

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2006 by Solid Quality Learning

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

0-7356-2271-X
978-0-7356-2271-5
Library of Congress Control Number 2006924471

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 1 0 9 8 7 6

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press Inter-
national directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments
to tkinput@microsoft.com.

Microsoft, Active Directory, ActiveX, Excel, Internet Explorer, Microsoft Press, MSDN, Outlook, PivotTable,
PowerPoint, Visio, Visual Basic, Visual C#, Visual Studio, Windows, and Windows Server are either regis-
tered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Other
product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain
name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided with-
out any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers,
or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly
by this book.

Acquisitions Editor: Ken Jones
Project Editor: Laura Sackerman
Technical Editors: Rozanne Murphy Whalen and Dan Whalen
Copy Editor: Nancy Sixsmith
Indexer: Ginny Munroe

Body Part No. X12-35101

A02L62271X.fm Page ii Friday, April 29, 2005 7:23 PM

iii

Acknowledgments

There are always more people to thank than you ever have the space for. But the
authors would like to extend their sincere gratitude to the following for making this
book possible: A huge thanks to Ken Jones, Laura Sackerman, Jenny Moss Benson,
and everyone else at Microsoft Press, as well as Nancy Sixsmith, Dan Whalen, and
Rozanne Murphy Whalen—your Herculean efforts have not been missed. Also thanks
to Kathy Blomstrom, content development manager for Solid Quality Learning, for
her tireless work on the project and to Federico Bazo Alfaro for helping to keep the
wheels moving.

In addition, the authors would like to acknowledge the following special people:

Daren Bieniek I would like to thank my mom (MaryAnn), wife (Shara), and daughter
(Amelia) for tolerating all of those times that I said, “I can't right now. I'm working.”

Mike Hotek I’d like to thank the SQL Server Development Team for creating a prod-
uct that my life has revolved around for more than 15 years. Thanks to my sister Car-
rie, brother-in-law Dan, and nieces Tasha and Ashley for the support to keep going. I
would have never made it here without my grandparents, whom I’ve always thought
of as my other set of parents, for being a huge part of who I am today. Jen and Gabby,
you have provided more smiles than you can ever imagine. Thank you to the many
people at Sacred Heart in Eau Claire and Abbott Northwestern in Minneapolis for
sending my best friend back—three times. There aren’t words in any language to ade-
quately describe what you do every day. And thanks to my best friend—Dad.

Antonio Soto I need to thank my wife, Isabel, for her patience and understanding.
She is my raison d'être. Thanks to Fernando Guerrero for placing his trust in me.
Thanks to Marcelo Castelo for giving me the opportunity to work with him. Thanks
to Solid Quality Learning for its warm welcome. And thanks to Mosqui for making me
laugh in the bad moments.

Adolfo Wiernik I definitely must thank Fernando Guerrero, CEO of Solid Quality
Learning, for believing in me from the start when I joined this amazing company.
Thanks to Michael Rys, SQL Server Program Manager in charge of the XML features
in the product, for his mentoring and always answering my mails. Finally, I thank the
team at Magen, Microsoft Technology Center in Tel Aviv, Israel, which is where I
started working with the XML features in SQL Server 2000 and laid the foundation
for who I am.

A03A62271X.fm Page iii Friday, April 29, 2005 7:23 PM

A03A62271X.fm Page iv Friday, April 29, 2005 7:23 PM

A04B62271X.fm Page v Friday, April 29, 2005 7:24 PM
About the Authors

MCTS Self-Paced Training Kit (Exam 70-431): Microsoft SQL Server 2005—Implementation
and Maintenance was written by the following mentors with Solid Quality Learning, a
trusted global provider of advanced education and solutions for the Microsoft SQL
Server platform:

Daren Bieniek is a mentor with Solid Quality Learning, has 20 years of professional
technical experience, and has served in nearly every IT role possible—from systems
administrator to developer to database administrator to architect to CEO. During the
past 10 years, Daren has focused on data-related roles and technologies, with an
emphasis on very large database (VLDB) architecture, design, and implementation.

Randy Dyess is the author of Transact-SQL Language Reference Guide and many maga-
zine and newsletter articles about SQL Server security and optimization issues, and
has spoken at various international and national conferences. Randy is a member of
the Board of Directors for the Professional Association for SQL Server (PASS) and is
the Director of Programs for the North Texas SQL Server Users Group. He is also the
founder and principle author of www.TransactSQL.com.

Mike Hotek has been working with SQL Server since before it was a Microsoft prod-
uct. He is known throughout the industry for his expertise in replication, high avail-
ability, disaster recovery, and performance tuning. Mike has delivered more than 200
sessions at a variety of conferences and has coauthored two other books about SQL
Server.

Javier Loria, a mentor with Solid Quality Learning, works primarily with Latin Amer-
ican companies to help them develop business intelligence projects. He is also a
trainer and a frequent speaker at Microsoft regional events and loves to write about
technology. When not working, Javier enjoys spending time with his wife, Maria, and
his five children: Lidia, Javier Jose, Maria Jose, Andrea, and Lucia.

Adam Machanic is an independent database software consultant, writer, and speaker
based in Boston, Massachusetts. He has implemented SQL Server solutions for a vari-
ety of high-availability online transaction processing (OLTP) and large-scale data
warehouse applications, and also specializes in Microsoft .NET data access layer per-
formance optimization. Adam is a Microsoft Most Valuable Professional (MVP) for
SQL Server and a Microsoft Certified IT Professional.
v

vi

A04B62271X.fm Page vi Friday, April 29, 2005 7:24 PM
Antonio Soto, a database fanatic, has been working with databases since 1994. He
has worked with the IT training company Professional Training, in Spain, as a trainer
and consultant regarding SQL Server and other Microsoft technologies. Since 2002,
Antonio has also been a partner and director of Alcatraz Solutions, which provides
security solutions to the IT industry. He writes for various magazines and speaks at
many IT conferences in Spain. Antonio is a computer engineer, an MCDBA, an MCSE,
an MCAD, and an MCT.

Adolfo Wiernik is director of operations for Solid Quality Learning in Latin America.
He previously worked as lead architect at the Microsoft .NET Center in Central Amer-
ica and the Microsoft Technology Center in Tel Aviv, Israel. When not speaking at a
local or international event, Adolfo enjoys hiking in the mountains in his home coun-
try of Costa Rica.

A05C62271X.fm Page vii Friday, April 29, 2005 7:24 PM
Contents at a Glance

1 Installing SQL Server 2005 . 1
2 Configuring SQL Server 2005. 51
3 Creating Tables, Constraints, and User-Defined Types 103
4 Creating Indexes. 147
5 Working with Transact-SQL . 169
6 Creating Partitions . 207
7 Implementing Views . 237
8 Managing XML Data . 255
9 Creating Functions, Stored Procedures, and Triggers. 349

10 Working with Flat Files . 379
11 Backing Up, Restoring, and Moving a Database 413
12 Using Transact-SQL to Manage Databases . 447
13 Working with HTTP Endpoints . 477
14 Working with SQL Server Agent Jobs . 493
15 Monitoring and Troubleshooting SQL Server Performance 529
16 Managing Database Snapshots . 601
17 Implementing Database Mirroring . 615
18 Implementing Log Shipping . 651
19 Managing Replication . 695
20 Working with Service Broker . 775
21 Creating Full-Text Catalogs . 813
vii

A05C62271X.fm Page viii Friday, April 29, 2005 7:24 PM

A06T62271X.fm Page ix Monday, May 1, 2006 11:01 AM
Table of Contents

Introduction .xxxiii

Hardware Requirements . xxxiii

Software Requirements . xxxiv

Using the CDs . xxxv

How to Install the Practice Tests. xxxv

How to Use the Practice Tests . xxxvi

How to Uninstall the Practice Tests . xxxvii

Microsoft Certified Professional Program . xxxvii

Technical Support. .xxxviii

Evaluation Edition Software Support .xxxvix

1 Installing SQL Server 2005 . 1

Before You Begin .2

Lesson 1: Selecting the Correct SQL Server 2005 Edition .3

Understanding SQL Server 2005 Editions. .3

Lesson Summary. .7

Lesson Review .8

Lesson 2: Determining Infrastructure Requirements for SQL Server 200510

Identifying Minimum Hardware, OS, and Network Requirements10

Lesson Summary. .15

Lesson Review .16

Lesson 3: Using Default, Named, and Multiple Instances of SQL Server 2005.17

Installing a Default, Named, or Multiple Instances of SQL Server 200517

Determining When to Use Multiple Instances of SQL Server 200518

Lesson Summary. .19
ix

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

Lesson Review .19

x Table of Contents

A06T62271X.fm Page x Friday, April 29, 2005 7:24 PM
Lesson 4: Installing a New Instance of SQL Server 2005 . 21

Determining Service Accounts . 21

Choosing an Authentication Mode . 23

Determining Collation Setting . 24

Lesson Summary . 32

Lesson Review . 33

Lesson 5: Upgrading to a SQL Server 2005 Installation . 34

Determining an Appropriate Upgrade Strategy . 34

Choosing an Upgrade Method. 37

Determining Testing and Success Criteria . 39

Establishing a Recovery Plan. 40

Tips for a Successful Upgrade . 40

Lesson Summary . 44

Lesson Review . 44

Chapter Review . 46

Chapter Summary. 46

Key Terms . 47

Case Scenarios. 47

Case Scenario 1: Installing SQL Server 2005. 48

Case Scenario 2: Upgrading an Instance of SQL Server 48

Suggested Practices . 49

Selecting an Edition of SQL Server 2005 to Install. 49

Determining When to Install Default, Named, or Multiple
Instances of SQL Server 2005 . 49

Upgrading a SQL Server 2005 Installation . 50

Take a Practice Test . 50

2 Configuring SQL Server 2005 . 51

Before You Begin . 52

Lesson 1: Configuring Log and Data Files. 53

Data Files . 53

Log Files . 54

Filegroups. 54

How to Configure Data Files and Log Files. 55

Table of Contents xi

A06T62271X.fm Page xi Friday, April 29, 2005 7:24 PM
Configuring Database Files with RAID Systems .57

Best Practices .58

Lesson Summary. .61

Lesson Review .61

Lesson 2: Configuring Database Mail .63

Identifying Database Mail Prerequisites .63

Understanding the Database Mail Architecture .64

How to Configure Database Mail .64

Lesson Summary. .68

Lesson Review .68

Lesson 3: Specifying a Recovery Model .70

Recovery Models Overview .70

How to Configure Recovery Models .71

Lesson Summary. .72

Lesson Review .73

Lesson 4: Configuring Server Security Principals. .74

Choosing Between Authentication Modes. .74

How to Configure SQL Server Logins .75

Managing Fixed Server Roles .77

Lesson Summary. .79

Lesson Review .79

Lesson 5: Configuring Database Securables .81

Managing Database Users .81

Managing Database Roles .82

Managing Schemas .84

Lesson Summary. .86

Lesson Review .86

Lesson 6: Configuring Encryption .88

Configuring the Encryption Hierarchy .88

Configuring Symmetric and Asymmetric Keys .89

Configuring Certificates .90

Lesson Summary. .92

Lesson Review .92

xii Table of Contents

A06T62271X.fm Page xii Friday, April 29, 2005 7:24 PM
Lesson 7: Configuring Linked Servers . 94

How to Create a Linked Server . 94

Configuring the Security Model . 97

Lesson Summary . 98

Lesson Review . 98

Chapter Review . 99

Chapter Summary. 99

Key Terms . 100

Case Scenarios. 101

Case Scenario 1: Configuring Security. 101

Case Scenario 2: Configuring a Heterogeneous Environment. 102

Suggested Practices . 102

Take a Practice Test . 102

3 Creating Tables, Constraints, and User-Defined Types 103

Before You Begin . 104

Lesson 1: Creating Tables. 107

Understanding Data Types . 107

Nullability . 117

Identity . 118

Computed Columns . 118

Creating a Table . 119

Assigning Permissions . 123

Lesson Summary . 126

Lesson Review . 126

Lesson 2: Implementing Constraints . 127

Check Constraints . 127

Rules . 128

Default Constraints . 129

Unique Constraints . 129

Primary Key Constraints. 130

Foreign Key Constraints . 130

Lesson Summary . 136

Lesson Review . 136

Table of Contents xiii

A06T62271X.fm Page xiii Friday, April 29, 2005 7:24 PM
Lesson 3: Creating User-Defined Types. 137

Transact-SQL UDTs . 137

CLR UDTs . 138

Implement a Transact-SQL UDT . 140

Lesson Summary. 141

Lesson Review . 141

Chapter Review. 142

Chapter Summary . 142

Key Terms . 143

Case Scenario: Designing a Database . 143

Suggested Practices . 144

Creating Tables . 144

Creating Constraints . 144

Take a Practice Test . 145

4 Creating Indexes. 147

Before You Begin . 148

Lesson 1: Understanding Index Structure. 149

Exploring B-Trees . 149

Inside Index Levels . 151

Lesson Summary. 152

Lesson Review . 153

Lesson 2: Creating Clustered Indexes . 154

Implementing Clustered Indexes . 154

Disabling an Index . 158

Lesson Summary. 159

Lesson Review . 160

Lesson 3: Creating Nonclustered Indexes. 161

Implementing a Nonclustered Index. 161

Creating a Covering Index . 162

Balancing Index Maintenance . 162

Using Included Columns . 163

Lesson Summary. 164

Lesson Review . 165

xiv Table of Contents

A06T62271X.fm Page xiv Friday, April 29, 2005 7:24 PM
Chapter Review . 166

Chapter Summary. 166

Key Terms . 166

Case Scenario: Indexing a Database . 167

Suggested Practices . 167

Creating Indexes . 167

Take a Practice Test . 168

5 Working with Transact-SQL . 169

Before You Begin . 169

Lesson 1: Querying Data . 171

Determining Which Tables to Use in the Query. 171

Determining Which Join Types to Use. 172

Determining the Columns to Return . 173

How to Create Subqueries. 174

Creating Queries That Use Complex Criteria . 176

Creating Queries That Use Aggregate Functions. 177

Creating Queries That Format Data by Using PIVOT and
UNPIVOT Operators . 178

Creating Queries That Use Full-Text Search . 179

Limiting Returned Results by Using the TABLESAMPLE Clause 181

Lesson Summary . 184

Lesson Review . 185

Lesson 2: Formatting Result Sets . 186

Using System Functions . 186

Using User-Defined Functions in Queries . 187

Querying CLR User-Defined Types . 188

Creating Column Aliases . 189

Lesson Summary . 191

Lesson Review . 191

Lesson 3: Modifying Data . 192

Understanding Cursors . 192

Creating Local and Global Temporary Tables . 193

Using the SELECT INTO Command . 194

Lesson Summary . 196

Lesson Review . 196

Table of Contents xv

A06T62271X.fm Page xv Friday, April 29, 2005 7:24 PM
Lesson 4: Working with Transactions . 198

Beginning and Committing or Rolling Back Transactions 198

Programmatically Handle Errors . 199

Lesson Summary. 201

Lesson Review . 201

Chapter Review. 202

Chapter Summary . 202

Key Terms . 203

Case Scenarios . 203

Case Scenario 1: Database-Backed Authoring Application 203

Case Scenario 2: Banking Corporation . 204

Suggested Practices . 204

Writing Queries Against the Sales Schema of the
AdventureWorks Database . 204

Take a Practice Test . 205

6 Creating Partitions . 207

Before You Begin . 208

Lesson 1: Creating a Partition Function . 210

How to Create a Partition Function. 210

Lesson Summary. 213

Lesson Review . 213

Lesson 2: Creating a Partition Scheme . 215

How to Create a Partition Scheme . 215

Lesson Summary. 216

Lesson Review . 217

Lesson 3: Partitioning Tables and Indexes . 218

Creating a Partitioned Table, Index, or Indexed View. 218

Partitioned Indexes and Included Columns . 219

Partitioning an Existing Table or Index . 220

Lesson Summary. 221

Lesson Review . 222

Lesson 4: Querying Partitions. 223

How to Query Partitions . 223

Lesson Summary. 225

Lesson Review . 225

xvi Table of Contents

A06T62271X.fm Page xvi Friday, April 29, 2005 7:24 PM
Lesson 5: Managing Partitions . 226

Split and Merge. 226

SWITCH. 227

Lesson Summary . 231

Lesson Review . 232

Chapter Review . 233

Chapter Summary. 233

Key Terms . 233

Case Scenario: Archiving Data . 234

Suggested Practice . 234

Partitioning Tables . 234

Take a Practice Test . 234

7 Implementing Views. 237

Before You Begin . 237

Lesson 1: Creating a View . 240

How to Create a View. 240

Understanding Ownership Chains . 242

Lesson Summary . 244

Lesson Review . 244

Lesson 2: Modifying Data Through Views . 245

Creating Updateable Views . 245

Lesson Summary . 247

Lesson Review . 247

Lesson 3: Creating an Indexed View . 248

Prerequisites for an Indexed View . 248

Query Substitution . 249

Lesson Summary . 251

Lesson Review . 251

Chapter Review . 252

Chapter Summary. 252

Key Terms . 252

Case Scenario: Creating Views . 253

Table of Contents xvii

A06T62271X.fm Page xvii Friday, April 29, 2005 7:24 PM
Suggested Practices . 253

Creating a View. 253

Creating an Indexed View. 253

Take a Practice Test . 253

8 Managing XML Data . 255

Before You Begin . 256

Lesson 1: Working with XML Structures . 257

Storage Options for XML data . 257

Storing XML in Text Columns . 259

Storing XML in XML Data Type Columns . 260

Typing and Validating XML Data with XML Schemas. 262

Lesson Summary. 267

Lesson Review . 267

Lesson 2: Retrieving XML Data by Using SQL Server Server-Side Technologies 269

Converting Relational Data to XML. 269

Retrieving XML Data from the XML Data Type . 285

Lesson Summary. 295

Lesson Review . 295

Lesson 3: Retrieving XML Data by Using SQL Server Middle-Tier Technologies. . . . 298

Using SQLXML-Annotated XSD Schemas. 299

Querying Annotated XML Schemas and XML Views from .NET 304

Lesson Summary. 307

Lesson Review . 307

Lesson 4: Modifying XML Data . 309

Modifying XML Values and XML Structure. 310

Using SQLXML Updategrams . 313

Lesson Summary. 318

Lesson Review . 319

Lesson 5: Converting Between XML Data and Relational Data. 320

Shredding XML Using OPENXML and XML Stored Procedures 320

Shredding XML by Using the XML Data Type’s nodes() Method 325

Shredding XML by Using SQLXML . 328

Lesson Summary. 332

Lesson Review . 332

xviii Table of Contents

A06T62271X.fm Page xviii Friday, April 29, 2005 7:24 PM
Lesson 6: Creating XML Indexes . 334

Indexing an XML Data Type Instance . 334

Creating an XML Data Type Primary Index. 335

Creating XML Data Type Secondary Indexes . 336

Lesson Summary . 339

Lesson Review . 339

Chapter Review . 341

Chapter Summary. 341

Key Terms . 341

Case Scenarios. 342

Case Scenario 1: Troubleshooting XML Performance by Choosing
the Correct Indexing Strategy . 342

Case Scenario 2: Handling Data as XML or as Relational Representation . . . 343

Suggested Practices . 344

Working with XML Structures . 344

Retrieving XML Data. 345

Modifying XML Data . 346

Converting Between XML Data and Relational Data . 346

Creating XML Indexes . 347

Take a Practice Test . 348

9 Creating Functions, Stored Procedures, and Triggers 349

Before You Begin . 350

Lesson 1: Implementing Functions . 352

Scalar Functions . 352

Table-Valued Functions . 354

Deterministic vs. Nondeterministic Functions . 356

Lesson Summary . 359

Lesson Review . 359

Lesson 2: Implementing Stored Procedures . 360

Creating a Stored Procedure . 360

Assign Permissions to a Role for a Stored Procedure . 363

Lesson Summary . 365

Lesson Review . 365

Table of Contents xix

A06T62271X.fm Page xix Friday, April 29, 2005 7:24 PM
Lesson 3: Implementing Triggers. 367

DML Triggers. 367

DDL Triggers . 371

Lesson Summary. 374

Lesson Review . 374

Chapter Review. 375

Chapter Summary . 375

Key Terms. 375

Case Scenario: Creating Triggers, Functions, and Stored Procedures 376

Suggested Practices . 376

Creating Functions . 376

Creating Stored Procedures . 377

Creating Triggers . 377

Take a Practice Test . 377

10 Working with Flat Files . 379

Before You Begin . 380

Lesson 1: Preparing to Work with Flat Files . 381

Source File Location . 381

Import Mechanism. 381

Data Destination. 381

A Best-Case Scenario . 382

Lesson Summary. 385

Lesson Review . 386

Lesson 2: Running the bcp Utility . 387

What Is bcp? . 387

bcp Command-Line Syntax . 388

bcp Hint Parameter . 389

bcp Permissions. 389

Lesson Summary. 392

Lesson Review . 392

xx Table of Contents

A06T62271X.fm Page xx Friday, April 29, 2005 7:24 PM
Lesson 3: Performing a BULK INSERT Task . 393

Differences Between BULK INSERT and bcp . 393

BULK INSERT Permissions . 395

Lesson Summary . 397

Lesson Review . 397

Lesson 4: Importing Bulk XML Data . 398

OPENROWSET Function. 398

Lesson Summary . 401

Lesson Review . 401

Lesson 5: Using the SSIS Import/Export Wizard . 402

How to Start the SSIS Import/Export Wizard . 402

Walking Through the Import/Export Wizard . 403

Lesson Summary . 408

Lesson Review . 408

Chapter Review . 409

Chapter Summary. 409

Key Terms . 409

Case Scenario: Fixing a Bloated Transaction Log . 410

Suggested Practices . 410

Using bcp and BULK INSERT to Load Tables . 411

Using SSIS to Load Tables . 411

Take a Practice Test . 411

11 Backing Up, Restoring, and Moving a Database 413

Before You Begin . 414

Lesson 1: Backing Up a Database. 416

Performing Full Backups . 417

Performing Differential Backups. 418

Transaction Log Backups . 419

Performing Filegroup Backups . 420

Performing Mirrored Backups. 421

Partial Backups . 422

Lesson Summary . 425

Lesson Review . 425

Table of Contents xxi

A06T62271X.fm Page xxi Friday, April 29, 2005 7:24 PM
Lesson 2: Restoring a Database . 427

Restoring a Full Backup . 427

Restoring a Differential Backup . 429

Restoring a Transaction Log Backup . 430

Performing a Partial Restore. 432

Restoring a Corrupt Page . 432

Restoring with Media Errors . 433

Validating a Backup . 434

Lesson Summary. 435

Lesson Review . 436

Lesson 3: Moving a Database. 437

Moving a Database by Using Detach/Attach. 437

Using the Copy Database Wizard . 438

Lesson Summary. 440

Lesson Review . 441

Chapter Review. 442

Chapter Summary . 442

Key Terms . 443

Case Scenario: Designing a Backup Strategy . 444

Suggested Practices . 445

Backing Up a Database . 445

Restoring a Database . 445

Moving a Database . 446

Take a Practice Test . 446

12 Using Transact-SQL to Manage Databases . 447

Before You Begin . 447

Lesson 1: Managing Index Fragmentation. 449

Understanding Index Fragmentation . 449

Identifying Index Fragmentation . 451

Managing Index Fragmentation . 452

Determining Which Statement to Execute . 453

Lesson Summary. 455

Lesson Review . 456

xxii Table of Contents

A06T62271X.fm Page xxii Friday, April 29, 2005 7:24 PM
Lesson 2: Managing Statistics . 457

Understanding Statistics . 457

Automatic Statistics Generation . 457

Manual Statistics Generation. 458

Viewing Column Statistics Information . 458

Lesson Summary . 462

Lesson Review . 462

Lesson 3: Shrinking Files . 463

Shrinking Database Files Automatically . 463

Shrinking Database Files Manually. 464

Shrinking the Transaction Log . 464

Lesson Summary . 467

Lesson Review . 468

Lesson 4: Using DBCC CHECKDB . 469

DBCC CHECKDB . 469

Lesson Summary . 472

Lesson Review . 472

Chapter Review . 473

Chapter Summary. 473

Key Terms . 474

Case Scenarios. 474

Case Scenario 1: Defragmenting an Index . 474

Case Scenario 2: Maintaining Database Integrity . 475

Suggested Practices . 475

Managing Index Fragmentation. 475

Managing Statistics. 475

Shrinking Files . 476

Using DBCC CHECKDB to Perform Database Integrity Checks 476

Take a Practice Test . 476

Table of Contents xxiii

A06T62271X.fm Page xxiii Friday, April 29, 2005 7:24 PM
13 Working with HTTP Endpoints . 477

Before You Begin . 477

Lesson 1: Understanding HTTP Endpoint Security . 479

Seven Layers of HTTP Endpoint Security . 479

Lesson Summary. 481

Lesson Review . 482

Lesson 2: Creating a Secure HTTP Endpoint . 484

Creating an HTTP Endpoint . 484

Specifying Web Methods . 485

Specifying WSDL Support, Schemas, and Namespaces 486

Additional SOAP Payload Parameters . 486

Lesson Summary. 488

Lesson Review . 489

Chapter Review. 491

Chapter Summary . 491

Key Terms . 491

Case Scenario: Creating HTTP Endpoints . 491

Suggested Practices . 492

Creating HTTP Endpoints . 492

Take a Practice Test . 492

14 Working with SQL Server Agent Jobs . 493

Before You Begin . 494

Lesson 1: Creating a SQL Server Agent Job . 495

How to Create a SQL Server Agent Job . 495

How to Specify a Job Owner . 497

How to Create Job Steps . 497

How to Create Job Schedules. 500

Lesson Summary. 501

Lesson Review . 502

A06T62271X.fm Page xxiv Tuesday, May 2, 2006 9:08 AM
xxiv Table of Contents

Lesson 2: Creating a Maintenance Plan . 504

How to Create a Maintenance Plan . 504

Lesson Summary . 513

Lesson Review . 514

Lesson 3: Configuring Operators . 515

How to Configure an Operator. 515

Lesson Summary . 517

Lesson Review . 517

Lesson 4: Configuring Alerts . 519

How to Configure Alerts . 519

Lesson Summary . 523

Lesson Review . 523

Chapter Review . 524

Chapter Summary. 524

Key Terms . 524

Case Scenario: Scheduling Administrative Actions . 525

Suggested Practices . 526

Create a SQL Server Agent Job. 526

Create a Maintenance Plan . 526

Create an Alert . 526

Take a Practice Test . 527

15 Monitoring and Troubleshooting SQL Server Performance. 529

Before You Begin . 531

Lesson 1: Working with SQL Server Profiler . 532

Defining a Trace . 532

Starting, Pausing, and Stopping a Trace . 538

Saving a Trace Log . 539

Gathering Showplan Data . 540

Creating a Replay Trace . 543

Lesson Summary . 546

Lesson Review . 546

Table of Contents xxv

A06T62271X.fm Page xxv Friday, April 29, 2005 7:24 PM
Lesson 2: Working with System Monitor . 548

