by encapsulating functionality that later
can be changed without modifying the rest of the application. UDFs also allow developers a
higher degree of abstraction and ignore details of the implementation and focus only on the
functionality.

SQL Server 2005 provides three different types of UDFs:

n Multistatement table-valued functions Multistatement table-valued functions are
similar to stored procedures; however, they are designed to return a single table. The
advantage of multistatement table-valued functions is that they can be used in queries.

n Inline table-valued functions SQL Server enables developers to create inline table-val-
ued functions, which are very similar to views but provide the advantage of accepting
parameters.

n Scalar functions Scalar functions are routines that return a single value. They are similar
to built-in functions such as DB_NAME or DATEPART.

Creating T-SQL Scalar Functions
To create a user-defined T-SQL scalar function, use the CREATE FUNCTION statement. The
statement defines the name, parameters, return value, and contents of the function. The syn-
tax to create a scalar UDF is:

CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name [AS][type_schema_name.] parameter_data_type
 [= default] }
 [,...n]
]
)
RETURNS return_data_type
 [WITH <function_option> [,...n]]
 [AS]
 BEGIN
 function_body
 RETURN scalar_expression
 END
[;]

The following code creates a UDF to concatenate the first name, middle name, and last name
into a full name varchar value.

Lesson 2: Designing Scalar User-Defined Functions 205
CREATE FUNCTION Person.FullName(
 @FirstName NVARCHAR(50)
 , @MiddleName NVARCHAR(50)
 , @LastName NVARCHAR(50)
)
RETURNS NVARCHAR(150)
AS
 BEGIN
 RETURN @FirstName+ISNULL(' '+@MiddleName, '')+' '+@LastName;
 END
GO

After the function is created, you can use it in regular DML T-SQL commands such as SELECT,
INSERT, UPDATE, and DELETE. You can also use it to create computed columns in CREATE
TABLE statements and as columns in CREATE VIEW statements.

SELECT Person.FullName(FirstName, MiddleName, LastName)
FROM Person.Contact
WHERE LastName='Adams'

Creating CLR Scalar Functions
Creating CLR scalar functions is very similar to creating CLR stored procedures. You use
Visual Studio to create a SQL Server Project; right-click the project and add a UDF. Notice that
the difference between the previously generated code for the stored procedure and then for
the function is the attribute in the method. The stored procedure uses SqlStoredProcedure, and
the function uses SqlFunction. This attribute helps Visual Studio decide which type of object to
register in the database when deploying the assembly.

The following code uses the power of regular expressions built in the .NET Framework to val-
idate e-mails:

//C#
using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;
// Added to use the Regex class
using System.Text.RegularExpressions;
public partial class UserDefinedFunctions
{
 [Microsoft.SqlServer.Server.SqlFunction]
 public static SqlInt16 IsEmail(SqlString expression)
 {
 if (Regex.IsMatch(expression.Value
 , @"^([\w-\.]+)@((\[[0-9]{1,3}\.[0-9]"
 + @"{1,3}\.[0-9]{1,3}\.)|(([\w-]+\.)+))"
 + @"([a-zA-Z]{2,4}|[0-9]{1,3})(\]?)$"))
 {

206 Chapter 7 Designing Objects That Extend Server Functionality
 return new SqlInt16(1);
 }
 else
 {
 return new SqlInt16(0);
 }
 }
}

UDF Properties
UDFs have some properties that affect how they can be used. These properties—determinism,
precision, data access, system data access, and system verified—affect the ability of the data-
base engine to create indexes over the results of the function.

Determinism is the ability of a function always to return the same value when called with the
same parameter values. For instance, COS and ISNULL are deterministic functions. If you call
COS(10), it will always return the same value—0.839071529076452. In contrast, nondetermin-
istic behavior happens when you call a function with the same collection of parameters, and
every execution might return different values. For example, GETDATE() and SYSTEM_USER
are nondeterministic functions.

When you create a UDF, the database engine parses the statements in the body of the func-
tion. If it finds any reference to a nondeterministic function, it marks your function as non-
deterministic. This is an important concern because clustered indexes cannot be created over
nondeterministic functions.

Precision is another property of functions. When a function is marked as precise, it does not
involve any floating-point operation. Floating-point operations include inexact data types (real
and float). Because float operations might result in rounding differences, the database engine
is restrained from creating indexes over columns based on nonprecise functions. To create pre-
cise functions, avoid using float and real data types.

Data access and system data access properties report whether the function accesses the local
database or the system catalog to provide its functionality. Computed columns cannot be
defined based on functions that perform any data or system access.

The last function property is system verified, which determines whether the system can check
that a function has determinism and precision. All T-SQL UDFs are system verified, and all
CRL UDFs are not system verified.

Because CLR functions cannot be verified by the system, it is the developer’s responsibility to
set the properties in the code. The following code configures the properties of a CLR scalar
function:

[Microsoft.SqlServer.Server.SqlFunction(DataAccess=DataAccessKind.None
 , IsDeterministic=true, IsPrecise=true)]

Lesson 2: Designing Scalar User-Defined Functions 207
public static SqlInt16 IsEmail(SqlString expression)
{
É

Practice: Creating a CLR User-Defined Function to Extract E-Mail
In this practice, you create a UDF that uses regular expressions to extract e-mail information
from a string value.

� Exercise 1: Add a New Visual Studio Database Project

Begin by creating a new Visual Studio project. This project template enables you to create, test,
and deploy CLR stored procedures.

1. Open Visual Studio 2005.

2. Click File, and then click New Project.

3. From the Project Types list, select Visual C# Database.

4. From the Templates list, select SQL Server Project. Name the project DataExtraction.
Click OK to create the solution and the project.

5. In the Add Database Connection Reference dialog box, select Add New Reference to cre-
ate the connection string to the database.

6. Type localhost in the Server Name combo box. Select AdventureWorks in the database
combo box, select Test Connection, and then click OK to create the connection reference.

7. Select the new reference in the Add Database Reference dialog box. Click OK to continue.

8. In the Enable CLR debugging window, click Yes to enable SQL/CLR debugging on this
connection.

� Exercise 2: Add the E-Mail Extraction Function

In this exercise, you will create the required code to extract an e-mail using the regular expres-
sions functionality of the .NET Framework.

1. In Solution Explorer, right-click the DataExtraction project and select Add; then select
User-Defined Function. The Add New Item dialog box is displayed.

2. In the Name text box, type ExtractFirstEmail and click Add to produce the required
code to create a UDF.

3. At the top of the C# file, before the class declaration, in the Using section, add the refer-
ence to the RegularExpressions namespace. This namespace contains a set of classes to
access the regular expressions engine.
//C#
using System.Text.RegularExpressions;

4. Add property declarations to the ExtractFirstEMail UDF. Set the properties required to
inform the database engine that the function does not access the database, is precise,

208 Chapter 7 Designing Objects That Extend Server Functionality
and is deterministic. The function should receive a SqlString as a parameter and return
a SqlString.
//C#
[Microsoft.SqlServer.Server.SqlFunction(DataAccess=DataAccessKind.None
 , IsDeterministic=true, IsPrecise=true)]
 public static SqlString ExtractFirstEmail(SqlString Input)
 {

5. Write the functional section of the UDF. Use a regular expression constant to find a
match in the input string and return the match.
//C#
string Result;
string EmailRegExpression = @"(\w+\.)*\w+@(\w+\.)+[A-Za-z]+";
Result=Regex.Match(Input.ToString(), EmailRegExpression).ToString();
if (0==Result.ToString().Length)
 return new SqlString();
else
 return new SqlString(Result);

� Exercise 3: Test the ExtractFirstEmail UDF

In this exercise, you test the CLR UDF to extract e-mails from a string.

1. In Solution Exporer, navigate to the Test Scripts folder and double-click the Test.sql
script file.

2. Comment on the last line of the provided SQL code and add your testing code. The code
should test different scenarios in which the ExtractFirstEmail UDF can be used. The fol-
lowing code provides some examples:
SET NOCOUNT ON;
SELECT dbo.ExtractFirstEmail('Test demo@demo.com');
SELECT dbo.ExtractFirstEmail('Test No Email')
SELECT dbo.ExtractFirstEmail('demo@demo.com demo2@demo2.com')

3. To run the tests, click Start Debugging or press F5.

Quick Check
1. Which of the following is not a type of user-defined function?

A. Multistatement

B. Multitable

C. Inline

D. Scalar

Lesson 2: Designing Scalar User-Defined Functions 209
2. Which of the following is not a property of user-defined functions?

A. Data access

B. System data access

C. Schema binding

D. Precision

3. Why it is important to define a CLR user-defined function as deterministic?

A. Deterministic functions can be used in UPDATE statements.

B. Deterministic functions can be used in stored procedures.

C. It is not important to define CRL user-defined functions as deterministic.

D. Deterministic functions can be used in clustered indexes.

Quick Check Answers
1. The correct answer is B. SQL Server offers only three types of user-defined func-

tions: multistatement, which are similar to stored procedures but return a single
table; inline, which are similar to views except that they can be parameterized; and
scalar, which return a single value.

2. The correct answer is C. Schema binding is an option of views that binds the view
to the source tables. Schema binding is also an option of user-defined functions.

3. The correct answer is D. Deterministic functions can be used in clustered indexes.
Because deterministic functions always return the same value when called with the
same parameters, the database engine can store the result to create indexes.

210 Chapter 7 Designing Objects That Extend Server Functionality
Lesson 3: Designing DML and DDL Triggers

Estimated lesson time: 25 minutes

Triggers and stored procedures are very similar. They both are subroutines or sets of instruc-
tions stored in the database. The main difference between them is that triggers are automati-
cally fired when data or objects change in the database. For example, you can create a trigger
in a table so that every time someone inserts, updates, or deletes data in the table, the trigger
fires and executes its code. You can also attach triggers to the database to be executed when-
ever someone creates, alters, or deletes a table.

In SQL Server 2005, you can create two different types of triggers:

n DML triggers DML triggers are stored procedures that are fired automatically when
someone executes INSERT, UPDATE, or DELETE commands to a table.

n DDL triggers DDL triggers are stored procedures fired when objects change in a data-
base. DDL triggers are fired when CREATE, ALTER, or DROP statements are used in a
database.

Database developers use triggers for multiple reasons. Some of these reasons are:

n To maintain denormalized data Sometimes, for performance reasons, database design-
ers choose to maintain redundant data in the database. Triggers provide an invaluable
resource to keep redundancy synchronized in the database.

n To implement complex data constraints Constraints such as CHECK, PRIMARY KEY,
and UNIQUE are powerful tools for maintaining valid data stored in the database, but
they are also limited. You can use triggers to implement constraints that are too complex
to implement through database constraints.

n To implement updateable views All views are not necessarily updateable in SQL Server
2005. For example, for a view that joins two or more tables to work UPDATE, INSERT,
and DELETE statements must reference columns from only one of the base tables.
Otherwise, the command will fail. Triggers can help you override this restriction.

n To implement database audit trails Triggers can help you monitor who changed sensi-
tive data and when.

Creating DML Triggers
There are two types of DML triggers: AFTER triggers and INSTEAD OF triggers. After triggers
fire after data has been changed in the table, which means that the INSERT, DELETE, or
UPDATE operation has already occurred and data has already been modified. Keep in mind
that AFTER triggers take place after all constraints (Primary Key, Foreign Key, Unique, Not Null,
and Check) have validated the data. AFTER triggers are commonly used to keep audit trails and

Lesson 3: Designing DML and DDL Triggers 211
to maintain denormalized data. However, one limitation of AFTER triggers is that they cannot
be applied to views.

INSTEAD OF triggers, however, happen before data is modified and act as a substitute for the
original command. Take into account that INSTEAD OF triggers are responsible for imple-
menting the change that was originally intended; in other words, the original statement will
never be executed. For example, if you want to implement an updateable view, use an
INSTEAD OF trigger and implement one INSERT statement per base table.

Inserted and Deleted Tables
Inserted and Deleted tables are logical tables that exist only during the execution of a trigger.
The Inserted table holds copies of all rows that have been inserted in the statement. In an
AFTER trigger, the Inserted table is a duplicate of the rows that were added to the table. For an
INSTEAD OF trigger, the Inserted table holds a copy of the rows you intend to insert. The dif-
ference may seem semantic, but it is not. In an INSTEAD OF trigger, the data does not yet exist
in the table.

Similarly, the Deleted table is a logical table that holds copies of rows deleted in a statement.
In an AFTER trigger, the Deleted table has a copy of data that no longer exists in the table; in
an INSTEAD OF trigger, the Deleted table has a copy of rows intended for deletion.

IMPORTANT Trigger execution

Don’t assume that only one row will be affected in a trigger. Use the Deleted and Inserted tables to
work with the whole set of changes. Otherwise, the trigger will fail when a command that affects
multiple rows executes.

SQL Server 2005 loads data into the Inserted and Deleted tables based on the executed state-
ment. In an INSERT statement, the Inserted table has the new rows, and the Deleted table is
empty. In a DELETE statement, the Inserted table is empty, and the Deleted table has the rows.
In an UPDATE statement, the Inserted table contains the rows after the update, and the
Deleted table contains the rows before the update. Table 7-1 summarizes how SQL Server
manages the Inserted and Deleted tables.

Table 7-1 Inserted and Deleted Tables

Statement Inserted Deleted

INSERT New Rows Empty

DELETE Empty Deleted Rows

UPDATE After Update Before Update

212 Chapter 7 Designing Objects That Extend Server Functionality
Creating DML Trigger Syntax
To create a DML, use the CREATE TRIGGER statement. The statement defines the name of
the trigger, the table on which the trigger is executed, and the contents. The syntax to create
a trigger is:

CREATE TRIGGER [schema_name .]trigger_name
ON { table | view }
[WITH <dml_trigger_option> [,...n]]
{ FOR | AFTER | INSTEAD OF }
{ [INSERT] [,] [UPDATE] [,] [DELETE] }
[WITH APPEND]
[NOT FOR REPLICATION]
AS { sql_statement [;] [...n] | EXTERNAL NAME <method specifier [;] > }

<dml_trigger_option> ::=
 [ENCRYPTION]
 [EXECUTE AS Clause]

An example of a DML trigger is:

CREATE TRIGGER dbo.Audit_Test
ON dbo.Test
AFTER UPDATE
AS
 BEGIN
 SET NOCOUNT ON;
 UPDATE Test
 SET AuditLoginName=SYSTEM_USER
 , AuditChangeDate=CURRENT_TIMESTAMP
 FROM Test
 JOIN INSERTED
 ON Test.Pk=INSERTED.Pk
 END

Creating DDL Triggers
New in SQL Server 2005 is the capability of creating DDL triggers. DDL triggers are like regu-
lar DML triggers except that they don’t fire as a reaction to DML statements but rather in
response to DDL statements. DDL statements include those that CREATE, DROP, and ALTER
objects in the database. It is also possible to use DDL triggers to control data-control language
(DCL) statements such as GRANT, REVOKE, and DENY.

The syntax to create a DDL trigger is very similar to that for creating a DML trigger. However,
DDL triggers are not limited to INSERT, DELETE, or UPDATE statements.

CREATE TRIGGER trigger_name
ON { ALL SERVER | DATABASE }
[WITH <ddl_trigger_option> [,...n]]

Lesson 3: Designing DML and DDL Triggers 213
{ FOR | AFTER } { event_type | event_group } [,...n]
AS { sql_statement [;] [...n] | EXTERNAL NAME < method specifier > [;] }

<ddl_trigger_option> ::=
 [ENCRYPTION]
 [EXECUTE AS Clause]

<method_specifier> ::=
 assembly_name.class_name.method_name

The following code creates a DDL trigger that prevents CREATE TABLE statements in the mas-
ter database.

USE Master
GO
CREATE TRIGGER Tr_NoNewTablesInMaster
ON DATABASE
FOR Create_Table
AS
 RAISERROR('No new tables in the Master Database', 10, 1)
 ROLLBACK
GO

Following is a list of the objects that you can monitor at the database level by using DDL triggers.

n Supported for CREATE, ALTER, and DROP actions:

q APPLICATION_ROLE

q FUNCTION

q PARTITION_FUNCTION

q QUEUE

q ROUTE

q STATISTICS

q TRIGGER

q VIEW

q ASSEMBLY

q INDEX

q PARTITION_SCHEME

q REMOTE_SERVICE_BINDING

q SCHEMA

q SYNONYM

q TYPE

q XML_SCHEMA_COLLECTION

214 Chapter 7 Designing Objects That Extend Server Functionality
q CERTIFICATE

q MESSAGE_TYPE

q PROCEDURE

q ROLE

q SERVICE

q TABLE

q USER

n Supported for CREATE and DROP actions:

q CONTRACT

q NOTIFICATION

n Supported for ALTER actions: AUTHORIZATION_DATABASE

Following is a list of server objects that you can monitor at the server level by using DDL triggers.

n Supported for CREATE, ALTER, and DROP actions:

q DATABASE

q LOGIN

n Supported for GRANT, DENY, and REVOKE: SERVER

n Supported for CREATE and DROP Actions: ENDPOINT

n Supported for ALTER actions: AUTHORIZATION_SERVER

Practice: Using a Trigger to Create a Deleted-Rows Table
In this practice, you create an audit trigger to populate a deleted rows table. A deleted rows
table receives rows deleted from a transactional table for audit trail purposes. You will use the
Sales.Currency table as the base table for the trigger.

� Exercise 1: Add a Deleted Table

1. Open SSMS and connect to the default instance of the database engine.

2. From the toolbar, click the New Query button.

3. If required, change the default database to the AdventureWorks database.

4. In the Query Editor, type the following code to create the table that will hold deleted val-
ues from the Currency Table. Also create an Audit schema to contain the Currency table.
CREATE SCHEMA Audit
CREATE TABLE Audit.CurrencyTomb(
 AuditID INT NOT NULL PRIMARY KEY
 , CurrencyCode nchar(3) NOT NULL
 , Name nvarchar(50) NOT NULL
 , DeletedDate datetime NOT NULL

Lesson 3: Designing DML and DDL Triggers 215
 DEFAULT(GETDATE())
 , DeletedBy datetime NOT NULL
 DEFAULT(SYSTEM_USER)
)

5. Click the Execute button on the SQL Editor toolbar or press F5 to create the schema and
table.

� Exercise 2: Create the Audit Trail Trigger

1. Click New Query on the Standard toolbar.

2. In the QueryEditor, type the following code to create a trigger to populate the audit trail.
CREATE TRIGGER Sales.CurrencyDeletedTrail
 ON Sales.Currency
 AFTER DELETE
AS
BEGIN
 SET NOCOUNT ON;
 INSERT Audit.CurrencyTomb(CurrencyCode, Name)
 SELECT CurrencyCode, Name
 FROM Deleted
END

3. Click Execute on the SQL Editor toolbar or press F5 to create the schema and table.

� Exercise 3: Test the Audit Trail Trigger

1. From the Standard toolbar, click the New Query button.

2. In the QueryEditor, type the following code to insert some test rows into the Sales.Cur-
rency table and delete other rows from it. Verify that the audit trail is working.
-- INSERT Some Test Values
INSERT Sales.Currency(CurrencyCode, Name)
SELECT 'TS1', 'Test 1' UNION ALL
SELECT 'TS2', 'Test 2' UNION ALL
SELECT 'TS3', 'Test 3'

-- Delete ONE ROW
DELETE Sales.Currency
 WHERE CurrencyCode='TS1'

-- Review the Trigger
SELECT * FROM Audit.CurrencyTomb

DELETE Sales.Currency
 WHERE CurrencyCode IN ('TS2' , 'TS3')

SELECT * FROM Audit.CurrencyTomb

3. Click Execute on the SQL Editor toolbar or press F5 to create the schema and table.

216 Chapter 7 Designing Objects That Extend Server Functionality
Quick Check
1. Which of the following is a valid reason to use triggers?

A. To define a default value.

B. To validate that a column does not store NULL values.

C. To maintain denormalized data.

D. There are no valid reasons to create triggers.

2. What is the main difference between AFTER and INSTEAD OF triggers?

A. AFTER triggers are executed after the COMMIT command.

B. AFTER triggers must be enabled at the database level.

C. AFTER triggers offer better performance.

D. AFTER triggers are fired after data is modified.

3. Which tables are dynamically created within a trigger?

A. Inserted and Deleted

B. Inserted, Deleted, and Updated

C. Before and After

D. Error and Log

Quick Check Answers
1. The correct answer is C. Triggers can be used to maintain denormalized data such

as summary tables.

2. The correct answer is D. AFTER triggers are fired after data is modified and all con-
strains are validated.

3. The correct answer is A. The Inserted table holds the new records, and the Deleted
table holds the old records.

Lesson 4: Designing CLR User-Defined Aggregates 217
Lesson 4: Designing CLR User-Defined Aggregates

Estimated lesson time: 20 minutes

In Lesson 2, “Designing Scalar User-Defined Functions,” you learned how CLR UDFs help you
extend the standard functionality provided by SQL functions. In the same way, CLR user-
defined aggregate functions enable you to add to the built-in collection of aggregate functions
provided by SQL Server 2005, such as SUM, MIN, and MAX.

Programming User-Defined Aggregates
Programming a user-defined aggregate function is similar to programming a UDF. You create
a class or a structure by using any .NET language and then creating the code to perform the
aggregation. After the class is compiled in a CLR assembly, the assembly is registered in the
database, and a CREATE FUNCTION statement is issued to create the aggregate function.

However, user-defined aggregates are more complex than regular UDFs. In a UDF, you create
only a single static method by using the SqlFunction attribute. In a user-defined aggregate func-
tion, you have to declare the aggregate class with the SqlUserDefinedAggregate attribute and
implement four functions: Init, Accumulate, Merge, and Terminate. Table 7-2 describes these
functions.

The following example implements a user-defined Concatenate aggregate function:

//C#
using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;
using System.Text;

[Serializable]
[Microsoft.SqlServer.Server.SqlUserDefinedAggregate(Format.UserDefined
 , MaxByteSize=8000
 , IsInvariantToDuplicates=false

Table 7-2 Functions for User-Defined Aggregates

Function Purpose

Init To clean up the previous aggregate and start a new aggregate computation

Accumulate To be responsible for the accumulation of the value passed as a parameter;
invoked once for each aggregated value

Merge To use when the query processor needs to aggregate to the previous calculation

Terminate To return the result of the aggregation

218 Chapter 7 Designing Objects That Extend Server Functionality
 , IsInvariantToNulls=false
 , IsNullIfEmpty=true)]

public class Concatenate: IBinarySerialize
{
 private const int MaxSize = 8000;

 private StringBuilder RunningValue;
 private bool IsNull;

 public void Init()
 {
 RunningValue = new StringBuilder(100, MaxSize);
 IsNull = false;
 }

 public void Accumulate(SqlString Value)
 {
 if (Value.IsNull)
 {
 IsNull = true;
 }
 if ((!IsNull) && (RunningValue.Length<MaxSize))
 {
 try
 {
 RunningValue.Append(Value.Value);
 }
 catch (ArgumentOutOfRangeException)
 {
 if (MaxSize >= RunningValue.Length)
 {
 RunningValue.Append(Value.Value.Substring(0, MaxSize - RunningValue.Length));
 }
 }
 }
 }

 public void Merge(Concatenate Group)
 {
 if (Group.IsNull)
 {
 IsNull = true;
 }
 if ((!IsNull) && (RunningValue.Length<MaxSize))
 {
 try
 {
 RunningValue.Append(Group.RunningValue);
 }
 catch (ArgumentOutOfRangeException)
 {
 if (MaxSize >= Group.RunningValue.Length)

Lesson 4: Designing CLR User-Defined Aggregates 219
 {
 RunningValue.Append(Group.RunningValue.ToString().Substring(0, MaxSize -
RunningValue.Length));
 }
 }
 }
 }

 public SqlString Terminate()
 {
 if (IsNull)
 return SqlString.Null;
 else
 return new SqlString(RunningValue.ToString());
 }

 #region IBinarySerialize Members
 void IBinarySerialize.Read(System.IO.BinaryReader r)
 {
 IsNull = r.ReadBoolean();
 RunningValue = new StringBuilder(r.ReadString());
 }

 void IBinarySerialize.Write(System.IO.BinaryWriter w)
 {
 w.Write(IsNull);
 w.Write(RunningValue.ToString());
 }
 #endregion
}

User-Defined Aggregate Attributes
An important step in programming user-defined aggregates is to define the attributes that indi-
cate how the aggregate class or structure should be registered. Table 7-3 describes how to use
the various attributes.

Table 7-3 User-Defined Aggregate Attributes

Attribute Description

Format Specifies how the class can be serialized. The UserDefined attribute
demands that you use a class and implement the IBinarySerialize inter-
face (read and write methods). The Native attribute enables you to use
structures but limits the type of attributes you can use.

IsInvariantToDuplicates When set to true, the engine will not call the method for duplicate
values—for example, in a MIN or MAX function. When set to false, the
engine will call the aggregate for each row, even when the value is
repeated.

220 Chapter 7 Designing Objects That Extend Server Functionality
Practice: Creating a User-Defined Aggregate
In this practice, you will create a user-defined aggregate that will calculate a special type of
average; this average would not take into account the highest or the lowest value of the set.

� Exercise 1: Add the AdjustedAverage Project

In this exercise, you will create a new Visual Studio project. This project template enables you
to create, test, and deploy CLR stored procedures.

1. Open Visual Studio 2005.

2. From the main menu, click File. Select New, and then click Project.

3. From Project Types, select Visual C#, and then click Database.

4. From the Templates list, select SQL Server Project. Name the project AdjustedAverage.
Click OK to create the solution and the project.

5. If the AdventureWorks database is displayed, select it and click OK. This step will end this
exercise.

6. If the AdventureWorks database is not displayed, select Add New Reference to create the
connection string to the database. The new database reference window is displayed.

7. Type localhost in the Server Name combo box. Select AdventureWorks in the data-
base combo box. Select Test Connection and click OK to create the connection refer-
ence. Select the new reference in the Add Database Reference dialog box. Click OK to
continue.

8. In the Enable CLR debugging window, click Yes to enable SQL/CLR debugging on this
connection.

� Exercise 2: Add the AdjustedAverage Function

In this exercise, you will create the required C# code to calculate the aggregated value.

1. In Solution Explorer, right-click the AdjustedAverage project and, on the shortcut menu,
click Add, and then select Aggregate.

IsInvariantToNulls Sets whether the aggregate ignores values. When set to true, the aggre-
gate method won’t be used with Null values.

IsInvariantToOrder Reserved for future use.

IsNullIfEmpty Sets the impact of empty sets in the aggregate. When set to true, the
engine will return null. When set to false, the engine will return the
result of the Terminate function.

MaxByteSize Sets the maximum length of data serialized by the serialization
methods.

Table 7-3 User-Defined Aggregate Attributes

Attribute Description

Lesson 4: Designing CLR User-Defined Aggregates 221
2. Verify that the Aggregate template is selected. Name the aggregate AdjustedAverage and
click Add to create the C# code.

3. Before the Init method, declare the four variables required to calculate the average.
//C#
public SqlDecimal Terminate ()
{
 decimal Result = (Count < 3) ? 0 : ((decimal) (Sum - Max - Min) /
 (Count - 2));
 Result = decimal.Round(Result, 2);
 Return new SqlDecimal(Result)

4. In the Init method, replace the section Put Your Code Here and initialize the three
variables.
//C#
public void Init()
 {
 Sum = 0;
 Count = 0;
 Min = Int32.MaxValue;
 Max = Int32.MinValue;
 }

5. The init function initializes the Sum and Count values to zero and sets the Minimum and
Maximum values to a quantity that always will be assigned the first time the function
runs.

6. In the Accumulate method, replace the section Put Your Code Here and write the
required code to monitor all the variables. Change the parameter to accept a four-byte
integer.
//C#
public void Accumulate(SqlInt32 Value)
 {
 Sum += Value.Value;
 Count++;
 Min = (Min <= Value.Value) ? Min : Value.Value;
 Max = (Max >= Value.Value) ? Max : Value.Value;
 }

7. In the Merge method, replace the section Put Your Code Here. The function should take
the values from private variables in the Group parameter and accumulate them.
//C#
public void Merge(AdjustedAverage Group)
 {
 Sum += Group.Sum;
 Count += Group.Count;
 Min = (Min <= Group.Min) ? Min : Group.Min;
 Max = (Max >= Group.Max) ? Max : Group.Max;
 }

222 Chapter 7 Designing Objects That Extend Server Functionality
8. In the Terminate method, replace the section Put Your Code Here and calculate the
return value. Change the type to return a SqlInt32 value.
 //C#
public SqlInt32 Terminate()
 {
 int Result=(Count<3)?0:(Sum-Max-Min)/(Count-2);
 return new SqlInt32(Result);
 }

9. Delete the last section of the code generated by the assistant. You will not need this code.
//C#
// This is a place-holder member field
private int var1;

10. Build the project and examine and correct any syntax error.

� Exercise 3: Test the Aggregate Function

In this exercise, you will create a simple test to evaluate the aggregate user-defined function.

1. Double-click the Test.sql file in Solution Explorer. The Test.sql file is located in the Tests
Scripts folder.

2. Write the following code to evaluate the AdjustedAverage user-defined aggregate.
//C#
; WITH Numbers AS
(
SELECT 0 AS Number
UNION ALL
SELECT Number+1
FROM Numbers
WHERE Number<50
)
SELECT dbo.AdjustedAverage(Number)
FROM Numbers
GROUP BY (Number/10)

3. From the Debug menu, click Start Debugging or press F5 to test the project.

4. Review the results pane to evaluate the function.

Quick Check
1. What is the purpose of the Accumulate function?

A. To prepare data for the summarize function

B. To inform the class of a new value that must be aggregated

C. To accumulate and clean up the previous value

D. To terminate the aggregation process and return the value

Lesson 4: Designing CLR User-Defined Aggregates 223
2. Which is one of the restrictions of a user-defined aggregate?

A. You can define only 255 aggregates per database.

B. You can use user-defined aggregates only on numeric data.

C. User-defined aggregates can store only less than 8K of data during
computation.

D. User-defined aggregates can be defined only in T-SQL.

3. What will be the effect of setting the IsInvariantToDuplicates attribute to True?

A. The database engine won’t allow the aggregate to duplicate values.

B. Multiple NULL values will cause the aggregate function to fail.

C. The database engine will not call the method when duplicate values are
provided.

D. The database engine will be informed to serialize the function for every
duplicate value.

Quick Check Answers
1. The correct answer is B. The aggregate method is called once per row in the state-

ment to enable the Accumulate function to accumulate each value.

2. The correct answer is C. By design, SQL Server 2005 does not allow more than 8K
in the aggregates state.

3. The correct answer is C. When set to true, the engine will not call the method for
duplicate values, for example, in a MIN or MAX function. When set to false, the
engine will call the aggregate for each row, even when the value is repeated.

Case Scenario: Adding an Audit Trail
AdventureWorks, a worldwide distributor of bicycles and accessories to small bicycle stores,
has implemented an online ordering system on SQL Server 2005. The AdventureWorks
accounting department has complained since the new database implementation that the
department needs an audit trail to validate which users are changing information related to
purchase orders. The AdventureWorks IT department wants to address the new auditing
requirements without changing the application code. The accounting department needs to
know only the last user who changed the order and the last updated date.

When analyzing the AdventureWorks database schema, you find that the sales orders infor-
mation is stored in three tables: Sales.SalesOrderHeader, Sales.SalesOrderDetail, and
Sales.SalesOrderHeaderReason. Each table already has a ModifiedDate column, which is
used for the data warehousing extract, transform, and load (ETL) process but can also help
you implement the audit trail functionality for accounting. You examine the database code

224 Chapter 7 Designing Objects That Extend Server Functionality
to find default constraints that assign the current date to the ModifiedDate column. There
are also AFTER UPDATE triggers that, among other things, keep the ModifiedDate column
updated. The triggers are iduSalesOrderDetail on the Sales.SalesOrderDetail table; uSales-
OrderHeader on the Sales.SalesOrderHeader table, and uSalesOrderHeaderSalesReason
on the Sales.SalesOrderHeaderSalesReason table.

The audit trail must have the ModifiedDate column and the ModifiedBy column. The applica-
tion uses Microsoft Windows authentication to validate users. Information about deleted rows
is not preserved in the transactional tables, but the accounting department also wants to know
whether a user deletes any order information and when the deletion occurred.

1. What changes will you implement to monitor which users change a purchase order?

2. After you implement the code to monitor users who change a row, the purchase orders
application fails because it seems that some of the INSERT commands issued from the
application are not specifying all the required columns. How will you fix the database
and still provide the audit trail functionality?

3. What changes will you implement to monitor deleted rows for any of the tables related
to purchase orders?

Chapter Summary
n Use stored procedures to extend the functionality of the server, to provide access con-

trol, to validate data, and to consolidate and centralize data-related logic.

n CLR stored procedures, user-defined functions, and aggregates enable you to use the
advantages of the .NET Framework in the database and enable you to extend the func-
tionality of SQL Server.

n DML and DDL triggers automatically execute code that can be used to validate com-
mands, capture information for auditing purposes, or override the updateable view
limitations.

n To create tables, defined parameters, and so on.

Chapter 8

Designing a Secure Application
Solution

Security is one of the most important considerations when you design an application and a
database to support your business processes. To secure your data, you must understand
potential threats as well as the security mechanisms provided by Microsoft SQL Server and
other components your application is using, including the operating system and program-
ming language.

This chapter describes general and SQL Server–specific threats. You will see how you can
develop a secure solution and mitigate those threats. You will learn about the security features
of SQL Server 2005. You will also learn how to design a security strategy for components of a
SQL Server solution.

Exam objectives in this chapter:
n Design an application solution to support security.

q Design and implement application security.

q Design the database to enable auditing.

q Design data-level security that uses encryption.

Before You Begin
To complete the lessons in this chapter, you must have:

n A general understanding of multi-tiered, asynchronous, and service-oriented architectures.

n Knowledge about SQL Server components, including CLR integration, HTTP endpoints,
replication, SQL Server Agent, DatabaseMail, Notification Services, Reporting Services,
and Integration Services.

n Knowledge of the Transact-SQL language elements that support security.

n The SQL Server 2005 AdventureWorks sample database installed. Sample databases
are available with SQL Server 2005 Enterprise edition but are not a part of the default
installation. Alternatively, you can install the sample databases from http://
msdn2.microsoft.com/en-us/library/ms143739.aspx.

n Microsoft Visual Studio 2005 Express edition or Microsoft Visual Basic 2005 Express
edition or Microsoft Visual C# 2005 Express edition installed. You can download Visual
Studio Express edition from http://msdn.microsoft.com/vstudio/express/.
225

226 Chapter 8 Designing a Secure Application Solution
Lesson 1: Securing Components of a SQL Server Solution

Estimated lesson time: 30 minutes

When you talk about securing SQL Server, you are actually talking about defending data
access to the database platform and guaranteeing the integrity of that access. In addition, you
have to protect all SQL Server components included in your solution. Remember that your sys-
tem is only as secure as the least secure component. As a defender, you have to close all holes,
while an attacker has to find only a single hole.

To have a secure solution, you must secure all components in the solution. This lesson begins
with a look at common threats and at the authentication and authorization options in SQL
Server. Then, the lesson covers guidelines for securing different components of SQL Server
2005, including Hypertext Transfer Protocol (HTTP) endpoints, common language runtime
(CLR) integration, replication, linked servers, SQL Server Agent, and DatabaseMail. This les-
son also gives you best practices for designing security for Notification Services, SQL Server
Reporting Services (SSRS), SQL Server Analysis Services (SSAS), and SQL Server Integration
Services (SSIS) solutions.

The first step in securing your system is understanding who an attacker can be. The attacker
can be either known or unknown to you. You need to be wary of disgruntled employees within
your organization who could perform malicious updates in the database and intentional file
deletions in the file system. Untrained and inexperienced users can also be a danger, uninten-
tionally deleting or modifying files they shouldn’t. Outside your organization, a casual hacker
can attack your systems. These casual external attacks usually involve simple methods; to
thwart these attacks, simply make sure you have not left any doors open to your system. More
problematic can be an attack from a professional hacker, who might even be an industrial spy.
Your system can also fall victim to a virus; there are new viruses every day.

There are many types of security threats. Microsoft uses the acronym STRIDE to describe the
following taxonomy of security threats:

n Spoofing identity Using a valid user’s credentials, an attacker can impersonate that
user and gain access to the areas of the application and data to which the impersonated
user typically has access.

n Tampering Data tampering is the deliberate destruction or manipulation of data.
n Repudiation Repudiation is the concept of denying that an action occurred.
n Information disclosure Information disclosure includes disclosing sensitive data and

information about the application structure, such as path disclosure of a server-based
application.

n Denial of service These attacks try to lower the application availability and reliability.

Lesson 1: Securing Components of a SQL Server Solution 227
n Elevation of privilege This threat occurs when a user obtains privileged access to por-
tions of the application or data that are normally inaccessible to the user.

Many SQL Server attacks exploit insecure default configurations. In the relational database
world, SQL injection is the most widely known attack. SQL injection tries to execute SQL code
that the application was not intended to run by injecting the code where an application
expects query parameter values. To prevent the injection attacks, you should always imple-
ment the least-privilege concept. If a user has no permissions to drop objects, the user cannot
drop an object directly or through injection. Further, verify all user input and catch and log
system error messages. In addition, do not concatenate strings to build SQL statements
directly from user input; use parameters instead.

The structure of secure systems generally consists of three parts: authentication, authoriza-
tion, and enforcement of rules. Authentication is the process of checking the identity of a prin-
cipal by examining the credentials and validating those credentials against some authority.
Authorization is the process of determining whether a principal is allowed to perform a
requested action. Authorization occurs after authentication and uses information about the
principal’s identity and roles to determine which resources the principal can access. The
enforcement of rules provides the mechanism to block direct access to resources. Blocking
access is essential to securing any system. Figure 8-1 shows the structure of a secure system.

Figure 8-1 Structure of secure systems

SQL Server Authentication Modes
SQL Server supports two authentication modes: Microsoft Windows authentication mode
and mixed mode (SQL Server and Windows authentication mode). In Windows authentica-
tion mode, when a user connects through a Windows user account, SQL Server validates the
account name and password by using information from the operating system. In mixed
mode, in addition to Windows authentication, a user can provide a SQL login and password

Identity authority Authentication

Authorization

Enforcement

Resource

Resource request

Permissions

Blocked

228 Chapter 8 Designing a Secure Application Solution
to connect to SQL Server. SQL Server 2005 can use Windows password policy mechanisms
but only if it runs on Microsoft Windows Server 2003 or Windows XP with Service Pack 2
(SP2) or later.

IMPORTANT Mixed mode and brute-force attacks

If you use mixed mode authentication and SQL Server runs on Windows 2000, your SQL logins are
vulnerable to brute-force attacks. Because there is no password and account policy, such as an
account lockout policy, an attacker can continue trying to log in with different passwords until SQL
Server accepts the connection. Because the SQL Server login name sa always exists and always has
sysadmin permissions, it is the f irst target of brute-force attacks.

Always try to implement Windows authentication mode. In a domain, you should have strong
account and password policies. If some of your SQL Server users are not members of the
domain, you can implement mixed mode authentication. Apply mixed mode only if SQL
Server runs on Windows Server 2003. In addition, audit failed logins. (You can set up auditing
of logins in SQL Server Management Studio [SSMS] on the Security page of Server Properties.)
You can open the Properties pages of an instance of SQL Server by right-clicking the instance
in the Object Explorer window in SSMS and selecting the Properties option. In addition to
implementing a regular password complexity policy, create an even more complex password
for the sa login. Never use the sa login for your daily database administrator (DBA) tasks;
reserve this login as a last resort for when you fail to connect with any other regular adminis-
trative login, such as if all other logins that have sysadmin permissions are accidentally
dropped.

Authorization Strategy
SQL Server 2005 defines two fundamental terms for security: principals and securables.
Principals are entities that can request SQL Server resources. They are arranged in a hierar-
chy in the principal’s scope: you can have Windows-level, server-level, and database-level
principals. A principal can be a Windows domain login, a Windows local login, a Windows
group, a SQL Server login, a server role, a database user, a database role, or an application
role in a database. In addition to having regular users, you can create a SQL Server login or
a database user from a certificate or an asymmetric key.

Securables are the resources you are protecting. Some securables can be contained within oth-
ers in nested hierarchies (scopes). You can secure a complete scope, and the objects in the
scope inherit permissions from the upper level of the hierarchy. The securable scopes are
server, database, and schema.

Lesson 1: Securing Components of a SQL Server Solution 229
Your authorization strategy should include the following steps:

1. Identify the securables.

q Identify all services and components of SQL Server 2005 that you are using in your
solution, not just the database engine. Check the connecting endpoints for the ser-
vices and interaction between the services.

q List all databases and all objects in databases, such as schemas, tables, and proce-
dures. Analyze those objects in terms of permissions.

q Identify the scope of the securables.

2. Identify the principals. The principals are all users that need access to your complete
solution or to parts of your solution. Check the authentication mode for each user.

3. Identify the permissions the principals need on the securables. Make a matrix of
principals and securables and the kind of permissions the principals require on the
securables.

4. Group the principals based on permissions they need.

q If the principals are grouped based on similar permissions on the Windows level
already, make Windows groups, create principals for them, create a database user
for each group in every database they need access to, and then give permissions to
the database users.

q If you cannot group principals on the Windows level, you can group them on the
database level by putting them in user-defined database roles. You cannot create a
user-defined role on the server level. Reserve fixed roles on server and database lev-
els for administrative purposes only.

q An application role is a database principal that enables an application to run
with its own, user-like privileges. An application role contains no members and
is inactive by default. An application must activate the role. If an end user has no
permissions in a database, and an application that the user is running activates
an application role, the end user gets only permissions given to the application
role and has no other means of accessing the securables. Before you close a con-
nection that sets an application role by using sp_setapprole, you have to unset
the role by using sp_unsetapprole; otherwise, application roles do not support
connection pooling and thus have limited usability because they are not scal-
able. The sp_unsetapprole is new in SQL Server 2005; previous versions of SQL
Server simply do not support application roles and connection pooling
together.

230 Chapter 8 Designing a Secure Application Solution
Securing HTTP Endpoints
Exposing SQL Server over the Web can be a security threat. However, if you protect HTTP end-
points properly, the exposure is minimized. Follow these best practices when you use native
Web services:

n Use Kerberos authentication. HTTP endpoints support the following authentication
types: Basic, Digest, NTLM, Kerberos, and Integrated. Kerberos authentication is the
most secure because it uses the strongest encryption algorithms and identifies both the
server and the client. To use it, SQL Server must associate a service principal name (SPN)
with the account it will run on.

n Limit endpoint connect permissions. You can use the GRANT CONNECT and DENY
CONNECT statements to limit the endpoint connect permissions to specific users and
groups only.

n Use Secure Sockets Layer (SSL) encryption to exchange sensitive data. The SSL protocol
enables encryption of data over a secure TCP/IP socket interface. If you want to use the
SSL encryption, you must first configure a certificate.

n Place SQL Server behind a firewall. You should never allow Internet clients direct access
to your HTTP endpoints.

n Disable the Windows Guest account. The Guest account enables any user to access the
local computer without providing a password. The Guest account is disabled by default
in Windows Server 2003; however, in Windows 2000, it is enabled by default.

n Enable HTTP endpoints only when you need them. If you disable HTTP endpoints, you
do not need to disable the Guest Windows account because you are minimizing the pos-
sible surface area for an attack.

n Disable ad hoc batches. You can expose stored procedures, user-defined functions, and
ad hoc batches as Web methods. However, ad hoc batches are the hardest to control.

CLR Integration Security
The Transact-SQL (T-SQL) language has a limited set of expressions that allow risky actions.
However, CLR integration gives you access to the richness of Microsoft .NET languages, and
this richness can pose security threats. CLR integration is disabled by default in SQL Server
2005. Enable it only when you need it. You can enable it by using the Surface Area Configura-
tion tool or the sp_configure system procedure.

CLR supports the code access security (CAS) model for managed code. CAS further tightens
a current user’s permissions for a specific assembly. Because CLR code can access not only
SQL Server resources but also local computer, network, and Internet resources, setting the
CAS can be an exacting piece of work. To mitigate this situation, SQL Server groups CAS per-
missions into three sets: SAFE, EXTERNAL_ACCESS, and UNSAFE. Table 8-1 summarizes
these three CAS levels.

Lesson 1: Securing Components of a SQL Server Solution 231
Use the SAFE permission set unless you have strong, tested reasons to use either of the other
two sets.

BEST PRACTICES Use the SAFE permission set

Be sure you have a valid reason not to select the SAFE permission set.

Guidelines for Replication Security
When you secure your replication process, you are actually securing authentication and autho-
rization, filtering replication, and performing specific measures for securing each piece of the
replication environment, including the Distributor, Publisher, and Subscribers pieces and the
snapshot folder.

Consider the following best practices for replication:

n Use the appropriate authentication mode. If your replication topology includes comput-
ers from the same domain only or from domains that have trust relationships with each
other, use Windows authentication only. When some of the servers are not part of a
trusted domain, use SQL Server authentication. Windows authentication is preferred.

n Enforce the new Replication Agent security model. In this model, you can specify a dif-
ferent account for each agent. Follow the principle of least privilege by allowing accounts
only permissions they need for their tasks. You can set up different accounts for the fol-
lowing agents: Snapshot Agent, Log Reader Agent, Distribution Agent for a push or pull
subscription, Merge Agent for a push or pull subscription, and Queue Reader Agent.

n Use the Publication Access List (PAL). PAL functions similarly to a Windows access con-
trol list (ACL). You can configure the PAL to contain a list of logins and groups that you
want to grant access to the publication. All Merge Agent and Distribution Agent accounts
must be in the PAL.

n Encrypt the connections between the computers in your replication topology by using
virtual private networks (VPN), Secure Sockets Layer (SSL), or IP Security (IPSec).

Table 8-1 CAS Security Sets

Security Set Description

SAFE This is the most restrictive permission set. With this permission set,
CLR code can access only SQL Server internal data.

EXTERNAL_ACCESS This permission set allows access to external resources such as the file
system, network, and registry.

UNSAFE As the name of this permission set tells you, this is the least safe per-
mission set. It allows unrestricted access to resources.

232 Chapter 8 Designing a Secure Application Solution
n Give Merge and Distribution agents access to the snapshot share. If you use publications
with parameterized filters, configure each folder to allow access only to the appropriate
Merge agent.

n For pull subscriptions, use a network share rather than a local path for the snapshot
folder.

Linked Servers Security
When you use a linked server connection, the sending server provides a login name and pass-
word to connect to the receiving server. You have to create login mappings between the linked
servers by using the sp_addlinkedsrvlogin system procedure or SSMS.

The default mapping for a linked server is the current security credentials of the login. If secu-
rity account delegation is available and the linked server supports Windows authentication,
this self-mapping together with Windows authentication is the preferred security model. If
self-mapping of a Windows account is not possible, you must set up a local login mapping
from a login that uses Windows Authentication to a specific login on the linked server that is
not a Windows-authenticated login. If the linked server is a SQL Server instance, the remote
login uses SQL Server authentication. The linked server applies permissions for the distrib-
uted queries by using the permissions of the remote login at execution time.

SQL Server Agent and DatabaseMail
In SQL Server 2005, SQL Server Agent introduces three new database roles that control access
to jobs for users who are not members of the sysadmin fixed server role. In addition, you can
define a different security context for each job by using subsystems and proxy accounts. In
addition, SQL Server 2005 introduces a new mail component, DatabaseMail, which uses Sim-
ple Mail Transport Protocol (SMTP) for sending e-mail notifications. You should use the new
Database Mail instead of the old SQL Mail, which uses Microsoft Messaging Application Pro-
gramming Interface (MAPI). Let us look at what is new in both components.

The following three new database roles for SQL Server Agent are part of the msdb database:

n SQLAgentUserRole is the least privileged of the new SQL Server Agent roles. Members
of this role have permissions only on local jobs and job schedules that they own.

n SQLAgentReaderRole includes the SQLAgentUserRole permissions and adds permis-
sions to multiserver jobs. Members of this role can also view all available jobs, not just
jobs that they own.

n SQLAgentOperatorRole is the most privileged of the new SQL Server Agent roles. In
addition to having permissions of the former two roles, members of this role can exe-
cute, stop, enable, or disable all local jobs; enable or disable all local schedules; and view
and delete the history of all local jobs.

Lesson 1: Securing Components of a SQL Server Solution 233
In addition to setting proxy accounts for replication subsystems, in SQL Server Agent, you can
set up different proxy accounts for the following subsystems: ActiveX Script, Operating System
(CmdExec), Analysis Services Command, Analysis Services Query, and SQL Server Integra-
tion Services (SSIS) package execution subsystem. There is no subsystem for T-SQL job steps.

Also, configure the SQL Server Agent service account appropriately. It does not have to be a
member of the local Windows Administrators group anymore. However, it must be a member
of the sysadmin fixed SQL Server role and have the following Windows user rights:

n Adjust memory for quotas for a process

n Act as a part of the operating system

n Bypass traverse checking

n Log on as a batch job

n Log on as a service

n Replace a process level token

For DatabaseMail, follow these best practices:

n Enable DatabaseMail only if you need it. It is disabled by default.

n Use private profiles. With private profiles, you can select which database users have
access to a profile.

n In the msdb database, SQL Server 2005 introduces the DatabaseMailUserRole fixed role.
A user must be a member of this role to send SMTP mails.

n Restrict attachment sizes and make a list of prohibited extensions.

Designing Security for Notification Services
With Notification Services, you can implement security by using database roles and restricted
database user accounts. Notification Services consists of an engine that runs hosted event pro-
viders, generators, and distributors. In addition, you can have client applications for submit-
ting events and managing subscriptions. The accounts that the engine and the clients use can
gain access to SQL Server through Windows or SQL Server authentication, then gain access to
databases through database user accounts, and, finally, obtain permissions through member-
ship in Notification Services database roles.

For individual components, you can use the following database roles:

n NSEventProvider role gives permissions to accounts used by the hosted event that pro-
viders use. Nonhosted event providers are independent applications.

n For accounts that the generators use, use the NSGenerator role.

n For accounts that the distributors use, use the NSDistributor role.

n Accounts that the subscription management interfaces use obtain permissions through
the NSSubscriberAdmin role.

234 Chapter 8 Designing a Secure Application Solution
n Members of the NSReader role can execute stored procedures that read instance and
application metadata.

n Members of the NSAnalysis role can execute stored procedures that produce reports for
performance analysis and troubleshooting.

n For cleaning the obsolete data, you can use the NSVacuum role.

n If you are a member of the NSAdmin role, you can enable and disable instances, appli-
cations, and components.

n The NSRunService role combines the permissions of the NSEventProvider, NSGenera-
tor, NSDistributor, NSReader, NSAnalysis, and NSVacuum roles.

In addition to using the fixed Notification Services roles, run the Notification Services engine
under a low-privileged domain or local account. Do not use Local System, Local Service, or
Network Service accounts. The account used to run the Notification Services engine must be
a member of the SQLServer2005NotificationServicesUser$ComputerName Windows group.
Use NTFS permissions to secure the files and folders Notification Services uses to store con-
figuration information and application definition data.

Exam Tip You need to understand only in general how to secure Reporting Services and Anal-
ysis Services. Details about securing these services are included in the Business Intelligence track
exams. However, be sure to understand Notif ication Services and Integration Services security
thoroughly.

Designing Security for Reporting Services
SQL Server Reporting Services (SSRS) uses two SQL Server databases for internal storage:
ReportServer and ReportServerTempdb. The Report Server Web service and Report Server
Windows service need access to these databases. You can use the Reporting Services Con-
figuration tool to specify the connection. You can specify the service account, a domain
account, or a SQL Server login. The account you use must be a member of the Public and
RSExecRole roles for the report server databases. The RSExecRole provides services with
permissions for accessing the database tables and for executing stored procedures.

For end users, SSRS does not provide its own authentication mechanism. It uses ASP.NET
security, Microsoft Internet Information Services (IIS) security, and Windows security.
Windows authentication (integrated security) is the most secure mechanism. You can use
anonymous access only with custom extensions. Use basic authentication only for deploy-
ments that use SSL. Digest authentication is not supported. For extranet and intranet
access, you can use a custom authentication scheme. You can still support Windows
authentication if you meet the following conditions:

n Create a domain account with access to the computer hosting the report server. Create
a custom Web form so that users can log on using this domain account.

Lesson 1: Securing Components of a SQL Server Solution 235
n Define role assignments that map the user account to specific items in the SSRS folder
hierarchy.

n Configure reports to use stored credentials to get data for the report.

For using the reports, SSRS uses role-based authorization. All users work with SSRS within the
context of a role. In SSRS, tasks are pre-defined actions that a user or administrator can per-
form. There are two levels of tasks. Item-level tasks are performed on items managed by an
SSRS instance, including reports, report models, resources, and shared schedules usage and
folders. System-level tasks are actions that you perform at the system level, such as managing
jobs or sharing schedules.

Role assignments determine access to stored items and to SSRS itself. A role assignment
includes securable items such as reports, authenticated user or group accounts, and role def-
initions that define a set of managing or administrative tasks. To manage SSRS efficiently, use
pre-defined role assignments, which Table 8-2 summarizes.

Security settings in SSRS follow the inheritance model. All items in a folder inherit security set-
tings from that folder. You can override the inherited permissions by defining security for indi-
vidual items.

Designing Security for Analysis Services
SQL Server 2005 Analysis Services (SSAS) does not have its own authentication mechanism;
it relies on the operating system to authenticate users. After users connect, they get permis-
sions through the SSAS roles they belong to. You can assign Windows users and groups to
SSAS roles.

Table 8-2 SSRS Pre-Defined Roles

Role Description

Browser This role is enough to traverse folders and execute reports.

Content Manager Members of this role can define a folder structure, set security at the
item level, and view and manage the items.

Report Builder Membership in this role enables you to use report models to build ad
hoc reports with Report Builder.

Publisher The Publisher role enables publishing content to a report server.

My Reports Members of this role can build reports for personal use or store reports
in a user-owned folder.

System Administrator This administrative role gives users permissions to define features of an
SSRS instance and set defaults, set site-wide security, create role defini-
tions, and manage jobs.

System User Users in this role can view system properties and shared schedules.

236 Chapter 8 Designing a Secure Application Solution
In SSAS, you have a single fixed-server role that grants members all permissions on the SSAS
instance. By default, after installation, the Local Administrators group is the only member of
this role.

You can put users in database roles. For each database role, you can define a customized set of
permissions. These permissions include administrator permissions, process object permis-
sions, view object metadata permissions, and permissions to view or modify data at multiple
levels of an SSAS database. Security is inheritable; for example, all objects in a database inherit
security settings from the database they belong to. A database role that has administrative per-
missions enables members to perform any task in the database. Inside a database, you can
grant permissions to database roles for data sources, cubes, dimensions, and mining models.
For dimensions, you can set permissions on a subset of data in a dimension only. For cubes,
you can define permissions for a subset of data in that cube. You can set this cell-level security
only through Multidimensional Expressions (MDX); because you have to deal with many—
possibly millions or even billions of cells—there is no user interface for cell-level security.

In SSAS, a single cube can include multiple star and snowflake schemas, representing a com-
plete data warehouse. Although this concept seems attractive, you have two problems with
such a hypercube. You must direct your end users to their areas of interest; for example, you
have to direct sales analysts to the sales part of the hypercube. In addition, you must secure the
data; that is, you have to prevent the sales analysts from seeing human resources data. You can
achieve the first task simply by using perspectives. A perspective serves like a view in a rela-
tional database, although it is a kind of multidimensional view. However, unlike a view in a
relational database management system (RDBMS), a perspective is not a securable. You cannot
set up permissions on perspectives; you have to grant permissions on underlying physical
objects. Therefore, if you use a hypercube that has multiple measure groups, you end up with
dimension and cell data security. The best practice is to create multiple smaller cubes from a
single data warehouse. You can still take advantage of multiple measure groups per cube. For
example, in your sales cube, you can combine the actual with the planned data as well as add
some interesting data from the finance part of the data warehouse.

As with the database engine, SSAS 2005 supports CLR stored procedures. Similarly, you have
three predefined CAS permission sets: SAFE, EXTERNAL_ACCESS, and UNSAFE. Use the
SAFE set whenever possible.

For an SSAS service, use a domain or a local Windows account. The rights this account needs
include:

n Bypass traverse checking.

n Token object creation.

n Security audit generation.

n Locking of pages in memory.

n Replacement of a process-level token permission.

Lesson 1: Securing Components of a SQL Server Solution 237
The installation procedure grants the SSAS account these permissions. In addition, the SSAS
account needs access to source data. All communication between clients and an SSAS instance
is encrypted by default.

Designing Security for Integration Services
SQL Server Integration Services (SSIS) has a new multilayered security model. As a creator,
you can digitally sign a package. By digitally signing a package, you prevent a malicious or
inadvertent change. An SSIS package can include sensitive information such as usernames and
passwords. You can protect this information by setting the ProtectionLevel property of a pack-
age. You have the following options:

n Do Not Save Sensitive Suppresses sensitive information in the package when you save it.
n Encrypt All With Password Encrypts the complete package with a password. To edit or

run the package, the user must provide the package password.
n Encrypt All With User Key Encrypts the whole package by using a key based on the

user profile.
n Encrypt Sensitive With Password Enables encryption of only the sensitive information

by using a password.
n Encrypt Sensitive With User Key Enables encryption of only the sensitive information

by using a key based on the user profile.
n Rely On Server Storage For Encryption Protects the whole package by using new SQL

Server database roles when you save a package to the msdb database. When you store a
package to SQL Server, you can add users to the following fixed msdb database roles to
grant them permissions on a package:

q db_dtsadmin, which allows all actions on saved packages.

q db_dtsltduser, which allows importing packages; enumerating all packages; and
viewing, executing, exporting, deleting, and changing package roles of your own
packages only.

q db_dtsoperator, which enables members to enumerate, view, execute, and export
all packages. In addition, it allows the execution of packages in SQL Server Agent.

The package ProtectionLevel property does not protect packages stored in a file system from
unintentional deletion or modification through the use of an incorrect tool such as Notepad.
It also does not protect files that are stored outside the package such as configuration, check-
point, and log files. You have to protect these files separately by using NTFS permissions.

In SSMS, you can use the SSIS service to list running packages. Members of the local Windows
Administrators group can view and stop all currently running packages; other users can view
and stop only packages that they started.

238 Chapter 8 Designing a Secure Application Solution
Practice: Securing a SQL Server Solution
In this conceptual practice, you will make some decisions about application security and
about securing components of a SQL Server solution.

� Exercise: Application Security

In this conceptual exercise, you need to ensure that your SQL Server solution is safe from code
injection attacks. In addition, you have to minimize the surface attack area.

1. How can you mitigate code-injection attacks? This is a broad question; think over all pos-
sibilities, and then compare your findings with the suggested answer.

2. How can you minimize the surface attack area for your SQL Server services and compo-
nents quickly?

Note your ideas, and then compare them against the suggested answer.

Suggested Answers

1. Whenever you use string concatenation to build SQL code dynamically and accept user
input as part of the concatenated string, treat your application as insecure. There are too
many different techniques to exploit this vulnerability, and new techniques evolve all the
time. You can mitigate the problem by using the minimal-privilege approach. Disable all
unnecessary services and features, such as extended procedures, to minimize the attack
surface area. You should not return SQL Server error messages to the client application
directly because they can inform the attacker that your application is using string con-
catenation. Validate all user input, testing the size and type of the input. Validate XML
input against XML schemas. Check and reject special characters that can be used to
modify the intended execution of your SQL string, such as semicolons (command
delimiter), apostrophes (string delimiter), and double hyphens (inline comments). Do
not accept strings that an attacker can use to construct file names, such as AUX, CON,
and so on.

2. Use the Surface Area Configuration tool to disable all services and features that you do
not need.

Quick Check
1. How can you secure the sa login?

2. How would you implement the principle of least privilege for Notification Services,
Reporting Services, and Analysis Services service accounts?

3. Your application uses the xp_cmdshell extended stored procedure. After you
upgrade your database to SQL Server 2005, your application does not run any-
more. What went wrong, and what can you do to mitigate the problem?

Lesson 1: Securing Components of a SQL Server Solution 239
Quick Check Answers
1. Use Windows authentication mode. If you use mixed mode authentication,

install SQL Server on Windows Server 2003 and use the Account Lockout policy.
Set the account lockout threshold to five or fewer invalid login attempts. Give the
sa login a very strong password, more than 10 characters long, including some
non-alphanumerical characters. Store the password in a safe place and never use
the sa login for your daily activities. In addition, audit failed login attempts on
the SQL Server level.

2. Run all these services under a low-privileged domain or local account. Do not use
Local System, Local Service, or Network Service accounts.

3. In SQL Server 2005, the xp_cmdshell extended procedure is disabled by default.
You can enable it by using the SQL Server Surface Area Configuration tool as an
intermediate solution. For a long-term solution, replace the procedure with one or
more CLR stored procedures.

240 Chapter 8 Designing a Secure Application Solution
Lesson 2: Designing the Database to Enable Auditing and
Encryption

Estimated lesson time: 30 minutes

Auditing is an important part of any security strategy. With auditing, you can prevent, resolve,
or at least mitigate repudiation problems. You can protect the data by disallowing direct access
and allowing data manipulation through programmable objects only. In addition, you can pro-
tect highly sensitive data by using encryption. SQL Server 2005 supports encryption through
symmetric keys, asymmetric keys, certificates, and password phrases. In this lesson, you will
learn about designing an auditing strategy and the different auditing techniques available. You
will also learn about encryption support in SQL Server 2005.

Considerations for an Auditing Strategy
Auditing adds processing overhead to production servers. Therefore, it is important to choose
carefully the auditing events you want to capture and appropriate storage for the audit infor-
mation. You have to design a smart audit strategy that balances the amount of auditing infor-
mation you collect with database performance. Of course, you need to catch all security
breaches.

Exam Tip Understand all the different possibilities you have for auditing. Do not forget that you
can also use third-party tools for auditing.

The first thing you have to determine when you design an auditing strategy is the events you
need to audit. You must decide whether to audit for successful, unsuccessful, or all events. You
also have to determine the grain (that is, the level of detail) of each event you want to audit.
You need to determine which resources you need to audit, such as servers, databases, or data.
Audit only events that are relevant for your business. Follow these guidelines:

n Identify whether you have any regulatory requirements. These requirements, such as the
Health Insurance Portability and Accountability Act (HIPAA) or General Principles for
the Assessment of Certification Bodies for Product Certification (C2), already define the
events you must audit. When you enable C2 auditing in SQL Server 2005 (by using
sp_configure), SQL Server traces pre-defined events. SQL Server saves the files in the file
system.

n If you use SQL Server logins that bypass Windows account policies, audit at least failed
login attempts. SQL Server logins that bypass the account lockout policy are sensitive to
brute-force attacks.

Lesson 2: Designing the Database to Enable Auditing and Encryption 241
n You have to identify your business requirements. Some business processes require
well-known auditing events. An online Web store, for example, might need to audit
all orders to prevent repudiation. Banks might need to audit all money transfer oper-
ations. Interview all managers of each department to determine these business
requirements.

n Besides business requirements, you might need to audit for additional security require-
ments. In your organization, for example, you might have a request to audit all login
attempts, successful and unsuccessful.

n Obtain management support. People often think of auditing as an unnecessary control.
Get approval for auditing from all stakeholders.

Auditing does not help your organization if nobody reviews the collected data. Your audit-
ing strategy must include regular overview and examination of gathered information. Find
out who is responsible for analyzing specific events and make sure the events are reviewed
frequently enough to catch security breaches in a timely manner. Also, define the reporting
process and possible countermeasures when a reviewer notices an incident. In addition,
you need a way of preserving auditing logs. Define the retention period for collected data
as well as the process for deleting auditing information after the retention period expires.
Note that you might need to save some auditing data permanently. If you store auditing
data on external devices such as tapes, find an appropriate location for saving these
devices.

You have to secure the audit logs to prevent unauthorized access and possible modifications
of the collected information. Implement a very restrictive policy; only authorized reviewers
should have access to this information. You have to use regular security systems of the storage
you use to protect your auditing information. For example, if you store auditing information in
files in the file system, use NTFS permissions; if you store auditing information in SQL Server
tables, grant permissions on these tables just as you grant permissions on production tables.
Reviewers need read-only permissions on auditing data.

Make sure you support your auditing solution with documentation. Document how your strat-
egy meets regulations and business and security requirements. Document events, resources,
techniques, and storage of auditing information. In addition, clearly document the reviewing
process.

Auditing Events, Techniques, Tools, and Storage
There are many different tools and techniques you can use for auditing. You can save the gath-
ered information to different storage locations. In this lesson, you will learn which tools and
storage are appropriate for selected events.

242 Chapter 8 Designing a Secure Application Solution
Security and DDL Events
For auditing security events, follow these guidelines:

n If you need to audit logins only, use SQL Server login audits. You can set up this auditing
via SSMS, Server Properties, or Security, or by using the sp_configure system procedure.
SQL Server writes auditing information to the Windows Application Log. The Windows
Event Logs have limited size, and when full, new events overwrite old ones. Therefore,
review this information frequently.

n SQL Server Profiler can trace a variety of security and data-definition language (DDL)
events. You can save a trace to a file on the file system or to a SQL Server table.

n If you need to prevent security changes on DDL statements, such as creation of a login,
besides auditing them, implement DDL triggers. DDL triggers are just like data manipu-
lation language (DML) triggers and execute as part of the transaction, and you can use
the ROLLBACK statement in the body of a DDL trigger. DDL triggers can have an all-
server or specific database scope. You can access the audited information from DDL trig-
gers by using the EVENTDATA function. This function returns data in XML format; you
can use XQuery to parse this information and store it to a relational table.

n Event notifications are more lightweight than DDL triggers and are thus more appropri-
ate if you just need to audit security and DDL events. However, event notifications use
Service Broker, so you need to enable it in your database. Like DDL triggers, event noti-
fications can have a server or database scope. The EVENTDATA function is called auto-
matically when an event notification fires, and the results are returned to the specified
Service Broker.

IMPORTANT DDL triggers and event notifications caveats

Because DDL triggers and event notif ications return data in XML format, they are prone to XML
injection attacks. In SQL Server, you can create objects that have uncommon names. You can use
special characters if you enclose the name in brackets. However, some special characters have spe-
cial meanings in XML. The EVENTDATA function returns XML escape sequences instead of special
characters; therefore, you cannot audit exact object names. The following practice shows this prob-
lem when a table with a name of [<] is created; the EVENTDATA function returns the name <.

Auditing DML Events
Users can modify (insert, update, or delete) data or read it (select). Depending on what you
need to audit, you have the following options:

n Use DML triggers. You can use DML triggers to prevent modifications. DML triggers
give you access to the state before and after the modification through Deleted and
Inserted tables. You can access those tables in the body of a trigger. In addition, you
can use system functions to get additional information, such as the name of the user

Lesson 2: Designing the Database to Enable Auditing and Encryption 243
who performed the DML statement. DML triggers can fire before (instead of) and after
a DML statement. DML triggers do not fire for SELECT statements; therefore, you can-
not use them to audit reads. You can store information from DML triggers in different
places:

q If you need just information about who updated a row and when, you can add this
information in additional columns of the production table itself. However, you
cannot maintain a full history of events with this technique.

q You can write the auditing information to separate single or multiple audit tables.
You can use SSRS to create reports on these tables.

q Triggers are part of a transaction; if the transaction is rolled back, then the auditing
information you insert in SQL Server tables is rolled back as well. Therefore, you
cannot use SQL Server tables to audit unsuccessful attempts. If you want to use a
DML trigger to audit rolled back transactions, use nontransactional storage, such
as a text file in the file system or the Windows Event Log, for your auditing infor-
mation. Use CLR triggers to access storage outside SQL Server.

n DML triggers can be very resource intensive; you can use Service Broker to send the
auditing information to a queue and store it to your final storage asynchronously.

n In SQL Server 2005, you can access the information from the Deleted and Inserted
tables without using triggers through the new OUTPUT clause of INSERT, UPDATE,
and DELETE statements. However, this technique might require changes in your
application.

n You can use SQL Server Profiler for DML events. With Profiler, you can trace SELECT
statements as well. However, take care not to audit too many events because the impact
on your production server could be too large. In addition, understand that Profiler can
miss some events if the server is under heavy load.

n Third-party solutions can be very useful for auditing. Some of them read the modifica-
tion statements from the transaction log asynchronously and use SQL Server Profiler
trace to catch SELECT statements. This way, the impact on your production server is
minimal.

Auditing SQL Server Analysis Services (SSAS)
If you need to audit SSAS, you have the following options:

n Use SQL Server Profiler. In SQL Server 2005, you can use Profiler to trace Analysis Ser-
vices as well.

n Use the SSAS query log. SSAS can save the query log; you can store it by using any OLE
DB provider installed on your computer. You can define different query sampling. By
default, SSAS logs every tenth query when you use query logging.

244 Chapter 8 Designing a Secure Application Solution
Data Protection
You can protect your data by disallowing direct access to it and allowing data manipulation
only through programmable objects. In addition, you can protect highly sensitive data by
using encryption. Let’s first look at how you can protect your data by using views, stored pro-
cedures, and user-defined functions, and then look at SQL Server 2005 encryption support.

You can protect your data through views, stored procedures, and user-defined functions
(UDFs). You do not have to give end users any permissions on base tables; instead, you can
implement a strategy in which end users must work with data through the programmable
objects that you control.

You can use views to implement column-level security; in the view definition query, simply
include only columns that end users need to access. You can use views to implement row-
level security through the WHERE clause of the SELECT statement in the view definition.
However, for row-level security, include the WITH CHECK OPTION clause in your CREATE
VIEW statement. When this option is enabled, a row must conform to the WHERE clause
even after an update; therefore, this option prevents moving a row outside the view defini-
tion. Views can also help users preparing reports because the query in the view definition can
join multiple tables and hide the complexity of database schema from users. You can use
views to summarize data as well. Note that if you need parameterized views, you have to cre-
ate inline table-valued, user-defined functions.

You do not have to use views for reading only; you can also allow data modification through
views. However, stored procedures are more suitable for updating data, especially because
they typically perform better than ad hoc queries. In addition, stored procedures accept
parameters, and you can verify user input in the body of a stored procedure. You can also com-
bine multiple statements in a stored procedure, thus performing complex updates.

You can protect the view, UDF, and stored procedure code by creating them, using the WITH
ENCRYPTION option. You can digitally sign programmable objects and thus prevent unau-
thorized code changes. You can also specify any execution context you want for a stored pro-
cedure, function (except inline functions), queue, or trigger by using the EXECUTE AS
clause.

Data Encryption
If you need to store confidential data in your database, you can use data encryption. SQL
Server 2005 supports encryption with symmetric keys, asymmetric keys, certificates, and
password phrases. Let’s look at each of these encryption techniques.

When you use symmetric key encryption, the party that encrypts the data shares the same
key with the party that decrypts the data. Because the same key is used for encryption and
decryption, this is called symmetric key encryption. This encryption is very fast, but if an

Lesson 2: Designing the Database to Enable Auditing and Encryption 245
unauthorized party somehow acquires the key, that party can decrypt the data. Therefore,
protecting symmetric keys is a challenge because they must remain secret. Symmetric
encryption is also called secret-key encryption.

In asymmetric-key encryption, you use two different keys that are mathematically linked. You
must keep one key secret and prevent unauthorized access to it; this is the private key. You
make the other key public to anyone; this is the public key. If you encrypt the data with the
public key, you can decrypt the data with the private key; if you encrypt the data with the pri-
vate key, you can decrypt it with the public key. Asymmetric encryption is very strong; how-
ever, it is much slower than symmetric encryption. Asymmetric encryption is useful for digital
signatures. A developer applies a hash algorithm to the code to create a message digest, which
is a compact and unique representation of data. Then the developer encrypts the digest with
the private key. Anybody with a public key from the same pair can decrypt the digest and use
the same hash algorithm to calculate the digest from the code again. If the re-calculated and
decrypted digests match, you can identify who created the code.

A certificate is a digitally signed statement that binds the value of a public key to the identity
of the person, device, or service that holds the corresponding private key. It identifies the
owner of the public and private keys. You can use certificates for authentication. A certifi-
cate can be issued by a trusted authority or by SQL Server. You can create a certificate from
a file (if the certificate was issued by a trusted authority) or a digitally signed executable file
(assembly), or you can create a self-signed certificate in SQL Server directly. You can use
certificates to encrypt the data; of course, this way you are actually using asymmetric
encryption.

Use symmetric keys to encrypt the data because secret-key encryption is much faster than
public-key encryption. You can then use asymmetric encryption to protect symmetric keys
and use certificates for authentication. You combine certificates and keys to encrypt data in the
following manner:

n Server sends a certificate and public key to a client. The certificate identifies the server to
the client.

n Client creates two symmetric keys. The client encrypts one symmetric key with the pub-
lic key and sends it to the server.

n Server’s private key can decrypt the symmetric key. The server and client encrypt and
decrypt data with symmetric keys.

When encrypting data, consider all possible surface areas for an attack. For example, if you
encrypt the data in SQL Server but send clear text over the network, an attacker could use a
network monitor to intercept the clear text. Use IPSec or SSL on-the-wire encryption. An
attacker can even sniff client computer memory to retrieve clear text. Therefore, use .NET
encryption in client applications in addition to or instead of server encryption.

246 Chapter 8 Designing a Secure Application Solution
Consider the following tradeoffs when you design a solution that uses data encryption:

n Encrypted data is typically stored in a varbinary(max) data type column; space is not
allocated according to the original data type like it is with unencrypted data. This means
you need to change your database schema to support data encryption.

n Sorting of encrypted data is different from sorting of unencrypted data and makes no
sense from the business point of view.

n Similarly, indexing and filtering operations on encrypted data are useless from a busi-
ness point of view.

n You might need to change applications to support data encryption.

n Encryption is a processor-intensive process.

Practice: Using Event Notifications to Audit DDL Events
In this practice, you will create an event notification for any CREATE TABLE event. You test this
notification by using an uncommon table name.

� Exercise 1: Create an Event Notification

You start this exercise by creating an event notification in the tempdb system database.

1. Use SSMS and open a new query window. Connect to an instance of SQL Server.

2. Event notifications use the Service Broker infrastructure. Enable Service Broker in the
tempdb database:
USE tempdb;
GO
ALTER DATABASE tempdb SET ENABLE_BROKER;

3. Create a queue and a Service Broker service for the event notifications by using the fol-
lowing code:
CREATE QUEUE myEventQueue;
CREATE SERVICE myNotifications
 ON QUEUE myEventQueue
([http://schemas.microsoft.com/SQL/Notifications/PostEventNotification]);

4. Create an event notification for all CREATE TABLE statements with a database scope.
You can use the following code:
CREATE EVENT NOTIFICATION myEvent
 ON DATABASE
 FOR CREATE_TABLE
 TO SERVICE 'myNotifications',
 'current database';
GO

Lesson 2: Designing the Database to Enable Auditing and Encryption 247
� Exercise 2: Testing the Event Notification

In this exercise, you test the event notification that you created in Exercise 1, “Create an Event
Notification.”

1. Test your event notification by creating a table with an unusual name that includes one
or more special XML characters, such as the less-than character (<) in this example:
CREATE TABLE [<] (id int);
GO

2. Check what you received in your queue by running the following SELECT statement:
SELECT CONVERT(xml,message_body), *
 FROM myEventQueue
GO

3. You can perform additional testing. For example, create an event notification for ALTER
TABLE events.

4. After you finish your testing, clean up the tempdb database by using code similar to this:
DROP EVENT NOTIFICATION myEvent
 ON DATABASE;
DROP SERVICE myNotifications;
DROP QUEUE myEventQueue;
ALTER DATABASE tempdb SET DISABLE_BROKER;
DROP TABLE [<];
GO

Quick Check
1. Can you use query notifications for auditing?

2. You need to prevent changes of schema in a database. What can you do?

3. You defined an auditing strategy that uses SQL Server Profiler to gather auditing
information and saves the information in a SQL Server table. What should you
consider next?

4. If you encrypt data, can you skip the tiresome setting of user permissions?

5. How can you protect data without using data encryption?

6. When you encrypt large amounts of data, should you use symmetric, asymmetric,
or certificate encryption?

248 Chapter 8 Designing a Secure Application Solution
Quick Check Answers
1. Query notifications are not suitable for auditing. You can consume them from cli-

ent applications only by using the SqlDependency object; therefore, you cannot
audit an application that does not subscribe to query notifications. In addition,
query notifications just inform the client application that something has changed;
it is up to the application to deal with the changes. Query notifications use the
indexed views infrastructure on the SQL Server side; if you subscribe to many noti-
fications, you can stress your production server heavily. Query notifications are
suitable for middle-tier applications that maintain their own cache of the data they
read from SQL Server, such as ASP.NET applications.

2. You can use DDL triggers on the database level. In a DDL trigger, you can roll back
any DDL statement.

3. You should consider who is going to review the auditing information.

4. No, you cannot skip setting permissions. Treat encryption as the last resort, the
final level of defense. Always use all other security layers, even when using encryp-
tion, including operating system, SQL Server, and .NET security mechanisms.

5. Instead of encryption, you can use programmable objects such as views, user-
defined functions, and stored procedures to protect data.

6. For large amounts of data, use symmetric encryption.

Case Scenario: Design a Secure Application Solution
Your customers can use an ASP.NET application to place orders. However, customers do not
have the capability to delete their own orders; if they change their mind, they must insert a
new order containing negative quantities. Lately, your users who create purchase orders for
suppliers have been complaining that purchase orders they have created for customers have
mysteriously disappeared. In addition, rumors started that your company does not protect
confidential data sufficiently in the human resources database. Of course, your employees are
concerned about privacy.

1. What can you do to find out how a customer order disappeared?

2. How can you reassure employees that their data is private and protected?

Lesson 2: Designing the Database to Enable Auditing and Encryption 249
Chapter Summary
n Security systems include enforcement, authentication, and authorization mechanisms.

n In your enterprise solution, you must protect all layers, components, and services. An
attacker needs only a single hole to infiltrate your system; as the system defender, you
must close all holes.

n Notification Services, Reporting Services, Analysis Services, and Integration Services
have their own security mechanisms.

n With CLR code, you must deal with code access security.

n Auditing is an important part of a security strategy.

n Data encryption is the final level of defense.

Chapter 9

Designing a Secure Database
In Chapter 8, “Designing a Secure Application Solution,” you learned how to secure different
Microsoft SQL Server 2005 components and services to design and implement a secure appli-
cation solution. This chapter deals more concretely with SQL Server databases and database
objects, describing how to design a secure database. You will learn how to define a data-access
strategy and how to use schemas, which are new in SQL Server 2005. Then, you will see how
to secure specific database objects, including programmable objects that access data. Finally,
the chapter covers how to define an execution-context strategy and implement module sign-
ing to handle ownership chains.

Exam objectives in this chapter:
n Design database security.

q Define database access requirements.

q Define schemas to manage object ownership.

q Specify database object security permissions.

q Specify database objects that will be used to maintain security.

q Design an execution context strategy.

n Design an application solution to support security.

q Design objects to manage user access.

Before You Begin
To complete the lessons in this chapter, you must have:

n A general understanding of how IT security works.

n Knowledge of SQL Server database objects and principals.

n Knowledge of the Transact-SQL language elements that support security.

IMPORTANT Practices build upon each other

Beginning with Lesson 2, “Managing Schemas,” the lesson practices build upon each other; to
move to the next practice, you need to f inish the previous one.
251

252 Chapter 9 Designing a Secure Database
Lesson 1: Designing a Database-Access Strategy

Estimated lesson time: 15 minutes

As you saw in the previous chapter, SQL Server 2005 introduces new security terminology.
Resources that you can secure by using permissions are known as securables, and entities that
can request SQL Server resources are principals. SQL Server organizes security in a hierarchical
way. Table 9-1 shows the relationships among the permission hierarchies. Note that you can
grant, revoke, and deny permissions on the server and database levels.

Table 9-1 Permission Hierarchies

Principals Permissions Securables

Windows level
n Groups
n Domain user accounts
n Local user accounts

— —

SQL Server level
n Fixed server roles
n SQL Server logins

Grant—Deny—Revoke
n Control
n Create
n Alter
n Drop
n Select
n Insert
n Update
n Delete
n Execute
n Connect
n Reference
n Take ownership
n View definition

n SQL Server logins
n Endpoints
n Databases

Lesson 1: Designing a Database-Access Strategy 253
Chapter 8 also described how security systems consist of three parts: authentication,
authorization, and the enforcement mechanism. Microsoft Windows and SQL Server–level
principals are clearly part of the authentication process, while permissions on SQL Server
objects are obviously part of the authorization process. However, database users and roles
are sometimes confusing to database administrators: are they part of authentication or
authorization? Because they are principals, they are part of authentication.

Database level
n Fixed database roles
n Database users
n Application roles

Grant—Deny—Revoke
n Control
n Create
n Alter
n Drop
n Select
n Insert
n Update
n Delete
n Execute
n Connect
n Reference
n Take ownership
n View definition

n Users and roles
n Assemblies
n Keys and certificates
n Full-text catalogs
n Service Broker services, bindings,

contracts, routes, and message
types

n Schemas
q Tables

q Views

q Functions

q Procedures

q Types

q XML schema collections

q Service Broker queues

q Synonyms

Table 9-1 Permission Hierarchies

Principals Permissions Securables

254 Chapter 9 Designing a Secure Database
Managing Principals
In SQL Server 2005, you have new declarative data definition language (DDL) statements for
managing principals. You create a principal as you do any other objects—by using the CREATE
statement. You modify them by using the ALTER statement and delete them by using the
DROP statement. Stored procedures such as sp_addlogin and sp_grantlogin are included for
backward compatibility.

IMPORTANT Use new declarative syntax

In future versions of SQL Server, Microsoft will remove the old syntax for managing principals by
using system procedures. Therefore, use the new declarative syntax.

You can create SQL Server logins, or you can create logins from different sources such as from
Windows, certificates, or asymmetric keys. When you create SQL Server logins, you can spec-
ify that you want to bypass password expiration and account policies. However, because these
policies help secure your system, this option is not recommended. Regularly check the
sys.sql_logins catalog view to see which SQL logins do not enforce the policies mentioned.
The following code sample shows examples of how to create SQL logins and check whether
the SQL logins enforce login policies.

-- Creating a SQL login.
-- Respecting policies is the default.
-- The password does not meet Windows policy requirements.
-- It is not complex enough because it is the same as login name.
-- This will not succeed.
CREATE LOGIN JankoCajhen WITH password='JankoCajhen';
GO
-- Bypassing policies
CREATE LOGIN JankoCajhen WITH password='JankoCajhen',
 CHECK_POLICY=OFF;
GO
-- Creating a login from Windows.
CREATE LOGIN [Builtin\Power Users] FROM WINDOWS;
GO
-- Check which SQL logins do not enforce policies.
SELECT name,
 type_desc,
 is_disabled,
 is_policy_checked,
 is_expiration_checked
 FROM sys.sql_logins;
GO

Lesson 1: Designing a Database-Access Strategy 255
On the Companion Disc This chapter includes many code examples. You will f ind all the code
from this chapter on the companion CD in the C:\My Documents\Microsoft Press\TK70-441
\Chapter09\Sql folder.

As noted earlier, you can create database users from logins, certificates, or asymmetric keys.
You can also create a database user without a login, which means the user is not mapped to
any existing login. This user can gain access to other databases through the special principal
called guest.

You can give login access to a database by putting the login directly in a database role. You add
users to fixed server roles if you want them to perform server-level administrative tasks. You
can add users to fixed database roles for database-level administrative tasks. In addition, some
fixed database roles include permissions on data; you can use them to manage regular users
efficiently. Note that you can create your own database roles; however, you cannot add server
roles. For adding members to roles, you must use system procedures sp_addrolemember and
sp_addsrvrolemember; SQL Server 2005 has no declarative statements for this task yet.

Special Principals
In SQL Server 2005, you have three special principals. On the server level, you have the sa SQL
Server login, which is created when you install SQL Server. The default database for this login
is master. This login has all permissions on the server, and you cannot revoke any permission
from this login. Protect the sa login with a strong password. If you use Windows authentica-
tion only, you cannot use this login to connect to SQL Server.

In every database, you get the public fixed role and the guest user account. You cannot drop
them. Any login without a directly mapped user in a database can access the database
through the guest account. Application roles can also use this account to access the data in
databases other than the database in which context they were invoked. Before you give any
permission to the guest user account, make sure you consider all the ramifications. You can
disable the guest account by using the REVOKE CONNECT FROM GUEST statement,
which revokes its CONNECT permission. However, you cannot disable this user in the mas-
ter or tempdb databases.

Exam Tip Make sure you understand the special care you should take in using the sa login, the
guest user, and the public role.

Every database user and every database role is a member of the public role. Therefore, any user
or role—including an application role—inherits all permissions given to the public role.

256 Chapter 9 Designing a Secure Database
BEST PRACTICES Public role permissions

Be careful when giving any permission to the public role; the best practice is to never give any per-
mission to it.