Creating a Counter Log . 550

Lesson Summary. 553

Lesson Review . 553

Lesson 3: Using the Database Engine Tuning Advisor . 554

Building a Workload File . 556

Configuring DTA to Analyze a Workload . 556

Saving Recommendations from DTA. 562

Lesson Summary. 564

Lesson Review . 564

Lesson 4: Using Dynamic Management Views and Functions 566

Key Performance and Monitoring DMVs and DMFs. 567

Lesson Summary. 573

Lesson Review . 574

Lesson 5: Correlating Performance and Monitoring Data . 575

Basic Query Processing Architecture. 575

Correlating System Monitor Data with SQL Server Profiler Traces 577

Correlating DMVs/DMFs with SQL Server Profiler Traces 578

Correlating DMVs/DMFs with System Monitor Data . 579

Correlating Multiple DMVs/DMFs . 579

Lesson Summary. 581

Lesson Review . 581

Lesson 6: Resolving Blocking and Deadlocking Issues . 582

Understanding Locking . 582

Understanding Isolation Levels . 583

Understanding Blocking . 584

Terminating Processes . 585

Understanding Deadlocking. 585

Lesson Summary. 591

Lesson Review . 592

Lesson 7: Resolving Database Errors . 593

Using the DAC. 593

SQL Server and Windows Error Logs. 594

Lesson Summary. 595

Lesson Review . 595

xxvi Table of Contents

A06T62271X.fm Page xxvi Friday, April 29, 2005 7:24 PM
Chapter Review . 596

Chapter Summary. 596

Key Terms . 597

Case Scenario: Diagnosing Performance Problems. 598

Suggested Practices . 599

Working with SQL Server Profiler . 599

Working with System Monitor . 599

Using the Database Engine Tuning Advisor . 599

Using Dynamic Management Views and Functions . 599

Correlating Performance Data . 600

Resolving Blocking and Deadlocking Issues . 600

Using DAC . 600

Take a Practice Test . 600

16 Managing Database Snapshots. 601

Before You Begin . 601

Lesson 1: Creating a Database Snapshot . 603

Database Snapshot Structure . 603

Copy-On-Write Technology . 603

Creating a Database Snapshot . 605

Retrieving Data from a Database Snapshot . 606

Lesson Summary . 607

Lesson Review . 607

Lesson 2: Reverting a Database from a Database Snapshot 609

Reverting a Database . 609

Lesson Summary . 610

Lesson Review . 611

Chapter Review . 612

Chapter Summary. 612

Key Terms . 612

Case Scenario: Implementing Database Snapshots for Administrative Actions . . . 613

Suggested Practices . 613

Take a Practice Test . 614

Table of Contents xxvii

A06T62271X.fm Page xxvii Friday, April 29, 2005 7:24 PM
17 Implementing Database Mirroring . 615

Before You Begin . 616

Lesson 1: Understanding Database Mirroring Roles. 618

Database Mirroring Roles . 618

Principal Role . 619

Mirror Role. 619

Witness Server . 619

Lesson Summary. 620

Lesson Review . 621

Lesson 2: Preparing Databases for Database Mirroring . 622

Recovery Model . 622

Backup and Restore . 623

Copy System Objects . 623

Lesson Summary. 625

Lesson Review . 625

Lesson 3: Establishing Endpoints . 627

Endpoint Types . 627

Endpoint Security . 628

Database Mirroring Endpoints . 629

Lesson Summary. 632

Lesson Review . 633

Lesson 4: Understanding Operating Modes . 634

High Availability Operating Mode. 635

High Performance Operating Mode . 637

High Protection Operating Mode . 638

Caching . 638

Transparent Client Redirection . 639

Lesson Summary. 640

Lesson Review . 641

Lesson 5: Failing Over a Database Mirror . 642

Understanding Failure Scenarios . 642

How to Initiate a Failover . 643

Lesson Summary. 644

Lesson Review . 644

xxviii Table of Contents

A06T62271X.fm Page xxviii Friday, April 29, 2005 7:24 PM
Lesson 6: Removing Database Mirroring . 645

Removing Database Mirroring . 645

Lesson Summary . 646

Lesson Review . 646

Chapter Review . 647

Chapter Summary. 647

Key Terms . 647

Case Scenario: Implementing Database Mirroring . 648

Suggested Practices . 649

Establishing Database Mirroring. 649

Creating a Database Snapshot Against a Database Mirror 649

Take a Practice Test . 650

18 Implementing Log Shipping . 651

Before You Begin . 651

Lesson 1: Preparing to Log Ship . 653

Understanding Log Shipping . 653

Understanding Log Shipping Requirements. 655

Lesson Summary . 656

Lesson Review . 656

Lesson 2: Configuring Log Shipping Options. 658

How to Enable the Primary Database . 658

Defining Log Shipping Backup Options . 659

Scripting the Log Shipping Configuration . 661

How to Configure Secondary Databases . 663

Configuring the Copy Files Task . 665

Configuring Log Shipping Restore Options . 665

Scripting the Secondary Database Configuration . 667

Lesson Summary . 674

Lesson Review . 675

Lesson 3: Configuring Log Shipping Mode . 676

How to Configure No Recovery Mode . 676

How to Configure Standby Mode . 678

Lesson Summary . 682

Lesson Review . 683

Table of Contents xxix

A06T62271X.fm Page xxix Friday, April 29, 2005 7:24 PM
Lesson 4: Configuring Monitoring. 684

Understanding the Role of a Monitor Server. 684

How to Configure a Monitor Server . 685

Lesson Summary. 689

Lesson Review . 689

Chapter Review. 690

Chapter Summary . 690

Key Terms . 690

Case Scenarios . 691

Case Scenario 1: Providing Reporting Scalability . 691

Case Scenario 2: Providing Fault Tolerance for Multiple Servers 692

Suggested Practices . 692

Create a Log Shipping Configuration . 692

Take a Practice Test . 693

19 Managing Replication . 695

Before You Begin . 696

Lesson 1: Understanding Replication Types. 698

Understanding Replication Terminology . 698

Replication Types . 701

Replication Agents . 703

Lesson Summary. 705

Lesson Review . 705

Lesson 2: Setting Up Replication . 706

How to Set Up the Distributor . 706

How to Create a Publication. 710

How to Subscribe to the Publication. 715

Lesson Summary. 729

Lesson Review . 730

Lesson 3: Configuring Replication Security . 731

Setting Up Replication in a Secure Environment. 731

Securing Publications. 732

Permissions Required by Agents . 733

Lesson Summary. 745

Lesson Review . 745

xxx Table of Contents

A06T62271X.fm Page xxx Friday, April 29, 2005 7:24 PM
Lesson 4: Configuring Conflict Resolution for Merge Replication 747

Conflict Resolution Basics . 747

Conflict Resolution Resolvers . 747

Lesson Summary . 759

Lesson Review . 759

Lesson 5: Monitoring Replication. 761

Using SQL Server Replication Monitor . 761

Configuring Alerts with SSRM. 764

Monitoring Replication with System Monitor . 765

Lesson Summary . 769

Lesson Review . 769

Chapter Summary. 771

Key Terms . 771

Case Scenarios. 772

Case Scenario 1: Providing Local Access to Reports . 772

Case Scenario 2: Providing Fault Tolerance for Multiple Servers. 772

Suggested Practices . 773

Creating Replication Setups . 773

Take a Practice Test . 773

20 Working with Service Broker . 775

Before You Begin . 776

Lesson 1: Exploring the Service Broker Architecture . 778

Messaging Overview . 778

Service Broker Components . 779

Messaging-Application Interaction . 780

Enabling Service Broker . 781

Lesson Summary . 782

Lesson Review . 783

Lesson 2: Creating Message Types and Contracts . 784

Creating Message Types . 784

Creating a Contract . 786

Lesson Summary . 788

Lesson Review . 789

Table of Contents xxxi

A06T62271X.fm Page xxxi Friday, April 29, 2005 7:24 PM
Lesson 3: Creating Queues and Services . 790

Creating a Message Queue. 790

Creating a Service . 795

Lesson Summary. 797

Lesson Review . 797

Lesson 4: Creating Conversations . 798

Create a Conversation . 798

Routing Messages to a Service. 800

Lesson Summary. 801

Lesson Review . 802

Lesson 5: Sending and Receiving Messages. 803

Sending Messages . 803

Receive Messages . 804

Lesson Summary. 806

Lesson Review . 806

Chapter Review. 808

Chapter Summary . 808

Key Terms . 808

Case Scenario: Building a Service Broker Application . 809

Suggested Practices . 810

Configuring a Service Broker Solution . 811

Take a Practice Test . 811

21 Creating Full-Text Catalogs . 813

Before You Begin . 813

Lesson 1: Creating a Full-Text Catalog . 817

How to Create a Full-Text Catalog. 817

Lesson Summary. 819

Lesson Review . 819

Lesson 2: Creating a Full-Text Index . 820

Full-Text Index Architecture . 820

How to Create a Full-Text Index. 821

Lesson Summary. 824

Lesson Review . 824

xxxii Table of Contents

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

Lesson 3: Populating a Full-Text Index . 825

Specifying an Index-Population Method . 825

Populating a Full-Text Catalog . 826

Lesson Summary . 827

Lesson Review . 827

Lesson 4: Querying Data by Using a Full-Text Index. 828

Query Execution . 828

FREETEXT . 829

FREETEXTTABLE . 830

CONTAINS . 831

CONTAINSTABLE . 833

Lesson Summary . 834

Lesson Review . 835

Chapter Review . 836

Chapter Summary. 836

Key Terms . 836

Case Scenario: Building Full-Text Indexes . 837

Suggested Practices . 837

Creating Full-Text Indexes . 838

Querying Full-Text Indexes . 838

Take a Practice Test . 838

Answers . 839

Glossary. 909

Index . 923

A06T62271X.fm Page xxxii Monday, May 1, 2006 11:01 AM

n
T
L
a
-

o
s-
e

r;

r
e

A07I62271X.fm Page xxxiii Tuesday, May 2, 2006 1:44 PM
Introduction
This training kit is designed for information technology (IT) professionals who pla
to take Microsoft Certified Technical Specialist (MCTS) exam 70-431, as well as for I
professionals who need to know how to implement and maintain Microsoft SQ
Server 2005 databases. We assume that before you begin using this kit you have
working knowledge of Microsoft Windows, network technologies, relational data
bases and their design, Transact-SQL, and the SQL Server 2005 client tools.

By using this training kit, you’ll learn how to

■ Install and configure SQL Server 2005.

■ Create and implement database objects.

■ Implement high availability and disaster recovery.

■ Maintain databases.

■ Support data consumers.

■ Monitor and troubleshoot SQL Server performance.

Hardware Requirements
We recommend that you use a computer that is not your primary workstation to d
the practice exercises in this book because you will make changes to the operating sy
tem and application configuration. The following hardware is required to complet
the practice exercises:

■ Personal computer with a 600 MHz Pentium III–compatible or faster processo
1 GHz or faster processor recommended

■ 512 MB of RAM or more; 1GB or more recommended

■ 8 GB of available hard disk space

NOTE Four volumes necessary for some practice exercises

To complete some of the practice exercises in this book, you will need four volumes on you
computer. We recommend that you make the C volume the largest, and then use volum
sizes of 650 MB for the D, E, and F volumes.
xxxiii

xxxi

So

A07I62271X.fm Page xxxiv Tuesday, May 2, 2006 1:44 PM
v Introduction

■ DVD-ROM drive

■ Super VGA (1,024 x 768) or higher resolution video adapter and monitor

■ Keyboard and Microsoft mouse, or compatible pointing device

ftware Requirements
The following software is required to complete the practice exercises:

■ One of the following operating systems:

❑ Microsoft Windows 2000 Server with Service Pack (SP) 4 or later

❑ Windows 2000 Professional with SP 4 or later

❑ Windows XP with SP 2 or later

❑ Windows Server 2003 Standard Edition, Enterprise Edition, or Datacenter
Edition with SP 1 or later

❑ Microsoft Windows Small Business Server 2003 with SP 1 or later

❑ Microsoft Windows Server 2003 Standard x64 Edition, Enterprise x64 Edi-
tion, or Datacenter x64 Edition with SP 1 or later

❑ Windows XP Professional x64 Edition or later running in Windows on
Windows

■ SQL Server 2005 (A 180-day evaluation edition of Microsoft SQL Server 2005
Enterprise Edition is included on DVD with this book)

CAUTION Networked computers

If your computer is part of a larger network, verify with your network administrator that the
SQL Server instances installed will not interfere with network operations. All instances config-
ured for exercises within this book should be set to allow local connections only to ensure
that they will not interact with other resources on your network.

■ Microsoft Internet Explorer 6.0 SP 1 or later

v

t.

d
s-
s
d
-

e
t
-

n
-
e

r

e

t.

r

A07I62271X.fm Page xxxv Tuesday, May 2, 2006 1:44 PM
Introduction xxx

Using the CD and DVD
A companion CD and an evaluation software DVD are included with this training ki
The companion CD contains the following:

■ Practice tests You can reinforce your understanding of how to implement an
maintain SQL Server 2005 databases by using electronic practice tests you cu
tomize to meet your needs from the pool of Lesson Review questions in thi
book. Or you can practice for the 70-431 certification exam by using tests create
from a pool of 295 realistic exam questions, which give you many different prac
tice exams to ensure that you’re prepared.

■ Practice files The practice exercises in Chapter 8, “Managing XML Data,” ar
code-intensive. Code for this chapter is included on the companion CD so tha
you don’t have to type it all yourself. Files for you to practice importing in Chap
ter 10, “Using Flat Files,” are also included.

■ An eBook An electronic version (eBook) of this book is included for times whe
you don’t want to carry the printed book with you. The eBook is in Portable Doc
ument Format (PDF), and you can view it by using Adobe Acrobat or Adob
Reader.

The evaluation software DVD contains a 180-day evaluation edition of SQL Serve
2005 Enterprise Edition, in case you want to use it with this book.

How to Install the Practice Tests
To install the practice test software from the companion CD to your hard disk, do th
following:

1. Insert the companion CD into your CD drive and accept the license agreemen
A CD menu appears.

NOTE If the CD menu doesn’t appear

If the CD menu or the license agreement doesn’t appear, AutoRun might be disabled on you

computer. Refer to the Readme.txt file on the CD-ROM for alternate installation instructions.

2. Click the Practice Tests item and follow the instructions on the screen.

xxxv

Ho

A07I62271X.fm Page xxxvi Tuesday, May 2, 2006 1:44 PM
i Introduction

w to Use the Practice Tests
To start the practice test software, follow these steps:

1. Click Start/All Programs/Microsoft Press Training Kit Exam Prep. A window
appears that shows all the Microsoft Press training kit exam prep suites installed
on your computer.

2. Double-click the lesson review or practice test you want to use.

NOTE Lesson reviews vs. practice tests

Select the (70-431) Microsoft SQL Server 2005—Implementation and Maintenance lesson review to
use the questions from the “Lesson Review” sections of this book. Select the (70-431) Microsoft SQL
Server 2005—Implementation and Maintenance practice test to use a pool of 295 questions similar
to those in the 70-431 certification exam.

Lesson Review Options
When you start a lesson review, the Custom Mode dialog box appears so that you can
configure your test. You can click OK to accept the defaults or you can customize the
number of questions you want, how the practice test software works, which exam
objectives you want the questions to relate to, and whether you want your lesson
review to be timed. If you’re retaking a test, you can select whether you want to see all
the questions again or only those questions you missed or didn’t answer.

After you click OK, your lesson review starts.

■ To take the test, answer the questions and use the Next, Previous, and Go To but-
tons to move from question to question.

■ After you answer an individual question, if you want to see which answers are
correct—along with an explanation of each correct answer—click Explanation.

■ If you’d rather wait until the end of the test to see how you did, answer all the
questions and then click Score Test. You’ll see a summary of the exam objectives
you chose and the percentage of questions you got right overall and per objec-
tive. You can print a copy of your test, review your answers, or retake the test.
Practice Test Options
When you start a practice test, you choose whether to take the test in Certification
Mode, Study Mode, or Custom Mode:

ii

n
d

t

s-

,
s

”
n
r
n

-

r-
-

n
-
s
o

A07I62271X.fm Page xxxvii Tuesday, May 2, 2006 1:44 PM
Introduction xxxv

■ Certification Mode Closely resembles the experience of taking a certificatio
exam. The test has a set number of questions, it’s timed, and you can’t pause an
restart the timer.

■ Study Mode Creates an untimed test in which you can review the correc
answers and the explanations after you answer each question.

■ Custom Mode Gives you full control over the test options so that you can cu
tomize them as you like.

In all modes, the user interface when you’re taking the test is the basically the same
but different options enabled or disabled depending on the mode. The main option
are discussed in the previous section, “Lesson Review Options.”

When you review your answer to an individual practice test question, a “References
section is provided that lists where in the training kit you can find the informatio
that relates to that question and provides links to other sources of information. Afte
you click Test Results to score your entire practice test, you can click the Learning Pla
tab to see a list of references for every objective.

How to Uninstall the Practice Tests
To uninstall the practice test software for a training kit, use the Add Or Remove Pro
grams option in Windows Control Panel.

Microsoft Certified Professional Program
The Microsoft certifications provide the best method to prove your command of cu
rent Microsoft products and technologies. The exams and corresponding certifica
tions are developed to validate your mastery of critical competencies as you desig
and develop, or implement and support, solutions with Microsoft products and tech
nologies. Computer professionals who become Microsoft-certified are recognized a
experts and are sought after industry-wide. Certification brings a variety of benefits t
the individual and to employers and organizations.

MORE INFO All the Microsoft certifications

For a full list of Microsoft certifications, go to www.microsoft.com/learning/mcp/default.asp.

xxxv

Te

Ev

A07I62271X.fm Page xxxviii Tuesday, May 2, 2006 1:44 PM
iii Introduction

chnical Support
Every effort has been made to ensure the accuracy of this book and the contents of the
companion CD. If you have comments, questions, or ideas regarding this book or the
companion CD, please send them to Microsoft Press by using either of the following
methods:

E-mail: tkinput@microsoft.com

Postal Mail:

Microsoft Press
Attn: MCTS Self-Paced Training Kit (Exam 70-431): Microsoft SQL
Server 2005—Implementation and Maintenance Editor
One Microsoft Way
Redmond, WA 98052–6399

For additional support information regarding this book and the CD-ROM (includ-
ing answers to commonly asked questions about installation and use), visit the
Microsoft Press Technical Support website at www.microsoft.com/learning/support/
books/. To connect directly to the Microsoft Knowledge Base and enter a query, visit
http://support.microsoft.com/search/. For support information regarding Microsoft
software, please connect to http://support.microsoft.com.

aluation Edition Software Support
The 180-day evaluation edition provided with this training kit is not the full retail
product and is provided only for the purposes of training and evaluation. Microsoft
and Microsoft Technical Support do not support this evaluation edition.

Information about any issues relating to the use of this evaluation edition with this
training kit is posted to the Support section of the Microsoft Press Web site
(www.microsoft.com/learning/support/books/). For information about ordering the
full version of any Microsoft software, please call Microsoft Sales at (800) 426-9400 or
visit www.microsoft.com.

C0162271X.fm Page 1 Friday, April 29, 2005 7:27 PM
Chapter 1

Installing SQL Server 2005

This chapter prepares you to accomplish one of the common tasks that all database
administrators (DBAs) face: installing a new Microsoft SQL Server instance. Not only
do you have to select the correct SQL Server edition for your organization’s needs but
you also have to determine the best hardware and software for the SQL Server instal-
lation. After verifying the prerequisites for the different SQL Server 2005 editions, you
need to determine whether you will install a default, named, or multiple instances of
SQL Server. This chapter shows you how to install a SQL Server 2005 instance from
scratch and shares best practices for upgrading to SQL Server 2005 from a previous
version of SQL Server. By the end of the chapter, you will understand the decisions
you must make before, during, and after a SQL Server 2005 installation—whether the
instance you are installing is the first or the tenth instance on the server.

Exam objectives in this chapter:
■ Install SQL Server 2005.

❑ Verify prerequisites.

❑ Create an instance.

❑ Upgrade from an earlier version of SQL Server.

Lessons in this chapter:
■ Lesson 1: Selecting the Correct SQL Server 2005 Edition 3

■ Lesson 2: Determining Infrastructure Requirements for SQL Server 2005. . . 10

■ Lesson 3: Using Default, Named, and Multiple Instances
of SQL Server 2005. 17

■ Lesson 4: Installing a New Instance of SQL Server 2005 21

■ Lesson 5: Upgrading to a SQL Server 2005 Installation. 34
1

2 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 2 Friday, April 29, 2005 7:27 PM
Before You Begin
To complete the lessons in this chapter, you must have

■ A computer that meets or exceeds the minimum hardware requirements for SQL
Server 2005 as listed in Lesson 2 of this chapter.

■ Microsoft Windows Server 2003 running on your computer on an NTFS file sys-
tem (NTFS) partition.

■ SQL Server 2000 installed to complete the upgrade sections of this chapter.

Real World
Randy Dyess

Having been a DBA for many years in a variety of environments, I have planned
and installed hundreds of SQL Server installations. Installing SQL Server is a vital
part of a DBA’s job role. And you are expected both to determine which SQL
Server edition should be installed and to install that SQL Server instance on the
correct hardware and software configuration. Keep in mind that the decisions
you make as you install SQL Server provide the foundation for an effective data-
base implementation. And as with most decisions you’ll make regarding SQL
Server, you need to understand the needs of your business users—their current
needs and projected future needs—to make sure you install a system that is appro-
priate for today and that isn’t obsolete at your organization’s first growth spurt.

Lesson 1: Selecting the Correct SQL Server 2005 Edition 3

C0162271X.fm Page 3 Friday, April 29, 2005 7:27 PM
Lesson 1: Selecting the Correct SQL Server 2005 Edition
A key part of installing a new SQL Server 2005 instance is selecting the appropriate
SQL Server 2005 edition for the installation. Understanding the different SQL Server
editions and the features and functionality of each of the editions is key to selecting
the right edition for your users’ requirements. The edition you select not only deter-
mines what you can do with your SQL Server installation but also determines what
hardware you must set aside for your installation.

After this lesson, you will be able to:

■ Identify the appropriate SQL Server edition to install for a given environment.

Estimated lesson time: 15 minutes

Understanding SQL Server 2005 Editions
A major part of the installation planning process is determining the SQL Server 2005
edition you need to use. SQL Server 2005 offers five editions—two of which come in
either 32-bit or 64-bit versions—each designed for a specific environment. Determin-
ing the proper edition to install is critical for meeting the functionality needs of your
current environment as well as any future needs you might expect. Here is a descrip-
tion of each edition:

■ SQL Server 2005 Enterprise Edition (32-bit and 64-bit) Enterpr i se Ed i t ion i s
designed to support the largest enterprise online transaction processing (OLTP)
environments, highly complex data-analysis requirements, data-warehousing
systems, and active Web sites. DBAs designing large database installations
should consider only Enterprise Edition.

■ SQL Server 2005 Standard Edition (32-bit and 64-bit) Standard Edition includes
the essential functionality needed for e-commerce, data warehousing, and line-
of-business solutions that most small- and medium-sized organizations use.
Organizations with databases that will contain large amounts of data but do not
need installations with all the features of Enterprise Edition might want to con-
sider Standard Edition.

4 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 4 Friday, April 29, 2005 7:27 PM
■ SQL Server 2005 Workgroup Edition (32-bit only) Workgroup Edition is the data-
management solution for small organizations that need a database that has no
limits on size or number of users and has the capability to serve as a back end to
small Web servers and departmental or branch-office operations. DBAs working
with small amounts of data on smaller servers might want to consider using
Workgroup Edition.

■ SQL Server 2005 Developer Edition (32-bit and 64-bit) Developer Edition includes
all the functionality of SQL Server 2005 Enterprise Edition, but it is licensed for
use as a development and test system, not as a production server. Developer Edi-
tion is suited for developers in larger companies who need to develop applica-
tions that will use Enterprise Edition but who do not want to install Enterprise
Edition on development or test servers.

■ SQL Server 2005 Express Edition (32-bit only) SQL Server Express is a free, easy-
to-use, and simple-to-manage database that can be redistributed to function as
the client database as well as a basic server database. Express Edition is usually
suited only for very small data sets. Developers who are developing applications
that require a small data store should consider using Express Edition. Express
Edition also makes a suitable replacement for Microsoft Access databases.

SQL Server 2005 Features by Edition
To choose the right SQL Server 2005 edition for your installation, you should review
the functionality of each edition to determine which one will meet your users’ needs.
Table 1-1 provides a quick comparison of the features in each SQL Server 2005 edition.

Table 1-1 Feature Set by SQL Server 2005 Edition (Developer Edition has the same
feature set as Enterprise Edition)

Feature/Func-
tionality

Express Workgroup Standard Enterprise

Number of CPUs
Supported

1; includes
support for
multicore
processor

2; includes
support for
multicore
processor

4; includes
support for
multicore
processor

Unlimited;
includes
support for
multicore
processor

Memory 1 GB 3 GB Limit based
on operat-
ing system

Limit based
on operat-
ing system

Lesson 1: Selecting the Correct SQL Server 2005 Edition 5

C0162271X.fm Page 5 Friday, April 29, 2005 7:27 PM
64-bit Support With Win-
dows on
Windows
(WOW)

With WOW Native Native

Maximum
Database Size

4 GB No Limit No Limit No Limit

Partitioning No No No Yes

Database
Mirroring

No No Yes Yes

Failover
Clustering

No No Yes (two
nodes only)

Yes

Log Shipping No Yes Yes Yes

Management
Studio

No Yes Yes Yes

Database Tuning
Advisor

No No Yes Yes

Full-Text Search No Yes Yes Yes

SQL Server Agent
Job Scheduling
Service

No Yes Yes Yes

Best Practices
Analyzer

Yes Yes Yes Yes

Notification
Services

No No Yes Yes

Table 1-1 Feature Set by SQL Server 2005 Edition (Developer Edition has the same
feature set as Enterprise Edition)

Feature/Func-
tionality

Express Workgroup Standard Enterprise

6 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 6 Friday, April 29, 2005 7:27 PM
Service Broker Yes
(Subscriber
only)

Yes Yes Yes

Merge
Replication

Yes
(Subscriber
only)

Yes (Publish
up to 25
Subscrib-
ers)

Yes Yes

Transactional
Replication

Yes
(Subscriber
only)

Yes (Publish
up to five
Subscrib-
ers)

Yes Yes

Oracle
Replication

No No No Yes; transac-
tional repli-
cation with
an Oracle
database as
a Publisher

Web Services
(HTTP
Endpoints)

No No Yes Yes

Report Server Yes Yes Yes Yes

Report Builder No Yes Yes Yes

BI Development
Studio

Yes (Report
Designer
only)

Yes (Report
Designer
only)

Yes Yes

Enterprise Man-
agement Tools

No Yes Yes Yes

Table 1-1 Feature Set by SQL Server 2005 Edition (Developer Edition has the same
feature set as Enterprise Edition)

Feature/Func-
tionality

Express Workgroup Standard Enterprise

Lesson 1: Selecting the Correct SQL Server 2005 Edition 7

C0162271X.fm Page 7 Friday, April 29, 2005 7:27 PM
Quick Check
1. Which SQL Server 2005 edition is free?

2. Which SQL Server 2005 edition has the most features and functionality?

Quick Check Answers

1. Express Edition is free to use and distribute.

2. Enterprise Edition, targeted at organizations with large databases and com-
plex applications, has the most features, including support for partitioning
and Oracle replication. It is also licensed for production use. Although
Developer Edition includes these same features, it is not licensed for use in
a production environment.

Lesson Summary
■ SQL Server 2005 includes five editions: Enterprise Edition, Developer Edition,

Standard Edition, Workgroup Edition, and Express Edition.

■ Enterprise Edition has no limitations and contains all features and functionality.

■ Developer Edition has no limitations and contains all features and functionality,
but it is not licensed for production.

■ Standard Edition has features and functionality suited for larger data sets, but it
is limited in the number of nodes it supports for clustering as well as in its capa-
bility to use system resources, online indexing, indexed views, fast recovery,
online restores, and data partitioning.

Native Support
for Web Services
(Service Oriented
Architectures)

Yes
(Reporting
Services
only)

Yes (Report-
ing Services
only)

Yes Yes

Analysis Services No No Yes Yes

Table 1-1 Feature Set by SQL Server 2005 Edition (Developer Edition has the same
feature set as Enterprise Edition)

Feature/Func-
tionality

Express Workgroup Standard Enterprise

8 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 8 Friday, April 29, 2005 7:27 PM
■ Workgroup Edition does not include the features and functionality needed to
operate large databases and is restricted in its capability to support mid-size and
large companies.

■ Express Edition is useful for small application-installed databases that need to
be distributed free of charge. It is not suited for organization-wide databases.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. You need to install a new production installation of SQL Server 2005. The server
purchased for your installation has four CPUs. Which edition of SQL Server
2005 should you choose to make use of all the CPUs?

A. SQL Server Express Edition

B. SQL Server Workgroup Edition

C. SQL Server Developer Edition

D. SQL Server Standard Edition

2. During the design process for a new production installation of SQL Server 2005,
you determine that you need to partition the database. Which edition supports
data partitioning?

A. SQL Server Express Edition

B. SQL Server Workgroup Edition

C. SQL Server Enterprise Edition

D. SQL Server Standard Edition

Lesson 1: Selecting the Correct SQL Server 2005 Edition 9

C0162271X.fm Page 9 Friday, April 29, 2005 7:27 PM
3. As a database developer, you need to create an application that will be down-
loaded from the Internet. The application requires a database to store applica-
tion data. Which SQL Server edition can you use for your application that does
not require application users to purchase a license for SQL Server 2005?

A. SQL Server Express Edition

B. SQL Server Workgroup Edition

C. SQL Server Developer Edition

D. SQL Server Standard Edition

10 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 10 Friday, April 29, 2005 7:27 PM
Lesson 2: Determining Infrastructure Requirements for
SQL Server 2005

To select the appropriate infrastructure for your installation, you need to understand
the minimum hardware requirements for each SQL Server 2005 edition on each of
the supporting Windows operating system (OS) editions. When you review the min-
imum hardware requirements that this lesson covers, remember that these require-
ments are a recommended minimum—most production environments go beyond the
minimum requirements to ensure an environment that has the speed and capacity the
users need. Remember to also keep the future needs of your database environment in
mind when determining the appropriate hardware for your situation. Planning for the
future helps you avoid common performance problems and eliminate the need for
computer hardware upgrades later.

After this lesson, you will be able to:

■ Verify hardware prerequisites for a given installation.

■ Verify OS prerequisites for a given installation.

■ Verify network prerequisites for a given installation.

Estimated lesson time: 25 minutes

Identifying Minimum Hardware, OS, and Network Requirements
In deciding which edition of SQL Server 2005 to install, you need to take into account
the processor, Windows OS, memory, hard-disk, and network requirements for both
the 32-bit and 64-bit editions of SQL Server 2005. As noted previously, in most SQL
Server 2005 production environments, the actual hardware requirements exceed the
minimum hardware requirements for each SQL Server 2005 edition. However, it is
still important to understand the minimum hardware requirements for the various
SQL Server 2005 editions as a baseline to help you decide on the appropriate edition.
Let’s look at the infrastructure requirements for the 32-bit editions of SQL Server
2005 and then cover the requirements for the 64-bit editions.

32-Bit Editions of SQL Server 2005
■ Minimum processor requirements All editions of 32-bit SQL Server 2005 require

a Pentium III-compatible, 600-MHz processor with a 1-GHz or faster processor
recommended for optimal performance. Remember that this is a minimum
requirement, and as with all SQL Server 2005 requirements, DBAs should insist
on multiple fast processors for their production installations.

Lesson 2: Determining Infrastructure Requirements for SQL Server 2005 11

C0162271X.fm Page 11 Friday, April 29, 2005 7:27 PM
■ Minimum OS allowed Unlike processor speeds, different editions of SQL Server
2005 require different editions and service packs for the Windows OSs. Follow-
ing is a list of OSs required by each edition of 32-bit SQL Server 2005.

SQL Server 2005 Enterprise Edition

❑ Windows Server 2003 Standard Edition with Service Pack 1 (SP1) or later

❑ Windows Server 2003 Enterprise Edition with SP1 or later

❑ Windows Server 2003 Datacenter Edition with SP1 or later

❑ Windows Small Business Server 2003 Standard Edition with SP1 or later

❑ Windows Small Business Server 2003 Premium Edition with SP1 or later

❑ Windows 2000 Server with SP4

❑ Windows 2000 Advanced Server with SP4

❑ Windows 2000 Datacenter Server with SP4

SQL Server 2005 Standard Edition

❑ Windows Server 2003 Standard Edition with SP1 or later

❑ Windows Server 2003 Enterprise Edition with SP1 or later

❑ Windows Server 2003 Datacenter Edition with SP1 or later

❑ Windows Small Business Server 2003 Standard Edition with SP1 or later

❑ Windows Small Business Server 2003 Premium Edition with SP1 or later

❑ Windows 2000 Server with SP4

❑ Windows 2000 Advanced Server with SP4

❑ Windows 2000 Datacenter Server with SP4

❑ Windows 2000 Professional with SP4

❑ Windows XP Professional with SP2 or later

SQL Server 2005 Workgroup Edition

❑ All OSs listed for Enterprise and Standard editions

❑ Windows XP Media Edition with SP2 or later

❑ Windows XP Tablet Edition with SP2 or later

❑ Windows 2000 Professional with SP4

12 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 12 Friday, April 29, 2005 7:27 PM
SQL Server 2005 Express Edition

❑ All OSs listed for Enterprise and Standard editions

❑ All OSs listed for Workgroup Edition

❑ Windows XP Home Edition with SP2 or later

❑ Windows Server 2003 Web Edition with SP1 or later

Developer Edition

❑ All OSs listed for Enterprise and Standard editions

❑ All OSs listed for Workgroup Edition

❑ Windows XP Home Edition with SP2 or later

■ Memory requirements As with OS requirements, different editions of SQL
Server 2005 require that you install different amounts of memory to perform
effectively. The following list describes the amounts of memory required by each
edition of 32-bit SQL Server 2005:

❑ SQL Server 2005 Enterprise Edition: 512 MB; 1 GB or more recommended

❑ SQL Server 2005 Standard Edition: 512 MB; 1 GB or more recommended

❑ SQL Server 2005 Workgroup Edition: 512 MB; 1 GB or more recom-
mended (maximum of 4 GB)

❑ SQL Server 2005 Express Edition: 192 MB; 512 MB or more recommended
(maximum of 1 GB)

❑ SQL Server 2005 Developer Edition: 512 MB; 1 GB or more recommended

■ Hard disk space requirements All editions need 350 MB for full installation and
an additional 390 MB for installing the sample databases.

■ Internet and networking requirements Table 1-2 lists the Internet and network
requirements for the 32-bit version of SQL Server 2005.

Lesson 2: Determining Infrastructure Requirements for SQL Server 2005 13

C0162271X.fm Page 13 Friday, April 29, 2005 7:27 PM
64-Bit Editions of SQL Server 2005
■ Processor requirements Whereas all editions of 32-bit SQL Server 2005 require

the same speeds as a minimum for all types of processors, 64-bit systems have
different requirements based on the type of processor in the server. The follow-
ing lists the minimum required speed for each 64-bit processor type:

❑ All editions need IA64 minimum: 1 GHz or faster Itanium processor

❑ X64 minimum: 1 GHz or faster AMD Opteron, AMD Athlon 64, Intel
Xenon with Intel EM64T support, or Intel Pentium IV with EM64T support

■ Minimum OS requirements As with 32-bit SQL Server 2005, different editions of
SQL Server 2005 64-bit require different editions and service packs of the Win-
dows OSs. The following lists describe the different OSs required by each edition
of 64-bit SQL Server 2005.

SQL Server 2005 Enterprise Edition (IA64)

❑ Windows Server 2003 64-Bit Itanium Datacenter Edition with SP1 or later

❑ Windows Server 2003 64-Bit Itanium Enterprise Edition with SP1 or later

Table 1-2 Internet and Networking Requirements for 32-Bit SQL Server 2005

Component Requirement

Internet
Software

Microsoft Internet Explorer 6.0 SP1 or later is required for all
installations of SQL Server 2005 because Internet Explorer is
required for Microsoft Management Console (MMC) and HTML
Help. A minimal installation of Internet Explorer is sufficient, and
you do not need to configure Internet Explorer as the default
browser. However, if you are using the Connectivity Only option
and are not connecting to a server that requires encryption, Inter-
net Explorer 4.01 with SP2 is sufficient.

Internet
Information
Server (IIS)

If you are writing XML applications, you must configure IIS. IIS
5.0 or higher is required for Reporting Services installations.

Network The OS has built-in network software required for the SQL Server
2005 installation. TCP/IP must be enabled before you install SQL
Server 2005.

14 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 14 Friday, April 29, 2005 7:27 PM
SQL Server 2005 Standard Edition (IA64)

❑ Windows Server 2003 64-Bit Itanium Datacenter Edition with SP1 or later

❑ Windows Server 2003 64-Bit Itanium Enterprise Edition with SP1 or later

SQL Server 2005 Developer Edition (IA64)

❑ Windows Server 2003 64-Bit Itanium Datacenter Edition with SP1 or later

❑ Windows Server 2003 64-Bit Itanium Enterprise Edition with SP1 or later

SQL Server Enterprise Edition (X64)

❑ Windows Server 2003 64-Bit X64 Datacenter Edition with SP1 or later

❑ Windows Server 2003 64-Bit X64 Enterprise Edition with SP1 or later

❑ Windows Server 2003 64-Bit X64 Standard Edition with SP1 or later

SQL Server 2005 Standard Edition (X64)

❑ Windows Server 2003 64-Bit X64 Datacenter Edition with SP1 or later

❑ Windows Server 2003 64-Bit X64 Enterprise Edition with SP1 or later

❑ Windows Server 2003 64-Bit X64 Standard Edition with SP1 or later

SQL Server 2005 Developer Edition (X64)

❑ Windows Server 2003 64-Bit X64 Datacenter Edition with SP1 or later

❑ Windows Server 2003 64-Bit X64 Enterprise Edition with SP1 or later

❑ Windows Server 2003 64-Bit X64 Standard Edition with SP1 or later

SQL Server 2005 Express Edition

❑ All editions listed previously

❑ Windows XP X64 Professional (64-Bit)

■ Memory requirements Unlike the 32-bit SQL Server 2005 editions, all editions
of SQL Server 2005 64-bit have the same memory requirements. All editions of
SQL Server 2005 64-bit require at least 512 MB of memory, with 1 GB of mem-
ory recommended.

■ Hard disk space requirements All editions need 350 MB for full installation and
390 MB for sample databases.

■ Internet and networking requirements Table 1-3 lists the Internet and network
requirements for the 64-bit version of SQL Server 2005.

Lesson 2: Determining Infrastructure Requirements for SQL Server 2005 15

C0162271X.fm Page 15 Friday, April 29, 2005 7:27 PM
Quick Check
■ You need to install SQL Server 2005 on a test server to evaluate the new

functionality. Which edition do you use if your server has eight CPUs, and
you want to use all the CPUs?

Quick Check Answer

■ Both the Enterprise and the Developer editions support eight CPUs; to test
the functionality, you should probably select the Developer Edition.

Lesson Summary
■ SQL Server 2005 has editions that support 32-bit and 64-bit environments.

■ Different editions of SQL Server 2005 have different hardware, Windows OS,
and networking requirements that you must study before choosing a particular
SQL Server 2005 edition.

■ The SQL Server 2005 editions have different memory requirements that you
must be familiar with before choosing a particular SQL Server 2005 edition.

■ Most production environments exceed the minimum hardware requirements to
ensure satisfactory performance and capacity.

Table 1-3 Internet and Networking Requirements for 64-Bit SQL Server 2005

Component Requirement

Internet Software Internet Explorer 6.0 SP1 or later is required for all SQL Server
2005 installations because Internet Explorer 6.0 is required
for MMC and HTML Help. A minimal installation of Internet
Explorer is sufficient, and Internet Explorer is not required to
be the default browser. However, if you are using the Connec-
tivity Only option and are not connecting to a server that
requires encryption, Internet Explorer 4.01 SP2 is sufficient.

IIS IIS 5.0 or higher is required for Reporting Services installa-
tions. If you are writing XML applications, you must configure
IIS.

Network The OS has built-in network software required for the SQL
Server 2005 installation. TCP/IP must be enabled before
installing SQL Server 2005.

16 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 16 Friday, April 29, 2005 7:27 PM
Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which service pack level is required if you are using Windows 2000 Server for
your SQL Server 2005 installation?

A. SP1

B. SP2

C. SP3

D. SP4

2. Which minimum service pack level is required if you are using Windows 2003
Server for your SQL Server 2005 installation?

A. SP1

B. SP2

C. SP3

D. SP4

3. Which SQL Server 2005 edition does NOT require at least 512 MB of memory?

A. SQL Server Express Edition

B. SQL Server Workgroup Edition

C. SQL Server Developer Edition

D. SQL Server Standard Edition

Lesson 3: Using Default, Named, and Multiple Instances of SQL Server 2005 17

C0162271X.fm Page 17 Friday, April 29, 2005 7:27 PM
Lesson 3: Using Default, Named, and Multiple Instances of
SQL Server 2005

SQL Server 2005 supports the capability to install multiple instances (or copies) of
SQL Server 2005 or to install SQL Server 2005 alongside earlier versions of SQL
Server on the same server. During the installation process, the DBA can choose to
install an instance without a name—in which case, the instance name will take the
name of the server—as a default instance. To install multiple instances of SQL Server
besides the default instance on the same computer, the DBA must give the additional
instances different names . Being able to install multiple instances of SQL Server lets
you have system and user databases that are independent of each other. This capabil-
ity not only lets you work with earlier versions of SQL Server already installed on your
computer but also lets you test development software and operate instances of SQL
Server 2005 independently of each other. This lesson shows you how to define a
default instance and named instances of SQL Server 2005 and covers the advantages
and disadvantages of each.

After this lesson, you will be able to:

■ Define an instance as either a default or named instance.

■ Determine when it is appropriate to create a default or named instance.

Estimated lesson time: 15 minutes

Installing a Default, Named, or Multiple Instances of SQL Server 2005
When you install SQL Server 2005, the Microsoft SQL Server Installation Wizard
gives you the option of defining the installation as the default instance or as a named
instance. A named instance simply means that you define a name for the instance dur-
ing the installation. You will then have to access that instance by name. Default
instances acquire the name of the server you install them on. Thus, you can have only
one default instance at a time, but you can have many named instances.

When you start the Microsoft SQL Server Installation Wizard by running the
Setup.exe application, it detects whether a default instance already exists on the com-
puter. If the wizard does not detect a default instance, it gives you the choice of install-
ing a default instance or a named instance. To install a named instance, clear the
Default check box and type in the name of the named instance, as Figure 1-1 shows.

18 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 18 Friday, April 29, 2005 7:27 PM
Figure 1-1 Installing a named instance.

NOTE Number of default instances

You can install only one default instance of SQL Server on a server, and you can install only one
default instance on a cluster.

Determining When to Use Multiple Instances of SQL Server 2005
Using multiple instances of SQL Server 2005 increases administration overhead and
causes duplication of components. Additional instances of the SQL Server and SQL
Server Agent services require additional computer resources: memory and processing
capacity.

However, in the following scenarios, using multiple instances has advantages over
using only a single instance of SQL Server:

■ When testing multiple versions of SQL Server on the same computer

■ When testing service packs and development databases and applications

■ When different customers require their own system and user databases along
with full administrative control of their SQL Server instance

■ When the desktop engine is embedded in applications because each applica-
tion can install its own instance independent of instances installed by other
applications

Lesson 3: Using Default, Named, and Multiple Instances of SQL Server 2005 19

C0162271X.fm Page 19 Friday, April 29, 2005 7:27 PM
Quick Check
1. How many default instances of SQL Server can you install on one server?

2. When testing multiple versions of SQL Server on the same computer,
which type of instance should you install?

Quick Check Answers

1. Only one default instance can be installed on a server or a cluster.

2. In this situation, you should install multiple named instances of SQL
Server.

Lesson Summary
■ You can install SQL Server 2005 multiple times on one server.

■ Only one installation on each server or clustered grouping can be a default
instance with no name; additional installations on a server or clustered grouping
must be named instances.

■ Multiple instances are useful for applying different service packs to different
instances for testing purposes.

■ Multiple instances are useful for hosting different databases for different custom-
ers, with each customer getting a separate instance of SQL Server.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. You are a DBA at a SQL Server hosting organization. You need to ensure that
each of your organization’s client installations can operate with different service
packs of SQL Server. What can you do to achieve your goals without requiring a
different server for each client? (Choose the answer that reflects best practices.)

20 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 20 Friday, April 29, 2005 7:27 PM
A. Create one SQL Server installation and create a different database for each
client.

B. You cannot support different service packs on one server.

C. Install a different instance of SQL Server for each client on your servers.

D. Place clients together on servers that have SQL Server installations that
have the required service packs.

2. How many default instances can you install on a single SQL Server server?

A. 1

B. 2

C. 3

D. 4

Lesson 4: Installing a New Instance of SQL Server 2005 21

C0162271X.fm Page 21 Friday, April 29, 2005 7:27 PM
Lesson 4: Installing a New Instance of SQL Server 2005
During the installation of SQL Server 2005, you face many decisions, ranging from
simple questions, such as which drives to install on, to more complex decisions about
the installation’s security and collation. In this lesson, you walk through the decisions
you need to make regarding service accounts, authentication mode, and collation set-
tings and see the best practices for determining the configuration most appropriate
for your SQL Server 2005 environment.

After this lesson, you will be able to:

■ Determine the service account to use for your installation.

■ Determine the authentication mode to use for your installation.

■ Determine the collation setting to use for your installation.

Estimated lesson time: 30 minutes

Determining Service Accounts
One of the important decisions you make when installing SQL Server 2005 is which
service accounts to use for the SQL Server and the SQL Server Agent services. These
two SQL Server 2005 services run in the security context of a user account, and deter-
mining which account to use is an important decision. When installing SQL Server
2005, you need to answer two major questions about the service accounts:

■ Should you use separate accounts for the SQL Server service and the SQL Server
Agent service, or should you use the same account for both?

■ Should you use a built-in system account or a domain user account?

Same or Different Accounts for SQL Server and SQL Server Agent
Services?
When deciding whether to use the same account or different accounts for the SQL
Server service and the SQL Server Agent service, you should take into account the
functionality of the SQL Server Agent service. The SQL Server service rarely needs to
interact with servers other than the one on which it is installed, but SQL Server jobs,
replication processes, log shipping configurations, and other functionality often
require that the SQL Server Agent service interact with different servers.

22 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 22 Friday, April 29, 2005 7:27 PM
When the SQL Server Agent service must interact with different servers, DBAs typi-
cally create separate accounts for these two services to avoid giving the SQL Server
service more permissions than it needs.

IMPORTANT Restricted permissions

The need to restrict permissions of the SQL Server service account is often the determining factor
when deciding whether to use one account for the SQL Server service and the SQL Server Agent
service or separate accounts for these two services.

Built-In System Account or Domain User Account for the SQL Server and
SQL Server Agent Services?
You can choose from among three types of accounts for the SQL Server and SQL
Server Agent services: the Network Service account, a local system account, or a ded-
icated domain user account.

The Network Service account is a special built-in system account that is similar to
authenticated user accounts. This account has the same level of access to system
resources and objects as members of the Users group. Services that run under this
account will use the credentials of the computer account to access network resources.
It is not recommended that you use this account for either the SQL Server service or
the SQL Server Agent service account.

The local system account is a Windows OS account that has full administrative rights
on the local computer but has no network access rights. You can use this account for
development or testing of servers that you do not need to integrate with other server
applications or to interact with any network resources. But because of the privileges
granted to this account, it is not recommended that you use this account for the SQL
Server or SQL Server Agent services.

In most SQL Server 2005 production environments, you create and use one or two
dedicated domain user accounts for the SQL Server and SQL Server Agent services.
Using domain user accounts lets these services communicate with other SQL Server
installations, access network resources, and interact with other Windows applica-
tions. You can manually grant domain user accounts the permissions needed for the
SQL Server service and the SQL Server Agent service, but all rights needed for these
accounts will be granted automatically to the domain user accounts you specify when
you assign the accounts during SQL Server 2005 setup.

Lesson 4: Installing a New Instance of SQL Server 2005 23

C0162271X.fm Page 23 Friday, April 29, 2005 7:27 PM
CAUTION System Accounts have too many privileges

The Network Service account and local system account grant too many privileges to the SQL
Server and SQL Server Agent services and aren’t recommended for use with these services.

Choosing an Authentication Mode
SQL Server 2005 supports two authentication modes: Windows authentication and
Mixed Mode. The default authentication mode for SQL Server 2005 is Windows
authentication, which mandates that the only users who can connect to the SQL Server
2005 instance are users who have previously authenticated to the Windows OS.

The alternative authentication, Mixed Mode, means that SQL Server 2005 supports
users who authenticate using either of two authentication methods. The first
method is to rely on the Windows OS to authenticate users. The second method is
for SQL Server 2005 to authenticate users directly based on the submission of a
user name and password to SQL Server 2005 by the client application that is
attempting to gain access.

For most SQL Server 2005 environments, you should use Windows authentication
mode because it provides the highest level of security. However, legacy applications
often do not use Windows user accounts, so they must forward a user name and pass-
word to connect to SQL Server. In this case, Mixed Mode authentication lets the leg-
acy application use SQL Server logins to access the instance or if the database
environment includes clients on OSs that cannot authenticate with the Windows OS
such as Macintosh or UNIX clients. DBAs using Mixed Mode should be aware that
using this authentication mode requires the creation of a strong password for the sa
account. This account is highly privileged inside of SQL Server and its password is a
critical factor when deciding to use Mixed Mode.

NOTE Windows vs. Mixed Mode authentication

Windows authentication mode provides the highest level of security for authenticating user access
to a SQL Server instance. But if you have legacy applications that do not use Windows user
accounts, you need to use Mixed Mode authentication.

24 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 24 Friday, April 29, 2005 7:27 PM
Determining Collation Setting
You define the default collation for a SQL Server 2005 instance at installation time
during setup. SQL Server uses the collation setting to determine how non-Unicode
character data is stored and how to sort and compare Unicode and non-Unicode data.

To understand SQL Server 2005 collations, you need to start with the Windows OS.
When you install a Windows OS, you install a version for the language you want to
use, such as English, Greek, or Russian. These various language versions require dif-
ferent characters and different code pages to support the character sets and associated
keyboard layouts. A Windows locale is also set, based on the version of the Windows
OS that you have installed. This Windows locale determines the settings for numbers,
currencies, times, and dates on the server.

Although this process might initially seem complicated, determining the Windows col-
lation to use for SQL Server 2005 is generally straightforward. You should let the
Microsoft SQL Server Installation Wizard determine the default Windows collation
based on the Windows locale of the Windows OS unless one of the following condi-
tions exists:

■ The primary language supported by the SQL Server 2005 instance you are
installing is different from the Windows locale of the computer on which you are
installing SQL Server 2005.

■ The SQL Server 2005 instance you are installing will participate in a replication
scheme with SQL Server 2005 instances supporting a different language.

Quick Check
1. Which authentication mode is often required for legacy applications?

2. Which two accounts are not recommended for use with the SQL Server ser-
vice and the SQL Server Agent service?

Quick Check Answers

1. Many legacy applications require the use of SQL Server logins, which man-
dates Mixed Mode authentication.

2. The Network Service account and local system account grant too many
privileges and are not recommended for use with the SQL Server and SQL
Server Agent services.

Lesson 4: Installing a New Instance of SQL Server 2005 25

C0162271X.fm Page 25 Friday, April 29, 2005 7:27 PM
PRACTICE Installing a SQL Server 2005 Named Instance
In this practice, you will install a SQL Server 2005 named instance.

1. Start the Microsoft SQL Server Installation Wizard by running the Setup appli-
cation using the menu that appears when you insert the CD. On the End User
License Agreement page, select the I Accept The Licensing Terms And Condi-
tions check box and click Next.

2. On the Installing Prerequisites page, click Next when the installation of the
required components completes.

3. On the Welcome To The Microsoft SQL Server Installation Wizard page, click
Next.

4. Verify the completion of the System Configuration Checker, as Figure 1-2 shows.

Figure 1-2 Verify the System Configuration Checker.

5. Click Next.

26 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 26 Friday, April 29, 2005 7:27 PM
6. Fill in the appropriate user and organization name in the text boxes shown in
Figure 1-3.

Figure 1-3 Add user and organization name for registration.

7. Click Next.

8. Select the appropriate components to install by checking the box next to the
component. For this practice, you should install all the available components
(see Figure 1-4).

Figure 1-4 Determine appropriate components.

Lesson 4: Installing a New Instance of SQL Server 2005 27

C0162271X.fm Page 27 Friday, April 29, 2005 7:27 PM
9. Click Advanced. Expand the Documentation, Samples, And Sample Databases tree.

10. From the drop-down list associated with Sample Databases (see Figure 1-5),
select Entire Feature Will Be Installed On Local Hard Drive.

Figure 1-5 Install sample databases.

11. Click Next.

12. Determine which instance names are already in use on the server by clicking
Installed Instances, which displays the window shown in Figure 1-6.

Figure 1-6 Determine names in use.

28 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 28 Friday, April 29, 2005 7:27 PM
13. Click OK.

14. Install a default instance, as Figure 1-7 shows.

Figure 1-7 Name an instance.

15. Click Next.

16. Review the components that will be installed and click Next.

17. Configure the service account information and the component startup informa-
tion by selecting Use The Built-In System Account and choosing Local System
from the drop-down list, as shown in Figure 1-8.

CAUTION Local System account vs. domain user account

This practice uses the local system account because we assume that you are working on a
computer that is not part of a domain. Keep in mind that the best practices for configuring
the service account in a domain environment are to configure these services using a domain
user account instead of using the local system account.

Lesson 4: Installing a New Instance of SQL Server 2005 29

C0162271X.fm Page 29 Friday, April 29, 2005 7:27 PM
Figure 1-8 Configure service accounts.

18. Select the SQL Server Agent check box.

19. Click Next.

20. Configure the authentication mode by selecting Mixed Mode (Windows
Authentication And SQL Server Authentication), as shown in Figure 1-9.

Figure 1-9 Configure authentication mode.

30 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 30 Friday, April 29, 2005 7:27 PM
21. Enter a strong password in the password text boxes. This password is used by
the sa login ID.

22. Click Next.

23. Review the default collation settings, which Figure 1-10 shows.

Figure 1-10 Configure the collation.

24. Click Next.

25. Configure error and usage reporting by selecting both the Automatically Send
Error Reports and Automatically Send Feature Usage Data check boxes, shown
in Figure 1-11.

Lesson 4: Installing a New Instance of SQL Server 2005 31

C0162271X.fm Page 31 Friday, April 29, 2005 7:27 PM
Figure 1-11 Configure error and usage reporting.

26. Click Next.

27. Verify which components will be installed (see Figure 1-12).

Figure 1-12 Verify which components will be installed.

28. Click Install.

32 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 32 Friday, April 29, 2005 7:27 PM
29. Verify that setup is complete (see Figure 1-13).

Figure 1-13 Verify that setup is complete.

30. Click Next and then review the completion report.

31. Click Finish.

Lesson Summary
■ SQL Server 2005 requires you to select at least one account to use for the SQL

Server service and the SQL Server Agent service.