You can check permissions given to the guest user or the public role on user objects by using
the following query on the sys.database_permissions catalog view:

SELECT class_desc,
 USER_NAME(grantee_principal_id) AS DbUser,
 OBJECT_NAME(major_id) AS DbObject,
 permission_name,
 state_desc
 FROM sys.database_permissions
 WHERE (USER_NAME(grantee_principal_id) = N'guest' OR
 USER_NAME(grantee_principal_id) = N'public') AND
 major_id > 0;
GO

The privileged database user dbo still exists in SQL Server 2005. This user is a member of the
db_owner role and, therefore, has all permissions on the database. You cannot drop dbo from
the db_owner role.

Every database includes two additional principals: INFORMATION_SCHEMA and sys. You
cannot drop these principals because SQL Server needs them. They serve like schemas
(namespaces) for ANSI-standard information schema views and for SQL Server catalog views.
Finally, SQL Server provides four special logins based on certificates; these logins are for SQL
Server internal use only:

n ##MS_SQLResourceSigningCertificate##

n ##MS_SQLReplicationSigningCertificate##

n ##MS_SQLAuthenticatorCertificate##

n ##MS_AgentSigningCertificate##

Securing Endpoints and Principals
In SQL Server 2005, you have a very granular level of control over principals. For logins, you
can specify a set of server-level permissions when you are in the context of the master data-
base. For example, you can secure the endpoints of your SQL Server. You already know that
you have to create Hypertext Transfer Protocol (HTTP) endpoints manually and that you can
secure them after creating them. After installation, SQL Server automatically creates an end-
point for each of the four protocols supported by SQL Server (Named Pipes, TCP/IP, Shared
Memory, and Virtual Interface Architecture or VIA). By default, all logins have access to these
endpoints when you enable the corresponding protocols. You can revoke the CONNECT per-
mission or even deny it to some logins to prevent them from using one of the enabled protocols.

Lesson 1: Designing a Database-Access Strategy 257
For example, if you want to be sure that a login cannot use Shared Memory to connect to SQL
Server locally, you can do this by using the following command:

USE master;
DENY CONNECT ON ENDPOINT::[TSQL Local Machine] TO JankoCajhen;
GO

You can check endpoint access by querying the sys.server_permissions catalog view:

-- Checking endpoint access permissions
SELECT pr.principal_id,
 pr.name,
 pe.permission_name,
 pe.state_desc,
 pe.class_desc
 FROM sys.server_principals pr
 INNER JOIN sys.server_permissions pe
 ON pr.principal_id = pe.grantee_principal_id
 WHERE pr.name = 'JankoCajhen';
GO

You give database-level permissions to database users and roles when you are in the context of
the database you want to secure. Earlier in this lesson, you saw how to disable the guest user
by revoking its CONNECT permission. You have more granular control over permissions on
the database level than you had in any previous version of SQL Server. You will learn about
schema and object permissions in the next two lessons.

The principals are securables by themselves. You can control who can modify logins through
membership in the sysadmin and securityadmin server-level roles and the ALTER ANY
LOGIN server-level permission. You can control who can modify database users and roles by
memberships in the db_owner and db_securityadmin roles and the ALTER ANY USER and
ALTER ANY ROLE permissions.

For secure design and efficient management, your database-access strategy should use
Windows groups as much as possible. For example, if you group your end users on the
Windows level already, you can use a single statement to deny the CONNECT permission on
a specific endpoint to an entire group. If you set up the strategy properly, you can control data-
base access through Windows group membership only.

Metadata Visibility
In SQL Server 2005, the metadata is not visible to the public role (that is, everyone) by default.
Applications that assume metadata access might break. You can control the metadata visibility
by using two new permissions: VIEW ANY DATABASE and VIEW DEFINITION.

The VIEW ANY DATABASE permission is granted to the public role by default, so all logins
can still see the list of all databases on a SQL Server instance unless you revoke this permission

258 Chapter 9 Designing a Secure Database
from the public role. You can check this server-level permission by querying the
sys.server_permissions catalog view:

SELECT pr.name,
 pe.state_desc,
 pe.permission_name
 FROM sys.server_principals AS pr
 INNER JOIN sys.server_permissions AS pe
 ON pr.principal_id = pe.grantee_principal_id
 WHERE permission_name = 'VIEW ANY DATABASE';
GO

The VIEW DEFINITION permission enables a user to see the definition of a securable on
which this permission is granted. However, this permission does not give the user access to
the securable; you have to give other permissions to the user if the user must work with data-
base objects. If the user has any other permission on an object, the user can see the metadata
of the object as well. If you give a login VIEW ANY DEFINITION permission at the server
scope, you actually negate the metadata visibility concept in SQL Server 2005, quickly simu-
lating the behavior of previous versions of SQL Server. This is possible because SQL Server
handles permissions hierarchically; permissions at a higher scope imply the same permissions
at all enclosed scopes.

The rules for viewing a database object’s source code are even stricter. If a user wants to see an
object’s code, the user must be the owner of the object or have one of the following permis-
sions on the object: CONTROL, ALTER, TAKE OWNERSHIP, or VIEW DEFINITION.

Practice: Designing a Database-Access Strategy
In this practice, you must think through specific database-access issues.

Exam Tip Remember that SQL Server is only a single part of an enterprise system that you are
securing; you must also have a basic understanding of Windows and common language runtime
(CLR) security to secure an application effectively.

� Exercise 1: Explore Roles

In this conceptual exercise, you need to ensure that your end users cannot perform any action
other than actions that you explicitly allowed.

You are using application roles, and you invoke an application role that has only SELECT
permissions on tables and views. However, you discover that some data has been
changed. How could this happen? Write down your thoughts and compare them with
the suggested answer.

Suggested Answer

Check the permissions of the public role. Even application roles are members of the pub-
lic role, and a user could gain excessive permissions through the public role’s permissions.

Lesson 1: Designing a Database-Access Strategy 259
� Exercise 2: Prevent Local Logins

In this conceptual exercise, you need to ensure that nobody other than administrators can log
in to SQL Server locally.

An employee uses a Windows login to access SQL Server. Besides revoking from this
user the permission to use the Shared Memory protocol, how else could you prevent the
user from logging in to SQL Server from a local computer on which SQL Server is
installed? Compare your ideas with the suggested answer.

Suggested Answer

Users who try to log in at the local console of a computer running Windows must have
local login privileges on the hosting computer. You can deny the Log On Locally Windows
user right assignment to this user. The best practice is to allow only administrators local
access to SQL Server.

Quick Check
1. Which login should you take special care in using, and which database user and

database role should never get any permissions?

2. As a SQL Server database administrator (DBA), why would you prefer Microsoft
Windows Server 2003 to Windows 2000 Server?

Quick Check Answers
1. You must take special care in using the sa login, which has all permissions on the

server, and never give permissions to the guest database user or the public data-
base role.

2. If for no other reason, as a SQL Server DBA, you should prefer Windows Server
2003 because, with this operating system, SQL Server can force account and pass-
word Windows policies for SQL logins as well as for Windows logins.

260 Chapter 9 Designing a Secure Database
Lesson 2: Managing Schemas

Estimated lesson time: 20 minutes

SQL Server 2005 is the first version of SQL Server that properly implements schemas as
namespaces or containers for database objects. Schemas can help you with logical grouping of
objects and with efficient administration of security. This lesson gives you guidelines for man-
aging schemas.

Defining Schemas
The complete name of a relational database management system (RDBMS) object consists of four
parts. In previous versions of SQL Server, the form of this name was server.database.owner.object;
the owner was the container for objects. With SQL Server 2005, however, the complete name
form is server.database.schema.object. SQL Server 2005 separates users and schemas. Objects
still have owners, and because a schema is a database object, it has an owner as well. Owners
are database users and roles.

The way that SQL Server 2005 implements name resolution for objects that are referred to in
applications by object name only has changed slightly compared with previous versions of
SQL Server. In previous versions, when an application refers to an object by using object name
only, SQL Server first checks whether an object with that name and owned by the calling user
exists. If the object does not exist, SQL Server checks whether the dbo owns an object with
that name. In SQL Server 2005, every user has a default schema. You can specify the default
schema for a user when you create the user. You can change the default schema of a user any-
time later. If you do not specify an explicit default schema for a user, the default schema is dbo.
This schema exists in all SQL Server 2005 databases and is owned by the dbo user. In sum-
mary, SQL Server 2005 first checks for a partially specified object. If the object exists in the
user’s default schema, it checks the dbo schema. To understand this behavior fully, work
through the practice at the end of this lesson.

Guidelines for Managing Schemas
The following are the best-practice guidelines for managing schemas:

n Group objects in schemas based on application-access requirements. Classify applica-
tions by access requirements and then create appropriate schemas. For example, if an
application module deals with sales data, create a sales schema to serve as a container for
all database objects that pertain to sales.

n Typically, you can map end users to application modules. Specify appropriate default
schemas for database users and roles. For example, specify Sales as the default schema
for users in the sales department.

Lesson 2: Managing Schemas 261
n Because SQL Server 2005 uses a permissions hierarchy, you can manage permissions
efficiently if you set up appropriate schemas. For example, you can give permissions on
data to sales-department users quickly by giving them appropriate permissions on the
Sales schema. Later, you can define exceptions by denying permissions to some users on
the objects contained in the Sales schema.

n Use either the dbo user or database roles as owners of schemas and objects. This way,
you can drop a database user without worrying about orphaned objects.

n Although you set appropriate default schemas for users, still always refer to database
objects by using two-part names. With this strategy, you can avoid confusion in your
application if the default schema for a user changes or if an object from the user’s default
schema is dropped, and an object with the same name exists in the dbo schema (as you
saw in the code example).

n You can use schemas to control development environments as well. You can identify dif-
ferent developer groups based on application requirements and then map those groups
to schemas.

n In SQL Server 2005, you can control permissions on schemas and objects with greater
precision than you could in previous versions of SQL Server. For example, giving devel-
opers permission to create objects does not imply that they can create objects in all sche-
mas. On the contrary, the developers must have ALTER or CONTROL schema
permissions on every schema they want to modify by creating, altering, or dropping
objects contained in that schema.

n You can move objects between schemas by using the ALTER SCHEMA command.

n Your documentation should include schema information.

n You cannot change the default schema from dbo for database users created for a Windows
group login. You cannot change it for principals mapped to certificates or asymmetric
keys. This restriction eliminates possible ambiguity. For example, if an end user were a
member of two Windows groups, and both groups had logins and mapped database
users with different default schemas, SQL Server wouldn’t know which default schema
to use for this end user.

Schemas and Database Roles
Schemas do not supersede database roles. Schemas make administering permissions easier;
however, they are just containers, not principals. Database users and roles are the principals
that need permissions on database objects.

Exam Tip Schemas are very important for good design, and they are new in SQL Server 2005—
representing two good reasons to pay special attention to them as you prepare for the exam.

262 Chapter 9 Designing a Secure Database
Classify your users in database roles synchronized with object schema classification. For effi-
cient administration, always group users, and then give the permissions to a complete group.
Group users as soon as possible. If you can use Windows groups, use them. Create a single
login and a single database user for a complete Windows group, and then give permissions to
this database user on complete schemas. If you cannot use Windows groups because you do
not work with network administration, or if using Windows groups would lead to too many
exceptions, then you can use database roles instead. Give permissions on schemas to database
roles. You can create user-defined database roles and then map logins directly to these roles.
If you have additional exceptions on the object-user granularity level, you can create database
users for some logins and then revoke or deny permissions on objects to these users.

Note that you can also nest roles: you can create container roles for child roles. Nesting can
help you implement even more efficient security administration. However, you cannot nest
schemas.

Schemas and Object Ownership
Schemas do not replace object ownership. Every object in SQL Server, including schemas, has
an owner. Objects that refer to other objects are still involved in ownership chains. The owner
of an object has all permissions on that object.

In previous versions of SQL Server, you defined the owner of an object when you created an
object. In the CREATE statement, you simply specified a two-part name for the object. In SQL
Server 2005, a two-part name means schema name and object name. So how do you specify
object ownership in SQL Server 2005?

When you create an object on the database level, you can use the new keyword AUTHORIZA-
TION for specifying the object owner. When you create an object inside a schema, the owner
of the object is the same as the owner of the schema in which the object is created. You can
always change the object owner by using the new ALTER AUTHORIZATION statement. You
can check the object ownership by using the OBJECTPROPERTYEX system function. You can
check the owner of a schema by querying the principal_id attribute in the sys.schemas catalog
view. The following code sample demonstrates this concept. In the code, you first create a
schema with authorization LuborKollar and then create a table in this schema. The owner of
the table is LuborKollar, as you can confirm by using the OBJECTPROPERTYEX function.

CREATE SCHEMA LuborSchema AUTHORIZATION LuborKollar;
GO
CREATE TABLE LuborSchema.Table2 --AUTHORIZATION LuborKollar
 (id int);
GO
SELECT OBJECTPROPERTYEX(OBJECT_ID(N'LuborSchema.Table2'), N'OwnerId'),
 USER_NAME(CAST((OBJECTPROPERTYEX
 (OBJECT_ID(N'LuborSchema.Table2'), N'OwnerId')) AS int));
GO

Lesson 2: Managing Schemas 263
You can change the owner of this table by using the ALTER AUTHORIZATION statement. The
following code changes the owner of LuborSchema.Table2 from LuborKollar to JankoCajhen.

ALTER AUTHORIZATION ON LuborSchema.Table2 TO JankoCajhen;
GO
SELECT OBJECTPROPERTYEX(OBJECT_ID(N'LuborSchema.Table2'), N'OwnerId'),
 USER_NAME(CAST((OBJECTPROPERTYEX
 (OBJECT_ID(N'LuborSchema.Table2'), N'OwnerId')) AS int))
GO

Objects could become orphaned if you drop the user who owns them. This is not allowed in
SQL Server. As you already know, you can change the owner of an object. However, a better
practice is to prevent orphaned objects. If the owner is a database role or a database user cre-
ated for a Windows group, it is less likely the objects would be orphaned if you have to drop
a single user.

Practice: Using Schemas and Name Resolution
This practice will help you understand how name resolution works with schemas for objects
referred to by a single-part name.

IMPORTANT dbo database user

This practice assumes you are working in the dbo database user context.

IMPORTANT Practices build upon each other

The practices in this chapter, from this one onward, build upon each other. You should not delete
your work after you f inish this practice.

� Exercise 1: Create Objects

In this exercise, you prepare the infrastructure for this practice. You first need to create a test
database. You must create two logins and two database users in the practice database. You
need a user-defined schema and two tables with the same name: one in your new schema and
one in the dbo schema.

1. Create a test database and two logins by using code similar to this:
-- Create a practice database.
IF DB_ID(N'TK441Ch09') IS NULL
 CREATE DATABASE TK441Ch09;
GO
-- Create logins.
-- Note that if you executed the demo code so far, you already have
-- login JankoCajhen.
CREATE LOGIN JankoCajhen WITH password='JankoCajhen',
 CHECK_POLICY=OFF;

264 Chapter 9 Designing a Secure Database
GO
CREATE LOGIN LuborKollar WITH password='LK_ComplexPassword';
GO

2. Create the Sales schema and two tables with the same name: one in your new Sales
schema and one in the dbo schema. You can use the following code as a template, or you
can just copy it:
USE TK441Ch09;
GO
CREATE SCHEMA Sales;
GO
CREATE TABLE dbo.Table1
(id int,
 tableContainer char(5));
CREATE TABLE Sales.Table1
(id int,
 tableContainer char(5));
GO

3. Insert a row in each of the tables; these two rows will help you determine which table
was used in the name resolution:
INSERT INTO dbo.Table1(id, tableContainer)
 VALUES(1,'dbo');
INSERT INTO Sales.Table1(id, tableContainer)
 VALUES(1,'Sales');
GO

4. Create two database users—one with the default schema dbo and one with the default
schema Sales. Give both users SELECT permission on both tables:
-- JankoCajhen default schema is dbo.
CREATE USER JankoCajhen FOR LOGIN JankoCajhen;
GO
-- LuborKollar default schema is Sales.
CREATE USER LuborKollar FOR LOGIN LuborKollar
 WITH DEFAULT_SCHEMA = Sales;
GO
-- Grant Select to both users on both tables.
GRANT SELECT ON dbo.Table1 TO JankoCajhen;
GRANT SELECT ON Sales.Table1 TO JankoCajhen;
GRANT SELECT ON dbo.Table1 TO LuborKollar;
GRANT SELECT ON Sales.Table1 TO LuborKollar;
GO

� Exercise 2: Test the Name Resolution

Now that you have created the infrastructure, you can test the name resolution by using a single-
part name of a table in your queries and by impersonating database users with different
default schemas.

Lesson 2: Managing Schemas 265
1. Impersonate JankoCajhen. You should get a row from dbo.Table1.
EXECUTE AS USER='JankoCajhen';
SELECT USER_NAME() AS WhoAmI,
 id,
 tableContainer
 FROM Table1;
REVERT;
GO

2. Impersonate LuborKollar. You should get a row from Sales.Table1.
EXECUTE AS USER='LuborKollar';
SELECT USER_NAME() AS WhoAmI,
 id,
 tableContainer
 FROM Table1;
REVERT;
GO

3. Now drop the Sales.Table1 table. Impersonate LuborKollar again. This time, you get a
row from Sales.Table1.
DROP TABLE Sales.table1;
GO
EXECUTE AS USER='LuborKollar';
SELECT USER_NAME() AS WhoAmI,
 id,
 tableContainer
 FROM Table1;
-- You get row from the dbo.table1
REVERT;
GO

IMPORTANT Using SETUSER to impersonate users

In this practice, you have already used the EXECUTE AS . . . REVERT commands to change
the execution context. You will learn more about changing the execution context in Lesson 5,
“Designing an Execution-Context Strategy.” As a member of the db_owner role, you could use
the SETUSER command to impersonate another database user. However, the SETUSER com-
mand is included for backward compatibility only and might be removed in future releases of
SQL Server. In addition, you cannot use the SETUSER command to impersonate a user
mapped to a login that bypasses the account and password policies. Therefore, in the exam-
ple, you would not be able to use SETUSER to impersonate user JankoCajhen.

266 Chapter 9 Designing a Secure Database
Quick Check
1. You create a schema LuborSchema1 without an explicit owner. You are authenti-

cated in the database as the dbo user. Who is the owner of the schema?

2. You are designing a data model for an application that supports sales, human
resources, and warehouse departments. Should you create a single database with
three schemas or three separate databases?

Quick Check Answers
1. The owner of the schema is dbo. When you do not specify an owner in the

AUTHORIZATION clause when creating an object on the database level, the
owner of that object is the current user. Remember that the default owner of
objects inside the schema is the owner of the schema. You can check schema own-
ership when you create a schema without an explicit owner by using the following
code:
CREATE SCHEMA LuborSchema1
GO
SELECT name, principal_id,
 USER_NAME(principal_id)
 FROM sys.schemas
 WHERE name = 'LuborSchema1';
GO

2. Design a single database with three schemas. You can maintain constraints and
security more easily inside a single database. For example, foreign keys cannot
span databases. However, you might encounter a rare situation in which you are
dealing with a large amount of data with frequent changes; you might prefer the
separate-databases approach in a situation like this. With three databases, you get
three separate transaction logs; you can put them in different disks and thus
achieve parallel writing to these logs.

Lesson 3: Specifying Database Object Security Permissions 267
Lesson 3: Specifying Database Object Security
Permissions

Estimated lesson time: 25 minutes

In all practices and sample code so far, you were authorized inside a database as the dbo user.
This user has all possible permissions inside a database. However, in real life, it might be nec-
essary for other users to create and modify objects. These users can be developers or other
DBAs. To modify objects, they need statement permissions. Statement permissions are on the
server, database, schema, or object level, depending on which level you work. In addition, end
users must use objects and, thus, need object permissions. Object permissions depend on the
type of object you are working with.

Previous versions of SQL Server institute a strict boundary between statement and object per-
missions and provide only a couple of each type. In SQL Server 2005, you have much more
granular control, and there are numerous additional permissions of both types. In SQL Server
2005 Books Online, the organization of chapters covering grant, revoke, and deny permis-
sions is hierarchical because the permissions work hierarchically. However, there are tens of
permissions at each level. For example, the “GRANT Database Permissions (Transact-SQL)”
topic includes more than 60 distinct permissions.

This chapter uses the terminology statement and object permissions to give you a more log-
ical approach to understanding these big groups of permissions. The statement permis-
sions include permissions to use any DDL statements (for example, to create, alter, and
drop objects). The object permissions include permissions to use the objects (for example,
to use the data manipulation language [DML] statements). However, the two permissions
classes slightly overlap, and you can treat a couple of permissions as both statement and
object permissions.

You control permissions by using the data-control language (DCL) elements: GRANT,
REVOKE, and DENY statements. You already know that without explicitly granted permis-
sion, a user cannot use an object. You give the permissions by using the GRANT statement.
You explicitly prohibit usage of an object by using the DENY statement. You clear an explicit
GRANT or an explicit DENY permission by using the REVOKE statement. You might wonder
why you need an explicit DENY statement when without an explicit GRANT, a user cannot
use an object. The DENY statement exists because all grants are cumulative. For example, if a
user gets GRANT permission to select from table1 and the role that the user is a member of is
granted permission to select from table2, the user can select from both tables. If you want to
be sure that the user can never select from table2, deny the select permission from table2 to
this user. A DENY statement always supersedes all GRANT statements.

268 Chapter 9 Designing a Secure Database
You cannot grant, deny, or revoke permissions to or from special roles on the server or data-
base level. For example, you cannot deny anything inside a database to the db_owner role. You
cannot grant, deny, or revoke permissions to special logins and database users (for example,
to sa, dbo, INFORMATION_SCHEMA, and sys). Finally, you cannot grant, deny, or revoke per-
missions to yourself.

Statement Permissions
Statement permissions enable users to create and alter objects or back up a database and
transaction log. This chapter cannot cover all these permissions; refer to the “GRANT
(Transact-SQL)” topic in SQL Server Books Online at http://msdn2.microsoft.com/en-us
/library/ms187965(SQL.90).aspx, for detailed information. However, in this lesson, you will
learn the key concepts regarding statement permissions.

Permissions granted on a higher level include implicit permissions on a lower level. For exam-
ple, permissions granted on the schema level are implicitly granted on all objects in the
schema. In addition, there is some hierarchy between permissions on the same level; some are
stronger and implicitly include weaker permissions. The CONTROL permission is the stron-
gest. For example, the CONTROL permission on the database level implies all other permis-
sions on the same database. Therefore, you have two different kinds of hierarchy: hierarchy
between securables and hierarchy between permissions. You can treat high-level permissions
as covering the more detailed, low-level permissions that they imply.

This architecture can make maintaining security a very complicated task. Fortunately, you
can get a lot of information through catalog views and system functions. For example, the
“Covering/Implied Permissions” topic of SQL Server 2005 Books Online features code for a
helpful function called dbo.ImplyingPermissions at http://msdn2.microsoft.com/en-us/library
/ms177450(SQL.90).aspx. This takes as its arguments the name of the class of a securable
and the name of permission. The function returns the list of permissions, including the
specified permission by implication.

You can use this function to determine quickly which permissions imply the permission you
want to control. For example, suppose you want to know which permissions imply the ALTER
OBJECT permission. You can determine this by using the following call of the function:

SELECT * FROM dbo.ImplyingPermissions('object', 'alter');

You get the result shown in Table 9-2.

Table 9-2 Permissions That Imply ALTER OBJECT Permission

Permname Class Height Rank

ALTER OBJECT 0 0

CONTROL OBJECT 0 1

Lesson 3: Specifying Database Object Security Permissions 269
You can see from this output that if a user needs to alter an object, the user needs either ALTER
OBJECT permission or any other higher permission, such as ALTER ANY SCHEMA permis-
sion. The Height column gives you information about the levels of hierarchy of securables,
from the lowest to the highest: object, schema, database, and server. The Rank column shows
you the hierarchy among permissions on the same hierarchy level of securables. For example,
the CONTROL permission on the database level (class DATABASE in Table 9-2) has a rank of
4, the ALTER permission on the same level has a rank of 3, and the ALTER ANY SCHEMA per-
mission on the same level has a rank of 2. This means that the CONTROL DATABASE permis-
sion implies the ALTER DATABASE permission, which in turn implies the ALTER ANY
SCHEMA permission—all three on the database level.

Hierarchy of permissions does not work in the bottom-up direction. Although this sounds log-
ical, it might be a little confusing sometimes. For example, in the “GRANT Database Permis-
sions (Transact-SQL)” topic in SQL Server 2005 Books Online at http://msdn2.microsoft.com
/en-us/library/ms178569(SQL.90).aspx, the CREATE TABLE permission is listed among other
database permissions. This is because you grant this permission on the database level. How-
ever, this permission works on the object level (table); it does not imply any permission on the
higher level of securables. By creating a table, you are altering a schema. A schema is on a
higher level of hierarchy of securables than a table. Therefore, to create a table, a user needs not
just the CREATE TABLE permission in the database, but also the ALTER SCHEMA permission
on the schema in which the user is creating the table. You can twist this around. The ALTER
SCHEMA permission by itself does not imply the CREATE TABLE permission; this is because
you grant the CREATE TABLE permission on the database level. In summary, if a user wants
to create a table, the user must have both the CREATE TABLE and the ALTER SCHEMA per-
missions. The practice at the end of this lesson demonstrates this concept.

ALTER SCHEMA 1 1

CONTROL SCHEMA 1 2

ALTER ANY SCHEMA DATABASE 2 2

ALTER DATABASE 2 3

CONTROL DATABASE 2 4

ALTER ANY DATABASE SERVER 3 4

CONTROL SERVER SERVER 3 5

Table 9-2 Permissions That Imply ALTER OBJECT Permission

Permname Class Height Rank

270 Chapter 9 Designing a Secure Database
Checking Object Permissions
Types of permissions depend on types of database objects. You can get a list of permissions
applicable for an object or objects by using the sys.fn_builtin_permissions system function. For
example, you can check which permissions are applicable for user-defined types by using the
following function call:

SELECT * FROM sys.fn_builtin_permissions(N'TYPE');

Or, you can check for which objects the SELECT permission is applicable by using

SELECT * FROM sys.fn_builtin_permissions(DEFAULT)
 WHERE permission_name = N'SELECT';

Note that executing the code for checking applicable permissions does not give you very gran-
ular information. For example, it tells you that the SELECT permission is applicable for
objects, schemas, and databases. You know that this permission makes sense for tables but
not for stored procedures. Table 9-3 summarizes which object permissions are applicable for
which objects on a more granular level.

Table 9-3 Permissions and Objects Mapping

Permission Database Objects

ALTER All database objects except DML triggers; for DML triggers, this permission
implies from the ALTER TABLE permission

CONNECT Endpoint

CONTROL All database objects except DML triggers; for DML triggers, this permission
implies from the CONTROL TABLE permission

DELETE Tables, views, synonyms

EXECUTE Stored procedures, scalar functions, aggregate functions, synonyms, user-
defined types, XML schema collections, assemblies

INSERT Tables, views, synonyms

RECEIVE Service Broker queues

REFERENCES Tables, views, table-valued functions, aggregate functions, Service Broker
objects, keys and certificates, user-defined types, schemas, XML schema
collections, assemblies; columns of tables, views, and table-valued
functions; and aggregate functions

SELECT Tables, views, table-valued functions, synonyms; and columns of tables,
views, and table-valued functions

TAKE OWNERSHIP All database objects except DML triggers; for DML triggers, this permission
implies from the CONTROL TABLE permission

Lesson 3: Specifying Database Object Security Permissions 271
In the statement permissions section, you already learned that the split between statement
and object permissions is not strict anymore. The ALTER permission, for example, can be
treated as a statement or object permission.

Exam Tip SQL Server 2005 has many new object permissions. As you prepare for the exam, do
not rely on your knowledge of object permissions from previous versions of SQL Server.

In addition, you can see that you can specify very detailed permissions. For example, you
can specify that a user can select or update only some columns of a table. Specifying permis-
sions on such a granular level means a lot of administrative work and is nearly impossible
to do in a limited time with graphical tools such as SQL Server Management Studio. You
should rarely go that far. Instead, specify permissions on higher levels of the object hierar-
chy, namely on the schema level, and then handle exceptions. If you need column-level per-
missions, use programmable objects such as views and stored procedures. Keep
permissions as simple as possible.

Specifying Permissions by Using the GRANT, DENY, and REVOKE Options
When you specify permissions for an object by using GRANT, DENY, and REVOKE state-
ments, some of the options that you will encounter might be confusing. For example, all three
statements include the ALL [PRIVILEGES] option. The PRIVILEGES keyword is optional and
does not change the behavior of the ALL option. You might think ALL means all possible per-
missions for an object. However, this means all ANSI-92 standard permissions; SQL Server
2005 has a richer permission set. In ANSI-92, ALL means:

n DELETE, INSERT, REFERENCES, SELECT, and UPDATE permissions for tables, views,
and table-valued functions.

n EXECUTE permission for stored procedures.

n EXECUTE and REFERENCES permissions for scalar functions.

The GRANT statement includes the WITH GRANT OPTION. This option indicates that the
principal to which you grant permission on an object can grant this permission on the same
object to other principals.

UPDATE Tables, views, table-valued functions, synonyms; and columns of tables,
views, and table-valued functions

VIEW DEFINITION All database objects except DML triggers; for DML triggers, this permission
implies from the CONTROL TABLE permission

Table 9-3 Permissions and Objects Mapping

Permission Database Objects

272 Chapter 9 Designing a Secure Database
The DENY statement comes with the CASCADE option. When you use this option with the
DENY statement, you indicate that the permission you are denying is also denied to other
principals to which it has been granted by this principal.

The REVOKE statement has the GRANT OPTION FOR and the CASCADE options. GRANT
OPTION FOR means you are revoking permission to grant the same permission to other
principals. (That is, you are revoking the WITH GRANT OPTION permission you gave to
this principal by using the GRANT statement.) The CASCADE option means you are revok-
ing permission not just from the principal you mention in the statement, but also from other
principals to which it has been granted by this principal. Note that such a cascaded revoca-
tion revokes both GRANT and DENY of that permission.

Practice: Verifying Statement Permissions and Hierarchy
This practice helps you understand how the hierarchy among securables implies permissions
from the top of the hierarchy to the bottom—but not from the bottom to the top.

IMPORTANT Practices build upon each other

To work successfully with this practice, you should have f inished the practice from Lesson 2, “Man-
aging Schemas.”

� Exercise 1: Create a Top-Down Object Hierarchy

Let’s check the top-down approach first. When you worked through the previous practice, you
created the TK441Ch09 database and LuborKollar and JankoCajhen logins and database
users. In this exercise, you will create a schema with LuborKollar as the owner and then give
the ALTER SCHEMA permission to JankoCajhen. The JankoCajhen user cannot create a table.

1. Create a schema and give JankoCajhen permission to alter this schema:
USE TK441Ch09;
GO
CREATE SCHEMA LuborSchema2 AUTHORIZATION LuborKollar;
GO
GRANT ALTER ON SCHEMA::LuborSchema2 TO JankoCajhen;
GO

2. Try to create a table as JankoCajhen. The following code should give you an error stating
that JankoCajhen has no CREATE TABLE permission in the TK441Ch09 database:
EXECUTE AS USER = 'JankoCajhen';
CREATE TABLE LuborSchema2.JCTable1
 (id int);
GO
REVERT;
GO

Lesson 3: Specifying Database Object Security Permissions 273
3. Revoke the ALTER SCHEMA permission from JankoCajhen:
REVOKE ALTER ON SCHEMA::LuborSchema2 FROM JankoCajhen;
GO

� Exercise 2: Create a Bottom-Up Object Hierarchy

In this exercise, you will try the bottom-up approach. Although the CREATE TABLE permis-
sion is on the database level, the table objects are in a schema and, thus, a lower level in the
object hierarchy.

1. Give JankoCajhen permission to create tables:
GRANT CREATE TABLE TO JankoCajhen;
GO

2. Try to create a table as JankoCajhen. The following code should give you an error stating
that JankoCajhen has no ALTER SCHEMA permission on LuborSchema2:
EXECUTE AS USER = 'JankoCajhen';
CREATE TABLE LuborSchema2.JCTable1
 (id int);
GO
REVERT;
GO

3. Revoke the CREATE TABLE permission from JankoCajhen:
REVOKE CREATE TABLE FROM JankoCajhen;
GO

� Exercise 3: Give All Permissions Needed to Create a Table

Finally, give JankoCajhen all permissions needed to create a table.

1. Give JankoCajhen permissions to alter the schema and to create tables:
GRANT ALTER ON SCHEMA::LuborSchema2 TO JankoCajhen;
GO
GRANT CREATE TABLE TO JankoCajhen;
GO

2. Try to create a table as JankoCajhen. This time, you should get no error, and Janko-
Cajhen should be able to create tables in LuborSchema2.
EXECUTE AS USER = 'JankoCajhen';
CREATE TABLE LuborSchema2.JCTable1
 (id int);
GO
REVERT;
GO

One of the lessons you can learn from this practice is that you can effectively manage multiple
development teams by using schema and statement permissions. You can assign each team to
a separate logical part of the application, which should map to a schema. You give permissions
to each team to create objects in the database and to alter their schema.

274 Chapter 9 Designing a Secure Database
Quick Check
1. You grant CONTROL permission on dbo.Table1 to database user LuborKollar.

Later, you deny SELECT permission on the same table to LuborKollar. What are
the effective permissions of LuborKollar on that table?

2. LuborKollar has CONTROL permission on dbo.Table1. Does this mean that
LuborKollar can revoke the denied SELECT permission and thus bypass the limi-
tations you defined as a DBA?

Quick Check Answers
1. The effective permissions of LuborKollar on dbo.Table1 are all but SELECT. You

can check this by using the following code:
-- Grant CONTROL to LuborKollar.
GRANT CONTROL ON dbo.Table1 TO LuborKollar;
GO
-- LuborKollar can select.
EXECUTE AS USER = 'LuborKollar';
SELECT *
 FROM dbo.Table1;
REVERT;
GO
-- Deny SELECT to LuborKollar.
DENY SELECT ON dbo.Table1 TO LuborKollar;
GO
-- LuborKollar can insert, but not select.
EXECUTE AS USER = 'LuborKollar';
INSERT INTO dbo.Table1(id, tableContainer)
 VALUES (2, 'dbo');
REVERT;
GO
EXECUTE AS USER = 'LuborKollar';
SELECT *
 FROM dbo.Table1;
REVERT;
GO

2. No, LuborKollar cannot revoke the denied SELECT permission. You cannot grant,
deny, or revoke permissions to yourself. You can check this by using the following
code:
EXECUTE AS USER = 'LuborKollar';
REVOKE SELECT ON dbo.Table1 FROM LuborKollar;
REVERT;
GO

Lesson 4: Managing Objects That Access Data 275
Lesson 4: Managing Objects That Access Data

Estimated lesson time: 20 minutes

You can completely protect your data from direct application access by allowing access only
through programmable objects. In real-life scenarios, you typically combine direct access for
responsible users, such as administrators, with indirect access through programmable objects
for end users. In this lesson, you will learn how you can use programmable objects to develop
and maintain a secure database.

Using Programmable Objects to Maintain Security
In Transact-SQL, you can write views, stored procedures, scalar and table-valued user-defined
functions, and triggers. Views serve best as a layer for selecting data, although you can modify
data through views as well. Views are especially useful for column-level and row-level security.
You can grant column permissions directly; however, doing this incurs a lot of administrative
work. You can create a view as a projection on the base table with selected columns only and
then maintain permissions on a higher granularity level (that is, on the view instead of on the
columns). In addition, you cannot give row-level permissions through a predicate in the
GRANT statement. You can use the same predicate in the WHERE clause of the SELECT state-
ment of the view you are using as a security layer. You can use table-valued functions as param-
eterized views.

Stored procedures are appropriate for all update activity. Maintaining security through stored
procedures is the easiest form of administration; with stored procedures, you typically need to
grant the EXECUTE permission only. You can use triggers and scalar functions for advanced
security checking—for example, for validating users’ input.

Exam Tip Stored procedures are an important topic on the exam. Make sure you spend suff i-
cient time understanding how to use them. You can review “Understanding Stored Procedures” in
SQL Server 2005 Books Online at http://msdn2.microsoft.com/en-us/library/ms191428.aspx.

To minimize the attack surface area, the CLR integration in SQL Server 2005 is off by
default. Turning it on does not mean necessarily exposing the database; on the contrary,
with CLR code, you can enhance your security by writing validation code that is not possible
with T-SQL. For example, you can use the function from Lesson 4, “Defining Domain Integ-
rity and Business Rules” of Chapter 3, “Designing a Physical Database,” which validates user
input against a regular expression inside a check constraint for any string validation.

With the help of programmable objects, you can solve some advanced security problems. You
already know the dangers of concatenating T-SQL code dynamically, especially combined
with user input. For example, a common problem is how to build the list for the IN operator

276 Chapter 9 Designing a Secure Database
dynamically; you want to let end users create the list dynamically through the user interface.
From the application, you get an array of values as a string with a delimiter such as a comma
between different values. Many solutions simply create the SELECT statement dynamically
and then concatenate this array of values with T-SQL code. However, this solution is prone to
code-injection attacks. You can create a safer solution by using a table-valued function that
parses the input string and returns separate elements from the array as rows of the output
table. Then, you can use this function with JOIN or APPLY operators. This way, SQL Server
always treats data (user input) as data and never as code. Such a solution is secure against code
injection. You can find T-SQL and CLR solutions for a function that separates elements from
an input string that represents an array in Inside Microsoft SQL Server 2005: T-SQL Programming
by Itzik Ben-Gan, Dejan Sarka, and Roger Wolter (Microsoft Press, 2006).

What Are Ownership Chains?
Programmable objects refer to base tables and to each other in a kind of chain. For example,
a stored procedure can use a view that selects from a base table. All the objects in SQL Server
have owners. As long as there is a single owner of all the objects in the chain, you can manage
permissions on the highest level only. Using the previous example, if the stored procedure,
view, and base table have the same owner, you can manage permissions for the stored proce-
dure only. SQL Server trusts that the owner of the procedure knows what the procedure is
doing. This works for any DML statement (SELECT, INSERT, UPDATE, and DELETE).

Ownership chains are valid inside a single database only, although you can apply them across
databases as well. However, cross-database ownership chains can present a security risk. A
DBA of the target database in the ownership chain does not have control over the code of a
procedure in the source database of the chain. Do not enable cross-database ownership chains
unless you have control over all the databases involved in the chain and understand the impli-
cations. If you want to enable cross-database ownership chains, you have to start with enabling
them on the server level by using the sp_configure system procedure: you must set the cross-
db ownership chaining option to 1. Then you enable a specific database to serve as the source
or the target of cross-database ownership chains by using ALTER DATABASE . . . SET
DB_CHAINING ON.

If the chain of owners between dependent objects is broken, SQL Server must check the per-
missions for any objects where the chain is broken. For example, if the owner of the procedure
from the previous example is different from the owner of the view, SQL Server would check
the permissions on the view as well. If the owner of the table is different from the owner of the
view, SQL Server would also check permissions on the base table. In addition, if you use
dynamic T-SQL code and concatenate a T-SQL statement as a string and then use the EXE-
CUTE command to execute them, SQL Server checks the permissions on all the objects the
dynamic code is using. This is logical because SQL Server cannot know which objects the
dynamic code is going to use until it actually executes the code, especially if you concatenate

Lesson 4: Managing Objects That Access Data 277
a part of the dynamic code from user input. Besides the threat of code injection, this extra
checking is another reason not to use dynamic string concatenation in T-SQL code in produc-
tion. The following practice helps you understand how ownership chaining works.

Practice: Using Ownership Chains
In this practice, you will learn how ownership chains work.

IMPORTANT Practices build upon each other

To work successfully with this practice, you should have f inished the practice from Lesson 3, “Veri-
fying Statement Permissions and Hierarchy.”

� Exercise 1: Create an Unbroken Chain

In this exercise, you first create a table and a procedure that selects data from the table with
dbo as the owner. You will grant EXECUTE permission on the procedure to JankoCajhen. This
user should have access to the table only through your stored procedure; because the owner
of the procedure and the table is the same and the code in the procedure is not concatenated
dynamically, JankoCajhen should be able to select from the base table without explicit
SELECT permission. Note that if you followed the previous practices, you should already have
the TK441Ch09 database, LuborKollar and JankoCajhen logins and database users, and a
schema named LuborSchema2 with LuborKollar as the owner.

1. Create a table and a procedure that selects from this table and give JankoCajhen permis-
sions to execute the procedure:
USE TK441Ch09;
GO
CREATE TABLE dbo.ChainTable
(id int,
 strAttr nvarchar(25));
GO
INSERT INTO dbo.ChainTable(id, strAttr)
 VALUES(1, N'I can see the table!');
GO
CREATE PROCEDURE dbo.ReadChainTable
AS
SELECT id, strAttr
 FROM dbo.ChainTable;
GO
GRANT EXECUTE ON dbo.ReadChainTable TO JankoCajhen;
GO

2. Try to read from the base table as JankoCajhen through the stored procedure. This code
should work:
EXECUTE AS USER = 'JankoCajhen';
EXEC dbo.ReadChainTable;

278 Chapter 9 Designing a Secure Database
REVERT;
GO

3. Try to read from the base table as JankoCajhen directly. You should get an error because
JankoCajhen does not have SELECT permission on the base table.
EXECUTE AS USER = 'JankoCajhen';
SELECT id, strAttr
FROM dbo.ChainTable;
REVERT;
GO

� Exercise 2: Create a Broken Chain

In this exercise, you will create another procedure with dbo as the owner. This procedure will
again read from the base table created in the previous exercise, only this time, you will have a
dynamic T-SQL statement in the procedure. In addition, you will create a third procedure that
selects from the base table; however, this procedure is going to have a different owner.

1. Create a procedure with dbo as the owner that selects from the base table by using
dynamic code. Give JankoCajhen permission to execute this procedure. Give Lubor-
Kollar permissions to create procedures and to select from the base table.
CREATE PROCEDURE dbo.ReadChainTableDynamic
AS
DECLARE @sqlstr nvarchar(100);
SET @sqlstr =
 'SELECT id, strAttr FROM dbo.ChainTable';
EXEC (@sqlstr);
GO
GRANT EXECUTE ON dbo.ReadChainTableDynamic TO JankoCajhen;
GO
-- Give LuborKollar permissions to create procedures
-- and to select from the base table.
GRANT CREATE PROCEDURE TO LuborKollar;
GRANT SELECT ON dbo.ChainTable TO LuborKollar;
GO

2. Impersonate LuborKollar to create a procedure that reads from the base table. Give EXE-
CUTE permission on this procedure to JankoCajhen. Execute this procedure as
LuborKollar; LuborKollar should be able to read from the base table.
EXECUTE AS USER = 'LuborKollar';
GO
CREATE PROCEDURE LuborSchema2.ReadChainTable
AS
SELECT id, strAttr
 FROM dbo.ChainTable;
GO
-- Give JankoCajhen permission to execute this procedure.
GRANT EXECUTE ON LuborSchema2.ReadChainTable TO JankoCajhen;
GO
-- Try to execute it as LuborKollar; it works.

Lesson 4: Managing Objects That Access Data 279
EXEC LuborSchema2.ReadChainTable;
REVERT;
GO

3. Now impersonate JankoCajhen and execute the dynamic procedure with dbo as the
owner. Try to execute the procedure with LuborKollar as the owner. You should get an
error in both cases.
EXECUTE AS USER = 'JankoCajhen';
EXEC dbo.ReadChainTableDynamic;
GO
EXEC LuborSchema2.ReadChainTable;
GO
REVERT;
GO

Quick Check
1. You need to specify the SELECT permission for 20 users on the column level. You

have to specify this permission for 10 tables, with seven columns on average per
table. How can you speed up your administrative work?

2. Your DBA tells you to use a stored procedure to read from a table. You can execute
the procedure; however, you get the Select Permission Denied error message when
you execute it. What is wrong?

Quick Check Answers
1. You should create 10 views, one for each table, with projections on the base table

including only the columns you want your users to see. Check also whether you
could group these views in the same schema. Finally, check whether you could
group the users in a single role. Ideally, if you could group objects and users, you
could give all necessary permissions by using a single GRANT SELECT statement
on the schema to the role.

2. You probably discovered a broken ownership chain problem. One possibility is
that the owner of the procedure is different from the owner of the base table, and
you do not have SELECT permission on the base table. The second possibility is
that the procedure uses dynamic SQL, and, again, you do not have SELECT per-
mission on the base table.

280 Chapter 9 Designing a Secure Database
Lesson 5: Designing an Execution-Context Strategy

Estimated lesson time: 20 minutes

In previous versions of SQL Server, the only way you could use a programmable object to hide
completely underlying tables was to use ownership chains carefully. In SQL Server 2005, you
can help yourself by changing the execution context. In this lesson, you will learn how to use
execution context.

What Is the Execution Context?
SQL Server determines the execution context by the login or user from the current session or
by executing a module. A pair of security tokens identifies the user. The login token is used to
check the server-level and database-level permissions; the user token, one per database, is used
to check permissions on the database level only. A security token consists of a primary identi-
fier, one or more secondary identifiers, zero or more authenticators, and the permissions of all
identifiers. The primary identifier for a login token is the login that SQL Server used for
authentication itself; the secondary identifiers are server roles and Windows groups of which
the login is a member. For a user token, the primary identifier is the database user used to
access the database, and the secondary identifiers are the roles of which the user is a member.
Authenticators are principals, certificates, or asymmetric keys that vouch for the authenticity
of the token; most of the time, the authenticator is the instance of SQL Server. You can check
your current login and user token through the sys.login_token and sys.user_token catalog
views.

Inside a database, SQL Server typically uses the user’s token to check the necessary permis-
sions for the action performed. You can change the execution context to solve a broken own-
ership chain problem, to test security, to give temporarily elevated privileges, or to build your
custom permission set. When you execute a module in a different execution context, the orig-
inal user still needs the EXECUTE permission on the module; during the module execution,
SQL Server checks the initial user permissions and the additional permissions based on the
impersonation in the module.

You can change execution context explicitly and implicitly. In this chapter, you explicitly
changed the context interactively already by using the EXECUTE AS command. When you
specify the EXECUTE AS statement in a module definition, you are using implicit context
switching. You can switch the context on the server or database level. The impersonation
remains in effect until the session is dropped, until the context is switched again, until you
explicitly revert the context to the previous one by using the REVERT statement, or until the
end of the execution of the module that is created with the EXECUTE AS clause. Modules in
which you can define different execution contexts include DDL triggers on the server level or

Lesson 5: Designing an Execution-Context Strategy 281
DML triggers, stored procedures, user-defined functions, and queues on the database level.
Note that you cannot change the execution context for inline user-defined functions.

When you define an execution context for a module, you can use the following options:

n EXECUTE AS CALLER This is the default execution context, and it means the context of
the user who called the module. This is the same behavior as you had in previous ver-
sions of SQL Server. In this case, you are relying on unbroken ownership chains to
bypass permission checks on underlying objects.

n EXECUTE AS user_name You can use this option to specify explicitly the user for the exe-
cution context of the module. You can use it to overcome broken ownership chains or to
create a custom permission set.

n EXECUTE AS OWNER The execution context with this option is the owner of the mod-
ule, and it changes if the owner changes. Use this option if you expect changes of own-
ership and do not want to deal with changing the execution context again.

n EXECUTE AS SELF This is just a shortcut for EXECUTE AS user_name, in which
user_name is the user who is creating the module. Because this can result in some ambi-
guity about which context is used, use this option rarely. However, it can be useful when
your application creates modules and you want to use impersonation, but you do not
know at design time the user who is creating the module.

You can extend the scope of the impersonation from within a database, which is the default
restriction, to other databases on the same instance or to other instances of SQL Server. The
authenticator has to be trusted in the target scope, and the source database must be marked
as trustworthy with the ALTER DATABASE statement. However, marking a database as trust-
worthy is potentially dangerous. In trustworthy databases, you can create assemblies with
EXTERNAL_ACCESS and UNSAFE permission sets, and you can create modules that use the
execution context of highly privileged users.

Module Signing
To prevent sett ing the TRUSTWORTHY database opt ion to ON to al low the
EXTERNAL_ACCESS or UNSAFE permission set for a CLR module, you can digitally sign the
assembly by using Microsoft Visual Studio or the Microsoft .NET Framework Strong Name
command prompt utility (sn.exe). Then, you can create inside the master database an asym-
metric key pair from the assembly and a login mapped to this asymmetric key. You grant the
login the EXTERNAL ACCESS ASSEMBLY or UNSAFE ASSEMBLY permission. This way, only
the assembly with the signature used to create the asymmetric key can get the
EXTERNAL_ACCESS or UNSAFE permission set; other assemblies can be created with the
SAFE permission set only.

In SQL Server databases, you can sign modules by using the new ADD SIGNATURE TO state-
ment. You can sign a module with a certificate or an asymmetric key. You create a database

282 Chapter 9 Designing a Secure Database
user for the certificate or asymmetric key you used to sign a procedure. You grant this user
access to the underlying objects. You grant the EXECUTE permission on the signed procedure
to end users. When an end user executes the module, SQL Server adds the user created from
the certificate to the end user’s user token. After the execution of the module finishes, SQL
Server removes the certificate user from the end user’s user token. This way, the end user can
access the underlying data through the signed module only.

Practice: Defining the Execution Context
In this practice, you solve the problem of the broken ownership chains you experienced in the
previous practice. This practice assumes you finished the previous practice.

IMPORTANT Practices build upon each other

To work successfully with this practice, you should have f inished the practice from Lesson 4, “Using
Ownership Chains.”

� Exercise 1: Change the Execution Context of Modules

In this exercise, you will change the execution context of two procedures to prevent a broken
ownership chain.

1. Change the execution context of the dbo.ReadChainTableDynamic procedure. Check
the login and user tokens inside the procedure. You can use the following code:
USE TK441Ch09;
GO
ALTER PROCEDURE dbo.ReadChainTableDynamic
WITH EXECUTE AS 'LuborKollar'
AS
DECLARE @sqlstr nvarchar(100);
SET @sqlstr =
 'SELECT id, strAttr FROM dbo.ChainTable';
EXEC (@sqlstr);
SELECT principal_id, sid, name, type, usage, 'SERVER' AS scope
 FROM sys.login_token
UNION
SELECT principal_id, sid, name, type, usage, 'DATABASE' AS scope
 FROM sys.user_token;
GO

2. Similarly, change the execution context of the LuborSchema2.ReadChainTable procedure:
EXECUTE AS USER = 'LuborKollar';
GO
ALTER PROCEDURE LuborSchema2.ReadChainTable
WITH EXECUTE AS OWNER
AS
SELECT id, strAttr
 FROM dbo.ChainTable;

Lesson 5: Designing an Execution-Context Strategy 283
SELECT principal_id, sid, name, type, usage, 'SERVER' AS scope
 FROM sys.login_token
UNION
SELECT principal_id, sid, name, type, usage, 'DATABASE' AS scope
 FROM sys.user_token;
GO
REVERT;
GO

� Exercise 2: Test the Implicit Execution Context

In this exercise, you will test the implicit execution context by executing the two procedures
you altered in the previous exercise of this practice.

Test the new implicit execution context by switching the execution context to Janko-
Cajhen explicitly and executing the procedures. The following code should now work
without errors:
EXECUTE AS USER = 'JankoCajhen';
EXEC dbo.ReadChainTableDynamic;
EXEC LuborSchema2.ReadChainTable;
REVERT;
GO

� Exercise 3: Check the Execution Context

In this exercise, you will check the execution context of existing procedures.

1. You can check the schema, owner, and execution context of all modules in a database by
using the sys.sql_modules, sys.objects, and sys.schemas catalog views. Try the following
statement:
SELECT m.object_id, s.schema_id,
 o.name AS object_name,
 s.name AS schema_name,
 m.execute_as_principal_id,
 execute_as_principal_name =
 CASE
 WHEN m.execute_as_principal_id IS NULL THEN 'Caller'
 WHEN m.execute_as_principal_id = -2 THEN 'Owner'
 ELSE USER_NAME(m.execute_as_principal_id)
 END,
 OBJECTPROPERTYEX(OBJECT_ID
 (s.name + N'.' + o.name), N'OwnerId') AS owner_id,
 USER_NAME(CAST((OBJECTPROPERTYEX
 (OBJECT_ID(s.name + N'.' + o.name), N'OwnerId')) AS int)) AS owner_name
 FROM sys.sql_modules m
 INNER JOIN sys.objects o
 ON m.object_id = o.object_id
 INNER JOIN sys.schemas s
 ON o.schema_id = s.schema_id;
GO

284 Chapter 9 Designing a Secure Database
� Exercise 4: Cleanup

In this exercise, you will clean your SQL Server instance.

Because this is the last practice in this chapter, you can use the following code to clean
up your SQL Server instance:
USE master;
DROP DATABASE TK441Ch09;
DROP LOGIN [Builtin\Power Users];
DROP LOGIN JankoCajhen;
DROP LOGIN LuborKollar;
GO

Quick Check
1. As a DBA, how can you efficiently check an end user’s permissions?

2. How can you find the execution context of a module?

Quick Check Answers
1. You can simply impersonate the end user by using the EXECUTE AS statement.

2. You can find the execution context of a module by examining the sys.sql_modules,
sys.objects, and sys.schemas catalog views.

Case Scenario: Design a Secure Database
Tailspin Toys’ human resources application uses stored procedures for all access to tables in
the human resources database. However, in addition to permissions to execute the proce-
dures, end users need permissions on base tables because the owners of the procedures are
often different from the owners of the base tables. In addition, some end users use Microsoft
Office Excel to create ad hoc reports from the base tables. You notice that end users frequently
change the data in base tables directly, in an uncontrolled manner, instead of using the stored
procedures and the application. You need to mitigate this situation.

1. How can you force end users to access the tables only through programmable objects?

2. If you revoke end users’ permissions on base tables, how can you enable the users to cre-
ate ad hoc reports in Excel?

Lesson 5: Designing an Execution-Context Strategy 285
Chapter Summary
n In SQL Server 2005, you can control security on a granular level.

n To administer security efficiently, group objects in schemas and group users in Windows
groups and database roles.

n You can control metadata visibility.

n Use programmable objects to hide the underlying data from end users.

n Use a different execution context to bypass problems with ownership chains.

Chapter 10

Designing a Unit Test Plan for a
Database

Throughout this book, you have learned how a database is really a complex group of objects—
objects that retrieve data, objects that perform actions, objects that guard data, and so on—that
work together to manage your data. As complex as they are, databases evolve. Applications
connecting to the database will require additions and new features to address new business
requirements. However, when you are making the changes, how can you be sure that you are
not breaking compatibility with other client applications? How can you ensure that, by fixing
some logic written in a stored procedure, you are not breaking the overall process that this sin-
gle stored procedure was just a part of?

The answer is testing. Testing provides the solution for evaluating how the database will
behave after a modification has been made on the database. You can execute different types of
testing on a piece of software, such as a database, depending on what you want to evaluate or
find out about its execution, such as whether it behaves as expected (functionality), performs
as expected, is as secure as expected, scales as expected, and so on.

In this chapter, you will learn the key design practices for designing a unit testing plan for a
database so that you can quickly pinpoint where to focus your attention when problems arise.
A unit test plan is the building block for creating a performance baseline and a benchmark
strategy, which you will study in Chapter 11, “Creating a Database Benchmarking Strategy.”

Exam objectives in this chapter:
n Design a unit test plan for a database.

q Assess which components should be unit tested.

q Design tests for query performance.

q Design tests for data consistency.

q Design tests for application security.

q Design tests for system resources utilization.

q Design tests to ensure code coverage.
287

288 Chapter 10 Designing a Unit Test Plan for a Database
Before You Begin
To complete the lessons in this chapter, you must have:

n A general understanding of the different database objects supported in Microsoft SQL
Server 2005.

n Knowledge about the Transact SQL syntax required to write views, stored procedures,
user-defined functions, and triggers.

n A SQL Server 2005 instance (any edition) with the sample AdventureWorks sample data-
base installed. Sample databases are available with SQL Server 2005 Enterprise edition
but are not a part of the default installation. Alternatively, you can install the sample
databases from http://msdn2.microsoft.com/en-us/library/ms143739.aspx.

Lesson 1: Assessing Which Components to Unit Test 289
Lesson 1: Assessing Which Components to Unit Test

Estimated lesson time: 40 minutes

Unit testing is usually defined as an automated way of testing individual components of a sys-
tem in isolation to verify its behavior and to prove that it meets the expectations related to dif-
ferent requirements such as functionality, performance, integrity, security, and more. Let’s
further analyze this definition.

Automation implies that little human interaction is required, so when unit tests are executed,
each test should:

n Set up its own execution environment and “before” conditions to measure.

n Execute a set of instructions or steps that exercise a specific database object.

n Reset the execution environment to its previous conditions.

n Return a result indicating the success or failure of the test.

From a database perspective, unit tests are usually run on database objects that can be isolated
and measured independently. In a database, this usually involves stored procedures, user-
defined functions (UDFs), views, constraints on tables, and triggers.

Exam Tip In a database, create unit tests on stored procedures, user-def ined functions (UDFs),
views, constraints on tables, and triggers.

For each of these objects, the main goal of a unit test is to evaluate a certain expectation. Exam-
ples of some expectations are that:

n This view should return only 10 rows.

n This stored procedure’s total execution time should be less than two seconds.

n This trigger should update the value in column X to the value of 100.

n When the input parameters of this UDF are X and Y, it should return Z.

Unit tests are part of the deliverables of a programming project, so they should be included in
the project scope and allocated enough time from the beginning of the project, when you are
analyzing the requirements for the database. As with any other programming project, unit
tests need to be designed, coded, tested, and executed—and they evolve as the database
changes to fulfill new requirements.

290 Chapter 10 Designing a Unit Test Plan for a Database
Goals of Unit Testing
Unit testing might seem like a lot of work, and it is, but the benefits are worth it. The main
goals of implementing a unit testing plan for a database are:

n To test each database object in isolation to determine the sources of bugs in your code
and to evaluate whether the code executes as expected.

n To perform regression testing to evaluate the entire system after changes.

n To ensure that changes in one database object don’t break another database object’s
functionality.

IMPORTANT What is a regression test?

Regression testing is the process of running all the unit tests after a change or new requirement
has been included in the database. Regression testing enables you to spot whether the specif ic
change has caused any collateral damage that needs to be resolved.

Planning for Unit Testing
When designing a unit test, the following steps are recommended:

1. Create the testing script.

2. Create a setup testing script.

3. Create a teardown testing script.

4. Validate the testing, setup, and teardown testing scripts.

5. Create or set up a test database.

6. Set up testing data.

7. Execute the unit test.

8. Evaluate the test result.

IMPORTANT Types of database unit tests

Unit tests can be categorized depending on what you want to evaluate or measure about a specif ic
database object. There isn’t a standard set of categories, but some common types of unit tests are:

n Feature test Evaluates the database object functionality and verif ies that expected results
were returned or the appropriate behavior occurred after executing the database object.

n Schema test Evaluates the database (or a resultset’s) schema after execution. Some
objects modify the database schema, for example, by adding a new table to the database
or by verifying that a view returns the correct number of columns in the expected order.

n Security test Validates both the security metadata (validates that a user or role exists in
the database) and security execution context (validates that the executing user is allowed
or not allowed to execute a set of operations).

Lesson 1: Assessing Which Components to Unit Test 291
Creating the Testing Script
A testing script is usually a Transact-SQL (T-SQL) script whose purpose is to exercise a database
object. A testing script should be designed to be independent and complete so that no test
depends on another test executed before or after it.

There are three possible result values after executing a unit test: success, failure, or inconclusive.
Table 10-1 summarizes the different test result values.

Example: How to Write Unit Testing Code with T-SQL
The following code samples provide a complete example of how to write a unit test with T-SQL.
The example starts by providing a stored procedure to be unit tested.

The dbo.GetTop10SalesPeople stored procedure that follows returns the top 10 salespeople
from the AdventureWorks sample database. This stored procedure will be the base for the fol-
lowing example unit tests:

CREATE PROCEDURE dbo.GetTop10SalesPeople
AS
 SELECT TOP (10)
 Person.Contact.FirstName,
 Person.Contact.LastName,
 SUM(Sales.SalesOrderHeader.SubTotal) AS TotalSales,
 Sales.SalesTerritory.Name
 FROM Sales.SalesOrderHeader INNER JOIN Sales.SalesPerson ON
Sales.SalesOrderHeader.SalesPersonID = Sales.SalesPerson.SalesPersonID
 INNER JOIN HumanResources.Employee ON
 Sales.SalesPerson.SalesPersonID = HumanResources.Employee.EmployeeID
 INNER JOIN Person.Contact ON
 HumanResources.Employee.ContactID = Person.Contact.ContactID
 INNER JOIN Sales.SalesTerritory ON
 Sales.SalesPerson.TerritoryID = Sales.SalesTerritory.TerritoryID
 GROUP BY Person.Contact.FirstName,

Table 10-1 Possible Result Values for a Unit Test

Result Value Description Example

Success Indicates that the unit test executed
and finished successfully. “Success-
fully” means that the expected result
was achieved.

The stored procedure returned an error
(but this was expected behavior).

Failure Indicates that the unit test was unable
to finish its execution.

The stored procedure returned an error
and could not finish execution (unex-
pected behavior).

Inconclusive Indicates that the unit test executed and
finished successfully but is unable to
determine whether the result is positive.

The stored procedure returned an error
(but this was expected behavior) but a
different type of error than expected.

292 Chapter 10 Designing a Unit Test Plan for a Database
 Person.Contact.LastName,
 Sales.SalesTerritory.Name
 ORDER BY TotalSales DESC
 GO

The dbo.GetTop10SalesPeople stored procedure needs to be validated and tested to be sure that
it provides the expected results.

If you are interested in validating that the stored procedure actually returns the expected num-
ber of rows, you can use the following T-SQL code to unit test the GetTop10SalesPeople stored
procedure and validate that it returns only 10 rows:

PRINT 'TESTING STORED PROCEDURE [GetTop10SalesPeople]'

DECLARE @RC int
EXECUTE @RC = [dbo].[GetTop10SalesPeople]

IF (@@ROWCOUNT <> 10)
RAISERROR('Actual Rowcount not equal to expected 10',11,1)

PRINT '@RC = ' + CAST(@RC AS NCHAR(1))
GO

Validating a Scalar UDF
As stated, unit testing applies to any database object that executes an action. The next example
creates a unit test around a scalar UDF.

In this case, the unit test will validate that the result returned by the UDF is the expected
result. You can use this type of test to validate that the functionality implemented inside the
database object calculates, computes, and/or updates that database state as expected.

In the code example that follows, the dbo.ufnLeadingZeros UDF adds as many leading zeroes
to the input value as required, up to eight digits total. The unit test validates that the length of
the returned value is actually eight characters:

PRINT 'TESTING SCALAR FUNCTION [ufnLeadingZeros]'
DECLARE @Value int, @RC varchar(8)

SET @Value = 150
SELECT @RC = [dbo].[ufnLeadingZeros] (@Value)

IF (LEN(@RC) <> 8)
 RAISERROR('Actual Len is not equal to expected 8',11,1)

PRINT '@RC = ' + CAST(@RC AS NCHAR(1))
GO

The ufnLeadingZeros function is part of the AdventureWorks sample database.

Lesson 1: Assessing Which Components to Unit Test 293
Validating a Table-Valued UDF
The same techniques for unit testing apply when you want to evaluate a table-valued UDF. You
might be interested in validating the number of rows returned by the UDF, the number of col-
umns returned in the resultset, the data types returned, or any other important attribute about
the quality of the returned data.

The code example that follows writes a unit test for the ufnGetContactInformation table-valued
function that is part of the AdventureWorks sample database. This UDF returns a single row
with the specified @ContactID profile information. The unit test validates that this UDF actu-
ally returns just a single row:

PRINT 'TESTING TABLE VALUED FUNCTION [ufnGetContactInformation]'
DECLARE @ContactID int
SET @ContactID = 1

SELECT * FROM [dbo].[ufnGetContactInformation] (@ContactID)

IF (@@ROWCOUNT <> 1)
RAISERROR('Actual Rowcount not equal to expected 1',11,1)

Unit Testing a Trigger
Finally, here is a code sample that shows how to write a unit test for a trigger. In this case, the
trigger is an UPDATE TRIGGER, but writing code to test a different type of trigger would be
similar.

The [Production].[Product] table in the AdventureWorks sample database defines an ON
UPDATE TRIGGER to update the value of the ModifiedDate column with the current date
and time. The testing script compares the values obtained from ModifiedDate before and
after the execution to validate whether the trigger actually ran and that it correctly updated
the database.

Look at the code example:

PRINT 'TESTING UPDATE TRIGGER ON [Production].[Product]'

DECLARE
 @ReorderPoint smallint,
 @ProductID int,
 @Prev_ModifiedDate datetime,
 @Aft_ModifiedDate datetime

SET @ReorderPoint = 700
SET @ProductID = 1

SELECT @Prev_ModifiedDate = ModifiedDate
FROM [Production].[Product]
WHERE PRODUCTID = @ProductID

294 Chapter 10 Designing a Unit Test Plan for a Database

UPDATE [Production].[Product]
SET [Production].[Product].[ReorderPoint] = @ReorderPoint
WHERE [Production].[Product].[ProductID] = @ProductID;

SELECT @Aft_ModifiedDate = ModifiedDate
FROM [Production].[Product]
WHERE PRODUCTID = @ProductID

IF (@Prev_ModifiedDate = @Aft_ModifiedDate)
 RAISERROR('Trigger is not executing properly. Modified date was not changed',11,1)

PRINT '@Prev_ModifiedDate = ' + CAST(@Prev_ModifiedDate AS NCHAR(8))
PRINT '@Aft_ModifiedDate = ' + CAST(@Aft_ModifiedDate AS NCHAR(8))
GO

Notice that in the case of database triggers, you cannot execute it directly, but instead you must
execute the action that causes the trigger to fire. Also, you must take a snapshot of the values
before and after the trigger is executed to validate whether the values were updated correctly
and as expected.

Creating a Setup Testing Script
Your testing script should not assume anything about the database but should evaluate
whether all the conditions are met for it to execute. Before the execution of the actual unit test,
a setup testing script must assert all the assumptions about the database—for example, to vali-
date that all the required objects exist.

The setup testing script is executed before the testing script. The setup testing script can also
be used to initialize the database state to the required state to execute the unit test. For exam-
ple, when creating a unit test for a delete trigger on the Customers table, you need at least one
customer record on that table to test the trigger.

Another important responsibility of the setup testing script is to begin a transaction. For unit
tests to be repeatable, they should “clean” their state after execution. The easiest way to do this
is to run all the unit test code inside a transaction. After test execution, roll back the transac-
tion to return to the previous state. (The transaction is not rolled back in the setup script but
rather in the teardown testing script, as you will see shortly.)

The following code example shows a setup script for a unit test. As stated, the testing script ini-
tiates a transaction so that test data can be returned to its initial state much faster after the test
execution:

PRINT 'STARTING TEST EXECUTION AT ' + CAST(getdate() AS NVARCHAR(20))
USE AdventureWorks
GO

BEGIN TRANSACTION

Lesson 1: Assessing Which Components to Unit Test 295
Creating a Teardown Testing Script
A teardown testing script is executed after the testing script; it’s used to return the database state
to the initial state after executing the unit test. Just as the setup testing script begins a transac-
tion, the teardown testing script should close the transaction by rolling it back.

The following code example shows a teardown script for a unit. The teardown script rolls
back the transaction so that test data can be returned to its initial state much faster after the
test execution:

ROLLBACK TRANSACTION
PRINT 'FINISHING TEST EXECUTION AT ' + CAST(getdate() AS NVARCHAR(20))

Validating the Testing, Setup, and Teardown Scripts
It is always possible that you inadvertently included an error in the scripts. The testing, setup,
and teardown scripts should be validated and bug-free before clearing them as safe for execut-
ing unit tests.

Creating or Setting Up a Test Database
Unit testing might involve a lot of different operations on a database. It is usually recom-
mended to have an independent testing environment to execute your unit tests in. When set-
ting up a testing database, you have the following options:

n Use a copy of a production database By restoring a database from backup or attaching
an existing database, you do not have to re-create any database objects or set up testing
data. However, there are some issues to take into account:

q Privacy Some of the data contained inside the database might be sensitive, so you
might not have permissions to use it.

q Change management If the production database is constantly undergoing
changes (to the database schema), you are forced to look continuously for the lat-
est version of the database. You also need to update your unit tests to match the
changes in the schema.

n Create a new empty database by using the schema from a production database You do
this by generating a CREATE DATABASE script (with all of its objects) and running it on
a clean SQL server. The benefit of this approach is that it can be very easy to set up a new
testing environment or to reset the database state after each test (by just running the
CREATE DATABASE script again). Also, you are not forced to use the entire (usually
complex) database; you re-create only the specific tables involved in the unit tests you
are about to execute. The most important restriction of this approach is that you need to
re-create the contained data every time after running the CREATE DATABASE script.

296 Chapter 10 Designing a Unit Test Plan for a Database
n Create a completely new database from the outset In this case, you are free to change
the environment rules. This option is useful when you are interested in validating your
database objects under different restrictions, different hardware, different configura-
tions, and so on.

Setting Up Testing Data
The last step before you start executing your unit tests is to set up the initial data that the tests
are going to be manipulating. In some cases, you might not care whether the database contains
data. But in the cases in which you do require data, some common techniques for filling a data-
base with testing data are:

n To use a copy of a production database by restoring a database from backup or attaching
an existing database. The main benefit of this approach is that you achieve 100 percent
fidelity on the quality of the data because you are using real data. As stated previously,
though, keep privacy issues in mind.

n To use a data-generation tool to set the database state. Some generators enable you to
customize the type of data being generated, for example, by using a regular expression
for string values or for setting maximum and minimum constraints when generating
integer values. Try to generate data that is as close as possible to the real data in terms of
its fidelity and quality.

n Import, bulk copy, or replicate data from a production database. You might use this
approach when the testing database has a different schema than the production database,
but you still want to use some of the database coming from the production database.

n Have the unit test generate the required state in the setup script. This approach means
that you do not worry about creating overall testing data but instead leave the responsi-
bility to each of the unit tests to re-create the data that it needs to run. From a pragmatic
point of view, this modularity might be seen as something better for maintenance, but
depending on the amount of data involved, it can turn unit testing into a very long oper-
ation because each unit test needs to set up its own data.

Executing the Unit Test
The unit tests are plain T-SQL script files, so they can be executed in several ways and with sev-
eral tools. The main idea behind the unit testing process is that it can be automated.

One approach to handling unit test execution is to use the SQL Server Command Line Utility
(Sqlcmd.exe) that is part of SQL Server 2005. All the calls to execute each of the script files
(setup, testing, and teardown) can be written into an operating system .cmd (batch) file.
Finally, a SQL Server 2005 job step can be created to execute the test by using SQL Server
Agent.

Lesson 1: Assessing Which Components to Unit Test 297
Exam Tip Here is an example of the necessary command-line instruction to use the Sqlcmd.exe
utility to execute the required scripts in the required order:

SQLCMD -S localhost -E -i SetupScript.sql -i TestScript.sql -i TeardownScript.sql -o
Output.txt

The –S indicates the server name to connect to. The –E option specif ies the use of Microsoft
Windows Authentication when connecting. With each –i option, a test script is added to the exe-
cution; notice the addition of the SetupScript.sql, TestScript.sql, and TeardownScript.sql f iles. The
–o option lets you specify an output f ile, so any messages sent from the script f ile can be cap-
tured by this f ile.

Another possibility might be to have a user execute each unit test independently by using the
SQL Server 2005 Management Studio (SSMS) console.

Evaluating the Test Result
Unit testing usually tries to compare the execution with a preset execution objective. The val-
idation of whether the objective was successfully completed is called a test condition. Test con-
ditions evaluate the test result. There are different types of test conditions, depending on what
you are interested in evaluating; some examples might include:

n Number of rows returned Validate the @@ROWCOUNT variable or the ROWCOUNT
_BIG () function against a value comparing the expected number of returned rows
with the actual number of returned rows.

n Specific scalar values returned Especially when executing scalar UDFs, compare that
the value returned by the UDF matches an expected scalar value.

n Return of an empty resultset Especially when testing views, stored procedures, or table-
valued functions, validate whether the database object actually returned an empty
resultset.

n Return of a non-empty resultset This is the same as the previous test condition except
that this validates whether the database object actually returned rows.

n Total execution time Validate that the total execution time is under a certain value.

You can create your own test conditions based on what you are interested in validating.

Practice: Creating a Unit Testing Script and a Testing Database
In this practice, you will apply the concepts from this lesson to assess which components
should be unit tested and to create the necessary infrastructure to execute the tests. All the
practices in this chapter refer to the Production set of tables from the AdventureWorks sam-
ple database.

298 Chapter 10 Designing a Unit Test Plan for a Database
On the Companion Disc This chapter includes many code examples. You will f ind all the code
from this chapter on the companion CD in the C:\My Documents\Microsoft Press\TK70-441
\Chapter10\Sql folder.

� Exercise 1: Create a View

In this exercise, you will be given a business requirement. You must create the necessary data-
base objects to fulfill the requirement. In the following exercises, you will be asked to unit test
your code before deploying it.

As the database designer for AdventureWorks, you must design a view that returns a list
of all the products that need to be reordered. Validate from which products in stock you
have less than the accepted amount for reordering. Design your own view before reading
the suggested answer.

Suggested Answer

The following view satisfies the requirements:
CREATE VIEW dbo.ProductsToReorder AS
 SELECT Production.Product.ProductID,
 Production.Product.Name,
 Production.Product.ProductNumber,
 Production.ProductInventory.Quantity,
 Production.Product.ReorderPoint
FROM Production.Product INNER JOIN Production.ProductInventory ON
Production.Product.ProductID = Production.ProductInventory.ProductID AND
Production.Product.ReorderPoint > Production.ProductInventory.Quantity
WHERE (Production.Product.SellEndDate IS NOT NULL)

� Exercise 2: Create a Unit Testing Script

In this exercise, you will need to evaluate whether the view created in the previous exercise ful-
fills the business requirement. You will need to write a unit test for it.

You decide to create a unit test on the ProductsToReorder view created in Exercise 1,
“Create a View.” The test condition that you want to evaluate is the return of a non-empty
resultset. What modifications are required in the view’s T-SQL code declaration? Write
your own test script before reading the suggested answer.

Suggested Answer

The following view satisfies the requirements:
SELECT *
FROM dbo.ProductsToReorder

IF (@@ROWCOUNT = 0)
RAISERROR('View returned an empty resultset',11,1)

Lesson 1: Assessing Which Components to Unit Test 299
� Exercise 3: Set Up a Test Database

In this exercise, you will create a testing environment for the unit test created previously.
Please answer the following question.

You are ready to execute your newly created unit test. You need a testing database to run
it. What possible options do you have?

Suggested Answer

The possible options to set up a testing database are:

q To use a copy of a production database.

q To create a new empty database that uses the same schema as the production data-
base.

q To create a completely new database with a different database schema than the pro-
duction database so that it models the business requirements to validate differently.

Quick Check
1. After applying some normalization rules in the database, you decide to split a table

into two independent tables. After doing that, you need to modify the SELECT
clause in all the existing stored procedures that retrieve data. When writing the
unit tests to validate the change, which test conditions would you validate?
(Choose all that apply.)

A. Rows returned

B. Scalar values

C. Empty resultset

D. Non-empty resultset

E. Schema modification

2. You are designing a unit test on an AFTER DELETE trigger on the PurchaseOrder
table. The trigger inserts a record into the Log table, storing the userid that exe-
cuted the deletion. You created a setup script that inserts a new record into the Pur-
chaseOrder table. What does the testing script code look like?

300 Chapter 10 Designing a Unit Test Plan for a Database
Quick Check Answers
1. Possible answers are rows returned, empty resultset, or non-empty resultset. These

types of test conditions help you evaluate whether the resultset matches what is
expected. You might want to compare the results of rows returned from before and
after the change was made just to be sure that the same number of rows is
returned.

2. The code of the unit test might look like this:
DECLARE @rc_before INT
SELECT @rc_before = COUNT(*)
FROM LOG

DELETE PurchaseOrder
WHERE ID = 100

DECLARE @rc_after INT
SELECT @rc_after = COUNT(*)
FROM LOG

IF ((@rc_before + 1) = @rc_after)
BEGIN
 PRINT 'Log registered 1 new record'
 RETURN
END
ELSE
BEGIN
 PRINT 'Log did not registered 1 new record'
 RETURN
END

Lesson 2: Designing Tests for Query Performance 301
Lesson 2: Designing Tests for Query Performance

Estimated lesson time: 25 minutes

The main objective of performance testing is to evaluate the response time when executing a
specific database object. The response time is validated against a pre-defined set of perfor-
mance objectives.

Performance testing assumes that the database object to test is functioning, stable, and robust,
so any functionality should be validated with unit tests before you validate performance. To
test performance correctly, you must maintain accurate and complete records of each test
pass. Records should include:

n The exact system configuration.

n Both the raw data and the calculated results from performance monitoring tools.

During each test pass, run exactly the same set of performance tests; otherwise, it is not pos-
sible to discern whether different results are due to changes in the tests rather than to changes
in the application. Automating as much of the performance test set as possible helps eliminate
operator differences.

For automating the execution of a performance test, as discussed in the previous lesson, you
must generate setup, testing, and teardown scripts. It might be interesting to consider adding
think time to the scripts. Think time simulates the time spent by a user deciding what to do
next. The following code example adds a think time of between 20 and 40 seconds:

DECLARE @RandomTime char(8)
SET @RandomTime = CONVERT(char(8), DATEADD (ss , (RAND() * 10) + 10, '20000101'), 108)

-- Execute user operations here...
PRINT 'Executing 1st operation'

WAITFOR DELAY @RandomTime

-- Execute user operations here...
PRINT 'Executing 2nd operation'

In Chapter 11, you will learn more about performance testing, how to set a performance base-
line, and how to measure performance changes.

How to Design a Test
There are certain steps that need to be followed every time you design a test for performance.
Remember that a test is always created to validate a certain condition.

302 Chapter 10 Designing a Unit Test Plan for a Database
In the case of performance tests, you must validate a condition related to a performance goal.
A performance goal is expressed in terms of performance metrics that indicate how the code
executed based on specific system resource, such as CPU consumption, memory usage, exe-
cution time, and more.

When designing a test for query performance, you need to:

1. Set performance goals.

2. Execute the test and measure performance metrics.

3. Evaluate the test results and document findings.

4. Test again and compare.

Setting Performance Goals
Before you can evaluate your solution for performance, you must have a detailed under-
standing of the expected production response times. Without a well-understood goal, you
can’t evaluate readiness. A well-formed set of performance goals is critical because it will
drive your strategies related to system testing. Your performance goals should have the fol-
lowing elements:

n It should be measurable.

n It should indicate a maximum accepted value and/or minimum accepted value.

Executing the Test and Measuring Performance Metrics
When measuring performance metrics, you want to evaluate how close or far away the mea-
surement is from your expected performance goals. The first time you execute the perfor-
mance test, it is called a baseline. The baseline is used to compare further test passes and to see
the results of any modifications you have included in your code.

Evaluating the Test Results and Documenting Findings
During the evaluation phase, compare the currently measured values with previous test
passes. Evaluate the proper actions to take, depending on whether the measured value is
above or below the performance goal and above or below the previous measurements.

It is very important that you document everything about each test pass. Typically, you would
want to record test execution time and date, hardware details, software versions, test version,
test input, test output, and measured response time.

Documentation maintains the history of the project in terms of execution performance.

Lesson 2: Designing Tests for Query Performance 303
Testing Again and Comparing Results
As noted previously, performance testing is an iterative practice. It is not enough to measure
once and forget about it. Databases evolve, and many factors around them might affect perfor-
mance. Performance testing is a continuous process, constantly comparing and validating per-
formance metrics after each change in the database objects.

Writing a Test to Validate Query Performance
The following code example presents a modified version of the GetTop10SalesPeople stored
procedure presented in Lesson 1. This modified stored procedure will simulate execution on
a heavily used server:

ALTER PROCEDURE dbo.GetTop10SalesPeople
AS
 WAITFOR DELAY '00:00:08'

 SELECT TOP (10)
 Person.Contact.FirstName,
 Person.Contact.LastName,
 SUM(Sales.SalesOrderHeader.SubTotal) AS TotalSales,
 Sales.SalesTerritory.Name
 FROM Sales.SalesOrderHeader INNER JOIN Sales.SalesPerson ON
Sales.SalesOrderHeader.SalesPersonID = Sales.SalesPerson.SalesPersonID
 INNER JOIN HumanResources.Employee ON
 Sales.SalesPerson.SalesPersonID = HumanResources.Employee.EmployeeID
 INNER JOIN Person.Contact ON
 HumanResources.Employee.ContactID = Person.Contact.ContactID
 INNER JOIN Sales.SalesTerritory ON
 Sales.SalesPerson.TerritoryID = Sales.SalesTerritory.TerritoryID
 GROUP BY Person.Contact.FirstName,
 Person.Contact.LastName,
 Sales.SalesTerritory.Name
 ORDER BY TotalSales DESC
 GO

Notice that a WAITFOR DELAY has been added to stop execution for eight seconds. The fol-
lowing script can be used to test query performance, validating whether the stored procedure
executes in less than four seconds:

DECLARE @s int, @maxSeconds int
SELECT@s = DATEPART(s, GETDATE())

SET @maxSeconds = 4
EXEC dbo.GetTop10SalesPeople

IF ((DATEPART(s, GETDATE()) - @s) > @maxSeconds)
RAISERROR('Execution time was longer than the expected 4 seconds',11,1)

304 Chapter 10 Designing a Unit Test Plan for a Database
Practice: Designing a Testing Script and Setting Performance Goals
In this practice, you will apply the concepts from this lesson. All the practices in this chapter
refer to the AdventureWorks sample database.

� Exercise 1: Design a Test Script

In this exercise, you must decide how to design a testing script, based on a given business
requirement.

As the database administrator for AdventureWorks, you receive a lot of complaints from
users because the system is very slow when trying to determine which products need to
be reordered. After investigating the problem, you find an old stored procedure that uses
a cursor to fetch the Production.Product table, as shown in the following example:
CREATE PROC dbo.OldProductsToReorder AS
BEGIN
DECLARE @ProductID int, @ReorderPoint int

DECLARE ProductsToReorderCursor CURSOR FOR
 SELECT ProductID, ReorderPoint
 FROM Production.Product
 WHERE (Production.Product.SellEndDate IS NOT NULL)

OPEN ProductsToReorderCursor
FETCH NEXT FROM ProductsToReorderCursor
INTO @ProductID, @ReorderPoint

WHILE @@FETCH_STATUS = 0
BEGIN
 SELECT ProductID, Quantity
 FROM Production.ProductInventory
 WHERE Production.ProductInventory.ProductID = @ProductID AND
 Production.ProductInventory.Quantity < @ReorderPoint

 FETCH NEXT FROM ProductsToReorderCursor
 INTO @ProductID, @ReorderPoint
END
CLOSE ProductsToReorderCursor
DEALLOCATE ProductsToReorderCursor
END

To evaluate a possible database change, you decide to run some performance tests to
evaluate the response time of the stored procedure. Design your own test script before
reading the suggested answer.

Suggested Answer

The following test script satisfies the requirements:
DECLARE @s int, @maxSeconds int
SELECT @s = DATEPART(s, GETDATE())

SET @maxSeconds = 18

Lesson 2: Designing Tests for Query Performance 305
EXEC dbo.ProductsToReorder

IF ((DATEPART(s, GETDATE()) - @s) > @maxSeconds)
RAISERROR('Execution time was longer than the expected 18 seconds',11,1)

� Exercise 2: Set Performance Goals

In this exercise, you must set performance goals to validate the stored procedure reviewed in
Exercise 1, “Design a Test Script.” A performance goal enables you to validate that after every
fix to the code, you are getting closer to or further from your expectations.

After executing the performance test, you now have a baseline to compare with when
deciding on a possible solution to the performance issue raised by the users. You start
first by setting a performance goal. Write your own performance goal for this scenario
before looking at the suggested answer.

Suggested Answer

A possible performance goal could be that the ProductsToReorder stored procedure
must return an answer to the calling process in no more than three seconds.

Quick Check
1. What should you do if you do not have a baseline? How do you set performance

goals?

2. What are the steps to follow when designing a performance test?

Quick Check Answers
1. If you do not have a baseline to compare against, start by creating one. Run your

tests and write down all the performance measurements. These first measure-
ments will become your baseline and, hence, your performance goals. This gives
you a head start so that you can start evaluating in which areas you want to
improve performance.

2. When designing a performance test, you must start by deciding what your perfor-
mance objectives are. Once the performance objectives are set, you need to decide
what measurements you want to evaluate; this is usually straightforward, based on
the chosen performance objectives. The next step is to start executing the tests and
measuring performance metrics. When testing is done, you need to evaluate the
test results and document the findings. With the results from the analysis, decide
which database objects to fine-tune and start the process again.

306 Chapter 10 Designing a Unit Test Plan for a Database
Lesson 3: Designing Tests for Data Consistency

Estimated lesson time: 25 minutes

As explained in Chapter 3, “Designing a Physical Database,” database designers typically
define various constraints that all data should satisfy. These include constraints to ensure that
the values of attributes are sensible (for instance, not NULL constraints or domain con-
straints), to ensure that certain attribute values (or combinations) appear only once in a table
(uniqueness constraints), and to ensure that data in related tables are consistent with each
another (foreign key constraints). If designed correctly, SQL Server will enforce these integrity
constraints when the database state is modified.

You might also have other consistency constraints that are not coded in a declarative way but
instead need to be coded inside stored procedures or UDFs. In this lesson, these constraints
are called custom constraints.

When designing tests for data consistency, you want to evaluate whether constraints are
enforced correctly (or if they are enforced at all). You might define different types of tests,
depending on what you want to evaluate, such as:

n Testing values of attributes.

n Validating foreign key constraints.

n Validating custom constraints.

Testing Values of Attributes
Table attributes can be constrained by applying a CHECK constraint when defining the
attribute. When testing for data consistency, you want to exercise the CHECK constraint by
inserting allowable and prohibited values, depending on the rules enforced by the constraint.

BEST PRACTICES Testing a CHECK constraint

When testing a CHECK constraint, try inserting maximum, minimum, just inside/outside boundary
values (for example, +1 or -1), typical values, and error values.

Validating Foreign Key Constraints
Validating foreign key constraints means that you need to exercise the relationship created by
the foreign key constraint and validate how the database reacts to referential integrity viola-
tions. This includes performing:

Lesson 3: Designing Tests for Data Consistency 307
n Insertions in each participating table.

n Updates in each participating table, including evaluating CASCADING options.

n Deletions in each participating table, including evaluating CASCADING options.

Validating Custom Constraints
Custom constraints include any other integrity validation that is executed on the database but
not enforced by the database management system (DBMS). Custom constraints are validated
by code implemented, usually, inside a scalar UDF, for example, for calculated columns or for
DEFAULT constraints. The main goal of testing these constraints is to validate that the logic
coded inside the scalar UDF is correct.

Writing a Test to Validate Data Consistency
In the Person.Contact table in the AdventureWorks sample database, a CHECK constraint is
defined on the EmailPromotion attribute. The constraint expression is:

([EmailPromotion]>=(0) AND [EmailPromotion]<=(2))

The following code example implements a data-consistency test that exercises this constraint:

DECLARE @NewValue int, @ContactID int
SET @NewValue = 10
SET @ContactID = 1

BEGIN TRY
 UPDATE Person.Contact
 SET EmailPromotion = @NewValue
 WHERE ContactID = @ContactID
END TRY
BEGIN CATCH
 IF (ERROR_NUMBER() <> 547)
 RAISERROR('Check constrained was not broken',11,1)
END CATCH

Another interesting example is a test to validate a foreign key constraint. In the AdventureWorks
sample database, the Sales.Customer table declares a foreign key constraint with the Sales.Sales-
Territory table, meaning that you cannot add a Customer to a territory that has not been
defined yet in the database. To validate that constraint, you can define a test script such as the
following:

DECLARE @TerritoryID int
SET @TerritoryID = 200

BEGIN TRY
 INSERT INTO [Sales].[Customer]
 ([TerritoryID],[CustomerType])
 VALUES (@TerritoryID,'s')

308 Chapter 10 Designing a Unit Test Plan for a Database
END TRY
BEGIN CATCH
 IF (ERROR_NUMBER() <> 547)
 RAISERROR('Foreign key constrained was not broken',11,1)
END CATCH

Practice: Validating Data Consistency in a UDF
In this practice, you will apply the concepts from this lesson. All the practices in this chapter
refer to the Production set of tables from the AdventureWorks sample database.

� Exercise 1: Validate a Default Value Set by a UDF

In this exercise, you will design a strategy to validate that a default constraint defined on a
table updates the table values as expected.

In the Sales.Customer table in the AdventureWorks sample database, a default constraint
is defined on the AccountNumber column. If you check the table definition, you will find
a declaration like this:
[AccountNumber] AS (isnull('AW'+[dbo].[ufnLeadingZeros]([CustomerID]),''))

How can you design a test to evaluate such a condition? Design your own test script
before reading the suggested answer.

Suggested Answer

There are two possible answers. One possibility is to test the dbo.ufnLeadingZeros UDF
independently and make sure that it works as expected. (This example is implemented
in Lesson 1 of this chapter.) The problem with this approach is that you are not testing
the code written outside the UDF—for example, the string concatenation.

Another possibility is to validate that the AccountNumber value is set correctly when
inserting a value inside the Sales.Customer table. What is interesting about this
approach is that you need to use a teardown testing script to roll back the insertion of a
new record in the table.

� Exercise 2: Design a Test for Data Consistency in a Transactional Environment

In this exercise, you must design a strategy for writing a test script to validate a ROLLBACK
TRANSACTION statement without interfering with the transaction.

This chapter has explained that you should execute tests inside a transaction for correct
data cleanup. How can you evaluate the transactional handling of your database? What
if you want to evaluate whether a stored procedure can execute a ROLLBACK TRANS-
ACTION statement without interfering with the external transaction from the test
script? Can you come up with your own answer?

Lesson 3: Designing Tests for Data Consistency 309
Suggested Answer

When designing tests for data consistency, you might be involved in a scenario in which
you need to commit or roll back a transaction explicitly. In this type of scenario, the test-
ing script cannot use a transaction because it will interfere with the internal transaction.

In previous lessons, you learned to use transactions because that method is a reliable,
low-cost solution for cleaning up database state after test execution. However, if you can-
not use transactions, you need to execute data cleanup directly. For example, if during
the test you inserted a new record, then during the teardown script, you must call the
DELETE statement to delete the record inserted by the test.

Quick Check
1. What type of data is validated during a data-consistency check?

2. When looking at the test code, what is the main difference when implementing
this type of testing as compared to other testing?

Quick Check Answers
1. A consistency test evaluates the consistency constraints on the system. These con-

straints might be enforced directly by SQL Server or by a UDF or stored procedure.
Consistency tests usually evaluate attribute constraints (CHECK, DEFAULT, or cal-
culated columns), foreign key constraints, and custom constraints.

2. The main difference is that this type of test needs a TRY . . . CATCH construction
to evaluate whether the constraint has been broken. You usually validate against
the constraint being broken.

310 Chapter 10 Designing a Unit Test Plan for a Database
Lesson 4: Designing Tests for Application Security

Estimated lesson time: 25 minutes

In a database, testing application security involves validating that the required permissions,
principals, and roles—at both the server and database levels—exist and validating that those
permissions, principals, and roles are enforced by SQL Server.

Validating the Existence of Permissions, Principals, and Roles
SQL Server 2005 provides several system views that you can use to evaluate the existence of
expected permissions, principals, and roles. Table 10-2 describes the most important views
related to existence validation of security-related objects.

Validating the Execution Context for Specific Permissions, Principals,
and Roles

By using the EXECUTE AS clause, you can validate multiple permissions, principals, and roles
from within the same testing script. As explained in previous chapters, the EXECUTE AS
clause enables you to change the execution context so that permissions are checked against a
different user than the current user executing the script.

By using the EXECUTE AS clause, you can modify the execution context of certain testing
scripts to validate how the script behaves when executed by different principals.

Writing a Test to Validate Application Security
Consider the following scenario. Suppose two users and two logins are defined in the SQL
Server database (User1 and User2), but only User2 is granted the CREATE TABLE permission.

Table 10-2 System Views Related to Security in SQL Server 2005

View Description

sys.database_permissions Returns a row for every permission in the database

sys.database_principals Returns a row for each principal in a database

sys.database_role_members Returns one row for each member of each database role

sys.server_permissions Returns one row for each server-level permission

sys.sql_logins Returns one row for every SQL login

sys.server_principals Returns a row for every server-level principal

sys.server_role_members Returns one row for each member of each fixed server role

Lesson 4: Designing Tests for Application Security 311
During the testing session (executed under the User1 identity), you need to insert data into the
table, as shown in this code example:

CREATE LOGIN [User1] WITH PASSWORD=N'pass@word1'
GO
CREATE LOGIN [User2] WITH PASSWORD=N'pass@word1'
GO
CREATE USER [User1] FOR LOGIN [User1]
GO
CREATE USER [User2] FOR LOGIN [User2]
GO
ALTER LOGIN [User1] ENABLE
ALTER LOGIN [User2] ENABLE
GO
CREATE SCHEMA [MySchema] AUTHORIZATION [User2]
GO
GRANT CREATE TABLE TO [User2]
GO
EXECUTE AS USER = 'User2'
GO
CREATE TABLE MySchema.MyTable(Col1 int)
GO
REVERT
GO

The problem now is that if you try to insert new rows inside the MySchema.MyTable, using the
User1 identity, you will not be allowed to do so. By using the EXECUTE AS clause, you can
modify the execution context during certain portions of the testing script, like this:

BEGIN TRY
 EXECUTE AS USER = 'User2'
 INSERT INTO [MySchema].MyTable(Col1)VALUES(100)
 REVERT

 --CONTINUE WITH OTHER TESTS
END TRY
BEGIN CATCH
 IF (ERROR_NUMBER() <> 229)
 RAISERROR('Security was not broken',11,1)
END CATCH

Practice: Validating Whether a User Has Been Created
In this practice, you will apply the concepts from this lesson. All the practices in this chapter
refer to the Production set of tables from the AdventureWorks sample database.

� Exercise: Validate Security Metadata in a Database

In this exercise, you will design a testing strategy to validate that certain security configura-
tions are applied correctly and as expected.

312 Chapter 10 Designing a Unit Test Plan for a Database
The database administrator for AdventureWorks has automated the process of creating
new logins and users for new users who need to work with the database. The code that
implements this functionality is inside a stored procedure called dbo.CreateFull-
NewUser.

You need to design a testing strategy to validate that the stored procedure actually cre-
ates all the necessary settings for the new user. Design your own test script before read-
ing the suggested answer.

Suggested Answer

The following test script satisfies the requirements:
DECLARE @COUNT_LOGINS INT, @COUNT_PRINCIPALS INT

EXEC dbo.CreateFullNewUser 'User1'

SELECT @COUNT_LOGINS = COUNT(*) FROM sys.sql_logins
WHERE name = 'User1'
SELECT @COUNT_PRINCIPALS = COUNT(*) FROM sys.server_principals
WHERE name = 'User1'

IF (@COUNT_LOGINS <> 1 AND @COUNT_PRINCIPALS <> 1)
RAISERROR('Security logins and principals were not created as expected',11,1)

Quick Check
n Is it possible to use a unit test to evaluate a different type of security concern, such

as a SQL injection attack?

Quick Check Answer
n A SQL injection attack is usually executed through a stored procedure that inter-

nally uses dynamic SQL. The main way this type of attack works is that the T-SQL
code to execute is generated dynamically by concatenating pre-defined strings of
code with values coming from input parameters. Hackers might take advantage of
this by sending invalid strings through the input parameters, such as '' or '1 = 1 --'.
This type of string can be very dangerous. You can apply unit testing to validate
SQL injection attacks but with some restrictions—specifically, that it is difficult to
automate because the SQL injection attack requires the hacker to try different vari-
ations of the input string. You might develop a test script with some of the most
common variations of input strings and evaluate how your stored procedures
behave with this type of input.

Lesson 5: Designing Tests for System Resources Use 313
Lesson 5: Designing Tests for System Resources Use

Estimated lesson time: 25 minutes

System resources are scarce commodities. Databases usually need to share system resources
with other applications running on the same operating system and with the operating system
itself.

System resources might include CPU, memory consumption, disk input/output (I/O) access,
network access and data transmission, and any other operating system–controlled resources
that your database interacts with. Testing for system resources usage enables you to find per-
formance issues usually related to latency when accessing a system resource.

System usage metrics are recorded by different tools provided by SQL Server 2005 or by the
Windows operating system.

IMPORTANT System resource testing and load testing

System resource usage testing evaluates different system metrics and counters when executing a
specif ic database object. These metrics are validated against a pre-def ined set of performance
objectives based on normally expected values. Load testing is the practice of evaluating the maxi-
mum load that a system can handle, so these are two different types of testing.

When designing a test for system resources use, you need to:

1. Set performance goals.

2. Evaluate and decide which performance counters and metrics to measure, according to
performance goals.

3. Execute the test and measure the performance counters and metrics.

4. Evaluate the test results and document findings.

5. Test again and compare.

Notice that the steps are very similar to those discussed in Lesson 2, so only those that are dif-
ferent are expanded here.

Setting Performance Goals
In this type of testing, you need to have a detailed understanding of the expected production
load in terms of transactions per second, number of concurrent users, amount of data being
queried, or any other measurement that lets you determine the expected system use values.
Some examples of system use metrics that you might be interested in are CPU use, locking
time, locking mode, and number of page loads.

314 Chapter 10 Designing a Unit Test Plan for a Database
Using Performance Goals to Evaluate Performance Counters and
Metrics

The performance goals will lead you to which counters and metrics you need to measure. For
example, if you are interested in CPU use, you need to measure CPU use with Windows Per-
formance Monitor. However, if you are interested in measuring table locking, you might want
to validate the results of executing the SQL sp_lock system stored procedure.

T-SQL in SQL Server 2005 includes different commands for measuring performance. You
need to choose which to use, depending on what you are interested in measuring. Table 10-3
summarizes some of the strategies to follow when choosing how to measure performance in
T-SQL.

Practice: Choosing Performance Counters and Metrics
In this practice, you will apply the concepts from this lesson to design tests for system
resources use. All the practices in this chapter refer to the Production set of tables from the
AdventureWorks sample database.

Table 10-3 Measuring Performance with T-SQL

Tool When to Use It More Information

Wait_Stats To evaluate the waits encoun-
tered by threads that are in
execution.

For an initial discussion about and usage of
Wait_Stats, read about the sys.dm_os_wait_stats
dynamic management view (DMV) in SQL Server
2005 Books Online at http://msdn2.microsoft.com
/en-us/library/ms179984.aspx.

File_IO_Stats To evaluate the input/output
disk usage from a query.

For an initial discussion about and usage of
File_IO_Stats, read about the sys.dm_io_virtual
_file_stats DMV in SQL Server Books Online at
http://msdn2.microsoft.com/en-us/library
 /ms190326.aspx.

SQL Server
Profiler

To capture events from the
database server.
These events can then be
replayed back to the server,
so it is very easy to use SQL
Server Profiler to generate
testing scripts based on user
executions.

See the SQL Server Profiler topic in SQL Server
Books Online at http://msdn2.microsoft.com
/en-us/library/ms173757.aspx.
SQL Server Profiler can also be used from T-SQL
code. Read the SQL Server Books Online topic
about SQL Server Profiler Stored Procedures at
http://msdn2.microsoft.com/en-us/library
/ms187346.aspx.

Lesson 5: Designing Tests for System Resources Use 315
� Exercise: Validate Performance with Performance Counters

In this exercise, you will design a testing strategy to validate performance. You must decide
which performance counters will provide the desired information to indicate whether your
test was successful.

You have already set the following performance goals:

q Maximum CPU usage of 70 percent

q Maximum memory consumption of 1.5GB

q Maximum disk I/O waiting of 500 milliseconds

Now you need to evaluate and decide which performance counters and metrics to mea-
sure, based on these performance goals. Which performance counters from Windows
Performance Monitor would fit your measurement needs?

Suggested Answer

There are many possible performance counters to evaluate, but the following items sat-
isfy the requirements:

q CPU

l Processor\% Processor Time—This counter shows the percentage of time
that the processor is working. It is the primary indicator of processor activity.

l System\Processor Queue Length—This counter shows the collection of
threads waiting for the processor to free up.

q Memory

l Memory\Available Bytes—This counter shows the amount of RAM that is
available to the operating system.

l Measure SQLServer:Buffer Manager\Buffer Cache Hit Ratio—This counter
indicates that data is being retrieved from memory cache. The higher the
value, the better.

q Disk I/O

l PhysicalDisk\Avg. Disk Queue Length—This counter indicates the average
number of both read and write requests that were queued during the sam-
pling interval.

l PhysicalDisk\Avg. Disk sec/Read—This counter indicates the average time
dedicated to reading data from disk.

316 Chapter 10 Designing a Unit Test Plan for a Database
Quick Check
1. Describe how to set performance goals.

2. When designing tests for system resource use, what type of resources will be mea-
sured?

Quick Check Answers
1. The common practice when setting performance objectives is first to identify key

scenarios that might require more resource consumption. From that list of key sce-
narios, prioritize them in terms of most significance to the end user. For each cho-
sen scenario, adjust the expectations of the level of resource consumption required
based on previous experience or simply common sense. Most performance objec-
tives will modulate themselves after the first test runs.

2. The most important resources to measure are those scarce resources that are
shared between multiple processes or multiple elements in the database. Usually,
you want to focus on issues that do not allow your code to scale or perform better—
for example, because there are a lot of requests waiting to enter the processor
queue, a lot of requests waiting to enter the disk I/O read queue, and so on. CPU,
memory use, disk I/O, and network I/O are the most common elements, but it is
all right if you feel like your application might have different needs for other
resources.

Lesson 6: Designing Tests to Ensure Code Coverage 317
Lesson 6: Designing Tests to Ensure Code Coverage

Estimated lesson time: 25 minutes

Code coverage gives developers and testers information about areas of a program not exercised
by a set of test cases, so code coverage actually ensures the quality of your set of tests, not the
quality of the actual product being tested. By analyzing the results of a code-coverage test,
testers can modify the conditions and input parameters to reach an accepted level of code exe-
cuted during the testing exercise.

Setting a Goal for Code Coverage
The first step when designing tests to ensure that code coverage is adequate is to set a code-
coverage percentage goal. The ideal would be to have 100 percent code coverage, but this is
usually very expensive. You normally aim for 90 percent to 95 percent code coverage. The per-
centage goal indicates the amount of risk you are willing to take of delivering code to produc-
tion that is not fully tested.

Code coverage is an iterative approach to code quality. Each test pass must modify the condi-
tions, database state, and input parameters to try to reach 100 percent code coverage when
executing unit tests.

Meeting Code-Coverage Test Requirements
Tests written to ensure code coverage must conform to the following requirements:

n Tests must report back on code coverage, somehow indicating which code was covered
or not covered during the test execution.

n Tests could be parameterized to indicate the level of coverage measuring required. Code
coverage can be measured at different levels, such as at each line of code, at each scope,
at each batch, and so on.

n You must continuously validate your code-coverage result against your expected code-
coverage metric. Varying the test conditions and running the test again will bring you
closer to your code-coverage goal.

Writing a Test to Validate Code Coverage
The following code example shows one possible implementation of a code-coverage solution
with T-SQL. First, set up a table in a testing database to store all the code-coverage information:

CREATE PROC CodeCoverageHelper(@TestRun int, @Message nvarchar(100))
AS
 INSERT INTO CodeCoverage([TestRun],[Message])

318 Chapter 10 Designing a Unit Test Plan for a Database
 VALUES (@TestRun, @Message)

CREATE TABLE CodeCoverage
(
 ID int IDENTITY(1,1),
 [TestRun] int,
 [TimeStamp] datetime DEFAULT GETDATE(),
 [Message] nvarchar(100)
)

Then, on each of the lines of code or batches that you want to execute as a whole, set up a code
structure with the TRY . . . CATCH construct. This way, if the instruction fails, so will the insert
to the code-coverage database. Here’s an example of the TRY . . . CATCH constructs:

BEGIN TRY
CREATE LOGIN [User1] WITH PASSWORD=N'pass@word1'
EXEC CodeCoverageHelper 3, 'Create login User1'
END TRY
BEGIN CATCH
END CATCH

BEGIN TRY
CREATE LOGIN [User2] WITH PASSWORD=N'pass@word1'
EXEC CodeCoverageHelper 3, 'Create login User2'
END TRY
BEGIN CATCH
END CATCH

BEGIN TRY
CREATE USER [User1] FOR LOGIN [User1]
EXEC CodeCoverageHelper 3, 'Create user User1'
END TRY
BEGIN CATCH
END CATCH

BEGIN TRY
CREATE USER [User2] FOR LOGIN [User2]
EXEC CodeCoverageHelper 3, 'Create user User2'
END TRY
BEGIN CATCH
END CATCH

In this code example, the script is exercising the same security scripts you saw in this chapter’s
previous lessons but now with code coverage implemented. When finished executing, all of
the successfully executed lines of code or batches will be stored on the CodeCoverage database:

SELECT *
FROM CodeCoverage
WHERE [TestRun] = 3

Finally, you can get metrics out of this data by knowing how many lines of code you were eval-
uating, for example:

Lesson 6: Designing Tests to Ensure Code Coverage 319
DECLARE @totalLines int, @totalInCoverage int
SET @totalLines = 8

SELECT @totalInCoverage = count(*)
FROM CodeCoverage
WHERE [TestRun] = 3

PRINT @totalLines
PRINT @totalInCoverage
SELECT ((100 * @totalInCoverage) / @totalLines)

In this way, you can keep track of the percentage of code coverage that you have covered
already.

Practice: Designing a Test to Ensure Code Coverage
In this practice, you will apply the concepts from this lesson. All the practices in this chapter
refer to the Production set of tables from the AdventureWorks sample database.

� Exercise 1: Set the Objectives for a Code-Coverage Test

In this exercise, you must decide on a testing strategy for code coverage and provide an answer
to key questions that evaluate whether your testing scripts really cover all of what is needed
before shipping your code to production.

After following all the recommendations in this chapter, the designer for the Adventure-
Works sample database created a set of unit tests on the most critical scenarios. The big
questions raised now include: how much code is really covered by those unit tests? Were
they worth the effort? How can you measure their success?

Explain the main objectives of a code-coverage test.

Suggested Answer

Code coverage measures the quality of a set of existing tests. Code coverage enables you
to validate that all the code written inside unit tests is executed; hence, you look for the
possibility of exercising 100 percent of the application code.

Code coverage is an iterative process as well, so if the first run did not cover more than
30 percent, try modifying some input parameters, change the conditions, and see
whether you can get to 50 percent or more code coverage.

� Exercise 2: Implement a Code-Coverage Strategy

In this exercise, you must decide how to implement a code-coverage strategy when some of the
T-SQL code is hard-coded in the application tier.

You are deciding how to implement a code-coverage strategy on the database objects, but
some of the T-SQL code is also written in a data-access layer in ADO.NET. How can you
implement a code-coverage strategy?

320 Chapter 10 Designing a Unit Test Plan for a Database
Suggested Answer

In cases in which the database code is distributed between the database and the data-
access layers, you must create your code-coverage tests at the data-access layer (or at both
layers). By having the code-coverage tests execute at the data-access layer, you can have
a 360-degree view on the code execution path from the data-access layer all the way to
your stored procedure.

Quick Check
1. What is the code-coverage metric?

2. On which occasions should you use a code-coverage test?

Quick Check Answers
1. The code-coverage metric indicates the percentage of exercised code that you are

aiming for.

2. Always use code-coverage tests! Code-coverage tests apply to all the other test types
reviewed in this chapter. Code coverage is about the quality of your tests.

Case Scenario: Design a Unit Test Plan for a Database
Tailspin Toys has never had a mature testing process. Testing is usually an afterthought
because there is barely time to test before rolling out a solution. You are part of the team in
charge of envisioning the next generation of applications inside the company.

Based on reviews coming from business partners and end users, database performance has
always been a weak point, and your team is evaluating the opportunity to implement unit test-
ing as part of the new project scope.

One of the most notable mistakes of the previous version of the database is that there weren’t
many primary keys defined and no foreign keys at all, so the database is unable to validate ref-
erential integrity.

Because you are upgrading to SQL Server 2005, you have already foreseen several scenarios in
which you want to use the new EXECUTE AS clause, but you are not sure how it will affect the
overall database stability.

1. Do you think that implementing unit testing could help improve Tailspin Toys’ database
applications? Why?

2. Given that the database is being upgraded, which components should be unit tested?

3. Database performance is a serious issue, and the problems go back a long time. Name
some of the performance objectives that should be achieved.

Lesson 6: Designing Tests to Ensure Code Coverage 321
4. You are really worried about data consistency. Currently, the database is full of data that
is hard to handle because it is impossible to make sense of a lot of it. You design some
tests for data consistency, but what is the benefit of those tests as compared to using the
referential integrity of the database?

5. How can you evaluate the consequences of using the EXECUTE AS clause? Would code
coverage testing help in this?

Chapter Summary
n Testing enables you to evaluate how well the database will behave, both functionally and

nonfunctionally, after a certain modification has been made.

n In a database, create unit tests on stored procedures, user-defined functions (UDFs),
views, constraints on tables, and triggers.

n The main objective of performance testing is to evaluate the response time when execut-
ing a specific database object. The response time is validated against a pre-defined set of
performance objectives. You must have a detailed understanding of the expected pro-
duction response times and load to set performance goals.

n When designing tests for data consistency, you want to evaluate whether constraints are
enforced correctly (or if they are enforced at all).

n Testing application security involves validating that the required permissions, princi-
pals, and roles at the server and database levels exist and that they validate that those
permissions, principals, and roles are enforced.

n Testing for system resources use enables you to find performance issues usually related
to latency when accessing a system resource. System use metrics are recorded by differ-
ent tools provided by SQL Server 2005 or by the Windows operating system.

n Code coverage gives developers and testers information about areas of a program not
exercised by a set of test cases. Testers can then modify the conditions and input param-
eters to reach an accepted level of code executed during the testing exercise.

Chapter 11

Creating a Database Benchmarking
Strategy

It is not unusual to find that a solution does not cover all proposed objectives, especially
related to performance aspects such as the ability to scale properly or respond quickly when
the volume of data to be managed exceeds certain thresholds. To avoid these types of issues,
you must plan ahead and adopt a proactive way of thinking instead of trying to fix the prob-
lems once the solution is in production and difficult to fix.

You need to set a performance baseline and design a benchmarking strategy to guarantee that
your database is ready to cope with changes in the execution environment. In this chapter, you
will learn how to plan so you avoid many of the problems related to performance and system
capacity that often arise when databases are already in production. This chapter proposes a
proactive approach, suggests planning in advance for performance changes, and shows how to
prepare a plan to keep performance and capacity growth issues under control.

Exam objectives in this chapter:
n Create a performance baseline and benchmarking strategy for a database.

q Establish performance objectives and capacity planning.

q Create a strategy for measuring performance changes.

q Create a plan for responding to performance changes.

q Create a plan for tracking benchmark statistics over time.

Before You Begin
n To complete the lessons in this chapter, you must have the SQL Server 2005 Adventure-

Works sample database installed. Sample databases are available with SQL Server 2005
Enterprise Edition but are not a part of the default installation. You can also install the
sample databases from http://msdn2.microsoft.com/en-us/library/ms143739.aspx.
323

324 Chapter 11 Creating a Database Benchmarking Strategy
Lesson 1: Establishing Performance Objectives and
Capacity Planning

Estimated lesson time: 45 minutes

Performance objectives represent measurable criteria, such as response time, throughput
(how much work the system can do in a given amount of time), and resource use (CPU, mem-
ory, disk I/O, and network I/O) that you want to attain.

Performance objectives should always be realistic and in accordance with the project’s budget.
Common sense will be your first guide when you are establishing performance objectives and
planning for a suitable capacity that will enable your system to behave properly throughout its
production lifetime. That stated, the goal is to achieve the best balance between effort and
investment without compromising the maintainability, flexibility, and responsiveness of your
database system.

Establishing Performance Objectives
To establish your performance objectives, you need to have a good understanding of your
database and the environmental constraints placed on the system. Gather information about
the levels of activity that the database is expected to meet, such as:

n The expected number of concurrent users.

n The number and size of data requests.

n The number of concurrent transactions.

n The length of each transaction.

n The amount of data and its consistency.

n The target central processing unit (CPU) utilization.

IMPORTANT CPU utilization

It is essential both to determine a target CPU utilization based on your application needs, including
CPU cycles for peak usage, and to avoid 100 percent CPU usage during normal hours, or peak
loads will not be handled properly. High CPU usage (approaching 100 percent utilization) reduces
response times while throughput stays constant or even increases because of work queuing up in
the server. The general f igure for the threshold limit for processor activity is 85 percent, but this
might be different, depending on your own requirements.

Lesson 1: Establishing Performance Objectives and Capacity Planning 325
Performance objectives might be limited by constraints such as:

n Hardware and software configuration.

n Ability to interoperate between domains—for example, interoperating with earlier sys-
tems and support for earlier data.

n Costs related to development, implementation, and maintenance of the plans and strat-
egies to maintain a proactive approach.

Performance Modeling
Setting performance objectives is part of a bigger strategy known as performance modeling.
Performance modeling is a structured and repeatable approach to modeling the performance of
your software. It begins during the early phases of your application design and continues
throughout the application life cycle. If you take a proactive approach to performance model-
ing, you might avoid certain problems that can arise later in production.

IMPORTANT Fight performance problems early

Performance problems are frequently introduced early in the design phase. Database tuning or
more eff icient coding later on cannot always f ix design issues, and it is not always possible to f ix
architectural or design issues later in the software life cycle. If it is possible, it is often ineff icient and
expensive.

When you create performance models, you need to identify the critical application scenarios
and set your performance objectives. You break down your critical scenarios into steps and
assign performance budgets. Your budget defines the resources and constraints across your per-
formance objectives.

The benefits of performance modeling are:

n Performance becomes part of your design and is not an afterthought.

n Modeling helps answer the question of whether the current design supports the perfor-
mance objectives. By building and analyzing models, you can evaluate tradeoffs before
you actually build the solution.

n You should know explicitly what design decisions are influenced by performance as well
as the constraints that performance puts on future design decisions. Often, these deci-
sions are not captured in the design, so they might lead to maintenance efforts contrary
to your original goals.

n You can avoid performance surprises occurring after your application is released to pro-
duction, and it is too late to fix them.

The main deliverable of performance modeling is a document with detailed scenarios that
help you decide what is important. You will be able to identify quickly where to instrument,
what to test, and whether you are on track for meeting your performance goals.

326 Chapter 11 Creating a Database Benchmarking Strategy
Another important recommendation of performance modeling is to build prototypes. The
data obtained from prototypes can help you evaluate early design decisions before implement-
ing something that will not meet your performance goals.

The time, effort, and money you invest at the outset in performance modeling should be pro-
portional to your project risk. For a project with significant risk, when performance is critical,
devote more time and energy at the beginning when developing your model.

For more information about performance modeling, read Chapter 2, “Performance Modeling” in
the “Improving .NET Application Performance and Scalability” guide published by the Microsoft
Patterns & Practices team, available at http://msdn2.microsoft.com/en-us/library/ms998537.aspx.

BEST PRACTICES Setting performance objectives

Consider the following recommended best practices when creating performance objectives:

n Ensure that your design determines response time and resource usage budgets.

n Do your best to identify your target deployment environment.

IMPORTANT Performance objectives and load testing

Do not replace scenario-based load testing with performance modeling:

n Performance modeling suggests which areas should be worked on but cannot predict the
improvement caused by a change.

n Performance modeling feeds the scenario-based load testing by providing goals and useful
measurements.

n Performance modeling might ignore many scenario-based load conditions that can have an
enormous impact on overall performance.

Inputs Required for Establishing Performance Objectives
Before establishing performance objectives, analyze the following information:

n Relevant performance-related data—such as number of concurrent users, expected trans-
action load, and expected data load—for the most critical scenarios

n Communication patterns, query patterns, data filtering, and heavy data-processing oper-
ations by reviewing the client application logical and physical design

n Constraints imposed by the infrastructure environment by reviewing the infrastructure
design

n The requirements and constraints derived from quality-of-service agreements

n Workload requirements and expectations

Lesson 1: Establishing Performance Objectives and Capacity Planning 327
Establishing Performance Objectives
To establish your performance objectives, complete the following steps:

1. Identify scenarios in which performance is important and scenarios that pose the most
risk to your performance objectives.

IMPORTANT When key scenarios aren’t documented

In many cases, particularly with previous systems, use cases and scenarios are not docu-
mented. In those cases, the assessment team must work with the development team to iden-
tify the processing steps that are executed by the key scenarios.

2. Identify the expected workload, including total and concurrent users, amount of data
and transaction volumes, or any other metric in which you are interested. For each of
these metrics, identify how many or how much your system needs to support.

3. Define performance objectives for each of your key scenarios. Performance objectives
reflect business requirements, and they usually include response time, throughput (for
example, when the system must support a certain number of transactions per second),
and resource utilization.

When setting performance objectives, consider project growth and determine how long
your expectations will be current. For example, take into account considerations for
meeting expectations within six months or one year. In each case, the objective should
be quantitative and measurable. Vague statements such as “should have a good perfor-
mance” are not recommended.

It is also important to specify the conditions under which the required performance is to
be achieved for each combination of scenario and objective.

Exam Tip Performance objectives reflect business requirements and should be quantitative
and measurable.

4. Identify budget and constraints. This includes the maximum execution time in which an
operation must be completed and resource-utilization constraints such as CPU, mem-
ory, disk input/output (I/O), and network I/O. Don’t forget that budgets are just con-
straints that you are willing to accept. An example of a budget is that on the production
server, without installing the application, the CPU is already working at 40 percent; this
is a constraint that you need to take into account.

5. Evaluate your design against the defined objectives and budget. You might need to
modify your design or spread your response time and resource-utilization budget dif-
ferently to meet your performance objectives. Ask yourself important questions such
as: does the budget meet the objectives, and is it realistic? Should the current design or
feature set be reduced or modified to achieve the performance objectives? Are there

328 Chapter 11 Creating a Database Benchmarking Strategy
any alternative patterns, designs, or deployment topologies available to achieve the
performance objectives?

6. Validate your model and estimates. Performance tuning is an ongoing activity and
includes prototyping, assessing, and measuring. So continue to create prototypes and
measure the performance of the critical scenarios by capturing metrics. Continue per-
forming validation checks until the performance goals are met.

Capacity Planning
Capacity planning is the process of estimating the computer resources required to meet an
application’s performance objectives over time. The main objective of capacity planning is to
maintain a balanced computer system proactively.

Capacity planning uses input from multiple sources, such as measurement tools and feedback
from business users, to understand the resource usage of the current workload and to under-
stand future requirements as they relate to the expected growth in data and workload.

There are two main methodologies used for capacity planning: transaction cost analysis and pre-
dictive analysis. Both provide complementary approaches to the problem of planning required
hardware capacity, and both should be taken into consideration for a good capacity-planning
effort.

Transaction Cost Analysis
Transaction cost analysis (TCA) is a process for conducting a controlled estimate of applica-
tion performance, based on key measurements for a single transaction through the applica-
tion. Although TCA does not serve as a replacement for the complete and thorough
performance testing of the entire system, it can be helpful in determining any obvious risks or
serious underestimates related to the hardware required to support the system. Generally
speaking, a TCA consists of six steps:

1. Compile a user profile, which is also known as workload characterization. Collect pro-
duction traffic data or a transactional workload taken from your load test plan to be used
as input for the analysis. This profile holds the most relevant operations executed by
each user.

2. Execute discrete tests. Create a test script to execute discrete tests for each user operation
identified in step 1 for a load at which your system reaches maximum throughput. For
each test, identify the limiting resource against which the cost needs to be calculated for
a given operation.

3. Calculate the cost of each operation. Measure the cost of each operation in terms of the
measured limiting resource. Such measurement involves calculating the cost per request
and then calculating the cost per operation.

Lesson 1: Establishing Performance Objectives and Capacity Planning 329
4. Calculate the cost of an average user profile. Over time, variations in resource utilization
between different users tend to even out statistically to average behavior. To estimate
capacity, you need to assume an average user and then calculate the cost for that average
user profile.

5. Calculate database capacity. This step involves knowing how many concurrent trans-
actions your database can support on specific hardware and what your database’s
future resource requirements are. To estimate, consider measurements such as calcu-
lating how many simultaneous users are supported by using the average user profile
and calculating the future resource estimates for your database, according to your
growth expectations.

6. Verify site capacity. You can verify your calculated application capacity by running load
tests with the same characteristics you used to calculate TCA. The verification script
would be simply a collection of all TCA measurement scripts aggregated and run as a sin-
gle script.

Predictive Analysis
In a similar way, predictive analysis predicts the future capacity requirements by extrapolating
from historical and current data. With this approach, you analyze how computer resource
usage relates to transaction volumes (or user operations). This can be done by analyzing log
files to understand your database’s usage and by recording performance data to understand
resource utilization.

This type of analysis can be considered a four-step process.

1. Collect performance data over a period of time. The greater the time duration, the
greater the accuracy with which you can predict a usage pattern and future resource
requirements.

2. Query the collected performance data based on what you are trying to analyze. It is also
possible to query segmented data from different, common points in the past, such as
month-end processing over the past 12 months. The calculation is still useful to predict
the future capacity of the system at future month-end processing dates.

3. Analyze the collected performance data. Analyze the data obtained by querying the data-
base. The data obtained for a given time frame results in a pattern that can be defined by
a trend line. The pattern can be as simple as a linear growth of the resource usage over
a period of time.

4. Predict future requirements. By analyzing trend lines, you can predict the future require-
ments. The predicted resource requirements assume that the current trend would con-
tinue into the future.

330 Chapter 11 Creating a Database Benchmarking Strategy
When collecting performance data, cover all possible operations served by the server, not just
for a single application but for all possible applications connecting to the server.

For examples of how to perform capacity planning, read the guide “How To: Perform Capacity
Planning for .NET Applications” at http://msdn2.microsoft.com/en-us/library/ms979198.aspx.
SQL Server 2005 Books Online includes a detailed analysis of capacity planning for tempdb,
available at http://msdn2.microsoft.com/en-us/library/ms345368.aspx.

Practice: Setting Performance Objectives
In this conceptual practice, you will apply the concepts from this lesson to establish perfor-
mance objectives for a fictitious company called City Power & Light, where you are working as
a consultant to create a strategy to improve overall application performance.

� Exercise 1: Set Performance Objectives

In this exercise, you will justify why it is important to set the performance objectives prior to
starting a project.

In your first meeting with the database administrator (DBA), he complains that perfor-
mance has been deteriorating recently—or at least, that is what the users have been com-
plaining about lately. He hands you a graphic with the results of a System Monitor trace
in which he measured CPU utilization. According to the graphic, CPU utilization is at an
average of 60 percent.

You explain to the DBA that there is no way to know whether 60 percent CPU utilization
is a helpful metric. Why isn’t this value enough?

Suggested Answers

You can answer this question in multiple ways, but there are two main issues to investigate:

q There is no way to determine accurately whether 60 percent CPU utilization is a
valid metric. To make this determination accurately, you would need a baseline
measurement from a point in time when the server was operating in a known
“healthy” state.

q Although 60 percent isn’t really high, the customer has concerns. You will need to
determine what other applications might be running on the server or have a per-
formance objective requiring that all applications be constrained to a certain CPU
usage value. Either way, for some reason, the customer thinks that CPU is con-
strained on its installation.

Lesson 1: Establishing Performance Objectives and Capacity Planning 331
� Exercise 2: Query Performance Information

In this exercise, you must indicate what information is useful for setting a performance objec-
tive by evaluating some of the current constraints in the production environment. This exer-
cise continues from Exercise 1, “Set Performance Objectives.”

You convince the database administrator that the best plan of action is to have a perfor-
mance baseline for comparisons. But even if you had the performance baseline, it would
be useless unless you have established performance objectives so that you know when
you are closer to or further away from your goals.

You decide to meet with the person in charge of the production servers. She indicates
that in the same database server, there are two other applications running; together, they
might account for an average of 25 to 30 percent of CPU utilization. What other infor-
mation might be useful to set a performance objective?

Suggested Answer

Answers can vary, but one of the most important pieces of information missing is the
expected growth of each of the three applications. You might need more information
about the type of operations that are executed by the application you are reviewing. For
example, are they CPU-intensive operations? How many users will be using the applica-
tion concurrently?

� Exercise 3: Establish Performance Objectives

In this exercise, you will set the current performance objectives based on the expected system
growth. This exercise continues from Exercise 2, “Query Performance Information.”

The customer indicates that the other two applications are not expected to grow, but the
application’s user base with which you are working is expected to grow by 10 percent
per year, which translates to 20 percent more concurrent transactions per year. In the
first year, only five users will be using the application.

The main scenario in this application executes a computing-intensive business logic.

Try to establish a performance objective for CPU usage with the given information.

Suggested Answer

Answers might vary, but a possible performance objective might say that CPU utilization
should be under 50 percent (total between the three applications) in the first year,
increasing to a maximum of 60 percent in the second year, with increases of 10 percent
each year.

332 Chapter 11 Creating a Database Benchmarking Strategy
Quick Check
1. What is the definition of a project budget?

2. What are the benefits of establishing performance objectives?

Quick Check Answers
1. The project’s budget is the set of available resources after subtracting any con-

straints that currently affect the system and that need to be taken into account by
the performance objectives. These constraints might indicate actual load that the
server must maintain.

2. Performance objectives represent measurable criteria, such as response time,
throughput, and resource utilization that are intended to be attained. Performance
objectives enable you to evaluate whether, by changing, modifying, or differently
configuring your system, you are getting closer to or further from your expected
goals.

Lesson 2: Creating a Strategy for Measuring Performance Changes 333
Lesson 2: Creating a Strategy for Measuring Performance
Changes

Estimated lesson time: 30 minutes

In the previous lesson, you learned about the importance of establishing performance objec-
tives so that you know where to focus your available resources and energy. However, by setting
performance objectives, you have not solved anything yet. After setting performance objec-
tives, you need a strategy to detect whether there really are any performance changes.

The first step to being able to detect whether there are performance changes is to have some-
thing with which to compare current performance. This lesson explains how to create a per-
formance baseline so that you can compare against it and detect any performance
improvements—or performance reductions. Having a baseline is important, but it is also
important to have the right toolset to measure performance. This lesson also evaluates differ-
ent tools available with the Microsoft Windows operating system and Microsoft SQL Server.

Generating a Representative Baseline
To know whether you have achieved your objectives, first establish a baseline as a comparative
pattern to check further measures, helping you identify trends and close gaps that show up in
your project’s life cycle.

Because baselines provide you with a comparison scheme, it is important to generate a repre-
sentative baseline, including measuring on the same hardware (or as similar as possible) as the
production server or trying to imitate the same constraints as in the production environment.

Baselines are ordinarily subject to configuration management audits. Audits can include an
examination of specific actions performed against the baseline, an evaluation of change within
the baseline, metric collection, comparison to another baseline, or all of these. In addition, you
might have multiple baselines, each for a different scenario.

Measuring a Baseline
Testing is always a three-step process: defining, measuring, and improving. Let’s look at some
of the most important aspects of measuring.

Measuring is an ongoing activity, representing an investment that must be made before a dra-
matically higher level of performance can be reasonably expected or achieved. Measuring is
essential to driving change in the right direction and then sustaining that change.

The most critical aspect of measuring is knowing what to measure. The choice of metrics is
critical because what you measure is what you attend to.

334 Chapter 11 Creating a Database Benchmarking Strategy
The development and implementation of appropriate metrics should span the full process and
reflect key values. Use multiple metrics to guide improvement on all dimensions of process
performance: time, quality, and cost.

IMPORTANT Measuring median performance

Improvement aims to reduce the variability in process performance; hence, metrics, as a rule,
should measure median performance and variance, not only average performance.

Setting measurable targets for process objectives requires judgment and is not an exact sci-
ence. To set process targets, planners should:

n Consider the current status (baseline) of the infrastructure.

n Seek input on the desired level of improvement.

n Make a realistic assessment of what can be accomplished.

In addition, keep in mind that to compare the results accurately from different performance
test passes, the application must be working correctly.

Measuring Performance Changes
You must maintain accurate and complete records of each test pass. This record might include:

n The exact system configuration, especially changes from previous test executions.

n Both the raw data and the calculated results from performance monitoring tools.

Run exactly the same set of performance tests during each test pass; otherwise, it is not possi-
ble to discern whether different results are due to changes in the tests rather than to changes
in the application or in the execution environment. To help eliminate operator differences,
automate as much of the performance test set as possible.

Make sure that the database contains a realistic number of records and that tests use random
(but valid) values for data entry, simulating the user input. If the number of records in use is
too small, the effects of caching in the database server will yield unrealistic test results.

Monitoring the Test Environment
After you have defined performance goals and developed the performance test, run the test
once to establish baseline values. Try to reproduce the situation as closely as possible to a real
production environment to be sure it resembles the real scenario after deployment. If the col-
lected information meets performance objectives, no tuning is necessary; however, chances
are that, in a very first stage of testing, some changes will be necessary. Now that the baseline
is set, perform the following activities:

Lesson 2: Creating a Strategy for Measuring Performance Changes 335
n Keep track of all the changes and modifications on the testing environment. Document-
ing this process might help you in your future development and troubleshooting.

n Repeat testing walkthroughs periodically. Even seemingly small changes in a measure
can change the information flow, sometimes in unexpected ways.

n Set testing targets to determine the desired amount of change over a given time interval.

n Monitor progress toward meeting the performance objectives by collecting and analyz-
ing tracking data on a scheduled basis. Here are some hints that might help:

q Address major data issues at the outset and be prepared to explain the impact of
data changes.

q Use a variety of sources for baseline measures.

q Set realistic targets for your objectives.

q Plan to track the progress of your objectives.

Implementing Performance Measuring Techniques
Metrics of particular interest tend to be response time, throughput, and resource utilization
(how much CPU, memory, disk I/O, and network bandwidth your application consumes
while performing its tasks). SQL Server 2005, as well as Windows Server, provides a set of
tools to help in these tasks.

Measuring requires that you use the right tool, depending on what you want to measure. The
following set of widely used tools and metrics help you focus on concrete performance goals:

n SQL Server wait stats Used to analyze the causes behind waiting times in connection
requests to the database.

n Resource usage measured by the operating system Enables you to get information
about the current utilization of basic resources, including I/O devices, memory, CPU,
network, and system processes. This toolset also enables you to measure resources spe-
cific to SQL Server, such as compilations and recompilations per second, lifetime expect-
ancy for pages, stored procedures caching, and more.

n Employment of physical I/O devices by SQL Server Includes several important functions
that inform you about these kinds of operations, which are critical to performance in
SQL Server 2005.

n Database consistency checker commands (and SQL Server 2005 correspondents) Provide
detailed information about how memory caching, stored procedures, locks, and several
other database objects are executing.

n Dynamic management views (DMV) Specific to SQL Server 2005, DMVs provide admin-
istrative information about SQL Server, helping draw an accurate profile of the server
performance. DMVs are an important complement to the information obtained through
the previously mentioned methods.

336 Chapter 11 Creating a Database Benchmarking Strategy
Experience tells you how to choose between the different tools. You can use database consis-
tency checker (DBCC) commands, the new DMVs, SQL Server Profiler, monitoring tools such
as SysMon and PerfMon, and Windows Sysinternals availaible at http://www.microsoft.com
/technet/sysinternals/default.mspx.

Wait Stats
Every request to the database server performs a series of internal steps that finally end up
requiring some operating system resources. For example, some queries will require parallel
processing in I/O devices, and others will require more CPU usage. In all cases, if the required
resource is not available, requests will have to wait to be processed. SQL Server maintains an
internal list, recording how much time and how many times connection requests have been
waiting for the needed resource to be available.

In SQL Server 2005, wait stats are available through the DMV sys.dm_os_wait_stats, which
exposes to the user the following information:

n wait_type Name of the type of wait
n waiting_tasks_count Number of times that the connection has been waiting
n wait_time_ms Total time the connection has been waiting
n max_wait_time_ms Maximum time connections have been waiting
n signal_wait_time Total time elapsed since resource liberation (that is, until it started to

be used)

If you need further information to complete your performance analysis, you can query DBCC
WAITSTATS. SQL Server 2005 keeps track of 194 different types of waits (many more than in
the previous SQL Server releases). Table 11-1 summarizes some of the most used wait stats.

Table 11-1 Most Used Wait Stats

Wait Type Description

ASYNC_IO_COMPLETION Waits for I/O asynchronous operations to finish.

CXPACKET Waits for parallel processing of queries.

IO_COMPLETION Waits for I/O operations to finalize.

LATCH_x Waits due to latches on database objects. The difference
between a latch and a lock is that locks are maintained all
along the transaction time. Whereas locks protect the informa-
tion during the transaction, latches manage physical access to
data pages.

LCK_x Waits for unlocking of objects (transactions).

LOGMGR Waits for pending operations on the Transaction Register.

Lesson 2: Creating a Strategy for Measuring Performance Changes 337
In many cases, wait stats analysis is an excellent starting point in getting to know how the cli-
ent applications and the database server are working.

Operating System Resources Usage
Windows Server includes profiling tools to help you diagnose and evaluate operating system
resource usage. One of the most important tools provided by the operating system is Perfor-
mance Monitor, an extensible platform for measurement and analysis of performance
counters. Each resource and application running in the operating system can alert Perfor-
mance Monitor about changes in its state to modify the performance counters.

The collected information from Performance Monitor can be stored in counter logs. For detailed
explanation of how to set up the Performance Monitor console to start monitoring and how to
create counter logs, see http://technet2.microsoft.com/WindowsServer/en/Library/8368dfd6-
0d42-4fc7-b0ac-d331ee33be431033.mspx. After you measure the set of performance counters in
which you are interested, you need to analyze the collected data and make your conclusions
about system performance.

Although SQL Server 2005 exposes some overlapping information through its own perfor-
mance counters, SQL Server does not show any data related to memory, CPU, disks, network
I/O, or any of the other operating system resources. By using Performance Monitor, you can
compare what is going on at the database level with what is going on at the operating system
level.

If you want to query SQL Server–specific performance counter information, you can query a
system table called sys.dm_os_performance_counters, located in the master database. The fol-
lowing code example shows what your query might look like:

NETWORKIO Waits for pending I/O operations on network devices. Usually,
this wait stat waits until the read or write operation has been
terminated on the client.

OLEDB Holds several types of waits, such as queries to linked servers,
BULK INSERT operations, FULL-TEXT, or queries to system
virtual tables.

PAGEIOLATCH_x Waits due to latches on pages in which I/O operations are
being processed.

PAGELATCH_x Waits due to latches on pages in which no I/O operations are
taking place.

WRITELOG Waits due to finalization of operations on the Register of
Transactions.

Table 11-1 Most Used Wait Stats

Wait Type Description

338 Chapter 11 Creating a Database Benchmarking Strategy
SELECT instance_name, cntr_value
FROM sys.dm_os_performance_counters
WHERE object_name = 'MSSQL$INSTANCE1:Plan Cache'
 AND counter_name = 'Cache Hit Ratio'

Exam Tip SQL Server 2005 includes the Dynamic Management View (DMV) sys.dm_io_virtual
_f ile_stats, which lets you to monitor disk usage.

Using SQL Server Profiler
SQL Server Profiler captures events from a specific SQL Server instance. These events and
their information can be stored in a trace file or a database table for later analysis. The infor-
mation collected by the SQL Server Profiler enables you to reproduce (and replay) a series of
past execution steps to identify or diagnose a problem.

The main purpose of the Profiler is to provide you with a complete view of requests arriving to
the server in certain periods of time, but you can also use it to do the following:

n Debug stored procedures and Transact-SQL (T-SQL) statements.

n Perform load tests in multiple servers.

n Analyze query performance by keeping the execution plans in traces.

n Analyze the performance of the relational engine, SQL Server Analysis Services, or SQL
Server Integration Services server instance.

n Measure the duration of events (in milliseconds) to detect latency in the database server.

IMPORTANT Executing SQL Server Profiler

Execute SQL Server Prof iler from a different computer than your production server to avoid the
extra workload at run time.

After a trace is collected, you have many possibilities for analyzing its information. For exam-
ple, you can open the trace from the SQL Server Profiler user interface (UI), but you can also
open the trace information directly by using T-SQL, as the following code example shows:

SELECT *
FROM ::fn_trace_gettable('C:\SQLHealth\Trace_1.trc', default)

The system function fn_trace_gettable returns the content of a trace file in tabular format. You
can then use T-SQL queries to look for important tracing data.

This system function accepts as an argument the name of the trace file to be read and a second
argument that specifies the number of rollover files to be read. (The default argument specifies
the reading of all rollover files.)

Lesson 2: Creating a Strategy for Measuring Performance Changes 339
Practice: Measuring Performance Changes
In this practice, you will apply the concepts from this lesson to help a fictitious company called
City Power & Light create a strategy for measuring performance changes. This practice builds
upon the scenario described in Lesson 1, “Establishing Performance Objectives and Capacity
Planning.”

� Exercise 1: Measure a Baseline

In this exercise, you will describe what is required to start measuring a baseline. Remember
that a baseline is the starting point for performance comparisons, so you must take care that
it is measured correctly.

Describe the steps required to start comparing and measuring against a baseline.

Suggested Answer

One of several answers might be correct, but the following shows the basic steps to follow:

1. Decide which performance counters and metrics are important for your measure-
ments and for your baseline.

2. Set up performance tests that simulate user behavior and operation execution
order.

3. Run a first set of performance tests. This is the baseline.

4. Compare the measured metrics against the performance objectives.

5. Modify the application, the database, and the server installation to move closer to
the metric goal.

6. Document the environment and the results.

7. Start over from step 3.

This process continues until the performance objectives are attained.

� Exercise 2: Identify Performance Changes

In this exercise, you will evaluate and analyze the results provided by Performance Monitor.
Based on these results, identify which metrics provide the best information to measure perfor-
mance changes in this scenario.

You and the database administrator are ready to tackle the performance problems that
the users are complaining about. You decide to look for metrics that might indicate con-
tention on the database server. Which of the following metrics could be important in this
case? (Choose all that apply.)

A. Deadlocks per second

B. Transactions per second

C. Total SQL Server memory

D. Number of user connections

340 Chapter 11 Creating a Database Benchmarking Strategy
Suggested Answer

A. True. Deadlocks per second is an important metric to take into account when you
are measuring contention. This metric indicates only whether deadlocks are occur-
ring. If deadlocks are occurring, different metrics and tools—for example, SQL
Server Profiler—might tell you which T-SQL query is causing the deadlock, on
which resource, and from which executing process.

B. False. Transactions per second by itself is not an important metric when evaluating
contention.

C. False. Total SQL Server memory by itself is not an important metric when evaluat-
ing contention, although if you also measure total server memory (from the oper-
ating system), you might detect how much memory SQL Server is using in
comparison to the total server memory.

D. True. Number of user connections is an important metric when evaluating conten-
tion. Because the end users are complaining about performance, this metric could
indicate how many users are connected concurrently. You might consider comple-
menting this metric with the number of timed-out requests.

Quick Check
1. Which SQL Server metrics indicate connection contention?

2. What are the benefits of establishing a strategy for measuring performance
changes?

Quick Check Answers
1. Wait stats is an internal list that records how much time and how many times con-

nection requests have been waiting for a resource to be available. Wait stats are
available through the sys.dm_os_wait_stats DMV.

2. Some of the benefits of establishing a strategy for measuring performance changes
are:

q You take a proactive approach, including performance as a requirement in
your software development process.

q You can easily detect performance changes and have a way to decide whether
the change is good for the system, depending on how close or how far it takes
you from your performance objectives.

q Performance measuring becomes part of the software life cycle process, so
that by maintaining historical records of the measurements and metrics, you
can predict future behavior in the application performance.

Lesson 3: Creating a Plan for Responding to Performance Changes 341
Lesson 3: Creating a Plan for Responding to Performance
Changes

Estimated lesson time: 40 minutes

In the previous lesson, you learned how to create a strategy for measuring performance
changes. Continuous performance measuring is important when taking a proactive approach
to performance tuning.

By comparing the current measurement with your baseline, you are able to detect changes in
performance. Those changes could be positive or negative, depending on how close they get
you to the performance objectives. Either way, you must decide what actions to take to
respond to those changes in performance.

By taking a proactive approach, you can be ready when you detect unwanted behaviors. You
will be able to determine what has changed, how this will affect the system, and which counter
measures to apply.

Setting Goals
A plan for responding to performance changes should include possible actions to be taken for
as many possible challenges affecting the performance goals. The main goal is to be able to
react proactively and not to be surprised by the results. Concrete goals of such a plan will vary,
depending on the system to be analyzed, its requirements and budgets, the performance
expectations, and perhaps other user or corporate considerations.

Any plan for responding to performance change should follow at least three guidelines for the
plan to be useful:

n It should be easy to determine what has changed.

n It should help estimate how changes could affect the system.

n It should state clearly what actions should be taken to respond to performance changes.

Determining What Has Changed
The first step in a plan for responding to performance changes is to determine what has
changed. By using the tools and techniques described in previous lessons, you should be able
to determine what has changed. Some of the potential causes for a performance change are:

n Increment in the amount of data Something caused the amount of data being returned
by normal queries to be incremented. This constrains the system execution environment
because more resources are required to handle the queries.

342 Chapter 11 Creating a Database Benchmarking Strategy
n Retrieval of too much data This is a common mistake, producing an unnecessary
increase in network traffic and excessive use of resources. This could be a problem in two
directions: vertically (too many columns) and horizontally (too many rows).

n More users accessing information in a concurrent way Concurrency and scalability are
closely related. The more users requesting a service at the same time, the bigger the
queue that your system has to process.

n An increase in the number of transactions per second As with concurrency, an increase
in the number of transactions produces an increase in the number of resources needed
by the system to execute the required operations.

n Other types of transactional issues Beware of long-running transactions that depend on
user input to commit or that never commit because of an error. Also, watch out for que-
ries inside transactions that cause scalability and performance problems because they
lock resources longer than needed.

n An increase in I/O operations or in a deficient use of disk subsystems I/O operations are
one of the most time-consuming resources. An increase in its number might have a neg-
ative impact on performance. Alternatively, disk subsystems should provide database
servers with enough I/O processing power to allow servers to run without disk queuing
or long waits.

n Deadlocks These could be caused by choosing an inappropriate transaction isolation
level, by executing the same operations but in a different order, or by having two threads
lock a resource that each is requesting.

n Outdated index statistics As the data in a column changes, index and column statistics
can become out of date and cause the query optimizer to make less-than-optimal deci-
sions about how to process a query.

n Operating system failures This can happen due to bugs not yet corrected or, even
worse, problems caused by an incorrect or inefficient upgrade policy.

n Communications or network failures These convey unavailability of resources for clients
and subsequent accumulation of potential requests to be processed in a narrower time
slice.

n General hardware failures If one server fails, it affects not only data but also additional
servers in the cluster that take over the load.

n Security issues Security issues are critical not just because they might lead to undesir-
able attacks or disclosure of information, but also for the impact that the introduction of
new permissions or groups of users interacting with your system might have.

n Other subtle bugs Sometimes they appear only when the application is under stress
tests. (Stress tests are a special kind of test intended to produce a crash in the system,
thus revealing subtle faults in code or deployment.)

Lesson 3: Creating a Plan for Responding to Performance Changes 343
Determining How Change Affects the System
The second step in a plan for responding to performance changes is to determine how the
change in performance affects the system. These changes in performance might influence the
system in a variety of ways. The common factor in most cases is that a process that has worked
properly up to now experiences what is called a bottleneck or latency: a lack of responsiveness
due to insufficient resources to complete a task. Those resources can be of many types: CPU
resources (also called CPU starvation), memory resources (physical or virtual), I/O resources
(indication of an insufficient channel to hold the amount of information flowing in both direc-
tions), and more.

To make things worse, sometimes these situations can lead to a total lack of response, includ-
ing the abortion of the process, provoking a system failure, or even loss of information. Some
typical effects on applications and systems due to lack of response are:

n Resource starvation This is the most common of all. Every system process requires sys-
tem resources. If one of those resources is used in a percentage far higher than expected,
the rest of the processes using those resources will have to wait, causing what was called
in the previous lesson a wait stat. These situations might also affect other processes not
directly related—in a parallel way, affecting the behavior of the overall system under such
conditions.

n Larger amount of requests queued A request not being processed has to be queued for
a later time. Queues need memory, and a system operating under such conditions could
even deny acceptance of more requests until it has enough space to hold them. The
larger the queue, the larger the amount of pending work to be processed.

n Timeouts Many processes (especially the asynchronous ones) don’t wait forever to get
a response from the system. (A database connection is a typical example of this.) If there
are not enough resources to attend to requests, many of them will time out, causing a
state of unavailability for the application.

n Errors and mistakes This is a common situation for users when the application is going
through performance problems. In addition, because the number of possible errors is so
large, chances are that it might show even unhandled exceptions and cause an unex-
pected crash with all the consequences that can incur.

n System failure This is the worst possible case. The system is not only unresponsive but
needs to restart; hence, there is downtime. Needless to say, you should try to avoid sys-
tem failure by all means at your disposal.

Responding to Performance Changes
To respond to performance changes, compile a list of possible actions to take. By doing so,
your system becomes more and more predictable. It is impossible to list everything, but
depending on your system constraints, there is always going to be a scarce resource.

344 Chapter 11 Creating a Database Benchmarking Strategy
Two strategies for responding to performance changes are scaling up and scaling out. Scaling
up means moving an application to a larger type of hardware with more powerful processors,
more memory, and faster disk drives. Scaling out refers to an implementation of federated serv-
ers, adding standard computers and partitioning data or replicating it across them. An exam-
ple of the latter would be when you create updateable partitioned views across multiple
database servers (as explained in Chapter 6, “Designing Objects That Retrieve Data”). Both are
typical solutions but, many times, are chosen due to an incomplete or absent analysis of other
possible solutions.

Both types of scaling should be considered only when you are sure that you’re getting the best
performance that you can through application optimization.

Scaling up is usually recommended if your bottlenecks are processor related or memory
related. Scaling up can also help resolve disk I/O–related bottlenecks. For online transactional
processing (OLTP) applications, the I/O load can be spread by adding disk drives. Adding
memory also helps reduce I/O load because the size of the SQL Server buffer cache increases.

Before deciding on a scale-up or scale-out growth strategy, consider the following (in this
order):

1. Optimize the application.

2. Address historical and reporting data. Consider partitioning historical data, moving it
offline, or implementing it in a separate data warehouse.

3. Scale up. Consider replacing slow hardware components with new, faster components
or consider adding more hardware to your existing server.

4. If nothing else can be done or scaling up has a prohibitive cost, scale out.

Issues That Can Affect Performance and Scalability
To decide how to respond to performance changes, you must analyze what possible issues can
affect your system performance and scalability. The recommendation is to make a list of the
potential issues that could occur and plan accordingly for each of them.

Following is a list of possible (and typical) issues that could cause poor performance in data-
base applications using SQL Server 2005.

n Improper or inefficient use of indexes Lack of indexes to support queries issued against
your server will lead to performance problems. However, don’t fall into the opposite
problem by having too many indexes, which affects insert and update operations. Find
the appropriate balance for your application.

n Incorrect mixture of OLTP, OLAP, and reporting workloads OLTP workloads are charac-
terized by many small transactions and fast response, while online analytical processing
(OLAP) and reporting workloads are based on a few long-running operations consum-
ing more resources and causing more contention.

Lesson 3: Creating a Plan for Responding to Performance Changes 345
n Inefficient schemas If table design is poor, this can lead to too many join operations or
inefficient queries. Schema design is a key factor for performance improvement. An ade-
quate schema gives the server information that can be used to optimize query plans. You
must find the correct balance, depending on your application’s budgets and goals: opti-
mize for reading or optimize for writing. Denormalization helps the former; normaliza-
tion helps the latter.

Practice: Responding to Performance Changes
In this practice, you apply the concepts from this lesson to help a fictitious company called
City Power & Light create a plan to respond to performance changes. This practice builds
upon the scenario described in Lessons 1 and 2.

� Exercise 1: Respond to Performance Changes

In this exercise, you must decide on a course of action based on the data collected by a mon-
itoring tool. The monitoring tool provides performance counters and measurements that
enable you to diagnose what the possible cause for the performance issues could be.

After creating a performance baseline, you start executing performance tests and tweak-
ing the database. For each test pass, you evaluate the results of the test and the metrics
you measured to determine the effect on performance. By reviewing the amount of free
memory in the server and the SQL Server cache, you notice that physical memory is
really a constraint in the server.

You first try to move the historical data to offline storage to try to reduce the resource
burden placed on the server, but the performance issues continue.

Your IT manager decides to increase the physical memory in the server. At first, this
seems to resolve the issue, but over time as the system scales, the performance issues
resurface.

An external consultant recommends that you add a secondary server and create a clus-
ter, but you are not completely sure of this solution because you are not looking for high
availability but for a solution to address only the performance issues.

Why would optimizing the database schema and database objects be a viable solution?

Suggested Answer

Optimizing the database schema and database objects should always be the first course
of action. In most cases, by adding more memory, you solve the issue, but you do not
really resolve the problem. By trying to optimize first, you are really resolving the prob-
lem by looking for a different way to represent the data that fits the data growth and uti-
lization model.

346 Chapter 11 Creating a Database Benchmarking Strategy
� Exercise 2: Determine What Changed

After the last optimization you tried, when compared with the performance baseline, your
memory usage is now under the expected values according to the performance objectives. You
decide to move the current improvements to the production environment.

After a while, City Power & Light’s users are complaining that the application is timing out
when working with the database during peak hours (from noon until 3 p.m.). Consider the
graph in Figure 11-1.

Figure 11-1 Performance graph

What do you think has changed from your testing environment to the production envi-
ronment?

Suggested Answer

Answers can vary. The graphic indicates that there is I/O contention when reading data.
Try to optimize all of the processes that are reading data. One hypothesis is that the
amount of data is larger than expected, and the application is not tuned to read such a
large amount of data. Another hypothesis is that instead of spreading the load across
multiple disks, most of the data being read is always read from the same disk (drive D).
There could be an issue with the SQL Server filegroups and how they are distributed
across the different disk devices in the system.

Lesson 3: Creating a Plan for Responding to Performance Changes 347
Quick Check
1. What are the goals of a plan for responding to performance changes?

2. Name three types of impact that a performance change might cause in the system.

Quick Check Answers
1. The main goal of a plan for responding to performance changes is to provide a

roadmap to follow when certain performance conditions are detected. This pre-
dictability allows you to respond faster to performance issues, which in turn
enables you to minimize downtime and manage your maintenance budget better.

2. Answers can vary but might include resource starvation, timeouts, and system
failure.

348 Chapter 11 Creating a Database Benchmarking Strategy
Lesson 4: Creating a Plan for Tracking Benchmark
Statistics Over Time

Estimated lesson time: 25 minutes

Throughout this chapter, you have learned a proactive approach for tackling performance
issues. By following these recommendations, you will get used to responding to trends and
challenges in an effective way, thus improving your understanding of what needs to be done
and allowing you to plan for the future—making your applications more predictable.

If you maintain the proper documentation and historical data about your performance testing
measurements, you will have the essential data you need to know exactly how your system got
to where it is. But, more important, it could help you decide where you are going. The basic
concept in benchmarking is the ability to compare current data with statistics to obtain pro-
cess improvements.

In this lesson, you will learn how to gain knowledge from benchmark statistics, how to plan a
strategy that helps you go beyond a mere comparison of data, and how to find new ways to
improve your application processes.

Setting Goals
Any plan for tracking benchmark statistics involves learning, sharing information, and adopt-
ing best practices to bring about changes in performance. In the preceding lessons, you
learned about setting performance objectives and measuring performance. These measures
would directly influence your future planning. The most important goals of a plan for tracking
benchmark statistics over time are:

n Improving productivity Predictability enables you to focus on what really matters and
what really affects performance. Historical experience will help you approach the future
based on lessons from the past.

n Improving quality By comparing current performance measurements with historical
data, you can find new ways to improve the quality of your design and code. As stated in
Lesson 3, “Creating a Plan for Responding to Performance Changes,” the first step to
improving performance is always to try to improve the current application elements.

n Gaining a complete picture of the application behavior After continuing with this plan
for a while and by being proactive about performance, you will get to know the applica-
tion in much more detail. You will be able to predict how a change or modification could
affect application performance.

Lesson 4: Creating a Plan for Tracking Benchmark Statistics Over Time 349
n Opening your mind to new opportunities By reviewing historical data and comparing
current results with previous results, you might come up with newer and better solu-
tions to solve technical issues. These new solutions might bring you better performance.

To implement a plan for tracking benchmark statistics, you must:

1. Select aspects of performance that can be improved and define them in a way that
enables you to obtain relevant comparative data.

2. Choose relevant and proper performance metrics from which to obtain significant data.

3. Study the data to identify possible opportunities for improvement.

4. Examine the procedures of the best-performing processes to pick up ideas that can be
adopted or adapted to achieve performance improvements.

5. Implement new processes by learning from previous experience.

IMPORTANT Benefits of tracking benchmark statistics

There are many benef its of tracking benchmark statistics, but two become more evident and desir-
able: predictability and lower business and maintenance costs.

Predictability is the extent to which future states of a system can be predicted, based on knowl-
edge of current and past states of the system. Because knowledge of the system’s past and cur-
rent states is generally imperfect, as are the models that use this knowledge to produce a
prediction, predictability is inherently limited. Even with arbitrarily accurate models and
observations, there can still be limits to the predictability of a physical system, so take this into
consideration. Knowing your objectives and keeping them achievable and realistic will be your
best guidance.

Lowering business and maintenance costs are side effects of predictability. One of the predict-
able aspects is how much time and resources the system is expected to need, which leads to an
anticipated plan and avoidance of unexpected requirements and fixes.

Continued Testing and Performance Measuring
A plan for tracking benchmark statistics is a continuous exercise similar to our instinctive way
of learning. A benchmarking exercise can be used wherever a process can be identified. As
with an application’s development life cycle, benchmarking is a cyclical task that starts with
testing the implementation and leading to the refinement of the model.

Exam Tip It is important to repeat the benchmarking periodically. The frequency of tests will be
dictated by the change rate you notice in your application’s behavior.

350 Chapter 11 Creating a Database Benchmarking Strategy
When there is a change in the application requirements, the new situation might invalidate
your previous baselines and make current statistics obsolete. In such cases, design and create
a new baseline.

Nevertheless, if requirements are needed immediately—as often happens in real production—
you just have to correct those aspects of your baseline affected by the changes and perhaps
modify the baseline tests accordingly.

Once a new baseline is established, perform further baseline measurements as many times as
necessary to produce valid information for comparison. Some empirical comparison can be
done as well at this stage to make sure changes and new measures are as expected.

Generating and Documenting Best Practices
This set of performance guidelines, procedures, and collected data will lead to what is usually
called best practices. A more formal definition of the term is: a best practice is a process or pro-
cedure that consistently produces superior results.

IMPORTANT Best practices

Benchmarking leads to generating best practices. A best practice is a process or procedure that
consistently produces superior results.

Benchmarking enables you to compare information to identify relative strengths and weak-
nesses and to learn how to make improvements. Thus, it is also a way of finding and adopting
best practices. Use the following guidelines for implementing best practices:

n Don’t fix what’s not broken. Balance the costs of doing nothing against implementing
the best practice. Just because something is a good idea doesn’t mean it is worth doing.

n Consider context. Verify that the best practice has been successful for cases or situa-
tions similar to yours.

n Validate the practice. Confirm that all best practices have been researched and have
proven successful, using key performance indicators (KPIs). Make sure that the best
practice improves a process that is aligned with the strategic objectives previously
established.

n Obtain concrete evidence before considering adoption of a practice. Confirm that it will
be possible to duplicate the practice and prove a performance improvement, corroborat-
ing the success of the practice.

n Try to find failures. Compare new metrics to metrics that were measured before the
implementation, or find your own way of searching for failures until you are sure enough
of the validity of that best practice.

Determining and implementing best practices is important for continuously improving any
solution. As a last step, don’t implement only the best practices you’ve determined on your

Lesson 4: Creating a Plan for Tracking Benchmark Statistics Over Time 351
own. Share and compare results with other people working on the same project, working in
your company, or even working outside your environment. You will benefit from their experi-
ence without having to go through the whole set of processes yourself.

Practice: Creating a Plan
In this practice, you will apply the concepts from this lesson to help a fictitious company called
City Power & Light create a plan for tracking benchmark statistics over time. This practice
builds upon the scenario described in Lessons 1, 2, and 3.

� Exercise 1: Identify the Benefits of Tracking Benchmark Statistics

In this exercise, you must make a recommendation on how to compare your company’s per-
formance results with those of the competition or from other industries.

During your meeting with the DBA from City Power & Light last week, he asked you
whether there is a way to compare the company’s performance results with those of
other power companies in other cities or in other countries. You know the organization
has a mature and proactive performance testing strategy. Why would you recommend
creating a plan for tracking benchmark statistics?

Suggested Answer

Answers can vary, but in the case of City Power & Light, some of the benefits of imple-
menting a plan for tracking benchmark statistics might include improving quality by
comparing its systems performance with the performance of business partners or its
competition. The company might as well come up with new solutions and opportunities
to improve performance even more. Finally, the main objective is to generate intellectual
property in the form of best practices—proven practices that can be applied to other sys-
tems to improve performance.

� Exercise 2: Implement a Plan to Track Benchmark Statistics

In this exercise, you must provide the steps required to implement a plan to track benchmark sta-
tistics. This plan must cover the necessary data that needs to be stored to be able to compare and
validate your performance measurements with those from your competition or other industries.

The DBA from City Power & Light follows your recommendation to implement a plan
for tracking benchmark statistics. What steps should he follow?

Suggested Answer

The steps to implement a plan for tracking benchmark statistics are to document all per-
formance-testing key scenarios, metrics, configurations, and results in a tool that allows
comparisons and calculations over the tracking information; analyze the historical mea-
sured data to identify patterns and/or practices that prove to be reusable and that pro-
vide a benefit in performance; document the best practices to share them with others;
and continue testing and improving the solution.

352 Chapter 11 Creating a Database Benchmarking Strategy
Quick Check
1. Explain why predictability lowers business and maintenance costs as claimed in

this lesson.

2. One of the main benefits of implementing a plan for tracking benchmark statistics
over time is to gain a complete picture of the application behavior. Why is this
important?

Quick Check Answers
1. Predictability is reached once you have historical system performance data and

knowledge, enabling you to foresee different aspects about how much time and
resources the system is expected to need over time. This data and knowledge
enable you to anticipate future requirements and fixes, which enables you to plan
your budget according to the future needs of the system, hence lowering business
and maintenance costs.

2. Answers can vary. A benchmarking strategy takes into account historical data to
generate best practices. A best practice is a process or procedure that produces
superior performance results. This knowledge can be generated only by knowing
the application behavior at a deep level.

Case Scenario: Create a Performance Baseline and
Benchmarking Strategy

You are part of the quality assurance team designing the new trading application for North-
wind Traders. Management has been putting a lot of pressure on your team because this new
version must provide better performance than the previous versions. The new application will
be used nationwide across the Internet. It has to be available constantly, with nearly zero
downtime.

You propose that performance should not be treated as an afterthought but, instead, should
be included in the design phase as a nonfunctional requirement and that proper proactive
plans should be implemented. Your manager asks you to help with the capacity planning for
the production servers.

Before management commits the necessary investments, the managers ask you to provide
more information about the performance objectives, your strategy for measuring performance
changes, and your plan to respond to performance changes.

1. Which inputs would you need to generate the proper performance objectives?

2. Which techniques do you apply to perform capacity planning accurately? Explain them
to management.

Lesson 4: Creating a Plan for Tracking Benchmark Statistics Over Time 353
3. After creating the performance objectives, you start working on the strategy for measur-
ing performance changes. You must ask for the necessary resources to implement a test-
ing environment similar to the production environment. How will you justify this
requirement?

Chapter Summary
n Performance objectives represent measurable criteria, such as response time, through-

put (how much work is done in how much time), and resource usage (CPU, memory,
disk I/O, and network I/O) that you intend to attain.

n There are two main methodologies used for capacity planning: transaction cost analysis
and predictive analysis.

n A baseline will serve you as a comparative pattern to check further measures.

n Scaling up and scaling out should be considered only when you are sure that you’re get-
ting the best performance you can through application optimization.

n A plan for tracking benchmark statistics involves learning, sharing information, and
adopting best practices to bring about changes in performance.

Chapter 12

Creating a Plan for Deploying a
Database

Deployment planning reduces error and inefficiency during application deployment or
update. Two key elements to consider when planning your deployment strategy are security
and testing. You want to ensure that you or the person performing the deployment has per-
mission to do so. You also need to know whether the deployment succeeded, hence the need
for testing. Ignoring these and other related considerations can obstruct or delay deployment.
Deployment planning can mitigate issues considerably and is a database design and develop-
ment best practice. When deploying, you want to focus on following steps and document
results from a carefully drawn plan. You do not want to make it up as you go along.

This chapter will discuss different deployment techniques and then proceed to practical con-
siderations when deploying. You will learn about available mechanisms for deploying
Microsoft SQL Server 2005 databases and how to use them to deploy databases, and you will
examine the details of deployment, including security, object-change and data-change strategy,
audit trails, change control, and project-management methodology.

Exam objectives in this chapter:
n Create a plan for deploying a database.

q Select a deployment technique.

q Design scripts to deploy the database as part of application setup.

q Design database change scripts to apply application patches.

q Design scripts to update database data and objects.
355

356 Chapter 12 Creating a Plan for Deploying a Database
Before You Begin
To complete the lessons in this chapter, you must have:

n A general understanding of SQL Server 2005 and Transact-SQL.

n A general understanding of how to use SQL Server Management Studio, including how
to connect to various SQL Server instances in a typical enterprise environment.

n SQL Server 2005 and SQL Server Management Studio installed on your computer.

n The SQL Server 2005 AdventureWorks and AdventureWorksDW sample databases
installed. Sample databases are available with SQL Server 2005 Enterprise edition,
although they are not a part of the default installation. You can also install the sample
databases from http://msdn2.microsoft.com/en-us/library/ms143739.aspx.

Lesson 1: Selecting a Deployment Technique 357
Lesson 1: Selecting a Deployment Technique

Estimated lesson time: 30 minutes

There are several methods by which you can deploy a SQL Server 2005 database, including
using:

n The SQL Server Management Studio (SSMS) Copy Database Wizard.

n A Transact-SQL (T-SQL) script.

n The Import and Export Wizard.

n A SQL Server Integration Services (SSIS) Package.

n The SQLCmd utility.

Regardless of the method you choose, there are several questions to ask about the database
you are deploying to before you begin:

n Is the database published for replication? If so, you must remove replication before using
any of the methods that detach the database.

n Do database snapshots exist? If so, you must drop them before using any of the methods
that detach the database.

n Is the database being mirrored in a mirroring session? If so, the mirroring session must
be terminated before using any of the methods that detach the database.

n Is the database marked Suspect? If so, you must put the database in Emergency Mode
before using any of the methods that detach the database. In addition, proceed with
detaching the database only after identifying why the database is suspect and resolving
these issues.

Also note that database snapshots and system databases cannot be detached. Now, let’s look
at each of the deployment methods to see which to use in different situations.

Deploying with the SSMS Copy Database Wizard
In SSMS, you can copy a database by using the Copy Database Wizard. Note that this feature
is available only on servers with SQL Server Agent installed and running. The Copy Database
Wizard creates an SSIS package based on options you select as you proceed through the wiz-
ard pages. You are prompted for source and destination database servers, transfer method,
source and destination databases, and SSIS package configuration name and logging model.
Let’s look at how you use the Copy Database Wizard to deploy a database and then explore
the considerations for when to use the wizard.

To copy a database by using the Copy Database Wizard, open SSMS. Right-click the database
you want to copy, click Tasks, and then click Copy Database, as shown in Figure 12-1.

358 Chapter 12 Creating a Plan for Deploying a Database
Figure 12-1 Right-click navigation to start the Copy Database Wizard

The Copy Database Wizard starts and displays a splash screen. By selecting the Do Not Show
This Starting Page Again check box, you can hide the Welcome page in the future. Click Next
to proceed.

The next two pages in the wizard, Select A Source Server (not shown) and Select A Destination
Server (Figure 12-2), are nearly identical. As their names imply, here you configure the source
and destination servers and define the connection authentication method of the database
copy.

Figure 12-2 Copy Database Wizard Select A Destination Server page

Lesson 1: Selecting a Deployment Technique 359
Next, you choose a method of copying the database to the destination server on the Select The
Transfer Method page.

Your options are to use the detach and attach method or to use the SQL Management Object
(SMO) method. The detach and attach method automates detaching the database from the
source server, copying the database files to the target server, and attaching the database files to
the target server. The SMO option creates an SSIS project to accomplish the copy process.
SMO is slower than the detach and attach method, but it allows the source database to remain
online during the operation. (See the next section, “Customizing the SSIS Package Created by
the Copy Database Wizard,” for information about how to customize the SSIS package created
by the SMO option.)

The next page in the wizard enables you to choose the database(s) you want to copy or move.
You can select more than one database and operation, as shown in Figure 12-3.

Figure 12-3 Copy Database Wizard Select Databases page

You configure the destination database by using the next step of the wizard, shown in Figure
12-4. Configuration options include the database name, data and log file locations, and how
to respond if there is an existing database on the destination server with the same name.

360 Chapter 12 Creating a Plan for Deploying a Database
Figure 12-4 First Configure Destination Database page of the Copy Database Wizard

When you’ve configured these options, the Copy Database Wizard creates an SSIS package to
accomplish the operation. In the next step of the wizard, you specify a name for the SSIS pack-
age and choose a logging option (Windows Event Log or a Text File).

The next page enables you to run the Copy Database Wizard immediately or schedule execu-
tion. The Copy Database Wizard is now complete and displays a summary of actions you have
performed, as shown in Figure 12-5. Click Finish to begin the database copy or move process.

Figure 12-5 Completing the Copy Database Wizard

Lesson 1: Selecting a Deployment Technique 361
Use the Copy Database Wizard when deploying databases internally in an enterprise. It is
ideal for quickly and easily moving databases around inside a domain or business organiza-
tion. This makes it a powerful tool for deploying or updating single-instance databases.

Although the Copy Database Wizard can be automated (you can store the SSIS package and
re-execute it manually or schedule it through a SQL Server Agent job), it is not well suited for
distributed database application deployments or updates.

Customizing the SSIS Package Created by the Copy Database Wizard
You can customize the SSIS package created by the Copy Database Wizard, adding variables
for source and destination servers, for example. The SSIS package is stored in the msdb data-
base on the server where the Copy Database Wizard created it, usually on the source server.

Before editing the SSIS package, you must export it to a file. To accomplish this, you need to
connect to the SSIS instance:

1. Open SSMS. Click Connect in Object Explorer and select Integration Services from the
drop-down list.

2. The familiar Connect to Server login dialog box displays. Note that Server Type is dis-
abled and Integration Services is selected. Select or type the server name. Note that
“(local)” or similar aliasing will not work when connecting to SQL Server Integration
Services. Click Connect.

3. In Object Explorer, navigate to the SSIS package. It should be under Stored Pack-
ages\MSDB\<Server name>\DTS Packages\Copy Database Wizard Packages\<Copy
Database Wizard Package Name>. Right-click the package name and select Export Pack-
age from the context menu, as Figure 12-6 shows.

Figure 12-6 Exporting the SSIS package

362 Chapter 12 Creating a Plan for Deploying a Database
The Export Package dialog box displays, as shown in Figure 12-7. To edit the package—
for example, to make source and destination servers dynamic—you need to export it to
the file system.

Figure 12-7 Selecting the file destination of the SSIS Package

4. Change the Package Location drop-down list value to File System. Click the ellipsis
beside the Package Path text box and navigate to the file system target directory or enter
the target directory and file name manually. Click OK to export the SSIS package.

5. Use Windows Explorer to navigate to the directory where you stored the exported SSIS
package. Right-click the file and select Edit. By default, SQL Server Business Intelligence
Development Studio (BIDS) opens and loads the package.

6. Click the Transfer Objects Task and press F4 to view properties.

You can make detailed configuration changes to the transfer by adding, removing, and
editing the DatabaseDetails and DatabaseObjects properties, as Figure 12-8 shows.

Lesson 1: Selecting a Deployment Technique 363
Figure 12-8 Properties for the Transfer Objects Task

7. After editing, save your changes and close BIDS. Return to SSMS Object Explorer. Right-
click the package and select Import Package. The Import Package dialog box displays, as
shown in Figure 12-9.

Figure 12-9 The Import Package dialog box enables you to navigate to the SSIS package file

8. Select File System in the Package Location drop-down list. Type the package path in the
Package Path text box or click the ellipsis to navigate to the edited package file. Click the
Package Name text box; the name of the package should auto-populate once this text
box receives focus. Click OK to begin the import process.

364 Chapter 12 Creating a Plan for Deploying a Database
Because you are overwriting an existing SSIS package, you will be prompted to confirm
this action.

9. Click Yes to complete the import.

For more information about SSIS, see Chapter 17, “Developing Packages for Integration Ser-
vices.”

Deploying with T-SQL Scripts
There are several T-SQL script deployment options available, using either SSMS or manually
created scripts. The three most common are:

n Detach and attach database files.

n Back up and restore database.

n Manually create a deployment script.

n Let’s look at each of these options in turn.