■ You must use current business requirements, organization security require-
ments, and organization database standards to decide whether to install SQL
Server 2005 with different service accounts for the SQL Server service and the
SQL Server Agent service.

■ You must use current business requirements, organization security require-
ments, and organization database standards to decide whether to install SQL
Server 2005 with local system accounts or a domain user account (which is rec-
ommended) for the SQL Server service and the SQL Server Agent service.

■ When installing SQL Server 2005, Windows authentication mode provides the
highest level of security, but legacy applications might require Mixed Mode
authentication.

■ In most cases, you should let the Microsoft SQL Server Installation Wizard deter-
mine which collation to use when installing SQL Server 2005.

Lesson 4: Installing a New Instance of SQL Server 2005 33

C0162271X.fm Page 33 Friday, April 29, 2005 7:27 PM
Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which SQL Server 2005 services require that you install them with their own
account? (Choose all that apply.)

A. SQL Server Agent

B. Log Reader Agent

C. SQL Server

D. Replication Agent

2. Which authentication mode lets you use both SQL Server logins and Windows
logins?

A. Kerebos authentication

B. Windows

C. Mixed Mode

D. Network Service account

34 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 34 Friday, April 29, 2005 7:27 PM
Lesson 5: Upgrading to a SQL Server 2005 Installation
With the release of SQL Server 2005, many DBAs will want to upgrade their existing
databases to the new release to make use of all its new features. As part of this task,
DBAs must understand the methods available to perform an upgrade to SQL Server
2005 and must develop a strategy that includes a recovery plan in case the upgrade
needs to be rolled back because of problems. In this lesson, you explore the two types
of upgrades available, different methods you can use to move files from the old data-
base to the new one, ways to develop testing criteria to make sure the upgrade was
successful, and best practices for upgrading.

NOTE No direct upgrade from SQL Server 6.5

You cannot upgrade a SQL Server 6.5 database environment directly to SQL Server 2005. Instead,
you will need to perform a two-step upgrade. First, upgrade from the 6.5 environment to either
SQL Server 7.0 or SQL Server 2000, and then upgrade to SQL Server 2005.

After this lesson, you will be able to:

■ Select the appropriate upgrade strategy for your environment.

■ Select an appropriate upgrade method for a side-by-side migration.

■ Develop criteria to test the success of your upgrade.

■ Upgrade from a previous version of SQL Server.

Estimated lesson time: 20 minutes

Determining an Appropriate Upgrade Strategy
An essential task of upgrading to SQL Server 2005 is choosing an upgrade strategy,
which is the process you use to upgrade the current environment. The strategy not
only determines the type of upgrade that you will perform—in-place upgrade or side-
by-side migration—but it also determines the upgrade method you use, how you test
the upgrade, and what the upgrade success criteria are. The upgrade strategy com-
bines these items with a recovery plan for rolling back the upgrade if you encounter
problems that cannot be corrected during the upgrade process.

Lesson 5: Upgrading to a SQL Server 2005 Installation 35

C0162271X.fm Page 35 Friday, April 29, 2005 7:27 PM
In-Place Upgrade
Organizations that do not have resources available to host multiple database environ-
ments commonly use an in-place upgrade. An in-place upgrade overwrites a previous
installation of SQL Server 7.0 or SQL Server 2000 with an installation of SQL Server
2005. During the in-place upgrade, the installation process overwrites previous ver-
sions of the SQL Server program files. The upgrade process preserves all user data
stored in the previous SQL Server instance, which lets DBAs perform the upgrade
without having to move or recover the existing user databases.

Database backups required Before you perform an in-place upgrade, you should back up all
SQL Server databases and other objects associated with your previous SQL Server instances. In
addition, be aware that the previous version of SQL Server Books Online will remain intact on the
machine after the upgrade.

Side-by-Side Migration
Database environments that have additional server resources can perform a side-by-
side migration of their SQL Server 7.0 or SQL Server 2000 installations to SQL Server
2005. Side-by-side migrations involve installing SQL Server 2005 either on the same
server or on a different server as your previous SQL Server installations. Having the
old environment still active during the upgrade process allows for the continuous
operation of the original database environment while you install and test the
upgraded environment. Side-by-side migrations can often minimize the amount of
downtime for the SQL Server environment. Table 1-4 shows the support for side-by-
side migration when upgrading from different versions of SQL Server to SQL Server
2000 (32-bit and 64-bit) and SQL Server 2005 (32-bit and 64-bit).

36 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 36 Friday, April 29, 2005 7:27 PM
A side-by-side migration does not overwrite the SQL Server files on your current
installation, nor does it move the databases to your new SQL Server 2005 installation.
DBAs need to manually move their databases to the new SQL Server 2005 installation
after a side-by-side installation by using one of the upgrade methods that the next sec-
tion of this lesson discusses.

Table 1-4 Side-by-Side Migration Support

SQL Server
Version You
Are Upgrad-
ing From

SQL
Server
2000
(32-bit)*

SQL
Server
2000
(64-bit)

SQL
Server
2005
(32-bit)*

SQL
Server
2005
(64-bit)
IA64

SQL
Server
2005 (64-
bit) X64

SQL Server
7.0

Yes No Yes No No

SQL Server
2000 (32-bit)

Yes No Yes No Yes

SQL Server
2000 (64-bit)

No Yes No Yes No

SQL Server
2005 (32-bit)

Yes No Yes No Yes

SQL Server
2005 (64-bit)
IA64

No Yes No Yes No

SQL Server
2005 (64-bit)
X64

Yes No Yes No Yes

* The 32-bit editions of SQL Server are supported in WOW64 only on the X64 versions of
64-bit OSs. The 32-bit editions of SQL Server are not supported in WOW64 on the IA64
versions of 64-bit OSs.

Lesson 5: Upgrading to a SQL Server 2005 Installation 37

C0162271X.fm Page 37 Friday, April 29, 2005 7:27 PM
Choosing an Upgrade Method
DBAs can choose from four methods for moving databases from one SQL Server
instance to another during a side-by-side migration: detach/attach, backup/restore,
the Copy Database Wizard, and a manual schema rebuild combined with data
export/import. The DBA is responsible for performing tests to determine which
method is appropriate for the specific database environment. During testing, keep in
mind several important factors that can influence your decision to use one method
over the other. These factors can include database size, available disk space on source
and destination servers, network bandwidth, and speed of the overall operation.

Detach/Attach
When disk storage and source database availability are not a consideration, one com-
mon method of moving a database from one server to another is to detach and then
attach the database. This process requires that users not be accessing the database,
but it has the safety advantage that if an unforeseen problem arises, the DBA can
always reattach a copy of the database file to the original SQL Server instance.

Make a copy of the files It is a best practice to create a copy of the database file for recovery
purposes before attaching it to a new instance. After you attach a database file to SQL Server 2005,
you can no longer use that file in an earlier version of SQL Server.

You can move a large database from one instance to another on the same server, which
requires less disk space than some other methods because it reduces the number of
database files that you must create for the upgrade process. However, this method can
be unsafe because it doesn’t follow the recommendation of creating a copy of the data-
base files.

On systems that use storage area network (SAN) disk configurations, you can detach
the SAN volume from the older SQL Server instance and attach it to the new SQL
Server 2005 server. This procedure saves you from having to move the database files
over the network. It is also possible to clone the disk volume while the original SQL
Server is online and then re-create that clone on another disk array. DBAs working
with a SAN disk configuration should meet with their disk engineers to discuss pos-
sible methods to move the database files without having to perform a copy over the
network. DBAs must also take into account the possible inability to revert to the ear-
lier version of SQL Server if something goes wrong after they have upgraded their
files, which are then no longer usable by earlier versions of SQL Server.

38 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 38 Friday, April 29, 2005 7:27 PM
Backup/Restore
To avoid possible loss of the database files, making a database backup to use in the
upgrade is a secure alternative method for moving a database from one SQL Server
instance to another. You use the following process:

■ Create a simple backup file through normal database backup methods.

■ Move the backup file to the location of the new SQL Server instance.

■ Restore the backup file through the SQL Server database restore process, chang-
ing the file location if necessary.

This process does not interfere with the continuation of activity on the original data-
base environment, nor does it jeopardize the usefulness of the source database files to
the original SQL Server version.

Another advantage of using backup and restore is that the backup files are usually
smaller than the original database files because the backup process captures only
database data, not reserved, unused database space. The decrease in file size usually
makes any file transfer faster than transferring the original database file. However, you
must take into account the disk space needed for the original database files, the
backup files, and the new database files during the upgrade.

Copy Database Wizard
DBAs who want to automate the task of moving a database from one server to another
during the upgrade process can use SQL Server’s Copy Database Wizard. The Copy
Database Wizard gives DBAs a way to move one or more SQL Server 2000 or SQL
Server 2005 databases, with their associated objects, while the source database is
either online and available for use or offline. This direct copy makes efficient use of
disk space while preserving database uptime.

With the Copy Database Wizard, DBAs can

■ Select source and destination servers.

■ Select one or more databases to be moved and upgraded.

■ Specify the file locations for the selected databases.

■ Create logins on the destination server.

■ Copy supporting environment objects such as jobs, error messages, user-
defined stored procedures, and objects.

■ Define a schedule for performing the database move or copy.

Lesson 5: Upgrading to a SQL Server 2005 Installation 39

C0162271X.fm Page 39 Friday, April 29, 2005 7:27 PM
Manual Schema Rebuild and Data Export/Import
A method not commonly used for database upgrades is the manual method of script-
ing out the database, scripting the logins associated with that database, scripting all
objects associated with that database, and scripting out any other supporting SQL
Server objects associated with that database. After executing the script or scripts in
the new instance, the DBA must manually move the data from the original database to
the new database using Transact-SQL scripts, Data Transformation Services (DTS) or
SQL Server Integration Services (SSIS), BCP, or other methods available for moving
data from one database to another.

Most DBAs do not choose this mostly manual method to upgrade their databases
because of the time and effort it involves. However, manually moving a database has
the advantage of letting DBAs modify the database schema, clean up data, and filter
the data they move to the upgraded databases.

Quick Check
■ What are some of the ways you can move a database from one server to

another during an upgrade?

Quick Check Answers

■ You can use detach/attach, backup/restore, Copy Database Wizard, or
manual methods to move your database from one server to another during
an upgrade.

Determining Testing and Success Criteria
As noted earlier in this lesson, you need to define the criteria that determine the suc-
cess of your database upgrade. The success test might be as simple as manually veri-
fying the existence of an object through the graphical user interface (GUI); or it might
be a very complex procedure that executes a set of predetermined queries and scripts
to verify that all objects exist, that data has successfully imported, that surrounding
database objects such as backup jobs operate normally, and that users have full access
to the database. However simple or complex the success criteria, you must define the
criteria before upgrading to help ensure a successful upgrade.

To prepare the success criteria, you should review each phase and step of the overall
database upgrade plan and ask yourself several questions. The following questions

40 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 40 Friday, April 29, 2005 7:27 PM
will help you understand what you need to do to declare that the phase or step is
successful:

■ How can I measure whether this step is successful?

■ How can I test that measurement?

■ How can I compare my test results against what they would have been in the old
database?

Establishing a Recovery Plan
Although creating an upgrade plan reduces the likelihood of problems occurring dur-
ing the upgrade process, problems do arise that can prevent the upgrade process from
completing. Most organizations rely heavily on the data contained in their databases,
and having that data unavailable due to an upgrade might cause problems in business
operations and even have financial implications. You should create a plan to recover
from each phase and step of the upgrade process to help minimize data loss and
reduce the time that data might be unavailable. This recovery plan might involve
backing up a set of files, creating scripts to move database connections from the
upgraded instance back to the original instance, or anything else you feel is necessary
to get the old database instance back up and meet business uptime needs while you
fix the upgrade problems.

Tips for a Successful Upgrade
The following tips can help you perform a secure and successful upgrade:

■ Create a series of checklists DBAs and developers should prepare a series of
checklists that need to be performed before, during, and after a database
upgrade.

■ Back up all important files Back up all SQL Server database files from the
instance to be upgraded, as well as any application files, script files, extract files,
and so on so that you can completely restore them if necessary.

■ Ensure database consistency Run DBCC CHECKDB on databases to be upgraded
to ensure that they are in a consistent state before performing your upgrade.

■ Reserve enough disk space Estimate the disk space required to upgrade SQL
Server components, user databases, and any database files that might need to be
created during the upgrade process. You might need two to four times the
amount of disk space during the upgrade process as you will need after the
upgrade is finished.

Lesson 5: Upgrading to a SQL Server 2005 Installation 41

C0162271X.fm Page 41 Friday, April 29, 2005 7:27 PM
■ Ensure space for system databases Configure system databases (master, model,
msdb, and tempdb) to autogrow during the upgrade process, and make sure that
they have enough disk space for this growth.

■ Transfer login information Ensure that all database servers have login informa-
tion in the master database before upgrading the database. This step is important
for restoring a database because system login information resides in the master
database and must be re-created in the new instance.

■ Disable all startup stored procedures The upgrade process will usually stop and
start services multiple times on the SQL Server instance being upgraded. Stored
procedures set to execute on startup might block the upgrade process.

■ Stop replication Stop replication and make sure that the replication log is empty
for starting the upgrade process.

■ Quit all applications Certain applications, including all services with SQL Server
dependencies, might cause the upgrade process to fail if local applications are
connected to the instance being upgraded.

■ Register your servers after the upgrade The upgrade process removes registry
settings for the previous SQL Server instance. After upgrading, you must rereg-
ister your servers.

■ Repopulate full-text catalogs The upgrade process marks your databases as full-
text disabled. Catalogs must be repopulated, but Setup doesn’t run this opera-
tion automatically because it can be time-consuming. Because this operation
enhances the performance of your SQL Server 2005 installation, you should
plan to repopulate full-text catalogs at a convenient time after the upgrade.

■ Update statistics To help optimize query performance, update statistics on all
databases following the upgrade.

■ Update usage counters In earlier versions of SQL Server, the values for the table
and index row counts and page counts can become incorrect. To correct any
invalid row or page counts, run DBCC UPDATEUSAGE on all databases follow-
ing the upgrade.

■ Configure your new SQL Server installation To reduce the system’s attackable sur-
face area, SQL Server 2005 selectively installs and activates key services and fea-
tures. You will need to customize this configuration so that you get the optimum
security, performance, and functionality for your particular installation.
Chapter 2, “Configuring SQL Server 2005,” covers the details for configuring
your SQL Server implementation.

42 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 42 Friday, April 29, 2005 7:27 PM
PRACTICE Using Detach/Attach and Backup/Restore to Move Databases
It is important that DBAs learn to move databases to different servers during the
upgrade process. The following two practices take you through the process of moving
a database using both the detach/attach method and the backup/restore method.

� Practice 1: Detach and Attach a SQL Server 2000 Database to SQL Server 2005

In this practice, you will detach a SQL Server 2000 database, copy the data file and
transaction log file to a new location, and attach the files to SQL Server 2005.

NOTE SQL Server 2000 required

To complete this practice, you must have SQL Server 2000 installed on your server.

1. Start SQL Server 2000 Enterprise Manager.

2. Expand the group containing the server that holds your database and then
expand the Databases folder.

3. Right-click the pubs database, choose Properties, and click the Data Files tab.

4. Make a note of the location of the data file for the pubs database.

5. Click the Transaction Log tab.

6. Make a note of the location of the transaction log file for the pubs database. Click
Cancel to close the Pubs Properties dialog box.

7. Right-click the pubs database, choose All Tasks, Detach Database, and then click
OK twice.

8. Open Windows Explorer and navigate to the directory containing the data file
and log file.

9. Copy the data file and log file to a new location for SQL Server 2005 databases.

10. Start SQL Server Management Studio (SSMS), connect to the instance to which
you want to attach the database, right-click the Databases folder, and then
choose Attach.

11. Click Add.

12. Navigate to the location in which you copied the data and transaction log files,
click OK, and then click OK again to attach the files to the new database.

13. Now you can reattach the database to your SQL Server 2000 instance if you want
by right-clicking the Databases folder in SQL Server 2000 Enterprise Manager;
then choose All Tasks, Attach Database.

Lesson 5: Upgrading to a SQL Server 2005 Installation 43

C0162271X.fm Page 43 Friday, April 29, 2005 7:27 PM
14. Click the browser (…) button and navigate to the location of the original data
and transaction log files. Select the Pubs.mdf file and click OK twice. Click OK
again when the attach completes.

� Practice 2: Back Up and Restore a SQL Server 2000 Database to SQL Server 2005

In this practice, you will back up a SQL Server 2000 database and restore the file to
SQL Server 2005.

NOTE SQL Server 2000 required

To complete this practice, you must have SQL Server 2000 installed on your server.

1. Start SQL Server 2000 Enterprise Manager.

2. Expand the group containing the server that holds your database and expand
the Databases folder.

3. Right-click the pubs database and choose All Tasks, Backup Database.

4. Create your backup file and click OK to back up the database.

5. Click OK when the database backup completes.

6. Start SSMS.

7. Connect to the instance to which you want to attach the database.

8. Right-click the Databases folder and then choose Restore Database.

9. Type pubs in the To Database text box.

10. Select From Device and then click the browser (…) button.

11. Choose File as the backup media and click Add.

12. Navigate to and select the backup file you just created.

13. Click OK and then click OK again.

14. Select the check box under the Restore column for the backup you want to
restore. (If the backup media contains multiple backup sets, you should choose
the last backup created.)

15. Select the Options page.

16. Below the Restore As column, type in the location and data file name to which
you want to restore the backed up data file. Alternatively, you can use the
browser (…) button to navigate to the new location and enter the name you want
for the physical file. You should specify .mdf as the extension for all primary files
and .ndf as the extension for secondary data files.

44 Chapter 1 Installing SQL Server 2005

C0162271X.fm Page 44 Friday, April 29, 2005 7:27 PM
17. Repeat the previous step for the transaction log file, specifying .ldf as the exten-
sion for all log files.

18. Click OK to restore the backup. When the process is complete, click OK to close
the displayed message box.

Lesson Summary
■ When upgrading a SQL Server installation to SQL Server 2005, you have the

option of performing an in-place upgrade or a side-by-side upgrade.

■ An in-place upgrade requires the installation of SQL Server 2005 on top of a cur-
rent installation, replacing the old SQL Server files.

■ A side-by-side upgrade involves installing SQL Server 2005 as a new instance
either on the same server as the old instance or on a different server. The data-
bases are then moved to the new SQL Server 2005 instance.

■ Always make a backup copy of your databases before attempting an upgrade.

■ In a side-by-side upgrade, DBAs have multiple ways to move databases from an
old SQL Server instance to a SQL Server 2005 instance: detach/attach, backup/
restore, the Copy Database Wizard, and manual.

■ Before upgrading your SQL Server installations, create a testing plan to validate
the successful upgrade of your installation.

■ Before upgrading your SQL Server installations, you should create an upgrade
rollback plan in case you need to recover from an unsuccessful upgrade.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

Lesson 5: Upgrading to a SQL Server 2005 Installation 45

C0162271X.fm Page 45 Friday, April 29, 2005 7:27 PM
1. The term “in-place upgrade” refers to which type of upgrade?

A. Installing SQL Server 2005 in the same directory as the current installation
and replacing the SQL Server files

B. Installing a new instance of SQL Server 2005 and sharing the older data-
bases between the new instance and the old instance

C. Installing a new instance of SQL Server 2005 on the same server as the old
instance and moving the databases from the old instance to the new
instance

D. Installing a new instance of SQL Server 2005 on a different server from the
old instance and moving the databases from the old server to the new
server

2. Which upgrade data-movement method requires that users not be accessing the
database you want to upgrade?

A. Copy Database Wizard

B. Detach/attach

C. Backup/restore

D. Manual scripting

3. Which of the following is not recommended when performing a SQL Server
upgrade?

A. Create a series of checklists to ensure that all processes needed before, dur-
ing, and after an upgrade have been completed.

B. Reserve enough disk space for the extra copies of database files needed for
the upgrade.

C. Disable all startup stored procedures to prevent the stored procedures
from firing multiple times during the upgrade.

D. Configure system databases not to autogrow to prevent system databases
from filling your disks during the upgrade process.

46 Chapter 1 Review

C0162271X.fm Page 46 Friday, April 29, 2005 7:27 PM
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can

■ Review the chapter summary.

■ Review the list of key terms introduced in this chapter.

■ Complete the case scenarios. These scenarios set up a real-world situation
involving the topics of this chapter and ask you to create solutions.

■ Complete the suggested practices.

■ Take a practice test.

Chapter Summary
■ SQL Server 2005 includes five editions, with each edition having different func-

tionality and feature sets and different infrastructure requirements. Understand-
ing the editions and their hardware, OS, and network requirements is key to
selecting the correct edition for your needs.

■ You can install a default, unnamed instance of SQL Server 2005 and multiple
additional named instances on the same server. Multiple instances can be bene-
ficial for testing purposes and for separating different customers’ databases.

■ SQL Server 2005 requires at least one account for use by the SQL Server service
and the SQL Server Agent service. To make sure that the SQL Server service
doesn’t have more privileges than necessary, you often need to use a separate
account for each service.

■ When upgrading a SQL Server installation to SQL Server 2005, you can perform
either an in-place upgrade or a side-by-side migration. A side-by-side migration,
which allows for the continuous operation of the original database environment
while the upgraded environment is being installed and tested, can often mini-
mize downtime for the SQL Server environment.

■ You can use detach/attach, backup/restore, the Copy Database Wizard, or man-
ual scripting to move database files in a side-by-side migration. Whichever
method you choose, you should make a copy of your original files in case you
need to recover your original environment because of an upgrade problem.

Chapter 1 Review 47

C0162271X.fm Page 47 Friday, April 29, 2005 7:27 PM
Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ authentication

■ backup

■ backup file

■ code page

■ collation

■ database restore

■ domain

■ local system account

■ named instance

■ Network Service account

■ Mixed Mode authentication

■ Windows collation

Case Scenarios
In the following case scenarios, you will apply what you’ve learned about how to
install SQL Server 2005 as well as how to upgrade current installations of SQL Server
to SQL Server 2005. You can find answers to these questions in the “Answers” section
at the end of this book.

48 Chapter 1 Review

C0162271X.fm Page 48 Friday, April 29, 2005 7:27 PM
Case Scenario 1: Installing SQL Server 2005
You are a DBA for a local book publisher. For the past year, you and your team have
been designing a new database system to handle ordering information. You have
designed your database schema and now need to create an installation plan. To com-
plete the last items of the plan, you need to interview a team of database designers and
answer the following questions. Here are the statements from the organization per-
sonnel you interviewed:

■ Database Security Lead “Most of our database applications have been built to be
used with different database platforms. The current application requires the use
of a SQL Server login for each component.”

■ Database Architecture Lead “For this current database installation, we require
the ability to partition the database and make use of our eight CPU servers. We
also require the ability to place the databases for different retail stores on the
same server but with each store being separate from the others.”

With the information gained from your interviews, answer the following questions for
your manager:

1. Which authentication mode should you use?

2. Should you use a single default instance or multiple named instances?

3. Which edition of SQL Server is the most appropriate?

Case Scenario 2: Upgrading an Instance of SQL Server
You are a DBA for large phone company. The company has decided to upgrade to SQL
Server 2005, and you are charged with creating and implementing the upgrade plan.
During a planning meeting, your manager asks you questions about your upgrade
plan. Answer the following questions for your manager.

1. Given that we are buying new servers, how will we get the databases from the old
installation to the new SQL Server 2005 instance without affecting the current
online availability?

2. How can we make sure that service will not be interrupted if the upgrade pro-
cess fails?

3. How can we make sure that the current applications will not have problems
once we connect them to the new installation?

Chapter 1 Review 49

C0162271X.fm Page 49 Friday, April 29, 2005 7:27 PM
Suggested Practices
To successfully master the exam objectives presented in this chapter, complete the fol-
lowing tasks.

Selecting an Edition of SQL Server 2005 to Install
For this task, you should complete both practices to gain experience in deciding
which edition of SQL Server 2005 to install.

■ Practice 1 Review the functionality and feature set of each SQL Server 2005 edi-
tion against a current installation or application to determine which features are
required in the current installation or by your application.

■ Practice 2 Review the infrastructure requirements of each edition of SQL Server
2005 against a current installation or application to determine which features
are required in the current installation or by your application.

Determining When to Install Default, Named, or Multiple Instances
of SQL Server 2005

For this task, you should complete all three practices to gain experience in deciding
when to install default, named, or multiple instances of SQL Server 2005.

■ Practice 1 Review current business requirements and application needs to
determine the authentication method needed for an installation of SQL Server
2005.

■ Practice 2 Review current business requirements and application needs to
determine the collation needed for an installation of SQL Server 2005.

■ Practice 3 Install a default and multiple named instances of SQL Server 2005
on the same server.

50 Chapter 1 Review

C0162271X.fm Page 50 Friday, April 29, 2005 7:27 PM
Upgrading a SQL Server 2005 Installation
For this task, you should complete all four practices to gain experience upgrading a
SQL Server 2005 instance by using the various data-movement methods.

■ Practice 1 Upgrade an installation of SQL Server by using the detach/attach
method of data movement.

■ Practice 2 Upgrade an installation of SQL Server by using the backup/restore
method of data movement.

■ Practice 3 Upgrade an installation of SQL Server by using the Copy Database
Wizard method of data movement.

■ Practice 4 Upgrade an installation of SQL Server by using the manual scripting
method of data movement.

Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-431 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see “How to Use the Practice Tests” in this
book’s Introduction.

C0262271X.fm Page 51 Friday, April 29, 2005 7:29 PM
Chapter 2

Configuring SQL Server 2005

The decisions you make as you configure your Microsoft SQL Server 2005 environ-
ment are crucial in setting up a high-performing, secure, and functional system. In
this chapter, you will see how to configure data and log files and filegroups and how
to select the appropriate redundant array of inexpensive disks (RAID) level for your
databases. You’ll explore the new Database Mail system that lets the database engine
send e-mail messages. And you’ll learn the differences between the three recovery
models of SQL Server and how to specify the correct model for your situation. This
chapter explains the important security concepts of authentication modes, logins,
database users, database roles, and schemas; and shows you how to configure a
secure system. You’ll also learn about the new native encryption facilities of SQL
Server 2005 and how to configure linked servers to access external data sources.

Exam objectives in this chapter:
■ Configure SQL Server 2005 instances and databases.

❑ Configure log files and data files.

❑ Configure the SQL Server DatabaseMail subsystem for an instance.

❑ Choose a recovery model for the database.

■ Configure SQL Server security.

❑ Configure server security principals.

❑ Configure database securables.

❑ Configure encryption.

■ Configure linked servers by using SQL Server Management Studio (SSMS).

❑ Identify the external data source.

❑ Identify the characteristics of the data source.

❑ Identify the security model of the data source.
51

52 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 52 Friday, April 29, 2005 7:29 PM
Lessons in this chapter:
■ Lesson 1: Configuring Log and Data Files . 53

■ Lesson 2: Configuring Database Mail . 63

■ Lesson 3: Specifying a Recovery Model . 70

■ Lesson 4: Configuring Server Security Principals . 74

■ Lesson 5: Configuring Database Securables . 81

■ Lesson 6: Configuring Encryption . 88

■ Lesson 7: Configuring Linked Servers . 94

Before You Begin
To complete the lessons in this chapter, you must have

■ SQL Server 2005 installed.

■ A connection to a SQL Server 2005 instance.

■ A copy of the AdventureWorks sample database installed.