IMPORTANT Deploying with SSMS

Note that all database deployments can be accomplished by using SSMS.

Detach and Attach Database Files
Detaching and attaching database files is a two-step process that literally disconnects under-
lying database files from the SQL Server instance and then reconnects them to a SQL Server
instance. This method is fast—as fast as a few clicks in SSMS to detach the file and copy it to a
new location (if moving the database to a different server) and a few more clicks to reattach the
file. Detaching and attaching databases takes the database offline, so you should use it only
when database downtime is acceptable. An additional benefit of the detach and attach method
of database deployment is that user activity ceases while the database is detached, so you don’t
have to worry about synchronizing with any changes that users make while you’re deploying
the new database.

To detach database files in SSMS, connect to the source server. Right-click the database, click
Tasks, and then click Detach. Physically copy the database files to the target server by using
Windows Explorer, a command prompt, FTP, or other method. Connect to the target server,
right-click Databases, and select Attach. Click Add, and then navigate to a data file location and
select it to begin the attachment process.

To detach a database by using T-SQL, execute the sp_detach_db stored system stored proce-
dure. Use a command similar to the following:

sp_detach_db ÔAdventureWorksÕ

Lesson 1: Selecting a Deployment Technique 365
After physically copying the database files to the target server, execute the T-SQL sp_attach_db
stored system stored procedure. Use a command similar to the following:

sp_attach_db ÔAdventureWorksÕ, ÔC:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\AdventureWorks_Data.mdfÕ

Back Up and Restore Database
You can back up a database without taking it offline. This makes the backup and restore
method more flexible than the detach and attach method of database deployment. One down-
side to this method, however, is that if users remain connected (or connect) to the database
after the backup, their changes are not included in the restored version. You must take addi-
tional steps to resynchronize data in production databases.

To back up a database in SSMS, connect to the source server. Right-click the database, click
Tasks, and then click Back Up. Configure backup options in the Back Up Database dialog box.
Physically copy the database files to the target server by using Windows Explorer, a command
prompt, FTP, or other method. Connect to the target server, right-click Databases, and select
Restore Database. Navigate to the backup file or device, configure restore options, and click OK.

For more information about the backup and restore technique, see the topic “Backing Up and
Restoring Databases in SQL Server” in SQL Server 2005 Books Online at http://
msdn2.microsoft.com /en-us/library/ms187048(SQL.90).aspx.

Manual Script Creation
You can also create your own T-SQL deployment scripts manually. This is the most flexible
means to deploy databases and database upgrades. You can use T-SQL code to create, alter, or
drop any object in a database.

Deploying with the Import and Export Wizard
You can import and export data tables by using the SQL Server Import and Export Wizard in
SSMS. Similar to the Copy Database Wizard, the Import and Export Wizard creates an SSIS
package that you can save at the end of the wizard. Also like the Copy Database Wizard, the
Import and Export Wizard is better suited for deployments within the enterprise. There are
three features unique to the Import and Export Wizard:

n You can select different source and destination types.

n You can use a query to select data from a source.

n You can select individual tables and views as sources.

These features make the Import and Export Wizard ideal for database updates.

To start the wizard, right-click either the source or destination database in SSMS. If you right-
click the source database, click Tasks and click Export Data.

366 Chapter 12 Creating a Plan for Deploying a Database
Complete the Source and Destination pages. On the Specify Table Copy or Query page, you
decide whether you will select tables and views from a list or use a query as a data source. If
you select the Copy Data From One Or More Tables Or Views option, the next page displays
a list of tables and views, as shown in Figure 12-10.

Figure 12-10 Selecting source tables and views in the Import and Export Wizard

After you select a table, click the Edit Mappings button for additional table-copy options such
as Delete Existing Rows In Destination Table or Append New Rows To Destination Table. If
you select the Write A Query To Specify The Data To Transfer option on the Specify Table Copy
or Query page, the next page displays a text box for selecting the query, as shown in Figure 12-11.

Figure 12-11 Using a Query as the Source in the Import and Export Wizard

Lesson 1: Selecting a Deployment Technique 367
You have the option of entering the query text manually or browsing to a file containing the
query and loading it into the text box.

The next page enables you to save the SSIS package. You have the option here of saving it to a
file or to SQL Server. Saving it to a file will enable you to edit the SSIS package directly, without
needing to export it from Integration Services. If you select the Save Package check box, the
next page prompts for a save location. The last page shows the status of the transfer as it exe-
cutes. (For more information about the Import and Export Wizard, see the topic “Designing
and Creating Packages Using the SQL Server Import and Export Wizard” at http://
msdn2.microsoft.com/en-us/library/ms141091(SQL.90).aspx.

Deploying with SSIS
You can deploy database objects by using the Transfer SQL Server Objects task in SSIS. The
Transfer SQL Server Objects Task is very powerful and relatively fast. It enables you to transfer
objects such as stored procedures, functions, schemas, and even users from one database to
another. For these reasons, using SSIS to deploy databases is a recommended option when:

n Multiple databases make up the database solution.

n You seek a scriptless, repeatable mechanism to deploy stored procedures, functions,
schemas, and users.

There is no wizard available in SMO to access this functionality; you must use BIDS to build an
SSIS package.

Open BIDS. Click File, click New, and then select Project to open the New Project dialog box.
Select Business Intelligence Projects from the Project Types list, and then select the Integration
Services Project template. Enter a project name in the Name text box. Drag a Transfer SQL
Server Objects task from the Toolbox onto the Control Flow and double-click it to open the
Task Editor. Figure 12-12 shows the Transfer SQL Server Objects Task Editor.

368 Chapter 12 Creating a Plan for Deploying a Database
Figure 12-12 The SSIS Transfer SQL Server Objects Task Editor

You can use the Transfer SQL Server Objects task to copy database objects from a source to a
destination. The ObjectsToCopy property contains a collection of SQL Server object collec-
tions. You can opt to copy all objects of a certain type or choose individual objects to copy. (See
Chapter 17 for more information about creating SSIS packages.)

Deploying with the SQLCmd Utility
If you have experience with SQL Server 2000 or earlier releases of SQL Server, you might be
familiar with the OSql utility, which uses the ODBC library to connect to and execute T-SQL
statements from a command prompt. Although you can still use OSql in SQL Server 2005 to
execute T-SQL statements for deployment and other operations, the utility will be removed in
a future release. For this reason, it’s a good idea to modify applications that currently use OSql
and avoid using OSql in future releases.

The SQLCmd utility uses the OLE DB library to connect to and execute T-SQL statements
against SQL Server. You can execute SQLCmd from a command prompt. You can also access
it from the SSMS Query Editor, with the following caveat: When accessed from SSMS, SQL-
Cmd uses the .Net SqlClient library.

SQLCmd is primarily a command-line utility that enables you to enter and execute T-SQL
statements, call stored procedures, and execute scripts from the command prompt. You open
a command prompt by clicking Start and then Run. Type cmd and then click OK to launch a
command prompt. Type SQLCmd /? to view top-tier command-line options.

Lesson 1: Selecting a Deployment Technique 369
To deploy a database by using SQLCmd, you can type and execute each T-SQL statement man-
ually, but generating the database script by using SSMS (as shown in Figure 12-13) or another
scripting tool and then executing these scripts through SQLCmd is recommended. Why?
SSMS contains valuable error-checking and syntax-checking utilities, saving you time and
troubleshooting challenges later on.

Figure 12-13 Using SSMS to generate T-SQL

Once SSMS has generated the T-SQL script file, you can execute it through SQLCmd by fol-
lowing these steps:

n Open a command prompt: Click Start, click Run, type cmd in the Open text box, and
then click OK.

n To execute a script, type SQLCmd –S <servername\instance> -i <path\scriptfile>.

If you append -o <outputfilepath> to the command, output generated by the script will be
redirected to the specified file. This output file can then serve as a deployment log.

In practice, many application developers codify this process by combining several SQLCmd
commands in a single batch file so that the commands can be executed as a group.

On the Companion Disc This chapter includes many code examples. You will f ind all the code
from this chapter on the companion CD in the C:\My Documents\Microsoft Press\TK70-441
\Chapter12\Sql folder.

Practice: Detaching and Attaching a Database
Detaching and attaching a database is a quick way to deploy a database. It’s also a good way
to move database files around your server. In this practice, you will detach and attach the
AdventureWorks database.

� Exercise: Detach and Attach the AdventureWorks Database

In this exercise, you will detach the AdventureWorks database, physically relocate the data and
log files, and then attach the files to the new location.

370 Chapter 12 Creating a Plan for Deploying a Database
1. Open SSMS and connect to an instance of SQL Server 2005.

2. In Object Explorer, expand the Databases node.

3. Right-click the AdventureWorks database, click Tasks, and then click Detach.

The Detach Database dialog box displays, as shown in Figure 12-14.

Figure 12-14 Detach Database dialog box

If connections to this database are currently open, you can drop them by selecting the
Drop Connections check box. You can also choose to update statistics before detaching
the database by selecting the Update Statistics check box. The Keep Full Text Catalogs
check box is selected by default. The Status column declares whether the database is
ready to be detached. Figure 12-14 shows that this database has 1 Active Connection(s)
(see the Message column) and a Status of Not Ready.

4. To drop the database in the state shown in Figure 12-14, either close the active connec-
tion or select the Drop Connections check box.

5. Click OK to detach the database.

6. When the database is detached, open Windows Explorer and navigate to the location of
your data files.

The default location for data files will resemble C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\.

7. Copy AdventureWorks_Data.mdf and AdventureWorks_Log.ldf to the clipboard and
paste them in another location on your server.

8. Right-click the Databases node in the SSMS Object Explorer and select Attach.

9. Click Add in the Attach Databases dialog box and navigate to the location to which you
moved the data and log files earlier.

10. Select the AdventureWorks_Data.mdf file and click OK. Note that the Current File Path
now reflects the new data and log file path.

Lesson 1: Selecting a Deployment Technique 371
11. Click OK to attach the database to this instance of SQL Server.

You can use this same procedure to move databases between servers in an enterprise for
deployment purposes.

Quick Check
1. What are some methods to deploy a SQL Server 2005 database?

2. Which method in the Copy Database Wizard allows the database to remain
online?

3. According to Books Online, which SQL Server utility might not be available in
future releases?

Quick Check Answers
1. The Import And Export Wizard, Backup and Restore, Copy Database Wizard, and

Detach and Attach are some methods by which you can deploy a SQL Server 2005
database.

2. The correct answer is SMO. The only other method employed by the Copy Data-
base Wizard is Detach and Attach, which takes the database offline.

3. OSql will be deprecated in future releases.

372 Chapter 12 Creating a Plan for Deploying a Database
Lesson 2: Practical Deployment Considerations

Estimated lesson time: 30 minutes

Many applications require local database installation. In fact, any application that must use
disconnected datasets needs to store data locally. Smart-client applications use local database
caching to disconnected datasets for data sychronization and state management.

With the advent of the Microsoft .NET Framework came escape from dynamic-link library
(DLL) versioning issues. Application databases, however, possessed no similar framework-
managed mechanism to manage the schema, tables, or stored procedures of a database. Note
the past-tense word “possessed.” Team Edition for Database Professionals now nicely fills this
void in the database development life cycle.

As a database developer, you must consider the impact of applying the change when you
update a database to conform to application changes. Lesson 1, “Selecting a Deployment Tech-
nique,” covered the mechanisms for deploying the database. This lesson will focus on apply-
ing these mechanisms. You will design scripts to deploy the database as part of application
setup, to apply application updates, and to upgrade database data and objects.

Many organizations promote efficient database development by defining best practices docu-
mentation. This is a good thing—as long as this document remains fluid and flexible. Best prac-
tices and coding standards are a poor substitute for common sense and often hinder
innovation when given an inordinate amount of importance.

Considerations for designing scripts for deployment as part of an application or upgrade
include:

n Security.

n Object-change strategy.

n Data-change strategy.

n Audit trail.

n Change control.

n Project-management methodology.

Deploying Securely
Security should be one of the first considerations in any setup or upgrade deployment plan.
Gone forever are the days when applications were designed and then secured. When deploy-
ing upgrades or application databases, data access security and object permissions should be
a—if not the—main consideration. SQL Server 2005 boasts many security enhancements and
new features. You can view built-in permissions by executing the following query against the
master database:

Lesson 2: Practical Deployment Considerations 373
SELECT * FROM sys.fn_builtin_permissions(DEFAULT)

This query returns 187 rows when executed on a server running SQL Server 2005 Developer
Edition 9.00.2047.00 (Intel X86). That’s a lot of permissions to manage!

Deployment security considerations can be described in two major categories: making sure
the database administrator (DBA) performing the deployment has permission to deploy and
deploying the permissions associated with the database.

Permission to Deploy
When deploying, the person performing the deployment (that is, the security principal) must
have sufficient rights on the target server to make the desired changes. Microsoft recommends
you use Microsoft Windows authentication whenever possible because it is integrated into
Active Directory directory service domain security, providing an additional layer of security.
Many enterprises configure Active Directory user accounts and groups specifically for use with
SQL Server. This strategy has a couple of advantages:

n Active Directory security is generally considered more robust than SQL Server login
security.

n It shifts maintenance of these accounts to the Network Administrative team, which often
manages password expiration, history, and complexity via domain and group security
policies.

If you cannot use Windows authentication, SQL Server logins will suffice. No matter which
authentication method you use, the user needs permissions to accomplish whatever deploy-
ment tasks need to occur. For example, if the deployment consists of updates to data in a sin-
gle table, the user needs permission to update the target table. If the deployment involves
creating a database, the user needs to possess the CREATE DATABASE permission on the SQL
Server instance.

Deploying Permissions
Synchronizing logins after moving a database is a painful process—or at least it was in previous
releases of SQL Server. The reason? Security identifiers (SIDs). Before the discussion about
SIDs, some background is appropriate.

An entity that can request SQL Server resources is known as a principal. Examples of principals
include SQL Server logins, Windows logins, and database users. Principals possess a scope of
influence described by the principal’s definition. Deterministic properties include the type of
login (Windows, SQL Server, Database) and whether the principal is indivisible or a collec-
tion. Windows logins and SQL Server logins are examples of indivisible principals; Windows
groups and SQL Server database roles are examples of collections.

374 Chapter 12 Creating a Plan for Deploying a Database
To view details about the principals with influence in a database, connect to the database and
execute the following statement:

SELECT * FROM sys.database_principals

Note that each principal has a name, an SID, and a Principal_ID (called, simply, ID).

Deploying Permissions with Backup/Restore When you create a SQL Server login on a
local development instance, an ID and SID are generated and associated with that login. When
you add a user (by name) to your database, those associated properties (ID and SID) are
inserted into your database metadata.

So far, all is well. You are working in a local database on your local development instance of
SQL Server. Problems arise when you deploy your database to another instance of SQL Server.
Usually, the deployment goes something like this. You back up your local database, copy the
.bak file to the target server, and restore it there. You conduct spot checks to ensure that your
latest changes are now on the target server, checking for the latest schema and stored proce-
dure changes as well as for new or altered users. You pronounce the database deployed and
ready for testing and begin the next round of database development—until you’re interrupted
by developers and testers who inform you that they cannot connect to the database.

This is because SQL Server logins on your local instance have different IDs and SIDs than the
target server. The names are the same, but all uniquely identifying metadata is different. What
should you do now?

In SQL Server 2005, you can use the sp_change_users_login stored procedure to fix mis-
matched IDs and SIDs. Sp_change_users_login takes one or more parameters. The first
parameter, @Action, defines the purpose of this execution of the stored procedure. There are
three possible values:

n Auto_Fix Auto_Fix requires you to specify a value for the @UserNamePattern param-
eter. The procedure attempts to map the value supplied to the @UserNamePattern
parameter to an existing SQL Server login. If successful, the results include a description
of the action taken. If not, results will indicate no orphaned users were updated.
Auto_Fix can create the SQL Server login if it does not already exist.

n Report Report returns a list of orphaned users (and their SIDs) for the current data-
base.

n Update_One Update_One requires you to specify the @UserNamePattern and @Login
parameters. It effectively remaps an existing database user to another existing SQL
Server login.

Deploying Permissions with the SSMS Copy Database Wizard When using the Copy
Database Wizard to copy databases that contain SQL Server logins, you will see the Select
Database Objects page, similar to the one shown in Figure 12-15.

Lesson 2: Practical Deployment Considerations 375
Figure 12-15 Deploying permissions with the Copy Database Wizard

Clicking the ellipsis beside the Logins object displays a dialog box that enables even more con-
figuration, as Figure 12-16 shows.

Figure 12-16 Configuring logins for the Copy Database Wizard

If you choose to copy SQL Server logins used by the database and they do not exist on the tar-
get server, the SQL Server logins will be created but disabled. You will need to enable them
after the Copy Database Wizard completes.

376 Chapter 12 Creating a Plan for Deploying a Database
Creating an Object-Change Strategy
Object changes are schema changes because database objects make up the database schema.
When thinking about object changes, there are several considerations when deploying
upgrades or application databases:

n What is the scope of the change?

n Is the database published for replication?

n Do snapshots of the database exist?

n What are the current database state, user access, and database update options?

The scope of the change refers to the objects affected by the change. Some examples are the
database itself, files, filegroups, tables, views, stored procedures, and functions. Replication,
snapshots, and database state also constrain the allowed types of object changes and affect the
method used to implement the changes.

Replication and Object Changes
Replication allows changes to a SQL Server 2005 database schema, but restrictions apply. For
instance, altering primary key columns is not permitted. Use the sp_replicationdboption
stored procedure to create and drop replication system tables and security and manage repli-
cation metadata in the master.sysdatabases table.

It is possible to alter a table that is published for transactional replication by adding or remov-
ing a column, for example. The schema change will be propagated to the subscribers at the
next update. If you want to drop a table that is being replicated, it’s best to stop synchroniza-
tion from Replication Monitor first. To reach Replication Monitor, open SSMS, connect to the
replication distributor, right-click the Replication object in the Object Explorer, and click
Launch Replication Monitor. Select the Publisher you want to monitor in the tree view at left,
and then select the Subscription Watch List tab in the details portion on the right. Right-click
the subscription you want to stop and click Stop Synchronizing, as shown in Figure 12-17.

Figure 12-17 Stop synchronizing in Replication Monitor

Lesson 2: Practical Deployment Considerations 377
In SSMS, expand the Replication object in Object Explorer and click the Local Publications
logical folder. If the Summary page is not visible, press F7 to display a list of local publications
configured on SQL Server. Right-click the publication from which you want to drop a table and
click Properties. Click the Articles page from the list on the left, expand the Tables node in the
Objects To Publish tree view, and deselect the table you want to drop. You will be warned that
this action will invalidate the current snapshot (if a current snapshot is available) and asked
to confirm this action.

Clicking Yes will remove the table from the published articles list. Click OK when finished.

As the warning dialog box foretold, you now have to reinitialize all subscriptions to this pub-
lication before proceeding. Reinitializing all subscriptions causes a new snapshot to be gener-
ated. In merge replication scenarios, this means all data contained in published tables will be
retransmitted to the clients. To accomplish reinitialization, simply right-click the publication
and click Reinitialize All Subscriptions, as shown in Figure 12-18.

Figure 12-18 Reinitializing all subscriptions

When prompted, select the Generate The New Snapshot Now check box and click the Mark
For Reinitialization button. Reinitialization might take a few seconds or a few minutes,
depending on the number and size of the objects in the publication. When reinitialization
completes, return to Replication Monitor, right-click the subscription, and click Start Synchro-
nizing to restart replication of this publication.

You can now drop the table from the Publisher. It is a recommended best practice to drop the
table from the Subscriber also, and SQL Server 2005 provides the sp_addscriptexec stored
procedure to enable you to execute a script on all Subscribers to a publication. To use this
stored procedure to drop your Subscriber table, create a DROP TABLE T-SQL statement and
store it in a file with a .sql extension. Once the statement is saved, execute the following on the
Publisher SQL Server:

exec sp_addscriptexec [@publication], [@scriptfile]

sp_addscriptexec enables you to log errors and continue using the optional @skiperrors bit
parameter (1 to log and continue, 0 to stop the agent on error).

378 Chapter 12 Creating a Plan for Deploying a Database
Object Changes and Database Snapshots
When a snapshot exists on a database, a stake is driven into the virtual ground and all differ-
ences from this point are recorded in log files. As long as a database snapshot exists, the source
cannot be altered in a snapshot-breaking manner such as restoring over the existing source
database or detaching or dropping the source. (For more information, see the topic “Limita-
tions on Database Snapshots” in Books Online at http://msdn2.microsoft.com/en-us/library
/ms189940(SQL.90).aspx.

Object Changes and Database State
SQL Server 2005 databases are always in one and only one state. Examples of database state
include Online, Offline, Restoring, and Suspect. You can alter database objects while the data-
base is in the Online state. However, you might need to take the database offline to perform
some alterations, such as moving a file to a new disk.

Creating a Data-Change Strategy
Adding, removing, and updating data should be the simplest of all changes when deploying
upgrades or application databases. The changes themselves might drastically alter application
performance (for better or worse), functionality, or available lookup data, but the impact of the
change is low.

BEST PRACTICES Thorough change testing is essential

All changes should be thoroughly tested in a test database environment before deployment. Opti-
mally, your test environment should be an exact duplicate of your production environment. The
expense of maintaining an exact replica of the production environment for testing, however, is
often cost-prohibitive–especially in very large database (VLDB) enterprises. Often, test environ-
ments are smaller and contain a representative sample of the data that is in the full production
environment.

Creating an Audit Trail
Maintaining a record of database change activity is growing in popularity, largely due to regu-
lations such as the Health Insurance Portability and Accountability Act (HIPAA) and the Sar-
banes-Oxley Act in the United States. Although the threat of your supervisor’s boss going to
prison provides its own powerful and unique motivation, there are other good reasons to
maintain a historical record of changes to the database schema.

For instance, sometimes you need to roll back a recently released application version. When
you need to restore it to how it was before the release, it helps to have a list of the changes
included in the release.

Lesson 2: Practical Deployment Considerations 379
BEST PRACTICES Change-control procedures

A tried and true change-control procedure (discussed next) can help you here. A pre-release
backup should be a mandatory part of new releases.

Methods to audit SQL Server activity include SQL Server Profiler, C2 auditing, login auditing,
Common Criteria Compliance, and data-definition language (DDL) triggers. These options are
configured in SSMS on the Server Properties Security page.

SQL Server Profiler enables you to track most activity occurring in a SQL Server database.
Traces of SQL Server activity are captured and displayed in the SQL Server Profiler interface.
Users can fine-tune traces to record a minimal amount of information or to catch nearly all
activity on the SQL Server. There are performance implications for capturing increasing
amounts of activity. For details about using SQL Server Profiler, see the SQL Server 2005
Books Online topic “Introducing SQL Server Profiler” at http://msdn2.microsoft.com/en-us
/library/ms181091(SQL.90).aspx.

C2 auditing tracks login and object access activities. C2 auditing has been superseded by
Common Criteria Compliance. (See the following section.) For more information, see the SQL
Server 2005 Books Online topic “C2 Audit Mode Option” at http://msdn2.microsoft.com/en-
us/library/ms187634(SQL.90).aspx.

Login auditing can be configured to track failed logins, successful logins, both, or neither. By
default, failed login attempts are tracked. Information is stored in the SQL Server error log. For
more information, see the SQL Server 2005 Books Online topic “Auditing SQL Server Activity”
at http://msdn2.microsoft.com/en-us/library/aa905160(sql.80).aspx.

Common Criteria Compliance supersedes C2 auditing and several other auditing standards.
It tracks login attempts, both successful and unsuccessful. In addition, Common Criteria
Compliance forces the principle of least privilege at the table level—that is, table-level DENY
permissions take precedence over table-level GRANT permissions. Common Criteria Compli-
ance also enforces Residual Information Protection (RIP), which overwrites memory buffers
before releasing them for reallocation. However, as you might imagine, there are known per-
formance issues with Common Criteria Compliance—most due to RIP functionality. For more
information, see the SQL Server 2005 Books Online topic “Common Criteria Certification” at
http://msdn2.microsoft.com/en-us/library/bb153837(SQL.90).aspx.

DDL triggers allow denial, tracking, or notification of attempts to alter the database schema.
Similar to data-manipulation language (DML) triggers, which fire in response to UPDATE,
INSERT, and DELETE statements, DDL triggers fire in response to CREATE, ALTER, and
DROP statements. You can use DDL triggers to execute stored procedures that log date, time,
and user information in an audit table. For more information, see the SQL Server 2005 Books
Online topic “Understanding DDL Triggers” at http://msdn2.microsoft.com/en-us/library
/ms175941(SQL.90).aspx.

380 Chapter 12 Creating a Plan for Deploying a Database
Defining Change Control
Change control or change management is a process, procedure, or methodology to manage
changes in an enterprise. The purpose of change control is to document communication to all
affected by the proposed change, preferably before the change occurs. Change control has
grown in importance as enterprises come to depend on stable application architectures to
remain competitive.

Although change control might appear to be a bureaucratic nightmare, it is designed to ensure
that everything has been done to deploy bug-free code. Change control procedures usually
include reporting of test results, oversight (code review or peer review), and documentation.

Some institutions form Change Oversight Groups or Change Control Boards to monitor pro-
posed changes. Most of these committees are composed of representatives from different
departments within the enterprise. They are tasked with determining the impact of changes in
one area on other areas of the enterprise. Some are empowered to decide which changes
should and should not be deployed. For example, consider an application database schema
change that adds a column to a table. The impact of this change might appear low to the appli-
cation development group. But an extract, transform, and load (ETL) engine might be collect-
ing new data from this application database regularly—perhaps nightly—and this seemingly
innocuous change could cause the ETL operation to fail. The issue could be further compli-
cated if a failure of this portion of the ETL process causes the enterprise data warehouse load
to fail.

A thorough listing of change control tools and techniques is beyond the scope of this book.
However, SQL Server 2005 database administrators and developers should refer to informa-
tion about Microsoft Visual Studio 2005 Team Foundation Server products at http://
msdn2.microsoft.com/en-us/teamsystem/aa718825.aspx.

Creating a Project-Management Methodology
Deploying upgrades or application databases in a modern enterprise of any size requires a
project management (PM) methodology. Fortunately, almost all enterprises possess some
form of PM. Some, such as the Capability Maturity Model Integration (CMMI), are formal,
well-documented disciplines. Others are informal, such as “Go ask Earl; he’s the DBA.”

In practice, most enterprises operate somewhere between a formal and informal PM method-
ology. Either can be taken to an extreme, when more harm than necessary can be done. It’s
easy to see where an informal PM methodology falls short: There is a lack of documented pro-
cedures, so project proposals, status, and audits are subjective. However, poorly executed for-
mal methodologies can kill creativity and hamper mobility in an enterprise, degrading
business agility and, ultimately, profitability.

For project management, database developers can use SSMS to create database projects. Data-
base projects provide a concise method of managing code because they maintain related SQL

Lesson 2: Practical Deployment Considerations 381
scripts in a single entity: the database project. To create a database project, open SSMS and
click File, click New, and then click Project.

When the New Project dialog box displays, supply the name, type, and file system layout of the
database project. Use SSMS Solution Explorer to manage database project files, as shown in
Figure 12-19.

Figure 12-19 SSMS Solution Explorer

Once you’ve created a database project, you can protect and manage the database project
source code by using a source control or version control engine. Microsoft Visual Studio
Team System and Team Foundation Server provide integrated version control and project
management. Project administrators create Team Projects, which contain one or more Solu-
tions, which can each contain one or more Software Projects.

Microsoft Visual Studio 2005 Team Edition for Database Professionals takes database project
management to the next level, including integrated unit testing, rename refactoring, data and
schema comparison, and data generation.

Practice: Deploying to SQL Server Express by Using Backup and Restore
As you saw in this lesson, security is important when deploying databases. Deployment plan-
ning should start with plans to address object and access security, logins, and permissions.

IMPORTANT Download SQL Server Express Edition

You will need an instance of SQL Server Express installed and running to complete this practice. You
can download a free copy of SQL Server Express from the Microsoft Web site at http://
msdn.microsoft.com/vstudio/express/sql/download/.

� Exercise: Manage Orphaned Logins

In this exercise, you will create a simple database in SQL Server 2005. You will create a SQL
Server login, add it to the users of AdventureWorks, and assign it permissions on the local
AdventureWorks database. You will then back up and restore this database to an instance of
SQL Server Express.

When you restore the database on SQL Server Express, your SQL Server login will be orphaned;
the User object will be restored with the database, but there will be no corresponding SQL

382 Chapter 12 Creating a Plan for Deploying a Database
Server login on the instance of SQL Server Express. You will need to address this situation
before proceeding.

1. Open SSMS and, in a new query window, create a new database by using the following
T-SQL script:
CREATE DATABASE [TestDB441] ON PRIMARY
(NAME = N'TestDB441', FILENAME = N'C:\TestDB441.mdf' , SIZE = 2048KB , FILEGROWTH =
1024KB)
 LOG ON
(NAME = N'TestDB441_log', FILENAME = N'C:\TestDB441_log.ldf' , SIZE = 1024KB ,
FILEGROWTH = 10%)
GO

2. Execute the following T-SQL code to create a new login:
USE [master]
GO
CREATE LOGIN [TestLogin] WITH PASSWORD=N'TestLogin', DEFAULT_DATABASE=[TestDB441],
CHECK_EXPIRATION=OFF, CHECK_POLICY=OFF
GO

This creates the login TestLogin with a password of TestLogin and sets the default data-
base to TestDB441.

3. To grant access to TestDB441 and allow TestLogin to select from the Person schema, exe-
cute the following T-SQL script:
USE [TestDB441]
GO
CREATE USER [TestLogin] FOR LOGIN [TestLogin] WITH DEFAULT_SCHEMA=[dbo]
GO
ALTER AUTHORIZATION ON SCHEMA::[db_datareader] TO [TestLogin]
GO
GRANT SELECT ON SCHEMA::[dbo] TO [TestLogin]
GO

4. Back up the TestDB441 database by using the following T-SQL script:
BACKUP DATABASE [TestDB441] TO DISK = N'c:\TestDB441.bak'
GO

5. In SSMS, connect to your instance of SQL Server Express and restore the database by
using the following script:
RESTORE DATABASE [TestDB441] FROM DISK = N'C:\TestDB441.bak' WITH FILE = 1, MOVE
N'TestDB441' TO N'C:\Program Files\Microsoft SQL
Server\MSSQL.4\MSSQL\Data\TestDB441.mdf', MOVE N'TestDB441_log' TO N'C:\Program
Files\Microsoft SQL Server\MSSQL.4\MSSQL\Data\TestDB441_1.ldf', NOUNLOAD, REPLACE,
STATS = 10
GO

6. Verify that you have an orphaned user in the TestDb441 database you just restored to
SQL Server Express by using the sp_change_users_login stored procedure:
USE TestDB441
GO
EXEC sp_change_users_login 'Report'

Lesson 2: Practical Deployment Considerations 383
The results pane should display the TestUser username and a UserSID. This indicates
that an orphaned user, TestUser, exists in TestDB441.

7. Use the sp_change_users_login stored procedure to correct the orphaned user problem
by executing the following script:
USE TestDB441
GO
EXEC sp_change_users_login 'Auto_Fix', 'TestLogin', NULL, 'TestLogin'

Barring a conflict, the row for user TestLogin will be fixed by updating its link to a new
login. You should see a message similar to the following in the SQL Query Messages pane.
The number of orphaned users fixed by updating users was 0.
The number of orphaned users fixed by adding new logins and then updating users was 1.

Quick Check
1. You can use DDL triggers to audit database schema changes. True or false?

2. By default in SQL Server 2005, table-level DENY permissions take precedence over
table-level GRANT permissions. True or false?

3. Suppose you work with a database that is modified daily. Modifications include
inserts, updates, and deletes. The database is also replicated daily to several clients.
A new application release requires dropping two tables. What must you do to
deploy this update?

Quick Check Answers
1. The correct answer is True. DDL triggers fire when CREATE, ALTER, or DROP

statements are executed, so you can use them to audit changes.

2. The correct answer is False. Table-level DENY permissions do not take precedence
over table-level GRANT permissions by default. However, implementing Common
Criteria Compliance will force table-level DENY permissions to take precedence
over table-level GRANT permissions.

3. You must remove the tables from the publication articles and execute
sp_addscriptexec at the publisher to call a DROP TABLE script on the clients. Any
changes to the article list in a publication require you to reinitialize all subscriptions.

Case Scenario: Deploying a Database

IMPORTANT Download AdventureWorksLT

For this scenario, you will use the AdventureWorksLT database, detailed in the “Before You Begin”
section of this chapter.

384 Chapter 12 Creating a Plan for Deploying a Database
You are the database developer charged with supporting testing efforts for a new application
release. Software quality assurance (SQA) follows a custom methodology for testing that uses
a series of scripts (not to be confused with T-SQL scripts). Your manager has decided to deploy
the database in concert with the SQA testing progress. SQA first tests for the existence of the
database, tables, and views. Your manager asks you to deploy only the database, tables, and
views to begin with. Answer the following questions:

1. Which deployment technique is suited for this type of deployment?

2. How would you implement this deployment technique?

3. SQA later completes this testing phase, and your manager tells you they’re ready to pop-
ulate the tables with data. What mechanisms can you use to push data into the tables on
your SQL Server Express instance?

Chapter Summary
n Deployment planning reduces error and inefficiency during application deployment or

update. SQL Server 2005 offers five different mechanisms for deploying databases: SQL
Server Management Studio Copy Database Wizard, T-SQL scripts, the Import and
Export Wizard, SQL Server Integration Services, and the SQLCmd utility.

n You can use SSMS to generate T-SQL scripts for all deployment tasks. The most common
T-SQL script deployment options are detach and attach database files, backup and
restore database, and manually create a deployment script.

n Like the Copy Database Wizard, the Import and Export Wizard creates an SSIS package
that you can save at the end of the wizard and is best suited for deployments within the
enterprise. However, three features are unique to the Import and Export Wizard: You can
select different source and destination types, use a query to select data from a source,
and select individual tables and views as sources.

n SQLCmd is primarily a command-line utility that enables you to enter and execute T-SQL
statements, call stored procedures, and execute scripts from the command prompt. To
deploy a database by using SQLCmd, you can type and execute each T-SQL statement
manually, but generating the database script by using SSMS and then executing the
scripts by using SQLCmd enables you to take advantage of the valuable error-checking
and syntax-checking utilities of SSMS.

n Any comprehensive deployment plan takes into account the key elements of security,
how to handle object changes, how to handle data changes, how to implement an audit
trail, how to implement change control, and how to handle project management.

Chapter 13

Controlling Changes to Source
Code

Source code version control is essential. As a database professional, you are well aware of the
benefits of maintaining a single copy (or instance) of data. One primary benefit is that when
you have a single instance of the data, you’re always sure you’re working with the current
instance. The second main benefit is ease of maintenance—if a change is required, it is required
in only one location.

Source code version control also facilitates:

n Developers working on new releases while maintaining current release versions.

n The ability to roll back to previous versions.

This chapter examines why and how you control changes to database source code. You will
also explore the mechanisms for managing files and other code containers, including file per-
missions, encryption, full and partial version labeling (striping), and version comparison.

Exam objectives in this chapter:
n Control changes to source code.

q Set file permissions.

q Set and retrieve version information.

q Detect differences between versions.

q Encrypt source code.

q Mark groups of objects, assign version numbers to them, and devise a method to
track changes.

Before You Begin
To complete the lessons in this chapter, you must have:

n A general understanding of Microsoft SQL Server 2005 and Transact-SQL.

n A general understanding of SQL Server Management Studio, including how to connect
to various SQL Server instances in a typical enterprise environment.
385

386 Chapter 13 Controlling Changes to Source Code
n SQL Server and SQL Server Management Studio installed.

n Access to source control applications. Ideally, you should have access to Microsoft Visual
Studio 2005 Team Foundation Server. A trial version can be downloaded from http://
www.microsoft.com/downloads/details.aspx?FamilyID=d5c12289-f4e4-49a9-9235-
ab2f6d4ca097&DisplayLang=en.

You can also perform the exercises with Microsoft Visual SourceSafe if you have it.
Optional instructions are included for this software, and Lesson 2, “Setting File Permis-
sions,” contains an optional practice for those who have administrative access to a Visual
SourceSafe instance.

Lesson 1: Managing Source Code Changes 387
Lesson 1: Managing Source Code Changes

Estimated lesson time: 30 minutes

Database source code is composed of Transact-SQL (T-SQL) statements, or scripts, that define
the schema of the database. Database source code can be (and usually is) extended to include
at least some of the data contained in the database. You can maintain database source code by
using an application designed solely to control source code. Such utilities are called source
control or version control applications or servers.

In this lesson, you will look at key version control capabilities of Visual Studio 2005 Team
Foundation Server and Visual SourceSafe 2005. SQL Server Management Studio (SSMS)
enables you to create Database Projects, providing a way to manage related T-SQL statements.
Visual Studio Team Foundation Server is designed to manage change and facilitate continuous
improvement for teams of developers. Launched in March 2006, Visual Studio Team Founda-
tion Server provides tools for every phase of the project and each member of the project team.
This lesson will limit its examination to the roles of database developer and database admin-
istrator (DBA). Visual SourceSafe 2005 is the latest version of the popular source control appli-
cation from Microsoft.

SQL Server Management Studio and Source Control
SQL Server Management Studio facilitates database project source control through:

n Database projects.

n Integrated Source Code Control Interface (SCCI).

Database projects enable database developers to group collections of scripts into logical units.
The best way to understand an SSMS database project is to walk through the process of creat-
ing one.

Begin by opening SSMS. Click File, click New, and then click Project.

When the New Project dialog box displays, select the SQL Server Scripts template. Database
projects are stored in the file system. Select a target directory and database project name, as
Figure 13-1 shows.

The database project template loads into SSMS. You can view an empty database project by
using Solution Explorer. Click View, and then click Solution Explorer to display Solution
Explorer.

388 Chapter 13 Controlling Changes to Source Code
Figure 13-1 Selecting a database project name and location

At the top-most level in Solution Explorer, you will find the solution. By default, the solution
and project are given the same name when you create the database project. (See Figure 13-1.)
In this example, the solution is named TestDB and is represented in Figure 13-1 as Solution
‘TestDB’ (1 project). The solution maps to the solution folder in the file system, which is also
defined when you create the project. The example solution is stored in C:\My Docu-
ments\Microsoft Press\TK70-441\Chapter13\Lesson1\TFS\TestDB. Because the Create
Directory For Solution check box is selected, this path is a combination of the path specified
in the Location text box and in the Solution Name text box (TestDB).

Inside the C:\My Documents\Microsoft Press\TK70-441\Chapter13\Lesson1\TFS\TestDB
folder, you will f ind the solution definition files—in this case, TestDB.sqlsuo and
TestDB.ssmssln. TestDB.sqlsuo contains user options in a proprietary (not humanly readable)
format. TestDB.ssmssln is humanly readable and contains global solution properties and
pointers to the project file or files.

In addition, this location contains a project folder, also named TestDB. The only file inside the
TestDB project folder at this time is the project file, TestDB.ssmssqlproj. TestDB.ssmssqlproj
contains Extensible Markup Language (XML) code that defines the project objects. Returning
to Solution Explorer, your TestDB project is directly beneath the solution and contains three
logical folders: Connections, Queries, and Miscellaneous. These logical folders are defined
inside the TestDB.ssmssqlproj file.

The next step is to add a connection to the database project. In Solution Explorer, right-click the
Connections logical folder and click New Connection. When the Connect To Server dialog box
displays, provide instance location and credentials to connect to an instance of SQL Server.
Once connected, Solution Explorer displays the connection similar to what Figure 13-2 shows.

Lesson 1: Managing Source Code Changes 389
Figure 13-2 A connection in Solution Explorer

You can now add a query to the project. Right-click the Queries logical folder and click New
Query. When prompted for connection information, supply a SQL Server instance name and
login credentials. If you provide different connection credentials from those provided in your
first connection, the new connection will be added to your Connections logical folder. If you
do not supply connection information, you will be prompted the next time you open the
query file.

Your query file is named SQLQuery1.sql by default. Open it by double-clicking SQLQuery.sql
in Solution Explorer. In the query editor, enter the following T-SQL script to create a new data-
base named TestDB:

use master;
CREATE DATABASE [TestDB]

Execute the script.

Adding the Project to Source Control
Now you are ready to add the project to source control. Before you do so, however, you need
to configure SSMS to use source control. Click File, and then click Save All to save the project.
Close SSMS before proceeding.

Visual Studio 2005 Team Foundation System provides project life cycle support, including ver-
sion control. To use Visual Studio Team Foundation Server with SSMS, you must first install the
Microsoft Source Code Control Interface (MSSCCI) provider for Visual Studio Team Foundation
Server available at http://www.microsoft.com/downloads/details.aspx?FamilyID=87e1ffbd-a484-
4c3a-8776-d560ab1e6198&DisplayLang=en.

Configuring the source control server—Visual Studio 2005 Team Foundation Server, in this
case—is beyond the scope of this lesson. For information about how to configure Visual Studio
Team Foundation Server, see the Microsoft Developer Network (MSDN) article “How to: Config-
ure Visual Studio with Team Foundation Source Control” at http://msdn2.microsoft.com/en-us
/library/ms253064(VS.80).aspx.

Download and install the Visual Studio Team Foundation Server MSSCCI Provider.msi file.
After installation completes, open SSMS. Click Tools, and then click Options. When the
Options dialog box displays, click Source Control and change the Current Source Control

390 Chapter 13 Controlling Changes to Source Code
Plug-in drop-down list of values from None to Team Foundation Server MSSCCI Provider, as
Figure 13-3 shows.

Figure 13-3 Configuring source control in SQL Server Management Studio

Click OK to exit the Options dialog box and save your changes.

Open SSMS and open your TestDB database project. (Click File, click Recent Projects, and
then click the link to TestDB to open the file.) To add the solution to source control, open Solu-
tion Explorer and right-click the solution item. Click Add Solution To Source Control.

Figure 13-4 shows the Connect To A Team Foundation Server dialog box. If your enterprise
has more than one Visual Studio Team Foundation Server configured, the servers should
appear in the drop-down list. If they do not appear, click the Servers button to add servers to
the drop-down list.

Figure 13-4 Connecting to a Team Foundation server

Click OK to connect to your Visual Studio Team Foundation Server. You will be prompted for
Team Foundation login information; supply a valid user name and password to complete the
connection process.

Once connected, you will be prompted to select a version control folder. By default, the
Choose Folder In Team Foundation Server dialog box opens, showing the new version control
folder under the root folder, designated by the dollar ($) symbol. You cannot use this folder to
store your project’s source code. To alter the default location, expand the root folder by click-
ing the plus (+) symbol to the left of $/. The items beneath the root folder are team projects.

Lesson 1: Managing Source Code Changes 391
IMPORTANT Team projects

Team projects in the Team Foundation Server are created and maintained by your Team Foundation
Server administrator.

Select an existing folder in the Folder Location tree view or create a new folder by clicking
the Make New Folder button. Figure 13-5 shows the selection of a team project named Data-
baseProjects.

Figure 13-5 Adding the TestDB project to the DatabaseProjects team project

When you click OK, the Check In dialog box displays, as Figure 13-6 shows.

Figure 13-6 Checking in Source Files

392 Chapter 13 Controlling Changes to Source Code
To maintain communication during development efforts (and to remind you of what you were
thinking when you look at the files in the future), it’s a best practice to add a comment. Click
the Check In button to add the selected files to your team project’s source control.

Exam Tip Changeset is the name for a collection of items that you check in together into Team
Foundation Server version control.

Solution Explorer indicates items that are stored in Visual Studio Team Foundation Server
with a blue padlock icon, as Figure 13-7 shows.

Figure 13-7 Source-controlled items in Solution Explorer

Items can be checked out for editing by right-clicking the item and clicking Check Out For
Edit. If SSMS source control is set up using default behaviors, any change to items currently
checked in will cause the item to be checked out automatically for editing. Checked out for edit
status is indicated in Solution Explorer by a red checkmark icon, as 13-8 shows.

Figure 13-8 Checked out for edit

Several options, described as follows, are available after items are checked out from the file’s
context menu .

n Open Opens the item in SSMS.
n Cut Copies the item to the clipboard; the item is deleted once you’ve pasted it in its

destination.
n Copy Copies the item to the clipboard, and the item is unaffected by a paste.
n Remove Removes the item from the database project. The user is prompted to remove

the item, delete the item, or cancel the operation.
n Rename Renames the item.

Lesson 1: Managing Source Code Changes 393
n Check In Displays the Check In dialog box.
n View Pending Checkins Displays the Pending Checkins dialog box.
n Undo Checkout Removes the Checked Out For Edit status and restores the file-system

version to the last checked-in version. If the item is open in SSMS, you might be
prompted to reload.

n Get Latest Version Gets the last checked-in version from Visual Studio Team Founda-
tion Server.

n Compare Starts the Compare dialog box, which enables you to compare versions of the
file stored in Visual Studio Team Foundation Server and files stored in the file system.

n Get Gets an item from Visual Studio Team Foundation Server.
n View History Displays a check-in history of the item.
n Properties Window Displays properties of the item.

Working with a Source-Controlled Database Project
After your database project is source-controlled or version-controlled, you can edit or add
items as needed. To demonstrate, rename your existing script to something more descriptive.
In Solution Explorer, right-click the SQLQuery1.sql item and click Rename. Change the name
of the script to CreateDatabase.sql.

Renaming items checked out for editing is possible but tedious. For this reason, it’s best to
rename only checked-in items. After you click Rename, you are presented with the dialog box
shown in Figure 13-9.

Figure 13-9 Renaming source-controlled items

394 Chapter 13 Controlling Changes to Source Code
The first option renames the local file and the item stored in source control. This is recom-
mended to maintain consistency. The other option renames the file system object only. Click
OK to rename the local file and item in Visual Studio Team Foundation Server version control.
You will be prompted to check in the file with its new name. Once the file is checked in, Solu-
tion Explorer displays the file with its new name.

Now, let’s add a new script to your database project and then to Visual Studio Team Founda-
tion Server version control. In SSMS, click the New Query button. A new query window
named SQLQuery1.sql opens. This item does not show up in Solution Explorer—yet. Add the
following T-SQL to the query window:

use TestDB

CREATE TABLE dbo.TestTable
(ID int identity(1,1) NOT NULL,
Name varchar(25) NULL,
Value int NULL)

Execute the script to create the table.

To add the script to your TestDB solution, click File, click Move SQLQuery1.sql Into, and click
TestDB. When the Save File As dialog box displays, change the name of the file to CreateTest-
Table.sql and click Save. In Solution Explorer, CreateTestTable.sql is added to the Queries log-
ical folder with a plus sign (+) icon.

The plus sign indicates that the item is new to the solution and has not yet been added to
source control. In SSMS, click View, and then click Pending Checkins. The Pending Check-
ins window displays changes to a source-controlled solution that have not been checked in.
These changes represent the difference between the solution in its current state and its last
checked-in state.

From the Pending Checkins window, you can add comments to this changeset by clicking the
Comments button and typing text, as Figure 13-10 shows. Again, adding comments is a best
practice because it serves to describe the change. After typing comments, click the Check In
button to store the changeset in your Team Project in Visual Studio Team Foundation Server.

Figure 13-10 Pending Checkins dialog box

Lesson 1: Managing Source Code Changes 395
After the changeset is checked in, the Pending Checkins window is empty, and Solution
Explorer displays all items with the blue padlock icon, indicating that all items in the current
solution have been checked in.

Practice: Managing Changes to Source Code
In this practice, you use what you learned in Lesson 1, “Managing Source Code Changes,” to
add a new file to the TestDB project and check in your changes. If you need to review how to
perform any of the following tasks, see the steps covered in Lesson 1.

On the Companion Disc This chapter includes many code examples. You will f ind all the code
from this chapter on the companion CD in the C:\My Documents\Microsoft Press\TK70-441
\Chapter13 folder.

� Exercise: Create and Source-Control a New Stored Procedure

In this exercise, you will add a new stored procedure to the TestDB project and then update
the Team Project.

1. Add a new item, a stored procedure, to the TestDB project. Call the file
usp_GetTestNameAndValue.

Add the following T-SQL code to the file to create the stored procedure:
use TestDB;
GO

CREATE PROCEDURE dbo.usp_GetTestNameAndValue
 @ID int
AS
 select Name, Value
 from dbo.TestTable
 where id = @ID
GO

2. Add the file to the TestDB solution.

3. Check in your changes.

396 Chapter 13 Controlling Changes to Source Code
Quick Check
1. Default behaviors for SQL Server Management Studio source control include

which of the following? (Select all that apply.)

A. Keep items checked out when checking in.

B. On save, check out automatically.

C. On edit, check out automatically.

D. Allow checked-in items to be edited.

2. True or false: A changeset is a list of changes to source-controlled items.

Quick Check Answers
1. The correct answers are B and C: on save, check out automatically; and on edit,

check out automatically. Keeping items checked out when checking in, and allow-
ing checked-in items to be edited, are valid options but not default behaviors.

2. The correct answer is false. A changeset is a collection of items checked into Team
Foundation Server together.

Lesson 2: Setting File Permissions 397
Lesson 2: Setting File Permissions

Estimated lesson time: 15 minutes

Source code access is controlled by file permissions. Some source control servers—Team Foun-
dation Server, for instance—integrate with Microsoft Windows security and Active Directory
directory service to manage user access. Other source control applications, such as Visual
SourceSafe 2005, rely on internal users defined by application administrators in concert with
file system permissions controlled by Windows integrated security. This lesson uses Visual
SourceSafe 2005 to demonstrate principles of controlling database project source code.

Visual SourceSafe User Permissions and Rights
Visual SourceSafe users can be created with read-only rights, as Figure 13-11 shows.

Figure 13-11 Creating a read-only user in Visual SourceSafe 2005

Visual SourceSafe 2005 allows even finer control over users. You can use the Visual SourceSafe
Administrator utility to enable project rights and assignments. Once enabled, users can be
granted specific rights on a database project. These rights include:

n Read A user has read permissions for the items in a database project.
n Check Out/Check In A user can check items into and out of source control.
n Add/Rename/Delete Users with this right can add, modify, or delete items from a data-

base project.
n Destroy This includes purge and rollback permissions (usually reserved for source con-

trol administrators).

398 Chapter 13 Controlling Changes to Source Code
Folder Permissions
You can also maintain folder-level source control by using a combination of user groups and
folder permissions. User groups are created on the computer running Visual SourceSafe or in
the Active Directory domain. User groups can use local accounts or domain accounts. Permis-
sions are then set on the Windows folder containing the Srcsafe.ini file and based upon the
developer’s (or user’s) Windows security or Active Directory credentials.

Opening Visual SourceSafe–Controlled Projects
A Visual SourceSafe login dialog box, which Figure 13-12 shows, displays when you open a
database project that uses Visual SourceSafe for source code control.

Figure 13-12 Logging on to Visual SourceSafe 2005

When a read-only user attempts to add to a database project, he or she is prohibited. A dialog
box displays when a read-only user attempts to add an item to a database project, informing
the user that he or she does not have access rights to the project source code.

Optional Practice: Setting Source Control File Permissions
This practice is optional. To perform the steps in the exercise, you will need administrative
access to a Visual SourceSafe instance.

In this practice, you use what you learned in Lesson 2, “Setting File Permissions,” and previous
lessons to create two users in Visual SourceSafe; set one user as a read-only user, and then test
the permissions by adding a project and trying to add an item as the read-only user.

Lesson 2: Setting File Permissions 399
IMPORTANT Visual SourceSafe for this practice

Before continuing, create or access an instance of Visual SourceSafe 2005. Visual SourceSafe
2005 administration is beyond the scope of this section. For more information about using Visual
SourceSafe, see “Working with Visual SourceSafe” at http://msdn2.microsoft.com/en-us /library
/ms998227.aspx.

� Exercise: Use Visual SourceSafe 2005 with SSMS

In this exercise, you will control an SSMS project with Visual SourceSafe 2005.

1. Configure SSMS to use Visual SourceSafe 2005.

2. Create two users in Visual SourceSafe 2005: SQLUser1 and SQLUser2.

3. Set SQLUser2 as a read-only user.

4. Create a new database project in SSMS.

5. Add the project to source control, connecting to Visual SourceSafe as SQLUser1.

6. Save changes and close SSMS.

7. Re-open SSMS and the database project, signing into source control as SQLUser2.

8. Test the read-only restriction by attempting to add a new item.

Quick Check
n True or false: A database project source-controlled with Visual SourceSafe 2005

can use Windows integrated security to control access to the Visual SourceSafe
directory that contains the Srcsafe.ini file.

Quick Check Answer
n The correct answer is true. Visual SourceSafe 2005 can use a combination of inter-

nal (Visual SourceSafe) user accounts and Windows integrated security to control
access and permissions to source control. Windows integrated security is used to
control access to the Visual SourceSafe folder that contains the Srcsafe.ini file.

400 Chapter 13 Controlling Changes to Source Code
Lesson 3: Setting and Retrieving Version Information

Estimated lesson time: 20 minutes

Almost all source control products provide the ability to label, or stripe, versions of an appli-
cation. Visual SourceSafe 2005 Explorer enables users to apply a label to a stored version.
Labels are helpful progress markers for projects during development. Post-deployment, labels
provide a means of tracking major and minor releases. This is important in the event that you
need to roll back to a previous release.

In Visual SourceSafe 2005, you can apply labels to folders. To add a label in Visual SourceSafe
2005, open Visual SourceSafe 2005 Explorer and navigate to the desired folder. Right-click the
folder and click Label.

When the Label dialog box displays, add label text in the Label text box, and then add an
optional description, as Figure 13-13 shows. This is sometimes referred to as striping a version.

Figure 13-13 Applying a label (striping) in Visual SourceSafe 2005

To apply a label in Visual Studio 2005 Team Foundation Server, you need to use Team
Explorer, the client for Team Foundation Server. Installing and configuring Team Explorer
is beyond the scope of this chapter. For more information, see “Using Team Explorer” at
http://msdn2.microsoft.com/en-us/library/ms181304(VS.80).aspx.

Team Explorer is an add-on for Microsoft Visual Studio 2005 Team Foundation Server, and
SQL Server Business Intelligence Development Studio (BIDS) is actually Visual Studio 2005
with SQL Server development templates installed.

To access Team Explorer, open SQL Server BIDS, click Tools, and then click Connect To
Team Foundation Server. When the Team Foundation Servers dialog box displays, select
your Team Foundation Server and Team Project. When Team Explorer connects, as shown
in Figure 13-14, double-click Source Control to open Source Control Explorer.

Lesson 3: Setting and Retrieving Version Information 401
Figure 13-14 Team Explorer

Navigate to the item or folder you want to label. Note that, in Team Explorer, labels can be
applied to individual items as well as to folders. Right-click the item or folder and click Apply
Label, as Figure 13-15 shows.

Figure 13-15 Applying a label in the Team Foundation Server Source Control Explorer

Figure 13-16 shows the Choose Item Version dialog box. Using the Version drop-down list,
you can select the latest version or a version by date, label, or changeset. Select a version and
click OK.

402 Chapter 13 Controlling Changes to Source Code
Figure 13-16 Selecting a version to label

The Apply Label dialog box displays, as Figure 13-17 shows. Enter the label text in the Name
text box and an optional comment in the Comment text box. You can also add other items to
this label or remove items listed by using the Add and Remove buttons in this dialog box.

Figure 13-17 Applying a label

You use labels to manage versions. All major and minor database application releases should
be labeled to facilitate application rollbacks and continued development.

Lesson 3: Setting and Retrieving Version Information 403
Practice: Setting Version Information
In this practice, use what you learned in Lesson 3, “Setting and Retrieving Version Informa-
tion,” to apply descriptive labels with comments to individual items in your TestDB database
project controlled by Visual Studio 2005 Team Foundation Server.

� Exercise: Add Labels

Add the labels as described in this lesson and give the items descriptions that would
help you or another database developer or administrator clearly identify the items in
case a rollback is required.

Quick Check
n True or false: You can apply labels to individual items in Visual SourceSafe 2005.

Quick Check Answer
n The correct answer is false. You can apply labels to folders in Visual SourceSafe

2005. You can apply labels to individual items in Visual Studio 2005 Team Foun-
dation Server.

404 Chapter 13 Controlling Changes to Source Code
Lesson 4: Detecting Differences Between Versions

Estimated lesson time: 20 minutes

Most source control applications and servers provide comparison mechanisms. Visual Source-
Safe 2005 and Visual Studio 2005 Team Foundation Server provide this functionality.

To see how the comparison utility in Team Foundation Server works, open your TestDB database
project in SSMS. Log in to Team Foundation Server and open the usp_GetTestNameAndValue
item from Solution Explorer. Edit the T-SQL code in the procedure to read as follows:

CREATE PROCEDURE dbo.usp_GetTestNameAndValue
 @ID int
AS
 select Name AS 'TestName'
 , Value AS 'TestValue'
 from dbo.TestTable
 where id = @ID
GO

Click File, and then click Save usp_GetTestNameAndValue to save your changes. Do not check
the changes into source control.

In Solution Explorer, right-click the usp_GetTestNameAndValue item and click Compare. The
Compare dialog box displays, as Figure 13-18 shows.

Figure 13-18 Selecting items to compare—Team Foundation Server

Lesson 4: Detecting Differences Between Versions 405
Click OK to compare the file you just saved to the last-saved version from source control.
The Differences dialog box displays differences between the two versions, as Figure 13-19
shows. Differences are noted by color. Although the colors don’t appear in the figure, blue
text indicates text that has been altered (Changed Text), red text indicates text that has been
deleted, and green text indicates text that has been added. Black text indicates no change.

Figure 13-19 Differences dialog box—Team Foundation Server

Figure 13-20 and Figure 13-21 show the Visual SourceSafe 2005 counterparts to the Team
Foundation Server Compare dialog box that was shown in Figure 13-18 and the Differences
dialog box that was shown in Figure 13-19, respectively.

Figure 13-20 Difference Options dialog box—Visual SourceSafe 2005

406 Chapter 13 Controlling Changes to Source Code
Click OK in the Difference Options dialog box to compare the latest file version to the latest
Visual SourceSafe 2005 version of the file.

Figure 13-21 Differences dialog box—Visual SourceSafe 2005

The color code in the Visual Studio 2005 Team Foundation Server Difference dialog box is
identical to the color code used in the Visual SourceSafe 2005 Difference dialog box.

Comparing source code in database projects can help you isolate the source of the problem
between a version that functions as intended and a version that has a bug.

Practice: Detecting Version Differences
In this practice, use what you learned in Lesson 4, “Detecting Differences Between Versions.”

� Exercise: Compare Versions

Store the current versions of usp_GetTestNameAndValue in Visual Studio 2005 Team
Foundation Server and in Visual SourceSafe 2005 if you have access to it. Execute com-
parisons between source-controlled versions.

Lesson 4: Detecting Differences Between Versions 407
Quick Check
n The Differences dialog box in Visual SourceSafe 2005 and in Visual Studio 2005

Team Foundation Server use the following color schemes to identify changes.
(Select all that apply.)

q Red for deleted text.

q Brown for changed text.

q Green for changed text.

q Blue for changed text.

q Green for added text.

q Black indicates no change.

Quick Check Answer
n The correct answers are A, D, E, and F. Red indicates deleted text, blue indicates

changed text, green indicates added text, and black indicates no change.

408 Chapter 13 Controlling Changes to Source Code
Lesson 5: Encrypting Source Code

Estimated lesson time: 15 minutes

Encrypting database project source code is sometimes desired to protect intellectual property.
At other times, it is required to protect sensitive industrial or government applications. In this
lesson, you will walk through an example of adding encryption to the TestDB database project
you created in previous lessons.

In this example, you will:

n Create a certificate and add it to the TestDB database.

n Create a SQL Server Login and add a User to the TestDB database.

n Create and sign a new stored procedure with the certificate.

n Create a certificate account and grant it sufficient database rights in the TestDB database.

n Display and test the access context.

IMPORTANT Mixed Mode security

Your instance of SQL Server 2005 must use Mixed Mode security to execute the T-SQL code in this
lesson.

Open SSMS and the TestDB project that you created earlier in this chapter. Log in to Team
Fo un d a t i o n S e rve r to a cc e ss yo ur d a t a ba s e p ro j ec t s o u rc e c o d e . I f t he
usp_GetTestNameAndValue item is still checked out for edit, right-click it and check this item
in to source control.

Create a new query in SSMS and enter the following T-SQL code in the query window to create
a login for a test user:

USE TestDB;
GO
-- Set up a login for the test user
CREATE LOGIN TestEncryptionUser
 WITH PASSWORD = 'QmJg&6zp0)'
GO
CREATE USER TestEncryptionUser
FOR LOGIN TestEncryptionUser;
GO

Save this script as CreateTestEncryptionUser and move it into the TestDB database project.
Execute the script.

Certificates can be created in individual databases, in the master database, or in both. For a
comprehensive look at the options for creating certifications, see the SQL Server 2005 Books

Lesson 5: Encrypting Source Code 409
Online topic “CREATE CERTIFICATE (Transact-SQL)” at http://msdn2.microsoft.com/en-us
/library/ms187798(SQL.90).aspx. Create a new query named CreateCertificate and insert the
following T-SQL code:

CREATE CERTIFICATE TestDBCertificate
 ENCRYPTION BY PASSWORD = 'CJhorhins!@2258'
 WITH SUBJECT = 'Encryption for TestDB',
 EXPIRY_DATE = '07/10/2016';
GO

Move this script into the TestDB project and execute it.

Now, create a stored procedure to display information about the user and context to test your
encryption method. Create a new stored procedure named usp_TestEncryption and add it to
the TestDB database project:

USE TestDB
GO

CREATE PROCEDURE usp_TestEncryption
AS
 -- Show who is running the stored procedure
 SELECT SYSTEM_USER 'System User'
 , USER AS 'Database User'
 , NAME AS 'Context'
 , TYPE
 , USAGE
 FROM sys.user_token

 SELECT
 ID
 ,Name
 ,Value
 FROM dbo.TestTable;

GO

ADD SIGNATURE TO usp_TestEncryption
 BY CERTIFICATE TestDBCertificate
 WITH PASSWORD = 'CJhorhins!@2258';
GO

The stored procedure is created at the beginning of the T-SQL statement, beginning with the
CREATE PROCEDURE statement. Two T-SQL statements are included: one that displays exe-
cution context information and another that displays all records in the dbo.TestTable table.
The T-SQL code beginning with ADD SIGNATURE signs the stored procedure by using the
certificate you created in the previous step. Execute this script.

410 Chapter 13 Controlling Changes to Source Code
The certificate requires a certificate account to control access to the underlying tables. Create
a new query named CertificateUser and enter the following T-SQL code in the query editor
window:

USE TestDB;
GO
CREATE USER TestDBEncryptionAccount
 FROM CERTIFICATE TestDBCertificate;
GO

GRANT SELECT
 ON dbo.TestTable
 TO TestDBEncryptionAccount;
GO

GRANT EXECUTE
 ON usp_TestEncryption
 TO TestDBEncryptionAccount;
GO

GRANT EXECUTE
 ON usp_TestEncryption
 TO TestEncryptionUser;
GO

Review the four T-SQL statements in this script. The first statement creates a user account
from the certificate. The second grants select permission on the underlying table
(dbo.TestTable) to the new user (TestDBEncryptionAccount). The third statement grants
execute permission on your new stored procedure (usp_TestEncryption) to the new user
(TestDBEncryptionAccount). The fourth T-SQL statement grants execute permission to the
TestEncryptionUser account you created first, enabling you to display rights associated with
the stored procedure access. Execute this script.

Now, test your work. First, open a new query window and copy the following T-SQL statement
into the query editor window:

EXEC usp_TestEncryption;

Figure 13-22 shows the results you should receive when you run this query logged on as
Administrator.

Lesson 5: Encrypting Source Code 411
Figure 13-22 Executing a test query as Administrator

The results indicate that the Administrator account is running in its own security context as a
Windows login.

Next, execute the following test query:

EXECUTE AS LOGIN = 'TestEncryptionUser';
GO
EXEC usp_TestEncryption;

Your results should resemble those shown in Figure 13-23.

Figure 13-23 Executing a test query as TestEncryptionUser

Note that the type column returns a SQL User, Role, and, finally, the certificate user account
for the returned Contexts: TestEncryptionUser, public, and TestDBEncryptionAccount,
respectively.

In addition to denying the user explicit permissions on the underlying database objects, using
a certificate facilitates a high level of detailed auditing. Trace data can include user and context
information.

412 Chapter 13 Controlling Changes to Source Code
Practice: Source Code Encryption
In this practice, use what you learned in Lesson 5, “Encrypting Source Code.”

� Exercise: Encrypt Source Code

Create additional certificates, certificate user accounts, and SQL Server logins in
TestDB. Alter the usp_GetTestNameAndValue procedure and sign it with your new
certificate.

Quick Check
n Certificates can be created in which objects? (Choose all that apply.)

q Stored procedures

q The master database

q Individual databases

q Tables

Quick Check Answer
n The correct answers are B and C. Certificates can be created on the master data-

base and individual databases but not on stored procedures or tables. Certificates
are used to sign stored procedures. Certificate accounts are used to allow signed
stored procedures to access data in underlying tables.

Lesson 6: Tracking Changes to Groups of Objects 413
Lesson 6: Tracking Changes to Groups of Objects

Estimated lesson time: 10 minutes

Tracking changes to groups of objects and assigning version numbers are important parts of
change control. Labels, discussed earlier in this chapter, provide some of this functionality.
Source control folders, such as those you've observed in both Visual SourceSafe 2005 and
Visual Studio 2005 Team Foundation Server, track changes on a group of objects. Visual Stu-
dio Team Foundation Server changesets take this concept to a more granular level, retaining
information about when the developer checked a set of items into source control. Let’s look
more closely at marking a group of objects, assigning them version numbers, and devising a
method to track changes to them.

There are several manual methods of maintaining a change history. Two popular methods are:

n Using extended properties.

n Creating a DBVersion table, such as the AdventureWorks.dbo.AWBuildVersion table.

Extended properties provide a mechanism for adding user-defined metadata to databases and
database objects. To add an extended property to dbo.usp_GetTestNameAndValue, execute
the following T-SQL script:

use TestDB;
GO
EXEC sys.sp_addextendedproperty
@name = N'MS_Description',
@value = N'Test Name and Value information by ID.',
@level0type = N'SCHEMA', @level0name = dbo,
@level1type = N'PROCEDURE', @level1name = usp_GetTestNameAndValue;
GO

To view the extended property you just added, execute the following T-SQL query:

USE TestDB;
GO
SELECT objtype, objname, name, value
FROM fn_listextendedproperty (NULL, 'schema', 'dbo', 'procedure', 'usp_GetTestNameAndValue',
default, default);
GO

Your results should look like these:

objtype objname name value
--
PROCEDURE usp_GetTestNameAndValue MS_Description Test Name and Value information by ID.

414 Chapter 13 Controlling Changes to Source Code
Many database developers choose to implement custom database version mechanisms similar
to the AWBuildVersion table included in the AdventureWorks sample database. These tables
contain information about the database version and the date the version was implemented
and/or last updated.

Figure 13-24 shows the AdventureWorks.dbo.AWBuildVersion table. It contains information
about the database version, the version date, and the date the version was modified.

Figure 13-24 The AdventureWorks.dbo.AWBuildVersion table

In these examples, object version metadata must be maintained manually. The tradeoff
between (somewhat) generic automated solutions provided by version-control servers such as
Visual Studio Team Foundation Server and Visual SourceSafe must be weighed against manu-
ally maintaining a custom solution such as database tables and extended properties. In the
end, you need to determine which solution is best for maintaining the database project source
code in your enterprise.

Quick Check
Which are valid ways to track changes to groups of database objects? (Choose all that
apply)

A. Use sp_add_job

B. Create a custom Version table

C. Use sp_adddistributor

D. Use sp_addextendedproperty

Quick Check Answers
The correct answers are B and D. Database developers can create a custom Version table to
track changes to database objects. Database developers can also attach Extended Proper-
ties to individual database objects using the sp_addextendedproperty stored procedure.

Case Scenario: Controlling Changes to Source Code
You are tasked with specifying and implementing database source code control for your enter-
prise. You have the scenario of your dreams: an unlimited budget and enough time to com-
plete this project properly. Your project sponsor, the director of Enterprise Application
Development, asks that you do the following:

Lesson 6: Tracking Changes to Groups of Objects 415
1. Choose a product, platform, and/or methodology that will serve your company for the
next four to seven years.

2. Choose a technology that all members of the Enterprise Application Development Team
can use—preferably integrated into the team’s existing and future software development
suites.

3. Consider in your selection that software engineers and testers are not the only users of
the solution; project managers and sponsors will also be involved in the software life
cycle.

Which choices would you make to fulfill these requirements? Why?

Chapter Summary
n Database source code control gives you a single instance of the data to ensure that it is

the current instance and to ensure ease of maintenance. (If a change is required, it is
required in only one location.)

n You maintain database source code by using an application designed for the sole pur-
pose of controlling source code. Such utilities are called source control or version control
applications or servers. Visual Studio 2005 Team Foundation Server is designed to man-
age change and facilitate continuous improvement for teams of developers. Visual Source-
Safe 2005 is the latest version of the popular source control application from Microsoft.

n SQL Server Management Studio (SSMS) facilitates database project source control
through database projects and Integrated Source Code Control Interface (SCCI). Data-
base projects enable database developers to group collections of scripts into logical
units.

n Source code access is controlled by file permissions.

n When you have an item checked out of the source control system for editing, you can
perform a number of actions on the item, including cutting and pasting, copying, remov-
ing, renaming, comparing the item to another version, looking at the item history, and
more.

n Visual SourceSafe 2005 enables you to apply a label to a stored version, a process also
called striping. Labels are helpful progress markers for projects during development.
Post-deployment, labels provide a means of tracking major and minor releases, which is
important if you need to roll back to a previous release.

n Comparing source code in database projects can help you isolate the source of the prob-
lem between a version that functions as intended and a version that has a bug.

n In addition to using source-control applications and servers to compare and track code
versions, there are several manual methods of maintaining a change history, including
using extended properties and creating a DBVersion table such as the Adventure-
Works.dbo.AWBuildVersion table.

Chapter 14

Designing for Data Distribution
In Microsoft SQL Server 2005, you have a number of options for distributing data to users and
applications. The traditional way is to create and use custom applications such as Microsoft
Windows and Web applications that query SQL Server databases. However, SQL Server
includes several components and services for distributing data in a variety of scenarios with-
out the need for custom applications. As you will see in this chapter, you can distribute data as
reports by using SQL Server Reporting Services (SSRS), as e-mail messages by using Database-
Mail, as notifications by using Notification Services, and as operational information that you
can send administrators by using SQL Server Agent alerts. As a database solutions developer,
you should be familiar with all these options and be able to choose the most appropriate for
different scenarios.

Exam objectives in this chapter:
n Design data distribution.

q Design a DatabaseMail solution for distributing data.

q Design SQL Server Agent alerts.

q Specify a Web services solution for distributing data.

q Specify a Reporting Services solution for distributing data.

q Specify a Notification Services solution for distributing data.

n Design objects that perform actions.

q Design WMI triggers.

Before You Begin
To complete the lessons in this chapter, you must have:

n A general understanding of multi-tiered, asynchronous, and service-oriented architectures.

n Knowledge about SQL Server components, including common language runtime (CLR)
integration, hypertext transfer protocol (HTTP) endpoints, SQL Server Agent, Database-
Mail, SQL Server Notification Services, and SQL Server Reporting Services.
417

418 Chapter 14 Designing for Data Distribution
n Knowledge of the Transact-SQL (T-SQL) language elements that support security.

n The SQL Server 2005 AdventureWorks sample database installed. Sample databases are
available with SQL Server 2005 Enterprise Edition but are not a part of the default instal-
lation. Alternatively, you can install the sample databases from http://msdn2.microsoft .com
/en-us/library/ms143739.aspx.

n Microsoft Internet Information Services (IIS) with Simple Mail Transport Protocol
(SMTP) virtual server installed.

n Microsoft Visual Studio 2005 or Microsoft Visual Basic or C# 2005 Express Edition
installed. You can download Visual Studio Express Editions from http://msdn.microsoft .com
/vstudio/express/.

Lesson 1: Designing a DatabaseMail Solution for Distributing Data 419
Lesson 1: Designing a DatabaseMail Solution for
Distributing Data

Estimated lesson time: 30 minutes

By sending e-mail, you can distribute data to users in a worldwide, standard, reliable, and
proactive way. All users need to do is open their favorite mail client to get the information.
No matter where users are, they will probably have an e-mail account by which you can
likely reach them. Users do not need to stay connected all the time or have a very reliable
Internet connection.

To send e-mails, you have two options: send from an external application or from a SQL Server
application. SQL Server 2005 introduces DatabaseMail, a new component for sending e-mail
by using SMTP as opposed to the obsolete SQL Mail feature, which uses Messaging Applica-
tion Programming Interface (MAPI).

DatabaseMail enables you to send e-mail messages from T-SQL and CLR code. The messages
can contain attached files and query results, and you can use either text or HTML format.

DatabaseMail operates asynchronously. It uses an external process that reads the messages
from a SQL Server Service Broker queue and sends them to the SMTP server or servers. This
infrastructure provides scalability and reliability.

DatabaseMail Architecture
The SQL Server msdb system database stores metadata for DatabaseMail. DatabaseMail is com-
posed of the following components:

n Configuration and security components The msdb database contains objects to store
and manage security and configuration information that DatabaseMail uses.

n Messaging components The msdb database also contains messaging components.
These components include the sp_send_dbmail stored procedure and objects to store
message information.

n DatabaseMail executable The external program DatabaseMail90.exe, which runs in the
security context of the service account for SQL Server, reads the messages from a queue
in the msdb database and sends them to SMTP servers. DatabaseMail uses Service Broker
activation to start this external program.

n Logging and auditing components DatabaseMail logs information in the msdb database
and the Windows Event Log.

420 Chapter 14 Designing for Data Distribution
Figure 14-1 illustrates the DatabaseMail architecture.

Figure 14-1 DatabaseMail architecture

When a user executes the sp_send_dbmail stored procedure to send an e-mail message, Data-
baseMail adds the message to the mail queue. The DatabaseMail executable reads the mail
queue, sends the e-mail messages to SMTP servers, and adds the outcome of the send opera-
tion to the status queue. An internal stored procedure reads the status queue and updates sta-
tus information stored in the msdb database.

Enabling DatabaseMail
For security reasons, DatabaseMail is disabled by default. Before you can use it, a database
administrator (DBA) must enable it and create at least one DatabaseMail profile with at least
one DatabaseMail account. To enable DatabaseMail, you can use one of the following tools:

n DatabaseMail Configuration Wizard

n SQL Server Surface Area Configuration

n Sp_configure stored procedure with the DatabaseMail XP’s configuration option

MSDB
database

SQL Server

Mail Server

Recipients
E-mail

EXEC sp_send_dbmail

DatabaseMail9.exe

Mail Queue

Configuration
And Security

Objects

Messaging
Objects

Status Queue

Lesson 1: Designing a DatabaseMail Solution for Distributing Data 421
DatabaseMail Accounts, Profiles, and Security
A DatabaseMail account is a DatabaseMail object that contains information about an e-mail
account. This information includes account name, e-mail address, SMTP server name, port
number, and security information. A DatabaseMail account can be configured to use Secure
Sockets Layer (SSL) and can also be configured to use Windows, basic, or anonymous authen-
tication. When an account is configured to use Windows authentication, the DatabaseMail
executable sends the credentials of the SQL Server service account to the SMTP server. You
can associate a DatabaseMail account with one or more DatabaseMail profiles.

A DatabaseMail profile is a DatabaseMail object that contains DatabaseMail accounts. When
you send an e-mail message by using sp_send_dbmail, you must specify a DatabaseMail pro-
file in the information related to the message. To be usable, a DatabaseMail profile must have
at least one DatabaseMail account. Each DatabaseMail account in a profile has an assigned pri-
ority (sequence number) in that profile. DatabaseMail uses the accounts in a profile based on
priorities. DatabaseMail starts using the highest priority account (lowest sequence number). If
the e-mail delivery operation fails when using that account, DatabaseMail uses the next
account in the profile by priority order (next sequence number). To improve reliability, pro-
files should have more than one account. The second and following accounts are called
failover accounts.

Profiles should be the same during the development, testing, and production phases, but the
accounts can be different. A DBA can change the accounts in a profile without affecting the
application.

Profiles are securable objects. To send a message, a user must be a member of the Database-
MailUserRole database role in the msdb database and must have been granted permission to
use at least one profile. From a security point of view, there are two profile types:

n Public profiles All members of the DatabaseMail database role in the msdb database can
use public profiles. To make a profile public, you must grant access permission on the pro-
file to the public database role in the msdb database.

n Private profiles Only the specified users and roles in the msdb database can use a private
profile.

There are two configuration parameters related to security:

n MaxFileSize The maximum attachment size
n ProhibitedExtensions A list of prohibited file extensions for attachments

You can create and manage accounts and profiles and configure DatabaseMail by using one of
the following methods:

n DatabaseMail Configuration Wizard

n DatabaseMail stored procedures

n SQL Server Management Objects (SMO)

422 Chapter 14 Designing for Data Distribution
Sending Messages
To send an e-mail message, you use the sp_send_dbmail stored procedure, specifying a Data-
baseMail profile, one or more recipients, the subject, the body, and optionally attached files.
You can format the message body in either text or HTML format. You can include query results
in either the body or an attached file. To include query results, you have two options.

n Specify the @query parameter.

DatabaseMail executes the query in another session in the security context of the caller,
but synchronously. Because there is no way to specify parameters for the query, you have
to concatenate values to simulate them. This is a security risk, so if you need parameters
in the query, consider other options. You can specify only very basic formatting for the
query result; therefore, if you need more complex formatting, consider other options.

n Manually execute queries.

This is a more complex but flexible approach. You can execute parameterized queries
and stored procedures, format the results, and include them in the @body parameter. To
format the result, you can use the FOR XML clause and specify HTML tags as column
aliases to get HTML. You can also use the FOR XML clause to get XML and transform it
into HTML by using Extensible Stylesheet Language Transformations (XSLTs). You can
write a CLR object that performs the transformation.

DatabaseMail delivers messages asynchronously, but the message preparation (query execu-
tions, formatting, and so on) is done synchronously by default. In some circumstances, such
as when the message preparation cost is high, consider preparing the messages asynchro-
nously by using Service Broker.

Practice: Sending E-mail Messages by Using DatabaseMail
In this practice, you will configure DatabaseMail and send e-mail messages by using the
sp_send_dbmail stored procedure. Before beginning, you must set up SMTP.

On the Companion Disc This chapter includes many code examples. You will f ind the lesson
code from this chapter on the companion CD in the C:\My Documents\Microsoft Press\TK70-441
\Chapter14 folder.

� Exercise 1: Set Up SMTP

Before beginning the DatabaseMail exercises, you need to set up the required SMTP services
by completing the following steps:

1. Verify that you have IIS 5.0 or later with the SMTP virtual server installed on your com-
puter. The Windows setup program does not install IIS by default, and the default instal-
lation of IIS does not include SMTP services.

Lesson 1: Designing a DatabaseMail Solution for Distributing Data 423
2. Open IIS Manager to create a domain alias for adventure-works.com.

3. Expand the local computer.

4. Expand the default virtual SMTP server.

5. Right-click Domains and select New Domain.

6. Select the Alias option and click Next.

7. Type adventure-works.com in the Name box and click Finish.

8. Close IIS Manager.

� Exercise 2: Configure DatabaseMail

In this exercise, you will enable DatabaseMail and create one public profile that contains one
account.

1. Open SQL Server Management Studio (SSMS) and connect to the local Database Engine
instance.

2. In Object Explorer, expand the Management node.

3. Right-click Database Mail and select Configure Database Mail.

4. The Database Mail Configuration Wizard dialog box appears. Select the Skip This Page
In The Future check box and click Next.

5. On the Select Configuration Task page, select Setup Database Mail By Performing The
Following Tasks and click Next.

6. A message box might appear, asking you to enable Database Mail. Click Yes if this mes-
sage box appears.

7. On the New Profile page, type AdventureWorksProfile in the Profile Name box and
click Add to add an account.

8. In the New Database Mail Account dialog box, type the following values in the appropri-
ate text boxes, leave all other options at their defaults, and then click OK.

9. On the New Profile page, click Next.

10. On the Manage Profile Security page, select the Public Profiles tab, select the Adventure-
Works Profile check box, and click Next.

11. On the Configure System Parameters page, review the parameters and click Next.

12. On the Complete The Wizard page, review the listed actions and click Finish.

13. When the wizard has completed configuring the account, click Close.

Text Box Value

Account name AdventureWorksAccount

E-mail address sqlserver@adventure-works.com

Display name Adventure Works

Server name localhost

424 Chapter 14 Designing for Data Distribution
� Exercise 3: Test DatabaseMail

In this exercise, you will test DatabaseMail.

1. In Object Explorer, right-click Database Mail and select Send Test E-Mail.

2. In the Send Test Email From dialog box, in the To box, type
somebody@adventure-works.com and click the Send Test E-Mail button.

3. In the Database Mail Test E-Mail dialog box, click OK.

4. Open Windows Explorer and navigate to C:\Inetpub\mailroot\Drop. There should be
one .eml file. Double-click the .eml file to open it.

� Exercise 4: Send an E-mail Message by Using sp_send_dbmail

In this exercise, you will send an e-mail message by using the sp_send_dbmail stored proce-
dure. The message will be formatted in HTML and will contain a query result.

1. In SSMS, open SendMail.sql, which is available on the companion CD in the C:\My Doc-
uments\Microsoft Press\TK70-441\Chapter14\Lesson1 folder.

2. Review the T-SQL code, and then execute the script by pressing F5 or the Execute button
from the SQL Editor toolbar.

3. Open Windows Explorer.

4. Navigate to C:\Inetpub\mailroot\Drop. There should be a new .eml file in the folder.

5. Open the new .eml file by double-clicking it.

Quick Check
1. Which mail component would you use and why: SQL Mail or DatabaseMail?

2. Which profile type is more secure: public or private?

3. If you need to send a nonparametrized, basic-formatted query result, how would
you do it?

Quick Check Answers
1. Use DatabaseMail because it uses SMTP instead of MAPI and because the send

operation is performed by an external program. DatabaseMail is also more secure
and reliable and easier to install than SQL Mail.

2. Private profiles give you more control over which users can use the profile.

3. Specifying the @query parameter and formatting information in the sp_send_dmail
stored procedure would be the easiest way to meet the requirements.

Lesson 2: Designing SQL Server Agent Alerts 425
Lesson 2: Designing SQL Server Agent Alerts

Estimated lesson time: 30 minutes

SQL Server Agent enables you to send notifications and run jobs in response to an event such
as error messages from SQL Server, specific performance conditions, and Windows Management
Instrumentation (WMI) events.

Alerts are automated responses to events. You can define an alert on one or more events to
specify how you want SQL Server Agent to respond to their occurrence. An alert can respond
to an event by notifying an administrator, running a job, or both.

The main use of alerts is to inform administrators about problems such as SQL Server errors
and performance problems. A job configured as a response to an alert is typically intended to
correct or further diagnose the problem. You can also use alerts for other purposes such as
asynchronous processing, but you should probably use Service Broker for those cases instead.

Exam Tip When there is more than one possible answer that meets the question requirements,
choose the best one in terms of scalability, maintainability, ease of implementation, and cost.

Defining Alerts
To define an alert, you must specify the name of the alert, the event that triggers the alert, and
the action to take in response to the event. The information required to define an alert
depends on the selected event type. The event type can be one of the following:

n SQL Server events SQL Server Agent can respond to messages logged in the Windows
Application log. SQL Server logs error messages with severity 19 or higher, always-
logged error messages, errors raised using RAISERROR WITH LOG, and messages
logged by using the xp_logevent stored procedure. SQL Server Agent raises the alert
when a message that meets the specified criteria is logged in the Windows Application
log. You define the criteria by specifying the following information:

q Either error number or error severity number.

q An optional character string. SQL Server Agent checks whether the logged mes-
sage contains this character string.

n Performance condition In this case, SQL Server Agent monitors the performance counter
you specify. It raises the alert when the performance counter value meets the condition
you specify. This condition can be one of the following:

q The performance counter value is equal to the specified value.

q The performance counter value rises above the specified value.

q The performance counter value falls below the specified value.

426 Chapter 14 Designing for Data Distribution
n WMI event SQL Server Agent can respond to WMI events. In this case, you must specify
the WMI namespace and the event notification query in Windows Management Instru-
mentation Query Language (WQL).

For more information about WQL, see the topic, “Using WQL with the WMI Provider for
Server Events” in SQL Server 2005 Books Online at http://msdn2.microsoft.com/en-us/library
/ms180524.aspx.

The action to take in response to an event can be one or both of the following:

n Execute a job.

You can execute a job in response to an alert, and you can use tokens to get information
about the event that triggered the alert. Typically, you use jobs as a response to an alert
to try to solve a problem or register information about the event that triggered the alert.

n Notify operators.