Real World
Antonio Soto

In my work as a database consultant, clients often call me to fix problems that
arise from a poor SQL Server configuration. Configuring database files is a fun-
damental and crucial database administrator (DBA) task. Although SQL Server
2005 provides a default configuration that is valid for a wide range of environ-
ments, you should customize database and instance options for your particular
environment. Designing and planning a configuration strategy for your storage,
security, and linked-server needs gives you a strong base for a high-performing
and protected SQL Server environment. And if you pay special attention to the
configuration options that this chapter covers, you can deploy an optimum SQL
Server environment from the start and avoid a lot of headaches.

Lesson 1: Configuring Log and Data Files 53

C0262271X.fm Page 53 Friday, April 29, 2005 7:29 PM
Lesson 1: Configuring Log and Data Files
A SQL Server 2005 database has two operating system file types: data files and log files.
Data files contain data and objects such as tables and indexes; log files contain the trans-
action log for recovering the database’s transactions. You can further group data files
into filegroups for easier administration and better performance. This lesson explains
the different file types, walks you through the configuration options you have, and
shares best practices for setting up your files for top performance and recoverability.

After this lesson, you will be able to:

■ Configure the data and log files for a SQL Server 2005 database.

■ Configure filegroups.

■ Determine the best RAID level and configuration for your data and log files.

Estimated lesson time: 20 minutes

Data Files
In a SQL Server 2005 database, you can create two types of data files: primary and
secondary.

■ The primary data file is mandatory and contains startup information for the data-
base catalog and points to the other database files. The primary data file can also
contain objects and user data. The recommended extension for the primary data
file is .mdf.

■ The secondary data file, which is optional and user-defined, contains objects and
user data. You can put each secondary data file on a different disk drive to boost
performance. A database can contain a maximum of 32,766 secondary data files.
The recommended extension for a secondary data file is .ndf.

For example, you might have a simple or rarely accessed database that contains just a
primary data file that stores catalog information as well as your tables, views, stored
procedures, and data. For a larger or more heavily used database, you might configure
a primary data file as well as several secondary data files spread across multiple disks
for better performance and improved availability and reliability.

BEST PRACTICES Database files

You should store all data and objects in secondary files and leave the database catalog in the pri-
mary file. This configuration helps reduce disk access contention.

54 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 54 Friday, April 29, 2005 7:29 PM
Log Files
Every SQL Server 2005 database has a transaction log that records all database mod-
ifications that each transaction makes. SQL Server stores this information in log files.
You must have at least one log file for each database, and you can create multiple log
files per database to facilitate faster recovery. The recommended extension for log files
is .ldf.

Filegroups
A filegroup is a logical structure that lets DBAs group data files and manage them as a
logical unit. To improve performance, you can allocate database objects, such as
tables, to specific filegroups. By splitting database objects across several filegroups,
you can take advantage of the different disk subsystems and allow SQL Server to per-
form parallel disk operations. In addition, if you configure multiple filegroups, you
can back up and restore files individually.

SQL Server supports two types of filegroups: primary and user-defined.

■ A primary filegroup contains the primary data file and any secondary data files
not stored in another filegroup. All system tables are allocated to the primary
filegroup.

■ You create a user-defined filegroup to group secondary files and assign database
objects to filegroups. A database can contain up to 32,766 user-defined filegroups.

Quick Check
■ How many log files can you have in each filegroup?

Quick Check Answer

■ None. Filegroups contain only data files.

When managing filegroups, you should pay special attention to the following file-
group properties, which you can set and change from SSMS or by using the ALTER
DATABASE statement:

■ Each database has a default filegroup. When you create a database object and do
not specify a filegroup, SQL Server allocates the object to the default filegroup.

■ You can configure a filegroup as read-only. You can use read-only filegroups for
database objects that should not be modified, such as historical tables. All file-
groups can be configured as read-only except the primary filegroup.

Lesson 1: Configuring Log and Data Files 55

C0262271X.fm Page 55 Friday, April 29, 2005 7:29 PM
If your database has an access-intensive table—for example, Order Detail—you could
create multiple secondary data files for the database, store the files on different disk
drives, and group these files in a filegroup. Then, you could store the Order Detail
table in this filegroup so that queries against the table would be spread across the
disks.

BEST PRACTICES Filegroup design

Create at least one user-defined filegroup to hold secondary data files and database objects. Con-
figure this filegroup as the default filegroup so that SQL Server will store all objects you create in
this filegroup.

How to Configure Data Files and Log Files
You can configure data files and log files when you’re creating them by using the CRE-
ATE DATABASE Transact-SQL statement, and you can modify a configuration by
using the ALTER DATABASE statement. Alternatively, you can configure the files from
the Database Properties page in SSMS. Table 2-1 describes the options that you can
configure for each file.

Table 2-1 File Configuration Options

Option Description

Name The logical name for the file.

Filename The operating system full path and file name.

Size The size for the file. When you do not specify a size for the primary
file, the database engine uses the size of the primary file on the
model database. If you specify a secondary or log file without the
size option, the database engine creates files that are 1 MB in size.

Maxsize The maximum size for the file. If you do not specify maxsize or you
specify the UNLIMITED value, the file grows until the drive is full.
In SQL Server 2005, a log file has a maximum size of 2 terabytes,
and data files have a maximum size of 16 terabytes.

Filegrowth Specifies the automatic growth allowed for the file. You can specify
the value in kilobytes, megabytes, gigabytes, or terabytes; or as a
percentage of the actual file size. If you specify a value of 0, the file
will not grow.

56 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 56 Friday, April 29, 2005 7:29 PM
As a rule, you should create database files as large as possible, based on the maximum
amount of data you estimate the database will contain, to accommodate future
growth. By creating large files, you can avoid file fragmentation and get better data-
base performance. In many cases, you can let data files grow automatically; just be
sure to limit autogrowth by specifying a maximum growth size that leaves some hard
disk space available. By putting different filegroups on different disks, you can also
help eliminate physical fragmentation of your files as they grow.

The following example creates a database with several files and filegroups, specifying
explicit values for each file property:

NOTE Volumes necessary to run this sample

To run this sample, you need three additional volumes—D, E, and F—with a folder called
\Projects_Data on each volume.

CREATE DATABASE Projects
ON
PRIMARY
(NAME = ProjectPrimary,
FILENAME = 'D:\Projects_Data\ProjectPrimary.mdf',
SIZE = 100MB,
MAXSIZE = 200,
FILEGROWTH = 20),

FILEGROUP ProjectsFG
(NAME = ProjectData1,
FILENAME = 'E:\Projects_Data\ProjectData1.ndf',
SIZE = 200MB,
MAXSIZE = 1200,
FILEGROWTH = 100),
(NAME = ProjectData2,
FILENAME = 'E:\Projects_Data\ProjectData2.ndf',
SIZE = 200MB,
MAXSIZE = 1200,
FILEGROWTH = 100),

FILEGROUP ProjectsHistoryFG
(NAME = ProjectHistory1,
FILENAME = 'E:\Projects_Data\ProjectHistory1.ndf',
SIZE = 100MB,
MAXSIZE = 500,
FILEGROWTH = 50)

LOG ON
(NAME = Archlog1,
FILENAME = 'F:\Projects_Data\ProjectLog.ldf',
SIZE = 300MB,
MAXSIZE = 800,

FILEGROWTH = 100)

Lesson 1: Configuring Log and Data Files 57

C0262271X.fm Page 57 Friday, April 29, 2005 7:29 PM
You can add, remove, and modify file properties by using the ALTER DATABASE state-
ment. The following example adds a new file to the Projects database:

ALTER DATABASE Projects
ADD FILE
(NAME=ProjectsData4,
FILENAME='E:\Projects_Data\ProjectData4.ndf',
SIZE=100MB,
MAXSIZE=500MB,
FILEGROWTH=75MB) TO FILEGROUP ProjectsFG

You can also configure these file options from SSMS.

MORE INFO CREATE DATABASE

For more information about the CREATE DATABASE and ALTER DATABASE syntax, see the topics
“CREATE DATABASE (Transact-SQL)” and “ALTER DATABASE (Transact-SQL)” in SQL Server Books
Online. SQL Server 2005 Books Online is installed as part of SQL Server 2005. Updates for SQL
Server 2005 Books Online are available for download at www.microsoft.com/technet/prodtechnol/sql/
2005/downloads/books.mspx.

Configuring Database Files with RAID Systems
RAID systems are arrays of disk drives that provide fault tolerance, more storage
capacity, and better performance for the disk subsystem, depending on the configu-
ration. Although RAID hardware systems are not part of the SQL Server configura-
tion, they directly affect SQL Server’s performance. There are a variety of RAID levels,
each of which uses a different algorithm for fault tolerance. The most common RAID
levels used with SQL Server are 0, 1, 5, and 10.

■ RAID 0 is also known as disk striping because it creates a disk file system called
a stripe set. RAID 0 gives the best performance for read and write operations
because it spreads these operations across all the disks in the set. However,
RAID 0 does not provide fault tolerance; if one disk fails, you lose access to all
the data on the stripe set.

■ RAID 1, also known as disk mirroring, provides a redundant copy of the selected
disk. RAID 1 improves read performance but can degrade the performance of
write operations.

■ RAID 5, the most popular RAID level, stripes the data across the disks of the
RAID set as does RAID 0, but it also adds parity information to provide fault tol-
erance. Parity information is distributed among all the disks. RAID 5 provides
better performance than RAID 1. However, when a disk fails, read performance
decreases.

58 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 58 Friday, April 29, 2005 7:29 PM
■ RAID 10, or RAID 1+0, includes both striping without parity and mirroring.
RAID 10 offers better availability and performance than RAID 5, especially for
write-intensive applications.

The RAID configuration that is best for your database files depends on several factors,
including performance and recoverability needs. RAID 10 is the recommended RAID
system for transaction log, data, and index files. If you have budget restrictions, keep
transaction log files in a RAID 10 system, and store data and index files in a RAID 5
system.

MORE INFO RAID levels and SQL Server

Selecting the appropriate RAID levels for database files generates a lot of angst in the DBA commu-
nity, and full coverage of this topic is beyond this lesson. For more information about RAID, see
“RAID Levels and SQL Server” at http://msdn2.microsoft.com/ms190764.aspx and Microsoft Windows
2000 Server Administrator’s Companion (Microsoft Press), Chapter 7, “Planning Fault Tolerance and
Avoidance,” by Charlie Russel and Sharon Crawford, at http://www.microsoft.com/technet/prodtechnol/
windows2000serv/plan/planning.mspx.

Best Practices
To configure data and log files for best performance, follow these best practices:

■ To avoid disk contention, do not put data files on the same drive that contains
the operating system files.

■ Put transaction log files on a separate drive from data files. This split gives you
the best performance by reducing disk contention between data and transaction
log files.

■ Put the tempdb database on a separate drive if possible, preferably on a RAID 10
or RAID 5 system. In environments in which there is intensive use of tempdb
databases, you can get better performance by putting tempdb on a separate drive,
which lets SQL Server perform tempdb operations in parallel with database oper-
ations.

PRACTICE Configuring Database Files and Filegroups
In this practice, you will create a database that contains several files and filegroups
and then configure one filegroup as the default filegroup and another as a read-only
filegroup.

Lesson 1: Configuring Log and Data Files 59

C0262271X.fm Page 59 Friday, April 29, 2005 7:29 PM
NOTE Volumes necessary to run this example

To run this sample properly, you need three volumes—D, E, and F—with a Sales_Data folder on
each of them. Also, you need the free space specified to create each file.

1. Open SSMS.

2. Connect to the SQL Server instance using Microsoft Windows authentication by
clicking OK in the Connect To Server dialog box.

3. Click New Query.

4. Build the first part of a CREATE DATABASE statement that creates a database
called Sales; this database will have three filegroups:

CREATE DATABASE Sales
ON

5. Build the first part of the code, which creates the primary filegroup to contain
the SalesPrimary file, as follows:

PRIMARY
(NAME = SalesPrimary,
FILENAME = 'D:\Sales_Data\SalesPrimary.mdf',
SIZE = 50MB,
MAXSIZE = 200,
FILEGROWTH = 20),

6. Create the part of the code that defines the second filegroup, SalesFG, which will
store current data contained in files SalesData1 and SalesData2:

FILEGROUP SalesFG
(NAME = SalesData1,
FILENAME = 'E:\Sales_Data\SalesData1.ndf',
SIZE = 200MB,
MAXSIZE = 800,
FILEGROWTH = 100),

(NAME = SalesData2,
FILENAME = 'E:\Sales_Data\SalesData2.ndf',
SIZE = 400MB,
MAXSIZE = 1200,
FILEGROWTH = 300),

7. Add the following statement to create the third filegroup, SalesHistoryFG, which
will store historical information in the SalesHistory1 file:

FILEGROUP SalesHistoryFG
(NAME = SalesHistory1,

FILENAME = 'E:\Sales_Data\SalesHistory1.ndf',
SIZE = 100MB,
MAXSIZE = 500,
FILEGROWTH = 50)

60 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 60 Friday, April 29, 2005 7:29 PM
8. Add the code to create a log file called SalesLog:

LOG ON
(NAME = Archlog1,
FILENAME = 'F:\Sales_Data\SalesLog.ldf',
SIZE = 300MB,
MAXSIZE = 800,
FILEGROWTH = 100)

9. Execute the complete CREATE DATABASE statement, as shown here:

CREATE DATABASE Sales
ON
PRIMARY

(NAME = SalesPrimary,
FILENAME = 'D:\Sales_Data\SalesPrimary.mdf',
SIZE = 50MB,
MAXSIZE = 200,
FILEGROWTH = 20),

FILEGROUP SalesFG
(NAME = SalesData1,
FILENAME = 'E:\Sales_Data\SalesData1.ndf',
SIZE = 200MB,
MAXSIZE = 800,
FILEGROWTH = 100),

(NAME = SalesData2,
FILENAME = 'E:\Sales_Data\SalesData2.ndf',
SIZE = 400MB,
MAXSIZE = 1200,
FILEGROWTH = 300),

FILEGROUP SalesHistoryFG
(NAME = SalesHistory1,

FILENAME = 'E:\Sales_Data\SalesHistory1.ndf',
SIZE = 100MB,
MAXSIZE = 500,
FILEGROWTH = 50)

LOG ON
(NAME = Archlog1,
FILENAME = 'F:\Sales_Data\SalesLog.ldf',
SIZE = 300MB,
MAXSIZE = 800,
FILEGROWTH = 100)

10. Use the following ALTER DATABASE statement to configure the SalesFG file-
group as the default filegroup for the Sales database. All database objects created
after this change will be stored in SalesFG by default:

ALTER DATABASE Sales
MODIFY FILEGROUP SalesFG DEFAULT

Lesson 1: Configuring Log and Data Files 61

C0262271X.fm Page 61 Friday, April 29, 2005 7:29 PM
Lesson Summary
■ A SQL Server 2005 database contains three file types: primary data files, second-

ary data files, and transaction log files.

■ You can group data files into filegroups to facilitate administration, such as
backup and restore operations, and to provide top performance.

■ You can improve your system’s performance by using the best RAID level and
file configuration for your environment.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following statements can you use to create a filegroup?

A. ALTER DATABASE … ADD FILE

B. .ALTER DATABASE … MODIFY FILEGROUP

C. ALTER DATABASE … ADD FILEGROUP

D. ALTER DATABASE … REMOVE FILEGROUP

62 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 62 Friday, April 29, 2005 7:29 PM
2. You are in charge of designing the physical structure for your company’s new
server running SQL Server 2005. The server has the following characteristics:
two disks in RAID 1, five disks in RAID 5, and another ten disks in RAID 5.
Where should you store database files for the best performance?

A. Use RAID 1 to install the operating system. Use the first RAID 5 disk set to
install SQL Server executable files and the second RAID 5 disk set to store
database files.

B. Use RAID 1 to install the operating system. Use the first RAID 5 system to
install SQL Server executable files and data and transaction log files. Use
the second RAID 5 system to store database backups.

C. Use RAID 1 to install the operating system and SQL Server executable files.
Use the first RAID 5 system to store transaction log files. Use the second
RAID 5 system to store data files.

D. Use the first RAID 5 system to install the operating system and SQL Server
executable files. Store data files in the second RAID 5 system and log files
in the RAID 1 system.

3. Which of the following are valid filegroup types? (Choose all that apply.)

A. Read-only

B. Write-only

C. Default

D. Primary

Lesson 2: Configuring Database Mail 63

C0262271X.fm Page 63 Friday, April 29, 2005 7:29 PM
Lesson 2: Configuring Database Mail
Database Mail is a new solution for sending messages from the SQL Server 2005
database engine. Applications that are configured to use Database Mail can send e-mail
messages, including HTML messages, query results, and file attachments, to users.
Database Mail uses the Simple Mail Transfer Protocol (SMTP) and does not require
you to install any Extended MAPI client, such as Microsoft Office Outlook, on SQL
Server.

After this lesson, you will be able to:

■ Identify Database Mail prerequisites.

■ Understand the Database Mail architecture.

■ Configure the SQL Server Database Mail subsystem.

Estimated lesson time: 15 minutes

Identifying Database Mail Prerequisites
Before you configure Database Mail, you need to review the following prerequisites:

■ Database Mail must be enabled. Database Mail is not enabled by default; you
need to enable it by using the SQL Server Surface Area Configuration tool, the
Database Mail Configuration Wizard, or the sp_configure stored procedure.

■ Service Broker needs to be enabled in the Database Mail host database. T h e
default Database Mail host database is msdb, and Service Broker is enabled on
msdb by default.

MORE INFO Service Broker

You can get a full explanation about Service Broker from http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnsql90/html/sqlsvcbroker.asp.

■ The Database Mail external executable needs access to the SMTP server. I f t h e
SMTP server requires authentication, the executable accesses the SMTP server
by using the SQL Server service account credentials by default. You should
ensure that the SQL Server service account can access the SMTP server.

64 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 64 Friday, April 29, 2005 7:29 PM
Understanding the Database Mail Architecture
Database Mail has four main components: configuration components, messaging
components, the executable, and logging and auditing components.

■ Configuration components There are two configuration components:

❑ A Database Mail account contains the information that SQL Server uses to
send e-mail messages to the SMTP server, such as the SMTP server name,
the authentication type, and the e-mail address.

❑ A Database Mail profile is a collection of Database Mail accounts. Applica-
tions use Database Mail profiles to send e-mail messages so that the infor-
mation about the accounts is transparent for applications, which lets DBAs
change account information without modifying applications’ stored proce-
dures. Database Mail profiles can be private or public. For a private profile,
Database Mail maintains a list of users that can use the profile. For a public
profile, members of the msdb database role DatabaseMailUserRole can use
the profile.

■ Messaging components The main messaging component is the Database Mail
host database, which contains all the Database Mail objects. The Database Mail
host database is msdb.

■ Database Mail executable To minimize the impact on SQL Server, Database Mail
uses an external executable to process e-mail messages. The executable, called
DatabaseMail90.exe, is located in the MSSQL\Binn directory in the SQL Server
installation path. Database Mail uses Service Broker activation to start the exter-
nal program when there are e-mail messages waiting to be processed. The exter-
nal program connects to the database engine by using Microsoft Windows
authentication with the SQL Server service account credentials.

■ Logging and auditing components Database Mail stores log information in
tables in the Database Mail host database. You can see this log information from
the Database Mail Log or by querying the sysmail_event_log system view.

How to Configure Database Mail
SSMS provides the Database Mail Configuration Wizard for configuring your Database
Mail environment. You can set up Database Mail; manage accounts, profiles, and secu-
rity; and change system parameters from the wizard, which is shown in Figure 2-1.

Lesson 2: Configuring Database Mail 65

C0262271X.fm Page 65 Friday, April 29, 2005 7:29 PM
Figure 2-1 Database Mail Configuration Wizard

In the following example, you have an SMTP mail server called mail.adventure-
works.com and an account on that server with an e-mail address of sql@adventure-
works.com. To configure a Database Mail profile account for this e-mail account, follow
these steps:

1. Expand the Management node within Object Explorer in SSMS.

2. Right-click Database Mail and select Configure Database Mail. The Welcome
page of the Database Mail Configuration Wizard appears. Click Next.

3. On the Select Configuration Task page, verify that Set Up Database Mail By Per-
forming The Following Tasks is selected and click Next.

4. A warning message appears: The Database Mail feature Is Not Available. Would
You Like To Enable This Feature? Click Yes.

5. In the Profile Name text box, type TestProfile and click Add to add a new SMTP
account.

6. The New Database Mail Account dialog box appears. Fill in the text boxes as Fig-
ure 2-2 shows. Click OK and then click Next.

66 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 66 Friday, April 29, 2005 7:29 PM
Figure 2-2 New Database Mail Account dialog box

7. In the resulting Manage Profile Security page, you configure public and private
profiles. Select the TestProfile check box and click Next.

8. The Configure System Parameters page appears, which enables you to change
system-level configurations. Leave the default options and click Next. The Com-
plete The Wizard page appears. Click Finish.

You can also accomplish these tasks by using the Database Mail stored procedures.
For example, you can change conf igurat ion information by using t he
sysmail_configure_sp stored procedure.

MORE INFO Database Mail stored procedures

For a list of Database Mail stored procedures and what they do, see the “Database Mail and SQL
Mail Stored Procedures (Transact-SQL)” topic in SQL Server 2005 Books Online.

NOTE Viewing configuration options

You can view information about Database Mail configuration options by running the Database Mail
Wizard or by executing the sysmail_help_configure_sp msdb stored procedure.

Lesson 2: Configuring Database Mail 67

C0262271X.fm Page 67 Friday, April 29, 2005 7:29 PM
PRACTICE Configuring Database Mail
In this practice, you will use the Database Mail stored procedures to configure Data-
base Mail so that you can send e-mail messages from SQL Server. You will create a
Database Mail public profile for an SMTP mail account. The SMTP server is
mail.Adventure-Works.com, and the e-mail address is sql@Adventure-Works.com.

NOTE Example server name and e-mail address in this code

SMTP server names and account e-mail addresses used in this code are examples. You should
change them to a valid SMTP server name and e-mail address to run the code.

1. Execute the sysmail_add_account procedure as follows to create a Database Mail
account, using mail.Adventure-works.com as the mail server and sql@adventure-
works.com as the e-mail account:

EXECUTE msdb.dbo.sysmail_add_account_sp
@account_name = 'AdventureWorks Mail',
@description = 'Mail account for Database Mail.',
@email_address = 'sql@Adventure-Works.com',
@display_name = 'AdventureWorks Automated Mailer',
@mailserver_name = 'mail.Adventure-Works.com'

2. Use the sysmail_add_profile procedure to create a Database Mail profile called
AdventureWorks Mail Profile:

EXECUTE msdb.dbo.sysmail_add_profile_sp
@profile_name = 'AdventureWorks Mail Profile',
@description = 'Profile used for database mail.'

3. Execute the sysmail_add_profileaccount procedure to add the Database Mail
account you created in step 1 to the Database Mail profile you created in step 2:

EXECUTE msdb.dbo.sysmail_add_profileaccount_sp
@profile_name = 'AdventureWorks Mail Profile',
@account_name = 'AdventureWorks Mail',
@sequence_number = 1

4. Use the sysmail_add_principalprofile procedure to grant the Database Mail pro-
file access to the msdb public database role and to make the profile the default
Database Mail profile:

EXECUTE msdb.dbo.sysmail_add_principalprofile_sp
@profile_name = 'AdventureWorks Mail Profile',
@principal_name = 'public',
@is_default = 1 ;

68 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 68 Friday, April 29, 2005 7:29 PM
Lesson Summary
■ Database Mail is the SQL Server 2005 subsystem that lets you send e-mail mes-

sages from database applications.

■ Database Mail does not need any Extended MAPI client installed on SQL Server
because the mail subsystem sends messages directly to an SMTP server.

■ You need to have Service Broker enabled to use Database Mail, which uses an
external executable to send messages.

■ You can configure multiple Database Mail accounts and group them into Data-
base Mail profiles.

■ All Database Mail information is stored in the msdb database, the default Data-
base Mail host database.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following is a prerequisite for Database Mail?

A. Service Broker

B. Database Mirroring

C. Extended MAPI Profile

D. Microsoft Exchange Server

Lesson 2: Configuring Database Mail 69

C0262271X.fm Page 69 Friday, April 29, 2005 7:29 PM
2. Which of the following sentences is true for authentication mechanisms when
the SMTP server is being accessed?

A. Database Mail accesses the SMTP server using the database engine service
credentials by default.

B. Database Mail accesses the SMTP server using the SQL Server Agent service
credentials by default.

C. Database Mail accesses the SMTP server using the SQL Browser service cre-
dentials by default.

D. Database Mail accesses the SMTP server using the SQL Server Active Direc-
tory Helper service credentials by default.

3. Which of the following sentences is true for Database Mail?

A. A Database Mail account is a collection of Database Mail profiles.

B. Each Mail Database Host user account must have a Database Mail profile
associated.

C. A Database Mail profile is a collection of Mail Database Host user accounts.

D. A Database Mail profile is a collection of Database Mail accounts.

70 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 70 Friday, April 29, 2005 7:29 PM
Lesson 3: Specifying a Recovery Model
A recovery model is a database configuration option that controls how transactions are
logged, whether the transaction log is backed up, and what restore options are avail-
able for the database. The recovery model you choose for your database has both data-
recovery implications and performance implications, based on the logging the recov-
ery model performs or doesn’t perform.

After this lesson, you will be able to:

■ Explain the differences between the recovery models.

■ Choose the best recovery model for each SQL Server 2005 database.

Estimated lesson time: 10 minutes

Recovery Models Overview
SQL Server 2005 provides three recovery models for databases: Full, Simple, and
Bulk-Logged. These models determine how SQL Server works with the transaction
log and selects the operations that it logs and whether it truncates the log. Truncating
the transaction log is the process of removing committed transactions and leaving log
space to new transactions. The following is a definition of each recovery model:

■ In the Full recovery model, the database engine logs all operations onto the trans-
action log, and the database engine never truncates the log. The Full recovery
model lets you restore a database to the point of failure (or to an earlier point in
time in SQL Server 2005 Enterprise Edition).

■ In the Simple recovery model, the database engine minimally logs most operations
and truncates the transaction log after each checkpoint. In the Simple recovery
model, you cannot back up or restore the transaction log. Furthermore, you can-
not restore individual data pages.

IMPORTANT Simple recovery model scenarios

The Simple recovery model is not appropriate for databases in which the loss of recent
changes is unacceptable.

■ In the Bulk-Logged recovery model, the database engine minimally logs bulk oper-
ations such as SELECT INTO and BULK INSERT. In this recovery model, if a log
backup contains any bulk operation, you can restore the database to the end of
the log backup, not to a point in time. The Bulk-Logged recovery model is
intended to be used only during large bulk operations.

Lesson 3: Specifying a Recovery Model 71

C0262271X.fm Page 71 Friday, April 29, 2005 7:29 PM
How to Configure Recovery Models
You can see the recovery model specified for a given database on the Database Properties
page in SSMS or by querying the sys.databases catalog view, as this basic syntax shows:

SELECT name, recovery_model_desc FROM sys.databases

To configure the recovery model for a database, you can go to the Database Properties
page in SSMS or use the ALTER DATABASE statement.

In SSMS, you can change the recovery model by performing the following steps:

1. Expand the Databases node within Object Explorer in SSMS.

2. Right-click the database for which you want to set the recovery model and then
choose Properties. Select the Options page.