Operators are aliases for people who can be notified by e-mail, pager, or Net Send. You can
specify one or more operators to be notified as well as the notification method (e-mail,
pager, and/or Net Send).

Designing WMI Triggers
WMI triggers let you perform similar tasks that you do by using such SQL Server objects as
DDL triggers and Event Notifications. With WMI triggers, which are SQL Server Agent alerts
triggered by WMI events, you can define the action to take as a response to an event of the fol-
lowing types:

n DDL events These types of events are raised when a DDL statement (such as CREATE
TABLE or DROP TABLE) is issued.

n Trace events These types of events are raised by specific activity in the SQL Server
instance, such as when a deadlock occurs or when an object is created.

For a complete list of WMI events and properties, see “WMI Provider for Server Events Classes
and Properties” at http://msdn2.microsoft.com/en-us/library/ms186449.aspx.

The difference between DDL triggers and WMI triggers is that DDL triggers are database
objects that operate synchronously, whereas WMI triggers are SQL Server Agent objects that
operate asynchronously.

Event Notifications are also database objects, but they operate asynchronously by using SQL
Server Service Broker under the covers. In this sense, they are very similar to WMI triggers. In
fact, WMI triggers use Event Notifications behind the scenes. The main difference between the
two is where the event is managed: with WMI triggers, the response is managed by SQL Server
Agent; with Event Notifications, the response is managed entirely in the Database Engine.

Lesson 2: Designing SQL Server Agent Alerts 427
To define a WMI trigger, you first create a SQL Server Agent alert whose type must be a WMI
event alert. You specify

\\.\root\Microsoft\SqlServer\ServerEvents\MSSQLSERVER

as the namespace. And you specify the WMI query in WQL—for example:

N'SELECT * FROM CREATE_DATABASE'

Then, you define the alert response. As with any SQL Server Agent alert, you can specify to run
a SQL Server Agent job, to notify SQL Server Agent operators, or both. You can take advantage
of token replacement so that you can access WMI event properties from within a T-SQL script
job step. For example, you can use

'$(ESCAPE_SQUOTE(WMI(DatabaseName)))'

to access the DatabaseName WMI property. (For details about token replacement, see “Using
Tokens in Job Steps” at http://msdn2.microsoft.com/en-us/library/ms175575.aspx.)

Defining and Notifying Operators
Operators are aliases for people or groups that can receive electronic notification when jobs
have completed or alerts have been raised. SQL Server Agent can notify an operator by e-mail,
pager, or Net Send. To define an operator, you must provide the operator name and contact
information. The contact information consists of one or more of the following:

n E-mail address SQL Server Agent can use either DatabaseMail or SQL Mail to send noti-
fications by e-mail. The preferred way is using DatabaseMail. To enable SQL Server Agent
for sending e-mail messages, you must set up DatabaseMail or SQL Mail and configure
a profile for SQL Server Agent.

n Net Send address (NetBIOS name for computer or user) SQL Server Agent uses the
Windows Messenger service to send messages by Net Send. The Messenger service
must be enabled on both sender and receiver computers.

n Pager e-mail name For pager notification, you must have third-party pager-to-e-mail
software and/or hardware.

n Pager on duty schedule Defines when the operator is on duty and can be notified by
pager.

You can configure a special operator, the fail-safe operator, who receives notifications when
SQL Server Agent cannot notify the designed operators for an alert.

428 Chapter 14 Designing for Data Distribution
Creating User-Defined Events
With SQL Server Agent, you are not limited to pre-defined events; you can create user-defined
events. To create user-defined events, you can do the following:

n Create logged user-defined error messages. You can create them by using the
sp_addmessage stored procedure, specifying @with_log = ‘TRUE’.

n Raise user-defined errors by using RAISERROR (msg_id, -1, -1). Users do not need spe-
cial permissions to use RAISERROR in this way.

You can also use the xp_logevent stored procedure, but this requires being a member of the
sysadmin role or being the owner of the master database. In addition, this stored procedure
does not send a message to the client. Another alternative is using RAISERROR WITH LOG,
but only sysadmin role members can execute this statement. You can embed xp_logevent or
RAISERROR WITH LOG in stored procedures created with the EXECUTE AS clause and grant
Execute permission on the stored procedures to users. In this way, you do not need to create
always-logged messages available to all logins.

Practice: Creating a SQL Server Agent Alert
In this practice, you will create an alert to register drop-table WMI events for auditing purposes.

� Exercise 1: Create Supporting Objects

In this exercise, you create a table to store drop-table WMI event data.

1. In SSMS, open the CreateDropTableEventsTable.sql script, which is available on the
companion CD in the C:\My Documents\Microsoft Press\TK70-441\Chapter14
\Lesson2 folder.

2. Execute the script by pressing F5.

� Exercise 2: Create the Alert and the Response Job

In this exercise, you create one alert based on a WMI event and the job that will respond to the
alert. The job will register drop-table WMI event data in the DropTableEvents table.

1. Ensure that SQL Server Agent is running. In Object Explorer, expand the local com-
puter. If the SQL Server Agent icon is green, SQL Server Agent is running. If the icon is
red, it is not running. If SQL Server Agent is not running, right-click it and select Start.

2. Enable token replacement by right-clicking SQL Server Agent and selecting Properties.
Select the Alert System page, ensure that the Replace Tokens For All Job Responses To
Alerts check box is selected, and click OK.

3. In SSMS, create the job and the alert by opening the CreateJobandAlert.sql script (from
the C:\My Documents\Microsoft Press\TK70-441\Chapter14\Lesson2 folder).

4. Execute the script by pressing F5.

Lesson 2: Designing SQL Server Agent Alerts 429
� Exercise 3: Test the Alert

In this exercise, you test the job and alert that you created in Exercise 2.

1. In SSMS, open the TestAlert.sql script from the TK441\Chapter14\Lesson2 folder.

2. Execute the script by pressing F5. A query result should appear in less than a minute.

Quick Check
1. Which methods can you use to send an alert to an operator?

2. What types of events can trigger an alert?

3. You are using user-defined error messages in your application to trigger alerts, and
your application uses stored procedures extensively. How can you prevent users
from directly raising and logging these messages?

Quick Check Answers
1. Alerts can be sent to operators by e-mail, pager, and Net Send.

2. SQL Server error messages, performance conditions, and WMI events can trigger
an alert.

3. You can create non-always-logged messages, embed RAISERROR WITH LOG in
your stored procedures and triggers, and specify the EXECUTE AS clause for the
procedures and triggers.

430 Chapter 14 Designing for Data Distribution
Lesson 3: Specifying a Web Services Solution for
Distributing Data

Estimated lesson time: 30 minutes

SQL Server 2005 introduces native support for XML Web services in the database engine by
using open standards such as HTTP, Simple Object Access Protocol (SOAP), and Web Services
Description Language (WSDL).

In earlier versions of SQL Server, the only available protocol was Tabular Data Stream (TDS).
In SQL Server 2005, client applications can access database engine functionality by using
other protocols such as HTTP. When using SQL Server Web services, clients no longer need
Microsoft Data Access Components (MDAC) installed, and non-Windows clients can access
the database engine directly.

SQL Server Web services requires and uses the HTTP listener http.sys, which is available in
Microsoft Windows Server 2003, Windows XP Service Pack 2 (SP2), and Windows Vista.
Http.sys is not available in earlier versions of Windows. Because SQL Server uses the http.sys
driver directly, IIS is not required to support SQL Server Web services.

SQL Server Web services enables you to expose stored procedures and scalar user-defined
functions (UDFs) as Web methods. You can also configure a SQL Server Web service to allow
ad hoc queries. When ad hoc queries are enabled, clients can execute batches by calling the
sqlbatch Web method.

Creating and Defining SQL Server Web Services
To define a SQL Server Web service, you basically specify the following:

n Stored procedures and scalar UDFs to be exposed as Web methods as well as their cor-
responding Web method names.

n Whether ad hoc queries (batches) are allowed.

n Security information, including the authentication type and whether to use SSL, clear
HTTP, or both.

n Port information. You can specify the port for SSL, which defaults to 443, and the port
for HTTP, which defaults to 80.

n Whether gzip compression is enabled or disabled. When gzip compression is enabled
and the client accepts gzip encoding, SQL Server compresses the response.

n The location. You specify the location by using a Uniform Resource Locator (URL).

n Whether WSDL is returned.

n Whether an XML schema definition (XSD) schema is returned for SELECT statements.

Lesson 3: Specifying a Web Services Solution for Distributing Data 431
To create a SQL Server Web service, you must create an HTTP endpoint by using the T-SQL
CREATE ENDPOINT statement and specifying the preceding information.

SQL Server Web Services Security
SQL Server Web services supports the following authentication types:

n Basic authentication The client sends the credentials (username and password) in clear
text. These credentials must map to a valid Windows account. You must use SSL with
basic authentication because SQL Server does not allow basic authentication and clear
HTTP at the same time.

n Digest authentication The client sends the credentials hashed by MD5 (a message
digest algorithm). The credentials must map to a valid domain user account. Digest
authentication requires a Windows Server 2003 domain controller.

n NTLM authentication This authentication mechanism is a challenge–response protocol
that offers stronger authentication than either basic or digest. NTLM authentication is
supported by Windows 95 and later.

n Kerberos authentication This is an Internet standard authentication mechanism. Ker-
beros authentication is supported in Windows 2000 and later.

n Integrated authentication This is a combination of NTLM and Kerberos; SQL Server
permits both.

BEST PRACTICES Kerberos or Integrated authentication

Use Kerberos or Integrated authentication for optimum security.

SQL Server supports SSL for SQL Server Web services to secure the communication between
client and server. SSL encrypts and signs the information on the wire and can be used for
server authentication. To use SSL in SQL Server Web services, you must install a certificate in
the server and register the certificate in http.sys.

BEST PRACTICES SSL for sensitive data

Use SSL to exchange sensitive data.

Endpoints are securable objects. To execute a Web method, a user must have CONNECT per-
mission on the endpoint.

BEST PRACTICES Limit endpoint connect permissions

Limit endpoint connect permissions to specif ic users or groups.

432 Chapter 14 Designing for Data Distribution
Guidelines for Using SQL Server Web Services
SQL Server Web services are well suited for the following scenarios:

n Applications that send or receive XML data

n Applications conforming to the Service-Oriented Architecture (SOA)

n As a more performant replacement for SQLXML

SQL Server Web services are not well suited for the following scenarios:

n Applications with high concurrent access and short-duration transactions

n As a replacement for the middle tier

n Applications that use large object (LOB) data types

Practice: Creating a SQL Server Web Service
In this practice, you will create a SQL Server Web service and use a Windows application to
access the Web service.

� Exercise 1: Create Supporting Objects

In this exercise, you create a stored procedure that will be exposed in the Web service as a Web
method.

1. In SSMS, open the CreateSupportingObjects.sql script from the C:\My Documents
\Microsoft Press\TK70-441\Chapter14\Lesson3 folder.

2. Execute the script by pressing F5.

� Exercise 2: Create the HTTP Endpoint

In this exercise, you create the HTTP endpoint that will expose the stored procedure you cre-
ated in Exercise 1.

1. In SSMS, open the CreateHttpEndpoint.sql script from the C:\My Documents\Microsoft
Press\TK70-441\Chapter14\Lesson3 folder.

2. Review the code and execute the script by pressing F5.

� Exercise 3: Use a Client Application

In this exercise, you use a Windows application to access the SQL Server Web service you cre-
ated in Exercise 2.

1. With Visual Studio 2005, Visual C# Express, or Visual Basic Express, open either the
CS\AWCatalog.csproj file or the VB\AWCatalog.vbproj file from the C:\My Documents
\Microsoft Press\TK70-441\Chapter14\Lesson3 folder.

2. In Solution Explorer, right-click Web References and select Add Web Reference.

3. In the URL text box, type http://localhost:8086/AdventureWorks/Catalog?WSDL
and click Go. The AWCatalog description should appear below.

Lesson 3: Specifying a Web Services Solution for Distributing Data 433
4. In the Web Reference Name box, type SQLWebService and click Add Reference.

5. Right-click Form1.cs or Form1.vb and select View Code.

6. Review the code.

7. Execute the application by pressing F5.

8. In the Subcategory Name box, type Mountain Bikes and click Go. A list of mountain
bikes should appear on the grid.

9. Close Form1 and close Visual Studio.

Quick Check
1. You want to use an HTTP endpoint to exchange sensitive data between SQL Server

and mobile devices. Which protocol would you use?

2. Non-Windows clients need access to an HTTP endpoint. Which authentication
mechanism would you use?

3. For security reasons, you do not want to expose WSDL to clients. What can you
do?

4. Remote clients access your SQL Server Web service by using a low-speed connec-
tion. How can you improve the performance?

Quick Check Answers
1. HTTPS would provide appropriate privacy.

2. Kerberos is the best choice if clients support it. Because Kerberos is an Internet
standard, it is supported by many operating systems. If clients do not support Ker-
beros or NTLM, digest is the preferred choice. Basic should be your last choice.

3. Disable WSDL generation on the HTTP endpoint.

4. Enabling gzip compression would improve the performance in this scenario if cli-
ents accept gzip encoding.

434 Chapter 14 Designing for Data Distribution
Lesson 4: Specifying a Reporting Services Solution for
Distributing Data

Estimated lesson time: 30 minutes

There are many scenarios in which you need to distribute data to end users in a report format.
You likely often need to send financial or sales reports to users on a given schedule, for exam-
ple. SSRS enables you to meet these requirements to distribute data to end users in a sched-
uled way and in many report formats.

Reporting Services Delivery Options
When you implement an SSRS solution, you need to decide which delivery options you will
give users so the users can subscribe to the reports they need. These options are:

n Pull You can publish the reports to the Report Manager Web site so that users can go
to the site and subscribe to the information they need.

n Push You can publish the reports to the Report Manager and then configure subscrip-
tions to deliver the reports to users by using a Delivery extension.

By default, SSRS SP2 provides four delivery extensions: E-mail, File Share, SharePoint, and
NULL provider (used to fill the cache). However, you can extend this functionality by devel-
oping your own delivery extensions. For information about how to develop your own delivery
extension, see the topic “Implementing a Delivery Extension” in SQL Server 2005 Books
Online at http://msdn2.microsoft.com/en-us/library/ms154050.aspx.

Reporting Services Subscriptions
The component that SSRS uses to deliver a report on a specific schedule and to present the
report in a given format is called a subscription. There are two types of subscriptions:

n Standard subscriptions Created and managed by the end users. Standard subscriptions
are created by end users to access the reports they need.

Lesson 4: Specifying a Reporting Services Solution for Distributing Data 435
n Data-driven subscriptions Dynamic subscriptions that SSRS administrators create to
distribute reports to a wide variety of users and in many different formats. With data-
driven subscriptions, report delivery and parameters are dynamic and retrieved from a
data source at run time.

Data-driven subscriptions are the most useful way to distribute data by using SSRS.

IMPORTANT SSRS features in SQL Server 2005 Express Edition

Reporting Services subscriptions are not supported in SQL Server 2005 Express Edition with
Advanced Services. For more information about the features in this edition, see the topic “Report-
ing Services in SQL Server 2005 Express Edition with Advanced Services” in SQL Server 2005 Books
Online at http://msdn2.microsoft.com/en-us/library/ms365166.aspx.

Distributing Data by Using Data-Driven Subscriptions
SSRS data-driven subscriptions have some requirements:

n Credentials for the report data source should be stored in the Report Server.

n Use SQL Server 2005 Enterprise Edition.

n You must be able to get dynamic information from a data source. You can use several
data sources to get this information, such as SQL Server, Oracle, XML files, and a SQL
Server Analysis Services (SSAS) database.

Creating a Data-Driven Subscription
To create a data-driven subscription, complete the following steps:

1. Open SQL Server Management Studio and connect to the Reporting Services instance.
Navigate to the Report node, right click it, and choose New Data Driven Subscription.

2. Define the delivery data source to retrieve dynamic information, as Figure 14-2 shows.

436 Chapter 14 Designing for Data Distribution
Figure 14-2 Configuring the data-driven delivery data source

3. After you have configured the delivery data source, specify the query to get the informa-
tion from the data source.

4. Depending on the delivery method you select, you can map dynamic data to fields from
the query or specify fixed values. For example, for an e-mail delivery, you can specify the
To, CC, CCO, and Subject parameters.

5. If the selected report has parameters, you need to specify values for them. Again, you can
map parameters to fields from the query.

6. Finally, you need to specify when the subscription will be executed: on a given schedule
or when the report is updated in the Report Server.

You can create data-driven subscriptions from SSMS by connecting to the SSRS instance or in
Report Manager.

Lesson 4: Specifying a Reporting Services Solution for Distributing Data 437
Practice: Specifying SSRS Options for Distributing Data
In this practice, you will consider the best options for using SSRS to distribute data to end
users.

� Exercise 1: Delivery Extension

In this conceptual exercise, you will think about the best scenario for each delivery extension
so you can choose the best extension to meet user requirements.

Which delivery extension should you use to distribute data to end users? This is a broad
question; you should think over all possibilities and then compare your solution with
the suggested answer.

Suggested Answer

All delivery extensions could work to distribute data to end users, but data-driven sub-
scriptions are the best way to maintain a distribution strategy in SSRS.

� Exercise 2: Data-Driven Subscriptions

Explain the advantages of using data-driven subscriptions for distributing data to end
users.

Suggested Answer

Data-driven subscriptions enable you to configure dynamic subscriptions that retrieve
information from an external data source so that you can specify format, delivery exten-
sion, destinations, and so on.

Quick Check
1. Which delivery extensions are provided by default with SSRS?

2. Can you use data-driven subscriptions with all SQL Server 2005 editions?

Quick Check Answers
1. By default, SSRS with SP2 provides four delivery extensions: E-mail, File Share,

SharePoint, and Null providers.

2. No, data-driven subscriptions are available only in Enterprise edition.

438 Chapter 14 Designing for Data Distribution
Lesson 5: Specifying a Notification Services Solution for
Distibuting Data

Estimated lesson time: 30 minutes

SQL Server Notification Services is a flexible and scalable platform and hosting environment for
creating and deploying applications that generate and send notifications to subscribers (users
and applications). Notification Services can send notifications when events occur or on a
schedule and can deliver the notifications to a wide variety of devices. For example, you can
use Notification Services to distribute weather data to users. As weather data arrives, the Noti-
fication Services application can send the weather data by e-mail to users. Or, your users might
be stock market investors who are interested in specific stocks; when the stock price falls
below a specified value on a stock, investors receive a notification.

Notification Services Architecture
Notification Services applications collect events, match events with subscriptions to generate
notifications, and format and deliver the notifications to subscribers. Figure 14-3 illustrates
the Notification Services architecture.

Figure 14-3 Notification Services architecture

Events

Delivery Channels

Event Providers

SMI

Generator

Notifications

Users and
Applications

Notifications

Events

Subscriptions

Application Database

SMO

Subscribers and Subscribers device data

Subscribers
and device data

Instance Database

Subscriptions

Distributor

Lesson 5: Specifying a Notification Services Solution for Distibuting Data 439
Subscription management interfaces (SMI) are custom applications such as Web or Windows
applications that manage subscribers and subscribers’ device data and allow users to create
subscriptions by using subscription management objects (SMOs).

Subscribers and subscriber device data is stored in the Notification Services instance database.
There is only one instance database per instance. Subscription data is stored in the application
database. There can be several applications running on an instance, and each application has
its own application database.

Notification Services collects events by using event providers. Event providers collect events
and use the event provider application programming interface (API) to store event data in the
application database. You can use one of the pre-defined event providers, or you can create a
custom event provider by using the event provider API. You can also use the event provider API
to send event data directly.

The Notification Services generator, running at pre-defined intervals, matches event data with
subscriptions to generate notifications. The generator stores notifications data in the applica-
tion database.

After the generator creates a batch of notifications, the distributor formats the messages and
sends them to users and applications through one or more delivery channels. Delivery chan-
nels use delivery protocols. You can use built-in delivery protocols or create and use custom
delivery protocols. (Chapter 16, “Developing Applications for Notification Services,” discusses
designing applications for Notification Services.)

Scale-Out Options
Notification Services can be installed on the same server as the database engine that hosts
Notification Services databases. This can be appropriate in some scenarios, such as for small
applications, but when you need to manage a large number of notifications, you probably need
to use one of the following scale-out options:

n Install the database engine and Notification Services on different servers. This frees up
the database engine server from formatting and delivery operations.

n Install several instances of Notification Services on different servers and use multiple dis-
tributors for applications.

n Partition subscriptions in several instances of Notification Services installed on different
servers.

440 Chapter 14 Designing for Data Distribution
Defining Notification Services Applications
To define Notification Services applications to distribute data, specify the following general
information:

n The data to send. You define the data to send by defining notification classes.

n The recipients. The recipients are the subscribers. Subscribers have associated device
data. You define which users and applications can receive notifications. You can manage
subscribers and devices by using subscription management objects.

n When to send the data. Notification Services sends notifications to subscribers when
events match subscriptions. You can define several event classes and subscription
classes.

n The subscription management interface. You define the interface to manage subscribers,
subscriber device data, and subscriptions. This interface is typically a Web application or
a Windows application but can be any kind of application that uses subscription man-
agement objects.

n How to send the data. You can send the notifications by e-mail or by simply dropping a
file on the file system. If you must send the notifications by other means, you need to cre-
ate custom delivery protocols.

n Determine where events come from. Event data can come from a variety of sources. Noti-
fication Services has built-in support for event data that comes from XML files and SQL
Server databases. If the events come from other sources, you can create custom event
providers or use an external application that sends events to Notification Services.

n The message format. You can specify XSLT transformations to format messages.

Practice: Identifying When to Use a Notification Services Solution
In this practice, you will explore when you should use Notification Services as the best way to
distribute data.

� Exercise 1: Notification Services vs. Reporting Services

In this conceptual exercise, you will learn when to use Notification Services instead of Report-
ing Services as a data distribution technology.

When should you use Notification Services instead of Reporting Services to distribute
data? This is a broad question; think over all possibilities and then compare your find-
ings with the suggested answer.

Suggested Answer

Both technologies enable you to distribute data by using different delivery channels.
Reporting Services provides more flexibility for formatting data. However, Notification
Services gives you more flexibility to respond to events instead of using a scheduled
delivery, which is the most common scenario for Reporting Services.

Lesson 5: Specifying a Notification Services Solution for Distibuting Data 441
� Exercise 2: Notification Services vs. DatabaseMail

In this exercise, you will learn when you should use Notification Services instead of Database-
Mail as a data distribution technology.

When should you use Notification Services instead of DatabaseMail to distribute data?
This is a broad question; think over all possibilities and then compare your findings with
the suggested answer.

Suggested Answer

DatabaseMail enables you to distribute data only by e-mail. Use DatabaseMail only in
scenarios in which you need to distribute data that does not need much formatting and
that you can distribute through e-mail. Otherwise, Notification Services provides a more
flexible solution.

Quick Check
1. You started with a small Notification Services application that managed a relatively

small number of notifications. The number of subscribers and notifications has
increased over time, and your system will soon be insufficient. How would you
solve the problem?

2. An external application sends you event data by calling an HTTP endpoint that
you are developing. How can you send event data to a notification application?

3. You need to deliver notifications to a Microsoft Message Queue (MSMQ). How can
you do that?

Quick Check Answers
1. You can start by scaling up your system—adding more processors and memory

could be a solution, at least for the short term. If this is not enough, you can scale
out your Notification Services application. Start by moving Notification Services to
a different server from the database engine server.

2. You can use the event provider API to send event data directly to a notification
application. You would use SQL Server event provider API stored procedures.

3. You can create a custom delivery protocol to deliver notifications to an MSMQ.

Case Scenario: Design a Distributed Data Solution
You are the database solution developer for an airline that needs to distribute data about its
flights to several travel agencies. The agencies need to access your data in real time, and they
have different information systems to process your data. After examining the requirements,
you think that data should be transmitted already formatted as XML, but you are not sure

442 Chapter 14 Designing for Data Distribution
about what SQL Server technology you should use to distribute the data to the agencies. The
travel agencies are requesting direct access to your systems, but your security policy does not
allow it.

1. What data-distribution technology should you use to meet the scenario requirements?

2. What steps should you follow to implement the technology?

3. How can you protect transmitted data?

Chapter Summary
n DatabaseMail to send data as e-mail messages is a more reliable, scalable, and secure way

than by the obsolete SQL Mail.

n SQL Server Web services give client applications access to database functionality
through HTTP and SOAP protocols and enable the exchange of information in XML
format.

n Notification Services create scalable applications that send notifications to subscribers
based on events.

n Reporting Services distribute data as reports.

n SQL Server Agent alerts inform administrators about operational information such as
application errors or performance problems.

Chapter 15

Designing Applications That
Support Reporting and Use
Reporting Services

Microsoft SQL Server 2005 includes SQL Server Reporting Services (SSRS), a server-based
solution for building reports. Reporting tools such as SSRS query the relational engine and
summarize information for users. This type of data access often loads the database with fre-
quent and complex queries.

In this chapter, you will learn how to develop applications designed to support reporting activ-
ities. You will see how to configure different database options and technologies to increase the
scalability of the reporting environment, and you will learn how to use indexes, views, and
stored procedures to increase maintainability and performance of your solution. Finally, you
will learn how to configure and optimize SSRS solutions.

Exam objectives in this chapter:
n Design an application solution that supports reporting.

q Design a snapshot strategy.

q Design the schema.

q Design the data transformation.

q Design indexes for reporting.

q Choose programmatic interfaces.

q Evaluate use of reporting services.

q Decide which data access method to use.

n Develop applications that use Reporting Services.

q Specify subscription models, testing reports, error handling, and server impact.

q Design reports.

q Specify data source configuration.

q Optimize reports.
443

444 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
Before You Begin
To complete the lessons in this chapter, you must have:

n A computer that meets the hardware and software requirements for SQL Server 2005.

n SQL Server 2005 Developer Edition, Workgroup Edition, Standard Edition, or Enterprise
Edition installed. Database Engine and Reporting Services components must be
installed.

n The SQL Server 2005 AdventureWorks sample database installed. Sample databases are
available with SQL Server 2005 Enterprise Edition but are not a part of the default instal-
lation. Alternatively, you can install the sample databases from http://msdn2.microsoft.com
/en-us/library/ms143739.aspx.

n Microsoft Visual Studio 2005 or Microsoft Visual Basic or C# 2005 Express Edition
installed. You can download Visual Studio Express Editions from http://msdn.microsoft.com
/vstudio/express/.

Lesson 1: Evaluating the Use of Reporting Services and Designing Reports 445
Lesson 1: Evaluating the Use of Reporting Services and
Designing Reports

Estimated lesson time: 20 minutes

One of the reasons companies and other organizations build databases is to share information
among employees and business partners. SSRS enables organizations to transform their data
into valuable information—information that can be shared and distributed at any level of the
organization. In this lesson, you will learn the basics of building SSRS reports and different
scenarios in which SSRS might be a useful tool.

Evaluating Reporting Services Uses
SSRS can be used in a wide set of scenarios. Based on its uses, it can be classified by audience,
integration, or construction. Based on the audience, SSRS can deliver reports to departmental,
corporate, or external audiences. Based on how reports are integrated with other applications,
SSRS can distribute reports as a standalone application, in portal solutions, or embedded in
business applications. Finally, based on construction, reporting solutions can be pre-defined
or ad hoc reports.

Report Uses by Audience
One point to consider when designing solutions that use SSRS is the audience of the reports. You
will have to take into account different factors based on which audience will consume the reports.

Departmental When designing SSRS solutions for departmental audiences, consider the
following factors:

n The solution usually needs to support only a small group of users. A typical departmen-
tal solution has between 5 and 50 users.

n Very rapid development is a frequent request.

n Often, data comes from a single data source. Combining and integrating data is unusual.

n Scalability is rarely an issue in these scenarios.

n Microsoft Windows authentication is adequate. In departmental solutions, Windows
impersonation is frequently used.

Corporate When designing SSRS solutions for corporate audiences, consider these char-
acteristics:

n These solutions usually serve a large number of users. It is not extraordinary to support
thousands of users.

n Scalability is a critical element when working with corporate audiences.

446 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
n Security is also an essential operational requirement.

n Often, data comes from multiple data sources. Combining and integrating data is a fre-
quent request.

n Windows authentication is adequate. Corporate solutions mostly use delegation instead
of impersonation.

Extranet Extranet solutions, no matter how many users they support, are similar to corpo-
rate solutions, but the use of the Internet brings these additional considerations:

n Security is the most critical element for extranet reporting solutions. Expert knowledge
in Web development and implementation is desirable.

n Development of custom extensions is often required. These custom extensions usually
include proprietary-form Web authentication.

Reporting Services Integration
Another important consideration when designing SSRS solutions is how the reports will be
delivered.

Standalone When using SSRS as a standalone application, users interact with SSRS through
a Web browser. To activate reports, users navigate to the Report Server virtual directory. By
default, the URL for the Report Server is http://ServerName/Reports. You can change the
default URL by using the Reporting Services Configuration Manager. When users navigate to
the Report Server virtual directory, the home page will offer a Web interface for navigating
through, displaying, and managing reports. Figure 15-1 shows a sample report.

Figure 15-1 Report from a standalone Reporting Services implementation

Lesson 1: Evaluating the Use of Reporting Services and Designing Reports 447
Portal Integration Another way of using SSRS is to integrate SSRS reports into a corporate
or departmental portal. Including SSRS in a portal solution requires different software com-
ponents that can interact with each other to generate a rich user experience. For example, you
can use Windows SharePoint Services or Microsoft Office SharePoint Server with Microsoft
Office Business Scorecard Manager 2005 and SSRS to provide business-critical information, as
Figure 15-2 shows.

Figure 15-2 Reporting Services in a portal solution

Using SSRS in a portal solution requires a large number of very small reports with high per-
formance requirements. Another element to consider in portal solutions is the need to access
a wide variety of data sources.

Embedded Reporting Finally, SSRS reports frequently are embedded in Web and Windows
applications. In this scenario, developers use the SSRS infrastructure to extend the function-
ality of their applications with reporting capabilities. Figure 15-3 shows an example of what an
embedded SSRS solution might look like.

When you use SSRS to extend a Windows or Web application, you will have to evaluate how
the application will manage the metadata of the SSRS solution. Metadata management offers
users the possibilities of navigating the Report Server folder structure, dynamically selecting
reports, and managing report history and subscription elements.

448 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
Figure 15-3 Report embedded in a Windows application

Reporting Services Construction
Finally, when designing an SSRS, consider how reports will be developed. SSRS offers two
major report-building models. In the first model, professional developers create pre-defined
reports in a standard development model. In the second model, developers create a frame-
work for users to develop their own reports.

Pre-Defined Reports The pre-defined reports model uses a standard development cycle.
Users request certain reports, and someone evaluates the business need for the reports and
ensures that all the functional and operational requirements are captured. A developer or
development team then builds the reports, another developer or team tests the reports, and
operations then deploys the reports.

In this scenario, reporting developers use SQL Server Business Intelligence Development Studio
(BIDS) to create reports. BIDS extends Visual Studio 2005 with business intelligence (BI)
project templates, including SSRS, SQL Server Analysis Services (SSAS), SQL Server Integration
Services (SSIS), and Report Model project templates.

Ad Hoc Reporting Ad hoc reporting requires a different approach to include users in the
development cycle. Instead of using a single development cycle for building reports, ad hoc
reporting breaks the development cycle into two phases. The first phase is the creation of a
data model, and the second is the actual creation of the reports.

Lesson 1: Evaluating the Use of Reporting Services and Designing Reports 449
Developers lead the first stage of creating an ad hoc reporting solution. The objective of this
phase is to create a report model. A report model is a metadata description of the data source,
and it includes familiar names for database objects, denormalization of the database schema
to mimic a more conceptual model, the definition of calculated elements, and so on. SSRS uses
the report model to generate SQL statements automatically to the underlying data source.

After the model is created and deployed in a traditional development cycle, the second part of
building the solution begins. In this phase, expert users navigate the model and select the data
they want to use to create reports. Report Builder is a new tool that presents the report model
and enables users to create reports in a straightforward interface. After users create and deploy
the reports they need, the operations team is responsible for configuring and managing the
reports.

Designing Reporting Services Reports
One of the main elements of SSRS is the data source. A data source is what developers define
to configure how SSRS will get the data it needs for reports. A data source definition in SSRS
requires a name, a data provider, a connection string, and a security configuration.

Configuring the Data Source
SQL Server 2005 reports can specify a data source in three different ways:

n As a shared data source Shared data sources are individual items that can be reused in
multiple reports.

n As a fixed, embedded data source Fixed data sources are connections defined within
the report. They are report-specific data sources.

n As a dynamic expression A dynamic expression generates the connection information
dynamically at run time.

� Creating a Data Source from Report Manager

You can use SQL Server Management Studio (SSMS) or Report Manager to create shared data
sources. To create a new data source from Report Manager, follow these steps:

1. Using Microsoft Internet Explorer, navigate to the Report Server Manager. By default, the
URL for Report Server is http://ServerName/Reports.

2. Navigate to the folder in which you want to create the data source.

3. Click the New Data Source button from the Report Server Manager to reach the New
Data Source window.

450 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
4. In the Name field, type the data source name.

5. To use the AdventureWorks sample database, select Microsoft SQL Server in the Connec-
tion Type drop-down list.

6. In the Connection String field, type Data Source=(local);Initial Catalog=Adventure-
Works to connect to the AdventureWorks sample database.

7. Select the type of connection that Reporting Services will use to connect to the database.
To use impersonation, select Windows Integrated Security; to configure delegation,
select Credentials Stored Securely In The Report Server and configure the username and
password.

� Creating a Shared Data Source from BIDS

To create a shared data source using BIDS, perform the following steps:

1. From the main menu, click File, click New, and then choose Project.

2. In the New Project dialog box, for Project Types, select Business Intelligence Projects.

3. Select Report Server Project.

4. Name the project and click OK.

5. In Solution Explorer, right-click the Shared Data Source folder and select Add New Data
Source.

6. In the Shared Data Source dialog box, name the data source.

7. Configure the connection type and the connection string.

8. Click the OK button to generate the connection string automatically.

Building Reporting Services Reports
SSRS supports two different ways of building reports. You can create reports by using Report
Builder or by using the Report Designer built into BIDS. Report Builder enables users to create
simple reports. Report Designer offers a wider range of report-authoring features.

When using Report Designer, you can create a report in three different ways:

n By using the Report Wizard

n By creating a blank report

n By importing an existing report from Microsoft Office Access

The Report Wizard takes you through a series of steps required to build the report. The report
requires the following steps:

1. Select the data source.

The wizard enables you to create a report data source. If the wizard is executed after the
project is created, you can also select a previously created shared data source.

Lesson 1: Evaluating the Use of Reporting Services and Designing Reports 451
2. Design the query.

Use the Query Designer to create the SQL or MDX statement that will provide the data
to the report.

3. Select the report type.

The wizard supports two types of reports: tabular and matrix. You cannot create chart
and freeform reports in the wizard; you must use a blank report. You can choose, from
a pre-defined set, template styles that configure default colors and fonts for the report.

4. Select the deployment destination (optional).

When the wizard is run while creating the project, it will enable you to configure the
server and folder to which the report will be deployed.

5. Configure the report name.

The following practice walks you through the steps required to create a report by using the
Report Wizard.

Practice: Creating a Report with the Report Wizard
In this practice, you will create a simple report by using the Report Wizard included in BIDS.
The report will summarize sales information by a salesperson.

On the Companion Disc This chapter includes many code examples. You will f ind all the
code from this chapter on the companion CD in the C:\My Documents\Microsoft Press\TK70-441
\Chapter15\ folder.

� Exercise 1: Add a New Report

In this exercise, you will use the Report template included in BIDS to create a new SSRS
project. The template will automatically launch the Report Wizard to help you create a shared
data source and an SSRS report.

1. Open BIDS.

2. From the main menu, click File, click New, and then choose Project.

3. Select Business Intelligence Projects from Project Types.

4. Select the Report Server Project Wizard template. Name the project SalesReports and
click OK to begin the wizard.

5. The Welcome To The Report Wizard page appears. Click Next.

6. On the Select The Data Source page, create a new data source. Name the data source
AdventureWorks.

452 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
7. Leave the default data source type as Microsoft SQL Server. Click Edit to configure the
connection string.

8. The Connection Properties dialog box appears. In the Server Name field, type localhost.
From the Database Name drop-down list, type or select AdventureWorks. Leave the
security as Use Windows Authentication. Click Test Connection to validate the connec-
tion information, and then click OK to continue.

9. On the Select The Data Source page, select the Make This A Shared Data Source check
box and click Next to continue.

10. On the Design The Query page, click Query Builder to create the SQL command to get
the data.

11. In the Query Designer pane, type the following query, which selects sales from the
SalesOrderHeader table and summarizes the information by salesperson name:
SELECT Person.Contact.FirstName + ' ' + Person.Contact.LastName
 AS FullName
 , SUM(Sales.SalesOrderHeader.SubTotal) AS SubTotal
FROM Sales.SalesOrderHeader
INNER JOIN Sales.SalesPerson
ON Sales.SalesOrderHeader.SalesPersonID = Sales.SalesPerson.SalesPersonID INNER JOIN
HumanResources.Employee
ON Sales.SalesPerson.SalesPersonID = HumanResources.Employee.EmployeeID
 AND Sales.SalesPerson.SalesPersonID = HumanResources.Employee.EmployeeID INNER JOIN
Person.Contact
ON HumanResources.Employee.ContactID = Person.Contact.ContactID
AND HumanResources.Employee.ContactID = Person.Contact.ContactID
GROUP BY Person.Contact.FirstName + ' ' + Person.Contact.LastName

12. Click OK to return to the wizard.

13. Click Next to accept the query and continue.

14. On the Select The Report Type page, select Tabular and click Next.

15. On the Design The Table page, add FullName and SubTotal as details. Click the Details
button twice. Click Next to accept the table design and continue.

16. On the Choose The Table Style page, select Ocean and click Next.

17. On the Choose The Deployment Location page, review the default deployment options
and click Next to continue.

18. On the Completing The Wizard page, name the report SalesSummary and click Finish
to generate the report.

19. To preview the report in BIDS, in the Report Designer, select the Preview pane.

Lesson 1: Evaluating the Use of Reporting Services and Designing Reports 453
� Exercise 2: Edit a Generated Report

In this practice, you will make final changes to the report and use the Report Designer to edit
some of the default attributes generated by the Report Wizard. You will make the Full Name
column wider, add a general total amount, and set a currency format to the Sub Total column.

1. Select the layout pane of the Report Designer.

2. Select the Full Name column by first selecting the Full Name text box, in blue; when the
table displays the handles, select the column header displayed over the Full Name text
box, as Figure 15-4 shows.

Figure 15-4 Selection of the column, not the field

3. In the Properties pane, select the Width property and set the value to 2in.

4. Change the TextAlign property to Right.

5. Right-click the handle in the last row of the table and, from the shortcut menu, select
Table Footer.

A footer is added to the table control.

6. From the View menu, select Datasets to display the Datasets pane.

7. Expand Report Datasets, and then AdventureWorks to display the columns. Drag and
drop the subtotal field to the cell located in the new footer row and the Sub Total column.

Notice that the value of the cell is =Sum(Fields!SubTotal.Value).

8. Select the Sub Total column by first selecting the Sub Total text box and, when the table
handles are displayed, select the column header section over the Sub Total text box.

9. In the Properties pane, select the format property and type the letter c. The letter c will
configure a currency format.

10. In the Properties pane, select the Width property and set the value to 1.25in.

11. Select the cell in the footer row and the FullName column. Type Grand Total.

12. Change the TextAlign property to Right in the Properties pane.

13. Select the Preview pane in the Report Designer to preview the report.

454 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
Quick Check
1. You have been working with SSRS in a departmental environment and have been

asked to work with reports for a corporate solution. What new operational require-
ments challenges might you face at this new level?

2. Which is not an SSRS component?

A. Report model

B. Data source

C. Data model

D. Report

3. Which tool will you use to create an SSRS report?

Quick Check Answers
1. When working at a corporate level, scalability, security, and data integration are

operational requirements to which you will have to give additional consideration
to create effective reporting solutions.

2. The correct answer is C. SSRS uses three main files to provide its functionality:
reports, data sources, and report models.

3. BIDS is the preferred development tool for the Microsoft platform and can be used
to create SSRS Reports.

Lesson 2: Designing a Snapshot Strategy, Schema, Indexes, and Data Transformations 455
Lesson 2: Designing a Snapshot Strategy, Schema,
Indexes, and Data Transformations

Estimated lesson time: 40 minutes

Solutions that use SSRS must take into account the types of queries that will be executed in the
database. These queries frequently take a large number of rows and summarize information.
Therefore, the SSRS architect should consider the burden of queries supporting the report and
the impact the report will have on the server and other users. For example, some reports will
block rows and tables in the database, preventing other users from modifying data. Other
reports might use server resources so intensively that they will affect overall performance at
the server level.

In this lesson, you will learn about four different design decisions that can help you build an
effective SSRS solution. Those decisions involve the snapshot strategy, the database schema,
the data transformation, and the indexes.

Reporting Services Real-Time Requirements
To have a better understanding of how different strategies affect the performance, availability,
and scalability of the reporting services solutions, you also need to understand one of the most
important business requirements of a report: how up to date reports need to be. Regarding
time, there are three options to choose from: real-time, near real-time, or regularly refreshed.
Reports that require real time will demand more from the database engine and will limit the
options that you have as a designer; regularly refreshed reports will broaden your options.

Sometimes, reports need to provide real-time information. Real-time reports provide informa-
tion about transactions that have been stored in the database as close as one microsecond ago.
Real-time reports use transactional tables—the same tables that store the rows being modified
by users.

Alternatively, reports can provide near real-time information. Near real-time reports provide
information from a source that is usually just a few minutes away from real time. This type of
report is similar to the real-time report except that it does not use the same transactional tables
that users are modifying.

Further, reports might provide information that is refreshed on a scheduled basis. This type of
report is usually based on tables that have been optimized for reporting purposes and are
rarely modified by users.

456 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
Real-Time Reports
Because real-time reports query the same rows that users are modifying and use the same
server resources, they are the most demanding on the SQL Server Database Engine. Optimiz-
ing real-time reports is a critical task because the report’s performance not only affects report
users but also the rest of the operational transactional users.

For real-time reports, consider using:

n SNAPSHOT and READ COMMITTED SNAPSHOT transaction isolation levels.

n Selective denormalization.

n Summary tables maintained by triggers.

Near Real-Time Reports
To support near real-time reports, consider using:

n Database snapshots.

n Database mirroring.

n Log shipping.

n Database replication.

n Summary tables maintained by SQL Server Agent jobs.

Scheduled Refresh Reports
To provide support to reports refreshed on a schedule, consider using:

n Star or snowflake schema.

n Online analytical processing (OLAP) reporting.

Designing the Snapshot Strategy
SQL Server 2005 offers a set of technologies and techniques—including transaction isolation
levels, database snapshots, database mirroring, log shipping, and replication—that you can use
to provide support for different types of reports. Let’s look at which techniques might be use-
ful in each type of report.

Transaction Isolation Levels: Snapshot and Read Committed Snapshot
A fundamental functionality of relational engines such as SQL Server is the use of transac-
tions. Transactions in SQL Server support the four ACID properties: atomicity, consistency,
isolation, and durability. Isolation is particularly interesting from the SSRS perspective
because it controls how independent transactions are from each other. SQL Server 2005

Lesson 2: Designing a Snapshot Strategy, Schema, Indexes, and Data Transformations 457
supports six different isolation levels: read uncommitted, read committed, repeatable read,
serializable, snapshot isolation, and read committed snapshot isolation.

Exam Tip Questions about snapshot isolation and read committed snapshot isolation levels are
more frequent because these are new in SQL Server 2005.

Snapshot isolation and the read committed snapshot isolation levels in SQL Server 2005 are
additions that make the most sense for reporting purposes. These two types of isolation levels
use row versioning to avoid conflicts and prevent readers from blocking writers. Other types
of isolation levels use shared locks from readers, preventing other users from changing infor-
mation until the transactions are committed.

To enable snapshot isolation, you need to take two steps. First, set the ALLOW_SNAPSHOT
_ISOLATION option of the database to ON. Second, set the transaction isolation level to snap-
shot in each appropriate connection.

To enable snapshot isolation, use the following:

ALTER DATABASE DatabaseName SET ALLOW_SNAPSHOT_ISOLATION;

To use snapshot isolation, use the following:

SET TRANSACTION ISOLATION LEVELSNAPSHOT;

If reports or other database applications use snapshot isolation, each time they send a state-
ment to the server, they will receive a copy of data before the start of the transaction. The main
advantage of snapshot isolation is that database readers always get a consistent version of the
data.

The other type of isolation level that uses row versioning is the read committed snapshot. You
enable read committed snapshot isolation at the database level by using the ALTER DATABASE
command. To enable read committed snapshot isolation, use the following:

ALTER DATABASE DatabaseName SET READ_COMMITTED_SNAPSHOT ON;

IMPORTANT Changing to the read committed snapshot

When changing to the read committed snapshot isolation level, there must be no active connec-
tions to the database except for the connection executing the ALTER DATABASE command.

The read committed snapshot isolation level changes the behavior of the read committed iso-
lation level. Because of that, there is no need to change the default isolation level in the con-
nection. When the read committed snapshot isolation level is set, statements that reach the
server will receive a copy of data before the beginning of the statement.

458 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
IMPORTANT Impact on tempdb

Because snapshot and read committed snapshot isolation levels use row versioning, they demand
that the server keep copies of changed data in the tempdb database. Evaluate the impact on
tempdb of using these technologies and make sure to optimize their implementation.

Use read committed snapshot isolation when readers frequently block writers and your
reports require accuracy at the point at which the query starts. Use snapshot isolation when
it is absolutely necessary to maintain transaction-level read consistency and when a snapshot
of the same information must be provided in different queries that run in the same transac-
tion. Snapshot isolation is always more demanding on tempdb than read committed snapshot
isolation.

Database Snapshots
Also new in SQL Server 2005 is the ability to create database snapshots. A database snapshot
is a read-only, static view of a database. To create a snapshot, you use the CREATE DATABASE
command:

CREATE DATABASE AdventureWorks_Snap02April
ON (NAME = AdventureWorks_Data
 , FILENAME = 'C:\Directory\AdventureWorks_Snap02April.ss')
AS SNAPSHOT OF AdventureWorks;

Snapshots are useful for maintaining historical data. Because snapshots are transitionally con-
sistent with the source database as of the moment of the snapshot’s creation, they are useful
for reporting purposes. Snapshots can also be combined with database mirroring to move
information to another server.

Database Mirroring, Log Shipping, and Database Replication
Database mirroring, log shipping, and database replication are three technologies that you can
use to move data from one server to another, offloading the reporting load from the transac-
tional database.

Database mirroring is a new technology that, when used in high-performance mode (asyn-
chronous mode) and in combination with database snapshots, enables you to delegate to
another server the support for SSRS querying. The illustration in Figure 15-5 shows the data-
base mirroring architecture.

Log shipping, which you can also use to distribute information to more than one server, uses
backup and restore jobs to copy information from one primary server to one or more second-
ary servers. The main advantage of log shipping is that it allows distribution of multiple copies
of the same database. However, the downside of log shipping is that it is more complex to
manage and usually requires more time to deliver data than database mirroring. Use database

Lesson 2: Designing a Snapshot Strategy, Schema, Indexes, and Data Transformations 459
mirroring when only a single copy of the database is required. Log shipping is a better solution
when you need more than one copy of the database.

Figure 15-5 Database mirroring architecture

Alternatively, you can use replication to distribute data for reporting purposes. Replication is
a set of technologies designed to distribute data geographically; you can use it to distribute
data across multiple servers. Replication uses a publishing metaphor to assign different roles
to the different servers in a replication topology. You can configure a server as Publisher, Dis-
tributor, and/or Subscriber. The Publisher is the original owner of the information that is pub-
lished and is often the only place where data can be modified. The Distributor is responsible
for storing replication status data, metadata, and in some replication scenarios, the actual rep-
licated data. A Subscriber receives copies of published data. The same server can play all three
roles in the same publication. Figure 15-6 illustrates the replication architecture.

Figure 15-6 Replication architecture

Reporting Services

Data Flow

Database Mirror

Data Flow

MirrorPrincipal

Subscriber SubscriberSubscriber

DistributorPublisher

Data

Data

460 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
Replication is far more complex to configure than database mirroring or log shipping, but it
has some advantages:

n Replication allows multiple copies of data.

n Replication can be used to copy only some of the data in the database; you don’t have to
publish everything.

n Replication can be used to transform data. Replication doesn’t require the schema to be
the same at both ends of the replication.

n Replication allows different index strategies in the published and subscriber databases.

Designing the Schema
Database designers have several options when designing the database schema for reporting
services purposes. Let’s look at the options of using selective denormalization, summary
tables, a star or snowflake schema, or OLAP reporting.

Selective Denormalization
In relational databases, one of the best practices is to normalize the database. A normalized
database helps remove redundancy and increases the performance of changes (inserts,
updates, and deletes) that the database supports. Because data is stored only once, normaliza-
tion also reduces the amount of inconsistent data stored in the database.

However, sometimes after you normalize the database, you need to perform some of the
opposing process: denormalization. Denormalization is the process of adding redundancy to
the database. You use denormalization to increase the performance of reports and other data-
base activities. The following code shows an example of how the AdventureWorks database
uses denormalization:

SELECT ProductID, StandardCost from Production.Product
WHERE ProductID=707
SELECT ProductID, StartDate, EndDate, StandardCost
FROM Production.ProductCostHistory
WHERE ProductID=707

The StandardCost information stored in the ProductCostHistory table is, by design, normal-
ized. Alternatively, the StandardCost information stored in the Product table is redundant
because it can be obtained from the ProductCostHistory table simply by filtering where End-
Date IS NULL. So, you can say that the StandardCost value has been denormalized.

After you denormalize certain data, you must decide how to maintain synchronized copies of
the data. Data manipulation language (DML) triggers are frequently used to maintain the syn-
chronization of denormalized information in the database. Later in this lesson, you will see an
example of a trigger to maintain denormalized data.

Lesson 2: Designing a Snapshot Strategy, Schema, Indexes, and Data Transformations 461
Summary Tables
Summary tables are a special type of denormalization. A summary table aggregates data that
is frequently queried and prevents reports from summing up the same information repeatedly.
You can maintain summary tables by using triggers, business processes, or SQL Server Agent
jobs.

The following code shows an example of a summary table’s schema:

CREATE TABLE Sales.SummaryBySalesPerson(
 OrderPeriod INT NOT NULL
 , SalesPersonId INT NOT NULL
 , SubTotal MONEY NOT NULL
 , TaxAmt MONEY NOT NULL
 , Freight MONEY NOT NULL
 , TotalDue MONEY NOT NULL
 , PRIMARY KEY (SalesPersonId, OrderPeriod)
)

Notice that the schema does not capture details of the transactions. It is focused only on cap-
turing summarized information—in this case, sales total amounts.

Star or Snowflake Schema
To facilitate data retrieval for reporting purposes, most data marts or data warehouses use star
or snowflake schemas. The star schema is the simplest. It has a table in the center, named the
fact table, and multiple points of the star, represented by dimension tables. The fact table
stores all measures of a business event or process, and the dimensions store the context of the
process. For example, a fact table might capture sales and include columns for quantity, price,
sales amount, and sales cost. The dimensions associated with that schema might store infor-
mation about the customer, the product, the date, the distributor, and so on.

As noted, the star schema has a center, represented by the fact table, and the points of the star,
represented by the dimension tables. All dimension tables are directly linked to the fact table.
The advantage of the star schema is that joins between the dimensions and the fact tables are
simple and easy to understand by users and developers.

You can find an example of a star schema in the AdventureWorksDW database for the finance
tables. The schema has the FactFinance fact table as a center of the star. This table is respon-
sible for capturing all the measures of facts of the finance business process. It also has columns
that link the measures with business entities or dimensions. The tables responsible for storing
that information are always directly associated with the fact table. Figure 15-7 shows an exam-
ple of a star schema.

The snowflake schema is a little more complex than the star schema. The snowflake schema
also has a fact table in the center. However, in a snowflake schema, not all dimension tables
are directly linked to the fact table. Dimension tables in a snowflake schema might be linked

462 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
indirectly to the snowflake schema through other dimension tables. Figure 15-8 shows an
example of a snowflake schema.

Figure 15-7 A star schema example

Figure 15-8 A snowflake schema example

In the snowflake schema example, as with the star schema example, the center of the schema
is a fact table, FactInternetSales in this case. The columns (not shown in the illustration) store
measures of Internet sales of AdventureWorks. The context of the sales is also stored in dimen-
sion tables, as it was in the star schema. However, in the snowflake schema, not all tables are

Lesson 2: Designing a Snapshot Strategy, Schema, Indexes, and Data Transformations 463
directly linked to the fact table. For example, the DimProductCategory table requires three
joins to link to the fact table.

OLAP Reporting
Finally, in reporting, there is always the possibility of completely replacing the source technol-
ogy of reports. Instead of using a relational database as the source of your reports, you can use
a multidimensional database. A multidimensional database is a special type of database opti-
mized for data warehouses and OLAP applications. Multidimensional databases store detailed
and aggregated data by using information extracted from existing relational databases.

Designing Indexes
Indexes are database structures that enable faster retrieval of rows. SQL Server 2005 supports
two types of indexes: clustered and nonclustered. Clustered indexes sort and include the rows
of a table, provided that the rows are the lowest (leaf) level of the index. Tables can have only
one clustered index. In contrast, nonclustered indexes do not sort the rows of the table; they
store keys and references to the clustered index. Tables can have more than one nonclustered
index.

When designing indexes, keep in mind the following guidelines:

n Use the clustered index for queries that return a large number of contiguous rows.

n Avoid using wide columns as clustered indexes because the column width of columns
participating in the clustered index have an effect on all indexes, clustered and non-
clustered.

n Because nonclustered indexes reference clustered indexes, avoid clustered indexes on
columns that experience frequent updates.

n Indexes over nonselective columns are rarely used; do not index columns with few dis-
tinct values.

n Evaluate the performance gain for indexes that are regularly used in JOINS and WHERE
conditions. Foreign keys are normally evaluated as index candidates.

Computed Columns, Persisted Columns, and Indexes
A computed column is a special type of column that is calculated by using an expression based
on other columns of the table. The following code is an example of a computed column:

CREATE TABLE Sales.Invoice(
 InvoiceNo INT NOT NULL
 PRIMARY KEY
 , InvoiceDate SMALLDATETIME NOT NULL
 , CreditDays INT NOT NULL
 , DueDate AS DATEADD(day, CreditDays, InvoiceDate)
)

464 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
By default, computed columns are virtual columns that are calculated when the user queries
the table; they are never physically stored in the database. By default, computed columns are
very similar to views.

New in SQL Server 2005 is the ability to persist the values of computed columns. Persisted
computed columns are physically stored with the rest of the table columns. When a row is
inserted or any of the referenced columns are updated, the persisted computed column is cal-
culated and the results stored. Persisted computed columns are never calculated at query time.
The following code is an example of a persisted computed column:

CREATE TABLE Sales.Invoice(
 InvoiceNo INT NOT NULL
 PRIMARY KEY
 , InvoiceDate SMALLDATETIME NOT NULL
 , CreditDays INT NOT NULL
 , DueDate AS DATEADD(day, CreditDays, InvoiceDate)
 PERSISTED
)

The only requirement for computed columns is that the expression must be deterministic. For
example, a computed column based on the GETDATE() function or the SYSTEM_USER func-
tion cannot be persisted because these functions are not deterministic. Additionally, if you
want to create an index by using a computed column, the expression must be precise. For
more information about determinism and precision, see Chapter 4, “Designing a Database for
Performance.”

Use persisted computed columns to produce complex formulas based on columns that rarely
change. Do not assume that, because a column is persisted, it will offer better performance
than regular computed columns. However, persisted columns might help you denormalize a
database without the burden of creating triggers to maintain redundancy.

IMPORTANT Required persisted columns

Computed columns used to create constraints (CHECK FOREIGN KEY or NOT NULL) or used to cre-
ate partitions must be persisted.

Covered Queries and Indexes with Included Columns
A covered query is a SELECT statement that uses a nonclustered index to answer the query
without using the rows from the table or the clustered index. Covered queries can greatly
increase the performance of reports. For example, the following query can benefit from a cov-
ered index:

SELECT SalesPersonID
 , SUM(SubTotal)
 , SUM(TotalDue)

Lesson 2: Designing a Snapshot Strategy, Schema, Indexes, and Data Transformations 465
FROM Sales.SalesOrderHeader
WHERE OrderDate BETWEEN '20040101' AND '20040131'
GROUP BY SalesPersonID

SQL Server 2005 required 703 logical page reads to answer this query. From the syntax, you
know that the query uses only four columns of the SalesOrderHeader table: SalesPersonID,
OrderDate, SubTotal, and TotalDue. Over the first two columns, SalesPersonID and Order-
Date, it seems appropriate to create a nonclustered index. However, the last two columns, Sub-
Total and TotalDue, would benefit from a new feature of SQL Server 2005: included columns.

Included columns are columns included in a nonclustered index at the lowest level of the
index structure, the leaf level. With included columns, the performance of certain queries can
increase dramatically. An example of a CREATE INDEX statement with the new INCLUDE
option is:

CREATE NONCLUSTERED INDEX IDX_SalesHeaderSummary
ON Sales.SalesOrderHeader(OrderDate, SalesPersonID)
INCLUDE (SubTotal, TotalDue)

A quick comparison of the base query with and without the index will show that the query
without the index required 703 logical reads to find the results, while the query with the index
required only 12 logical reads to get the results.

Designing the Data Transformation
After you create the database schema in consideration of your reporting solution, you need to
populate the tables designed to support reports. Based on how the transformation process is
implemented, there are three methods for populating these tables. First, you can use data def-
inition language (DDL) triggers. Triggers can populate and then keep the summary informa-
tion updated in real time, but they have the greatest impact on the performance of the OLTP
application. Second, you can integrate the process of transforming summary information into
the business cycle. For example, in a Point of Sale (POS) system, you could summarize infor-
mation when a cashier closes his or her cashier station. Finally, most designers choose a for-
mal extract, transform, and load (ETL) process to perform transformations. ETL processes
frequently use a fixed daily, weekly, or monthly schedule.

Using Triggers to Summarize Information
The following code will help you understand how to use triggers to maintain summary tables:

CREATE TRIGGER Sales.TrSummarySalesBySalesPerson
 ON Sales.SalesOrderHeader
 AFTER INSERT,DELETE,UPDATE
AS
BEGIN
SET NOCOUNT ON;
-- DELETE Previous Amounts

466 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
DELETE Sales.SummaryBySalesPerson
FROM Sales.SummaryBySalesPerson
JOIN (SELECT YEAR(OrderDate)*100+MONTH(OrderDate) AS OrderPeriod
 , SalesPersonId
 FROM Deleted
 UNION-- Removes duplicates
 SELECT YEAR(OrderDate)*100+MONTH(OrderDate)
 , SalesPersonId
 FROM Inserted
) AS Changed
 ON SummaryBySalesPerson.OrderPeriod=Changed.OrderPeriod
AND SummaryBySalesPerson.SalesPersonId=Changed.SalesPersonId

 INSERT Sales.SummaryBySalesPerson(OrderPeriod, SalesPersonId, SubTotal,TaxAmt, Freight,
TotalDue)
 SELECT
 YEAR(OD.OrderDate)*100+MONTH(OD.OrderDate) AS OrderPeriod
, OD.SalesPersonId
, SUM(OD.SubTotal) AS SubTotal
, SUM(OD.TaxAmt) AS TaxAmt
, SUM(OD.Freight) AS Freight
, SUM(OD.TotalDue) AS TotalDue
 FROM Sales.SalesOrderHeader AS OD
 JOIN (SELECT YEAR(OrderDate)*100+MONTH(OrderDate) AS OrderPeriod
 , SalesPersonId
 FROM Deleted
 UNION-- Removes duplicates
 SELECT YEAR(OrderDate)*100+MONTH(OrderDate)
 , SalesPersonId
 FROM Inserted
) AS Changed
 ON YEAR(OD.OrderDate)*100+MONTH(OD.OrderDate)=Changed.OrderPeriod
 AND OD.SalesPersonId=Changed.SalesPersonId
 WHERE OD.SalesPersonID IS NOT NULL
 GROUP BY OD.SalesPersonId, YEAR(OD.OrderDate)*100+MONTH(OD.OrderDate)
END

Notice the following important facts about this trigger:

n The trigger is an AFTER trigger because you want to execute the code only after all vali-
dations have occurred.

n Because the code in the trigger is fired only once for all rows modified, it must work with
the entire set of changes at the same time. The trigger must assume that multiple rows
have been updated.

n The trigger must be optimized for performance. The code does not recalculate the entire
summary table each time because that would severely affect the performance of each
transaction that modifies the OrderHeader table. The trigger updates (deletes and
inserts) only the rows that change their value.

Lesson 2: Designing a Snapshot Strategy, Schema, Indexes, and Data Transformations 467
Designing an ETL Process
ETL is the part of a data warehouse solution responsible for loading the information into the
data warehouse. As its name suggests, it has three main tasks:

n Extracting data from different sources

n Transforming the data

n Loading the transformed data into the data warehouse

Exam Tip Understanding the details of how to design an ETL process is beyond the scope of the
certif ication exam and this training kit; however, you must have a general understanding of the ETL
process.

Traditional ETL Architecture Figure 15-9 illustrates the architecture of a traditional ETL
process.

Figure 15-9 The traditional ETL architecture

The first step of the ETL process is extraction. Extraction is responsible for pulling informa-
tion from multiple database sources and storing that information in a staging area. A critical
requirement of the extraction process is to minimize the impact on the source, and because of
that, the extraction process is always as simple as possible.

The second phase of the ETL process is the transformation, where most of the ETL process
occurs. The transformation phase is responsible for cleaning bad data, joining information
from multiple sources, summarizing rows, and changing the schema of the information to
match the destination data warehouse schema.

Finally, the loading phase is responsible for storing the information in a relational database to
maintain historical information and for populating the OLAP cubes when they exist.

Data
Sources

Staging
Area

Data Access
Data Input

User
Data Access

Data Marts

ETL Data Warehouse

468 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
SSIS In-Memory ETL In some scenarios, the traditional ETL architecture might not be fea-
sible. The traditional ETL process uses many tasks that produce numerous read and write
operations. When the ETL process involves millions and millions of rows, the ETL process
might not scale very well and can be hard to manage. SSIS offers an alternative.

SSIS was designed with the idea that a lot of the ETL tasks can be combined in a single in-
memory process that performs much faster and can be easily managed. The illustration in
Figure 15-10 outlines the SSIS ETL architecture.

Figure 15-10 SSIS ETL architecture

In Chapter 17, “Developing Packages for Integration Services,” you will learn more about how
to build an ETL infrastructure by using SSIS.

Practice: Creating a Purchasing Summary Report
In this practice, you will create a report that summarizes purchases by vendor. The report will
use a summary table to avoid using the transactional table as the report’s data source. The
summary table will be updated once a day by using a SQL Server Agent job.

� Exercise 1: Create the Summary Table

In this exercise, you will create a schema and summary table. The summary table will store
rows that summarize the orders by month and by vendor.

1. Open SSMS and connect to the default database engine instance.

2. From the SQL Editor toolbar, click New Query.

3. From the Available Databases drop-down list, select AdventureWorks.

Data
Sources

SSIS: ETL Data
Warehouse

Text
mining

Change
Schema

Data
cleansing

Data
mining

Lesson 2: Designing a Snapshot Strategy, Schema, Indexes, and Data Transformations 469
4. Write the required command to create a SummaryTables schema:
CREATE SCHEMA SummaryTables

5. Write the command required to create a summary table called PurchaseByVendor.

The summary table should be able to capture the order month and year, the VendorId,
all purchase order amounts (SubTotal, TaxAmt, Freight, and TotalDue), and the number
of order items:
CREATE TABLE SummaryTables.PurchasesByVendor(
 OrderMonth INT NOT NULL
 , VendorID INT NOT NULL
 , SubTotal MONEY NOT NULL
 , TaxAmt MONEY NOT NULL
 , Freight MONEY NOT NULL
 , TotalDue MONEY NOT NULL
 , NumberOrderedItems INT NOT NULL
 , CONSTRAINT PK_PurchasesByVendor
 PRIMARY KEY(OrderMonth, VendorID)
)

6. Click Execute or press F5 to create the database objects.

� Exercise 2: Create the Job to Populate the Summary Table

In this exercise, you will create a SQL Server Agent job to populate the summary table. The job
should run once a day, deleting all previous information and filling the summary table from
data collected from the PurchasingOrderHeader and PurchasingOrderDetail tables.

1. Open SSMS and connect to the default database engine instance.

2. Using Object Explorer, navigate to SQL Server Agent and then Jobs.

You might have to start SQL Server Agent to perform the following tasks. If the agent is
stopped, right-click SQL Server Agent and select Start.

3. Right-click the Jobs folder and select New Job.

4. In the Name text box, type PopulatePurchaseOrdersSummary to name the job.

5. In the Select A Page pane, select Steps.

6. Click New to create a new job step.

7. In the Step Name field, type PopulatePurchasesByVendor.

8. From the Database drop-down list, select AdventureWorks.

9. Write the SQL statements required to delete the old information from the summary
table and populate it with new information:
TRUNCATE TABLE SummaryTables.PurchasesByVendor;

INSERT SummaryTables.PurchasesByVendor(OrderMonth, VendorID
 , SubTotal, TaxAmt, Freight, TotalDue, NumberOrderedItems)
SELECT
 PurchaseOrderHeader.VendorID
 , YEAR(PurchaseOrderHeader.OrderDate) * 100

470 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
 + MONTH(PurchaseOrderHeader.OrderDate) AS OrderMonth
 , SUM(PurchaseOrderHeader.SubTotal) AS SubTotal
 , SUM(PurchaseOrderHeader.TaxAmt) AS TaxAmt
, SUM(PurchaseOrderHeader.Freight) AS Freight
 , SUM(PurchaseOrderHeader.TotalDue) AS TotalDue
 , SUM(NumberOrderedItems) AS NumberOrderedItems
FROM Purchasing.PurchaseOrderHeader
JOIN (SELECT PurchaseOrderDetail.PurchaseOrderID AS PurchaseOrderID
 , COUNT(PurchaseOrderDetail.PurchaseOrderDetailID)
 AS NumberOrderedItems
 FROM Purchasing.PurchaseOrderDetail
 GROUP BY PurchaseOrderID) AS OrderedItems
on PurchaseOrderHeader.PurchaseOrderID = OrderedItems.PurchaseOrderID
GROUP BY PurchaseOrderHeader.VendorID
 , YEAR(PurchaseOrderHeader.OrderDate) * 100
 + MONTH(PurchaseOrderHeader.OrderDate);

10. Click OK to continue creating the job.

11. In the Select A Page pane, select Schedules.

12. Click New to create a new schedule.

13. In the Name field, type the name Midnight.

14. In the Frequency section, from the Occurs drop-down list, select Daily. Click OK to cre-
ate the schedule.

15. Click OK to create the job, and then click OK to close the New Job dialog box.

� Exercise 3: Execute and Validate the Job

In this exercise, you will execute the job that populates the purchasing orders summary table.

1. In Object Explorer, navigate to SQL Server Agent and then to Jobs.

2. Right-click the PopulatePurchaseOrderSummary job and select Start Job At Step.

3. Wait for the job to execute and click Close after it reports success.

4. Click the New Query button to create a new window.

5. From the Available Databases drop-down list, select AdventureWorks.

6. Write a query to select all columns from the SummaryTables.PurchaseByVendor table:
SELECT * FROM SummaryTables.PurchasesByVendor

Lesson 2: Designing a Snapshot Strategy, Schema, Indexes, and Data Transformations 471
Quick Check
1. What is the main benefit of using the read committed snapshot isolation level?

2. What is the main difference between the star schema and the snowflake schema?

3. How do you create a covered index in SQL Server 2005?

A. With a clustered index

B. With a nonclustered index

C. With auto create statistics

D. With included columns in a nonclustered index

Quick Check Answers
1. Read committed snapshots use row versioning to avoid shared locks, preventing

readers from blocking writers.

2. In the snowflake schema, not all dimension tables are directly linked to the fact
table. In the snowflake schema, designers provide some normalization of dimen-
sion tables and divide the dimension information into two or more tables that
might not be linked to the fact table.

3. The correct answer is D. A new feature of SQL Server 2005 is to allow the inclusion
of non-key columns in a nonclustered index.

472 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
Lesson 3: Designing Programmatic Interfaces and the
Data Access Method for Reporting

Estimated lesson time: 25 minutes

When designing reporting solutions, you must consider the type of data access and language
and format message the reports will use to access the database. This consideration will affect
the security, performance, scalability, and programmability of your solution. In this lesson,
you will apply the knowledge learned in Chapter 8, “Designing a Secure Application Solution,”
about views, stored procedures, and user-defined functions (UDFs) and evaluate the impact
they will have on your application.

Querying Tables Directly
When choosing which data access method to use for your reports, the first option to evaluate
is querying the tables directly. Querying tables directly has the following advantages:

n Programmability The Query Builder in BIDS, which Figure 15-11 shows, automatically
detects primary, unique, and foreign keys, helping the developer create the SQL syntax.

Figure 15-11 Using the Query Builder in BIDS

For database developers, the SQL language is an easy and effective way to manage data.
n Security When combined with impersonation, querying the tables directly can be man-

aged from SQL Server and can be easily audited and traced with database tools.

Lesson 3: Designing Programmatic Interfaces and the Data Access Method for Reporting 473
However, querying the tables directly has the following disadvantages:

n Programmability Report designers might need to have advanced SQL abilities and pro-
found knowledge of the database schema.

n Maintainability After the report is created and deployed, changes in the schema of the
database might cause the report to stop working, thereby reducing the maintainability of
the database.

n Manageability In corporate scenarios, managing the security of hundreds or thousands
of users could be challenging for the IT department.

n Security When combined with impersonation, directly querying the tables requires
permissions in every table that is included in the SQL command. It would be simple for
a user to bypass SSRS and access the database directly.

n Security Denying access to detailed information is not possible.

Querying tables directly for SSRS reports is recommended only for small-group scenarios in
which security and maintainability might be compromised to facilitate rapid development.

Using Views to Support Reports
Views are a data-access alternative to directly querying the tables. With views, database devel-
opers can hide some of the complexity of the database and offer reporting developers a sim-
pler and more natural model to query. Views can also offer a good alternative for increasing
security. With views, database developers can protect detailed information, hide sensitive col-
umns, and use system functions to provide row security.

Hiding Detailed Information
To use views to protect detailed information, follow these steps:

1. Create a summary view.

2. Grant users access to the view.

3. Do not grant users access to the original tables.

SQL Server 2005 implements a concept called ownership chaining. When multiple database
access objects access each other sequentially, SQL Server evaluates permissions only when the
links belong to different users. This means that if a view references one or more tables and all
the objects belong to the same user, users querying the view do not require access to the orig-
inal tables. The following code shows an example of hiding detailed information:

CREATE TABLE Loans.Loan(
 LoanContractNumber CHAR(12) NOT NULL
 PRIMARY KEY
 , LoanApprovedDate DATETIME NOT NULL
 , CustomerCode INT NOT NULL
 , InterestRate DECIMAL(5,2) NOT NULL

474 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
 , LoanAmmount MONEY NOT NULL
 , AmmountDue MONEY NOT NULL
)
GO
CREATE VIEW Loans.SummaryApprovedLoans
AS
 SELECT LoanApprovedDate, SUM(LoanAmmount) AS ApprovedAmmout
 FROM Loan
 GROUP BY LoanApprovedDate
GO
-- Do not grant users access to the Loan Table
GRANT SELECT ON Loans.SummaryApprovedLoans TO User1

Hiding Sensitive Columns
Even when SQL Server 2005 allows security to grant or deny access at a column level, most
database designers, for performance and maintainability reasons, choose to use views instead.
The following code is an example of how you can use a view to hide sensitive columns:

CREATE SCHEMA HumanResources
CREATE TABLE HumanResources.Employees(
 EmployeeNumber INT NOT NULL
 PRIMARY KEY
 , FirstName VARCHAR(50) NOT NULL
 , MiddleName VARCHAR(50) NOT NULL
 , LastName VARCHAR(50) NOT NULL
 , Salary MONEY NOT NULL
)
GO
CREATE VIEW HumanResources.EmployeeList
AS
 SELECT EmployeeNumber
 , FirstName
 , MiddleName
 , LastName
 FROM Employees
GO
-- Only users that need access to salary amounts must have access
-- to the HumanResources.Employees Table, Reports use EmployeeList
GRANT SELECT ON HumanResources.EmployeeList TO User1

Row Security Through Views
A final motive for using views is the ability to provide row security. Using views and system
functions, database designers can filter rows and provide filtered views that give access only to
appropriate users. A simple case of filtered views is when the table has a column that stores the
owner’s username. The following code is an example of filtering information through views:

CREATE TABLE Sales.CustomerBase(
 CustomerCode INT NOT NULL

Lesson 3: Designing Programmatic Interfaces and the Data Access Method for Reporting 475
 PRIMARY KEY
 , CustomerName VARCHAR(50) NOT NULL
-- ... other columns
 , SalesRep VARCHAR(32) NOT NULL
 DEFAULT(SYSTEM_USER)
)
GO
CREATE VIEW Sales.Customers
AS
 SELECT CustomerCode
 , CustomerName
 FROM CustomerBase
 WHERE SalesRep=SYSTEM_USER

With this schema, database developers grant user access to the Customers view, and users are
allowed to browse reports that display only their own customers.

A more complex scenario happens when you need to access more than one table to permit
access to the rows. The following code builds on top of the previous example to create a more
complex scenario:

CREATE TABLE Sales.SalesRegion(
 SalesRegionCode CHAR(5) NOT NULL
 PRIMARY KEY
 , SalesRegionName VARCHAR(50) NOT NULL
 , SalesRep VARCHAR(32) NOT NULL
 DEFAULT(SYSTEM_USER)
)
CREATE TABLE Sales.CustomerBase(
 CustomerCode INT NOT NULL
 PRIMARY KEY
 , CustomerName VARCHAR(50) NOT NULL
-- ... other columns
 , SalesRegionCode CHAR(5) NOT NULL
 FOREIGN KEY REFERENCES Sales.SalesRegion(SalesRegionCode)
)
GO
CREATE VIEW Sales.Customers
AS
 SELECT CustomerCode
 , CustomerName
 FROM CustomerBase
 WHERE SalesRegionCode IN (SELECT SalesRegionCode
 FROM Sales.SalesRegion
 WHERE SalesRep=SYSTEM_USER)

As you can see from the example, the SalesRegion table is used to authorize access to the cus-
tomer information. Naturally, you can repeat this technique with other tables to build a hier-
archical permission structure. For example, you can use it to filter orders information, as
follows:

476 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
CREATE VIEW Sales.Orders
AS
 SELECT OrderBase.OrderNumber
 , OrderBase.CustomerCode
 , OrderBase.OrderDate
 , OrderBase.OrderAmmount
FROM Sales.OrderBase
JOIN Sales.Customer
ON OrderBase.CustomerCode=Customer.CustomerCode
JOIN Sales.SalesRegion
ON SalesRegion.SalesRegionCode=Customer.SalesRegionCode
WHERE SalesRegion.SalesRep= SYSTEM_USER

IMPORTANT Security reminder

If you plan to use f iltered views, keep in mind that the reports must use impersonation to f ilter the
information.

Using views is similar to querying the tables directly except for the following differences:

n Programmability You can encapsulate some of the more complex queries from the
reports, reducing the level of SQL knowledge developers require to create reports. You can
use views to simplify some of the complexity introduced in the model by normalization.

n Security Views add new alternatives for providing security. These security benefits can
include hiding sensitive columns, hiding detailed information, and providing row-level
security.

However, if you use filtered views, scalability is adversely affected because filtered views rely on
system functions to filter rows; they work only when the reports use impersonation, which
substantially reduces the scalability of the SSRS architecture.

Using Stored Procedures
Another approach when designing data access for reporting is to use stored procedures. The
idea behind using stored procedures is to hide both the SQL language and the database
schema from the report designers. Using stored procedures provides advantages in both secu-
rity and maintainability at the expense of a more complex solution.

Filtered Rows Equivalent
The following code shows an example of how to create a stored procedure that provides row
security without the need for impersonation:

CREATE PROCEDURE Sales.SalesSummary
(
 @SalesRep CHAR(32)
)

Lesson 3: Designing Programmatic Interfaces and the Data Access Method for Reporting 477
AS
 SET NOCOUNT ON;
 SELECT Orders.OrderNumber
 , Orders.CustomerCode
 , Orders.OrderDate
 , Orders.OrderAmmount
 FROM Sales.Orders
 JOIN Sales.CustomerCode
 ON Orders.CustomerCode=Customer.CustomerCode
 JOIN Sales.SalesRegion
 ON SalesRegion.SalesRegion=Customer.SalesRegion
 WHERE SalesRegion.SalesRegion= @SalesRep;
GO
-- Do not grant users access to this stored procedure.
GRANT SELECT ON Sales.SalesSummary TO ReportServerServiceAccount

This procedure is designed on the assumption that only the Reporting Services account will
use the procedure, and users won’t have access to it. After the stored procedure is created, you
need to create a report that uses the stored procedure. You do this by using the Report Wizard
and entering the code to execute the stored procedure.

After finishing the Report Wizard, you need to perform two final steps to create the report.
First, delete the parameter that the Report Wizard automatically creates and assign the UserID
global variable to the SQL Parameter. To delete the parameter, follow these steps:

1. When editing the report, select Report from the main menu.

2. Select Report Parameters.

3. Click Remove to delete the parameter.

After the report parameter is deleted, you must assign the UserID global variable to the
SQL parameter. To map the UserID, follow these steps:

a. In the Report Designer, select the Data pane.

b. From the toolbar of the Data pane, click the Edit Selected Dataset button.

c. Select the Parameters pane.

d. Select the Value column of the parameter and configure the expression, using the
UserID parameter.

Stored Procedure Advantages and Disadvantages
Using stored procedures to provide data access to reports has the following advantages:

n Programmability Stored procedures encapsulate the complexity of the database
schema and the SQL language from report designers.

n Security Stored procedures offer a wide spectrum of security options, including deny-
ing users access to the database’s underlying objects. The Report Server can be the only
entity with database access.

478 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
n Maintainability Changing the schema of the database might not have a negative impact
on the reports. Database administrators can tune the database without having to change
the reports.

n Manageability Managing hundreds or thousands of users is simpler than with other
methods; access to the database can be restricted.

Using stored procedures has the following disadvantages:

n Programmability The developer team requires a higher level of specialization and a
clear definition of a programming interface to query the database. Further, ad hoc que-
ries are not possible when using stored procedures unless you grant users permissions
to the underlying database objects.

Practice: Creating a Row-Filtered Report
In this practice, you will create a report that uses a stored procedure and the identity captured
in the SSRS interface to summarize filtered information for users. The users will be salespeople
who need access to a sales quota report but are not allowed to see each other’s information.

� Exercise 1: Create the Stored Procedure

In this exercise, you will create a stored procedure that receives a single parameter: the user
running the report. This procedure is designed so that only a Reporting Services account is
able to query the data.

1. Open SSMS and connect to the default database engine instance.

2. From the SQL Editor toolbar, click New Query.

3. From the Available Databases drop-down list, select AdventureWorks.

4. Write the required command to create the SalesReports schema:
CREATE SCHEMA SalesReports
Go

5. Write the command required to create the filtered stored procedure.

The procedure should summarize Orders from the SalesOrderHeader table, filtered by
LoginID and Group By quarter. The data should also include the Historic Quota for that
quarter and salesperson:
CREATE PROC SalesReports.SalesPersonHistoricQuota (
 @LoginID NVARCHAR(256)
)
AS
 SET NOCOUNT ON;
 SELECT
 CAST(YEAR(SalesPersonQuotaHistory.QuotaDate) AS CHAR(4))+' - Q'
 +CAST((MONTH(SalesPersonQuotaHistory.QuotaDate)/4)+1 AS CHAR(1))
 AS Quarter
 , SUM(SalesPersonQuotaHistory.SalesQuota) AS SalesQuota
 , SUM(SalesOrderHeader.SubTotal) AS Sales

Lesson 3: Designing Programmatic Interfaces and the Data Access Method for Reporting 479
 FROM Sales.SalesPerson
 INNER JOIN HumanResources.Employee
 ON SalesPerson.SalesPersonID = Employee.EmployeeID
 INNER JOIN Sales.SalesPersonQuotaHistory
 ON SalesPerson.SalesPersonID = SalesPersonQuotaHistory.SalesPersonID
 INNER JOIN Sales.SalesOrderHeader
 ON SalesPerson.SalesPersonID = SalesOrderHeader.SalesPersonID
 AND YEAR(SalesPersonQuotaHistory.QuotaDate)
 = YEAR(SalesOrderHeader.OrderDate)
 AND MONTH(SalesPersonQuotaHistory.QuotaDate)/4
 = MONTH(SalesOrderHeader.OrderDate)/4
 WHERE Employee.LoginID=@LoginID
 GROUP BY CAST(YEAR(SalesPersonQuotaHistory.QuotaDate) AS CHAR(4))
 +' - Q'
 +CAST((MONTH(SalesPersonQuotaHistory.QuotaDate)/4)+1 AS CHAR(1))
GO

6. Click Execute or press F5 to create the database objects.

� Exercise 2: Test the Stored Procedure and Prepare Data for the Report

In this exercise, you will test the previously created report and prepare some data for testing
purposes.

1. From the SQL Editor toolbar, click the New Query button.

2. In the Available Databases drop-down list, select AdventureWorks.

3. Write and execute the required command to test the SalesPersonHistoricQuota stored
procedure:
EXEC SalesReports.SalesPersonHistoricQuota 'adventure-works\michael9'

The command should return 10 rows with the requested information.

4. Write and execute the command to find the login account you are using to connect to
SQL Server:
SELECT system_user

The returned value is the login account you are using to connect to SQL Server.

5. Write and execute the command to replace the login adventure-works\michael9
account in the Employee table with your own login account.

In this practice, you will play the role of this salesperson:
UPDATE HumanResources.employee
 SET LoginId=SYSTEM_USER
WHERE loginId='adventure-works\michael9'

� Exercise 3: Add a New Filtered Report

In this exercise, you will use the recently created stored procedure to create a report that
dynamically filters information based on the account accessing the Report Manager.

1. Open BIDS.

2. From the main menu, click File, click New, and then choose Project.

480 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
3. Select Business Intelligence Projects from Project Types.

4. Select the Report Server Project Wizard template. Name the project SalesQuotaReports
and click OK to begin the wizard.

5. When the Welcome To The Report Wizard page appears, click Next to continue.

6. On the Select The Data Source page, create a new data source. Name the data source
AdventureWorks.

7. Leave the default data source type as Microsoft SQL Server. Click Edit to configure the
connection string.

8. When the Connection Properties dialog box is displayed, for server name, type localhost.
For the database name, type or select AdventureWorks. Leave the security as Use Windows
Authentication. Select Test Connection to validate the connection information and click
OK to continue.

9. In the Select The Data Source page, select the Make This A Shared Data Source check
box, and then click Next.

10. On the Design The Query page, type the following query to execute the SalesPerson-
HistoricQuota stored procedure:
EXEC SalesReports.SalesPersonHistoricQuota @UserID

Using @UserID will create two parameters: one T-SQL parameter and one Reporting Ser-
vices parameter.

11. Click Next.

12. Accept the default Tabular report type and click Next to continue.

13. Click the Details button three times to add all columns to the Details Displayed Fields.
Click Next to continue creating the report.

14. Select Corporate Style to format the report and click Next.

15. Accept the default deployment locations on the Choose The Deployment Location page,
and then click Next.

16. Name the report Historic Quota Performance and click Finish to create the report.

17. Select the Preview pane and notice the UserID report parameter.

This is not the desired behavior; you do not want users to browse each other’s informa-
tion.

18. Select the Layout pane. From the Report menu, select Report Parameters.

The Report Parameters dialog box will be displayed.

19. Select the UserID parameter and click Remove to delete the report parameter. Click OK
to continue editing the report.

Lesson 3: Designing Programmatic Interfaces and the Data Access Method for Reporting 481
20. Select the Data pane. From the toolbar in the Data pane, click the Edit Selected Dataset
button. The Dataset dialog box will appear.

21. Select the Parameters tab to change the value of the T-SQL parameter.

22. Select the @UserID row and, in the Value combo box, select <Expression>.

23. Enter the following expression to assign the UserID variable:
=User!UserID

24. Click OK to accept the new expression and click OK to close the Dataset window.

25. Select the Preview pane again to preview the report.

You should now see only your customers.

Quick Check
1. What is the main reporting advantage of directly querying database tables?

2. You want to give users access to summarized information and hide the detail
items. Which is the simplest way to achieve this?