3. You can change the recovery mode from the Recovery model drop-down list, as
Figure 2-3 shows.

Figure 2-3 Changing the recovery model from SSMS

The basic syntax for configuring the recovery model using ALTER DATABASE is as
follows:

ALTER DATABASE <database_name>
SET RECOVERY FULL | SIMPLE | BULK_LOGGED

72 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 72 Friday, April 29, 2005 7:29 PM
As noted earlier, Full recovery is the recommended model for a production database
because it provides the most recoverable configuration. If you import data periodi-
cally by using a bulk mechanism, you can temporarily change the recovery model for
your database to Bulk-Logged to get better bulk-load performance. Then, when the
import process ends, return your database to the Full recovery model.

PRACTICE Changing a Database’s Recovery Model
In this practice, you will change the database recovery model to Bulk-Logged to get
good performance for a bulk-logged operation and then revert to the Full recovery
model.

1. Set the database recovery model for the AdventureWorks database to Bulk-
Logged by executing the following ALTER DATABASE statement. (Before chang-
ing the recovery model, do a full backup of the database.)

-- Note that you should create the C:\Backup folder at Operating System level before
running this backup.

BACKUP DATABASE AdventureWorks TO DISK='C:\Backup\AdventureWorks.Bak'
GO
--Change the Recovery Model to Bulk Logged
ALTER DATABASE AdventureWorks
SET RECOVERY BULK_LOGGED

2. Type and then run the following ALTER DATABASE statement to change the
recovery model back to Full after performing the bulk-logged operations; per-
form another full database backup so that you have a backup of the data that
was just loaded:

ALTER DATABASE AdventureWorks
SET RECOVERY FULL
--Perform a Full database backup
BACKUP DATABASE AdventureWorks TO DISK='C:\Backup\AdventureWorks.Bak'
GO

Lesson Summary
■ Recovery models let you control how the database engine logs operations and

which restore options are available for a particular database.

■ SQL Server provides three recovery models: Full, Simple, and Bulk-Logged.

■ The Full recovery model is the default and the recommended recovery model,
logging all operations and letting you recover to the point of failure.

Lesson 3: Specifying a Recovery Model 73

C0262271X.fm Page 73 Friday, April 29, 2005 7:29 PM
■ The Simple recovery model minimally logs most operations and doesn’t let you
back up or restore the transaction log.

■ The Bulk-Logged recovery model minimally logs bulk operations and is
intended for temporary use during large bulk operations.

■ You configure a database’s recovery model through the Database Properties win-
dow in SSMS or by using the ALTER DATABASE Transact-SQL statement.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following sentences is true for recovery models?

A. In the Simple recovery model, most transactions are minimally logged.

B. In the Full recovery model, most transactions are minimally logged.

C. In the Bulk-Logged recovery model, all transactions are logged.

D. In the Simple recovery model, all transactions are logged.

2. Which of the following methods let you change the database recovery model?
(Choose all that apply.)

A. The sp_configure stored procedure

B. Database properties in SSMS

C. ALTER DATABASE

D. CREATE DATABASE

3. Which of the following restore operations are NOT allowed in the Simple recov-
ery model? (Choose all that apply.)

A. Point-in-Time Restore

B. Differential

C. Full

D. Page Restore

74 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 74 Friday, April 29, 2005 7:29 PM
Lesson 4: Configuring Server Security Principals
SQL Server 2005 provides a strong security model that helps you prevent unautho-
rized access to your important data resources. This model is based on permissions
that you give principals—the individuals, groups, and processes that can request SQL
Server resources.

SQL Server 2005 authenticates the permissions of all user connections, so all user
connections must specify authentication mode and credentials. You can choose
between two authentication modes—Windows authentication and Mixed Mode authen-
tication—that control how application users connect to SQL Server. And you can create
two types of SQL Server logins—Windows logins and SQL Server logins—that let you
manage access to the SQL Server instance. To help manage the logins of principals
that have administrative privileges to SQL Server, you can arrange these logins in fixed
server roles. Authentication mode and logins are the first security level for SQL Server,
so you should take care to configure the most secure option for your environment.

After this lesson, you will be able to:

■ Choose between authentication modes.

■ Manage SQL Server logins.

■ Manage fixed server roles.

Estimated lesson time: 10 minutes

Choosing Between Authentication Modes
SQL Server 2005 provides two modes for authenticating access to database resources:
Windows authentication and Mixed Mode authentication.

■ Windows authentication When you configure SQL Server 2005 to use Windows
authentication, only authenticated Windows users can gain access to the SQL
Server instance. You need to add a Windows login for each Windows user or
group that needs access to a SQL Server instance. This is the default and recom-
mended authentication mode because you can take advantage of all the central-
ized security policies of your Active Directory domain.

■ Mixed Mode authentication With Mixed Mode authentication, both Windows
logins and SQL Server logins (neither of which are mapped to an operating sys-
tem user) can access the SQL Server instance. You use Mixed Mode authentica-
tion when you need to provide access to non-Windows users—for example, when
users of another client operating system need access to SQL Server.

Lesson 4: Configuring Server Security Principals 75

C0262271X.fm Page 75 Friday, April 29, 2005 7:29 PM
You can change the authentication mode by using Server Properties in SSMS by taking
the following steps:

1. In SSMS, right-click on your server and choose Properties.

2. Select the Security page.

3. Below Server Authentication, select the authentication mode you want to use on
your server. You can select either the Windows authentication mode or the SQL
Server And Windows authentication mode.

4. Click OK to save your changes.

5. Click OK to close the message box stating that your changes will not take effect
until you restart SQL Server.

6. To restart your server, right-click on your server in Object Explorer and choose
Restart.

Quick Check
■ Which authentication mode is the default and recommended mode for

security principals?

Quick Check Answer

■ Windows authentication

How to Configure SQL Server Logins
Logins are the server principals that give users access to SQL Server. You can create
SQL Server logins graphically in SSMS or by using the CREATE LOGIN statement.

The basic CREATE LOGIN syntax to create a Windows login is

CREATE LOGIN [Domain\User] FROM WINDOWS

The syntax to create a SQL Server login is

CREATE LOGIN login_name WITH PASSWORD='password'

For SQL Server logins, you can specify the following options when creating the login:

■ MUST_CHANGE The login should change the password at the next login.

■ CHECK_EXPIRATION SQL Server will check the Windows expiration policy
for the SQL Server login.

■ CHECK_POLICY SQL Server will apply the local Windows password policy on
SQL Server logins.

76 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 76 Friday, April 29, 2005 7:29 PM
BEST PRACTICES Password policies

To get a secure SQL Server environment, you should use the options to check the Windows expi-
ration policy for SQL Server logins and apply the local Windows password policy on them.

In the following example, you create a SQL Server login and force checking of pass-
word expiration and password policy:

CREATE LOGIN secureSQL WITH PASSWORD='Ty%6tsfs$g23', CHECK_EXPIRATION=ON, CHECK_POLICY =ON

If you need to change any login property, you can use the ALTER LOGIN statement.
The following example shows you how to change the password for a SQL Server login:

ALTER LOGIN login_name WITH PASSWORD='password'

You can disable a login by executing the following:

ALTER LOGIN login_name DISABLE

When you need to remove a login, you can use the DROP LOGIN statement:

DROP LOGIN login_name

Or use the following to drop a Windows login:

DROP LOGIN [Domain\User]

To get SQL Server login information such as state or login options, you can query the
sys.sql_logins catalog view.

CAUTION Removing logins

You cannot drop a login that owns any securable, server-level object, or SQL Server Agent job. You
should disable logins before dropping them, and drop logins only when you are sure the action will
not affect your environment.

In addition, if the login is mapped to a database user and you drop the login, SQL Server does not
automatically remove the user, resulting in an orphaned user.

DBAs commonly need to manage exceptions when providing access to a Windows
group. For example, you might need to provide SQL Server access to all the members
of a certain Windows group except for one member. To accomplish this task, you
should create a Windows login for the Windows group and then deny access to the
user who shouldn’t receive access. The following example shows the basic syntax for
accomplishing these steps:

CREATE LOGIN [domain_name\group_name] FROM WINDOWS
DENY CONNECT SQL TO [domain_name\user_name]

Lesson 4: Configuring Server Security Principals 77

C0262271X.fm Page 77 Friday, April 29, 2005 7:29 PM
NOTE Backward compatibility

You can use SQL Server 2000 stored procedures, such as sp_addlogin, sp_droplogin, and so on, to
manage logins. But remember that these stored procedures are in SQL Server 2005 only for back-
ward-compatibility purposes.

Managing Fixed Server Roles
SQL Server provides a set of fixed server roles, such as sysadmin and securityadmin,
which you can use to assign and manage administrative privileges to logins by adding
logins as members of these roles. Table 2-2 describes the fixed server roles for SQL
Server 2005.

To obtain information about logins for a fixed server role, you can query the
sys.server_role_members catalog view, which returns a row for each member of the
server role.

The basic syntax for adding a login to a fixed server role is

EXECUTE sp_addsrvrolemember login_name, fixed_server_role

You can use the sp_dropsrvrolemember stored procedure to remove the login from the
fixed server role.

Table 2-2 SQL Server’s Fixed Server Roles

Fixed Server Role Members Can

sysadmin Perform any activity in SQL Server. The permissions of this
role comprise the permissions of all other fixed server roles.

serveradmin Configure server-wide settings.

setupadmin Add and remove linked servers and execute some system
stored procedures, such as sp_serveroption.

securityadmin Manage server logins.

processadmin Manage processes running in an instance of SQL Server.

dbcreator Create and alter databases.

diskadmin Manage disk files.

bulkadmin Execute the BULK INSERT statement.

78 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 78 Friday, April 29, 2005 7:29 PM
Alternatively, you can use SSMS to add and remove logins from fixed server roles.
You can accomplish these tasks by displaying the properties for either a login or a
server role.

MORE INFO Fixed server roles properties

For more information about fixed server roles and their properties, see the “Server-Level Roles”
topic in SQL Server 2005 Books Online.

PRACTICE Selecting an Authentication Mode and Creating a Login
In these practices, you will change your server’s authentication mode to Mixed Mode
and create a SQL Server login. You will enforce the password policy and expiration
policy for that login and add the login to the sysadmin fixed server role.

� Practice 1: Change Authentication Mode

In this practice, you will change authentication mode to Mixed Mode.

1. In SSMS, right-click your server and choose Properties.

2. Select the Security page. Below Server Authentication, select SQL Server And
Windows Authentication mode. Click OK. A warning message appears inform-
ing you that this change will take effect only after you restart SQL Server.

3. Right-click your server and choose Restart so the change will take effect.

� Practice 2: Add a SQL Server Login

In this practice, you will add a new SQL Server login and enforce the expiration and
check policy restrictions. Then you will add the login to the sysadmin fixed server role.

1. Expand the Security node, right-click Logins, and then choose New Login. The
New Login dialog box appears.

2. In the Login Name text box, type sqlLogin.

3. Select the SQL Server Authentication option; in the Password and Confirm Pass-
word text boxes, type the password Pa$$w0rd.

4. Clear the User Must Change Password At Next Login check box.

5. To add the login to the sysadmin fixed server role, select the Server Roles page.
Select the Sysadmin check box and click OK.

Lesson 4: Configuring Server Security Principals 79

C0262271X.fm Page 79 Friday, April 29, 2005 7:29 PM
Lesson Summary
■ Server principals provide a mechanism for controlling how SQL Server authen-

ticates user access to database resources.

■ SQL Server provides two authentication modes: Windows authentication—the
default and recommended mode—and Mixed Mode authentication, which you
use only if you need to give access to non-Windows users.

■ Each user connection should specify a valid login so that the database engine
can authenticate the connection and check the permissions.

■ To help manage administrative privileges to SQL Server, you can assign logins to
fixed server roles, which define ready-made permissions for members of each
role.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following are valid SQL Server principals? (Choose all that apply.)

A. Database users

B. Fixed server roles

C. Windows logins

D. SQL Server logins

80 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 80 Friday, April 29, 2005 7:29 PM
2. Which of the following sentences are true regarding authentication modes?
(Choose all that apply.)

A. Windows authentication is the preferred authentication mode.

B. Mixed Mode authentication does not let you apply password policies.

C. Windows authentication is the default authentication mode.

D. Mixed Mode authentication is the default authentication mode.

3. Which of the following statements let you create a SQL Server login called Peter?
(Choose all that apply.)

A. CREATE LOGIN Peter FROM SQL

B. CREATE LOGIN Peter WITH PASSWORD=‘Pa$$w0rd’

C. EXEC sp_addlogin ‘Peter’,‘Pa$$w0rd’

D. EXEC sp_grantlogin ‘Peter’,‘Pa$$w0rd’

Lesson 5: Configuring Database Securables 81

C0262271X.fm Page 81 Friday, April 29, 2005 7:29 PM
Lesson 5: Configuring Database Securables
Although server security principals are the entities requesting access to database
resources, server securables are the entities that you allow or disallow principals to
access. At the highest securable level are servers and databases, but you can also set per-
missions at a more granular level. This lesson covers securables at the database level.

After you configure the authentication mode and create logins for the principals, you
need to give them appropriate database access. You do this by mapping each database
login needing access to the database to a database user. For faster and easier admin-
istration, you can add database users as members of database roles.

After this lesson, you will be able to:

■ Manage database users.

■ Manage database roles.

■ Manage schemas.

Estimated lesson time: 20 minutes

Managing Database Users
To give logins access to a database, you need to create a database user for each login
that needs access to the database. You should create the user in the database in which
the user needs access. The basic syntax to create a database user is

CREATE USER user_name FOR LOGIN login_name

If you do not specify a login name, SQL Server will try to create a user mapped to a
login with the same name.

You can use the ALTER USER statement to modify user properties and the DROP
USER statement to remove database users.

You can also use SSMS to create and manage database users. You can either manage data-
base users from Logins below the Security node or Users below each Database node.

When a login that doesn’t have a database user mapped to it tries to access a database,
SQL Server looks for the Guest database user. SQL Server creates a Guest user in each
database. By default, the Guest user is not permitted to connect to the database. You
can allow guest connections by activating the Guest user, as follows:

GRANT CONNECT TO Guest

82 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 82 Friday, April 29, 2005 7:29 PM
You can revoke guest access by executing the following:

REVOKE CONNECT TO Guest

Managing Orphaned Users
Orphaned users are database users that are not mapped to a login in the current SQL
Server instance. In SQL Server 2005, a user can become orphaned when you drop its
mapped login. To obtain information about orphaned users, you can execute the fol-
lowing command:

USE AdventureWorks;
GO
EXECUTE sp_change_users_login @Action='Report';

CAUTION Removing database users

The database engine doesn’t let you remove database users if they own a schema that contains
objects. You need to transfer the schema to another user or role before removing the database
user.

Managing Database Roles
If you have many database users, the process of creating them, modifying them,
removing them, and ensuring that they have correct permissions can become tedious
and time-consuming. To help you manage these tasks, each user database provides a
set of fixed database roles that you can use to group like database users. Table 2-3 lists
these fixed database roles.

Table 2-3 SQL Server Fixed Database Roles

Fixed Database Role Database-Level Permission

db_accessadmin Granted: ALTER ANY USER, CREATE SCHEMA

db_accessadmin Granted with GRANT option: CONNECT

db_backupoperator Granted: BACKUP DATABASE, BACKUP LOG, CHECK-
POINT

db_datareader Granted: SELECT

db_datawriter Granted: DELETE, INSERT, UPDATE

Lesson 5: Configuring Database Securables 83

C0262271X.fm Page 83 Friday, April 29, 2005 7:29 PM
NOTE Managing database role members

Members of the db_owner and db_securityadmin roles can manage members of fixed database roles,
but only members of the db_owner role can add members to the db_owner role.

You can also create your own database roles to group database users who have the
same access needs and assign permissions on a per-group basis instead of assigning
permissions user by user. For example, you can group users who are members of the
Accounting department into a database role called Accounting so that you can assign
permissions to only that database role and have the permissions applied to all mem-
bers of that role.

The basic syntax for creating a database role is

CREATE ROLE role_name

db_ddladmin Granted: ALTER ANY ASSEMBLY, ALTER ANY ASYM-
METRIC KEY, ALTER ANY CERTIFICATE, ALTER ANY
CONTRACT, ALTER ANY DATABASE DDL TRIGGER,
ALTER ANY DATABASE EVENT, NOTIFICATION, ALTER
ANY DATASPACE, ALTER ANY FULLTEXT CATALOG,
ALTER ANY MESSAGE TYPE, ALTER ANY REMOTE SER-
VICE BINDING, ALTER ANY ROUTE, ALTER ANY
SCHEMA, ALTER ANY SERVICE, ALTER ANY SYMMET-
RIC KEY, CHECKPOINT, CREATE AGGREGATE, CREATE
DEFAULT, CREATE FUNCTION, CREATE PROCEDURE,
CREATE QUEUE, CREATE RULE, CREATE SYNONYM,
CREATE TABLE, CREATE TYPE, CREATE VIEW, CREATE
XML SCHEMA COLLECTION, REFERENCES

db_denydatareader Denied: SELECT

db_denydatawriter Denied: DELETE, INSERT, UPDATE

db_owner Granted with GRANT option: CONTROL

db_securityadmin Granted: ALTER ANY APPLICATION ROLE, ALTER ANY
ROLE, CREATE SCHEMA, VIEW DEFINITION

Table 2-3 SQL Server Fixed Database Roles

Fixed Database Role Database-Level Permission

84 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 84 Friday, April 29, 2005 7:29 PM
You can modify role properties by using the ALTER ROLE statement and remove data-
base roles by using the DROP ROLE statement. You can also manage database roles by
using SSMS from the Security node below each database.

To add a database user to a role, you use the sp_addrolemember stored procedure,
which has the following basic syntax:

EXECUTE sp_addrolemember role_name, user_name

Alternatively, you can add a database user to a role via SSMS by modifying the data-
base user’s properties or the role’s properties.

You can nest database roles, so you can add database roles into other roles. For exam-
ple, suppose that you want to group managers in the Accounting department into a
database role called AccountingMgr. You could grant that role the permissions of the
entire Accounting role by nesting Accounting within AccountingMgr and then just grant-
ing the extra manager permissions to the AccountingMgr role. To obtain information
about database role members, you can query the sys.database_role_members catalog
view, which returns one row for each member of the database role.

Quick Check
■ True or False: Database roles are all fixed, giving you a predefined set of

permissions that you can grant to a group of like database users.

Quick Check Answer

■ False. Although SQL Server provides a set of fixed database roles, you can
also create your own roles.

Managing Schemas
SQL Server 2005 implements the ANSI concept of schemas, which are collections of
database objects—such as tables, views, stored procedures, and triggers—that form a
single namespace. The main benefit of schemas in SQL Server 2005 is that schemas
and users are now separate entities. User name is no longer part of object name, as it
was in previous versions of SQL Server, so you can remove users or change user
names without having to make application changes. Each schema is owned by a user
or role, but if you need to drop a user or role, you just transfer the schema ownership
from the user or role you’re dropping to another new user or role.

Lesson 5: Configuring Database Securables 85

C0262271X.fm Page 85 Friday, April 29, 2005 7:29 PM
The basic syntax to create a schema is

CREATE SCHEMA schema_name AUTHORIZATION owner

To modify a schema, you can use the ALTER SCHEMA statement; to remove a schema,
you can use the DROP SCHEMA statement. You can also accomplish these tasks from
SSMS. To retrieve information about schemas, you can query the sys.schemas catalog
view.

In addition, you can assign a default schema for each database user. This default
schema is used when the user does not specify the schema name when accessing an
object. For instance, if user Peter has a default schema of HumanResources and wants
to access the Employee table without specifying a schema, he can just specify
Employee instead of having to specify HumanResources.Employee.

You assign a default schema by using the CREATE USER or ALTER USER statement.
You also can assign a default schema through SSMS in the user’s properties.

PRACTICE Configuring Server Securables
In this practice, you will configure server securables for the AdventureWorks database.
You will create a login and database user for Peter. Peter needs access to the Human-
Resources schema objects in AdventureWorks.

1. Use the following CREATE LOGIN statement to create a SQL Server login and
database user named Peter that has access to the AdventureWorks database:

CREATE LOGIN Peter WITH PASSWORD='Pa$$w0rd'
GO
USE AdventureWorks
GO
CREATE USER Peter FROM LOGIN Peter

2. Grant Peter SELECT permission to HumanResources database objects by coding
the following statement (note the :: syntax to specify a schema name):

GRANT SELECT ON SCHEMA::[HumanResources] TO [Peter]

3. Click New Query. Right-click the query area and choose Connection | Change
Connection. Connect using the SQL login Peter with a password of Pa$$w0rd.

4. Execute the following query to test SQL Server login Peter’s access:

USE AdventureWorks
GO
SELECT * FROM Employee

86 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 86 Friday, April 29, 2005 7:29 PM
5. Notice that you get an Invalid Object error message, meaning that login Peter
doesn’t have the correct permissions to the Employee table. You need to solve
this problem by running the following ALTER USER statement to assign Human-
Resources as the default schema for Peter so that he can select the Employee table
directly without having to use the HumanResources schema name to qualify the
table name:

ALTER USER Peter WITH DEFAULT_SCHEMA=HumanResources

6. Run the query from step 4 again. You should get a valid result set now.

Lesson Summary
■ Database users, roles, and schemas give you the tools you need to secure data-

base objects.

■ Each login is mapped to a database user for each database that the login needs
access to.

■ Database roles let you group users with the same permissions and same data-
base access needs for easy management.

■ Schemas, a new concept in SQL Server 2005, separate schemas (a collection of
database objects that form one namespace) from users so that you can now man-
age these entities individually.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following sentences is true for database schemas?

A. Database schemas define the database catalog.

B. Database schemas group database objects.

C. Database schemas group databases.

D. Database schemas define the table catalog.

Lesson 5: Configuring Database Securables 87

C0262271X.fm Page 87 Friday, April 29, 2005 7:29 PM
2. Which of the following statements let you appropriately create a database user
called Peter mapped to the login Peter? (Choose all that apply.)

A. CREATE USER Peter FROM Peter

B. CREATE USER Peter FOR LOGIN Peter

C. CREATE USER Peter FOR SQL_LOGIN Peter

D. CREATE USER Peter

3. Which of the following sentences are true when talking about database roles?
(Choose all that apply.)

A. You can nest database roles.

B. Database roles are fixed.

C. You can add new database roles.

D. You can add fixed server roles to database roles.

88 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 88 Friday, April 29, 2005 7:29 PM
Lesson 6: Configuring Encryption
SQL Server 2005 provides a hierarchical key infrastructure that lets you encrypt
data—offering a new level of security that didn’t exist in previous versions of SQL
Server. To implement data encryption in earlier versions of the database system, you
have to use a third-party solution.

You can encrypt data by using symmetric and asymmetric keys and certificates.
Although data encryption is an important feature, especially for certain types of data
such as customer credit card information, be careful where you implement encryp-
tion. The overhead of encrypting and decrypting data can have a big impact on per-
formance.

After this lesson, you will be able to:

■ Configure the encryption hierarchy.

■ Configure symmetric and asymmetric keys.

■ Configure certificates.

Estimated lesson time: 10 minutes

Configuring the Encryption Hierarchy
SQL Server 2005 provides an encryption hierarchy based on the service master key,
which is a symmetric key generated automatically when you install a SQL Server 2005
instance. The database engine uses the service master key to encrypt the following:

■ Linked server passwords

■ Connection strings

■ Account credentials

■ All database master keys

You should back up the service master key and store it in a secure offsite location. You
can manage the backup and restore of the service master key by using the BACKUP
SERVICE MASTER KEY and RESTORE SERVICE MASTER KEY Transact-SQL state-
ments, as the following sample statements show:

BACKUP SERVICE MASTER KEY TO FILE='file_name_path' ENCRYPTION BY PASSWORD = 'password' –-
SQL will use the password to encrypt the backup

RESTORE SERVICE MASTER KEY FROM FILE='file_name_path'
DECRYPTION BY PASSWORD = 'password'

Lesson 6: Configuring Encryption 89

C0262271X.fm Page 89 Friday, April 29, 2005 7:29 PM
You can manage service account changes and key regeneration by using the ALTER
SERVICE MASTER KEY statement. The following sample statement regenerates the
service master key:

ALTER SERVICE MASTER KEY REGENERATE

The next level in the encryption hierarchy is the database master key, which is an
optional symmetric key that you can create at the database level to encrypt certificates
and keys in the database. You can create the database master key by using the CREATE
MASTER KEY statement and specifying a password:

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password'

SQL Server stores one copy of the database master key in the master database and the
key is encrypted with the service master key. Another copy is stored in the database,
encrypted with the password. You require CONTROL permission in the database to
create the master key.

Quick Check
■ The database engine automatically generates the service master key to

encrypt what components?

Quick Check Answer

■ The service master key is used to encrypt linked server passwords, connec-
tion strings, account credentials, and all database master keys.

Configuring Symmetric and Asymmetric Keys
The next level in the encryption hierarchy is the data level, which gives you two
encryption key options: symmetric and asymmetric. A symmetric key is the fastest
encryption mechanism for encrypting and decrypting data and is suitable for
encrypting frequently accessed data. You can use the CREATE SYMMETRIC KEY state-
ment to create a symmetric key:

CREATE SYMMETRIC KEY key_name WITH ALGORITHM = AES_256 ENCRYPTION BY PASSWORD='password'

To encrypt and decrypt data, you can use the EncryptByKey function and the Decrypt-
ByKey function, respectively. These functions take the key and the data as parameters
and return the data encrypted or decrypted.

90 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 90 Friday, April 29, 2005 7:29 PM
An asymmetric key is a combination of a private key and its corresponding public key.
An asymmetric key is stronger than a symmetric key, but it is also more resource-inten-
sive. You can create an asymmetric key by using the CREATE ASYMMETRIC KEY state-
ment:

CREATE ASYMMETRIC KEY key_name
WITH ALGORITHM = RSA_2048
ENCRYPTION BY PASSWORD = 'password'

To encrypt and decrypt data, you can use the EncryptByAsmKey function and the
DecryptByAsmKey function, respectively.

Quick Check
What is the fastest data-encryption method?

Quick Check Answer

■ A symmetric key is the fastest data-encryption mechanism.

Configuring Certificates
Certificates are the strongest encryption mechanism available. A public key certificate
is a digitally signed statement that maps the value of a public key to the identity of the
person, device, or service that holds the corresponding private key. SQL Server 2005
can create self-signed certificates that follow the X.509 standard. Although certificates
are very secure, they also have a great impact on query performance because of the
overhead that they use when they encrypt and decrypt data.

You can use the CREATE CERTIFICATE statement to create the certificate by using the
following basic syntax:

CREATE CERTIFICATE certificate_name
WITH SUBJECT='certificate_subject'

You can use the Transact-SQL EncryptByCert function to encrypt data and the Decrypt-
ByCert function to decrypt data. In the following example, you see how to create a cer-
tificate and use it to encrypt a string:

USE AdventureWorks
GO
CREATE CERTIFICATE testCert WITH SUBJECT='Certificate for testing'
GO
SELECT Title, EncryptbyCert(Cert_id('testCert'),Title)Title_Ecnrypted from
HumanResources.Employee

Lesson 6: Configuring Encryption 91

C0262271X.fm Page 91 Friday, April 29, 2005 7:29 PM
NOTE Balancing security and performance

To choose the best data-encryption mechanism for your environment, you need to balance security
and performance requirements. Although certificates give you the most security, their performance
hit might cause them to be inappropriate for your needs. In contrast, symmetric keys are fast but
provide less security for your data.

PRACTICE Encrypting and Decrypting a Column
In these exercises, you will practice encrypting a column of data by using symmetric
encryption. You will add a column called Comments to the HumanResources.JobCan-
didate table. This column will store confidential information about job candidates.
You will encrypt the column by using a symmetric key protected with a certificate.
This option provides a good balance between security and performance.

� Practice 1: Create the Key Infrastructure

In this practice, you will create the key infrastructure by creating the database master
key, the certificate, and the symmetric key.

1. Open SSMS and connect to your server using Windows authentication.

2. Click New Query.

3. Type and execute the following code to create the database master key:

USE AdventureWorks
GO
IF NOT EXISTS (SELECT * FROM sys.symmetric_keys WHERE symmetric_key_id=101)
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'dkjuw4r$$#1946kcj$ngJKL95Q'
GO

4. Create the certificate that you will use to encrypt the symmetric key, and create
the symmetric key itself by typing and executing the following code:

CREATE CERTIFICATE HRCert
WITH SUBJECT = 'Job Candidate Comments'
GO
CREATE SYMMETRIC KEY CommentKey
WITH ALGORITHM = DES
ENCRYPTION BY CERTIFICATE HRCert
GO

� Practice 2: Encrypt the Data

1. Execute the following code to add the Comments column to the HumanRe-
sources.JobCandidate table; Comments will store the encrypted data:

ALTER TABLE HumanResources.JobCandidate
ADD Comments varbinary(8000)
GO

92 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 92 Friday, April 29, 2005 7:29 PM
2. Before using the EncryptByKey function to encrypt the data, you need to open
the symmetric key by using the certificate you created earlier. Execute the follow-
ing code to both use the certificate to decrypt the symmetric key and then to use
EncryptByKey to encrypt the Comments column:

OPEN SYMMETRIC KEY CommentKey
DECRYPTION BY CERTIFICATE HRCert

UPDATE HumanResources.JobCandidate
SET Comments = EncryptByKey(Key_GUID('CommentKey'), 'No Comments')
GO

3. Query the HumanResources.jobCandidate table. You can see that the data is
encrypted:

SELECT JobCandidateID,ModifiedDate, Comments FROM HumanResources.JobCandidate

4. To access the data in the encrypted column, you need to decrypt the column by
executing the following code:

OPEN SYMMETRIC KEY CommentKey
DECRYPTION BY CERTIFICATE HRCert;

SELECT JobCandidateID, ModifiedDate,
CONVERT(varchar, DecryptByKey(Comments))
AS "Decrypted Comments"
FROM HumanResources.JobCandidate

Lesson Summary
■ The ability to encrypt data is a new feature that is built into SQL Server 2005.

■ The database engine gives you a hierarchical encryption infrastructure—ranging
from the service master key to symmetric and asymmetric keys to database cer-
tificates—that lets you manage encryption in a secure, flexible way.

■ To select the appropriate encryption mechanism for your environment, you
need to balance your security and performance requirements.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

Lesson 6: Configuring Encryption 93

C0262271X.fm Page 93 Friday, April 29, 2005 7:29 PM
1. Which of the following sentences is true for the service master key?

A. You should create the service master key by using the Surface Area Config-
uration Tool.

B. The database engine creates the service master key automatically. The ser-
vice master key can be opened only by the user account that installs SQL
Server.

C. The database engine creates the service master key automatically. The ser-
vice master key can be opened only by the user account that starts the SQL
Server service.

D. You should create the service master key automatically from SQL Server
Configuration.

2. Which of the following statements enables you to create a database certificate?

A. CREATE CERTIFICATE MyCert WITH SUBJECT=‘Certificate Subject’

B. CREATE CERTIFICATE ‘MyCert’,‘Certificate Subject’

C. CREATE CERT ‘MyCert’,‘Certificate Subject’

D. CREATE CERT MyCert WITH TARGET= ‘Certificate Subject’

3. Which of the following sentences are true for the database master key? (Choose
all that apply.)

A. The database master key is optional.

B. The database master key is mandatory if you want to encrypt data.

C. The database master key is created automatically when you create the first
certificate.

D. The database master key is created manually.

94 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 94 Friday, April 29, 2005 7:29 PM
Lesson 7: Configuring Linked Servers
SQL Server lets you access external data sources from your local Transact-SQL code.
You can get ad hoc access to external data sources by using the OPENROWSET func-
tion. When you need to access data outside your local instance—such as a remote SQL
Server; another instance in your server; or a Microsoft Access, Oracle, or other data-
base—on a regular basis, you create a linked server to access the external data source.
Linked servers also let you configure distributed environments such as replication.

To create a linked server, you need an OLE DB provider that lets you connect to the
external data source. The key to good performance for non-SQL Server linked servers,
such as AS/400 or Oracle, is to select a good OLE DB provider.

After this lesson, you will be able to:

■ Specify the external data source.

■ Specify the characteristics of the data source.

■ Specify the security model of the data source.

Estimated lesson time: 10 minutes

How to Create a Linked Server
You need to define a linked server for each external data source you want to access
and then configure the security context under which your distributed queries will
run. After you create a linked server, you can use the Transact-SQL OPENQUERY func-
tion to execute your distributed queries.

NOTE Executing a distributed query

When executing a distributed query against a linked server, use a fully qualified, four-part table
name—in the form linked_server_name.catalog.schema.object_name—for each data source you are
querying.

Lesson 7: Configuring Linked Servers 95

C0262271X.fm Page 95 Friday, April 29, 2005 7:29 PM
Here are the general steps for creating a linked server:

1. Expand the Server Objects node within Object Explorer in SSMS, as Figure 2-4
shows.

Figure 2-4 Manage Linked Servers from SSMS.

2. Right-click the Linked Servers node and choose New Linked Server.

3. Figure 2-5 shows the General Page of the New Linked Server dialog box, in
which you choose the linked server type you want to create. If you select SQL
Server, the system will use the Microsoft SQL Native Client OLE DB Provider to
connect to the linked server. For other data sources, you can select the correct
OLE DB provider to use. For example, you select the Microsoft Jet 4.0 OLE DB
Provider to connect to an Access database.

96 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 96 Friday, April 29, 2005 7:29 PM
Figure 2-5 Create a new linked server.

4. Select the Security page, which Figure 2-6 shows, to configure the security con-
text that you will use for the linked server.

Figure 2-6 Configure the security model for a linked server.

Lesson 7: Configuring Linked Servers 97

C0262271X.fm Page 97 Friday, April 29, 2005 7:29 PM
Configuring the Security Model
When you use linked servers to access external data sources, you should pay special
attention to the security context for the external connection. You can configure the
linked server to use one of the following three security modes:

■ Self-mapping When a linked server is created, this mode is added for all local
logins, so SQL Server tries to connect to the external data source using the cur-
rent user’s login credentials. The same login and password must exist on the
remote server. This is the default behavior.

■ Delegation This mode impersonates the Windows local credentials; the connec-
tion forwards the credentials of an authenticated Windows user to the linked
server. The Windows user account and password must exist on the linked server.

■ Remote Credentials This mode lets you map local logins to remote logins on the
external data source.

Delegation of operating system logins is the securest mechanism, but you can use it
only when the external data source supports Windows authentication. In other cases,
you should map local logins to remote credentials to have a secure context for the con-
nection to the external data source.

PRACTICE Creating a Microsoft Access Linked Server
In this practice, you create a linked server, link it to a Microsoft Access database called
C:\Practice Files\Northwind.mdb, and then query the Customer table on the Access
database. You use the sp_addlinkedserver stored procedure to accomplish this task.
The basic syntax for this stored procedure is

sp_addlinkedserver <server_name>,<product_name>,<oledb provider name>, <data source>

1. Browse the companion CD and copy the \Practice Files\Northwind.mdb data-
base to C:\Practice Files\Northwind.mdb.

2. Open SQL Server Management Studio. In the Login dialog box, click OK, and
then click New Query. Create a linked server called North and link it to the
Access database C:\Practice Files\Northwind.mdb by executing the sp_
addlinkedserver stored procedure, as follows:

EXECUTE sp_addlinkedserver 'North', 'OLE DB Provider for Jet',
'Microsoft.Jet.OLEDB.4.0','C:\Practice Files\Northwind.mdb'

3. Test your access to the remote database by issuing the following query against
the Customers table:

SELECT * FROM North...Customers

98 Chapter 2 Configuring SQL Server 2005

C0262271X.fm Page 98 Friday, April 29, 2005 7:29 PM
Lesson Summary
■ Linked servers are server objects that let you connect and execute commands on

remote data sources, including non-SQL Server data sources.

■ To define a linked server, you specify the external data source, an OLE DB pro-
vider, to connect to that source, and the security context of the connection.

■ After creating a linked server, you can access its objects by using the fully quali-
fied, four-part table name.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. When do you need to specify an external data source by using a linked server?

A. When you need to access a different database.

B. When you need to access a different instance.

C. When you need to access a different database schema

D. When you need to access objects of a different user owner.

2. What do you need to specify to create a linked server? (Choose all that apply.)

A. OLE DB Data Source

B. ODBC Data Source

C. ODBC Provider

D. OLE DB Provider

3. Which of the following sentences are true for linked server security? (Choose all
that apply.)

A. The security mode is defined at the instance level.

B. The default configuration is self-mapping.

C. The default configuration is delegation.

D. The security mode is defined per linked server.

Chapter 2 Review 99

C0262271X.fm Page 99 Friday, April 29, 2005 7:29 PM
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can

■ Review the chapter summary.

■ Review the list of key terms introduced in this chapter.

■ Complete the case scenarios. These scenarios set up real-world situations involv-
ing the topics of this chapter and ask you to create a solution.

■ Complete the suggested practices.

■ Take a practice test.

Chapter Summary
■ Configuring data and log files is one of the most important tasks in the database

design phase. You should evaluate server hardware along with the database
structure to define the best approach for your environment.

■ Database Mail gives you an easy mechanism for configuring a mail subsystem in
SQL Server 2005. Database Mail is an SMTP client that lets your database appli-
cations send and receive e-mails without requiring you to install an Extended
MAPI client on the server, as was required with previous versions of SQL Server.

■ How you configure a database’s recovery model has great impact on the data-
base’s availability. The Full recovery model is recommended for all production
databases, but you can use the Bulk-Logged recovery model temporarily during
a bulk load operation.

■ In setting up security for your database system, selecting the appropriate authen-
tication mode is your first crucial task. Windows authentication mode provides
the most secure mechanism, but for you to use it, all your clients must support
Windows authentication.

■ To give access to your database, you need to configure database users mapped to
logins. You can use SQL Server’s fixed database roles or create your own to
group users with the same security needs and simplify management.

100 Chapter 2 Review

C0262271X.fm Page 100 Friday, April 29, 2005 7:29 PM
■ Data encryption, new in SQL Server 2005, provides a highly secure environ-
ment, but with a possible high performance cost. You should evaluate the need
for encryption carefully and test the impact on your applications.

■ When you need to create a linked server to access an external data source, you
should pay special attention to two configuration options: the OLE DB provider
you will use to connect to the external data source and the security mechanism
that will validate the connections to the external data source.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ asymmetric key

■ Bulk-Logged recovery model

■ certificate

■ Database Mail

■ Database Mail account

■ Database Mail profile

■ database master key

■ database role

■ data file

■ default filegroup

■ filegroup

■ fixed server role

■ Full recovery model

■ linked server

■ log file

■ Mixed Mode authentication

■ primary data file

■ primary filegroup

■ RAID 0

■ RAID 1

Chapter 2 Review 101

C0262271X.fm Page 101 Friday, April 29, 2005 7:29 PM
■ RAID 5

■ read-only filegroup

■ recovery model

■ schema

■ secondary data file

■ service master key

■ Simple recovery model

■ symmetric key

■ user-defined filegroup

■ Windows authentication

Case Scenarios
In the following case scenarios, you will apply what you’ve learned in this chapter. You
can find answers to these questions in the “Answers” section at the end of this book.

Case Scenario 1: Configuring Security
You are working as a senior DBA for a large retail company. Your company plans to
implement a new Customer Relationship Management (CRM) application that uses
SQL Server 2005 as the database engine. You have Windows XP and Macintosh cli-
ents on your Active Directory network, and you need to provide access from both
environments to SQL Server. You’ll have basically two user types: Sales and Market-
ing. The CRM solution will store confidential data about clients, so you need to con-
figure an encryption mechanism that has a small impact on performance.

1. What authentication mode and login types should you use?

2. What database users and roles would be appropriate?

3. What encryption architecture should you implement to encrypt the confidential
data?

102 Chapter 2 Review

C0262271X.fm Page 102 Friday, April 29, 2005 7:29 PM
Case Scenario 2: Configuring a Heterogeneous Environment
You work as a senior DBA at an insurance company that has its headquarters in
California and branch offices in Seattle, Bogota, Madrid, and Marsella. Your company
has an Enterprise Resource Planning (ERP) solution installed on an Oracle server,
and you are deploying a call-center application based on SQL Server 2005. The call-
center application on SQL Server 2005 needs access to the Oracle server to extract
information. Also, you need to send aggregate information to branch offices by e-mail,
but you have a UNIX mail server.

1. How should you provide access to the Oracle server from SQL Server 2005?

2. What security solution should you implement to ensure that your connection is
as safe as possible?

3. What infrastructure changes are needed to support Database Mail?

Suggested Practices
To help you successfully master the exam objectives presented in this chapter, com-
plete the following practice tasks.

■ Practice 1: Managing Database Schemas Practice creating a schema; then transfer
a schema to a new owner and drop the original user who owned the schema.

■ Practice 2: Managing Recovery Models Using the AdventureWorks database, com-
pare the performance of the backup performed when the database is configured
to use the Simple recovery model versus the Full recovery model.

Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-431 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the section titled “How to Use the Practice
Tests” in this book’s Introduction.

C0362271X.fm Page 103 Friday, April 29, 2005 7:30 PM
Chapter 3

Creating Tables, Constraints, and
User-Defined Types

The entire purpose of a database is to store and return data. These tasks would not be
possible without the structure that database tables provide. Tables are the basic build-
ing blocks of a database. And the choices you make when designing a table affect the
amount of space consumed on disk, the amount of memory consumed when processing
data, and the queries required to manipulate the data for application use. This chapter
lays the foundation for building high-performing databases. We begin by looking at
how to define the columns within a table to enforce a structure for your data that sup-
ports business rules while using minimum storage resources. After you understand
how to appropriately define columns, you can create your table and assign permis-
sions to allow access to the table.

This chapter then discusses the Microsoft SQL Server constraints you can use to fur-
ther enforce business rules, and it ends with coverage of user-defined types (UDTs)
that you can create to enforce consistent column definitions within your database or
to create entirely new data types that SQL Server doesn’t provide.

Exam objectives in this chapter:
■ Implement a table.

❑ Specify column details.

❑ Specify the filegroup.

❑ Assign permissions to a role for tables.

■ Implement constraints.

❑ Specify the scope of a constraint.

❑ Create a new constraint.

■ Create user-defined types.

❑ Create a Transact-SQL user-defined type.

❑ Specify details of the data type.

❑ Create a CLR user-defined type.
103

104 Chapter 3 Creating Tables, Constraints, and User-Defined Types

C0362271X.fm Page 104 Friday, April 29, 2005 7:30 PM
Lessons in this chapter:
■ Lesson 1: Creating Tables . 107

■ Lesson 2: Implementing Constraints . 127

■ Lesson 3: Creating User-Defined Types. 137

Before You Begin
To complete the lessons in this chapter, you must have

■ SQL Server 2005 installed.

■ A copy of the AdventureWorks sample database installed in the instance or an
empty database created.

IMPORTANT Implementing tables

The placement of this chapter creates a “chicken-and-egg” dilemma. You can’t have a chicken with-
out an egg, and you can’t have an egg without a chicken. The same is true for SQL Server tables.
You can’t define a table without using Transact-SQL. And tables aren’t much use if they don’t con-
tain any data, which you place into the table by using Transact-SQL. However, we can’t teach Trans-
act-SQL without first explaining tables. In this book, we cover table creation first. And as much as
possible, this chapter avoids discussing the details of using Transact-SQL, which is covered in later
chapters.

Real World
Michael Hotek

Much of my career with SQL Server has focused on either achieving maximum
uptime or fixing performance issues. Performance problems manifest them-
selves in a variety of ways, but every issue always comes back to a single root
cause: resources.

Companies often first try “throwing more hardware at the problem” by changing
servers, adding memory, adding disks, and so on. This rarely solves the perfor-
mance problem. Most professionals dealing with performance issues start by inves-
tigating the code that has been written to access the data, usually identifying a
number of changes they can make to improve performance or even solve the issue.
Rarely does anyone look into the database table structure, simply because you gen-
erally cannot change table structures after a database is in production. Unfortu-
nately, structural issues are at the core of almost every performance problem.

Before You Begin 105

C0362271X.fm Page 105 Friday, April 29, 2005 7:30 PM
I spent two weeks at one customer site, analyzing its environment and docu-
menting all the performance issues the organization was having as its applica-
tion was having to process larger and larger volumes of data. I found lots of ways
to improve queries so that they were more efficient and read less data. And I sug-
gested additional improvements the IT team could make to reduce the amount
of code that had to be executed to reach a final result. Over the course of my
assignment, I identified hundreds of queries that could be tuned, and I changed
several dozen of them myself. However, all the changes combined could not
overcome the most fundamental problem with the company’s application: poor
table design.

The company’s application revolved around dates and scheduling items into
time blocks. However, the application never dealt with actual dates; instead it
dealt with either minutes or seconds. Unfortunately, when the database tables
were designed, everything was stored in a datetime data type. So every query run-
ning in the system had to call a function that converted the data into minutes
and seconds that could be used by the application. And every time a change had
to be made, the application had to convert the minutes and seconds that it used
back into a datetime value to be stored in the database. (Because of a nonstand-
ard business week definition, the company couldn’t use any of the date or time
functions in SQL Server.) After further analysis, we determined that more than
80 percent of the total resources being consumed—processor, memory, and
input/output (I/O)—was involved in this conversion process.

We created a simple test database that converted all the datetime columns into
integers, stripped out all the conversion code, and then ran several tests. Queries
that were taking seconds to execute dropped to 50 milliseconds or less. Queries
taking minutes dropped to a few seconds. In the most extreme case, a batch pro-
cess that ran several times per day and previously took as long as four hours in
a given run took less than five minutes to finish, regardless of the amount of data
that needed to be processed.

Unfortunately, the application data is still stored in datetime columns, and the
application still spends 80 percent or more of the total resources that it con-
sumes converting the datetime values into usable values for the application. To
change this fundamental structure would have required a complete rewrite of
more than 80 percent of the stored procedure code and would have affected
almost all the database tables.

106 Chapter 3 Creating Tables, Constraints, and User-Defined Types

C0362271X.fm Page 106 Friday, April 29, 2005 7:30 PM
So when someone tells me that the choice of data types for a table really doesn’t
matter because storage space is cheap, I wonder just how long it will be before
their performance becomes a problem—and a problem whose root cause can’t be
fixed because of business constraints. Disk space might be reasonably inexpen-
sive and essentially limitless, but all the data still has to be moved through mem-
ory and processors, and there is a maximum amount of memory and processors
that current hardware can support. Every byte wasted when data is stored need-
lessly consumes a byte of memory along with processor cycles when it is pro-
cessed. Although a single byte here or there won’t do much harm, losing a single
byte per row in a table that contains millions of rows of data adds up very
quickly to memory pressure and high processor utilization.

Lesson 1: Creating Tables 107

C0362271X.fm Page 107 Friday, April 29, 2005 7:30 PM
Lesson 1: Creating Tables
The basic analogy for a database table is that it is like a single worksheet within a
spreadsheet. As you work with a worksheet, you enter information in rows and col-
umns. Well-designed spreadsheets generally have column headers that give you an
idea of the kind of data you find in a column. The problem with working with data in
a worksheet, however, is that it doesn’t enforce any structure. You can place any type
of data in any column without limitation.

Database tables also store rows of data in columns. And each of these columns has a
name associated with it to provide an easy way to reference a particular piece of data.
But what sets a table and database apart from a Microsoft Office Excel worksheet or
spreadsheet, for example, is the strict enforcement of the data that you can enter in a
column. SQL Server enforces this data structure by using data types as well as prop-
erties that you can add to further define a column. In this lesson, you will learn how
to make the best choices when defining data types and properties for columns, how
to create a table, and then how to assign appropriate permissions to allow access to
a table.

After this lesson, you will be able to:

■ Specify column details including data type.

■ Specify the filegroup.

■ Implement a table.

■ Assign permissions to a role for tables.

Estimated lesson time: 30 minutes

Understanding Data Types
Data types limit the type of data that you can store in a column and, in some cases,
even limit the range of possible values in the column. The data type that you choose
for a column is the most critical decision that you make within your database. If you
choose a data type that is too restrictive, applications cannot store the data they are
supposed to process, leading to a large design effort. If you choose too broad a data
type, however, you wind up consuming more space than necessary on disk and in
memory, which can create a resource and performance issue.

When selecting a data type for a column, you should choose the data type that allows
all the data values that you expect to be stored while doing so in the least amount of

108 Chapter 3 Creating Tables, Constraints, and User-Defined Types

C0362271X.fm Page 108 Friday, April 29, 2005 7:30 PM
space possible. SQL Server data types fall into seven general categories, which
Table 3-1 describes.

Let’s look at each of these data type categories to see how you can use the different
data types to provide the basic definition of each column in a table. You use these data
types when defining permanent tables, temporary tables, table variables, and vari-
ables. There are few restrictions to the data types that you can use in stored proce-
dures, triggers, and functions.

MORE INFO Data type definitions

For more detailed information about each data type, including explicit storage details and restric-
tions, see the SQL Server 2005 Books Online topics “Data Types (Transact-SQL)” and “Data Type
Conversion (Database Engine).” SQL Server 2005 Books Online is installed as part of SQL Server
2005. Updates for SQL Server 2005 Books Online are available for download at www.microsoft.com/
technet/prodtechnol/sql/2005/downloads/books.mspx.

Table 3-1 Seven Categories of SQL Server Data Types

Data Type Category General Purpose

Exact numeric Stores precise numbers either with or without
decimals

Approximate numeric Stores numeric values with or without decimals

Monetary Stores numeric values with decimal places; used spe-
cifically for currency values with up to four decimal
places

Date and time Stores date and time information and enables special
chronological enforcement, such as rejecting a value
of February 30

Character Stores character-based values of varying lengths

Binary Stores data in a strict binary (0 and 1) representation

Special purpose Complex data types that require specialized handling,
such as XML documents or globally unique
identifiers (GUIDs)

Lesson 1: Creating Tables 109

C0362271X.fm Page 109 Friday, April 29, 2005 7:30 PM
Exact Numeric Data Types
You use exact numeric data types to store numbers that have zero or more decimal
places. You can manipulate the numbers that you store in these data types by using
any mathematical operation without requiring any special handling. The storage is
also precisely defined, so any data stored in these data types returns and calculates to
the same value on either an Intel or an AMD processor architecture. Table 3-2 lists the
exact numeric data types that SQL Server supports.

The decimal and numeric data types accept parameters to complete the data type
definition. These parameters define the precision and scale for the data type. For
example, decimal(12,4) defines a decimal value that can have up to 12 total digits,
with four of those digits after the decimal.

Table 3-2 Exact Numeric Data Types

Data Type Storage Value Range Purpose

bigint 8 bytes –2E63 to 2E63 –1 Stores very large whole
numbers that can be posi-
tive or negative

int 4 bytes –2E31 to 2E31 –1 Stores whole numbers
that can be positive or
negative

smallint 2 bytes –32,768 to 32,767 Stores whole numbers
that can be positive or
negative

tinyint 1 byte 0 to 255 Stores a small range of
positive whole numbers

decimal(p,s) 5–17 bytes
depending
on the
precision

–10E38 + 1 to
10E38 –1

Stores decimals up to a
maximum of 38 places

numeric(p,s) 5–17 bytes
depending
on the
precision

–10E38 + 1 to
10E38 –1

Functionally equivalent to
decimal, and can be used
interchangeably with
decimal

110 Chapter 3 Creating Tables, Constraints, and User-Defined Types

C0362271X.fm Page 110 Friday, April 29, 2005 7:30 PM
The most common data types from this group are int and decimal. You can use a
decimal data type to store integer values, but doing so requires extra bytes of storage
per row and should not be used for this purpose.

Although int data types can store both positive and negative numbers, the negative
portion is very rarely used. The int data types are commonly used—and commonly
misused. If the range of values you plan to store in a column do not exceed 32,767,
you can save two bytes for every row by using smallint instead of int. If the values are
going to range only from 0 to 255, you can save three bytes for every row by using
tinyint.

IMPORTANT Space utilization

Saving two or three bytes of storage per row doesn’t seem like a lot compared to the 250+ GB
hard drives that you can now purchase for a few hundred dollars, pounds, euros, yen, or whatever
currency you are working with. However, hard disk storage is a minor concern. If you store 1 million
rows of data in a table, which is very common, the bytes per row saved would add up to 2 or 3 MB.
Although that does not sound like much, consider that you also save that much space in memory
if a user executes a query that returns all the rows in the table. You also save thousands of proces-
sor cycles at the same time.

The space issue becomes even larger when you join two tables together. Joining two int columns
together consumes eight bytes of memory as well as the corresponding calculation on the proces-
sor. If both tables hold 1 million rows and need to be read completely, the operation consumes
about 8 MB of memory space. If you could have stored the data in a smallint or tinyint column
instead, the memory savings for this query would be 4–6 MB. And that is the savings for only a sin-
gle query. Consider what would happen if thousands of queries are being processed against the
database, and you can see how one or two bytes of savings per row based on the data type you
use can quickly make the difference between an environment with good performance and one with
very poor performance.

Approximate Numeric Data Types
Approximate numeric data types can store decimal values. However, data stored in a
float or real data type is exact only to the precision specified in the data type definition.
Any digits to the right are not guaranteed to be stored exactly. For example, if you
stored 1.00015454 in a data type defined as float(8), the column is guaranteed to
return only 1.000154 accurately. SQL Server rounds off any digits further to the right
when it stores the data. Therefore, calculations involving these data types compound
rounding errors. Transferring databases containing tables with these data types
between Intel and AMD processors also introduces errors. Table 3-3 lists SQL Server’s
approximate numeric data types.

Lesson 1: Creating Tables 111

C0362271X.fm Page 111 Friday, April 29, 2005 7:30 PM
The float data types accept a parameter in the definition that determines the number
of digits to store precisely. For example, a float(8) column precisely stores seven digits,
and anything exceeding that is subject to rounding errors.

Because of the imprecision associated with these data types, they are rarely used. You
should consider using float only in cases in which an exact numeric data type is not
large enough to store the values.

Monetary Data Types
Monetary data types are designed to store currency values with four decimal places of
precision. Table 3-4 lists SQL Server’s monetary data types.

The smallmoney data types are rarely defined in databases, even though this data type
is the most accurate choice for many applications that deal with products and orders.
It is much more common for these databases to incorrectly use the money data type
and waste four bytes of storage for each row stored.

Although money and smallmoney data types are designed to store currency values,
they are rarely used in financial applications. Instead, these applications use a decimal

Table 3-3 Approximate Numeric Data Types

Data Type Storage Value Range Purpose

float(p) 4 or 8 bytes –2.23E308 to
2.23E308

Stores large, floating point
numbers that exceed the
capacity of a decimal data
type

real 4 bytes –3.4E38 to 3.4E38 Still valid, but replaced by
float to meet the SQL-92
standard

Table 3-4 Monetary Data Types

Data Type Storage Value Range Purpose

money 8 bytes –922,337,203,685,477.5808
to 922,337,203,685,477.5807

Stores large cur-
rency values

smallmoney 4 bytes –214,748.3648 to
214,748.3647

Stores small cur-
rency values

112 Chapter 3 Creating Tables, Constraints, and User-Defined Types

C0362271X.fm Page 112 Friday, April 29, 2005 7:30 PM
data type because they need to perform accurate calculations to 6, 8, and even 12
decimal places.