A. Create a summary table and the required triggers.

B. Create a summary table and a job to populate the table.

C. Create a summarizing view.

D. It cannot be achieved in SQL Server 2005.

3. You want to use SYSTEM_USER to filter information in a view. What will be the
main constraint of using such a view from SSRS?

Quick Check Answers
1. The correct answer is programmability. The main advantage of directly querying

the tables is how easily you can program a report.

2. The correct answer is C. A view with a GROUP BY statement will provide user
access to the summarized information, and users do not need to have access to the
base table to use the summarized view.

3. SSRS must use impersonation. In corporate and extranet scenarios, impersonation
might not be desirable for scalability and security reasons.

482 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
Lesson 4: Optimizing Reports

Estimated lesson time: 15 minutes

In this lesson, you will learn about different options that can help you increase report perfor-
mance. To optimize your reports’ performance, you must understand how the reporting exe-
cution process works. The reporting execution process consists of the following phases:

n Request The request phase initiates the process. It occurs when the client application
makes a request to the SSRS Web service. Among other information, the request defines
the target format type of the report.

n Process The process step includes two major subphases. The first subphase is to read
the configuration information. The configuration information includes the report lay-
out, data source connection string, and report query command. The second subphase
involves the process of reading data from the source and storing the information in an
intermediate format. This format is independent of the target format type.

n Render This process is responsible for creating the report. Rendering generates a for-
matted output from the intermediate format data.

n Response The response phase sends the rendered output to the client application.
n Display This optional phase is responsible for displaying the response from the Report

Server to the client.

Report Caching
One option for increasing the performance of reports is to configure report caching. The
report caching configuration changes the typical execution process. The goal of report caching
is to reduce the number of times the Reporting Services has to read data from the source.
Report caching reads data from the source once and then stores the information in the inter-
mediate format for later use. After the intermediate format data is cached, executions use the
intermediate format directly without pulling the information from the original data source.

To configure report caching by using Report Manager, follow these steps:

1. Navigate to the shared data source.

2. Configure the credentials required to access the source database.

Credentials must be securely stored in the server.

IMPORTANT Report caching

User impersonation and report caching are incompatible options. When caching reports,
security must be conf igured by using delegation.

Lesson 4: Optimizing Reports 483
3. Apply your changes and navigate to the report.

4. Select the Properties tab of the report.

5. Select the Execution link of the report to configure caching.

6. Change the default option from Do Not Cache Temporary Copies Of This Report to any
of the options that start with Cache A Temporary Copy Of The Report, as Figure 15-12
shows.

Figure 15-12 How to configure report caching

You can configure report caching for two different behaviors. The first option is to use users’
navigation patterns to decide which reports are cached. Select the Expire Copy Of Report After
A Number Of Minutes option if you want to use this option. Set the number of minutes based
on users’ requirements to report on real-time or near real-time data.

The second option enables the designer to use a fixed time pattern to cache reports. Select this
option and configure a schedule for it. From the user’s perspective, using a fixed time pattern
to cache reports provides a better user experience because the user will not have to wait for the
data to be generated. However, fixed time patterns usually consume more resources.

Report Snapshots
Another technique for increasing the performance of your reporting solutions is to generate
report execution snapshots. Even more than report caching, report snapshots change the
typical report execution process. The purpose of report snapshots is not only to avoid data
access from the data source but also from the rendering process. Report snapshots execute

484 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
on a pre-defined schedule that uses live data to generate the formatted output. Subsequent
executions use the pre-rendered output.

To configure report snapshots:

1. Navigate to the shared data source.

2. Configure the credentials required to access the source database.

Credentials must be securely stored in the server.

IMPORTANT Report snapshots

Report snapshots are incompatible with user impersonation. Report snapshots require SQL
Server Agent to work.

3. Apply your changes and navigate to the report.

4. Select the Properties tab of the report.

5. Select the Execution link of the report to configure rendering snapshots.

6. Select the Render This Report From A Report Execution Snapshot option.

7. Configure the rendering schedule and click Apply.

After you configure the schedule, you can navigate to the History tab, create a new snapshot,
or view previous snapshot reports.

Specifying Subscription Models
You have already seen how SSRS enables users to generate reports. However, sometimes users
require SSRS to distribute reports actively also. This implementation is called subscriptions.
Subscriptions are configured in SSRS to send reports through e-mail or to store reports in a file
share or directory in the file system. SSRS supports two different configurations for subscrip-
tion models. Both models support e-mail and file share delivery.

� Schedule Subscription

To configure a scheduled Windows Shared File subscription:

1. Navigate to the report in Report Manager.

2. Select the report and navigate to the Subscriptions tab.

3. Click New Subscription.

4. From the Deliver drop-down list, select Windows Shared File.

5. Configure the path of the report, using UNC syntax (for instance, \\SERVER-
NAME\Reports).

6. Select the preferred rendering format.

7. Configure the credentials to use the shared folder.

Lesson 4: Optimizing Reports 485
Configure whether you want the new versions to replace the old version, to fail if an old
version exists, or to file names and numbers for version control.

8. Configure a schedule and click OK to configure the subscription.

Practice: Optimizing Report Performance
In this practice, you will create and optimize a report. The report will include a command that
has a deliberate delay to simulate a complex query that generates a large database load.

� Exercise 1: Create a Slow Report

In this exercise, you will create a report that deliberately delays the query to simulate a large
database load.

1. Open BIDS.

2. From the main menu, click File, click New, and then choose Project.

3. Select Business Intelligence Projects from Project Types.

4. Select the Report Server Project Wizard template. Name the project SalesManagement-
Reports and click OK to begin the wizard.

5. When the Welcome To The Report Wizard page is displayed, click Next.

6. On the Select The Data Source page of the wizard, create a new data source and name it
AdventureWorksManagement.

7. Accept the default data source type as Microsoft SQL Server. Click Edit to configure the
connection string.

8. When the Connection Properties dialog box appears, for the server name, type local-
host. For the database name, enter or select AdventureWorks. Accept the security as
Use Windows Authentication. Select Test Connection to validate the connection infor-
mation and click OK to continue and configure the connection string.

9. In the Select The Data Source dialog box, select the Make This A Shared Data Source
check box and click Next.

10. On the Design The Query page, type the following command:
SET NOCOUNT ON;
WAITFOR DELAY '00:00:30'
SELECT
 Contact.FirstName + ' ' + Contact.LastName AS SalesPersonFullname
 , CAST(YEAR(SalesPersonQuotaHistory.QuotaDate) AS CHAR(4))+' - Q'
 +CAST((MONTH(SalesPersonQuotaHistory.QuotaDate)/4)+1 AS CHAR(1))
 AS Quarter
 , SUM(SalesPersonQuotaHistory.SalesQuota) AS SalesQuota
 , SUM(SalesOrderHeader.SubTotal) AS Sales
FROM Sales.SalesPerson
INNER JOIN HumanResources.Employee
ON SalesPerson.SalesPersonID = Employee.EmployeeID
INNER JOIN Person.Contact

486 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
ON Contact.ContactID = Employee.ContactID
INNER JOIN Sales.SalesPersonQuotaHistory
ON SalesPerson.SalesPersonID = SalesPersonQuotaHistory.SalesPersonID
INNER JOIN Sales.SalesOrderHeader
ON SalesPerson.SalesPersonID = SalesOrderHeader.SalesPersonID
 AND YEAR(SalesPersonQuotaHistory.QuotaDate)
 = YEAR(SalesOrderHeader.OrderDate)
 AND MONTH(SalesPersonQuotaHistory.QuotaDate)/4
 = MONTH(SalesOrderHeader.OrderDate)/4
GROUP BY Contact.FirstName + ' ' + Contact.LastName
 , CAST(YEAR(SalesPersonQuotaHistory.QuotaDate) AS CHAR(4))+' - Q'
 +CAST((MONTH(SalesPersonQuotaHistory.QuotaDate)/4)+1 AS CHAR(1))

The query uses the DELAYFOR command to slow down the query.

11. Click Next.

12. Change the default report type to Matrix and click Next.

13. Add SalesPersonFullName to the Columns Displayed Fields, add Quarter to the Rows
Displayed Fields, and add the SalesQuota and Sales columns to the Details Displayed
Fields. Click Next to continue creating the report.

14. Select Corporate Style to format the report and click Next.

15. Accept the default deployment locations on the Choose The Deployment Location page,
and then click Next.

16. Name the report Quota Performance by Sales Person and click Finish to create the
report.

17. Select the Preview pane and notice that the report takes a long time to generate (30
seconds).

� Exercise 2: Deploy the Report

In this exercise, you will deploy the report created in the previous exercise to the server. You
will use BIDS to deploy the report; you can also use SSMS to deploy reports.

1. In Solution Explorer, right-click the SalesManagementReports project and select Deploy.

2. After the report is deployed, open Internet Explorer and navigate to the Report Manager.
By default, the Report Manager URL is http://localhost/Reports.

3. From the main menu, click File, click New, and then select Project.

4. Navigate to the SalesManagementReports folder.

5. Open the Quota Performance By Sales Person report. Notice that it takes a long time to
display the information.

6. Click the Refresh button a couple of times and notice that every time you click Refresh,
the report takes 30 seconds to display information.

Lesson 4: Optimizing Reports 487
� Exercise 3: Optimize the Report

In this exercise, you will configure SSRS to cache the data and optimize the report generation
in the deployed report.

1. In the Report Manager, click Home to return to the Home page.

2. Select the Data Sources folder.

3. Select the AdventureWorksManagement data source. You will need to change the con-
nection string to allow SSRS to capture the source data with its own credentials.

4. Select Credentials Stored Securely In The Report Server.

5. Enter the required Windows credentials to access the server, configure the username
and password, and select Use Windows Credentials When Connecting To The Data
Source. Click Apply to save the changes.

6. Click Home to return to the Home page and select the SalesManagementReports folder.

7. Select the Quota Performance By Sales Person report and wait for the report to render.

8. To configure the cache, select the Properties tab and then the Execution link.

9. Select Cache A Temporary Copy Of The Report. Expire A Copy Of The Report After A
Number Of Minutes.

10. Change the default value to 60 minutes and click Apply.

11. Select the View tab; notice that the report still takes a long time to display.

12. Click the Refresh button. Notice how fast the report is displayed. Navigate back to the
Home page and again to the report. Notice the difference in performance. You can also
create a scheduled report.

Quick Check
1. You want to optimize the performance of a report that provides information about

last month’s sales by product. How can you enhance the report performance?

A. Maximize the amount of memory the Report Server has.

B. Configure SSRS to cache a copy of the report.

C. Increase the CPU capacity of the Report Server.

D. Install an SSRS Web farm.

2. To configure a cached report, what changes do you need to make to the data
source?

3. What is the difference between enabling report caching and configuring a report
execution snapshot?

488 Chapter 15 Designing Applications That Support Reporting and Use Reporting Services
Quick Check Answers
1. The correct answer is B. Configuring report caching prevents SSRS from executing

the query every time the report is browsed.

2. Change the data source to stored authentication credentials. When using a report
cache, the data source must have the connection information required to connect
to the database.

3. Report execution caches the result of the rendering process. Report caching stores
data in a temporary intermediate format, and this data is used for the next report
execution.

Case Scenario: Building a Reporting Services
Infrastructure for a SharePoint Portal

Adventure Works, a worldwide distributor of bicycles and accessories, wants to build a corpo-
rate SharePoint intranet portal. You are responsible for building the SSRS infrastructure to sup-
port the portal. Adventure Works has only limited SSRS experience with small departmental
portals.

Users are looking forward to using the SharePoint portal to integrate information that is
scattered throughout the organization. The portal will gather information from multiple
data sources, although most of the information will come from two line-of-business (LOB)
applications: the customer relationship management (CRM) system and the Enterprise
Resource Planning (ERP) system. The reports will be developed primarily by a few end users
with the help of a small team of three developers. The end users have little or no experience
with Transact-SQL (T-SQL), but they are skilled Microsoft Office Excel users.

The portal is being implemented with Windows 2003, SharePoint 2007, and SQL Server 2005.
The company has built a data mart in SQL Server 2005 to integrate the information stored in
the ERP and CRM databases. The LOB applications, which also use SQL Server 2005, were
developed internally and are not linked to a data mart. The Adventure Works database admin-
istrators (DBAs) and software architects are concerned about how the SSRS infrastructure will
manage security and how to design a solution that will scale well with thousands of users. You
are responsible for answering their questions:

1. What tool or technology will enable end users to develop reports without having to learn
T-SQL?

2. The DBAs responsible for the LOB applications are worried about the impact that real-
time reports will have on other users updating data in the database. What new feature of
SQL Server 2005 will prevent reports from blocking other transactional users?

Lesson 4: Optimizing Reports 489
3. Security is a main concern of the development team. For reports not using the report
model, what approach will you propose to the development team for managing and fil-
tering rows based on the authenticated users?

Chapter Summary
n You have to make additional considerations when designing a database that provides

information for SSRS purposes. You need to design a snapshot strategy and a program-
matic interface with performance, scalability, programmability, and security in mind.

n Create the strategy you need to evaluate the requirements for each report. For example,
does it need to provide real-time, near real-time, or schedule-refreshed information? You
can use different database objects and database technologies to provide the best user
reporting experience without affecting other users. These objects and technologies
include triggers, summary table, log shipping, replication, isolation levels, SSIS pack-
ages, SSAS databases, and so on.

n To increase the performance of reports, evaluate the need to configure report caching
and report execution snapshots.

Chapter 16

Developing Applications for
Notification Services

SQL Server Notification Services is the Microsoft SQL Server technology to develop, host, and
deploy applications that generate and send notification messages to users. Notification Ser-
vices can send from thousands to millions of personalized notification messages to multiple
subscribers, which enables you to improve communication with customers, partners, and
employees.

The two main components of Notification Services are subscriptions and notifications. A sub-
scription is a formal request for a specific event. Users subscribe to events. A notification sub-
scription could be, for example, “Notify me when sales reach $100,000.” Notifications are what
the subscribers receive. A notification can contain a Web link, an acknowledgement of receipt,
a personalized notification, and much more. A notification can be sent to a myriad of devices,
including an e-mail account, cellular phone, PDA, Microsoft Windows Messenger, and so on.
You specify in the subscription whether a notification is sent when a triggering event occurs or
is sent on a schedule.

Notification Services is built on SQL Server 2005 and the Microsoft .NET Framework and pro-
vides a programming framework for easily developing and deploying notification applica-
tions. You can use Notification Services Management Objects (NMO) or XML to develop
notification applications. In this chapter, you will first see how to create Notification Services
configuration and application files and configure Notification Services instances. Then, you
will learn how to define Notification Services events and event providers and configure the
Notification Services generator and distributor. After looking at how to test your Notification
Services application, you will see how to create subscriptions and how to optimize your noti-
fication solution.

Exam objectives in this chapter:
n Develop applications for Notification Services.

q Create Notification Services configuration and application files.

q Configure Notification Services instances.

q Define Notification Services events and event providers.

q Configure the Notification Services generator.
491

492 Chapter 16 Developing Applications for Notification Services
q Configure the Notification Services distributor.

q Test the Notification Services application.

q Create subscriptions.

q Optimize Notification Services.

Before You Begin
To complete the lessons in this chapter, you must have:

n A general understanding of SQL Server 2005 database concepts.

n A general understanding of Simple Mail Transfer Protocol (SMTP).

n Working experience with XML documents.

n Programming knowledge of either Microsoft Visual C# or Visual Basic.

n Knowledge of the Transact-SQL (T-SQL) and Multidimensional Expression (MDX) lan-
guage syntaxes.

n A SQL Server 2005 instance (any edition) with Notification Services installed.

n Microsoft Visual Studio 2005 or Microsoft Visual Basic or C# 2005 Express Edition
installed. You can download Visual Studio Express Edition from http://msdn.microsoft
.com/vstudio/express.

On the Companion Disc This chapter includes many code examples. You will f ind all the code
from this chapter on the companion CD in the TK441\Chapter16 folder.

Lesson 1: Configuring Notification Services Instances and Applications 493
Lesson 1: Configuring Notification Services Instances and
Applications

Estimated lesson time: 30 minutes

To build a Notification Services solution, you first develop the applications and then configure
the host instance for the applications. This lesson gets you started by discussing how to define
and configure instances for notification applications.

Configuring Notification Services Instances
A Notification Services instance hosts applications, with each instance managing its applica-
tions together. In other words, applications within the same instance share subscribers and
delivery methods.

To create a Notification Services instance, you must first configure the instance. There are two
ways of doing this. The first way is to create an XML file that contains the configuration of the
instance. This file is called Instance Configuration File (ICF). The second way is to use NMO
to create the configuration programmatically. In both cases, you need to configure the follow-
ing information:

n Name of the Notification Services instance

n SQL Server instance that hosts the Notification Services instance and applications

n Name of the database and schema for the instance’s database (optional)

n The applications that the instance hosts

n Custom delivery protocols

n All delivery channels

n Encryption information

n History and version information (optional)

Instance Name
An instance name is a unique name for an instance of Notification Services. If you do not specify
a database name, Notification Services will name the database instanceNameNSMain. The
instance name will also be the name of the instance’s service.

The following code example shows how to define an instance name within an ICF file:

<!--XML-->
<InstanceName>My instance</InstanceName>

494 Chapter 16 Developing Applications for Notification Services
The following code example shows how to define an instance name by using NMO:

//C#
Instance myInstance = new Instance(notificationServices, instanceName);

IMPORTANT Notification Services instance naming conventions

Notif ication Services instance names are not case-sensitive. There is no difference between the
names ThisInstance and thisinstance. The name cannot contain quotation marks or be longer than
64 characters.

Database System
Notification Services instances contain metadata and subscriber data, and each application
contains metadata and subscription, event, and notification data. This data is stored in SQL
Server databases, while some Notification Services instance information is stored in the SQL
Server msdb database. To specify the database engine for your configuration, you must provide
the server and instance name—for example, MyServer/MyInstance. You cannot use an IP
address or an alias such as localsystem. If your instance is on a remote server and you cannot
use port 1433, you can specify the port. If your instance is in a failover cluster, use the SQL
Server virtual server name.

The following code example shows how to define the database system within an ICF:

<!--XML-->
<InstanceName>MyInstance</InstanceName>

If you are defining the instance configuration programmatically, you need to connect to the
SQL Server database. The most common option for doing this is by using the SQL Server Man-
agement Objects (SMO) namespace.

Instance Database and Schema
The instance database stores the hosted applications, protocols, delivery channels, and deliv-
ery protocols. It also stores subscriber data. You can define the name and schema for the
instance database. If you are creating a new database, you can define the database specifica-
tions. If you do not specify a database, Notification Services creates a new database for the
instance.

Here’s how to specify a database and schema name within an ICF:

<!--XML-->
<DatabaseName>MyDatabase</DatabaseName>
<SchemaName>MySchema</SchemaName>

Lesson 1: Configuring Notification Services Instances and Applications 495
Here’s how to specify a database and schema name by using NMO:

//C#
myInstance.DatabaseName = "MyDataBase";
myInstance.SchemaName = "MySchema";

List of Applications
To share subscribers, delivery protocols, and delivery channels between applications, Notifi-
cation Services instances can host multiple applications. To host multiple applications in the
same instance, you need to provide a list of applications when you configure the instance.

The following ICF code example shows how to define a list of applications by using the
applications element, which specifies the application name, the base directory path, and the
application definition file (ADF). (The ADF will be covered later in this lesson.) This exam-
ple also shows how to pass parameters to the ADF, which can be specified here or in the
command line.

<!--XML-->
<Applications>
 <Application>
 <ApplicationName>MyApplication</ApplicationName>
 <BaseDirectoryPath>%BaseDirectoryPath%</BaseDirectoryPath>
 <ApplicationDefinitionFilePath>
 appDefinition\MyApplicationADF.xml
 </ApplicationDefinitionFilePath>
 <Parameters>
 <Parameter>
 <Name>DBSystem</Name>
 <Value>%DBSystem%</Value>
 </Parameter>
 </Parameters>
 </Application>
</Applications>

You’ll see later in this lesson how to configure Notification Services applications, but the fol-
lowing code shows how to add an application to an instance.

//C#
Application myApplication = ConfigureApplication(myInstance);
myInstance.Applications.Add(myApplication)

Custom Delivery Protocols
The instance’s applications use custom delivery protocols. The built-in File and SMTP delivery
protocols are already defined. The protocols implement communications between Notifica-
tion Services and a delivery endpoint specified by a delivery channel. To create custom proto-
cols, you use the IDeliveryProtocol interface.

496 Chapter 16 Developing Applications for Notification Services
You specify custom delivery protocols within an ICF as follows:

<!--XML-->
<Protocols>
 <Protocol>
 <ProtocolName>FAX</ProtocolName>
 <ClassName>Protocols.FAXProtocol</ClassName>
 <AssemblyName>%BaseDirPath%\FAX.dll</AssemblyName>
 </Protocol>
</Protocols>

Here’s how to specify custom delivery protocols by using NMO:

//C#
ProtocolDefinition customProtocol = new ProtocolDefinition(myInstance, "MyCustomProtocol");
customProtocol.ClassName = "MyNamespace.MyProtocolClass"; customProtocol.AssemblyName =
@"E:\MyCustomComponents.dll"; myInstance.ProtocolDefinitions.Add(customProtocol);

Delivery Channels
Delivery channels are the endpoints for notifications such as a Web server, e-mail, and so on.
Devices, notifications, and subscriptions are all related. The following code example shows
how to define delivery channels within an ICF.

<!--XML-->
<DeliveryChannels>
 <DeliveryChannel>
 <DeliveryChannelName>Filech</DeliveryChannelName>
 <ProtocolName>File</ProtocolName>
 <Arguments>
 <Argument>
 <Name>FileName</Name>
 <Value>C:\NSFolder\Notification.txt</Value>
 </Argument>
 </Arguments>
 </DeliveryChannel>
</DeliveryChannels>

You use NMO to define delivery channels as follows:

//C#
DeliveryChannel fileCh = new DeliveryChannel(myInstance, "FileChannel"); fileCh.ProtocolName
= "File";
DeliveryChannelArgument fileNameArg = new DeliveryChannelArgument(fileCh, "FileName");
fileNameArg.Value ="C:\NSFolder\Notification.txtÓ;
fileCh.DeliveryChannelArguments.Add(fileNameArg);
myInstance.DeliveryChannels.Add(fileCh);

Lesson 1: Configuring Notification Services Instances and Applications 497
Argument Encryption
Configuration arguments can be encrypted for security. You can encrypt delivery channels
and host event provider arguments and instance and application databases. Encrypting argu-
ments in the database protects sensitive information. You must provide a key when you create
and register the instance, and you use the same key when updating.

IMPORTANT Encryption of XML configuration files

Be aware that XML conf iguration f iles are not encrypted.

The following code example shows how to define encryption within an ICF:

<!--XML-->
<EncryptArguments>true</EncryptArguments>

Here’s how to implement argument encryption with NMO:

//C#
myInstance.EncryptArguments = true;
myInstance.ArgumentKey = "MyKey101010";

Instance Version and History
When you configure an instance of Notification Services, you can specify an instance version
number. You can use your own version numbers. Notification Services adds the version num-
ber to the NSVersionInfo table in the instance database. When you update the instance, the
version must be equal to or greater than the previous version.

You might also want to track history such as when the instance was created or last updated.
This information is for your own use and is not stored in the instance database. You can pro-
vide this information in the ICF but not programmatically by using NMO. To track history pro-
grammatically, use comments. There are no instance history objects or properties available
through NMO.

To add a version number within an ICF, use the following code:

<!--XML-->
<Version>
 <Major>1</Major>
 <Minor>0</Minor>
 <Build>1</Build>
 <Revision>1</Revision>
</Version>
<History>
 <CreationDate>2005-01-21</CreationDate>

498 Chapter 16 Developing Applications for Notification Services
 <CreationTime>10:30:00</CreationTime>
 <LastModifiedDate>2005-03-31</LastModifiedDate>
 <LastModifiedTime>18:30:00</LastModifiedTime>
</History>

With NMO, you can implement version numbering by using:

//C#
myInstance.InstanceConfigurationFileVersion = new Version(1, 0, 1, 1);

Parameters in an ICF
You can use parameters in an ICF to make an instance more secure, portable, and easy to
update. You can also use parameters to pass values to the application definition files. Config-
uring Notification Services programmatically doesn’t provide parameter objects; instead, you
can use variables. You can define a parameter value one time and use it multiple times in var-
ious elements.

The following ICF example shows how to set a parameter value and then use it in different ele-
ments:

<!--XML-->
<ParameterDefaults>
 <Parameter>
 <Name>BaseDirectoryPath</Name>
 <Value>C:\TestNot</Value>
 </Parameter>
</ParameterDefaults>
<BaseDirectoryPath>%BaseDirectoryPath%\Myapplication</BaseDirectoryPath>
<AssemblyName>%BaseDirectoryPath%\Myapplication.dll</AssemblyName>

Configuring Notification Services Applications
You also configure Notification Services applications through an XML file or programmati-
cally by using NMO. Whether you use the XML ADF or NMO, you have to specify some of the
following information:

n Application database definition (optional)

n Event class name, schema, rules, chronicles, and index properties

n Subscription class names, schemas, rules, chronicles, and index properties

n Notification class names, schemas, contents, protocols, and index properties

n Event provider specification

n Generator and distributor properties

n Operational settings

n History and version information (optional)

Lesson 1: Configuring Notification Services Instances and Applications 499
Application Database
Notification Services applications use a database to store event and subscription data and the
results of notifications. It also stores application metadata. You can select an existing database
or create a new database through Notification Services. If you specify an existing database, you
need to provide the database name and schema name; any other information about the data-
base, such as file names and file size, is ignored. If Notification Services creates a new database,
you need to define the database properties such as file names, size, and locations. If you do not
provide information about the application database, Notification Services creates a new data-
base, using the model database as a template.

To specify the database and a schema name for an existing database by using an ADF, you use
the following code:

<!--XML-->
<DatabaseName>myAppDatabase</DatabaseName>
<SchemaName>myAppDatabase</SchemaName>

To have Notification Services create a new database for the application by using an ADF, you
use the following code:

<!--XML-->
<Database>
 <NamedFileGroup>
 <FileGroupName>Primary</FileGroupName>
 <FileSpec>
 <LogicalName>myAppPrimary</LogicalName>
 <FileName>E:\NS\myAppPrimary.mdf</FileName>
 <Size>2GB</Size>
 <MaxSize>5GB</MaxSize>
 <GrowthIncrement>500MB</GrowthIncrement>
 </FileSpec>
 </NamedFileGroup>
 <NamedFileGroup>
 <FileGroupName>Secondary</FileGroupName>
 <FileSpec>
 <LogicalName>myAppSecondary1</LogicalName>
 <FileName>E:\Data\myAppSecondary1.ndf</FileName>
 <Size>100MB</Size>
 <MaxSize>500MB</MaxSize>
 <GrowthIncrement>25%</GrowthIncrement>
 </FileSpec>
 <FileSpec>
 <LogicalName>myAppSecondary2</LogicalName>
 <FileName>E:\Data\myAppSecondary2.ndf</FileName>
 </FileSpec>
 </NamedFileGroup>
 <LogFile>
 <LogicalName>myAppLog</LogicalName>

500 Chapter 16 Developing Applications for Notification Services
 <FileName>D:\Logs\myAppLog.ldf</FileName>
 </LogFile>
 <DefaultFileGroup>Secondary</DefaultFileGroup>
 <CollationName>SQL_Latin1_General_Cp437_BIN</CollationName>
</Database>

IMPORTANT Configuring applications with NMO

Notif ication Services applications can also be conf igured by using NMO. See the SQL Server 2005
Books Online article “Def ining Notif ication Services Applications” at http://msdn2.microsoft.com/en-
us/library/ms166506(SQL.90).aspx.

Notification Classes
A notification class defines the type of notification you want to implement. When defining a
Notification Services application, you have to create a notification class for each type of notifi-
cation. Use a notification class to create tables, views, stored procedures, and functions to store
and manage notification data. It also associates content formatters and delivery protocols.

You can define a notification class by using an ADF or by using NMO. The core elements of a
notification class are:

n The name of the notification class and the SQL Server filegroup (optional).

n The notification class schema, which defines the notification data as well as how it is for-
matted and delivered to a subscriber; Notification Services creates a table that stores
notification data.

n A content formatter, which takes the raw data and gives the format to notifications.

n The specification of digest or multicast delivery (optional).

n The notification batch size (optional).

n The delivery protocols for notification delivery.

n The notification expiration age (optional).

In the following code, you can see an example of a defining notification class using ADF:

<!--XML-->
<NotificationClass>
 <NotificationClassName>myApp</NotificationClassName>
 <Schema>
 <Fields>
 <Field>
 <FieldName>myAppField</FieldName>
 <FieldType>char(20)</FieldType>
 </Field>
 </Fields>
 </Schema>

Lesson 1: Configuring Notification Services Instances and Applications 501
 <FileGroup>Secondary</FileGroup>
 <ContentFormatter>
 <ClassName>myApp.myAppFormatter</ClassName>
 <AssemblyName>C:\NS\myAppFormatter.dll</AssemblyName>
 <Arguments>
 <Argument>
 <Name>OutputHTML</Name>
 <Value>true</Value>
 </Argument>
 </Arguments>
 </ContentFormatter>
 <DigestDelivery>true</DigestDelivery>
 <NotificationBatchSize>75</NotificationBatchSize>
 <Protocols>
 <Protocol>
 <ProtocolName>SMTP</ProtocolName>
 <Fields>
 <Field>
 <FieldName>Subject</FieldName>
 <SqlExpression>%SubjectLine%</SqlExpression>
 </Field>
 <Field>
 <FieldName>From</FieldName>
 <SqlExpression>%fromAddress%</SqlExpression>
 </Field>
 <Field>
 <FieldName>To</FieldName>
 <FieldReference>DeviceAddress</FieldReference>
 </Field>
 <Field>
 <FieldName>Priority</FieldName>
 <SqlExpression>%mailPriority%</SqlExpression>
 </Field>
 <Field>
 <FieldName>BodyFormat</FieldName>
 <SqlExpression>"html"</SqlExpression>
 </Field>
 </Fields>
 <ProtocolExecutionSettings>
 <RetrySchedule>
 <RetryDelay>P0DT00H20M00S</RetryDelay>
 </RetrySchedule>
 <FailuresBeforeAbort>15</FailuresBeforeAbort>
 <MulticastRecipientLimit>12</MulticastRecipientLimit>
 <WorkItemTimeout>P0DT00H35M00S</WorkItemTimeout>
 </ProtocolExecutionSettings>
 </Protocol>
 </Protocols>
 <ExpirationAge>P0DT05H10M00S</ExpirationAge>
</NotificationClass>

502 Chapter 16 Developing Applications for Notification Services
Version and History
In the application configuration, you can also provide version and history information. The for-
mat of this information is similar to history and information stored in the instance configuration.
The following code shows an example using ADF to define version and history information:

<!--XML-->
<Version>
 <Major>1</Major>
 <Minor>0</Minor>
 <Build>2</Build>
 <Revision>12</Revision>
</Version>
<History>
 <CreationDate>2004-02-10</CreationDate>
 <CreationTime>00:30:00</CreationTime>
 <LastModifiedDate>2006-03-31</LastModifiedDate>
 <LastModifiedTime>00:30:00</LastModifiedTime>
</History>

IMPORTANT More about application configuration

The event classes, event providers, generator settings, distributor settings, and execution setting
are also def ined in the application conf iguration. These elements of the application conf iguration
are discussed later in this chapter.

Practice: Configuring Notification Services Applications and
Instances

In this practice, you will apply the concepts from this lesson to configure Notification Services
instances and applications.

� Exercise 1: Configure a Notification Services Instance

In this exercise, you will learn how to configure an instance of notification services using an ICF.

As a Notification Services solution designer, you need to configure an instance for host-
ing notification applications. Design your own ICF file, using parameters to configure
the database system, file paths, and so on. Also, list an application and configure a deliv-
ery protocol for delivering notifications. Write your own solution before looking at the
suggested answer.

 Suggested Answer

The following ICF code satisfies the requirements:
<!--XML-->
<NotificationServicesInstance>
 <ParameterDefaults>
 <Parameter>

Lesson 1: Configuring Notification Services Instances and Applications 503
 <Name>_DBEngineInstance_</Name>
 <Value>%COMPUTERNAME%</Value>
 </Parameter>
 <Parameter>
 <Name>_ServerName_</Name>
 <Value>%COMPUTERNAME%</Value>
 </Parameter>
 <Parameter>
 <Name>_InstancePath_</Name>
 <Value>%ProgramFiles%\myInstance</Value>
 </Parameter>
 </ParameterDefaults>
 <InstanceName>myInstance</InstanceName>
 <SqlServerSystem>%_DBEngineInstance_%</SqlServerSystem>
 <Applications>
 <Application>
 <ApplicationName>myApp</ApplicationName>
 <BaseDirectoryPath>%_InstancePath_%</BaseDirectoryPath>
 <ApplicationDefinitionFilePath>%_InstancePath_%\myApp\appADF.xml
 </ApplicationDefinitionFilePath>
 <Parameters>
 <Parameter>
 <Name>_NSServer_</Name>
 <Value>%_ServerName_%</Value>
 </Parameter>
 <Parameter>
 <Name>_AppPath_</Name>
 <Value>%_InstancePath_%\myApp</Value>
 </Parameter>
 </Parameters>
 </Application>
 </Applications>
 <DeliveryChannels>
 <DeliveryChannel>
 <DeliveryChannelName>FileChannel</DeliveryChannelName>
 <ProtocolName>File</ProtocolName>
 <Arguments>
 <Argument>
 <Name>FileName</Name>
 <Value>%_InstancePath_%\myApp\Notifications.txt</Value>
 </Argument>
 </Arguments>
 </DeliveryChannel>
 </DeliveryChannels>
</NotificationServicesInstance>

� Exercise 2: Configure Notification Services Applications

In this exercise, you will learn how to configure a notification service application using an
ADF.

504 Chapter 16 Developing Applications for Notification Services
As a Notification Services solutions developer, design part of an ADF to configure the
core elements of a Notification Services class. Write your own solution before looking at
the suggested answer.

Suggested Answer

The following ADF code satisfies the requirements:
<!--XML-->
<NotificationClass>
 <NotificationClassName>myApp</NotificationClassName>
 <FileGroup>Secondary</FileGroup>
 <ContentFormatter>
 <ClassName>myApp.myAppFormatter</ClassName>
 <AssemblyName>C:\NS\myAppFormatter.dll</AssemblyName>
 </ContentFormatter>
 <DigestDelivery>true</DigestDelivery>
 <NotificationBatchSize>75</NotificationBatchSize>
 <Protocols>
 <Protocol>
 <ProtocolName>SMTP</ProtocolName>
 <Fields>
 <Field>
 <FieldName>Subject</FieldName>
 <SqlExpression>%SubjectLine%</SqlExpression>
 </Field>
 <Field>
 <FieldName>From</FieldName>
 <SqlExpression>%fromAddress%</SqlExpression>
 </Field>
 <Field>
 <FieldName>To</FieldName>
 <FieldReference>DeviceAddress</FieldReference>
 </Field>
 <Field>
 <FieldName>BodyFormat</FieldName>
 <SqlExpression>"html"</SqlExpression>
 </Field>
 </Fields>
 <ProtocolExecutionSettings>
 <RetrySchedule>
 <RetryDelay>P0DT00H20M00S</RetryDelay>
 </RetrySchedule>
 <FailuresBeforeAbort>15</FailuresBeforeAbort>
 <MulticastRecipientLimit>12</MulticastRecipientLimit>
 <WorkItemTimeout>P0DT00H35M00S</WorkItemTimeout>
 </ProtocolExecutionSettings>
 </Protocol>
 </Protocols>
 <ExpirationAge>P0DT05H10M00S</ExpirationAge>
</NotificationClass>

Lesson 1: Configuring Notification Services Instances and Applications 505
Quick Check
1. How can you track history by using NMO?

2. What are the two ways to configure instances and applications?

3. What options are available when configuring the application database?

Quick Check Answers
1. Using NMO, you can specify a configuration to track only version information. To

track history information, you must use comments instead.

2. You can configure Notification Services instances and applications by using XML
files (ICF and ADF, respectively) or by using NMO to define the configurations
programmatically.

3. When configuring the application database, you can choose to use an existing
database; instruct Notification Services to create a new database by specifying the
database properties; or, by not providing any database information, have Notifica-
tion Services create a new database based on the model database template.

506 Chapter 16 Developing Applications for Notification Services
Lesson 2: Defining Notification Services Events and Event
Providers

Estimated lesson time: 20 minutes

In this lesson, you will learn how to define Notification Services event classes and event pro-
viders. Notification Services applications can store data in the application database or retrieve
it from other event sources such as an external database. You define event classes to store
event data in an application database. An event provider retrieves data from sources and sub-
mits it to Notification Services.

Defining Event Classes
Notification Services stores event data in the application database or queries other event
sources. To store data in the application database, you configure event classes. An event class
defines name, fields, filegroup, indexes, additional event tables (chronicles), rules, and so on.
You define a different event class for each type of event. When the notification application is
created, Notification Services uses event classes to create SQL Server objects.

Event Class Properties
An event class represents a type of event. You have to define a different event class for each type
of event. Notification Services creates tables, views, indexes, and procedures for each event
class. The core elements of an event class are name, fields, and a filegroup, as shown in the fol-
lowing example:

<!--XML-->
<EventClass>
 <EventClassName>MyEvent</EventClassName>
 <Schema>
 <Field>
 <FieldName>MyEventField</FieldName>
 <FieldType>char(50)</FieldType>
 <FieldTypeMods>not null</FieldTypeMods>
 </Field>
 </Schema>
 <FileGroup>Primary</FileGroup>
</EventClass>

Chronicles
Chronicles are additional event tables in the application database. Events arrive in batches, so
when Notification Services generates notifications, it uses the most recent batches and then
marks them as completed. The marked event batch is never used again. Chronicle tables are

Lesson 2: Defining Notification Services Events and Event Providers 507
used to store event data to be used for scheduled subscriptions or to track history. You can also
use chronicles to archive all events for creating reports or to check for duplicate events and to
store high and low values.

To define a chronicle, you have to define the table for the chronicles and the rules to maintain the
tables. Chronicles and event classes are also implanted within the ADF file or by using NMO.

Defining Event Providers
Notification Services obtains data through event providers. Event providers collect an event and
persist it as a single row in the application database or event table. Notification Services has
three standard event providers that enable you to retrieve data from a file, through a T-SQL
query, or by using an MDX query. You can also develop a custom event provider.

For information about developing custom providers, see the SQL Server 2005 Books Online
topic “Developing a Custom Event Provider” at http://msdn2.microsoft.com/en-us/library/
ms171355.aspx.

Hosted Event Providers
Event providers hosted by Notification Services are called hosted event providers. When Noti-
fication Services starts, it runs hosted event providers, of which there are two types: continu-
ous and scheduled. A continuous event provider starts when Notification Services starts and
ends when Notification Services stops. Notification Services starts a scheduled event provider
when the engine starts and then checks for new events at defined intervals. Each application
can have multiple hosted event providers.

To define a hosted event provider, you have to configure properties such as name, class, assem-
bly, and arguments. You can define hosted event providers by using an ADF or with NMO.

The following example shows how to configure an event provider within the ADF:

<!--XML-->
<HostedProvider>
 <ProviderName>MyProvider</ProviderName>
 <ClassName>MyProvider </ClassName>
 <AssemblyName>
 C:\NS\EventProviders\MyProvider.dll
 </AssemblyName>
 <SystemName>%SYSNAME%</SystemName>
 <Schedule>
 <StartTime>10:00:00</StartTime>
 <Interval>P0DT00H10M00S</Interval>
 </Schedule>
 <ProviderTimeout>PT1M</ProviderTimeout>
 <Arguments>
 <Argument>
 <Name>getFile</Name>

508 Chapter 16 Developing Applications for Notification Services
 <Value>c:\data.txt</Value>
 </Argument>
 </Arguments>
</HostedProvider>

Nonhosted Event Provider
Notification Services does not control or manage nonhosted event providers. They are exter-
nal applications that send event data to Notification Services. They use the EventCollector and
EventLoader classes or the event collection stored procedures. To configure a nonhosted pro-
vider, you provide the name of the provider in the application definition.

The following example shows how to configure a nonhosted provider within the ADF:

<!--XML-->
<NonHostedProvider>
 <ProviderName>SalesProvider</ProviderName>
</NonHostedProvider>

IMPORTANT Nonhosted provider name

The name provided in the ADF for a nonhosted provider is used only to track the source of events
for administration and reporting purposes.

Notification Services Standard Event Providers
Notification Services comes with three standard event providers: the File System Watcher,
SQL Server, and Analysis Services.

The File System Watcher event provider is a continuous event provider. It monitors directories
for new event files. It is easy to configure when event data is provided in XML files; you need
to specify the structure of the XML code only in an XML schema definition (XSD) file. It uses
the FileSystemWatcher class of the .NET Framework and uses the EventLoader method pro-
vided by Notification Services to store the event information in the event table.

The SQL Server event provider is a scheduled event provider. It queries a database for events.
You define T-SQL code to get the event data. You can also define a T-SQL query to be pro-
cessed after the event data is gained. It is a hosted scheduled provider. The following example
shows how to use the SQL Server event provider within an ADF:

<!--XML-->
<Providers>
 <HostedProvider>
 <ProviderName>SQLPrices</ProviderName>
 <ClassName>SQLProvider</ClassName>
 <SystemName>%SYSNAME%</SystemName>
 <Schedule>
 <Interval>P0DT00H00M30S</Interval>

Lesson 2: Defining Notification Services Events and Event Providers 509
 </Schedule>
 <ProviderTimeout>PT10M</ProviderTimeout>
 <Arguments>
 <Argument>
 <Name>EventsQuery</Name>
 <Value>
 SELECT PriceCode, Price
 FROM PriceTable
 </Value>
 </Argument>
 <Argument>
 <Name>EventClassName</Name>
 <Value>Prices</Value>
 </Argument>
 </Arguments>
 </HostedProvider>
</Providers>

The third standard event provider is the Analysis Services event provider, which enables you
to monitor an Analysis Services cube. You use it to send event data based on an MDX query.
It runs as a hosted scheduled event provider. With MDX, you can easily monitor key perfor-
mance indicators (KPIs).

Exam Tip Review all the conf igurations properties of the three standard event providers. For
more information about standard event providers, see SQL Server 2005 Books Online.

Practice: Using Event Providers and Event Classes
In this practice, you apply the concepts from this lesson to configure Notification Services
event providers and define event classes.

� Exercise 1: Configure the File System Watcher Event Provider

In this exercise, you will learn how to use the File System Watcher to get data from an XML file.

As a Notification Services solution developer, you need to retrieve data from an XML file
stored in the c:\sales directory. Configure the File System Watcher event provider within
your ADF to submit the event data to your sales event class. Write your own solution
before looking at the suggested answer.

Suggested Answer

The following code satisfies the requirements:
<!--XML-->
<Providers>
 <HostedProvider>
 <ProviderName>myWatcher</ProviderName>
 <ClassName>FileSystemWatcherProvider</ClassName>
 <SystemName>%SYSNAME%</SystemName>

510 Chapter 16 Developing Applications for Notification Services
 <Arguments>
 <Argument>
 <Name>WatchDirectory</Name>
 <Value>C:\sales</Value>
 </Argument>
 <Argument>
 <Name>EventClassName</Name>
 <Value>sales</Value>
 </Argument>
 <Argument>
 <Name>SchemaFile</Name>
 <Value>C:\sales\sales.xsd</Value>
 </Argument>
 <Argument>
 <Name>RetryAttempts</Name>
 <Value>20</Value>
 </Argument>
 <Argument>
 <Name>RetryQueueOccupancy</Name>
 <Value>200</Value>
 </Argument>
 <Argument>
 <Name>RetryPeriod</Name>
 <Value>10000</Value>
 </Argument>
 <Argument>
 <Name>RetryWorkload</Name>
 <Value>1000</Value>
 </Argument>
 </Arguments>
 </HostedProvider>
</Providers>

� Exercise 2: Define an Event Class

In this exercise, you will learn how to create an event class by using an ADF.

As a Notification Services solution developer, you need to define an event class within an
ADF that will host two values: the price and the product code. Write your own solution
before looking at the suggested answer.

Suggested Answer

The following code satisfies the requirements:
 <!--XML-->
<EventClass>
 <EventClassName>MyEvent</EventClassName>
 <Schema>
 <Field>
 <FieldName>ProductCode</FieldName>
 <FieldType>char(50)</FieldType>
 <FieldTypeMods>not null</FieldTypeMods>
 </Field>
 <Field>

Lesson 2: Defining Notification Services Events and Event Providers 511
 <FieldName>price</FieldName>
 <FieldType>money</FieldType>
 <FieldTypeMods>not null</FieldTypeMods>
 </Field>
 </Schema>
 <FileGroup>Primary</FileGroup>
</EventClass>

Quick Check
1. Can you schedule a provider?

2. How does Notification Services manage nonhosted providers?

3. Can you use the Notification Services File System Watcher event provider to mon-
itor non-XML files?

Quick Check Answers
1. Yes, there are two types of Notification Services event providers. Continuous pro-

viders start and stop when the Notification Services engine starts and stops. Sched-
uled providers can be scheduled to check for events at pre-defined intervals.

2. Notification Services does not manage nonhosted providers. It uses only the exter-
nal provider for event source tracking.

3. Yes, you can monitor non-XML files by providing additional configuration infor-
mation. XML files are easier to configure by using an XSD file.

512 Chapter 16 Developing Applications for Notification Services
Lesson 3: Configuring the Notification Services Generator
and Distributor

Estimated lesson time: 20 minutes

The Notification Services generator manages the rule process for an application. The distribu-
tor or distributors manage notification formatting and delivery for an application. In this les-
son, you will learn how to configure both the generator and the distributor.

Configuring the Notification Services Generator
A Notification Services instance can have only one generator. It is normally hosted by the
Windows service of the Notification Services instance. The generator is specified when you
define the application. The values to specify are the computer that hosts the generator and
the number of threads that can be used.

The following code shows how to configure the generator by using an ADF:

<!--XML-->
<Generator>
 <SystemName>host123</SystemName>
 <ThreadPoolSize>20</ThreadPoolSize>
</Generator>

The following code shows how to configure the generator by using NMO:

//C#
Generator myGenerator = new Generator(myApplication, "Generator");
myGenerator.SystemName = Òhost123Ó;
myGenerator.ThreadPoolSize = 20;
myApplication.Generator = myGenerator;

The number of threads, which determines the number of operations that can be performed in
parallel, can improve application performance. When you define a number of threads, Notifi-
cation Services decides the actual number to use, using an optimization algorithm. If you spec-
ify 0 as the number of threads, Notification Services will use as many threads as it can get from
the system. In SQL Server 2005 Enterprise, SQL Server Developer, and SQL Server Evaluation
editions, the maximum and default, if not specified, number of threads is 25. In SQL Server
2005 Standard Edition, the maximum number is 1.

IMPORTANT Generator on a failover cluster

Use the virtual server name when the generator runs on a failover cluster.

Lesson 3: Configuring the Notification Services Generator and Distributor 513
Configuring the Notification Services Distributor
A distributor is run by the Windows service of a Notification Services instance. You can define
multiple distributors for each application. The distributor formats and delivers notifications in
a time interval called the quantum. A distributor polls for notifications, formats them, and
delivers the notifications by using a delivery protocol. If a notification cannot be delivered, the
distributor will retry, depending on the retry intervals and notification expiration information
defined. The distributor attempts to retry in the next quantum. When you specify multiple dis-
tributors for the same application, all of the distributors perform the same function. Therefore,
having two distributors in the same server does not improve performance. To improve perfor-
mance, place multiple distributors among multiple physical servers.

The following code shows an example of a distribution configuration, using ADF:

<!--XML-->
<Distributors>
 <Distributor>
 <SystemName>host123</SystemName>
 <ThreadPoolSize>5</ThreadPoolSize>
 <QuantumDuration>P0DT00H00M10S</QuantumDuration>
 </Distributor>
 <Distributor>
 <SystemName>host124</SystemName>
 <ThreadPoolSize>1</ThreadPoolSize>
 <QuantumDuration>P0DT00H00M50S</QuantumDuration>
 </Distributor>
</Distributors>

The following code shows how to configure the distributor, using NMO:

//C#
Distributor myDistributor =
 new Distributor(myApplication, "Distributor");
myDistributor.SystemName = Òhost123Ó;
myDistributor.QuantumDuration = new TimeSpan(0, 0, 30);
myDistributor.ThreadPoolSize = 10;
myApplication.Distributors.Add(myDistributor);

IMPORTANT Multiple distributors per application

SQL Server 2005 Enterprise, SQL Server Developer, and SQL Server Evaluation editions can have
multiple distributors per application. SQL Server Standard Edition can have only one distributor per
application.

514 Chapter 16 Developing Applications for Notification Services
Practice: Configuring the Generator and Distributor
In this practice, you will apply the concepts from this lesson to specify a generator and config-
ure Notification Services distributors.

� Exercise 1: Configure the Generator

In this exercise, you will learn how to specify a generator for your Notification Services appli-
cations.

As a Notification Services solution developer, you have to configure the generator for
your applications. Your Notification Services host is named SRV12, and your database
system is running SQL Server 2005 Standard Edition. Define the distributor elements of
an ADF configuration. Develop your own solution before looking at the suggested
answer.

Suggested Answer

The following code satisfies the requirements:
Distributor myDistributor =
 new Distributor(myApplication, "Distributor");
myDistributor.SystemName = Òhost123Ó;
myDistributor.QuantumDuration = new TimeSpan(0, 0, 30);
myDistributor.ThreadPoolSize = 10;
myApplication.Distributors.Add(myDistributor);

� Exercise 2: Configure Multiple Distributors

In this exercise, you will learn how to configure distributors for Notification Services Applications.

As a Notification Services solution developer, you need to define two distributors for
your application. You want to host one distributor on server SRV14 and the other on
server SRV15. You want to check for notifications every 20 seconds. Define your distrib-
utor configuration by using NMO. Write your own solution before looking at the sug-
gested answer.

Suggested Answer

The following code satisfies the requirements:
//C#
Distributor myDistributor =
 new Distributor1(myApplication, "Distributor");
Distributor myDistributor =
 new Distributor2(myApplication, "Distributor");
myDistributor1.SystemName = ÒSRV14Ó;
myDistributor1.QuantumDuration = new TimeSpan(0, 0, 20);
myDistributor1.ThreadPoolSize = 10;
myDistributor2.SystemName = ÒSRV15Ó;
myDistributor2.QuantumDuration = new TimeSpan(0, 0, 20);
myDistributor2.ThreadPoolSize = 10;
myApplication.Distributors.Add(myDistributor1);
myApplication.Distributors.Add(myDistributor2);

Lesson 3: Configuring the Notification Services Generator and Distributor 515
Quick Check
1. Can you define two distributors for the same application on one server?

2. Can you set the number of threads value to 2 in a generator running SQL Server
2005 Standard Edition?

3. What happens if you set the threads value to 0 when configuring the generator?

Quick Check Answers
1. You can define two distributors on the same server, but doing so will not improve

performance. Distribute your distributors among different servers to improve per-
formance.

2. You can set the thread value to 2, but the Standard Edition of SQL Server 2005
uses only one thread for the generator.

3. When the threads value is set to 0, SQL Server can use the maximum number of
threads available in the system, but only if the SQL Server edition allows it.

516 Chapter 16 Developing Applications for Notification Services
Lesson 4: Testing the Notification Services Application

Estimated lesson time: 20 minutes

In this lesson, you will learn how to test Notification Services applications. To test an appli-
cation, you need to register, compile, and enable your Notification Services instance and
applications.

Creating and Registering a New Instance and Compiling Your
Application

To register a new Notification Services instance, complete the following:

1. Open SQL Server Management Studio (SSMS).

2. In the Object Explorer, connect to the database engine where you plan to install the
instance. (If the Object Explorer pane is not visible, select Object Explorer from the View
menu.)

3. In the Object Explorer tree, locate the Notification Services folder. It contains the already
registered instances.

4. To create a new Notification Services instance, right-click in the Notification Services
folder and select New Notification Services Instance.

5. Click Browse in the New Notification Services Instance dialog box and select your appli-
cation Instance Configuration File.

Lesson 4: Testing the Notification Services Application 517
6. In the Notification Services Instance dialog box pictured in Figure 16–1, you can see the
application parameters from your ICF.

Figure 16-1 Creating a new Notification Instance in SQL Server Management Studio

7. Select the Enable Instance After It Is Created option.

8. Click OK to compile the instance and its associated application or applications. You will
see a progress dialog box. When all the steps are completed successfully, click Close to
close the progress dialog box.

518 Chapter 16 Developing Applications for Notification Services
9. You should see the instance just created in the Notification Services folder. Right-click
that instance and select Register. This opens the Register dialog box.

10. Select the Create Windows Service check box and choose an authentication mode. Click
OK to register your instance. After successful registration, close the dialog box.

Now that you have installed and registered your instance, you can start and stop it by selecting
Start or Stop in the instance context menu. Your application is running now, and you can test
your application by submitting subscriptions and events. (Subscriptions will be covered later
in this chapter.)

Exploring Your Instance and Application Objects
You can see your Notification Services instance and application databases in the Object
Explorer. You defined the database in the ICF and ADF. The Notification Services compiler cre-
ated this database when it compiled the ICF. Notification Services stored objects associated
with the instance and applications in the database just created.

The Notification Services compiler also stores the configuration information from the ADF in
the database. This information includes the event providers, the generators, and the distribu-
tors. With all this information, the Windows service, created when the ICF was compiled, ini-
tializes all the components.

Removing the Instance and Application
After testing your Notification Services application, you might need to remove it from your test
system. To remove the instance and application, complete the following steps:

1. In SSMS, locate the Object Explorer and stop the instance by right-clicking your instance
in the Notification Services folder and selecting Stop. A dialog box asks you to confirm
your request. After you have successfully stopped the instance, close the dialog box.

2. Unregister your instance by right-clicking it in the Notification Services folder and select-
ing Unregister. You have to confirm your request; after success, close the dialog box.

3. Right-click your instance name and select Delete. After success, all the instance and
application objects are removed.

IMPORTANT Testing details

Chapter 10, “Designing a Unit Test Plan for a Database,” covers testing theory and practices in
detail. Use what you have learned from Chapter 10 to test your Notif ication Services applications.

Lesson 4: Testing the Notification Services Application 519
Practice: Testing Your Application
In this practice, you will apply the concepts from this lesson and previous lessons to test your
Notification Services instance and applications.

� Exercise 1: Create an Instance and Compile Applications

In this exercise, you will learn how to create an instance from an ICF and compile your Noti-
fication Services applications.

As a Notification Services solution developer, you have created your ICF and ADF to configure
your Notification Services instance and applications. Create and register a new Notification
Services instance and verify that the objects created in the database were specified in your con-
figuration and definition files.

1. Connect to the database engine that will host your instance and applications.

2. Create a new instance in your Notification Services folder.

3. Select the ICF that configures the instance and specifies the application definition file.

4. Browse the objects created in the database that you specified in your configuration files
and verify that they are the correct objects.

� Exercise 2: Remove Your Instance and Application Objects

Now that you have tested your instance and applications, you need to remove all the objects
created when the ICF and ADF were compiled so you can get back to the state previous to
testing.

1. Connect to the database engine that hosts your instance and applications.

2. In the Notification Services folder, stop your instance.

3. Unregister your instance.

4. Delete your instance.

5. After completion of these steps, verify that the objects have been removed.

Quick Check
1. How can you stop and start a Notification Services instance without using SSMS?

2. How can you test your application after the instance is started?

3. How do you delete all the instance and application objects without deleting the
instance?

520 Chapter 16 Developing Applications for Notification Services
Quick Check Answers
1. A Windows service is created for each instance. You can start and stop the service

as you would any other Windows service.

2. You can test your Notification Services application by submitting subscriptions
and events.

3. You can delete the instance and application objects without deleting the instance
by stopping and unregistering the instance but not deleting it.

Lesson 5: Creating Subscriptions 521
Lesson 5: Creating Subscriptions

Estimated lesson time: 20 minutes

Subscriptions are a key component of a Notification Services solution. Subscribers specify the
information they are interested in from the notification applications by creating subscriptions.
Subscription data is stored in the application database. You use subscription classes to define
the storage for this data and the rules to generate notifications. You can define a subscription
class by using the ADF or, programmatically, by using NMO.

An application can have several subscription classes for multiple types of subscriptions. Noti-
fication Services uses the information from the subscription classes to generate the SQL Server
objects that implement the notification solution, such as tables, views, and indexes.

Defining the Subscription Class
You create a subscription class for every type of subscription in your application. A subscrip-
tion class has the following elements:

n A subscription class name

n A filegroup

n Subscription class schema (optional)

n Event rules (optional)

n Scheduled rules (optional)

n Custom indexes (optional)

n Subscription chronicles tables (optional)

Subscription Class Name and Filegroup
The following sample code shows how to specify the subscription class name and filegroup by
using an ADF:

<!--XML-->
<SubscriptionClassName>mySubscriptions</SubscriptionClassName>
<FileGroup>Secondary</FileGroup>

The following sample code shows how to specify the subscription class name and filegroup by
using NMO:

//C#
myApplication.SubscriptionClasses.Add(mySubscriptions); mySubscriptions.FileGroup =
"SECONDARY";

522 Chapter 16 Developing Applications for Notification Services
Notification Services adds the following fields in the resulting subscription class table: Sub-
scriptionId, SubscriberId, Created, Updates, and Enable. When a subscription class also has
scheduled rules, Notification Services adds the ScheduleId field in the subscription class and
an index on this field.

Subscription Schema
In most of the applications, you must specify the subscription fields that are used at notifica-
tion generation. These fields are specified in the schema of the subscription class.

The following sample code shows how to specify the schema within an ADF:

<!--XML-->
<Schema>
 <Field>
 <FieldName>City</FieldName>
 <FieldType>nvarchar(255)</FieldType>
 <FieldTypeMods>NOT NULL</FieldTypeMods>
 </Field>
</Schema>

The following sample code shows how to specify the schema using NMO:

//C#
SubscriptionField city = new SubscriptionField(mySubscriptions, "city");
city.Type = "nvarchar(255)";
city.TypeModifier = "not null";
mySubscriptions.SubscriptionFields.Add(city);

Subscription Rules
Subscription rules join event data with subscription data to generate notifications. Subscrip-
tion rules can be event-driven or scheduled.

The following code sample illustrates how to define rules to get information from chronicle
tables and event tables:

<!--XML-->
<EventRule>
 <RuleName>PriceWatcherEventRule</RuleName>
 <Action>
 INSERT INTO PriceNotification
 (SubscriberId, city,
 Product, Price)
 SELECT A.SubscriberId, A.city,
 B.Product, B.Price
 FROM PriceSubscriptions A JOIN PriceEvents B
 ON A.Product = B.Product
 JOIN PriceEventChron C
 ON A.Product = C.Product
 WHERE A.SaleTriggerPrice <= B.Price

Lesson 5: Creating Subscriptions 523
 AND A.ProductTriggerPrice > C.ProductHighPrice
 INSERT ProductSubscriptionChron --
 (SubscriberId, Product, Price)
 SELECT A.SubscriberId, A.Product, B.Price
 FROM PriceSubscriptions A JOIN PriceEvents B
 ON A.Product = B.Product
 </Action>
 <ActionTimeout>P0DT00H05M30S</ActionTimeout>
 <EventClassName>PriceWatcher</EventClassName>

Indexes for Subscription Classes
You can improve Notification Services performance by creating indexes. In the next lesson,
you will learn how to use indexes to increase performance. However, this example shows how
to create an index on a subscription class by using ADF:

<!--XML-->
<IndexSqlSchema>
 <SqlStatement>
 CREATE INDEX SalesIndex
 ON SalesSubscriptions (SubscriberId)
 </SqlStatement>
</IndexSqlSchema>

The following sample shows how to create a subscription class index by using NMO:

//C#
mySubscriptions.IndexSqlStatements.Add(
 "CREATE INDEX SalesIndex ON " +
 "MyAppSchema.mySubscriptions (SubscriberId)");

Subscription Class Chronicles
To store previous data about notifications, you can use chronicles. You can use previous noti-
fication information to determine whether a subscriber has received similar data or any noti-
fications in the past hours. Subscription chronicles are tables. You can create as many
chronicles as you want for a subscription.

For more information about subscription chronicles, see “Defining Chronicles for a Subscrip-
tion Class” in SQL Server 2005 Books Online at http://msdn2.microsoft.com/en-us/library
/ms172554.aspx.

Subscription Management Interfaces
To submit subscriber and subscription information to Notification Services, you need to
use management interfaces. When developing management interfaces, you use the sub-
scription management API. To learn more about developing custom subscription manage-
ment interfaces, see “Developing Subscription Management Interfaces” in SQL Server 2005
Books Online at http://msdn2.microsoft.com/en-us/library/ms166433.aspx.

524 Chapter 16 Developing Applications for Notification Services
IMPORTANT Management views

SQL Server provides views to manage subscribers, subscriber devices, and basic subscriptions in
Notif ication Services.

Practice: Subscription in Notification Services
In this practice, you will apply the concepts from Lesson 5, “Creating Subscriptions,” and pre-
vious lessons to create Notification Services subscriptions.

� Exercise 1: Define the Core Components of a Subscription

In this exercise, you will learn how to create a complete subscription for your Notification Ser-
vices application.

As a Notification Services solution developer, you must define the class name and the
filegroup for a subscription within an ADF. Write your own solution before looking at
the suggested answer.

Suggested Answer

The following code satisfies the requirements:
<!--XML-->
<SubscriptionClassName>mySubscriptions</SubscriptionClassName>
<FileGroup>Secondary</FileGroup>

� Exercise 2: Create Indexes by Using NMO

In this exercise, you will learn how use NMO to create indexes.

As a Notification Services solution developer, you have noticed poor performance when
using SubscriberId in the Sales subscription. To improve performance, define an index
by using NMO. Write your own solution before looking at the suggested answer.

Suggested Answer

The following code satisfies the requirements:
//C#
mySubscriptions.IndexSqlStatements.Add(
 "CREATE INDEX SalesIndex ON " +
 "MyAppSchema.mySubscriptions (SubscriberId)");

Lesson 5: Creating Subscriptions 525
Quick Check
1. How can you store information about previous notifications?

2. How would you improve performance within subscriptions?

3. How can you manipulate subscription and subscriber data without directly access-
ing the tables?

Quick Check Answers
1. You can use chronicles to store information about previous notifications.

2. Using the appropriate indexes within subscriptions can improve performance.

3. SQL Server provides views for managing subscribers, subscriber devices, and basic
subscription information.

526 Chapter 16 Developing Applications for Notification Services
Lesson 6: Optimizing Notification Services

Estimated lesson time: 25 minutes

Notification Services can send thousands or millions of notifications. This means that the pro-
cess for retrieving notification data, storing the data, and distributing notifications must be
optimized for top performance. In this lesson, you will learn how to optimize Notification Ser-
vices solutions.

Optimizing Event Data
Events are the triggers for notifications. An event can contain a little or a lot of data, and events
can be sporadic or periodic. Each notification solution is different, so there are different
aspects to consider when designing a notification solution. The different workloads generated
by event management, notification generation, notification formatting, and notification deliv-
ery influence performance.

The event table stores event information. To design this table for optimum performance, you
have to think of it as a regular table created in SQL Server. The event table is likely to have sev-
eral indexes; work on identifying appropriate indexing candidates and the type of indexed
fields.

IMPORTANT Give tempdb enough capacity

Notif ication Services uses the tempdb database of SQL Server intensely, so you need to give
tempdb a large initial capacity to avoid having to resize it later. Using the Full recovery model
enables restore operations but also results in larger log f iles. Thus, set a large size for log f iles to
avoid resizing. In addition, placing log f iles on a different physical spindle will reduce the amount
of concurrent disk access and improve performance.

Event information is crucial for fulfilling business requirements. Events need to be processed
quickly. Each event class becomes a table in the application database. Keep event information
to the minimum size possible; consider storing a reference for extra information but note that
the extra work looking up the additional information can reduce performance.

Indexes can improve performance when reading but can slow inserts, updates, and deletes.
Therefore, it is critical to choose a good indexing strategy. Notification Services creates indexes
on the EventID and EventBatchID columns.

BEST PRACTICES Covering indexes

Using a covering index will force the query to run entirely against the index. This type of index can
improve performance.

Lesson 6: Optimizing Notification Services 527
When using event chronicles tables, use a timestamp (or datetime value) for version control if
time notification is required.

Optimizing Subscriptions
Notification Services uses database tables to store subscription data. It also uses rules to spec-
ify when a particular user or application should be notified. To plan an optimal subscription
strategy, you must consider the subscription load, additional information, historical informa-
tion, rules usage, indexing, subscription management, and whether notifications are sched-
uled or event driven. Consider whether your subscription allows user customization,
specifying the locale and identifying devices.

Use chronicles when you need to maintain subscription history; use the timestamping of the
last notification.

Rules are critical in a Notification Services solution; they determine when a subscriber needs
to be notified. Subscription rules generate notifications by joining event data with subscrip-
tion data. When you use rules, do not update event or subscription tables. Avoid the use of
event-driven subscriptions unless it is essential to send notifications immediately.

Use indexing to improve performance when reading. Analyze column usage in JOIN and
WHERE clauses to see whether indexing is needed. Consider using covering indexes.

BEST PRACTICES Using SQL Server tools

Use SQL Server tuning tools, particularly SQL Server Prof iler and the Database Tuning Advisor, to
determine the best indexing strategy for your Notif ication Services solution.

Optimizing Notifications
In a notification solution, accessing external information is a frequent task. It also has an
impact on notification formatting. Notification generation and formatting generate heavy disk
usage. Consider moving notification data to a specific filegroup or to a separate physical spin-
dle. Also, consider using computed fields, which enable the distributor to compute notifica-
tion data immediately before passing it to the content formatter. This might add more
formatting processing, but it might also reduce processing at the client and reduce storage
requirements. You can also improve performance in notifications by using the right indexing
strategy. Consider indexing if your notification has computed values. These columns can be
included in a covering index or with the INCLUDE keyword.

When designing notification delivery, remember that the file delivery protocol is primarily
for testing purposes. If possible, use the SMTP delivery protocol. If you need to deliver files,
and especially if you want to deliver several files, consider using custom delivery protocols.
Multicast is the best way to send the same notification to several subscribers because the

528 Chapter 16 Developing Applications for Notification Services
notification is formatted only one time. When only one system is distributing notifications,
you can increase the batch size as much as your protocol allows. When multiple distributors
are present, adjust the batch size to enable different distributors to work as equal partners.

Practice: Optimizing Notification Services Solutions
In this practice, you will apply the concepts learned in this lesson to optimize your Notifica-
tion Services solution.

� Exercise 1: Optimize Events

In this exercise, you will learn a technique for optimizing events.

As a Notification Services solution developer, you need to notify customers of changes to
their contracts, including approval, rejection, and whether they need additional informa-
tion. You need to send changes to their contracts once a day. Should you use event chron-
icles in this solution?

Suggested Answer

The best solution is to use a scheduled subscription that benefits from chronicles. Using
chronicles is not a must.

� Exercise 2: Optimize Notifications

In this exercise, you will learn a technique for optimizing notifications.

As a Notification Services solution developer, you notice that generating and formatting
notification uses disks heavily. What optimization options can you implement to
improve performance?

Suggested Answer

You can specify a different filegroup for notification data or move it to a separate physical
spindle. You can also consider using computed values and indexing them.

Quick Check
1. How is event data stored?

2. What should you know about tempdb and Notification Services?

3. How would you send the same notification to multiple subscribers?

Quick Check Answers
1. Event data is stored as a traditional SQL Server table.

2. Notification Services uses tempdb heavily, so you need to set a large initial value to
avoid the cost of resizing.

3. You can send the same notification to multiple subscribers by using multicast.

Lesson 6: Optimizing Notification Services 529
Case Scenario: Design a Notification Services Application
You are the database platform architect for an airline company. Your company wants to notify
passengers about any issue regarding their flights via short message service (SMS) or e-mail.
You are planning to implement a Notification Services application to accomplish this require-
ment. You need to maintain history for notification events, and performance is a must for the
solution.

1. How should you create the Notification Services application so that you can track his-
tory?

2. To get the best performance, what do you need to configure in the SQL Server system
databases?

3. What type of provider should you use for this scenario?

Chapter Summary
n Notification Services can send thousands to millions of notifications to subscribers.

n You can configure your Notification Services instance by using an XML instance config-
uration file (ICF) or by using Notification Services Management Objects (NMO). When
configuring an instance, you specify the instance properties and a list of applications.
You can also pass parameters to applications. You can configure Notification Services
applications by using an XML application definition file (ADF) or by using Notification
Services Management Objects (NMO). You can create and register a new Notification
Services instance and compile your notification applications in SQL Server Management
Studio (SSMS).

n Data is submitted to Notification Services via event classes and event providers. Event
providers can be hosted or nonhosted. Subscription rules join event data with subscrip-
tion data to generate notifications. Notification Services comes with three standard event
providers: the File System Watcher, SQL Server, and Analysis Services.

n The generator manages rule processing for a notification application. A Notification Ser-
vices instance can have only one generator. The Notification Services distributor formats
and delivers notifications. You can define multiple distributors for each application.

n You can use database-tuning techniques to design Notification Services database tables.
By designing the correct indexing strategy, you can improve notification performance.

Chapter 17

Developing Packages for
Integration Services

SQL Server Integration Services (SSIS) is a new member of the Microsoft SQL Server 2005
family of technologies. SSIS, the successor to Data Transformation Services (DTS), is a plat-
form for building extraction, transformation, and loading (ETL) solutions and data-integration
applications. In this chapter, you will learn how to develop applications that benefit from SSIS
technologies. After learning how to develop SSIS packages using SQL Server Business Intelli-
gence Development Studio (BIDS), you will see how to debug and test SSIS packages. Finally,
you will learn how to select which strategies and technologies to use in your ETL or integra-
tion projects.

Exam objectives in this chapter:
n Develop packages for Integration Services.

q Select an appropriate Integration Services technology or strategy.

q Create Integration Services packages.

q Test Integration Services packages.

Before You Begin
To complete the lessons in this chapter, you must have:

n A computer that meets the hardware and software requirements for SQL Server 2005.

n SQL Server 2005 Developer Edition, Workgroup Edition, Standard Edition, or Enterprise
Edition installed as well as the SQL Server Database Engine and Integration Services com-
ponents installed.

n The SQL Server 2005 AdventureWorks Online Transaction Processing (OLTP) and Online
Analytical Processing (OLAP) sample databases installed. Sample databases are available
with SQL Server 2005 Enterprise Edition but are not a part of the default installation. Alter-
natively, you can install the sample databases from http://msdn2.microsoft.com/en-us
/library/ms143739.aspx.
531

532 Chapter 17 Developing Packages for Integration Services
n SQL Server 2005 Samples and SQL Server Client Tools. Both are selectable options dur-
ing the SQL Server installation.

n Microsoft Visual Studio 2005 or Microsoft Visual Basic or C# 2005 Express Edition
installed. You can download Visual Studio Express Editions from http://msdn
.microsoft.com/vstudio/express/.

IMPORTANT Practices in this chapter build upon each other

Beginning with Lesson 2, “Debugging and Testing SSIS Packages,” the lesson practices build upon
each other; to move to the next practice, you need to f inish the previous one.

Lesson 1: Creating Integration Services Packages 533
Lesson 1: Creating Integration Services Packages

Estimated lesson time: 40 minutes

In the database world, integrating data is a common requirement. You might need to use SSIS
to build a data warehouse or data mart in an ETL process, or you might need to use it as a
migration tool between application versions or to integrate data between applications at the
database level. In this lesson, you will learn how to use Visual Studio to create SSIS packages.
You will see how to configure the control flow of the package and how the package interacts
with the environment, including the file system, databases, file transfer protocol (FTP) servers,
and so on. You will also learn how to configure the data flow to create data transformation
pipelines. Finally, you will see how to configure logging and package configurations to
increase package manageability.

What Is a Package?
A package is the fundamental element of the SSIS platform. Packages are the central execution
element and are a collection of different elements that can be configured to integrate data.
Packages can contain tasks, containers, precedence constraints, variables, connections, data
sources, transformations, destinations, event handlers, configurations, and other elements.
You can design packages by using BIDS, or you can create them programmatically.

An SSIS package has two run-time engines: the control flow engine and the data flow engine.
The control flow engine is where you configure the package’s workflow. The workflow is
responsible for interacting with the environment and has a distinct sequence of precedence
constraints. The data flow engine is where you program data transformations. In contrast to
control flow, the data flow does not have precedence constraints; instead, it defines data flow
pipelines.

To create an SSIS package using BIDS, perform the following steps:

1. From the main menu, click File, click New, and then select Project.

2. From the Project Types pane, select Business Intelligence Projects.

3. Select the Integration Services Project template, name the project, and click OK.

Connection Managers
SSIS packages enable you to configure connections at the package level. Connection managers
are the logical representation of a connection and describe the physical connection required to
interact with a data source. Connection managers offer different properties that enable you to
configure the connection; however, the central element of most connection managers is the
connection string, in which most of the configuration takes place.

534 Chapter 17 Developing Packages for Integration Services
To configure a SQL Server 2005 connection, perform the following steps:

1. In the SSIS designer, right-click in any empty area of the Connection Managers pane.
Select a New OLE DB connection.

2. If the connection has not been previously defined, click the New button to create a new
connection.

3. In the Provider drop-down list, notice that by default it uses Native OLE DB\SQL Native
Client, appropriate for SQL Server 2005 servers.

4. In the Server Name text box, type the server name.

5. Select the appropriate authentication method.

6. Select the appropriate database.

7. Click OK to confirm the configuration and click OK again to select the newly created
connection manager.

Connection managers are used to connect not only to relational databases; they can also be
used to connect to files and folders, FTP servers, and so on. Following is a list of the connec-
tion managers provided with SSIS.

n ADO

n FLATFILE

n MSOLAP90

n ODBC

n WMI

n ADO.NET

n FTP

n MULTIFILE

n SMOServer

n EXCEL

n HTTP

n MULTIFLATFILE

n SMTP

n FILE

n SMMQ

n OLEDB

n SQLMOBILE

After you create the connection manager, you can use it in multiple tasks and to configure mul-
tiple data sources.

Lesson 1: Creating Integration Services Packages 535
SSIS Variables
SSIS variables are useful for maintaining the state during package execution. For example, you
can define an SSIS variable to hold the name of a file being processed or the connection string
of a database. SSIS variables can hold simple values such as integers, strings, or dates, and they
can hold complex values such as recordsets or arrays.

To declare a variable in SSIS, follow these steps:

1. In the package designer, select the Control Flow Pane.

2. Right-click in an empty space of the design area.

3. Select Variables.

4. In the Variables pane, click the Add Variable button.

IMPORTANT Variable scope

Later in this lesson, you will learn about containers. The scope of a variable is determined by which
container you select when you right-click. If you want to def ine the variable at the package level,
make sure that you are not selecting any area or object when you right-click. Adding a variable
while in the data flow designer limits the scope of the variable to the Data Flow task.

Control Flow
Every SSIS package has one, and only one, control flow. The control flow is where developers
define the workflow of the package, which is responsible for the orchestration of the package
tasks and is where most of the traditional (not ETL) programming occurs. The control flow
has three main components: tasks, containers, and precedence constraints.

Tasks
Tasks are the core control-flow elements; they are responsible for performing the specific tasks
in an SSIS package. SSIS includes the following types:

n Data flow task The data flow task is the foundation of the ETL process. It creates one
data flow that you can use to read, change, and store data. You will learn more about data
flow later in this lesson.

n Data preparation tasks Data preparation tasks are designed to perform the groundwork
necessary before the ETL process executes. These tasks usually perform the copying or
downloading of files. The data preparation tasks include the File System Task, the FTP
Task, the Web Service Task, and the XML Task, as Figure 17-1 shows.

536 Chapter 17 Developing Packages for Integration Services
Figure 17-1 SSIS data preparation tasks

n Workflow tasks Workflow tasks are responsible for communications with other pro-
cesses. These tasks execute other packages, run other programs, read queues, send mail,
and interact with Microsoft Windows Management Instrumentation (WMI). The work-
flow tasks consist of the Execute Package Task, the Execute DTS 2000 Package Task, the
Execute Process Task, the Message Queue Task, the Send Mail Task, the WMI Data
Reader Task, and the WMI Event Watcher Task, as Figure 17-2 shows.

Figure 17-2 SSIS workflow tasks

n SQL Server tasks These tasks are specifically designed to work with SQL Server 2005
and to manipulate SQL Server objects. The SQL Server tasks consist of the Bulk Insert
Task, the Execute SQL Task, the Transfer Database Task, the Transfer Error Messages
Task, the Transfer Jobs Task, the Transfer Logins Task, the Transfer Master Stored Pro-
cedures Task, and the Transfer SQL Server Objects Task, as Figure 17-3 shows.

Figure 17-3 SSIS SQL Server tasks

n Scripting tasks Scripting tasks enable you to use Microsoft Visual Basic .NET and script-
ing languages to extend the functionality of the package with custom code. The SSIS
scripting tasks are the Script Task and the ActiveX Script Task, as Figure 17-4 shows.

Figure 17-4 SSIS scripting tasks

Lesson 1: Creating Integration Services Packages 537
n Analysis Services tasks Analysis Services tasks enable you to interact with SQL Server
2005 Analysis Services, enabling you to process cubes and dimensions, alter their
schema, and query data mining models. Analysis Services tasks consist of the Analysis
Services Processing Task, the Analysis Services Execute DDL Task, and the Data Mining
Query Task, as Figure 17-5 shows.

Figure 17-5 SSIS Analysis Services tasks

n Maintenance tasks Maintenance tasks are designed to work with SQL Server 2005
and SQL Server 2000 relational engines to perform administrative work to maintain
the server and relational databases. These tasks include the Back Up Database Task,
the Check Database Integrity Task, the Execute SQL Server Agent Job Task, the Exe-
cute T-SQL Statement Task, the History Cleanup Task, the Notify Operator Task, the
Rebuild Index Task, the Reorganize Index Task, the Shrink Database Task, and the
Update Statistics Task, as Figure 17-6 shows.

Figure 17-6 Maintenance tasks

Besides these tasks, which are shipped with SQL Server 2005, you can use Microsoft .NET pro-
gramming languages to create your own custom tasks. In addition, you can buy or download
custom tasks designed to work with SSIS.

To use any of the tasks, you can just drag and drop the task from a Toolbox category to the
package designer and double-click the task or set the properties from the Properties window.

Containers
Containers are SSIS objects that enable you to group tasks and configure tasks that must be
repeated. Containers can also be used to configure tasks that participate in a distributed trans-
action. SSIS, by default, provides three containers: the Sequence Container, the For Loop Con-
tainer, and the Foreach Loop Container, as Figure 17-7 shows.

538 Chapter 17 Developing Packages for Integration Services
Figure 17-7 SSIS containers

Sequence Container The sequence container is useful for grouping sets of tasks in a single
container. With a sequence container, you can:

n Define a transaction boundary. You can set the transaction option of the sequence con-
tainer so that all the tasks included in it will participate in the same transaction.

IMPORTANT Using transactions in SSIS packages

If you want to require transactions at the package or container level, SSIS will demand a
distributed transaction. Distributed transactions are coordinated through the Microsoft
Distributed Transaction Coordinator (MSDTC). Make sure that the MSDTC is started when
using transactions in SSIS packages.

n Define scope variables. You can define the scope of large variables that might consume
scarce memory resources at the container level. Those variables will then exist within
only the sequence container.

n Enable or disable a set of related tasks.

For Loop Container You use the For Loop container to repeat a series of tasks. The For
Loop container is similar to For or While commands in standard programming languages. The
For Loop container has three main elements: initialization, evaluation, and iteration. The
optional initialization element is used to configure the variables before the tasks are executed.
The evaluation element is the condition at the end of the loop that determines whether the
loop will run again. The iteration element, also optional, is used to increment or decrement the
counter.

To configure a For Loop container to repeat the same group of tasks 10 times, for example, fol-
low these steps:

1. In the package designer, select the Control Flow pane.

2. From the main menu, select SSIS, and then choose Variables.

3. On the Variables toolbar, click the Add Variable button to add the counter variable.

4. Name the variable Counter.

Lesson 1: Creating Integration Services Packages 539
5. Select the Toolbox and, from the Control Flow Items category, drag and drop a For Loop
container.

6. Double-click the For Loop container.

7. Define the InitExpression property as follows:
@Counter=1

8. Set the EvalExpression property as follows:
@Counter<=10

9. Configure the AssignExpression property as follows:
@Counter=@Counter+1

Foreach Loop Container The Foreach Loop container is similar to the For Loop container
in that it can be used to repeat a series of tasks. However, instead of using a control variable to
work through the tasks, the Foreach Loop executes once per element in a collection. For
example, you can configure a Foreach Loop to execute a series of tasks once for each file in a
folder, once for each table in a database, or once for each node in an XML document.

The following steps will help you configure a Foreach Loop container to execute a series of
tasks for each file in a folder:

1. In the package designer, select the Control Flow pane.

2. From the main menu, select SSIS, and then choose Variables.

3. On the Variables toolbar, click the Add Variable button to add the counter variable.

4. Name the variable FilePath and change the data type to string.

5. Select the Toolbox and, from the Control Flow Items category, drag and drop a Foreach
Loop container.

6. Double-click the Foreach Loop container.

7. Select the Collection Pane and, in the Enumerator drop-down list, review the optional
collections that the Foreach Loop container offers. Accept the default of Foreach File
Enumerator.

8. Select Browse to configure the folder or type the folder path in the Folder text box.

9. In the Files text box, using wildcards, configure which files will be added to the collec-
tion.

10. Select the Variable Mappings pane to assign the current loop value to a variable.

11. In the Variable drop-down list, select User:FilePath.

Precedence Constraints
Precedence constraints link different tasks in a control flow and define the order of execution
of the tasks. In SSIS, you can link the objects and configure different conditions that determine
whether the next task should run.

540 Chapter 17 Developing Packages for Integration Services
SSIS allows four different operations:

n Constraint The next task execution depends on the result of the previous task. Con-
straints enable you to configure Success, Failure, or Completion.

n Expression Expression enables you to create a Boolean expression. If the result is true,
the next task will execute; if false, it will not execute.

n Expression and constraint This operation combines the two previous values, and only
when both conditions are present will the next task execute.

n Expression or constraint This operation combines the two previous values, and only if
any of the conditions is true will the next task execute.

To configure a Precedence constraint, follow these steps:

1. In the package designer, select the Control Flow pane.

2. Drag and drop two tasks. Select the first task, select the connection (green arrow), and
then drag the connection (green arrow) on the other task.

3. Double-click the connection and configure the properties.

Data Flow
Unlike with the control flow, SSIS packages can have zero, one, or more data flows. A data flow
is where most of the ETL process occurs. Data flows specialize in extracting data from different
sources, applying diverse transformation to the data, and sending the transformed data to one
or more destinations. Data flows are about creating high-performance data pipelines for the
ETL process. Data flows have four components: data sources, data flow transformations, data
destinations, and paths.

Data Sources
Data sources are data flow components responsible for providing data to the pipeline. Data
sources supply the data pipeline with rows that can be transformed later and stored. SSIS
includes the following data sources, shown in Figure 17-8: DataReader Source, OLE DB
Source, Excel Source, Raw File Source, Flat File Source, XML Source, and Script Component.

Figure 17-8 Data sources

Lesson 1: Creating Integration Services Packages 541
IMPORTANT Scripting data source

The only data source that is not available under the Data Flow Sources category in the Toolbox is
Script Component. You will have to drag and drop a Script Component from the Data Flow trans-
formations category and, when prompted, specify the data source as how the component will be
used in the Data Flow.

Most data sources have two outputs: a regular output and an error output. Regular output
sends all rows that do not generate an error when inserted into the data pipeline. An error out-
put, when configured, sends rows that fail to enter the pipepline because they have an invalid
type, because they need to be truncated, or simply because they generate an error.

To create a SQL Server 2005 data source from a SQL command:

1. Drag and drop an OLE DB Source to the Data Flow pane, and then double-click it.

2. Select a previously defined OLE DB Connection Manager or click New to create a new
one.

3. In the Data Access Mode drop-down list, change the mode to SQL Command.

4. Write the SQL statement to select the information or click the Build Query button to use
the query builder.

Data Paths
Data paths define the way the pipeline works in a data flow. A data path connects two compo-
nents in a data flow; one component will output the rows that the other component will use
as input. Some components have no output paths; others have one or more output paths.
Additionally, other components don’t allow input paths, and still others allow one or more.
For example, the OLE DB Source does not allow any input paths, and it has two output paths:
one regular path and one error path.

As an SSIS developer, the important element to remember about paths is that they enable you
to configure the data pipeline, and that can be used to check the current state of the schema.
To review the schema, double-click the path and select metadata.

Data Flow Transformations
Data flow transformations are data flow components responsible for changing data in the data
pipeline. Data transformation can add columns, change column values, change data types,
aggregate data, import and export images or large-object (LOB) columns, and so on. Data
transformations can also transmit data to multiple destinations or merge data from multiple
sources.

542 Chapter 17 Developing Packages for Integration Services
To work with a data transformation:

1. Drag and drop a transformation object to the Data Flow pane.

2. Select the data source or previous transformation.

3. Select the output path (the green arrow) from the data source or previous transforma-
tion and drag it to the new transformation.

4. Double-click the transformation.

Data transformations can be classified as row transformations, rowset transformations, split
and join transformations, business intelligence transformations, and other transformations.

Row Transformations Row transformation applies changes to each row in an independent
manner. Row transformations include Character Map transformation, Copy Column transfor-
mation, Data Conversion transformation, Derived Column transformation, Script Component
transformation, and OLE DB Command transformation, as shown in Figure 17-9.

Figure 17-9 Row transformations

IMPORTANT OLE DB Command transformation

The OLE DB Command transformation is a data transformation that runs SQL commands to an OLE
DB database. These commands include SELECT, UPDATE, INSERT, and DELETE commands as well as
the execution of stored procedure of functions. In some ways, you can use the OLE DB Command
transformation as a destination that does not insert rows; it updates or deletes information from
the database.

Rowset Transformations Instead of working with each row independently, rowset transfor-
mations work with groups of rows. The group can be all the rows in the pipeline or smaller
groups. SSIS includes the following rowset transformations: Aggregate transformation, Sort
transformation, Percentage Sampling transformation, Row sampling transformation, Pivot
transformation, and Unpivot transformation, as illustrated in Figure 17-10.

Figure 17-10 Rowset transformations

Lesson 1: Creating Integration Services Packages 543
Split and Join Transformations Split and join transformations have the ability to take in
one input and send multiple outputs or the other way around. They are useful when joining
data that comes from multiple sources or when sending data to multiple destinations. Split
and join transformations include Multicast transformation, Union All transformation,
Merge transformation, Merge Join transformation, and Lookup transformation, as illus-
trated in Figure 17-11.

Figure 17-11 Split and join transformations

IMPORTANT Merge Join transformation vs. Lookup transformation

The Merge Join transformation is the equivalent of the JOIN, LEFT JOIN, or FULL OUTER JOIN of
SQL Server. However, SSIS requires the sets to be ordered before joining the rows; if ordering data
is not feasible, use the Lookup transformation that does not require data to be sorted.

Business Intelligence Transformations Business intelligence transformations enable you
to add text and data mining transformations to your SSIS package. You can use these transfor-
mations to incorporate advanced data cleaning. The business intelligence transformations
include Fuzzy Grouping transformation, Fuzzy Lookup transformation, Term Extraction
transformation, Term Lookup transformation, and Data Mining Query transformation, as
illustrated in Figure 17-12.

Figure 17-12 Business intelligence transformations

Other Transformations Other transformations include tasks that can be classified in the
previous categories. They include transformations to add audit columns, export and import
data, and so on. The transformations included in this category are Audit transformation,
Export Column transformation, Import Column transformation, Row Count transformation,
and Slowly Changing Dimension transformation, as shown in Figure 17-13.

544 Chapter 17 Developing Packages for Integration Services
Figure 17-13 Other transformations

Exam Tip The slowly changing dimension task is more than a transformation; it is also a wizard
that helps you maintain dimension tables that generate other tasks. Familiarize yourself with this
transformation because it is very likely you will face questions about it in the exam.

Data Flow Destinations
Data flow destinations are the counterpart of data sources; they take the rows from the pipe-
line and store the information in different destinations, including in memory datasets. Data
flow destinations take one input path and have no outputs or one error output path only. SSIS
includes the following data flow destinations: Data Mining Model Training Destination,
DataReader Destination, Dimension Processing Destination, Excel Destination, Flat File Des-
tination, OLE DB Destination, Partition Processing Destination, Raw File Destination, Record-
set Destination, Script Component, SQL Server Mobile Destination, and SQL Server
Destination, as shown in Figure 17-14.

Figure 17-14 Data flow destinations

Practice: Creating an SSIS Package
In this practice, you will create an SSIS package that reads information from a file and from a
relational database and then populates a dimension table in a data warehouse database.

On the Companion Disc This chapter includes many code examples. You will f ind all the
code from this chapter on the companion CD in the C:\My Documents\Microsoft Press\TK70-441
\Chapter17 folder.

Lesson 1: Creating Integration Services Packages 545
� Exercise 1: Create a New Database and Dimension Table

In this exercise, you create a new database to support the AdventureWorks data warehouse. You
also create a dimension table to store the geography.

1. Open SSMS and connect to the default database engine.

2. Right-click the databases folder and select New Database.

3. In the New Database dialog box, name the database AdventureWorksDWPractice.
Click OK to create the database.

4. Click the New Query button on the SQL Editor toolbar to open a query window.

5. On the Standard toolbar, in the Available Databases drop-down list, change the default
database to AdventureWorksDWPractice.

6. In the Query window, create the required code to create the Geography dimension table.

The DimGeography table is a regular star-type dimension table, storing information
about cities, postal codes, states, and countries. For countries, it will store the name in
English, Spanish, and French. The following code creates the Geography dimension
table:
CREATE TABLE dbo.DimGeography(
 GeographyKey INT IDENTITY(1,1) NOT NULL
 CONSTRAINT PK_DimGeography
 PRIMARY KEY
 , City NVARCHAR(30) NOT NULL
 , PostalCode NVARCHAR(15) NOT NULL
 , StateProvinceCode NVARCHAR(3) NOT NULL
 , StateProvinceName NVARCHAR(50) NOT NULL
 , CountryRegionCode NVARCHAR(3) NOT NULL
 , EnglishCountryRegionName NVARCHAR(50) NOT NULL
 , SpanishCountryRegionName NVARCHAR(50) NOT NULL
 , FrenchCountryRegionName NVARCHAR(50) NOT NULL
 , DimStart DATETIME NOT NULL
 DEFAULT(GETDATE())
 , DimEnd DATETIME NULL
)

7. Execute the query by clicking the Execute button on the SQL Editor toolbar or by press-
ing F5.

� Exercise 2: Create a New SSIS Project and Package

In this exercise, you use the SSIS Template project included in BIDS to create an SSIS project.
The template creates the solution, the SSIS project, and the SSIS package.

1. Open BIDS.

2. From the main menu, click File, click New, and then select Project.

3. Select Business Intelligence Projects from Project Types.

546 Chapter 17 Developing Packages for Integration Services
4. Select the Integration Services Project template. Name the report AdvWorksETL and
click OK to create the project.

5. In Solution Explorer, right-click the default package and select Rename. Rename the
package DimGeographyETL.dtsx. When Visual Studio asks you if you want to rename
the object as well, select Yes.

� Exercise 3: Create the ETL Workflow

In this exercise, you use the previously created package to generate the Geography dimension
table. You will configure the package to read only modified rows from the source tables using
a date variable.

1. Right-click the package designer and select Variables. This will enable you to create a
new variable to hold the last date on which the package was executed.

2. From the Variables toolbar, click the Add Variable button.

3. In the column name, change the variable name to LastExecutionDate. Also, change the
data type to Datetime and the default value to 1/1/2000.

4. From the Toolbox, under the Control Flow Item category, drag and drop an Execute
SQL task to the Control Flow pane. This task will be responsible for reading the last
datetime stored in the Geography table.

5. Right-click Execute SQL Task and select Rename. Type Read Last Execution Time. Dou-
ble-click the task to configure its properties.

6. In the Connection property drop-down list, select New Connection to create a new con-
nection object.

7. In the configure OLE DB Connection Manager dialog box, click the New button to create
a new connection.

8. In the Server Name, type localhost; accept the default Windows Authentication method,
and select the AdventureWorksDWPractice database from the Select Or Enter A Data-
base Name drop-down list. Click Test Connection, and then click OK to create the con-
nection string.

9. Click OK to create the connection.

10. In the SQL Statement property field, enter the following query to read the last execution
date and time:
SELECT COALESCE(MAX(DimStart), '20000101') AS DimStart
FROM dbo.DimGeography

11. In the Result Set property drop-down list, change the value to Single Row.

12. Select Result Set in the left pane. Result Set will enable you to assign the returned value
to the variable.

Lesson 1: Creating Integration Services Packages 547
13. Click the Add button. In the Result Name column name, type 0 and make sure that the
variable name is User::LastExecutionDate. The Result Name column enables you to
select the column number you are mapping to the variable name.

14. Click OK to accept the changes.

15. Notice that, at the bottom of the package designer, the connection managers are dis-
played. There is a localhost.AdventureWorksDWPractice connection. Right-click the
connection and rename it DWConn.

16. From the toolbox, drag and drop a Data Flow task to the Control Flow pane. Right-click
the Data Flow task and select Rename. Name the data flow Geography.

17. Place the data flow task under Read Last Execution Time. Select the Read Last Execution
Time object and drag and drop the Precedence constraint arrow to the Data Flow task.
The precedence constraint enables you to define the workflow of the package.

� Exercise 4: Create the ETL Dataflow

In this exercise, you use the previously created package to generate the Geography dimension
table. You first configure the transformation to read cities and ZIP codes from the Address
table; the package then looks up countries and states from the AdventureWorks sample data-
base. Finally, the package filters all the information that was previously stored in the data
warehouse.

1. Double-click the Geography data flow to open the Data Flow editor. The Data Flow edi-
tor is where you configure the data pipeline to extract, transform, and load data.

2. Drag and drop an OLE DB Source from the toolbox Data Flow Sources category. Right-
click the OLE DB source and select Rename. Name the object Cities Source. Double-
click the Cities source to configure its properties.

3. Click the New button to create a new connection. The cities source will use the Adventure-
Works sample database.

4. Click New to create a new connection string. In the Server Name text box, type local-
host, accept the default Windows Authentication method, and select the Adventure-
Works database from the Select Or Enter A Database Name drop-down list. Click Test
Connection, and then click OK to create the connection string.

5. In the Data Access Mode drop-down list, select SQL Command.

6. In the SQL Command text box, enter the following command, which selects cities that
were inserted or updated after the previous execution of the package:
SELECT DISTINCT City, PostalCode, StateProvinceID
FROM Person.Address
WHERE (ModifiedDate > ?)

You can also click the Build Query button to create the command in the Query Builder
dialog box.

548 Chapter 17 Developing Packages for Integration Services
7. Click the Parameters button to map the variable to the parameter. In the Variables drop-
down list, select User::LastExecutionDate. Click OK to configure the parameter and
click OK again to configure the OLE DB source.

8. In the Connection Managers pane, right-click the localhost.AdventureWorks connection
and select Rename. Name the connection AdvWorksSource.

9. To read the Region and Country information, drag and drop a Lookup transformation
under the Cities source. Select the data flow path (green arrow) and drag it to Lookup.

10. Right-click the Lookup transformation and select Rename. Name the Lookup transfor-
mation States and Countries. Double-click States and Countries to configure the trans-
formation.

In the OLE DB Connection Manager drop-down list, select AdvWorkSource. Select the
Use Results Of An SQL Query check box and type the following command to extract the
state and country codes and names:
SELECT StateProvince.StateProvinceID
 , StateProvince.StateProvinceCode
 , StateProvince.Name AS StateProvinceName
 , CountryRegion.CountryRegionCode
FROM Person.CountryRegion
INNER JOIN Person.StateProvince
ON CountryRegion.CountryRegionCode = StateProvince.CountryRegionCode

11. Click the Columns tab. The StateProvinceID is automatically mapped. In the Available
Lookup columns, select StateProvinceCode, StateProvinceName, and CountryRegion-
Code. Select OK to configure the task.

12. Even though the previous command filters cities by modified date, the city might exist
from another record. To eliminate the row, you will use a Lookup task and remove cities
that are already stored in the data warehouse.

13. Drag and drop a Lookup transformation under the States and Countries transformation.
Select States And Countries; select the Success Data Flow arrow (green arrow) and drop
it over the lookup transformation. Right-click the lookup and select Rename. Name the
transformation Filter Previous Rows. Double-click the transformation to configure the
lookup.

14. Select DWConn in the OLE DB Connection Manager drop-down list. Select the Use
Results Of An SQL Query option and enter the following command:
SELECT City
 , PostalCode
 , StateProvinceCode
 , CountryRegionCode
FROM DimGeography

15. Select the Columns tab; all columns are automatically mapped. Do not add any Lookup
columns.

Lesson 1: Creating Integration Services Packages 549
16. Drag and drop a Sort transformation under the Filter Previous Rows. The Sort transfor-
mation will be used to order the results by country.

17. Select the Filter Previous Rows transformation and select Lookup Error Output (the
red arrow); drag the red arrow to the Sort transformation. In this step, you will not use
the green arrow because the rows that match the data warehouse should be removed.
You want only to load new rows that do not match rows previously inserted in the data
warehouse.

18. The Configure Error Output dialog box is displayed. In the Error column, select Redirect
Row to send all new rows to the Sort transformation. Click OK to redirect the rows.

19. Right-click the Sort transformation and select Rename. Name the transformation Sort By
Country. Double-click the transformation to configure the Sort column.

20. In the Input Column drop-down list, select CountryRegionCode to sort the data by
Country code and then click OK. Data needs to be sorted for the Merge transformation
to work.

� Exercise 5: Merge Alternate Names

In this exercise, you use the previous package to read information from a flat file and merge the
information with the cities. The package then stores the information in the data warehouse.

1. Drag and drop a Flat File source. Place the Flat File source to the left of the States And
Countries transformation. Right-click the Flat File source and select Rename. Name the
task Countries Alternate Names. Double-click the task to edit its properties.

2. Click the New button to create a flat file connection. Name the connection
CountyNamesConn . Cl ick the Browse button to select the C:\Program
Files\Microsoft SQL Server\90\Samples\Integration Services\Package Samples
\AWDataWarehouseRefresh\AWDataWarehouseRefresh\Data\$$CountryRegion-
ForeignNames.csv file. To display the file, you might have to change the file type to .csv.

3. Select the Preview pane to browse the file contents. After browsing the content, select the
Advanced pane to configure column information. Use the following table to configure
the CountryNames data source columns; these data types are consistent with the table’s
data types stored in the database:

4. Click OK to create the connection and click OK again to configure the Flat File source.

Column Name OutputColumnWidth

Column 0 CountryRegionCode 3

Column 1 EnglishCountryRegionName 50

Column 2 SpanishCountryRegionName 50

Column 3 FrenchCountryRegionName 50

550 Chapter 17 Developing Packages for Integration Services
5. Drag and drop a Derived Column transformation. Place the transformation under the
Countries Alternate Names task and next to the Filter Previous Rows transformation.
Right-click the transformation and select Rename. Rename the transformation Remove
Space.

6. Select the Countries Alternate Names task, select the data flow path, and drag it to the
Remove Space transformation. Double-click the transformation to configure its properties.

7. In the Derived Column drop-down list, select Replace CountryRegionCode. In the
Expression text box, enter the following expression:
RTRIM(CountryRegionCode)

8. Click OK to configure the transformation.

9. Drag and drop a Sort transformation; place the transformation under the Remove
Space transformation and next to the Sort Alternate Names transformation. Rename
the transformation Sort Alternate Names. Select the Remove Space transformation,
and then select the data flow path (green arrow) and drop it on the Sort Alternate
Names transformation.

10. Double-click the Sort Alternate Names transformation to configure the Sort column.
In the Input Column combo box, select CountryRegionCode. Click OK to confirm the
configuration.

11. Drag and drop a Merge Join transformation; place the transformation under the Sort By
Country and Sort Alternate Names transformations.

12. Select the Sort By Country transformation, and then select the data flow path (green
arrow) and drag it to the Merge Join task. The Input Output Selection dialog box is dis-
played. In the Input Column drop-down list, select Merge Join Left Input. Click OK to
configure the data flow path.

13. Select the Sort Alternate Name transformation, and then select the data flow path (green
arrow) and drag it to the Merge Join task.

The data flow will be automatically assigned to the Merge Join Right Input.

14. Right-click the Merge Join transformation and select Rename. Name the transformation
Merge Alternate Country Names. Double-click the task to edit its properties. Use the
Input Grid to select the following columns:

Input Input Column

Sort by Country City

Sort by Country Postal Code

Lesson 1: Creating Integration Services Packages 551
Accept the default OutputAliases and click OK to configure the task.

15. Drag and drop an OLE DB Destination. Place the destination under the Merge Alternate
Country Names transformation. Select Merge Alternate Country Names, and then select
the data flow path (green arrow) and drag it to the OLE DB Destination. Right-click the
OLE DB destination and select Rename. Name the destination Geography Destination.
Double-click the destination to configure its properties.

16. In the the OLE DB Connection Manager drop-down list, select DWConn. Leave the Data
Access Mode default selection, Table or View-fast load.

17. In the Name Of The Table Or The View drop-down list, select the dbo.DimGeography
table.

18. Select the Mappings pane to configure column mappings between the SSIS data flow
and the table. The columns are automatically mapped. Click OK to confirm the default
mappings.

� Exercise 6: Populate the Geography Dimension Table

In this exercise, you execute the previously created package to populate the Geography dimen-
sion table. The first time you execute the package, all rows will be loaded into the data ware-
house. If you run the package a second time, no rows will be stored.

1. In the package editor, select the Data Flow pane.

2. From the Menu, click Start Debugging. The package should start. Wait for all the tasks
to become green. Notice how many rows flow in the data flow.

3. After the package is successfully executed, stop the debugger by clicking Stop Debug-
ging from the Debug menu.

4. Execute the package again. Notice that no rows are read from the source database, and
no data is loaded into the data warehouse.

Sort by Country StateProvinceCode

Sort by Country StateProvinceName

Sort Alternate Name CountryRegionCode

Sort Alternate Name EnglishCountyRegionName

Sort Alternate Name SpanishCountyRegionName

Sort Alternate Name FrenchCountryRegionName

Input Input Column

552 Chapter 17 Developing Packages for Integration Services
Quick Check
1. What is the role of connection managers in SSIS packages?

2. Where do you define a data path in an SSIS package?

3. Which database engines are supported by maintenance tasks in SSIS packages?

Quick Check Answers
1. The correct answer is to maintain the connection configuration. The idea behind

the connection manager is to centralize the connection string information for mul-
tiple data sources and give database developers and administrators a single man-
agement point.

2. The correct answer is Control flow pane. Data paths are responsible for the config-
uration of the data pipeline in the package data flow.

3. The correct answer is SQL Server 2005 and SQL Server 2000 Relational engines.
Maintenance tasks support only the SQL Server Relational engine in SQL Server
2005 and SQL Server 2000.

Lesson 2: Debugging and Testing SSIS Packages 553
Lesson 2: Debugging and Testing SSIS Packages

Estimated lesson time: 20 minutes

SSIS packages are susceptible to errors and failures, as are all software components. In this les-
son, you will learn how to run, debug, and test SSIS packages, using BIDS.

Running SSIS Packages
After you have designed and developed your package, you can execute, debug, and test it.
Unlike with DTS, you can run the SSIS package in the development environment before
deploying the package to the server. There are two alternatives when running a package
locally. The first option is to run the package without debugging; the second option is to
debug the package.

There are several different ways of running an SSIS package without debugging. One way is by
using BIDS, clicking Debug, and then selecting Start Without Debugging from the main menu.
You can also press Ctrl + F5 to do the same thing. When using BIDS, if you have more than one
package in the project, you can select which package to execute first by right-clicking the pack-
age in Solution Explorer and selecting Set As Startup Object.

You can also execute a package by using the SSIS execution utilities DTExec.exe and
DTExecUI.exe. DTExec is a command-line utility that you can use to execute SSIS packages.
It is useful for creating test scripts or batches. You can use DTSExec to execute packages
stored locally in the file system, stored in a SQL Server database, or stored in the SSIS Pack-
age Store. An example of how to use DTExec is

Dtexec.exe /f "c:\DimGeography.dtsx"

DTExecUI offers a graphical interface to configure SSIS package execution. It is easier to con-
figure than DTExec and can be used to generate the command required to execute packages
without intervention. To generate a DTExec command by using DTExecUI, follow these steps:

1. Run DTExecUI from the command prompt or from the Run option in the Windows
Start menu.

2. In the General pane, select the Package Source (File System, SQL Server, or SSIS Package
Store). For SQL Server or SSIS Package Store packages, select the server name and
authentication parameters.

3. Select the package name or path.

4. Configure the preferred execution parameters.

554 Chapter 17 Developing Packages for Integration Services
5. Select the Command Line pane. Select the text in the command line text box, right-click,
and select Copy.

6. Paste the code into your script after a DTExec command.

The last option for running an SSIS package without debugging is to use a SQL Server Agent
job. To execute a package in a job, you need to deploy the package in a testing or production
server, use SQL Server Management Studio (SSMS) to add a SQL Server Agent job, and add an
SSIS Integration Services Package job step to the job. For information about how to use SQL
Server Agent jobs to execute SSIS packages, see the Books Online topic “Automating Adminis-
trative Tasks (SQL Server Agent)” at http://msdn2.microsoft.com/en-us/library/ms187061.aspx.

Debugging SSIS Packages
You use BIDS to debug an SSIS package. To debug an SSIS package, start the debugger by
pressing F5, by clicking the Start Debugging button from the Debug toolbar, or by selecting
Start Debugging from the Debug menu. To stop the debugger, press Shift + F5; click the Stop
Debugging button from the Debug toolbar or select Stop Debugging from the Debug menu.

When the package is in debugging mode, BIDS informs you of the debugging progress in two
ways. First, BIDS color codes the design area. Control flow tasks and data flow components
will change color to let you know their execution status. Table 17-1 summarizes the color
schema:

You can also use the Execution Results pane to check the package execution results when
debugging a package. One advantage of the Execution Results pane is that after the execution
is stopped, the color status in the designer disappears, but the execution results remain until
you close the package.

Debugging Control Flow
An important part of the development cycle is when developers observe the run-time behavior
of the developed components. BIDS enables SSIS developers to observe the status of the con-
trol flow components. When debugging the control flow, you can evaluate variables, change

Table 17-1 SSIS Execution Color Schema

Color Status

White Waiting

Gray Disabled

Green Success

Yellow Executing

Red Error

Lesson 2: Debugging and Testing SSIS Packages 555
their values, and advance to the next breakpoint. Debugging helps you locate errors and eval-
uate the logic of the package.

To debug the control flow, you need to define a breakpoint. A breakpoint is a deliberate paus-
ing of the package for debugging purposes. The breakpoint does not affect the final package;
it affects the package only when running in debug mode. To configure a breakpoint in the
package designer, follow these steps:

1. Select the Control Flow pane.

2. Right-click the task at which you want the debugger to stop.

3. Select Edit Breakpoints.

4. Select the condition that determines the breakpoint at which to pause the package
execution.

IMPORTANT Break conditions

Two conditions are frequently used when def ining a breakpoint: the OnPreExecute event
that occurs just before executing the task and the OnPostExecute event that occurs just
after executing the task. For more information about other conditions, see the SQL Server
2005 Books Online topic “Debugging Control Flow” at http://msdn2.microsoft.com/en-us
/library/ms140274.aspx.

5. After defining the breakpoints, you can start debugging the package.

When running the package in debug mode, the package execution will stop at the first break-
point it encounters. You will see a yellow arrow over the task at which the execution is paused.
You will also see the Locals pane display, where you can evaluate the status of the variables.
From the Locals pane, you can also add a watch. Here’s how to add a watch:

1. In the Locals pane, expand the variables tree.

2. Select the variable you want to watch.

3. Right-click the variable and select Add Watch.

4. The Watch pane is displayed.

From the Watch pane, you can keep track of variable values and change them if you want.

To resume execution and advance to the next breakpoint, press F5 or click the Continue but-
ton in the Debug toolbar.

Debugging Data Flow
Debugging the data flow is similar to debugging the control flow. However, in the data flow,
you configure data viewers rather than add breakpoints. Data viewers enable you to view data
in the pipeline between data components. The package designer has four different data view-
ers: grid, histogram, scatter plot, and column chart.

556 Chapter 17 Developing Packages for Integration Services
Grids display information in a standard grid format. They are useful for examining each row
in detail. Alternatively, histograms enable you to display distribution of a single numeric value.
Histograms are useful for reviewing numeric values in all data records. Scatter plot enables you
to analyze the relationship between two numeric values, such as between sales amount and
sales tax, and you can use column charts with non-numeric data to report a list of occurrences.

To add a data viewer, follow these steps:

1. Select the data flow for which you want to add a data viewer.

2. Right-click the path between two data flow components.

3. Select Data Viewers.

4. Click Add.

5. In the Name text box, name the data viewer.

6. From the Type list, select the data viewer type, and then click OK.

7. Select Data Viewers, select the data viewer, and then click the Configure button.

8. On the Column Chart tab, select the appropriate column.

9. Click OK to configure the viewer, and then click OK again.

Executing the package in debug mode will display the data viewer; click the Run button
from the Viewer toolbar to continue the execution.

Debugging Script Code
You have three different script tasks or components for working with script code in SSIS pack-
ages. In the control flow, you have the Script Task and the ActiveX Script Task. Also, in the data
flow, you can use the Script component.

The Script Task and the Script Component use Visual Basic .NET code, which is compiled and
executed at run time. These tasks use the Visual Studio for Applications (VSA) environment to
develop and debug the code.

The ActiveX Script task enables you to select the scripting language from the following
options: Visual Basic Script, JScript Compact Profile (ECMA 327), or JScript. The ActiveX
Script task does not offer a development environment because its primary use is to hold script
that has been migrated from DTS packages. Keep in mind that the ActiveX Script task is pro-
vided only for backward compatibility with older code.

IMPORTANT ActiveX code is deprecated

SQL Server 2005 offers the ability to execute ActiveX code only for backward compatibility; this
capability will be removed in the next version of SQL Server. You should not use ActiveX in new
development and should start planning how to remove or replace code written in ActiveX scripting
languages.

Lesson 2: Debugging and Testing SSIS Packages 557
Testing SSIS Packages
Testing is an essential process that helps you identify the quality of developed software. SSIS
packages require the same process of investigation to expose quality-related problems in the
development and operation of SSIS packages. Some of the attributes evaluated in package test-
ing are functionability, reliability, performance, compatibility, and maintainability.

In software testing, there are four conventional testing levels:

n Unit testing Validates individual units of source code. A unit is the smallest testable
part of an application. From the SSIS perspective, the unit you are testing is always a
package.

n Integration testing Validates individual software modules combined and tested as a
group. From the SSIS perspective, integration testing can refer to all SSIS packages in a
solution or a smaller set of packages that are related by function. For example, you can
test all ETL packages related to a particular star schema of the data warehouse.

n System testing Validates a complete and integrated system. System testing checks com-
pliance with a specified set of requirements. System testing goes beyond testing SSIS
packages. For example, in a data warehouse solution, system testing should include all
elements, such as SSIS packages, SQL Server Analysis Services (SSAS) dimensions and
cubes, SQL Server Reporting Services (SSRS) reports, and the intranet portal. System
testing does not require knowledge of the inner design of the code and is frequently
divided into functional and nonfunctional testing.

n Acceptance testing Performed directly by the customer or user before accepting the
delivery of a system. After acceptance testing, the ownership of a system is transferred
from the development team to the operations team.

IMPORTANT Regression testing

Another important type of software testing is regression testing. Regression testing tries to discover
regression bugs. Regression bugs occur when some of the software functionality that used to work
stops working, typically because a program changes. Maintenance code is usually more prone to
errors. By applying the unit testing strategies reviewed in Chapter 10, “Designing a Unit Test Plan
for a Database,” you can diminish the effect of regression bugs.

Code Inspection
Before implementing a testing strategy, consider executing a technical review strategy. Techni-
cal reviews are extremely effective in detecting software defects in every type of software,
including SSIS packages. A code inspection is a formal technical review in which code inspec-
tors or reviewers examine SSIS packages and use checklists to detect software errors. In code
inspections, you can evaluate not only the functional requirements compliance but also oper-
ational requirements. For example, you can review such things as: do all the tasks have

558 Chapter 17 Developing Packages for Integration Services
descriptive names? Do all objects follow Pascal case convention? Are all the tasks enabled?
And so on.

Unit Testing SSIS Packages
Unit testing can be manual or automated. Manual testing uses a step-by-step instructional doc-
ument that enables testers to evaluate the correctness of a package. Unlike manual testing,
automated testing uses software to control the execution of tests. Most development teams
combine manual and automated testing.

Manual Testing Manual tests start with a test case. The test case gives a testing engineer the
steps to follow to test a software component. A test case consists of a series of steps with
actions, inputs, and expected results. Table 17-2 shows an example of a test case.

Test Automation Unit testing is frequently automated, but automated testing is not a
replacement for manual testing. One advantage of SSIS is that you can create SSIS packages to
build a testing framework to test your own packages.

Here’s an example of how to create a unit testing package:

1. Create a new SSIS project.

2. Add tasks to set up the environment. You can delete destination tables, set up testing
tables, or restore databases.

3. Add an Execute Package task to launch the package you want to test.

4. Evaluate the package result, comparing rows and results of the package.

5. Store package execution results.

Practice: Debugging Control Flow and Data Flow
In this practice, you use the package you created in Lesson 1, “Creating Integration Services
Packages,” to practice how to debug the control flow and the data flow. You also create a test
to evaluate your package.

Table 17-2 A Sample Test Case

Open C:\SSIS\ETL.dtsConfig in Notepad. XML file displayed

Change the server name to the name of the testing
server. Save the file.

File saved

Open a command prompt. Execute the command:
dtexec /f "c:\DimGeography.dtsx".

DTExec: The package execution returned
DTSER_SUCCESS (0)
Started: x:xx:xx XM
Finished: x:xx:xx XM
Elapsed: 32.453 seconds

Lesson 2: Debugging and Testing SSIS Packages 559
� Exercise 1: Debug the Control Flow

In this exercise, you set up breakpoints, debug a package, and use the Watch pane to change
variable values.

1. Open BIDS.

2. Open the AdvWorksETL solution.

3. Open the DimGeograpy package in the Control Flow designer.

4. Right-click the Read Execution Time task and select Edit Breakpoints.

The Set Breakpoints dialog box appears.

5. Select the first two events: OnPreExecute and OnPostExecute. This will enable two
breakpoints for the Read Execution Time task—one before the task is executed and the
other after the task is executed.

6. Click OK to set the breakpoints.

7. To start debugging the package, right-click the package in Solution Explorer and click
Execute Package or press F5.

8. The execution should be paused and a yellow arrow should be in the Read Last Execu-
tion Time.

9. In the Variables dialog box, expand the variables tree. Right-click the User:LastExecu-
tionDate variable and select Add Watch. The watch 1 pane is displayed, and the variable
is added to the watch.

10. Notice the value of the LastExecutionDate; it should be the default value of 1/1/2000.

11. From the Debug toolbar, click Continue or press F5 to resume execution.

12. Notice that the Read Last Execution Time is changed to yellow, and the LastExecution-
Date variable has changed its value.

13. Expand the LastExecutionDate and change the value of the variable to 1/1/2001.

14. From the Debug toolbar, click Continue or press F5 to resume execution.

15. Select the Data Flow pane and notice that the Cities source has read some rows.

16. To stop debugging the package, click Stop from the Debug toolbar or press Shift + F5.

17. Select the Control Flow pane.

18. From the Debug menu select Delete All Breakpoints. Visual Studio prompts you to con-
firm that you want to delete all breakpoints. Click Yes.

� Exercise 2: Debug the Data Flow

In this exercise, you add a data viewer to debug a data flow.

1. In the DimGeography package, select the Data Flow pane.

2. Right-click the data path between the Countries Alternate Names transformation and
the Remove Space transformation and select Data Viewers.

560 Chapter 17 Developing Packages for Integration Services
3. Click Add to configure a new data viewer.

4. Accept the default grid data viewer. Select the Grid tab to review the grid configuration.
You can add or remove the columns in the data viewer. Accept the default and click OK
to configure the viewer.

5. Click OK to close the Data Flow Path Editor.

6. Notice the eyeglasses icon next to the data path.

7. To debug the package, select Start Debugging from the Debug toolbar or press F5.

The package execution is paused, and the data viewer is displayed.

8. From the viewer control, click Continue.

9. Close the data viewer.

10. To stop the debugger, click Stop Debugging from the Debug menu or press Shift + F5.

11. Right-click the data path between the Countries Alternate Names transformation and
the Remove Space transformation and select Data Viewers.

12. Click OK to delete the data viewer.

� Exercise 3: Test an SSIS Package

In this exercise, you create an SSIS project to test your SSIS package. First, you set up the envi-
ronment, in this case deleting the DimGeography data; later, you will configure the package to
execute the package to be tested.

1. Open BIDS, and then open the AdvWorksETL project.

2. From the main menu, click File, click New, and then select Project. You will add a new
project to the solution.

3. Select Business Intelligence Projects from Project Types. Select Integration Services
Project. Name the report TestAdvWorksETL.

4. In the Solution drop-down list, select Add To Solution. Click OK to create the project.

5. In Solution Explorer, right-click the package and select Rename. Rename the package
TestDimGeographyETL.dtsx. When Visual Studio asks whether you want to rename
the object as well, click Yes.

6. From the Control Flow Items category in the toolbox, drag and drop a Sequence Container
into the Control Flow pane. The Sequence Container will hold the DimGeography test.
Right-click the container and select Rename. Name the container DimGeographyTest.

7. Drag and drop an Execute SQL Task on the DimGeography Test container.

8. Right-click an Execute SQL task and select Rename. Name the task Delete DimGeography.
Double-click Delete DimGeography to configure the task.

9. In the Connection property drop-down list, select New Connection to create a new con-
nection object.

10. In the Configure OLE DB Connection Manager dialog box, select localhost.Adventure-
WorksDWPractice and click OK to create the connection manager.

Lesson 2: Debugging and Testing SSIS Packages 561
11. In the SQL Statement property, enter the following query to delete the destination table:
DELETE dbo.DimGeography

12. Click OK to configure the task.

13. In the Connection Managers pane, right-click the localhost.AdventureWorksDWPractice
connection and select Rename. Name the connection Destination.

14. Drag and drop an Execute Package task into the DimGeography Test container under the
Delete Geography task. The Execute Package task will be responsible for executing the
package to be tested. Right-click the package and rename the task ExecuteDimGeography.
Select the Delete Geography task and drag the precedence constraint (green arrow) to the
ExecuteDimGeography task.

15. Double-click ExecuteDimGeography to configure the task.

16. Select the Package pane. Select File System in the Location drop-down list.

17. In the Connection property drop-down list, select New Connection to create a new con-
nection object.

18. In the Usage Type drop-down list, accept the default option of Existing File. To configure
the file name, click the Browse button and select the DimGeography.dtsx file from the
projects bin folder. By default, the file is located in the My Documents\Visual Studio
2005\Projects\AdvWorksETL\ AdvWorksETL\bin folder.

19. Click OK to confirm the package and OK again to configure the task.

� Exercise 4: Verify Package Execution and Use a Hash Value

In this exercise, you verify that the package successfully executed and compare the rows in the
source and destination data by using a hash value.

1. Click any empty area of the designer.

2. Select the Variables tab or right-click any empty area of the designer and select Variables.

3. Add four variables to the package. These variables will be used to compare the values in
the data warehouse with the values in the relational source. The variables are:

4. Drag and drop a SQL task into the DimGeography container. Place the SQL task under
the Execute DimGeography task. Right-click the SQL task and select Rename to name
the task Validate Source. Select the Execute DimGeography task and drag the prece-
dence constraint arrow to the Validate Source task.

Variable Name Date Type Default Value

DestinationHash Int32 0

DestinationRows Int32 0

SourceHash Int32 0

SourceRows Int32 0

562 Chapter 17 Developing Packages for Integration Services
5. Double-click the Validate Source task to configure its properties.

6. In the Connection drop-down list, select New Connection.

7. Select the localhost.AdventureWorks connection and click OK to configure the connec-
tion manager.

8. In the SQL Statement property field, enter the following command:
SELECT COUNT(*), CHECKSUM_AGG(CHECKSUM(City))
FROM (SELECT DISTINCT City, PostalCode, StateProvinceID
 FROM Person.Address) AS Source

The statement counts how many rows are stored in the Source table and generates a
hash value based on the cities. In a production environment, you will probably want to
validate other columns.

9. Click OK to accept the SQL statement.

10. In the ResultSet drop-down list, select Single Row. You will capture the values in two
variables.

11. Select Result Set and click Add. In the Result Name column, enter 0 and, in the Variable
Name combo box, select User::SourceRows.

12. Select Add and, in the new row, enter 1 as Result Name and select User::SourceHash in
the Variable Name column. The SQL task will assign the first column to the SourceRows
variable and the second column to the SourceHash variable. Click OK to configure the
task.

13. In the Connection Managers pane, right-click the localhost.AdventureWorks connection
and select Rename. Rename the connection Source.

14. Drag and drop a SQL task into the DimGeography container. Place the SQL task under
the Validate Source task. Right-click the SQL task and select Rename to name the task
Validate Source. Select the Execute DimGeography task and drag the precedence con-
straint arrow to the Validate Source task.

15. Double-click the Validate Source task to configure its properties.

16. In the Connection drop-down list, select New Connection.

17. Select the localhost.AdventureWorks connection and click OK to configure the connec-
tion manager.

18. In the SQL Statement property field, enter the following command:
SELECT COUNT(*), CHECKSUM_AGG(CHECKSUM(City))
FROM (SELECT DISTINCT City, PostalCode, StateProvinceID
 FROM Person.Address) AS Source

The statement counts how many rows are stored in the Source table and generates a
hash value based on the cities. In a production environment, you will probably want to
validate other columns.

Lesson 2: Debugging and Testing SSIS Packages 563
19. Click OK to accept the SQL statement.

20. In the ResultSet drop-down list, select Single Row. You will capture the values in two
variables.

21. Select Result Set and select Add. In the Result Name column, type 0 and, in the Variable
Name combo box, select User::SourceRows.

22. Select Add and, in the new row, enter 1 as Result Name and select User::SourceHash in
the Variable Name column. The SQL task will assign the first column to the SourceRows
variable and the second column to the DestinationHash variable. Click OK to configure
the task.

23. Drag and drop an Execute SQL task on the DimGeographyTest container under the Val-
idate Source task.

24. Select the Validate Source task and drag the precedence constraint arrow to the Execute
SQL task. Right-click the Execute SQL task and select Rename. Name the task Validate
Destination. Double-click the task to edit its properties.

25. In the Connection property drop-down list, select Destination.

26. In the SQL Statement property field, enter the following statement:
SELECT COUNT(*), CHECKSUM_AGG(CHECKSUM(City))
FROM dbo.DimGeography

27. In the ResultSet drop-down list, select Single Row.

28. Select the Result Set pane.

29. Select Result Set and select Add. In the Result Name column, type 0 and, in the Variable
Name combo box, select User::DestinationRows.

30. Select Add and, in the new row, enter 1 as Result Name and select User::DestinationHash
in the Variable Name column. The SQL task will assign the first column to the
SourceRows variable and the second column to the DestinationHash variable. Click OK to
configure the task.

31. Drag and drop a Script task outside the DimGeography Test container. Select DimGeog-
raphy Test and drag the precedence constraint to the Script task. Right-click the Script
task and select Rename. Name the task Success.

32. Double-click the precedence constraint between the DimGeography Test container and
the Success task. In the Evaluation Operation drop-down list, select Expression and
Constraint. In the Expression text box, enter the following expression:
(@SourceRows==@DestinationRows) && (@SourceHash==@DestinationHash)

33. Test the expression and click OK to configure the precedence constraint.

34. Drag and drop a Script task outside the DimGeography Test container, next to the Suc-
cess task. Select DimGeography Test and drag the precedence constraint to the Script
task. Right-click the Script task and select Rename. Name the task Failure.

564 Chapter 17 Developing Packages for Integration Services
35. Double-click the precedence constraint between the DimGeography Test container and
the Failure task. In the Evaluation Operation drop-down list, select Expression Or Con-
straint. In the Value drop-down list, select Failure. In the Expression text box, enter the
following expression:
(@SourceRows!=@DestinationRows) || (@SourceHash!=@DestinationHash)

36. Execute the package to validate that the Success script is executed. In a real production
environment, store the results in a log table or file.

Quick Check
1. You want to evaluate the value of a variable before a data flow task occurs; which

event do you use to define the breakpoint on the task?

A. OnProgress event

B. OnVariableValueChange event

C. OnPreExecute event

D. OnPostExecute event

2. You want to debug a set of data that you are transforming in an SSIS package.
Where do you define a data viewer?

A. Data path

B. Data flow pane

C. Connection Manager pane

D. Package Explorer

3. You want to debug an ActiveX Visual Basic script; how do you debug this code line
by line?

A. Use BIDS.

B. Use Microsoft Visual Studio for Applications.

C. Use SSMS.

D. Debugging an ActiveX script in an SSIS package is not supported.

Quick Check Answers
1. The correct answer is C. The OnPreExecute event fires just before the execution of

the task.

2. The correct answer is B. The data flow path enables you to configure data viewers
to verify the status of data between data flow components.

3. The correct answer is D. The ActiveX Script task does not support debugging; it is
offered only to maintain compatibility with earlier code.

Lesson 3: Selecting an Appropriate SSIS Technology or Strategy 565
Lesson 3: Selecting an Appropriate SSIS Technology or
Strategy

Estimated lesson time: 25 minutes

In this lesson, you will learn about some of the design options you can consider when devel-
oping SSIS packages. First, the lesson looks at the various ways designers use SSIS technolo-
gies. Then you will see how to design your packages to optimize performance and how you can
use SSIS technologies in projects that go beyond the traditional ETL process.

SSIS ETL Design Patterns
In computer science, a design pattern is a recommended, repeatable solution to common soft-
ware design problems. A design pattern is a model or guide about how to create a solution. You
find three typical design patterns in real-world ETL applications: SSIS packages as SQL place-
holders, as conventional ETL, and as in-memory pipeline. Each of these solutions has advan-
tages and disadvantages you must consider when using SSIS to design an ETL solution.

SSIS as a SQL Placeholder
The design pattern that uses SSIS as a placeholder for SQL code employs SQL to solve most
of the ETL problems, including cleaning, transforming, formatting, integrating, and merging
data. The role of the SSIS package is to provide a basic workflow for the tasks and, sometimes,
to extract data from non-SQL sources.

A typical workflow diagram of a package that uses SSIS as a SQL placeholder looks like Fig-
ure 17-15.

You can see that control flow is primarily composed of SQL tasks. However, sometimes this
type of package uses Bulk Insert or Data Flow tasks for the load segment of the ETL work.
After the data is stored in a stage database, the rest of the process is performed through SQL
tasks. The Bulk Insert task is used to gather data from files, and the data flow tasks in this
pattern are very simple, using a single data source, no transformations, and single data flow
destination.

SQL tasks in these packages are generally categorized by functionality, but this is not manda-
tory. Some designers use a single SQL task to do all the work, which provides all the required
functionality in one or more statements.

566 Chapter 17 Developing Packages for Integration Services
Figure 17-15 SSIS as a SQL placeholder

The SSIS task is used only to manage the workflow of the process and to provide minimum
functionality, such as error control.

Advantages and Disadvantages The main advantage of using SSIS as a SQL placeholder is
that many developers are familiar with the SQL programming model. Database developers
with ETL and integration experience likely also have deep knowledge of how to write efficient
code to achieve the ETL goals.

Another important advantage is that, if programmed appropriately, this model can offer very
good performance. Top performance is usually achieved because data might never have to
leave the database server.

However, this design pattern also has limitations. The main limitation is that developers rarely
have the required knowledge to solve ETL problems with Transact-SQL (T-SQL). Even when
developers have the required experience, T-SQL is not always the appropriate language to
solve these types of problems.

Another restriction of this pattern is that complex ETL tasks, such as text mining, data mining,
and advanced transformations, might not be achievable by using SQL.

Conventional ETL with SSIS
The most common SSIS package design pattern is implementing conventional ETL with SSIS.
Conventional ETL solutions feature very componentized packages with very narrow objec-
tives. For example, a package’s only purpose might be to extract data from a specific table,
while another package might be responsible for cleaning wrong dates from a stage table.

Lesson 3: Selecting an Appropriate SSIS Technology or Strategy 567
A conventional ETL process can be organized into two elements: the ETL phase and the data
warehouse object. In the ETL phase, you can design packages for the extraction phase, others
for the transformation phase, and still others for the data loading phase. However, in most sce-
narios, one package per phase is not recommended; instead, you should create a set of pack-
ages for each object in the database (dimension or fact table) per phase. You then create a
master package responsible for the overall control flow and orchestration of all packages. Fig-
ure 17-16 shows a sample master package that orchestrates other ETL packages.

Figure 17-16 ETL Workflow master package

In the master package, you see that nearly all of the tasks are Execute Package tasks. In this
case, the only exceptions are a SQL Command task to delete the stage database and an Anal-
ysis Services processing task to upload the information into the SSAS database. All other pack-
ages are responsible for a specific part of the ETL process in a particular database object.

Each package in the conventional ETL process has a different design pattern. The extraction
package usually has a single simple data flow; its objective is to get data from the source as fast
as possible, minimize the disruption of the OLTP systems, and store the data in a raw file or
in a stage relational database, as Figure 17-17 shows.

Transformation packages in an ETL process are far more complex than extraction packages.
Transformations are responsible for guaranteeing the quality of data stored in the database.
Transformation packages clean, validate, change the format of, and merge data from different
sources. Most of the time, these packages have a series of data flow tasks, each one responsible
for one subtask. Figure 17-18 shows an example of a cleaning data flow task.

568 Chapter 17 Developing Packages for Integration Services
Figure 17-17 Conventional ETL extraction

Figure 17-18 Cleaning data flow task

Finally, you have the loading tasks, which are similar to extraction tasks. They store the trans-
formed data information in the data warehouse. Generally, a single data flow, containing a sin-
gle data source and a single data destination component, does the job.

Advantages and Disadvantages The main advantage of using conventional ETL with SSIS
is that it is a mature model with proven results. The highly componentized solution breaks the
complexity of the ETL into simple, easy-to-develop elements.

Another advantage of using this pattern is that it uses the power of SSIS, allowing rapid devel-
opment of components that benefit from built-in components that solve standard ETL prob-
lems. Developers can use the best language or technology to solve the problem at hand.

One restriction of this SSIS pattern is performance. Because each component is a separate ele-
ment of the process and each component reads and stores data in the database, it might need
to read and store the same data numerous times. In large ETL processes, this model tends to
deteriorate performance; it is not uncommon to have ETL processes that take more than 20
hours to process a data mart or data warehouse.

Lesson 3: Selecting an Appropriate SSIS Technology or Strategy 569
Another constraint of this design is maintainability. Because each package is responsible for
only part of the processing, adding data attributes (columns) to the data warehouse requires
changes in multiple packages.

ETL In-Memory Pipeline with SSIS
SQL Server 2005 introduced the ability to create in-memory ETL processes by using SSIS. An
in-memory ETL solution uses the ability of SSIS packages to create fast in-memory pipelines
that minimize the number of times data is stored in the database. These types of packages are
designed with a one package–one object pattern. Furthermore, every step of the ETL process
for a single data mart or data warehouse object happens in a single data flow task. The diagram
in Figure 17-19 shows a simplified version of the in-memory ETL data flow responsible for
extracting, transforming, and loading the customer dimension table.

Figure 17-19 Data flow of an in-memory ETL

SSIS: Beyond ETL
Sometimes you use SSIS technologies to build solutions that go beyond the ETL process. The
most common non-ETL scenarios include database maintenance, data or text mining, and
application integration.

Database Maintenance
SSIS packages offer a set of tools designed to create maintenance plans. Maintenance plans use
SSIS packages to personalize a workflow of tasks to manage databases. Database administra-
tors can use maintenance plans to implement recovery plans for databases. Maintenance plans

570 Chapter 17 Developing Packages for Integration Services
can also help administrators optimize database performance through the use of rebuild and
reorganize index tasks.

You can create SSIS maintenance plans packages from BIDS or directly from SSMS. SSMS has
a Maintenance Plan Wizard that helps automate the process of creating these packages. To cre-
ate a maintenance plan from SSMS by using the Maintenance Plan Wizard, follow these steps:

1. Open SSMS.

2. In the Object Explorer, expand the Management folder.

3. Right-click the Maintenance Plans folder and select Maintenance Plan Wizard.

Data and Text Mining
Besides using data and text mining tasks in an ETL process, you can also create SSIS packages
that support mining solutions. For example, if you attend an event and collect information about
attendees, you can create a text mining package to import the data into your customer relation-
ship management (CRM) system. The text mining tasks will help you determine whether the
attendees are new customers or already exist in your CRM system. Data mining components
might help you classify the new customers based on the likelihood that they will buy products.

Quick Check
1. What is the role of SSIS packages in an SSIS as SQL placeholder design pattern?

2. Which of the following is an advantage of creating a conventional ETL process?

A. Performance

B. Security

C. Maintainability

D. Mature and proven model

3. Which of the operational requirements is the main advantage of an in-memory
ETL process?

Quick Check Answers
1. The correct answer is to orchestrate the SQL commands. The primary additional

value of SSIS in this design pattern is to create the workflow to coordinate the SQL
statements.

2. The correct answer is D. The main advantage of conventional ETL is that compo-
nents are highly specialized and easy to develop, and the pattern is a mature and
proven model.

3. The correct answer is performance. The primary benefit of an in-memory ETL
design is to create transformations that do not read or store data between different
ETL stages, increasing performance dramatically.

Lesson 3: Selecting an Appropriate SSIS Technology or Strategy 571
Case Scenario: Building an SSIS ETL Infrastructure
Adventure Works is a worldwide distributor of bicycles and accessories. The company’s cus-
tomers are primarily small bicycle stores that have a very limited technical infrastructure. You
have been working with Adventure Works to help the company build an Internet Sales data
mart, which will be used primarily by the sales and marketing departments. You are responsi-
ble for building the ETL infrastructure to populate an SSAS cube and dimensions.

Adventure Works users are looking forward to using the Internet Sales cube, and the sales
manager wants to provide salespeople with a tool that enables them to track their sales and
sales objectives. It will also help them choose when and how to launch promotional cam-
paigns and other sales activities. The marketing manager is more interested in Internet Sales
analysis, customer demographic information, and product profitability.

The cube will be implemented on a server running Windows 2003 and SQL Server 2005. The
data mart needs to integrate information stored in the enterprise resource planning (ERP) and
CRM databases. The LOB application was developed internally, and the CRM database is
Microsoft Dynamics.

The IT department has some questions about the SSIS technologies you will be using in the
ETL process. You are responsible for answering their questions.

1. Adventure Works database administrators (DBAs) are worried about the impact the ETL
process will have on their OLTP databases. What are the performance advantages of
using SSIS for ETL?

2. The Adventure Works development team wants to create the required infrastructure to
test SSIS packages and provide the framework to practice regression testing. How would
you suggest they achieve this goal?

3. The Sales department often receives copies of files, and salespeople want to import this
data into the CRM application. What tasks or components would you use?

Chapter Summary
n SSIS is the new Microsoft SQL Server platform for creating ETL and data-integration

solutions. SSIS offers new software development paradigms that help developers create
ETL solutions faster than ever.

n SSIS has two main components: control flow and data flow. Control flow lets the
designer orchestrate the ETL process and define how it interacts with the environment.
Data flow is responsible for the actual ETL process.

572 Chapter 17 Developing Packages for Integration Services
n Debugging and testing SSIS packages is essential to ensuring their quality. BIDS pro-
vides a debug mode that lets you walk through your packages. You can set breakpoints
to use in debugging control flow, and you can create data viewers to debug data flow.

n SSIS includes components for data mining, text mining, database management, and
scripting that enable you to extend the functionality of your packages.

Case Scenario Answers
Chapter 1: Select SQL Server Services to Support Business
Needs

1. Instead of creating a staging database every month, you can create a small data ware-
house that you regularly populate by using Integration Services and then build an Anal-
ysis Services OLAP cube on the data warehouse. You can use Reporting Services to create
the reports your customers need and build an extranet portal where you can post the
reports for customers.

2. You cannot change your business application, but you can change the stored procedures
that feed the application with data. You cannot consume Web services from T-SQL
directly; however, you can create a CLR table-valued function that would use the sup-
plier’s Web service. Because you know exactly which Web service you are going to use,
you can maintain security appropriately.

Chapter 2: Design a Logical Database
1. The first task you must perform to generate the needed report would be quite simple if

there was no data in the database yet. You just need a supertype table called Partners that
has a common identification schema and other attributes in common. You would use
the Partners table for unique identification of a partner, and the Customers and Suppli-
ers tables would become subtypes. They would need to use the same identification
schema (that is, the same primary key), which you get from the Partners table. The prob-
lem is that you have existing data with no connection between the primary key of the
Customers table and the primary key of the Suppliers table. Given the existing data, you
must merge and cleanse the Customers and Suppliers tables into a Partners table; during
the merge, you must create a new, common primary key. Add this primary key to both
subtype tables, and then drop all the columns that you transferred to the supertype
table. You have to add a foreign key from the Customers and Suppliers tables to the Part-
ners table. However, you need to keep old identifications from Customers and Suppliers
to maintain history, or you must update all historical data in the events tables with new
identifications. In addition, you have to change the application to reflect the new
schema. If you cannot change the application, you could have the application access
views of the Customers and Suppliers tables instead of the tables themselves. As you can
see, this is not an easy task. This example shows how important it is to identify super-
types at database design time.
573

574 Case Scenario Answers
2. Speeding up maintenance tasks is easier. You can store old data in historical tables or his-
torical partitions of existing tables in a separate read-only filegroup. This filegroup needs
less maintenance and, because the original filegroup is now smaller, the maintenance
tasks run faster.

Chapter 3: Design a Physical Database
1. You can implement a partner hierarchy by using the adjacency model. Besides a PartnerId

column, you can add a ParentId column and associate the columns with a Foreign Key
constraint.

2. Your second task is somewhat tricky. Because you can have multiple NULL properties in
the TaxId column, you cannot use a Unique constraint. You can enforce uniqueness for
known tax IDs by using a trigger. In addition, you could create a view on the Partners
table that includes only rows with known tax IDs. Then, you could create a unique index
on that view. The unique index would reject duplite tax IDs; however, the index would
not react to unknown values. You will learn more about indexed views in Chapter 4,
“Designing a Database for Performance.”

Chapter 4: Design a Database for Performance
1. You can create a view that aggregates the sales data and groups the data over the

EmployeeId. You can index that view. Because you have SQL Server 2005 Enterprise
Edition, the query optimizer will redirect the aggregate queries to the indexed view.

2. Include the SSID column in the nonclustered index on the EmployeeName column.
This way, the query will be covered with the index.

Chapter 5: Implement Database Technologies and
Techniques for Your Application

1. Your ASP.NET application can subscribe to query notifications for changes on the Prod-
ucts table. Thus, whenever a change is made, the application can update its cache with
the latest data.

2. You can spread your database across multiple filegroups to reduce the time it takes to
perform daily maintenance operations. You can use table partitioning to partition orders
tables and have the current partition (the one that is updated frequently) on a small file-
group, while putting archive orders on a separate partition on another filegroup. Then,
you can implement different administrative schedules for different partitions. For exam-
ple, you can back up the filegroup with the current partition a couple of times per day,
while backing up other, larger filegroups only once per week.

Case Scenario Answers 575
Chapter 6: Designing Objects That Retrieve Data
1. Because this query will be called from different analytical applications from different

security contexts and environments, you want to protect the external applications from
any changes in the data source by packaging the query into a view. The aggregated data
is historical data. By defining an indexed view, you ensure that the aggregated values are
materialized to disk, so there is no need for them to be recalculated on each call.

2. To accomplish this task, you decide to change the indexed view to a partitioned view.
This way, data coming from all factories can be consolidated into a single view. The over-
all steps to achieve this are:

A. Drop the index(es) on the view.

B. Create the linked server connections to all the remote servers.

C. Alter the view and change the query into a query that uses UNION ALL to com-
bine the results coming from the multiple factories.

D. Set up security on the view.

3. To allow filtering on the result set returned by the partitioned view created in the pre-
ceding task, you could take one of two approaches:

A. Apply a filter to the SELECT statement that calls the view and apply the filter exter-
nally. The downside is that the applied filter will not be shared by all users because
it is happening outside the view.

B. Modify the partitioned view and change it into a stored procedure. Declare the ter-
ritory and date as INPUT parameters for the stored procedure.

4. The need to join (or merge) the data with different factors, such as external providers,
suggests that the query filter and join tables would vary, depending on input parame-
ters. If you used a stored procedure, you could end up with a solution that uses dynamic
T-SQL (executed with the sp_executesql system stored procedure), and it would be dif-
ficult to call the procedure with the EXECUTE statement instead of having the ability to
analyze the results further and explore newer queries (possibly through subqueries).

Chapter 7: Adding an Audit Trail
1. You should add a ChangedBy column to each of the three tables related to purchase

orders: Sales.SalesOrderHeader, Sales.SalesOrderDetail, and Sales.SalesOrderHeader-
Reason. The columns should have a Default constraint defined as SYSTEM_USER. You
will also need to change the triggers to update the column when a row is updated.

2. The problem is that the earlier purchase order application is using the INSERT INTO
statement without specifying the new column you added to the tables. You can rename
the original table and create a view that has the original table name. The view will

576 Case Scenario Answers
include only the original columns and hide the recently added column so the applica-
tion can successfully query the view.

3. Create three different Tomb tables, one each for DeletedOrderHeaders, DeletedOrder-
Details, and DeletedOrderHeaderReasons. Copy the schema from the original tables
and add an AuditID integer column as Primary Key. Create DELETE AFTER triggers in
the source tables to copy the rows from the virtual Deleted tables into the Tomb tables.

Chapter 8: Design a Secure Application Solution
1. Implement auditing. SQL Server Profiler is shipped with SQL Server, so you can start

using it immediately to trace events and find out what happened to certain transactions.

2. To reassure employees about the security of their personal data, encrypt all sensitive
data.

Chapter 9: Design a Secure Database
1. You can force end users to access tables through the stored procedures by eliminating

the broken ownership chains problem in the human resources database. You can do this
by changing the owner of the objects to a single owner or by altering the procedures to
use a different execution context and, for example, impersonate a single fictitious user
who has permissions to access the base tables. Then, you can revoke all permissions on
base tables from end users.

2. If you revoke all permissions on base tables from end users, they will no longer be able
to create ad hoc reports. You can create views that have the same owner as the base tables
and then grant SELECT permission only to your end users. However, when you create a
view, you cannot specify a different execution context. Therefore, you can use views if
there is a single owner of all base tables only; otherwise, you would encounter the same
broken ownership chain problem as soon as your view joins data from two base tables
with different owners. In such a case, you could use stored procedures and multistate-
ment table-valued functions instead of views as the intermediate data access layer.

Chapter 10: Design a Unit Test Plan for a Database
1. Unit testing would definitely help improve the quality of applications. Currently, no test-

ing is being executed, not even at the application level. However, because the database is
accesed from multiple applications, you want to make sure that the database is fine-
tuned. The main benefit of implementing unit testing is the ability to evaluate, in an inde-
pendent testing environment, the effects of implementing a specific modification to the
database.

Case Scenario Answers 577
2. You need to prioritize which are the most critical scenarios that require your attention. It
is impossible to fix everything, and it is impossible to fine-tune everything. You need to
focus on the top scenarios that, through optimization, will provide the greatest benefits
by increasing the database performance and scalability. For each of these critical scenar-
ios, you need to define performance goals so that you know how far from or close to your
goal you are.

3. After revisiting the critical scenarios, you must decide which performance objectives you
are going to aim for. This could involve objectives such as:

A. Increasing CPU use by 20 percent to maximize the investment in the new database
server, up to a high of 80 percent CPU use overall.

B. Ensuring that the critical scenarios are served at least by 90 percent from the mem-
ory cache to decrease disk I/O.

C. Ensuring that the response time is less than one second for the longest queries and
0.5 second for the average queries.

4. Data consistency tests and referential integrity are two different tools that database
developers can use to maintain data integrity. Referential integrity is enforced by the rela-
tional database management system (RDMS) as defined by the database designer in a
declarative approach that sets up the integrity validations the database should be main-
taining. Some of those integrity enforcement rules cannot be easily written in a declara-
tive form. Therefore, in other cases, the database designer implements validators in the
form of stored procedures and functions. Data consistency testing enables you to vali-
date data consistency enforcement overall, either by the RDMS or by your own custom
constraint implementations.

5. The best way to evaluate a single feature independent of the whole is by using unit test-
ing. When designing tests for application security, you could isolate all of the security
features and evaluate them independently. Code coverage could always help. In this spe-
cific case, code coverage could help you discover that, because of a security context mod-
ification, a certain piece of software is not being executed.

Chapter 11: Create a Performance Baseline and
Benchmarking Strategy

1. You must ask for the following documentation:

q The client application logical and physical design

q The infrastructure design

q Quality-of-service agreements with end users

q Expected workload metrics for the present and for the future (expected growth)

578 Case Scenario Answers
2. You decide to apply only transaction cost analysis. This technique enables you to esti-
mate the computer resources required to meet an application’s performance objectives
over time. Transaction cost analysis estimates based on a single transaction. This trans-
action should be compiled based on the most common critical scenarios the end user
will be executing. For this scenario, you must calculate the cost of each operation and the
cost of executing the complete transaction. These costs are used to extrapolate the val-
ues based on the expected number of concurrent users and concurrent transactions and
to estimate the required resources needed to execute them. You decide that predictive
analysis is not a proper technique because the requirements for the new application dif-
fer from the requirements of the previous version of the application. Thus, the log files
and historical data of the application cannot be used to predict the future capacity
requirements.

3. Performance tuning and performance testing are iterative processes that usually include
setting objectives, testing, tuning, and starting again. Testing must be executed in an
environment with the same constraints, budgets, and capacity as the production envi-
ronment for the tests to be as realistic as possible.

Chapter 12: Deploying a Database
1. The Copy Database Wizard copies data and doesn’t give you the granular option to

select tables and views only. The Import and Export Wizard also copies data. That leaves
T-SQL scripts, SSIS, and SQLCmd as possible deployment techniques. The Adventure-
WorksLT database is rather small at 7 MB total, so using SSIS seems excessive. If you
choose SQLCmd, you will be executing T-SQL scripts, so they need to be generated any-
way, and you can use the scripting functionality built into SSMS to generate the T-SQL
scripts automatically.

2. To script the database deployment, in SSMS, expand Databases. Right-click Adventure-
WorksLT, click Script Database As, and then click CREATE To. Click New Query Editor
Window, as shown here.

Case Scenario Answers 579
IMPORTANT Test environment simulation

Use SQL Server Express to simulate the test environment server.

A. Change the current connection of the query window. Right-click in the query
window, click Connection, and then click Change Connection, as shown here.

B. Login to SQL Server Express.

C. Before executing the script, edit the paths in the FILENAME statements.

D. Execute the script. Upon successful completion, you should see a statement simi-
lar to the following:
DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

You have now deployed an empty database and are ready to deploy the tables to it.
Before you begin, you know that some of the tables exist within schemas. Also,
some of the columns use user-defined data types, which must be created first.

E. In SSMS, expand the AdventureWorksLT database, expand the Security folder, and
click the Schemas folder.

F. On the SSMS menu, click View, and then click Object Explorer Details. A list of
AdventureWorksLT schemas displays in the Object Explorer Details pane.

G. Right-click the SalesLT schema, click Script Schema As, click CREATE To, and then
click New Query Editor Window.

H. Change the connection to SQL Server Express and execute the script.

I. Repeat this procedure for user-defined data types and XML Schema Collections
(located in the AdventureWorksLT\Programmability\Types folder).

J. Next, navigate to the Tables folder in the AdventureWorksLT database. Ignore the
System Tables folder in the Object Explorer Details pane. Click the first table
(BuildVersion). Hold down the Shift key and click the last table (SalesOrder-
Header). This should select all tables displayed.

580 Case Scenario Answers
K. Right-click the selection, click Script Table As, click CREATE To, and then click
New Query Editor Window.

L. In the Query window, change the connection to SQL Server Express and execute
the script.

You have successfully deployed the tables and associated objects. Views are next.

M. In SSMS, navigate to \Databases\AdventureWorksLT\Views. In Object Explorer
Details, select the three views and generate CREATE scripts to a new query win-
dow. Change the connection and execute the scripts to deploy the views to SQL
Server Express.

3. The Import and Export Wizard is an excellent choice to accomplish data migration to
the tables you’ve deployed. Here’s how you plan to do it:

A. In SSMS, navigate to the AdventureWorksLT database. Right-click the database,
click Tasks, and then click Export Data.

B. Click Next when the Welcome page displays.

C. Click Next on the Source Selection page.

D. When the Destination Selection page displays, set the Server Name to your
instance of SQL Server Express and the Database to AdventureWorksLT.

E. On the next page, select the Copy Data From One Or More Tables Or Views
option. Click Next.

F. On the Select Source Tables and Views screen, select the tables.

G. Click Next.

H. Accept the defaults on the Save and Execute page and click Finish to execute the
package. The Import and Export Wizard should succeed, as shown here.

Case Scenario Answers 581
Chapter 13: Controlling Changes to Source Code
1. The first requirement requests a source control application or server that will be sup-

ported for the next four to seven years. Visual SourceSafe 2005 might or might not sur-
vive the next four to seven years. Visual SourceSafe is certainly integrated into database
and application development environments, but it falls short of supporting the full soft-
ware development life cycle. So, you continue your search.

2. The second requirement refers to an application or server with an integrated client for
database and application development. There are several third-party and open-source
tools available that accomplish all the component requirements to support the full soft-
ware development life cycle. There will likely always be third-party and open-source
tools available. Although the tools integrate into development environments, there are
multiple tools to manage and no guarantee that they will continue to work well together.
You think there must be a better solution.

3. The third requirement seeks an application or server that supports the full software
development life cycle and all project roles. Visual Studio Team Foundation Server,
released in 2006, is a core component of the Microsoft Visual Studio 2005 Team System
and will survive four to seven years. It integrates seamlessly into database and applica-
tion development environments. Visual Studio Team Foundation Server supports all
project roles throughout the full software development life cycle. Visual Studio Team
Foundation Server meets all your requirements.

Chapter 14: Design a Distributed Data Solution
1. In this case, the technology that meets the requirements is HTTP endpoints.

2. You could create stored procedures that retrieve the data to be distributed and then cre-
ate HTTP endpoints that publish the stored procedures as Web methods. Use the stored
procedure sp_reserve_http_namespace to reserve the namespace in http.sys.

3. Use SSL to protect the data transmitted between your databases and the travel agencies.

Chapter 15: Building a Reporting Services Infrastructure
for a SharePoint Portal

1. Report Model will enable your development team to create a report model that enables
users to create reports without learning T-SQL or the complex normalized schema of
relational databases.

2. The READ COMMITTED SNAPSHOT isolation level uses row versioning to prevent
readers from blocking writers.

582 Case Scenario Answers
3. You can recommend that the development team create a set of stored procedures that
have a LoginID input parameter, group this stored procedure in one or more schemas,
and grant a Reporting Services account Execute right to the schemas. No other end users
should have access to these schemas or stored procedures. Use the UserID captured in
SSRS to assign the value of the parameter.

Chapter 16: Design a Notification Services Application
1. Use ICF and ADF files instead of NMO. NMO does not enable you to track history infor-

mation.

2. Notification Services uses the SQL Server tempdb system database intensely. Implement
common tempdb optimization techniques such as sizing tempdb appropriately, using as
many files as processors, and so on.

3. In this case, implement a continuous provider, which starts and stops when Notification
Services does.

Chapter 17: Building an SSIS ETL Infrastructure
1. You can assure the Adventure Works DBAs that SSIS enables you to design packages that

do a lot of the work required in the ETL process without affecting the performance of the
source dataset.

2. For each SSIS package the developers build, they can create one or more test SSIS pack-
ages that evaluate the performance and functionality of a package.

3. With SSIS, you can use the File data source to extract the information. Fuzzy Grouping
and other transformations can help you clean the data, and you can specify an OLE DB
destination to incorporate the data into the CRM application.

Index
Symbols and Numerics
(number character), for temporary stored procedures,

188
##MS_AgentSigningCertificate##, 256
##MS_SQLAuthenticatorCertificate##, 256
##MS_SQLReplicationSigningCertificate# #, 256
##MS_SQLResourceSigningCertificate##, 256
$PARTITION function, 123
@@error, 7
@@IDENTITY function, 79
@@NESTLEVEL system function, 92
@@ROWCOUNT variable, 297
@body parameter, for sp_send_dbmail stored procedure,

422
@query parameter, for sp_send_dbmail stored

procedure, 422
0 (zero), as return value from stored procedure, 191

A
abstraction layer, view as, 154
acceptance testing, 557
access control, stored procedures for, 187
Accumulate function, 217, 221
ACID properties, of SQL Server transactions, 456
Active Directory security, 373
ActiveX Script subsystem, proxy account for, 233
ActiveX Script task, 556
ad hoc batches, disabling, 230
ad hoc reports, 448

by end users, 22
Add Database Reference dialog box, 195
ADD SIGNATURE statement, 409
ADD SIGNATURE TO statement, 281
Add/Rename/Delete rights, to database object, 397
ADF. See application definition file (ADF)
Adjusted Average function, 220
administrative permissions, for database roles, 236
Administrator, executing test query as, 411
ADO, distributed transaction support by, 17
ADO.NET

DataSet object, 49, 134
distributed transaction support by, 17

AdventureWorks sample database, 29
AdventureWorksDW sample database, 29
AFTER triggers, 90, 210

Deleted table for, 211
for summary table, 466

Inserted table for, 211
order for, in integrity check, 91

aggregate functions, in indexed view, 115
aggregate queries, and indexes, 102
aggregating details, 45
aggregation strategies, 142
aggregations in OLAP system, 23
alerts. See also SQL Server Agent alerts

Notification Services for, 20
SQL Server Agent for responding to, 10

aligned indexes, 120
ALLOW_SNAPSHOT_ISOLATION option, 457
ALTER ANY LOGIN server-level permission, 257
ALTER ANY ROLE permission, 257
ALTER ANY USER permission, 257
ALTER AUTHORIZATION statement, 262
ALTER DATABASE command, 457
ALTER DATABASE statement, 281

triggers and, 91
ALTER INDEX statement, 106

triggers and, 91
ALTER OBJECT permission, permissions implying, 268
ALTER permission, 270
ALTER PROCEDURE statement, 192
ALTER SCHEMA command, 261
ALTER SCHEMA permission, 269
ALTER statement

triggers and, 7, 210
for principals, 254

ALTER TABLE statement, 76
PERSISTED keyword in, 80

altering table for transactional replication, 376
Analysis Services (SSAS). See SQL Server Analysis

Services (SSAS)
analytical applications, scaling out, 141
ANSI_NULLS option, 114
ANSI-92 standard permissions, 271
application cache, 49
application definition file (ADF), 495–499

event provider configuration in, 507
for creating database for application, 499
for defining notification class, 500
for index creation on subscription class, 523
for Notification Services application configuration, 503
for Notification Services distributor configuration, 513
for Notification Services generator configuration, 512
for subscription schemas, 522
nonhosted event provider configuration in, 508
583

584 application queries, scaling
subscription class name and filegroup in, 521
application queries, scaling, 139
application role, 229
application security, test design for, 310, 312
applications list, for Notification Services instances, 495
Apply Label dialog box, 402
APPLY operator, 7, 276

and indexes, 102
archive for old data, 49, 139
argument encryption, for Notification Services instances,

497
arity of fact types, 35
assembly permissions, 198
assumptions for testing script, setup testing script for,

294
asymmetric key,

encryption, 245
in master database, 281

ASYNC_IO_COMPLETION wait type, 336
asynchronous processing, 14
atomic values, in first normal form, 39
attaching database files, with scripts, 364
attacker, potential, 226
attributes

constraints for, 306
domain of possible values, 59
of entities, 36
ORM and, 33
testing values of, 306
user-defined aggregate, 219

audience, report uses by, 445
audit trail

creating, 378
triggers for, 210, 215

auditing
Analysis Services, 243
benefits of, 240
database design and, 240
DML events, 242
failed logins, 228, 240
logs from, retention period, 241
methods for SQL Server activity, 379
review of data from, 241
for security events, 242
Service Broker for, 15
strategy considerations, 240–241

authentication, 227
certificates for, 245
in DatabaseMail, 421
modes for SQL Server, 227, 231
for SSRS, 234

authenticators, 280
authorization, 227

strategy, 228
AUTHORIZATION keyword, 262
automatic activation, in Service Broker, 15
automation, 289

of performance test execution, 301
auto-numbering, with Identity property for column, 79
AWBuildVersion table, 414

B
backup and restore, for deploying permissions, 374
backup and restore database, 365

to SQL Server Express, 381
balanced trees (B-trees), 105
baseline, 302. See also performance baseline
basic authentication for Web Services, 431
Bcp.exe command prompt utility, 143, 144, 147
BEGIN DISTRIBUTED TRANSACTION statement, 17
BEGIN-END block, 176
benchmark statistics

best practices, 350
plan for tracking, 348–352

continued testing and performance measuring, 349
setting goals, 348

best practices, 372
for benchmark statistics, 350
for creating performance objectives, 326
for DatabaseMail, 233
for queries, 139
for replication, 231
for schemas, 260

BETWEEN operator, and indexes, 102
BIDS. See Microsoft Business Intelligence Development

Studio (BIDS)
Bigint data type, 60
binary associations, 35
binary facts, 35
binary large objects (BLOBs), XML data type as, 128
binary serialization, 68
binary strings, 61
bit data type, 60
bottlenecks, 343

disk I/O-related, scaling up and, 344
bottom-up hierarchy, for objects, 273
breakpoint

for debugging control flow, 555
for debugging stored procedure, 197

Browser role, 235
brute-force attacks, mixed mode authentication and, 228
B-trees (balanced trees), 105
budget, and performance objectives creation, 327
Bulk Insert task, 140, 565

efficiency vs. INSERT statement, 143

585code coverage
BULK_LOGGED recovery model, 119, 143
business cost reduction, from tracking benchmark

statistics, 349
business intelligence applications, data flow for, 50
Business Intelligence transformations, 543
business requirements, and auditing, 241
business tasks

selecting services to support, 5
SQL Server Agent for, 10

bytes, for string data types, 60

C
C# .NET, 134

for stored procedures, 166
C2 auditing, 379
cached data, Service Broker for maintaining, 15
CALLER, executing as, 170, 281
candidate keys, 39
capacity planning, 328

predictive analysis, 329
transactional cost analysis, 328

cardinality, 35
CAS. See Code Access Security (CAS)
CASCADE option

for DENY statement, 272
in REVOKE statement, 272

Cascade rule, for parent and child tables, 78
cascading table changes with triggers, 90
CASE expression, for indexed view base query, 116
CATCH statement, 201
certificates, 245

creating, 408
creating user account from, 410

change management. See also performance changes
and database for testing, 295
historical record of database schema changes, 378
history maintenance, 413
for source code, 395
testing as part, 378
tracking changes to groups of objects, 413–414

changeset, 392, 413
adding comments to, 394

Char data type, 61
Check constraint

for partition key, 120, 121
for XML namespace, 131

CHECK constraints, 84, 306
CLR UDFs for, 194
for executing UDFs, 174
in partitioning column, 157

Check In dialog box, 391
displaying, 393

Check Out/Check In rights, to database object, 397
Checked Out For Edit status

removing, 393
in Solution Explorer (SSMS), 392

check-in history of the item, 393
child table, relationship to parent table, 77
Choose Folder In Team Foundation Server dialog box, 390
Choose Item Version dialog box, 401
chronicles, 506, 523

for subscription history, 527
chunked update, UPDATE statement support for, 62
class creation when creating CLR data type, 68
client applications, for accessing Web service, 432
clipboard, copying item to, 392
CLR (Common Language Runtime)

enabling, 195
integration and consumption of Web methods, 147
performance, 133
and scalability, 139
stored procedures, 166, 187, 195–198

deploying, 197
programming, 195
SSAS support for, 236
testing and debugging, 197
v. T-SQL, 133

CLR data types
basic operations, 67
best practices, 70

CLR functions
in indexed view, 115
user-defined, 178

CLR integration
security, 230
turning on, 275

CLR scalar functions, creating, 205
CLR user-defined aggregates, 217–222
CLR user-defined types (UDTs), 66

Check constraint and, 85
Clustered Index Scan operator, 111, 117
clustered indexes, 105–108, 463

creating, 109, 111
nondeterministic functions and, 206
on view vs. on table, 155
unique, for view, 155

cmd (batch) file, for unit testing scripts, 296
Codd, Edgar F., 31
Code Access Security (CAS) model, 8, 230

permission groups, 8
security sets, 231

code coverage
goals for, 317
meeting test requirements, 317
test design for, 317–320

586 code injection, threat of
test to validate, 317
code injection, threat of, 277
coding practices, 372
color for version differences, 405
color codes in BIDS, 554
column charts, for data viewer, 556
column data types and sizes, 59–64

best practices, 64
choosing data types, 65
cursor data type, 63
datetime data types, 61
numeric system data types, 59
Sql_variant data type, 63
string data types, 60
system data types, 59
table data type, 63
Uniqueidentifier data type, 63
XML data type, 62

column width, and clustered indexes, 463
column-level security, views to implement, 244
columns

computed, 80
Identity property, 79
included, indexes with, 107
obtaining information about names from OLE DB

provider, 149
repeating group, and first NF, 40
selecting for index, 103
variable-length, 75

COLUMNS_UPDATED function, 92
comments for files, 392
commit phase for transaction, 17
COMMIT TRANSACTION statement, 17
COMMIT WORK statement, 17
Common Criteria Compliance, 379
common language runtime. See CLR (Common

Language Runtime)
common table expressions (CTEs), 6
Compact Edition of SQL Server 2005, 138
companion CD, Visual Basic .NET code in, 70
Compare dialog box, 393
Component Object Model (COM), 134
composite keys, for indexes, 107
composite indexes, 106–107
computed columns, 80, 463

indexes for, 113
for notification data, 527
updating index on, 113
user-defined function for, 174

computer resources, estimating for application
performance objectives, 328

Concatenate aggregate function, user-defined, 217
conceptual schema, creating, 31

Conceptual Schema Design Procedure (CSDP), 34
concurrent transactions, database support for, 329
configuration arguments, encryption, 497
configuration management audits, for baselines, 333
Configuration Manager, for enabling SQL Server Agent, 9
CONNECT permission, 270

revoking, 256
Connect To A Team Foundation Server dialog box, 390
Connect To Server dialog box, 361, 388
connection managers, 533–534
Connection Properties dialog box, 452
connection string, 533
connections between computers, encrypting, 231
Connections logical folder, 388
consolidating data, Service Broker for, 15
constraints, 59

in domains, 67
on performance objectives, 325, 327
program code for implementing, 90
purpose of, 127
trigger to implement, 210
unit testing of, 289, 306

containers in SSIS packages, 537–539
For Loop, 538
Foreach Loop container, 539
sequence, 538

CONTAINS predicate, 108
CONTAINSTABLE function, 108
Content Manager role, 235
continuous event provider, 507
control flow

debugging, 559
in SSIS packages, debugging, 554

control flow engine, 533
CONTROL permission, 268, 270
Copy Database Wizard (SSMS), 357–361

configuring logins for, 375
customizing SSIS package from, 361–364
for deploying permissions, 374

copying database files, 364
corporate audiences, SSRS solution design for, 445
cost of operations, in transactional cost analysis, 328
COUNT_BIG (*) function, 115, 116
counter logs, 337
covered query, 108, 464
covering index, 526, 527
CPU utilization, target, based on application needs, 324
CREATE ASSEMBLY statement, 198
CREATE DATABASE command, 458
CREATE DATABASE script, for unit testing, 295
CREATE DATABASE statement, triggers and, 91
CREATE ENDPOINT statement (T-SQL), 431
CREATE FUNCTION statement, 204, 217

587data types
CREATE INDEX statement, 108
triggers and, 91
with INCLUDE option, 465

CREATE PARTITION FUNCTION, 121
CREATE PROC statement, 199
CREATE PROCEDURE statement, 188, 409
CREATE statement, 262

DDL triggers and, 210
with DROP, vs. ALTER, 192
for principals, 254
triggers on, 7

CREATE STATISTICS statement, 103
CREATE TABLE permission, 269
CREATE TABLE statement, 75

DDL trigger to prevent, 213
event notification for, 246
example, 81
PERSISTED keyword in, 80

CREATE TRIGGER statement, 212
CREATE TYPE command, 66
CREATE UNIQUE CLUSTERED INDEX statement, 117
CREATE VIEW statement, 153

WITH CHECK OPTION clause, 244
cross-database ownership chains, and security, 276
CSDP (Conceptual Schema Design Procedure), 34
CTEs. See common table expressions (CTEs)
cubes for SQL Server Analysis Services, permissions for,

236
cumulative grants, 267
current state, in fully normalized schema, 45
cursor data type, 63
custom constraints, 306

validating, 307
custom delivery protocols, for Notification Services

instances, 495
CXPACKET wait type, 336

D
data

test to validate consistency, 307
for unit testing setup, 296
validating

before transaction, 193
stored procedures for, 187

data access layer, 90
data caching

obsolescence, 148
for scaling out, 141

data distribution options, 417
DatabaseMail, 419–424

accounts, 421
architecture, 419

configuring, 423
enabling, 420
profiles, 421
security, 421
sending messages, 422
testing, 424

Notification Services, 438–441
architecture, 438
defining applications, 440
scale-out options, 439
vs. DatabaseMail, 441
vs. Reporting Services, 440

Reporting Services component (SSRS), 434–437
data-driven subscriptions, 435
delivery options, 434
subscriptions, 434

SQL Server Agent alerts, 429
alert definition, 425
checking for running, 428
operator definition and notification, 427
table for drop-table WMI event data, 428
user-defined events, 428

Web Services, 430
creating and defining, 430
guidelines for using, 432
security, 431

data flow in SSIS packages, 535
debugging, 555, 559

data flow architecture design, 49–51
for business intelligence applications, 50
for online transactional processing (OLTP), 49

Data Flow editor, 547
data flow engine, 533
data flow transformations, 541, 544
data integrity, 125

concern with XML, 127
data manipulation language (DML) triggers, 47
data mining, 22, 570
Data Mining Extensions (DMX) language, 135
data modeling, 29, 31

key steps and best practices, 32
data paths, 541
data preparation tasks, in SSIS packages, 535
data protection, 244
data retrieval, excessive, 342
data sources, creating from Report Manager, 449
data transformation design, 465–468
Data Transformation Services (DTS), 531
data types, 59–64

best practices, 64
built-in, 59
choosing, 65
cursor data type, 63

588 data validation, stored procedures for
datetime data types, 61
deprecation, 7
for stored procedure parameters, 167
numeric system data types, 59
returned by UDFs, 179
Sql_variant data type, 63
string data types, 60
system data types, 59
table data type, 63
Uniqueidentifier data type, 63
user-defined, integrated CLR for, 9
XML data type, 62

data validation, stored procedures for, 187
data warehousing (DW), 3, 23

Integration Services for, 24, 50
for scaling out, 142
services for, 5
sliding-windows scenarios in, 119
SSIS for, 533

database-access strategy, 252
database benchmarking strategy, 323
database consistency checker commands, 335
database design

logical phase of, 31
for performance. See also indexes
systematic approach, 31–36

Database Engine component, 3
database files, detach and attach method, with scripts, 364
database-level principals, 228
database mirroring, 458
database modeling, tool for, 33
database objects

source code of, rules for viewing, 258
two-part names for, 261
unit testing of, 289
user rights to, 397

database projects
adding to source control, 389–393
removing item from, 392
Solution Explorer to view empty, 387
source-controlled, 393–395
SSMS to create, 380
Visual SourceSafe–controlled, opening, 398

database replication, 459
database roles, 233

and schemas, 261
for SQL Server Agent, 232
login in, 255
nesting, 262
permissions for, 236
validating existence, 310

database schema, hiding with view, 154
database snapshots, 50, 458

and deployment planning, 357
database source code, 387
database state, object changes and, 378
Database Tuning Advisor, 138, 527
database user accounts, restricted, 233
database users, creating, 255, 263
DatabaseMail, 10, 141, 419–424

accounts, 421
architecture, 419
best practices, 233
configuring, 423
enabling, 420
vs. Notification Services, 441
profiles, 421
security, 421
sending messages, 422
and SQL Server Agent, 232
testing, 424

DatabaseMail Configuration Wizard dialog box, 423
DatabaseMailUserRole database role, 11
databases

calculating capacity, 329
creating test, 110
stored procedures storage in, 187
marking as trustworthy, 281
maximum number of objects, 154
monitoring, vs. monitoring operating system level, 337
for Notification Services instances, 494
restoring state after testing, 295
Service Broker message storage in, 15
testing impact of modification, 287

data-change strategy, creating, 378
data-control language (DCL) elements, for controlling

permissions, 267
data-definition (DDL) events

event notifications for auditing, 246
triggers on, 7

data-driven subscriptions, 435
data-modification language (DML) triggers, 90–92

categories, 90
disallowed T-SQL commands, 91
example, 93
nested, 92
security, 92

DataSet object (ADO.NET), 134
dates, support for, 64
datetime data types, 61
DB Library, distributed transaction support by, 17
DBCC CHECKIDENT command, 79
DBCC SQLPERF command, 145
DBCC WAITSTATS, 336
db_dtsadmin user, 237
db_dtsltduser user, 237

589disk I/O-related bottlenecks, scaling up and
db_dtsoperator user, 237
dbo.GetTop10SalesPeople stored procedure, 291
dbo privileged database user, 256
dbo.ImplyingPermissions function, 268
db_owner role, 256, 257
db_securityadmin role, 257
DDL events. See data-definition (DDL) events
DDL triggers, 210, 242

auditing, 379
creating, 212
for populating tables for reports, 465

deadlocks, 342
debugging

CLR stored procedures, 197
SSIS packages, 553

control flow, 554, 559
data flow, 555, 559
script code, 556

declaring variables in SSIS, 535
decomposition in normalization, 38
default, validating by UDF, 308
Default constraint, 84

example, 87
for executing UDFs, 174
order for, in integrity check, 90

DEFAULT keyword, 178
default mapping, for linked servers, 232
default values

for input and output parameters, 168
for UDF parameters, 180

Delaney, Kalen, Inside Microsoft SQL Server 2005, 75
DELAYFOR command, to slow down query, 486
DELETE permission, 270
DELETE statement (SQL)

common table expressions for, 6
DML triggers and, 210
OLE DB Command transformation and, 542
OUTPUT statement operator, 243

Deleted table
accessing information from, 243
for triggers, 211

deleted-rows table, trigger to create, 214
deleting stored procedures, 193
deliverables of programming project, unit testing of, 289
delivery channel

for Notification Services applications, 21
for Notification Services instances, 496

denial of service, 226
denormalization, 345, 460

for design optimization, 45–47
maintaining data after, 46
triggers for maintaining data, 210, 460
and update anomalies, 38

DENSE_RANK function, 6
density, 103
DENY CONNECT statement, 230
DENY statement, for controlling permissions, 267, 271
departmental audiences, SSRS solution design for, 445
dependencies, external, CLR objects and, 8
deploying CLR stored procedures, 197
deployment of database

planning for. See planning for database deployment
practical considerations, 372–383

audit trail, 378–379
change control, 380
data-change strategy, 378
object-change strategy, 376
project-management methodology, 380
security, 372–375

to SQL Server Express, with backup and restore, 381
deprecation

of ActiveX code, 556
of data types, 7
and exam questions, 66
extended stored procedures, 134, 166
of partitioned views, 119
of SQL Mail, 10

derived tables, vs. common table expressions, 6
deserialization, 70
design process, troubleshooting performance issues

early, 325
destination database, configuring in wizard, 359
Destroy rights, to database object, 397
detach and attach method, for database transfer, 359
Detach Database dialog box, 370
detaching database files, with scripts, 364
detailed information, hiding, with views, 473
determinism

of expressions, 113
 for persisted computed columns, 464

of functions, 206
Developer Edition of SQL Server 2005, 138
development environment, schemas to control, 261
Differences dialog box, for versions, 405
Digest authentication, for Web Services, 431
digest delivery, by SSNS, 141
digital signatures, 244

asymmetric key encryption for, 245
for packages, 237

dimension tables, 461
creating, 545

dimensions, permissions for, 236
disclosure, of information, 226
discrete tests, in transactional cost analysis, 328
disk drives, spreading database across multiple, 139
disk I/O-related bottlenecks, scaling up and, 344

590 display phase of reporting execution process
display phase of reporting execution process, 482
distributed partitioned view, 119, 161

for scaling out, 140
distributed queries, implementing, 146
distributed system, reliability in, with Service Broker, 15
distributed transactions, 16, 538

statements starting, 17
Distribution Agent, account for, 231
Distributor

for replication, 459
role for accounts, 233

DML events, auditing, 242
DML triggers, 210, 224

creating, 210
syntax, 212

for auditing DML events, 242
Inserted and Deleted tables for, 211

documentation
for auditing solution, 241
of changes to test environment, 335
performance testing, 302

domain integrity, 84–86
Check constraints, 84–86
Default constraints, 84
implementing, 86

domain-key normal form (DKNF), 67
domains, 59, 66

constraints in, 67
DROP DATABASE statement, triggers and, 91
DROP INDEX statement, triggers and, 91
DROP PROCEDURE statement, 193
DROP statement

with CREATE, vs. ALTER, 192
DDL triggers and, 210
for principals, 254
triggers on, 7

DTExec command-line utility, 553
DTExecUI.exe, 553
DTS (Data Transformation Services), 531
DW. See data warehousing (DW)
dynamic expression, for data source, 449
dynamic management views (DMV), 335
dynamic string concatenation, 277

E
e-commerce applications, 3
Edition of SQL Server 2005, 138
e-mail. See also DatabaseMail

user-defined function for extracting, 207
e-mail addresses

CLR function to validate against regular expression, 88
data type example for, 68–70

event notifications to, 427
embedded reporting, 447
employees, as security risk, 226
encryption, 240, 244–246

certificates for, 245
of configuration arguments, 497
database design and, 240
of source code, 408–412

end users
ad hoc reports, 22
OLAP client tool for, 23

endpoint connect permissions, limiting, 230
endpoints, security for, 256
enforcement of rules, 227
entities, 74–80

ANSI rules for enforcing relationships, 77
attributes of, 36
computed columns, 80
design and creation, 74–76
entity integrity, 76
Identity columns, 79
properties, 35
referential integrity, 77
relationships between, 35
supertypes and subtypes for generalization levels, 52
with structured data, 59

entity key, 36
entity objects in ORM, 33
entity relationship (ER) diagram of Production set of

tables, 163
entity relationship (ER) method, 31

and logical model, 35
diagrams, 36

entity sets, 35
Entity-Attribute-Value (EAV) table approach, 128
ER. See entity relationship (ER) method
error handling, 7

in stored procedures, 169
in user-defined functions (UDFs), 180

error message
no index content, 24
number 1919 “Column...is type that is invalid for use

as key column”, 81
from SQL Server, notifications of, 425
for transaction rollback, 91

error output from data sources, 541
evaluation element, in For Loop container, 538
event classes for Notification Services, 506

creating with ADF, 510
defining, 506
event providers definitions, 507–509

hosted providers, 507
nonhosted providers, 508

591fixed server roles, adding users
File System Watcher event provider, 509
standard event providers, 508

event notifications, 242
for auditing DDL operations, 7

practice, 246
Notification Services for, 20

event providers
in Notification Services, 20, 439

EventCollector class, 508
EVENTDATA function, 242
EventLoader class, 508
EventLoader method, 508
exam questions

answer choices, 425
data dissemination options, 25
data distribution options, 142
data warehousing and OLAP, vs. reporting solution, 24
deprecated features in, 66
on full-text indexes, 129
on object permissions, 271
on securing Reporting Services and Analysis Services,

234
tip on answering, 5
on unit tests, 289

Excel 2007, linking to, 148
executable, for DatabaseMail, 419
EXECUTE (EXEC) statement, 167

for stored procedures, 189
EXECUTE AS clause, 244

for stored procedures, 170
for validating for permissions, principals and roles, 310

EXECUTE AS command, 265, 280
Execute Package tasks, 567
EXECUTE permission, 270

T-SQL to grant, 410
execution context, 280, 281

checking for module, 283
defining, 282
validating for permissions, principals and roles, 310

execution status value
from stored procedure, 169

exist() XML data type method, 129
explicit column list, vs. SELECT * queries, 140
Export Package dialog box, 362
exporting

real-time methods for, 146
SSIS package, 361

Express Edition of SQL Server 2005, 137
with Advanced Services, 138

expressions
defining column as, 80
deterministic, 113

Extended ER model, 31, 36

extended properties, for change history, 413
extended stored procedures, 134, 166
Extensible Stylesheet Language Transformations (XSLT)

content formatter, 21
extents, 74
EXTERNAL ACCESS ASSEMBLY permission, for login, 281
external dependencies, CLR objects and, 8
external resources, integrated CLR for access, 9
external schema, 32
external systems. See also interoperability with external

systems
EXTERNAL_ACCESS CAS security set, 231
EXTERNAL_ACCESS permission set, 8, 147, 198, 236
extraction, in ETL process, 467
extraction, transformation, and loading (ETL) solutions,

465
creating dataflow, 547
creating workflow, 546
design, 467
design patterns, 565
going beyond process, 569
in-memory pipeline, 569
with SSIS, 566–569

in-memory, 468
transformation packages in, 567

extranet solutions, SSRS solution design for, 446

F
fact table, 461
failed logins, auditing, 228, 240, 379
failover accounts, for DatabaseMail, 421
failover cluster, Notification Services generator on, 512
fail-safe operator, 427
failure of unit testing, 291
feature test, 290
federated database servers, with partitioned views, 161
file permissions, 397–399

and source code access, 395
File System Watcher, 20
File System Watcher event provider, 508

configuring, 509
filegroups, spreading database across multiple, 139
File_IO_Stats tool, 314
FileSystemWatcher class, 508
filtered rows equivalent, with stored procedure, 476
filtered views

impersonation for, 476
and scalability, 476

firewall, 230
first normal form, 38
fixed data sources, 449
fixed server roles, adding users, 255

592 fixed-string data types
fixed-string data types, 64
Flat File source, creating connection, 549
FLATTENED keyword (DMX), 135
Float(n) data type, 60
floating-point operations, 206
fn_trace_gettable system function, 338
folder permissions, 398
folders, labels for, 400
For Loop container in SSIS packages, 538
FOR XML . . . XMLSCHEMA, 129
Foreach Loop container in SSIS packages, 539
foreign key, 41, 53, 77

and indexes, 463
Foreign Key constraint, 77, 78, 82, 306

creating index for, 109
for enforcing range-integrity rule, 85
example, 87
order for, in integrity check, 90
test to validate, 307
validating, 306

forest, 53
Format attribute, 219
free models, as starting point, 33
FREETEXT function, 108
FREETEXT predicate, 108
FROM clause, for executing UDFs, 173
FTS. See Full-Text Search component (FTS)
Full Recovery model, 526
full-text indexes, 108

on string data types, 62
on XML columns, 129

Full-Text Search (FTS), 4
in Express Edition with Advanced Services, 138

G
General Principles for the Assessment of Certification

Bodies for Product Certification (C2), 240
generalization, 52
generators, role for accounts, 233
GETDATE function, 113
globally unique identifier (GUID), 63
goals, for code coverage, 317
grain of audit, 240
GRANT CONNECT statement, 230
GRANT OPTION FOR, in REVOKE statement, 272
GRANT statement

for controlling permissions, 267, 271
security impact, 92

grants, cumulative, 267
graph, 53

grids, for data viewer, 556
GROUP BY operator

for executing UDFs, 174
and indexes, 102

grouping
principals, 229
sets of tasks, sequence container for, 538
users, 262

guest principal, 255
guest user account, 255

permissions for, 256
gzip compression, 430

H
hackers, 226
hardware

failure, and performance change, 342
for scaling up, 137

hardware RAID, 139
hash value, 561
HAVING clause, for executing UDFs, 173
Health Insurance Portability and Accountability Act

(HIPAA), 240, 378
heap, 105
hiding

detailed information, with views, 473
sensitive columns, with views, 474

hierarchies, 52
for objects

bottom-up, 273
top-down, 272

modeling, 53
resolving, 54
XML data type for, 63

histograms, for data viewer, 556
historical data, snapshots for, 458
history

and fully normalized schema, 45
for Notification Services applications, 502
for Notification Services instances, 497

hosted event providers, 507
HTTP endpoints, 13

creating, 431, 432
security, 431

HTTP listener, 14
HTTP. See Hypertext Transfer Protocol (HTTP)
http.sys kernel mode driver, 14
http.sys listener, 430
HTTPS. See Hypertext Transfer Protocol Secure (HTTPS)
Hypertext Transfer Protocol (HTTP), 13, 146, 430

593INSTEAD OF triggers
I
I/O load, 344
I/O operations, impact on performance, 342
IBinarySerialize interface, 68, 219
ICF. See Instance Configuration File (ICF)
IDEF1X. See Integration Definition for Information

Modeling (IDEF1X) method
IDeliveryProtocol interface, 495
IDENT_CURRENT function, 79
IDENT_INCR function, 79
IDENT_SEED function, 79
Identity columns, 79
IDENTITY function, in SELECT statement, 79
IDENTITY_SCOPE function, 79
IIS. See Microsoft Internet Information Services (IIS)
image data type

Check constraint and, 84
separate page for storing, 75

impersonation, 170
for filtered views, 476

implicit context switching, 280
testing, 283

Import and Export Wizard, 365–367
Import Package dialog box, 363
importing

data from text files, 140
real-time methods for, 146
using INSERT ... SELECT statement, 143

IN operator, building list dynamically, 275
INCLUDE keyword, 527
included columns, 465

indexes with, 107
incompleteness, normalization to eliminate, 38
inconclusive unit testing results, 291
Index Allocation Map (IAM) pages, 105
Index Seek operator, 111
indexed views, 113–116, 155–156, 162

base query, 116
creating, 117
exercise, 164
prerequisites, 114
SELECT statement for, 114

indexes, 101–103
aligned, 120
column selection for, 103
for computed column, 80, 113
creating, 108
design, 105–109, 463

clustered and nonclustered indexes, 105–108
computed columns and, 463

extents for, 74

full-text, 108
on string data types, 62

guidelines for, 101
with included columns, 107
logical fragmentation of, 105
outdated statistics, and performance change, 342
and performance, 344
for subscription class, 523
unique and composite, 106–107
updating on computed column, 113

information disclosure, 226
INFORMATION SCHEMA principal, 256
Init function, 217, 221
initialization element, in For Loop container, 538
inline functions, table-valued user-defined functions as,

179
inline scalar UDFs, 175
inline table-valued functions, 204
Input parameters, for stored procedures, 189
input parameters

for stored procedures, 168
for user-defined functions, 180

INSERT ... SELECT statement (T-SQL), import using, 143
INSERT permission, 270
INSERT statement (SQL)

Check constraints for, 84
common table expressions for, 6
Default constraints and, 84
DML triggers and, 210
efficiency vs. bulk insert, 143
OLE DB Command transformation and, 542
OUTPUT statement operator, 243

Inserted table
accessing information from, 243
for triggers, 211

Inside Microsoft SQL Server 2005, 75
Instance Configuration File (ICF), 493

custom delivery protocols defined in, 496
database system defined in, 494
defining instance name in, 493
delivery channel defined in, 496
encryption defined, 497
list of applications defined in, 495
parameters in, 498
schema name defined in, 494
version number added with, 497

instance database, NSVersionInfo table, 497
INSTEAD OF triggers, 90, 210

Deleted table for, 211
Inserted table for, 211
order for, in integrity check, 90
purpose of, 91

594 Int data type
Int data type, 60
Integrated authentication, for Web Services, 431
Integration Definition for Information Modeling

(IDEF1X) method, 31
ER model, 36

Integration Services (SSIS). See SQL Server Integration
Services (SSIS)

integration testing, 557
integrity checks, order of, 90
intelligent data cleansing, Integration Services packages

for, 25
intermediate levels, in B-trees, 105
Internet, replication over, 16
Internet Information Services (IIS), 13
interoperability with external systems, 146–149

asynchronous methods, 147
synchronous methods, 146

IO_COMPLETION wait type, 336
IsByteOrdered attribute, 81
IsInvariantToDuplicates attribute, 219
IsInvariantToNulls attribute, 220
IsInvariantToOrder attribute, 220
IsNull property, 68
IsNullIfEmpty attribute, 220
isolation levels, in SQL Server, 457
iteration element, in For Loop container, 538
iterative process, data modeling as, 31

J
JOIN operator, 276

and indexes, 102
join performance, table partitioning and, 120
joins, 45
JScript, 556
JScript Compact Profile (ECMA 327), 556

K
Kass, Steve, 242
Kerberos authentication, 230

for Web Services, 431
Key Lookup operator, 111
key performance indicators (KPIs), 350

monitoring, 509
key scenarios, absence of documentation, 327
KISS principle (“Keep It Simple, Simon!”), 67

L
Label dialog box, 400
labels for stored version, 400
languages, 133–136

CLR and T-SQL vs. other, 134
CLR vs. T-SQL, 133
practice choosing, 135–136

large data types, 62
storage, 75

large object data (LOBs), 74
HTTP endpoints and, 14
separate page for storing, 75

LATCH_x wait type, 336
latency, 343
LCK_x wait type, 336
leaf nodes

in B-trees, 105
in nonclustered index, 106

least-privilege concept, 227, 231
LIKE operator, and indexes, 102
linked server, 146

creating, 148
security for, 232

linking to Excel 2007, 148
load testing, 313, 326
loading phase, in ETL process, 467
LOBs. See large object data (LOBs)
local data storage, 372
local partitioned view, 161
local stored procedures, 187
Locals pane display, for debugging, 555
locking contention, 139

snapshots to reduce, 50
Log Reader Agent, account for, 231
log shipping, 458
logic, stored procedures to consolidate, 187
logical folders, for project, 388
logical fragmentation of index, 105
logical phase of database design, 31

and entity relationship (ER) method, 35
login token, 280
logins

auditing, 242, 379
creating, 263

for test user, 408
directly in database role, 255
synchronizing after moving database, 373

LOGMGR wait type, 336
logs

for DatabaseMail, 419
user-defined error messages, 428

595msdb database
from auditing, retention period, 241
lookup tables

for Check constraint, 85
creating, 86

Lookup transformation, vs. Merge Join transformation,
543

M
maintenance cost reduction, from tracking benchmark

statistics, 349
maintenance plans, SSIS packages for creating, 569
maintenance tasks

SQL Server Agent for, 10
in SSIS packages, 537

malicious code, in triggers, 92
Management Studio. See SQL Server Management Studio

(SSMS)
manual testing, for SSIS package, 558
MAPI. See Microsoft Messaging Application

Programming Interface (MAPI)
master database, asymmetric key in, 281
master package, for ETL packages, 567
MAX length specification, for data types, 6
max specifier, 62
MaxByteSize attribute, 220
maximum size of row, 74
MDAC. See Microsoft Data Access Components (MDAC)
Measure SQLServer

Buffer ManagerBuffer Cache Hit Ratio counter, 315
median performance, measuring, 334
member tables, for partitioned view, 157
memory, for scaling up, 137
MemoryAvailable Bytes counter, 315
Merge Agent, account for, 231
Merge function, 217
Merge Join transformation, 550

vs. Lookup transformation, 543
Merge method, 221
merge replication, 16, 19, 49
merging data, Integration Services package for, 25
message queuing, scaling out with, 141
metadata

for DatabaseMail, 419
management, 447
in Notification Services instances, 494
security, validating, 311
visibility, 257

Microsoft .NET Framework, CLR integration, 8–9
Microsoft Business Intelligence Development Studio

(BIDS)
color codes, 554
creating SSIS package, 367, 533, 545

for debugging SSIS package, 554
for report deployment, 486
for running SSIS package, 553
Report Wizard, 451, 453

Microsoft Business Intelligence Development Studio
(BIDS) Report Designer, 22

creating shared data source from, 450
Microsoft Business Intelligence Web site, 20
Microsoft Data Access Components (MDAC), 13, 430
Microsoft Distributed Transaction Coordinator

(MSDTC), 538
Microsoft Extended Stored Procedure application

programming interface (API), 134
Microsoft Full-Text Engine for SQL Server (MSFTESQL)

service, 108
Microsoft Internet Information Services (IIS), 13
Microsoft Message Queue (MSMQ) service, 15, 141
Microsoft Messaging Application Programming Interface

(MAPI), 232
Microsoft Office 12.0 Access Database Engine OLE DB

provider, 148
Microsoft Office Business Scorecard Manager 2005, 447
Microsoft Office SharePoint Server, 447
Microsoft Office Visio, 30
Microsoft Solutions Framework (MSF) process model, 31
Microsoft Source Code Control Interface (MSSCCI)

provider, installing, 389
Microsoft SQL Server, extending functionality, 185
Microsoft SQL Server Desktop Engine 2000 (MSDE), 137
Microsoft Visual Studio 2005, 30
Microsoft Visual Studio 2005 Team Edition for Database

Professionals, 381
Microsoft Visual Studio 2005 Team Foundation Server

products, 380
Microsoft Windows authentication, 227, 231, 373

linked server support for, 232
Microsoft Windows Server 2003, 64-bit edition, 137
middle-tier business logic, HTTP endpoints and, 14
migration tool, SSIS as, 533
mirroring, and deployment planning, 357
Miscellaneous logical folder, 388
mixed extents, 74
mixed mode authentication, 227
Mixed Mode security, 408
modeling hierarchies, 53
module

execution context for, 281
changing, 282

signing, 281
Money data type, 60
moving objects between schemas, 261
msdb database, 419

saving package to, 237

596 MSDTC service
MSDTC service, 17
MSFTESQL. See Microsoft Full-Text Engine for SQL

Server (MSFTESQL) service
MSMQ service. See Microsoft Messaging Queue (MSMQ)

service
multicast delivery, by SSNS, 141
multidimensional database, 463
Multidimensional Expressions (MDX), 135, 236
multistatement table-value functions, 204
multistatement user-defined functions (UDFs)

scalar, 175
table-valued, 176

data types returned by, 180
My Reports role, 235

N
name resolution

for objects, 260
testing, 264

Named Pipes, endpoint for, 256
names

of instances of Notification Services, 493
of items checked out for editing

changing, 393
for local stored procedures, 187
passing parameter values by, 190
qualifying inside stored procedures, 194
for stored procedure parameters, 167
of subscription class, 521

namespace in XML, Check constraint for, 131
naming conventions, for Notification Services instances,

494
Native attribute, 219
natural key, 77
Nchar data type, 61
near real-time reports, 455, 456
nesting

database roles, 262
tables, Transact-SQL and, 135
triggers, 92

.Net SqlClient library, for SQLCmd, 368
network share, for pull subscriptions, 232
NETWORKIO wait type, 337
New Database dialog box, 545
New Database Mail Account dialog box, 423
New Database Reference dialog box, 196
New Project dialog box, 381, 387
NEWID function, 63
NEWSEQUENTIALID function, 63
NMO. See Notification Services Management Objects

(NMO)
NOCOUNT statement, 200

nodes
in B-trees, 105
in graph, paths to, 53

NOEXPAND table hint, 156
nonclustered indexes, 105–108, 109, 463

creating, 111
included columns, 465

nondeterministic behavior, 206
nonhosted event providers, 508
non-key columns, functional dependencies, and 3 NF, 42
non-Unicode strings, 60
normal forms, 38

first normal form, 38
second normal form, 40
third normal form, 41

normalization, 38, 345, 460
ORM incorporation of, 33

normalized database design, 38–42
for scalability, 138

Notification Services, 4, 20, 141, 438–441, 491
application testing, 516–519

registering new instance and compiling application,
516

removing application after, 518
applications configuration, 498, 502

application database, 499
notification classes, 500
version and history, 502

architecture, 438
configuring instances of, 493–498

argument encryption, 497
custom delivery protocols, 495
database system, 494
delivery channels, 496
instance database and schema, 494
instance name, 493
instance version and history, 497
list of applications, 495
parameters in ICF, 498

configuring for hosting applications, 502
defining applications, 440
implementing decision process, 20
name of, 493
optimizing, 526

event data, 526
notifications, 527
subscriptions, 527

registering, 516
scale-out options, 439
security for, 233
subscriptions, 521–524
unregistering, 518
vs. DatabaseMail, 441

597operation contract, stored procedure definition of
vs. Reporting Services, 440
Notification Services compiler, 518
Notification Services distributor, 512
Notification Services event classes, 506

creating with ADF, 510
defining, 506

chronicles, 506
properties, 506

event providers definitions, 507–509
hosted providers, 507
nonhosted providers, 508

File System Watcher event provider, 509
standard event providers, 508

Notification Services generator, 512
Notification Services Instance dialog box, 517
Notification Services Management Objects (NMO), 491

for configuring applications, 500
for defining notification class, 500
delivery channel defined in, 496
for index creation on subscription class, 523
for Notification Services distributor configuration, 513
for Notification Services generator configuration, 512
subscription class name and filegroup in, 521

notifications, in Notification Services, 491
NSAnalysis role, 234
NSDistributor role, 233
NSEventProvider role, 233
NSGenerator role, 233
NSReader role, 234
NSRunService role, 234
NSSubscriberAdmin role, 233
NSVacuum role, 234
NSVersionInfo table, 497
ntext data type, 6, 62

Check constraint and, 84
separate page for storing, 75

NTFS permissions, 234, 237
NTILE function, 6
NTML authentication, for Web Services, 431
Null property, 68
NULL values, 66

Default constraints and, 84
and Primary Key constraints, 77

nullability, order for, in integrity check, 90
number character (#), for temporary stored procedures,

188
numeric system data types, 59
nvarchar data type, 6, 61, 62, 64

length specifier for, 62
storage, 75

O
object design for data retrieval, 151
Object Explorer, for viewing Notification Services

instance and application databases, 518
object hierarchy, specifying permissions at higher levels,

271
object ownership, and schemas, 262
object permissions, 267, 270–272
object role modeling (ORM) method, 31, 33
object-change strategy, creating, 376
OBJECTPROPERTYEX function, 262
objects

bottom-up hierarchy, 273
moving between schemas, 261
name resolution for, 260
orphaned, 263
relationships between, 34
top-down hierarchy, 272
tracking changes to groups of, 413–414

obsolete data, role for cleaning, 234
ODBC, distributed transaction support by, 17
Office Visio, 74
offline mode, for index manipulation, 108
OLAP. See online analytical processing (OLAP)
OLAP cubes, 24

for scaling out, 142
OLE Automation objects, 134
OLE DB

accessing data source, 134
distributed transaction support by, 17
providers, 146

OLE DB Command transformation, 542
OLE DB Connection Manager dialog box, 546
OLEDB wait type, 337
OLTP. See online transactional processing (OLTP)
online analytical processing (OLAP), 22, 47

and performance, 344
reporting, 463

online transactional processing (OLTP), 3
data flow for, 49
data integrity for, 127
impact of triggers, 465
and performance, 344

OnPostExecute event, for breakpoint, 555
OnPreExecute event, for breakpoint, 555
OPENDATASOURCE rowset function, 146
OPENQUERY function, 134, 146
OPENROWSET function, 134, 146
Operating System (CmdExec) subsystem, proxy account

for, 233
operating systems, resource usage, 335, 337
operation contract, stored procedure definition of, 167

598 operators
operators
alerts sent to, 426
defining for SQL Server Agent, 427

optimizing
real-time reports, 456
queries. See also indexes

basics of, 101
reports, 482–487

practice, 485
report snapshots, 483
subscription models for distribution, 484
with caching, 482

option, 271
optional parameters, for stored procedures, 168
optionality, 35
Options dialog box (SSMS), 389
ORDER BY clause, 105

for executing UDFs, 174
and indexes, 102

ORM. See object role modeling (ORM) method
orphaned logins, managing, 381
orphaned objects, 263
orphaned rows in child table, 78
OSql utility, 368
OUTPUT parameters

for returning scalar values from stored procedure, 167
for stored procedures, 168, 189

OUTPUT statement operator, 7, 243
outputs from data sources, 541
owner

checking for module, 283
executing as, 281
executing stored procedure as, 170
of objects, and schemas, 262
of schema, 260

ownership chains, 276, 473
creating broken, 278
creating unbroken, 277

P
packages in Integration Services, 25

basics, 533–535
connection managers, 533–534
variables, 535

control flow, 535–540
containers, 537–539
precedence constraints, 539
tasks, 535

creating, 533–551
practice, 544–551
with BIDS, 533

data flow, 540

data paths, 541
data sources, 540
destinations, 544
transformations, 541

debugging and testing, 553
control flow, 554

digital signatures for, 237
running, 553
saving to msdb database, 237
testing, 557, 560
unit testing, 558
verifying execution, 561–564

page for data storage, 74
PAGEIOLATCH_x wait type, 337
PAGELATCH_x wait type, 337
pagers, event notifications to, 427
parameterized views, user-defined functions for, 244
parameters

for stored procedures, 189
in ICF, for Notification Services instances, 498

parent table, relationship to child table, 77
Parse method, 68
partition function, 119, 121
partition scheme, 119

preparing, 121
partitioned tables, vs. partitioned views, 161
partitioned views, 119, 157–162

estimated query plan for execution
with filter, 161
without filter, 160

federated database servers with, 161
vs. partitioned tables, 161

partitioning column, 119, 157
partitioning tables, 119–121

manual, 140
switching partitions, 120, 122

Pascal, Fabian, Practical Issues in Database Management, 67
passing parameter values, 190
password, for sa login, 228, 255
Path XML index, 129
peer-to-peer topology, for replication, 16
Pending Checkins dialog box, 393, 394
performance

covered queries and, 464
data collection for predictive analysis, 329
ETL process and, 568
of indexed views, 114
of Integration Services package, 25
issues impacting, 344
multiple filegroups and, 139
in normalized system, 45
of Notification Services

indexes and, 523

599planning for database deployment
rows on pages and, 75
scalability and, 137
SSIS as SQL placeholder, 566
standard view impact on, 155
and stored procedures, 140, 165
T-SQL commands for measuring, 314
of UPDATE trigger, 92

performance baseline, 323
generating, 333
measuring, 333, 339

performance budgets, 325
performance changes

determining effects of system, 343
identifying, 339
measurement strategy, 333

baseline generation, 333
implementing techniques, 335
monitoring test environment, 334

measuring, 334
responding to, 343
response plan for, 341

considering potential causes, 341
goal setting, 341

performance counters
performance goals to evaluate, 314
SQL Server Agent monitoring of, 425
SQL Server-specific, 337

performance goals, 302
setting, 305, 313

performance metrics, 302
performance modeling, 325
Performance Monitor, 337
performance objectives, 324

best practices for creating, 326
capacity planning for, 328
constraints on, 325
establishing, 324, 327

practice, 330
inputs required for, 326

performance testing, 301
baseline, 302
design process, 301
documenting, 302

PERMISSION_SET option, for CREATE ASSEMBLY
statement, 198

permissions. See also file permissions
for creating tables, 273
for database objects, 267–273
for database roles, 236
to deploy database, 373
for guest user, 256
hierarchies, 252, 268
owner and, 276

for principals, 229
for public role, 256
schemas and, 261
validating existence, 310
verifying, 272

persisted computed columns, 464
PERSISTED keyword, 80, 114
perspectives, 236
physical data types, 59
physical database design

column data types and sizes, 59–64
best practices, 64
choosing data types, 65
cursor data type, 63
datetime data types, 61
numeric system data types, 59
Sql_variant data type, 63
string data types, 60
system data types, 59
table data type, 63
Uniqueidentifier data type, 63
XML data type, 62

domain integrity and business rules, 84–86
Check constraints, 84–86
Default constraints, 84

entities, 74–80
computed columns, 80
design and creation, 74–76
entity integrity, 76
Identity columns, 79
referential integrity, 77

programmable objects for maintaining integrity,
90–92

user-defined data types, 66–70
best practices, 70
CLR user-defined types (UDTs), 66
T-SQL aliases, 66

physical I/O devices, employment by SQL Server, 335
physical phase, of database design, 32
PhysicalDiskAvg. Disk Queue Length counter, 315
PhysicalDiskAvg. Disk sec/Read counter, 315
PIVOT statement operator, 7

and indexes, 102
planning for database deployment, 355

with backup and restore, 365
with Copy Database Wizard (SSMS), 357–361
with Import and Export Wizard, 365–367
with manual script creation, 365
selecting technique, 357–371
with scripts for detaching and attaching database files,

364
with SQLCmd utility, 368–369
with SSIS, 367

600 pointers to index pages, in B-tree nodes
with T-SQL scripts, 364–365
pointers to index pages, in B-tree nodes, 105
portable data types, 59
portal integration, with SSRS reports, 447
position, passing parameter values by, 190
Practical Issues in Database Management (Pascal), 67
precision

of functions, 206
of return code, 169

pre-defined reports model, 448
predicate, 39
predictability, from tracking benchmark statistics, 349
predictive analysis, for capacity planning, 329
prepare phase, for transaction, 17
primary identifier for a login token, 280
primary key, 39, 41, 67, 76

applicability property of, 77
for clustered index, 155
dependence on, 40
sequential numbers for, 79

Primary Key constraint, 82
clustered index for, 107
and NULL values, 77
indexes for implementing, 102, 106
order for, in integrity check, 91
for table, 76

Primary XML index, 128
principals, 228, 229, 252, 373

managing, 254–258
security for, 256
special, 255
validating existence, 310
viewing details about, 374

privacy, and database for testing, 295
private key, 245
private profiles, for DatabaseMail, 421
privilege, elevation of, 227
ALL, 271
process objectives, setting targets, 334
process phase of reporting execution process, 482
Processor% Processor Time counter, 315
production database, copy for testing, 295
productivity, benchmark statistics and, 348
profiles, in DatabaseMail, 421
programmable objects, for security, 275
project

adding to source control, 389
scope definition, 33

project-management methodology, 380
project objects, XML code to define, 388
promotable transactions, 17
Properties pages of SQL Server instance, 228
Property XML index, 129

proposition, generalized form, 39
ProtectionLevel property of a package, 237
protocols, endpoints for, 256
prototypes, 326
proxy accounts, in SQL Server Agent, 233
public fixed role, 255
public profiles, for DatabaseMail, 421
Publication Access List (PAL), 231
public-key encryption, 245
Publisher role, 235

for replication, 459
pull subscriptions, 434

network share for, 232
push subscriptions, 434

Q
quality, benchmark statistics and, 348
quantum, 513
quaternary facts, 35
queries, 455

best practices for, 139
covered, 464
DELAYFOR command to slow down, 486
optimizing, basics of, 101
for reports, 472
results in e-mail, 422
testing performance, 301–305

writing test, 303
types benefiting from indexes, 101

Queries logical folder, 388
Query Builder, 472
Query Designer, 451
query files, 389
query notifications

decision to consume, 133
query optimizer

index reuse by, 156
for partitioned view, and WHERE predicate, 160

query plan, for stored procedure, 165
Queue Reader Agent, account for, 231
queued requests, increase in number, 343
QUOTED_IDENTIFIER option, 114

R
RAISERROR, 428
RAISERROR WITH LOG, 428
RANK function, 6
ranking functions, 6
read committed snapshot isolation level, 457
Read method, of IBinarySerialize interface, 68
Read rights, to database object, 397

601row-by-row operations
read-only user, creating in Visual SourceSafe 2005, 397
Real data type, 60
real-time reports, 455

optimizing, 456
real-time transaction processing, HTTP endpoints and, 14
RECEIVE permission, 270
RECONFIGURE statement, triggers and, 91
recursive trigger, 92
redundancy

adding to database, 460
normalization to eliminate, 38
triggers for maintaining, 210

reference objects, 68
REFERENCES permission, 270
referential integrity, 77
registering new Notification Services instance, 516
regression testing, 290, 557
regular entities, 36
regular expressions

CLR function to validate e-mail address against, 88
CLR function to validate input string against, 85
for extracting e-mail, 207
T-SQL and, 85
for validating e-mails, 205

regular outputs from data sources, 541
regulatory requirements, and auditing, 240
relational data model, 31
relational database management system (RDBMS), 32

denormalized data maintained by, 47
name of, 260

relational databases, 127
OLE DB source to return data, 135

relational model, 125
relations, 66
relationships

between entities, 35
between objects, 34
between tables, 41

releases, labels for tracking, 400
reliability

of Database Mail, 10
in distributed system, with Service Broker, 15

Remove Space transformation, 550
removing

item from database projects, 392
Notification Services application after testing, 518

render phase of reporting execution process, 482
repeating group of columns, and first NF, 40
replication

best practices for, 231
database, 459
and deployment planning, 357
and object changes, 376

for scaling out, 142
security for, 231
transactional, 50

Replication Agent security model, 231
Replication component, 4, 16
Replication Monitor, stopping synchronization from, 376
Report Builder role, 235
Report Designer, 450

for editing generated report, 453
Report Manager

creating data source from, 449
for configuring report caching, 482

report models, 22, 449
Report Server

Project Wizard template, 451
URL for, 446

report snapshots, 483
for scaling out, 142

reporting execution process, 482
Reporting Services. See SQL Server Reporting Services

(SSRS)
reports, optimizing, 482–487

with caching, 482
ReportServer database, 234
ReportServerTempdb database, 234
repudiation, 226
request phase of reporting execution process, 482
requests, number queued, 343
requirements for data modeling, identifying, 32
Residual Information Protection (RIP), 379
resource managers, 16
resources for DML triggers, 243
response phase of reporting execution process, 482
response plan for performance changes, 341
response time, evaluating, 301
RESTORE DATABASE statement, triggers and, 91
RESTORE LOG statement, triggers and, 91
restoring database, 365
retention period, for audit logs, 241
return code, from stored procedure, 169, 191
RETURN statement, 191
REVERT command, 265
REVERT statement, 280
REVOKE CONNECT FROM GUEST statement, 255
REVOKE statement, for controlling permissions, 267, 271
role-based authorization, for SSRS, 235
ROLLBACK statement, 242
ROLLBACK TRANSACTION statement, 17

test script to validate, 308
ROLLBACK WORK statement, 17
root node in B-trees, 105
row-by-row operations

CLR vs. T-SQL, 133

602 row-filtered report, creating
T-SQL for, 9
row-filtered report, creating, 478
row ID, in nonclustered index, 106
row-level security, views to implement, 244
ROW_NUMBER function, 6
row-overflow units, and performance, 75
row security, views for, 474
row transformations, 542
row versioning, 457
ROWCOUNT_BIG function, 297
rows of table

pages for, 74
uniquely identifying, 76

rowset transformations, 542
run-time engines, for SSIS package, 533

S
sa login, password for, 228
sa SQL Server login, 255
SAFE CAS security set, 231
SAFE permission set, 8, 133, 198, 236
sample databases, 29
Sarbanes-Oxley Act, 378
Save File As dialog box, 394
saving package, 367

to msdb database, 237
scalability, 125

of application queries, 139
and CLR, 139
database design for, 138
of Database Mail, 10
designing for, 137–145
and filtered views, 476
issues impacting, 344
of Integration Services packages, 25
of Notification Services, 21

scalar user-defined functions, 175, 204–208
data types returned by, 179
exercise, 181
validating, 292

scalar values, returned by stored procedure, 167
scaling out, 140–143, 344

analytical applications, 141
with message queuing, 141
for Notification Services, 439
vs. scaling up, 161

scaling up, 344
hardware changes for, 137

scatter plot, for data viewer, 556
scenarios, absence of documentation, 327
scheduled event provider, 507
scheduled refreshed reports, 455, 456

scheduled Windows Shared File subscription,
configuring, 484

schema test, 290
SCHEMABINDING option, 114
schemas, 29, 260–263

best practices guidelines, 260
checking for module, 283
creating, 264
and database roles, 261
defining, 260
design for reporting services, 460

OLAP reporting, 463
selective denormalization, 460
star or snowflake schema, 461
summary tables, 461

efficiency of, 345
maintaining historical record of changes, 378
for Notification Services instances, 494
and object ownership, 262
replicating changes, 16
for stored procedure security, 194
for subscriptions, 522

scope
of change, and object-change strategy, 376
of project, defining, 33
of securables, 228
of variables, in SSIS, 535

Script Component, 541
scripting tasks

in SSIS packages, 536
code inspection, 557
debugging, 556

selecting language, 556
scripts, DTExec for creating, 553
second normal form, 40
secondary identifiers for login token, 280
secret-key encryption, 245
securables, 228, 252

user permission to see definition, 258
Secure Sockets Layer (SSL), 230, 431

for DatabaseMail, 421
secure systems, structure of, 227
security, 225

for audit logs, 241
auditing events, 242
for CLR integration, 230
of Database Mail, 11
data protection, 244
deployment of permissions, 373–375
and deployment planning, 355, 372–375
for endpoints and principals, 256
for HTTP endpoints, 230
for Integration Services (SSIS), 25, 237

603Solution Explorer (SSMS)
for linked servers, 232
model for Reporting Services, 22
for Notification Services, 233
and performance change, 342
programmable objects for, 275
for replication, 231
for rows, with views, 474
for SQL Server, 226

practice, 238
for SQL Server Analysis Services (SSAS), 235
for SQL Server Reporting Services (SSRS), 234
for stored procedures, schemas for, 194
stored procedures and, 275
system views related to, 310
taxonomy of threats, 226
test design for application security, 310, 312
triggers’ impact, 92
for Web Services, 431

security execution context, and user-defined functions
(UDFs), 181

Security identifiers (SIDs), 373
security test, 290
security tokens, for user identification, 280
securityadmin server-level role, 257
SELECT * queries, vs. explicit column list, 140
Select A Destination Server page, in Copy Database

Wizard, 358
Select A Source Server page, in Copy Database Wizard, 358
SELECT permission, 270
select permissions, T-SQL to grant, 410
SELECT statement (DMX), 135
SELECT statement (SQL)

common table expressions for, 6
IDENTITY function in, 79
for indexed view, restrictions, 115
inside stored procedure, 167
OLE DB Command transformation and, 542

Select The Transfer Method page, in Copy Database
Wizard, 359

selective denormalization, 460
selectivity, 103
SELF, executing as, 170, 281
semi-structured data, 59
sending messages, in DatabaseMail, 422
sensitive columns, hiding, 474
sequence containers in SSIS packages, 538
sequential numbers, for primary key, 79
server-level principals, 228
Service Broker, 243, 422, 425

for event notifications, 242
Service Broker component, 4, 14
service principal name (SPN), 230
Service-Oriented Architecture (SOA), 14

set, 31
Set Breakpoints dialog box, 559
SET clause, for executing UDFs, 174
Set Default rule, for parent and child tables, 78
SET IDENTITY_INSERT command, 79
Set Null rule

for parent and child tables, 78
SET options

for connection to create index, 114
SET REMOTE_PROC_TRANSACTIONS ON statement, 17
sets, table to represent, 76
setup testing script

for unit testing, 294
validating, 295

SETUSER, for impersonating user, 265
shared data sources, 449

creating, 449, 450
shared locks, 457
Shared Memory protocol, endpoint for, 256
shredding XML data, 128
Simple Mail Transport Protocol (SMTP), 10, 527

and DatabaseMail, 232
setting up services, 422

Simple Object Access Protocol (SOAP), 13, 146, 430
Simple recovery model for database, 119
site capacity, verifying, 329
sliding-windows scenarios, table partitioning for, 119
Slowly Changing Dimension transformation, 543
Smalldatetime data type, 61
Smallint data type, 60
Smallmoney data type, 60
SMTP. See Simple Mail Transport Protocol (SMTP)
Snapshot Agent, account for, 231
snapshot isolation, 50, 139, 457

demands on tempdb database, 458
enabling, 457

snapshot replication, 16
snapshot strategy, 456–460

database mirroring, log shipping, and database
replication, 458

database snapshots, 458
transaction isolation levels, 456

snapshots
generating new, 377
object changes and, 378
of data, 21

snowflake schema, 461
SOA. See Service-Oriented Architecture (SOA)
SOAP. See Simple Object Access Protocol (SOAP)
solution definition files, 388
Solution Explorer (SSMS), 381

Checked out for edit status in, 392
connection in, 389

604 Sort Alternate Names transformation
for view of empty database project, 387
source-controlled items in, 392

Sort Alternate Names transformation, 550
Sort transformation, 550
sorting encrypted data, 246
source code

benefits of version control, 385
database, 387
of database object, rules for viewing, 258
encryption, 408–412
file permissions for access, 395
managing changes to, 395

source control, 33
adding project to, 389–393
and SSMS, 387–389
setting file permissions, 398

source-controlled database projects, 393–395
sp_addlinkedsrvlogin system procedure, 148, 232
sp_addlogin stored procedure, 254
sp_addmessage stored procedure, 91, 428
sp_addrolemember system procedure, 255
sp_addscriptexec stored procedure, 377
sp_addsrvrole member system procedure, 255
sp_addtype system stored procedure, 66
sp_attach_db stored system stored procedure, 365
sp_change_users_login stored procedure, 374, 382
sp_columns_ex system stored procedure, 149
sp_configure system procedure, 8, 230, 242

clr enabled option, 195
sp_detach_db stored system stored procedure, 364
sp_grantlogin stored procedure, 254
sp_replicationdboption stored procedure, 376
sp_send_dbmail stored procedure, 420, 422, 424

profile for, 421
sp_setapprole stored procedure, 229
sp_table_ex system stored procedure, 149
sp_tableoption system stored procedure, 75
sp_unsetapprole stored procedure, 229
sp_updatestats system stored procedure, 103
special principals, 255
specialization, 52
split and join transformations, 543
spoofing identity, 226
SQL commands, creating data source from, 541
SQL injection, 227
SQL Mail, deprecation of, 10
SQL Management Object (SMO) method, 359
SQL placeholder, SSIS as, 565, 566
SQL Server

components, 3
editions, 137
extending functionality, 185
multiple instances, Service Broker and, 15

Properties pages of instance, 228
security for, 226

SQL Server 2005 Books Online, on CREATE
CERTIFICATE, 408

SQL Server 2005 Express Edition
deployment of database to, with backup and restore, 381
downloading, 381
and Reporting Services, 435

SQL Server 2005 Query Notifications, 148
SQL Server Agent, 4, 9, 469

and DatabaseMail, 232
database roles for, 232
for executing Integration Services package, 25
for running SSIS package, 554
service account configuration, 233

SQL Server Agent alerts, 425–428
alert definition, 425
checking for running, 428
operator definition and notification, 427
table for drop-table WMI event data, 428
user-defined events, 428

SQL Server Analysis Services (SSAS), 4, 22–24, 51, 143
auditing, 243
Command subsystem, proxy account for, 233
Event Provider, 20, 509
Query subsystem, proxy account for, 233
security for, 235
tasks in SSIS packages, 537
Unified Dimensional Model (UDM) cubes, 135

SQL Server Area Configuration (SAC) tool, 195
SQL Server Business Intelligence Development Studio

(BIDS), 362, 400, 448
SQL Server databases, writing programmatic objects for, 8
SQL Server error messages, alerts on, 10
SQL Server Event Provider, 20, 508
SQL Server events, alert for, 425
SQL Server Integration Services (SSIS), 4, 24, 147, 531

conventional ETL with, 566–569
for data warehousing, 50
ETL design patterns, 565
ETL in-memory pipeline with, 569
going beyond ETL process, 569
package creation, 533–551
planning deployment with, 367
proxy account for, 233
security for, 237

SQL Server logins, 254
SQL Server Management Studio (SSMS), 387

adding new script, 394
console, 297
Copy Database Wizard, 357–361

configuring logins for, 375
customizing SSIS package from, 361–364

605step into (F9) command
for deploying permissions, 374
item check out for editing, 392
Maintenance Plan Wizard, 570
new query window, 394
opening item in, 392
Query Editor, 143
Solution Explorer, 381
and source control, 387–389

SQL Server Notification Services (SSNS). See Notification
Services

SQL Server Profiler, 138, 243, 314, 338, 527
for tracking database activity, 379

SQL Server project template, 195
SQL Server Reporting Services (SSRS), 4, 21–22, 142,

147, 443
Configuration Manager, 446
data-driven subscriptions, 435
data sources, 449

configuring, 449
data transformation design, 465–468
delivery options, 434
evaluating uses, 445–449

by audience, 445
in Express Edition with Advanced Services, 138
index design, 463
vs. Notification Services, 440
optimizing reports, 482–487

with caching, 482
practice, 485
report snapshots, 483
subscription models for distribution, 484

pre-defined roles, 235
programmatic interfaces, 472, 481

querying tables directly, 472
stored procedures, 476–478
views, 473

real-time requirements, 455
Report Builder, 450
report construction, 448

ad hoc reporting, 448
pre-defined reports model, 448

report delivery, 446
row-filtered report, creating, 478
schema design, 460

OLAP reporting, 463
selective denormalization, 460
star or snowflake schema, 461
summary tables, 461

security for, 234
snapshots of data, 50
subscriptions, 434

SQL Server Scripts template, 387
SQL Server Service Broker (SSB), 141

SQL Server services
selecting, 3–5

to support business needs, 5
SQL Server SQL Server Command Line Utility

(Sqlcmd.exe), 296
SQL Server tasks, in SSIS packages, 536
SQL Server tuning tools, 527
SQL Server wait stats, 335
SQL Server Web Services, 13
sql_variant data type, 63, 64
SQLAgentOperatorRole, 232
SQLAgentReaderRole, 232
SQLAgentUserRole, 232
Sqlcmd.exe (SQL Server SQL Server Command Line

Utility), 296, 368–369
SqlDependency class, 148
SqlNotificationRequest class, 148
SQLQuery1.sql file, 389
.sqlsuo files, 388
SQLXML 3.0, 13
SQRT function, 113
SSAS. See SQL Server Analysis Services (SSAS)
SSIS. See SQL Server Integration Services (SSIS)
SSIS package from Copy Database Wizard

customizing, 361–364
saving, 367

SSL (Secure Sockets Layer), 230, 431
for DatabaseMail, 421

SSMS. See SQL Server Management Studio (SSMS)
.ssmssln files, 388
.ssmssqlproj files, 388
SSRS. See SQL Server Reporting Services component

(SSRS)
stale data, in OLTP applications, 49
standalone applications, SSRS as, 446
Standard Edition of SQL Server 2005, 138
standard event providers in Notification Services, 508
standard subscriptions, 434
standard views, 153–154, 162

exercise, 163
standardizing data types, T-SQL aliases for, 66
star schema, 461

in OLAP system, 23
state of database, object changes and, 378
statement operators, new in SQL Server 2005, 7
statement permissions, 267, 268–269
statistics

gathering, disabling process, 103
maintaining, and indexes, 102

status value, from stored procedure, 169
step into (F9) command, for debugging stored

procedure, 197

606 step over (F10) command
step over (F10) command, for debugging stored
procedure, 197

stored procedures, 187–202
CLR, 187, 195–198

deploying, 197
CLR in place of extended, 9
code to test, 202
creating, 188
creating and source-control, 395
for data access, 476–478

advantages and disadvantages, 477
for data protection, 244
and data retrieval, 151
data returned by, 167
design, 165–172
error handling routines in, 169
executing, 189
execution status value, 169
extended, 134
HTTP endpoints for exposing, 14
input, output and optional parameters, 168
names for parameters, 167
number of parameters, 167
parameter data type, 167
parameters for, 189
and performance, 101, 140
practice, 171
for programming constraints, 90
purpose of, 187
query plan for, 165
return code, 191
for row-filtered report, 478

testing, 479
schemas for security, 194
security execution context for, 170
signing with certificate, 409
table-valued function alternatives to, 176
Transact-SQL, 187

changing, 192
creating, 199–202
deleting, 193
design process, 193

trigger call of, 92
types, 166

CLR stored procedures, 166
extended stored procedures, 166
T-SQL stored procedures, 166

unit testing of, 289
for update activities, 275

string data types, 60
dynamic concatenation, 277
full-text indexes on, 62

striping a version, 400

strong entities, 36
Strong Name command prompt utility (sn.exe), 281
structure creation when creating CLR data type, 68
structured data, 59
subqueries, in Check constraint, 84
subscribers

data in Notification Services instances, 494
defining, 440
for replication, 459

subscription class
creating, 521
indexes for, 523

subscription management interfaces (SMI), 439, 440, 523
subscription management objects (SMOs), 439
subscriptions, 521

data-driven, 435
in Notification Services, 491
optimizing, 527
push vs. pull, 434
reinitializing, 377
for report distribution, 484
rules, 522, 527
schemas for, 522
standard, 434

subtypes, 52
success, of unit testing, 291
summary in tables, maintaining, 46
summary reports, creating, 468–470
summary tables, 461

triggers for maintaining, 465
supertypes, 52
supportability, of Database Mail, 11
Surface Area Configuration tool, 134, 230

for enabling SQL Server Agent, 9
surrogate key, 77
symmetric key encryption, 244
synchronizing logins, after moving database, 373
sys principals, 256
sys.database_permissions catalog view, 256, 310
sys.database_principals view, 310
sys.database_role_members view, 310
sys.dm_io_virtual_file_stats dynamic management view,

338
sys.dm_os_performance_counters system table, 337
sys.dm_os_wait_stats dynamic management view, 336
sys.fn_builtin_permissions system function, 270
sys.objects catalog views, 283
sys.schemas catalog views, 283

principal.id attribute, 262
sys.server_permissions catalog view, 258

for checking endpoint access, 257
sys.server_permissions view, 310
sys.server_principals view, 310

607threads, for Notification Services
sys.server_role_members view, 310
sys.server_triggers catalog view, 92
sys.sql_logins catalog view, 254, 310
sys.sql_modules catalog view, 92, 283
sys.triggers catalog view, 92
sysadmin permissions, 134
sysadmin server-level role, 257
System Administrator role, 235
system data types, 59
system failure, 343
system resources

starvation, 343
test design for use, 313–315
wait stats for, 336

system stored procedures, 187
system testing, 557
System User role, 235
system verified property of functions, 206
system views, related to security, 310
SystemProcessor Queue Length counter, 315

T
table data type, 63
table-defined user-defined functions, validating, 293
table scan, 101
TABLE type variable, from UDF, 176
tables

cascading changes with triggers, 90
clustered index on, vs. clustered index on view, 155
creating, 75

permissions for, 273
after decomposing to multiple, for second NF, 41
for drop-table WMI event data, 428
extents for, 74
nested, T-SQL and, 135
obtaining information about names from OLE DB

provider, 149
partitioning, 119–121

manual, 140
switching partitions, 120, 122

relationships between, 41
for structured entities, 59

table-valued user-defined functions, 176
data types returned by, 179

Tabular Data Stream (TDS), 13, 430
tabular result sets, from stored procedures, 167
TAKE OWNERSHIP permission, 270
tampering with data, 226
tasks in SSIS packages, 535

Analysis Services, 537
data flow, 535
data preparation, 535

maintenance, 537
scripting, 536
setting properties, 537
SQL Server, 536
workflow, 536

TCP/IP, endpoint for, 256
TDS (Tabular Data Stream), 13, 430
Team Edition for Database Professionals, 372
Team Explorer, 400
Team Foundation Servers dialog box, 400
team projects, 390
teams, managing multiple with schema and statement

permissions, 273
teardown testing script

for unit testing, 295
validating, 295

technical review strategy, 557
tempdb system database, 50

clean up, 247
isolation levels and, 458
Notification Services use of, 526
and online index operations, 109
as potential bottleneck, 139

temporary stored procedures, 188
Terminate function, 217, 222
ternary facts, 35
test automation, of unit testing, 558
test case, for unit testing, 558
test condition, 297
test database, creating, 110, 295, 299
test design

for application security, 310, 312
for code coverage, 317–320
for data consistency, 306–309
for query optimization, 301

test environment
documenting changes to, 335
monitoring, 334

testing. See also unit testing
CLR stored procedures, 197
and deployment planning, 355
impact of database modification, 287
packages in Integration Services, 553, 557
script, 291
SSIS packages, 560

text data type, 6, 62
Check constraint and, 84
separate page for storing, 75

text files, importing data from, 140
text mining, 570
think time, adding to performance testing scripts, 301
third normal form, 41
threads, for Notification Services, 512

608 timeouts
timeouts, 343
timestamps

Check constraint and, 84
generating duplicate, 64

Tinyint data type, 60
top-down hierarchy

for objects, 272
TOP statement operator, 7
ToString method, 68
transaction log, impact of index DDL operations, 109
transaction manager, 16
transaction rollback, for rule violation, 91
transactional cost analysis, 328
transactional environment, testing data consistency in, 308
transactional replication, 16, 50, 147

altering table for, 376
for scaling out, 142

transactional reports, real-time reports use of, 455
transactions, 46

distributed, 16, 538
statements starting, 17

and identity value, 79
isolation levels, 456
for maintaining denormalized data, 47
performance issues, 342
promotable, 17
in SQL Server, ACID properties, 456
triggers as part of, 90
two-phase commit, 17
for unit test code, 294

Transact-SQL
commands for measuring performance, 314
for detaching and attaching database files, 364
disallowed commands in trigger, 91
enhancements, 6
for opening trace information, 338
for testing script, 291
vs. CLR, 9, 133

Transact-SQL aliases, 66
best practices, 70

Transact-SQL query
encapsulating in view, 153

Transact-SQL stored procedures, 166
Transfer SQL Server Objects task (SSIS), 367
Transfer SQL Server Objects Task Editor, 367
transformation, in ETL process, 467
transformation packages, in ETL process, 567
transformations, Integration Services package support

for, 25
tree, 53
trend line, 329
triggers, 210. See also DDL triggers

asynchronous processing, 15

auditing, 379
for maintaining summary tables, 465
on data-definition (DDL) events, 7
reasons for, 210
unit testing of, 289, 293

TRUNCATE TABLE command, 120
trustworthy, marking database as, 281
TRY . . . CATCH construct, 7, 318

for stored procedure error handling, 169
two-phase commit, 17
typed XML schema, 62

U
UDM. See Unified Dimensional Model (UDM)
unary facts, 35
Unicode strings, 60

for multilanguage applications, 64
storing in XML format, 62

Unified Dimensional Model (UDM), 24
cubes for scaling out, 142
cubes for SQL Server Analysis Services, 135

Unified Modeling Language (UML), 31
Use Case diagrams, 32

uniform extents, 74
unique clustered index, for view, 155
Unique constraint

for entity integrity, 76
indexes for implementing, 102, 106
order for, in integrity check, 91

unique indexes, 106–107
Uniqueidentifier data type, 63
uniqueness constraints, 306
unit testing, 289, 557

data setup for, 296
evaluating result, 297
executing, 296
goals, 290
planning for, 287, 290
script creation, 291, 297

code example, 291
setup testing script for, 294
SSIS packages, 558
teardown testing script, 295
triggers, 293
types, 290
validating scripts for, 295

UNPIVOT statement operator, 7
UNSAFE assemblies, 198
UNSAFE ASSEMBLY permission, for login, 281
UNSAFE CAS security set, 231
UNSAFE permission set, 8, 236
unsetting application role, 229

609VIEW ANY DATABASE permission
unstructured data, 59
large data types for, 62

update anomalies, 42
denormalization and, 38, 46

update conflicts, multiple copies of data and, 49
update performance, indexed views and, 155
UPDATE permission, 271
UPDATE statement (SQL)

Check constraints for, 84
common table expressions for, 6
DML triggers and, 210
OLE DB Command transformation and, 542
OUTPUT statement operator, 243
support for chunked update, 62

UPDATE STATISTICS statement, 103
UPDATE TRIGGER, unit test for, 293
updateable views, triggers for, 210
URL, for Report Server, 446
user accounts, creating from certificate, 410
user-defined aggregate attributes, 219
user-defined aggregate functions, 133
user-defined aggregates

CLR, 217–222
creating, 220
integrated CLR for, 9
programming, 217–222

UserDefined attribute, 219
user-defined data types, 66–70

best practices, 70
CLR user-defined types (UDTs), 66
integrated CLR for, 9
T-SQL aliases, 66

user-defined database roles, 229
user-defined events, in SQL Server Agent, 428
user-defined functions (UDFs), 173–182

and data retrieval, 151
CLR

for CHECK constraints, 194
Concatenate aggregate function, 217
contexts for execution, 173
data types returned by, 179
error handling routines in, 180
for data protection, 244
for extracting e-mail, 207
input parameters, 180
practice, 181
properties, 206
for retrieving namespace, 131
scalar, 175, 204–208

creating CLR, 205
creating T-SQL, 204
validating, 292

security execution context and, 181

table-defined, validating, 293
types, 175

CLR, 178
table-valued, 176

unit testing of, 289
validating data consistency, 308

user-defined metadata, adding to database objects, 413
user identification, security tokens for, 280
user_name, executing as, 281
user permissions and rights, in Visual SourceSafe 2005, 397
user profile

cost of average, 329
in transactional cost analysis, 328

user token, 280
UserID global variable, 477
users

ad hoc reports, 22
adding to fixed server roles, 255
grouping, 262
OLAP client tool for, 23
as security risk, 226
SETUSER for impersonating, 265
validating creation of, 311

V
validating

data
before transaction, 193
stored procedures for, 187

XML schema collection, 131
Value objects in ORM, 34
Value XML index, 129
value() method, of XML data type, 131
VALUES clause, for executing UDFs, 174
varbinary data type, 6, 64

length specifier for, 62
storage, 75

varbinary(max) data type, for encrypted data, 246
varchar data type, 6, 61, 64

length specifier for, 62
storage, 75

variables
evaluating status, 555
for return value from stored procedure, 191
in SSIS, 535

version control folder, displaying, 390
versions

detecting differences, 404–406
information, 400–403
for Notification Services applications, 502
for Notification Services instances, 497

VIEW ANY DATABASE permission, 257

610 VIEW DEFINITION permission
VIEW DEFINITION permission, 257, 271
views. See also indexed views

benefits of encapsulating query in, 154
and data retrieval, 151
for data protection, 244
designing, 153–164
hiding detailed information with, 473
hiding sensitive columns with, 474
impersonation for filtered, 476
limitations, 165
practice, 162–164
for reports, 473
for row security, 474
for security, 275
table-valued function alternatives to, 176
types, 153–162

indexed views, 155–156, 162
partitioned views, 157–162
standard views, 153–154, 162

unit testing of, 289
Virtual Interface Architecture (VIA), endpoint for, 256
virtual tables, 153
virus, 226
Visio, 30
Visio for Enterprise Architects, 33
Visual Basic .NET, 134

in companion CD, 70
for stored procedure, 166

Visual Basic Script, 556
Visual C# 2005 Express Edition, downloading, 30
Visual SourceSafe 2005, 387, 397

Administrator utility, 397
comparison utility for versions, 404
creating or accessing instance, 398
creating read-only user, 397
Explorer, for version information, 400
folder permissions, 398
login dialog box, 398
user permissions and rights, 397

Visual Studio
creating database project, 207
deploying project from, 198

Visual Studio 2005 Team Foundation Server, 387
applying label in, 400
comparison utility for versions, 404
configuration information, 389
MSSCCI Provider.msi file, 389

Visual Studio 2005 Team Foundation System
version control in, 389

Visual Studio for Applications (VSA), 556
Visual Studio Team System, 33, 74

W
wait stats, for system resources, 336
Wait_Stats tool, 314
watch, adding for debugging, 555
weak entities, 36
Web applications, embedded reporting in, 447
Web browsers, SSRS interaction through, 446
Web services, 13, 430

creating and defining, 430
decision to consume, 133
guidelines for using, 432
security, 431

Web Services Definition Language (WSDL), 13, 146, 430
WHERE clause, for query optimization, 139
WHERE predicate

calling UDF in, 176
for executing UDFs, 173
and indexes, 102
and query optimizer for partitioned view, 160

Windows Application log, alert for messages logged to, 425
Windows applications, embedded reporting in, 447
Windows Event Log, 242

alerts on, 10
Windows groups, 257, 262
Windows Guest account, 230
Windows Management Instrumentation (WMI) events

alerts on, 10
SQL Server Agent response to, 426

Windows Management Instrumentation Query
Language (WQL), 426

Windows Shared File subscription, configuring
scheduled, 484

Windows SharePoint Services, 447
Windows-level principals, 228
WITH ENCRYPTION option, 244
WITH GRANT OPTION, 271
WMI events. See Windows Management Instrumentation

(WMI) events
workflow of package, 533
workflow tasks, in SSIS packages, 536
Workgroup Edition of SQL Server 2005, 138
workload

analyzing, 138
expected, and performance objectives, 327

workload characterization, 328
WQL (Windows Management Instrumentation Query

Language), 426
Write method, of IBinarySerialize interface, 68
WRITELOG wait type, 337
WSDL (Web Services Definition Language), 13, 146, 430

611zero (0), as return value from stored procedure
X
XML

for defining project objects, 388
HTTP endpoints for, 14
for Notification Services instance configuration, 493

XML columns, full-text indexes on, 129
XML configuration files, and encryption, 497
XML data

in databases, 127–132
shredding, 128

XML data type, 7, 62
indexing columns, 108
risk of overuse, 64
storage, 75
usage, 127–128
value() method of, 131

XML indexes, 108, 128
XML injection attacks, 242
XML schema collection, exercise

for preparing, 129–130
for validating, 131

XML Web services, 146
xp_logevent stored procedure, 428
XQuery language, 7, 63, 128, 134
XSLT content formatter. See Extensible Stylesheet

Language Transformations (XSLT) content
formatter

Z
zero (0), as return value from stored procedure, 191

System Requirements
We recommend that you use a test workstation, test server, or staging server to complete the
exercises in each lab. The following are the minimum system requirements your computer
needs to meet to complete the practice exercises in this book. For more information, see the
“Introduction.”

Hardware Requirements
The following hardware is required to complete the lab exercises:

n Personal computer with a 600 MHz Pentium III compatible or faster processor

n 512 MB of RAM or more (1 GB or more recommended)

n 350 MB free hard disk space for the Microsoft SQL Server installation

n 450 MB additional free hard disk space if you plan to install SQL Server Books Online
and sample databases

n 3 GB additional free hard disk space for Microsoft Visual Studio 2005

n CD-ROM drive or DVD-ROM drive

n Super VGA (1,024 x 768) or higher resolution video adapter and monitor

n Keyboard and Microsoft mouse or compatible pointing device

Software Requirements
The following software is required to complete the lab exercises:

n One of the following operating systems:

q Microsoft Windows Server 2003, Standard Edition SP1

q Windows Server 2003, Enterprise Edition SP1

q Windows Server 2003, Datacenter Edition SP1

q Windows XP Professional SP2

q Windows Vista Business edition

q Windows Vista Ultimate

q Windows Vista Enterprise

n SQL Server 2005. A 180-day evaluation of SQL Server Enterprise Edition is included on
companion DVD with this book and is available as a free download from the MSDN Web
site at http://www.microsoft.com/sql/downloads/trial-software.mspx.

n The AdventureWorks database; available as a separate download with the SQL Server 2005
samples from the Microsoft Downloads site at http://www.microsoft.com/downloads/.

n Visual Studio 2005 or Visual Studio 2005 SP1. A free 90-day evaluation of Visual Studio
2005 Professional Edition is available for download from the MSDN Web site at http://
msdn2.microsoft.com/en-us/vstudio/bb188238.aspx. Visual Studio 2005 SP1 works with
Visual Studio 2005 Standard Edition, Professional Edition, and Team Edition and is
available from the Microsoft Download site.

n Microsoft Office Visio or, if you do not have Office 2007, Visio 2007 Viewer, available for
download from http://www.microsoft.com/downloads/details.aspx?FamilyID=d88e4542-
b174-4198-ae31-6884e9edd524&DisplayLang=en.

n Microsoft Internet Explorer 6.0 SP1 or later.

n Internet Information Services (IIS) 5.0 or later with Simple Mail Transport Protocol
(SMTP) virtual server installed.

	Cover
	Copyright Page

	About the Authors
	Contents at a Glance
	Table of Contents
	Introduction
	Hardware Requirements
	Software Requirements
	Installing SQL Server 2005
	Installing Visual Studio 2005
	Installing the AdventureWorks Database

	Case Scenarios and the 70-441 Exam
	Case Scenario Structure

	Using the CD and DVD
	How to Install the Practice Tests
	How to Use the Practice Tests
	How to Uninstall the Practice Tests

	Microsoft Certified Professional Program
	Technical Support
	Evaluation Edition Software Support

	Chapter 1: Selecting and Designing SQL Server Services to Support Business Needs
	Before You Begin
	Lesson 1: Selecting the Appropriate Services
	Practice: Selecting the Appropriate Services to Support Business Needs

	Lesson 2: Evaluating Core, SQL Server Agent, and Database Mail Solutions
	Transact-SQL Enhancements
	Considerations for Using CLR Integration
	Using SQL Server Agent
	Using Database Mail
	Practice: Selecting an Appropriate Programming Language

	Lesson 3: Using Advanced Services
	SQL Server Web Services
	Using Service Broker
	Replication Enhancements
	Implementing Distributed Transactions
	Practice: Using Advanced Database Engine Features

	Lesson 4: Evaluating Other Services
	Notification Services
	Reporting Services
	Analysis Services
	Integration Services
	Practice: Using Other Services

	Case Scenario: Select SQL Server Services to Support Business Needs
	Chapter Summary

	Chapter 2: Designing a Logical Database
	Before You Begin
	Lesson 1: Systematically Approaching Design Stages
	Key Steps and Best Practices for Data Modeling
	Object Role Modeling and the Conceptual Model
	Entity Relationship and the Logical Model
	Practice: Opening Models

	Lesson 2: Designing a Normalized Database
	First Normal Form
	Second Normal Form
	Third Normal Form
	Practice: Normalizing the Database

	Lesson 3: Optimizing the Database Design by Denormalizing
	Practice: Denormalizing the Database

	Lesson 4: Designing the Data Flow Architecture
	Data Flow for OLTP Applications
	Data Flow for Business Intelligence Applications

	Lesson 5: Supertypes and Subtypes
	Supertypes and Subtypes
	Modeling Hierarchies
	Practice: Supertypes, Subtypes, and Hierarchies

	Case Scenario: Design a Logical Database
	Chapter Summary

	Chapter 3: Designing a Physical Database
	Before You Begin
	Lesson 1: Choosing Column Data Types and Sizes
	System Data Types
	Best Practices for Data Types and Sizes
	Practice: Choosing Appropriate Data Types

	Lesson 2: Designing User-Defined Data Types
	T-SQL Aliases (UDDTs)
	CLR User-Defined Types (UDTs)
	Best Practices for User-Defined Data Types
	Practice: Creating User-Defined Data Types

	Lesson 3: Defining Entities and Entity and Referential Integrity
	Designing and Creating Entities
	Entity Integrity
	Referential Integrity
	Special Attributes
	Practice: Defining Entities and Entity and Referential Integrity

	Lesson 4: Defining Domain Integrity and Business Rules
	Default Constraints
	Check Constraints
	Practice: Implementing Domain Integrity

	Lesson 5: Creating Programmable Objects to Maintain Integrity
	DML Triggers
	Practice: Creating DML Triggers and Testing Data Integrity

	Case Scenario: Design a Physical Database
	Chapter Summary

	Chapter 4: Designing a Database for Performance
	Before You Begin
	Lesson 1: Optimizing Queries by Creating Indexes
	The Basics of Optimizing Queries
	Maintaining Statistics
	Practice: Selecting Columns to Index

	Lesson 2: Designing Indexes
	Clustered and Nonclustered Indexes
	Creating Indexes
	Practice: Designing Indexes

	Lesson 3: Specifying Indexed Views
	Indexing a Computed Column
	Indexing a View
	Practice: Specifying Indexed Views

	Lesson 4: Partitioning a Table
	Understanding Table Partitioning
	Practice: Partitioning a Table

	Case Scenario: Design a Database for Performance
	Chapter Summary

	Chapter 5: Using Appropriate Database Technologies and Techniques for Your Application
	Before You Begin
	Lesson 1: Using XML Data in Databases
	XML Data Type Usage
	XML Indexes
	Practice: Using XML Data in a Database

	Lesson 2: Choosing Languages
	CLR vs. T-SQL
	CLR and T-SQL vs. Other Languages
	Practice: Choosing Appropriate Languages

	Lesson 3: Designing for Scalability
	Scaling Up
	Scaling Out
	Developing Aggregation Strategies
	Practice: Using Bulk Insert

	Lesson 4: Designing Interoperability with External Systems
	Synchronous Methods
	Asynchronous Methods
	Practice: Linking to Excel 2007

	Case Scenario: Implement Database Technologies and Techniques for Your Application
	Chapter Summary

	Chapter 6: Designing Objects That Retrieve Data
	Before You Begin
	Lesson 1: Designing Views
	Choosing Between the Different Types of Views
	Practice: Designing Views

	Lesson 2: Designing Stored Procedures
	What Type of Stored Procedure Do You Need?
	What Type of Data Will the Stored Procedure Return?
	Defining Input, Output, and Optional Parameters for the Stored Procedure
	Defining the Status Value the Stored Procedure Returns
	Designing Error Handling Routines
	Executing Under the Right Security Context
	Practice: Creating and Modifying a Stored Procedure

	Lesson 3: Designing User-Defined Functions
	What Type of UDF Do You Need?
	What Type of Data Will the UDF Return?
	Defining Input Parameters for the UDF
	Designing Error Handling Routines
	Executing Under the Right Security Context
	Practice: Designing User-Defined Functions

	Case Scenario: Designing Objects That Retrieve Data
	Chapter Summary

	Chapter 7: Designing Objects That Extend Server Functionality
	Before You Begin
	Lesson 1: Creating and Designing Stored Procedures
	Understanding Stored Procedures
	Creating T-SQL Stored Procedures
	Changing and Deleting T-SQL Stored Procedures
	Designing T-SQL Stored Procedures
	Creating CLR Stored Procedures
	Practice: Creating a T-SQL Stored Procedure to Add Employees

	Lesson 2: Designing Scalar User-Defined Functions
	Creating T-SQL Scalar Functions
	Creating CLR Scalar Functions
	UDF Properties
	Practice: Creating a CLR User-Defined Function to Extract E-Mail

	Lesson 3: Designing DML and DDL Triggers
	Creating DML Triggers
	Creating DDL Triggers
	Practice: Using a Trigger to Create a Deleted-Rows Table

	Lesson 4: Designing CLR User-Defined Aggregates
	Programming User-Defined Aggregates
	User-Defined Aggregate Attributes
	Practice: Creating a User-Defined Aggregate

	Case Scenario: Adding an Audit Trail
	Chapter Summary

	Chapter 8: Designing a Secure Application Solution
	Before You Begin
	Lesson 1: Securing Components of a SQL Server Solution
	SQL Server Authentication Modes
	Authorization Strategy
	Securing HTTP Endpoints
	CLR Integration Security
	Guidelines for Replication Security
	Linked Servers Security
	SQL Server Agent and DatabaseMail
	Designing Security for Notification Services
	Designing Security for Reporting Services
	Designing Security for Analysis Services
	Designing Security for Integration Services
	Practice: Securing a SQL Server Solution

	Lesson 2: Designing the Database to Enable Auditing and Encryption
	Considerations for an Auditing Strategy
	Auditing Events, Techniques, Tools, and Storage
	Data Protection
	Data Encryption
	Practice: Using Event Notifications to Audit DDL Events

	Case Scenario: Design a Secure Application Solution
	Chapter Summary

	Chapter 9: Designing a Secure Database
	Before You Begin
	Lesson 1: Designing a Database-Access Strategy
	Managing Principals
	Practice: Designing a Database-Access Strategy

	Lesson 2: Managing Schemas
	Defining Schemas
	Guidelines for Managing Schemas
	Schemas and Database Roles
	Schemas and Object Ownership
	Practice: Using Schemas and Name Resolution

	Lesson 3: Specifying Database Object Security Permissions
	Statement Permissions
	Checking Object Permissions
	Practice: Verifying Statement Permissions and Hierarchy

	Lesson 4: Managing Objects That Access Data
	Using Programmable Objects to Maintain Security
	What Are Ownership Chains?
	Practice: Using Ownership Chains

	Lesson 5: Designing an Execution-Context Strategy
	What Is the Execution Context?
	Module Signing
	Practice: Defining the Execution Context

	Case Scenario: Design a Secure Database
	Chapter Summary

	Chapter 10: Designing a Unit Test Plan for a Database
	Before You Begin
	Lesson 1: Assessing Which Components to Unit Test
	Goals of Unit Testing
	Planning for Unit Testing
	Creating the Testing Script
	Example: How to Write Unit Testing Code with T-SQL
	Creating a Setup Testing Script
	Creating a Teardown Testing Script
	Validating the Testing, Setup, and Teardown Scripts
	Creating or Setting Up a Test Database
	Setting Up Testing Data
	Executing the Unit Test
	Evaluating the Test Result
	Practice: Creating a Unit Testing Script and a Testing Database

	Lesson 2: Designing Tests for Query Performance
	How to Design a Test
	Writing a Test to Validate Query Performance
	Practice: Designing a Testing Script and Setting Performance Goals

	Lesson 3: Designing Tests for Data Consistency
	Testing Values of Attributes
	Validating Foreign Key Constraints
	Validating Custom Constraints
	Writing a Test to Validate Data Consistency
	Practice: Validating Data Consistency in a UDF

	Lesson 4: Designing Tests for Application Security
	Validating the Existence of Permissions, Principals, and Roles
	Validating the Execution Context for Specific Permissions, Principals, and Roles
	Writing a Test to Validate Application Security
	Practice: Validating Whether a User Has Been Created

	Lesson 5: Designing Tests for System Resources Use
	Setting Performance Goals
	Using Performance Goals to Evaluate Performance Counters and Metrics
	Practice: Choosing Performance Counters and Metrics

	Lesson 6: Designing Tests to Ensure Code Coverage
	Setting a Goal for Code Coverage
	Meeting Code-Coverage Test Requirements
	Writing a Test to Validate Code Coverage
	Practice: Designing a Test to Ensure Code Coverage

	Case Scenario: Design a Unit Test Plan for a Database
	Chapter Summary

	Chapter 11: Creating a Database Benchmarking Strategy
	Before You Begin
	Lesson 1: Establishing Performance Objectives and Capacity Planning
	Establishing Performance Objectives
	Performance Modeling
	Capacity Planning
	Practice: Setting Performance Objectives

	Lesson 2: Creating a Strategy for Measuring Performance Changes
	Generating a Representative Baseline
	Measuring a Baseline
	Measuring Performance Changes
	Monitoring the Test Environment
	Implementing Performance Measuring Techniques
	Using SQL Server Profiler
	Practice: Measuring Performance Changes

	Lesson 3: Creating a Plan for Responding to Performance Changes
	Setting Goals
	Determining What Has Changed
	Determining How Change Affects the System
	Responding to Performance Changes
	Issues That Can Affect Performance and Scalability
	Practice: Responding to Performance Changes

	Lesson 4: Creating a Plan for Tracking Benchmark Statistics Over Time
	Setting Goals
	Continued Testing and Performance Measuring
	Generating and Documenting Best Practices
	Practice: Creating a Plan

	Case Scenario: Create a Performance Baseline and Benchmarking Strategy
	Chapter Summary

	Chapter 12: Creating a Plan for Deploying a Database
	Before You Begin
	Lesson 1: Selecting a Deployment Technique
	Deploying with the SSMS Copy Database Wizard
	Customizing the SSIS Package Created by the Copy Database Wizard
	Deploying with T-SQL Scripts
	Deploying with the Import and Export Wizard
	Deploying with SSIS
	Deploying with the SQLCmd Utility
	Practice: Detaching and Attaching a Database

	Lesson 2: Practical Deployment Considerations
	Deploying Securely
	Creating an Object-Change Strategy
	Creating a Data-Change Strategy
	Creating an Audit Trail
	Defining Change Control
	Creating a Project-Management Methodology
	Practice: Deploying to SQL Server Express by Using Backup and Restore

	Case Scenario: Deploying a Database
	Chapter Summary

	Chapter 13: Controlling Changes to Source Code
	Before You Begin
	Lesson 1: Managing Source Code Changes
	SQL Server Management Studio and Source Control
	Adding the Project to Source Control
	Working with a Source-Controlled Database Project
	Practice: Managing Changes to Source Code

	Lesson 2: Setting File Permissions
	Visual SourceSafe User Permissions and Rights
	Folder Permissions
	Opening Visual SourceSafe–Controlled Projects
	Optional Practice: Setting Source Control File Permissions

	Lesson 3: Setting and Retrieving Version Information
	Practice: Setting Version Information

	Lesson 4: Detecting Differences Between Versions
	Practice: Detecting Version Differences

	Lesson 5: Encrypting Source Code
	Practice: Source Code Encryption

	Lesson 6: Tracking Changes to Groups of Objects
	Case Scenario: Controlling Changes to Source Code
	Chapter Summary

	Chapter 14: Designing for Data Distribution
	Before You Begin
	Lesson 1: Designing a DatabaseMail Solution for Distributing Data
	DatabaseMail Architecture
	Enabling DatabaseMail
	DatabaseMail Accounts, Profiles, and Security
	Sending Messages
	Practice: Sending E-mail Messages by Using DatabaseMail

	Lesson 2: Designing SQL Server Agent Alerts
	Defining Alerts
	Designing WMI Triggers
	Defining and Notifying Operators
	Creating User-Defined Events
	Practice: Creating a SQL Server Agent Alert

	Lesson 3: Specifying a Web Services Solution for Distributing Data
	Creating and Defining SQL Server Web Services
	SQL Server Web Services Security
	Guidelines for Using SQL Server Web Services
	Practice: Creating a SQL Server Web Service

	Lesson 4: Specifying a Reporting Services Solution for Distributing Data
	Reporting Services Delivery Options
	Reporting Services Subscriptions
	Distributing Data by Using Data-Driven Subscriptions
	Creating a Data-Driven Subscription
	Practice: Specifying SSRS Options for Distributing Data

	Lesson 5: Specifying a Notification Services Solution for Distibuting Data
	Notification Services Architecture
	Scale-Out Options
	Defining Notification Services Applications
	Practice: Identifying When to Use a Notification Services Solution

	Case Scenario: Design a Distributed Data Solution
	Chapter Summary

	Chapter 15: Designing Applications That Support Reporting and Use Reporting Services
	Before You Begin
	Lesson 1: Evaluating the Use of Reporting Services and Designing Reports
	Evaluating Reporting Services Uses
	Designing Reporting Services Reports
	Practice: Creating a Report with the Report Wizard

	Lesson 2: Designing a Snapshot Strategy, Schema, Indexes, and Data Transformations
	Reporting Services Real-Time Requirements
	Designing the Snapshot Strategy
	Designing the Schema
	Designing Indexes
	Designing the Data Transformation
	Practice: Creating a Purchasing Summary Report

	Lesson 3: Designing Programmatic Interfaces and the Data Access Method for Reporting
	Querying Tables Directly
	Using Views to Support Reports
	Using Stored Procedures
	Practice: Creating a Row-Filtered Report

	Lesson 4: Optimizing Reports
	Report Caching
	Report Snapshots
	Specifying Subscription Models
	Practice: Optimizing Report Performance

	Case Scenario: Building a Reporting Services Infrastructure for a SharePoint Portal
	Chapter Summary

	Chapter 16: Developing Applications for Notification Services
	Before You Begin
	Lesson 1: Configuring Notification Services Instances and Applications
	Configuring Notification Services Instances
	Configuring Notification Services Applications
	Practice: Configuring Notification Services Applications and Instances

	Lesson 2: Defining Notification Services Events and Event Providers
	Defining Event Classes
	Defining Event Providers
	Practice: Using Event Providers and Event Classes

	Lesson 3: Configuring the Notification Services Generator and Distributor
	Configuring the Notification Services Generator
	Configuring the Notification Services Distributor
	Practice: Configuring the Generator and Distributor

	Lesson 4: Testing the Notification Services Application
	Creating and Registering a New Instance and Compiling Your Application
	Exploring Your Instance and Application Objects
	Removing the Instance and Application
	Practice: Testing Your Application

	Lesson 5: Creating Subscriptions
	Defining the Subscription Class
	Subscription Management Interfaces
	Practice: Subscription in Notification Services

	Lesson 6: Optimizing Notification Services
	Optimizing Event Data
	Optimizing Subscriptions
	Optimizing Notifications
	Practice: Optimizing Notification Services Solutions

	Case Scenario: Design a Notification Services Application
	Chapter Summary

	Chapter 17: Developing Packages for Integration Services
	Before You Begin
	Lesson 1: Creating Integration Services Packages
	What Is a Package?
	Control Flow
	Data Flow
	Practice: Creating an SSIS Package

	Lesson 2: Debugging and Testing SSIS Packages
	Running SSIS Packages
	Debugging SSIS Packages
	Testing SSIS Packages
	Practice: Debugging Control Flow and Data Flow

	Lesson 3: Selecting an Appropriate SSIS Technology or Strategy
	SSIS ETL Design Patterns
	SSIS: Beyond ETL

	Case Scenario: Building an SSIS ETL Infrastructure
	Chapter Summary

	Case Scenario Answers
	Chapter 1: Select SQL Server Services to Support Business Needs
	Chapter 2: Design a Logical Database
	Chapter 3: Design a Physical Database
	Chapter 4: Design a Database for Performance
	Chapter 5: Implement Database Technologies and Techniques for Your Application
	Chapter 6: Designing Objects That Retrieve Data
	Chapter 7: Adding an Audit Trail
	Chapter 8: Design a Secure Application Solution
	Chapter 9: Design a Secure Database
	Chapter 10: Design a Unit Test Plan for a Database
	Chapter 11: Create a Performance Baseline and Benchmarking Strategy
	Chapter 12: Deploying a Database
	Chapter 13: Controlling Changes to Source Code
	Chapter 14: Design a Distributed Data Solution
	Chapter 15: Building a Reporting Services Infrastructure for a SharePoint Portal
	Chapter 16: Design a Notification Services Application
	Chapter 17: Building an SSIS ETL Infrastructure

	Index
	System Requirements