Date and Time Data Types
In storing data, nothing generates more controversy than figuring out how to store
dates and times. Some applications need to store only a date. Other applications need
to store only a time. And still other applications need to store both dates and times
together. Unfortunately, SQL Server stores this type of data only together as both a
date and a time—for example, 2006-03-14 20:53:36.153, which is the precise millisec-
ond on the system clock when I started writing this sentence. Table 3-5 lists SQL
Server’s date and time data types.

The datetime and smalldatetime data types are stored internally as integers. The
datetime data type is stored as a pair of four-byte integers, which together represent the
number of milliseconds since midnight on January 1, 1753. The first four bytes store
the date, and the second four bytes store the time. The smalldatetime data type is
stored as a pair of two-byte integers, which together represent the number of minutes
since midnight on January 1, 1900. The first two bytes store the date, and the second
two bytes store the time.

Character Data Types
To store character data, you select one of the data types designed for this purpose.
Each one consumes either one or two bytes of storage for each character, depending
on whether the data type uses American National Standards Institute (ANSI) encod-
ing or Unicode encoding.

Table 3-5 Date and Time Data Types

Data Type Storage Value Range Purpose

datetime 8 bytes January 1, 1753,
through December 31,
9999, with an accuracy
of 3.33 milliseconds

Stores large date
and time values.

smalldatetime 4 bytes January 1, 1900,
through June 6, 2079,
with an accuracy of
1 minute

Stores a smaller
range of date and
time values

Lesson 1: Creating Tables 113

C0362271X.fm Page 113 Friday, April 29, 2005 7:30 PM
Before looking at the character data types, let’s look briefly at the background behind
the ANSI and Unicode encodings. To handle the wide variety of languages in the
world, computer technologists needed a way to store the many different characters of
a language in a standard format. So, the ANSI standards body developed an encoding
standard that required eight bits to represent the range of letters. The only problem
was that every character could not be specified within a single eight-bit encoding.
Thus, dozens of character sets were created that specified the acceptable characters
for a given encoding. This approach worked well until you started transferring data
between systems that used different character sets. If a character in one encoding did
not exist in a different encoding, it was lost in the translation process. In addition to
the encoding-translation issues, the eight-bit encoding couldn’t capture several
languages.

These problems led to the creation of the Unicode standard. The Unicode standard
uses 2 bytes to represent each character. This extra space meant that all the character
sets in use in the ANSI standard could be eliminated. Now, each unique character
could be expressed within a single encoding schema. And because with Unicode
there’s just one encoding scheme, no encoding translation is necessary when trans-
ferring data between systems set for different languages. This makes character data
completely transportable. The only downside is that Unicode data types require two
bytes to store each character, so Unicode data types require twice as much space as
their ANSI counterparts.

Unicode data types are preceded with an n. For example, nchar is the Unicode coun-
terpart to the char data type, which uses the ANSI encoding. When defining a charac-
ter data type, you specify the maximum number of bytes the column is allowed to
store. For example, a char(10) can store a maximum of 10 characters because each
character requires one byte of storage, whereas an nchar(10) can store a maximum of
five characters because each Unicode character requires two bytes of storage. Table 3-6
lists SQL Server character data types.

Table 3-6 Character Data Types

Data Type Storage Number of Characters Purpose

char(n) 1–8,000 bytes Maximum of 8,000
characters

ANSI data type that
is fixed width

nchar(n) 2–8,000 bytes Maximum of 4,000
characters

Unicode data type
that is fixed width

114 Chapter 3 Creating Tables, Constraints, and User-Defined Types

C0362271X.fm Page 114 Friday, April 29, 2005 7:30 PM
Why are there so many character data types that appear to be equivalent to each
other? The differences in the data types might be subtle, but they can be important. A
char data type, either ANSI or Unicode, is a fixed-width data type. Therefore, it con-
sumes the same amount of storage space regardless of the number of characters that
are stored in the column. For example, a char(30) column consumes 30 bytes of
storage space regardless of whether you store one character or 30 characters in the
column. Any unused space is padded with spaces up to the maximum storage speci-
fied for the column. However, a varchar(30) column consumes only one byte for each
character that is stored in the column.

The text and ntext data types are designed to store large amounts of character-based
data. However, text and ntext columns aren’t allowed with many operations. For
example, you cannot use them with an equality operator or join them together. Many
system functions also cannot use text and ntext data types.

Because of these limitations, SQL Server 2005 introduced the varchar(max) and
nvarchar(max) data types. These data types combine the capabilities of both text/ntext

varchar(n) 1–8,000 bytes Maximum of 8,000
characters

ANSI data type that
is variable width

varchar(max) Up to 2 GB Up to 1,073,741,824
characters

ANSI data type that
is variable width

nvarchar(n) 2–8,000 bytes Maximum of 4,000
characters

Unicode data type
that is variable
width

nvarchar(max) Up to 2 GB Up to 536,870,912
characters

Unicode data type
that is variable
width

text Up to 2 GB Up to 1,073,741,824
characters

ANSI data type that
is variable width

ntext Up to 2 GB Up to 536,870,912
characters

Unicode data type
that is variable
width

Table 3-6 Character Data Types

Data Type Storage Number of Characters Purpose

Lesson 1: Creating Tables 115

C0362271X.fm Page 115 Friday, April 29, 2005 7:30 PM
and varchar/nvarchar data types. They can store up to 2 GB of data and do not have
any restrictions on the operations that you can perform with them or on the functions
you can use them with.

Binary Data Types
There are many times when you need to store binary data. So SQL Server provides
three data types that let you store various amounts of binary data in a table. Table 3-7
lists SQL Server’s binary data types.

You use the binary data types essentially to store files within SQL Server. You use the
binary/varbinary data types for storing small files, such as a group of 4 KB or 6 KB
files containing a variety of data in native format.

The most popular data type within this group is the image data type. This data type
has an unfortunate name; it is not used exclusively to store images, such as a library
of pictures from a recent vacation. Although you can store pictures in an image data
type, you can also use this data type to store Word, Excel, PDF, and Visio documents.
You can store any file that is 2 GB or less in size in an image data type. One of the most
famous implementations of this data type is the TerraServer project, which is a multi-
terabyte database of terrestrial images that you can access at www.terraserver.com.

The varbinary(max) data type is new to SQL Server 2005. It can store the same
amount of data as an image data type, and you can use it with all the operations and
functions that you can use with binary/varbinary data types.

Specialized Data Types
In addition to the preceding standard data types, SQL Server provides seven
additional data types for very specific purposes. Table 3-8 describes these specialized
data types.

Table 3-7 Binary Data Types

Data Type Storage Purpose

binary(n) 1–8,000 bytes Stores fixed-size binary data

varbinary(n) 1–8,000 bytes Stores variable-size binary data

varbinary(max) Up to 2 GB Stores variable-size binary data

image Up to 2 GB Stores variable-size binary data

116 Chapter 3 Creating Tables, Constraints, and User-Defined Types

C0362271X.fm Page 116 Friday, April 29, 2005 7:30 PM
CAUTION sql_variant: just say no

The sql_variant data type, new in SQL Server 2005, is a dangerous data type that, in my opinion,
should never have been added to SQL Server. This data type enables you to declare a column or
variable without having to decide what type of data will be stored in it. The sql_variant data type
then automatically “converts” itself into the type of data that is written into it.

Databases are useful because all data is explicitly declared and explicitly typed. By allowing a data
type that has no defined type, all kinds of data-mismatch issues can arise. We very strongly recom-
mend that you never use sql_variant.

Table 3-8 Specialized Date Types

Data Type Purpose

bit Stores a 0, 1, or null. Used for basic “flag” values. TRUE is con-
verted to 1, and FALSE is converted to 0.

timestamp An automatically generated value. Each database contains an
internal counter that designates a relative time counter not
associated with an actual clock. A table can have only one
timestamp column, which is set to the database timestamp
when the row is inserted or modified.

uniqueidentifier A 16-bit GUID used to globally identify a row across data-
bases, instances, and servers.

sql_variant Can change the data type based on the data that is stored
within it. Stores a maximum of 8,000 bytes.

cursor Used by applications that declare cursors. Contains a refer-
ence to the cursor that can be used for operations. This data
type cannot be used in a table.

table Used to hold a result set for subsequent processing. This data
type cannot be used for a column. The only time you use this
data type is when declaring table variables in triggers, stored
procedures, and functions.

Xml Stores an XML document of up to 2 GB in size. You can spec-
ify options to force only well-formed documents to be stored
in the column.

Lesson 1: Creating Tables 117

C0362271X.fm Page 117 Friday, April 29, 2005 7:30 PM
MORE INFO sql_variant

For more information about the sql_variant data type, see the SQL Server 2005 Books Online article
“sql_variant (Transact-SQL).”

Quick Check
■ What are the six categories of standard data types that you can use to

define columns in tables, and what is the general purpose of each category?

Quick Check Answer

■ Exact numeric data types store precise integer or decimal values.

■ Approximate numeric data types store floating-point numbers.

■ Monetary data types store currency accurate to four decimal places.

■ Datetime data types store dates and times.

■ Character data types store text values.

■ Binary data types store binary streams, normally files.

Nullability
The second characteristic of any column definition is whether it requires a value to be
stored. Databases have a special construct called a null that you can use to denote the
absence of a value—something similar to “unknown” or “not applicable.” A null is not
a value, nor does it consume storage. The best way to understand this construct is to
look at an example.

Let’s say that you are designing a table to store addresses of your company’s custom-
ers. You have decided that each address can have up to three lines for the street
address. Each address can also have a city, a state or province, a postal code, and a
country. So you create a table that contains seven columns. Not every customer needs
all three address lines to capture the street address, so one or two of these columns are
not necessary for some addresses. Some customers live in countries that do not have
states or provinces, so this column is also not necessary for every customer. In addi-
tion, when users input addresses, they might not know the postal code of certain cus-
tomers, but they still need to be able to save all of the data that is known. These issues
create a basic dilemma. You could stick a dummy value in the columns that either
don’t have values or the values aren’t known when the data was entered. However,
inserting dummy data can cause even more problems because you are adding invalid

118 Chapter 3 Creating Tables, Constraints, and User-Defined Types

C0362271X.fm Page 118 Friday, April 29, 2005 7:30 PM
data to your table—data that might be seen and used by an employee or customer.
Generally, you would have users just omit the data. Because the data was not
explicitly specified, it is either unknown or not applicable. In the database, the col-
umn would be null to designate this unknown state.

When you define columns, you can specify whether or not nulls are allowed. If you
disallow nulls, a user is required to specify a value for the column.

Note that because it is impossible for the absence of something to equal the absence
of something—in other words, one null cannot equal another null—you cannot use a
null in comparisons.

MORE INFO Nulls

For more details about nulls, see the SQL Server 2005 Books Online article “Null Values.”

Identity
When defining columns, you also have the ability to specify a special identify property
for a single column in a table. Defining a column with the identity property causes
SQL Server to generate an automatically incrementing number. The identity property
takes two parameters: seed and increment. The seed value designates the starting
value that SQL Server uses. The increment value specifies what number SQL Server
adds to this starting value when generating each successive value. This property is
equivalent to autonumber or autoincrement values in other languages.

You can use the identity property with the exact numeric data types: bigint, int,
smallint, tinyint, decimal, and numeric. If you use decimal or numeric data types with the
identity property, you must define them with 0 decimal places.

Computed Columns
You can also create a special type of column called a computed column, which contains
a computation involving one or more other columns in the table.

By default, the computed column contains a definition for the computation but does
not physically store data by default. When the data is returned, the computation is
applied to return a result.

However, you can force a computed column to physically store data by using the
PERSISTED keyword. This keyword causes the computation to occur when the row is
inserted or modified, and the result of the computation is then physically stored in
the table.

Lesson 1: Creating Tables 119

C0362271X.fm Page 119 Friday, April 29, 2005 7:30 PM
Creating a Table
Now that you have seen all the column details you can specify to define the structure
of a table, you are ready to actually create a table. You can create three different types
of tables in SQL Server: permanent, temporary, and table variables.

MORE INFO Normalization, naming conventions, and table design

Normalization, naming conventions, and various table-design methods are beyond the scope of
this book. For information about these topics, see MCITP Self-Paced Training Kit (Exam 70-443):
Designing a Database Server Infrastructure by Using Microsoft SQL Server 2005, Microsoft Press, 2007.

Permanent Tables
To create a table, you use the CREATE TABLE Transact-SQL command. The general
syntax of this command is as follows:

CREATE TABLE
[database_name . [schema_name] . | schema_name .] table_name

({ <column_definition> | <computed_column_definition> }
[<table_constraint>] [,...n])

[ON { partition_scheme_name (partition_column_name) | filegroup
| "default" }]

[{ TEXTIMAGE_ON { filegroup | "default" }]
[;]

To execute this command, you must be a member of the sysadmin fixed server role, a
member of the database owner fixed database role, or have been granted the CREATE
TABLE permission. When you use this command, you create a table in the database
that can be accessed by any user with the appropriate permissions.

The ON clause specifies where the table will reside on physical storage. If you do not
specify a filegroup, SQL Server creates the table on the default filegroup.

Using our earlier example, you could use the CREATE TABLE command to create the
CustomerAddress table as follows:

CREATE TABLE dbo.CustomerAddress
(AddressLine1 varchar(30) NOT NULL,
AddressLine2 varchar(30) NULL,
AddressLine3 varchar(30) NULL,
City varchar(50) NOT NULL,
StateProvinceID int NULL,
PostalCode char(10) NULL,
CountryID int NULL)

120 Chapter 3 Creating Tables, Constraints, and User-Defined Types

C0362271X.fm Page 120 Friday, April 29, 2005 7:30 PM
This table definition specifies the following:

■ The table will be created in the dbo schema.

■ A minimum of one address line that has a maximum of 30 characters must be
specified for every customer. The storage space consumed will be equal to the
number of characters in the column.

■ One or two optional address lines can be specified, each holding up to 30
characters and consuming storage space equal to the number of characters in
the column.

■ A customer record must have a city specified; the City column can hold a value
up to 50 characters in length and consumes storage equal to the number of
characters in the column.

■ A customer can have an optional state/province specified. The column con-
sumes four bytes of storage and contains an integer value.

■ A customer can have an optional postal code specified. Each row consumes 10
bytes of storage.

■ A customer can have an optional country specified. The column consumes four
bytes of storage and contains an integer value.

Although the preceding table definition accurately captures the necessary data, you
might have noticed a few problems. A customer might have one or more home
addresses, one or more business addresses, and one or more shipping addresses. A
customer might also want to designate a particular address as the primary address. So
you might be tempted to add a lot of additional columns to handle these situations.
But that would be thinking in terms of a spreadsheet, not a database. Instead, you can
simply add a column to the table that designates the type of address and a column to
designate the primary address, as the following example shows:

CREATE TABLE dbo.CustomerAddress
(AddressType char(4) NOT NULL,
PrimaryAddressFlag bit NOT NULL,
AddressLine1 varchar(30) NOT NULL,
AddressLine2 varchar(30) NULL,
AddressLine3 varchar(30) NULL,
City varchar(50) NOT NULL,
StateProvinceID int NULL,
PostalCode char(10) NULL,
CountryID int NULL)

For now, we will ignore the questions concerning the StateProvinceID and CountryID
columns because we will cover them in the next lesson on constraints.

Lesson 1: Creating Tables 121

C0362271X.fm Page 121 Friday, April 29, 2005 7:30 PM
But there is still one other problem with this table definition. We are capturing
addresses, but we have no way of knowing which address corresponds with which
customer. To complete the table structure and allow an address to be associated with
a customer, we need to add one more column to the table: the CustomerAddressID int
column, defined with the identity property. The complete table definition is as
follows:

CREATE TABLE dbo.CustomerAddress
(CustomerAddressID int IDENTITY(1,1),
AddressType char(4) NOT NULL,
PrimaryAddressFlag bit NOT NULL,
AddressLine1 varchar(30) NOT NULL,
AddressLine2 varchar(30) NULL,
AddressLine3 varchar(30) NULL,
City varchar(50) NOT NULL,
StateProvinceID int NULL,
PostalCode char(10) NULL,
CountryID int NULL)

NOTE Deleting tables

You use the DELETE command to remove rows from a table. And to remove an entire table, you use
the DROP TABLE command. To execute this command, you must be a member of the sysadmin
fixed server role, a member of the database owner fixed database role, or the owner of the table.

Temporary Tables
Temporary tables, as their name suggests, are temporary table structures. Temporary
tables can be either global or local and can be created by any user. All temporary
tables are created in the tempdb database.

A local temporary table is visible only to the user who created the table and only
within the connection that was used to create the table. Local temporary tables are
automatically dropped when the connection they are associated with is closed. You
create a local temporary table by using the CREATE TABLE command and prepending
a pound sign (#) to the table name.

The following example shows the command to create the earlier CustomerAddress
table as a local temporary table:

CREATE TABLE #CustomerAddress
(CustomerAddressID int IDENTITY(1,1),
AddressType char(4) NOT NULL,
PrimaryAddressFlag bit NOT NULL,
AddressLine1 varchar(30) NOT NULL,

122 Chapter 3 Creating Tables, Constraints, and User-Defined Types

C0362271X.fm Page 122 Friday, April 29, 2005 7:30 PM
AddressLine2 varchar(30) NULL,
AddressLine3 varchar(30) NULL,
City varchar(50) NOT NULL,
StateProvinceID int NULL,
PostalCode char(10) NULL,
CountryID int NULL)

A global temporary table, in contrast, is visible to any user within the SQL Server
instance. Global temporary tables are dropped when the last connection accessing
the table is closed. You create a global temporary table by using the CREATE TABLE
command and prepending two pound signs (##) to the table name, as the following
example shows:

CREATE TABLE ##CustomerAddress
(CustomerAddressID int IDENTITY(1,1),
AddressType char(4) NOT NULL,
PrimaryAddressFlag bit NOT NULL,
AddressLine1 varchar(30) NOT NULL,
AddressLine2 varchar(30) NULL,
AddressLine3 varchar(30) NULL,
City varchar(50) NOT NULL,
StateProvinceID int NULL,
PostalCode char(10) NULL,
CountryID int NULL)

BEST PRACTICES Cleaning up

Everything you read related to programming should have one recurring theme: “If you create it,
you should delete it.” This mantra applies to all temporary objects that you ever create. If you cre-
ate a temporary table, you should drop it when you no longer need it. This allows resources to be
reclaimed and ensures that structures are not left hanging around. You should never rely on a con-
nection being closed to clean up any temporary tables, particularly because many applications use
connection pools in which the connections are never closed. Explicitly dropping a temporary table
after you finish using it ensures that you never receive any errors because of attempting to create
the temporary table a second time.

Table Variables
Table variables provide an alternative to temporary tables and can be used in func-
tions, triggers, and stored procedures. Instead of storing the table and all data within
the table in the tempdb database on disk, a table variable and all associated data is
stored in memory. However, if the amount of data placed into the table variable
causes it to require more storage space than is available in memory, the overflow will
be spooled to disk within tempdb.

Lesson 1: Creating Tables 123

C0362271X.fm Page 123 Friday, April 29, 2005 7:30 PM
Table variables are local to the function, trigger, or stored procedure they were created
in and are automatically deallocated when the object is exited.

You create the customer address table as a table variable by declaring the table as a
variable, which you denote by prepending the table name with the @ character, as
follows:

DECLARE @CustomerAddress TABLE
(CustomerAddressID int IDENTITY(1,1),
AddressType char(4) NOT NULL,
PrimaryAddressFlag bit NOT NULL,
AddressLine1 varchar(30) NOT NULL,
AddressLine2 varchar(30) NULL,
AddressLine3 varchar(30) NULL,
City varchar(50) NOT NULL,
StateProvinceID int NULL,
PostalCode char(10) NULL,
CountryID int NULL)

Assigning Permissions
Now that you’ve created your table, you need to provide permissions for users to
access it. As you learned in Chapter 2, “Configuring SQL Server 2005,” all objects in
SQL Server are secured. Furthermore, SQL Server does not provide any access unless
permission has been explicitly granted.

A member of the sysadmin fixed server role has already been granted unlimited rights
to any object within the SQL Server instance, so a member of this role can perform
any operation on a table. A member of the database owner fixed database role has
already been granted permission to perform any operation on any object within the
database that is owned, so a member of this role can perform any operation on a table.
Additionally, the owner of a table has already been granted explicit authority to per-
form any operation against a table that he or she owns. All other users must be
assigned permissions to work with a table.

BEST PRACTICES Security assignments

Security best practices dictate that you never grant permissions directly to a user. Therefore, you
should add a Microsoft Windows login to a Windows group and the Windows group as a login to
SQL Server. You then add this group as a user in a database. Next, create roles in a database cor-
responding to various job functions, and assign database users to the appropriate role. Finally,
assign security permissions on objects in the database to the database role. It is assumed that for
all examples regarding security, you are implementing security best practices.

124 Chapter 3 Creating Tables, Constraints, and User-Defined Types

C0362271X.fm Page 124 Friday, April 29, 2005 7:30 PM
There are seven permissions that you can assign for a table, as listed in Table 3-9.

You can use the special keyword ALL to grant every permission shown in the table to
a specified role. However, you should always explicitly list each permission that you
will allow. The general statement to assign permissions is the following:

GRANT { ALL [PRIVILEGES] }
| permission [(column [,...n])] [,...n]
[ON [class ::] securable] TO principal [,...n]
[WITH GRANT OPTION] [AS principal]

The ON clause specifies the object that you are granting permission to, whereas the
TO clause specifies the database role the permissions are assigned to.

For tables, it is possible to grant permissions on a subset of the columns in the table.
There is no facility to grant permissions to a subset of rows in a table.

The WITH GRANT option enables you to grant permissions to a role whose members
can then grant permissions to other users or roles. You should never use this option
because it takes control of security out of the hands of the owner of the table.

Table 3-9 Table Permissions

Permission Purpose

CREATE TABLE Gives the authority to create any table in the database.

ALTER TABLE Gives the authority to change the structure of any table in
the database.

SELECT Allows rows to be retrieved from the specified table.

INSERT Allows rows to be inserted in a specified table. Requires
the SELECT permission to be granted as well.

UPDATE Allows rows to be modified in a specified table. Requires
the SELECT permission to be granted as well.

DELETE Allows rows to be deleted from a specified table. Requires
the SELECT permission to be granted as well.

REFERENCES Used with foreign key constraints; to be discussed in the
next lesson.

Lesson 1: Creating Tables 125

C0362271X.fm Page 125 Friday, April 29, 2005 7:30 PM
For the CustomerAddress table, the command to grant SELECT, INSERT, UPDATE, and
DELETE permissions to a role is as follows:

GRANT SELECT, INSERT, UPDATE, DELETE ON CustomerAddress TO <database role>

PRACTICE Create a Table
In this practice, you will create three additional tables—Customer, StateProvince, and
Country—for use with the CustomerAddress table we created in this lesson.

NOTE If you didn’t create the CustomerAddress table

The instructions for creating the CustomerAddress table are earlier in this lesson, under the head-
ing “Permanent Tables.”

The Customer table will contain the customer name, a value for the customer’s credit
line, a value for the customer’s outstanding balance, a computation for available
credit, and the date the customer record was created. The StateProvince table will con-
tain a text-based column that will store a list of the valid states or provinces recog-
nized by this company. The Country table will contain a text-based column that will
store a list of the valid countries. Remember to create a column to reference each of
the rows the same way we did with the CustomerAddress table.

NOTE Database context

This practice can be done in either the AdventureWorks database or another database of your
choice.

1. Launch SQL Server Management Studio (SSMS), connect to your instance, and
then open a new query window.

2. Construct a CREATE TABLE statement for the Customer table as follows:

CREATE TABLE dbo.Customer
(CustomerID int IDENTITY(1,1),
CustomerName varchar(50) NOT NULL,
CreditLine smallmoney NULL,
OutstandingBalance smallmoney NULL,
AvailableCredit AS (CreditLine - OutstandingBalance),
CreationDate datetime NOT NULL)

3. Construct a CREATE TABLE statement for the StateProvince table as follows:

CREATE TABLE dbo.StateProvince
(StateProvinceID int IDENTITY(1,1),
StateProvince varchar(50) NOT NULL)

126 Chapter 3 Creating Tables, Constraints, and User-Defined Types

C0362271X.fm Page 126 Friday, April 29, 2005 7:30 PM
4. Construct a CREATE TABLE statement for the Country table, as follows:

CREATE TABLE dbo.Country
(CountryID int IDENTITY(1,1),
Country varchar(50) NOT NULL)

Lesson Summary
■ Tables, the building blocks for every database, store all the data in SQL Server.

■ To provide the necessary structure to a table, you must choose between the avail-
able numeric, text, datetime, and binary data types so that data can be properly
stored.

■ You can also define special properties for columns to allow nulls, define a col-
umn as a unique identifier column, and allow a column to store a computation
or computed data.

■ After a table is defined, you must grant permissions on the table to allow users
to retrieve and manipulate data.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which data type would you use to store up to 2 GB of text data and still be able
to query and manipulate it by using standard functions and operators?

A. text

B. varbinary

C. varchar(max)

D. varchar

Lesson 2: Implementing Constraints 127

C0362271X.fm Page 127 Friday, April 29, 2005 7:30 PM
Lesson 2: Implementing Constraints
Designing a database is really an exercise in implementing business rules. You might
not have realized it, but the entire first lesson implemented a variety of business rules.
For example, in Lesson 1, we implemented a business rule stating that a customer can
have more than one address, but an address is not valid unless there is at least one
address line and a city.

Constraints provide a second level of business-rule implementation by preventing
users from entering data into tables that is outside the allowed boundaries. Examples
of this type of business rule include one that prohibits a customer’s credit line from
exceeding $50,000 and one that prevents users from entering countries that do not
exist in a standardized list.

This lesson explains the six types of constraints that you can create to enforce busi-
ness rules and shares best practices for when to implement each type of constraint.

After this lesson, you will be able to:

■ Implement constraints.

■ Specify the scope of a constraint.

■ Create a new constraint.

Estimated lesson time: 20 minutes

Check Constraints
You use check constraints to limit the range of possible values in a column or to
enforce specific patterns for data. All check constraints must evaluate to a Boolean
True/False and cannot reference columns in another table.

You can create check constraints at two different levels:

■ Column-level check constraints are applied only to the column and cannot refer-
ence data in another other column.

■ Table-level check constraints can reference any column within a table but cannot
reference columns in other tables.

The most basic constraint compares the data in a column to a specified value—for
example, CHECK CreditLine <= 50000. You can create any number of check con-
straints separated by AND, OR, or NOT to create more complex conditions.

128 Chapter 3 Creating Tables, Constraints, and User-Defined Types

C0362271X.fm Page 128 Friday, April 29, 2005 7:30 PM
You can also use check constraints to enforce patterns within data. Using a check con-
straint this way, you might enforce the pattern that an EmployeeID is required to start
with an uppercase letter, followed by three digits and then six additional letters.
Another example is to require an e-mail address to contain, in order, any number
of characters or digits, an @ symbol, a number of characters or digits, a period (.), and
then either three characters or two characters with a period (.) plus two more
characters.

The wildcard characters for pattern matching are the underscore (_), which desig-
nates one value that can be a character, number, or special character; and a percent
symbol (%), which designates any number of characters, numbers, or special charac-
ters. For example, a table-level check constraint to validate an e-mail address might
look like this:

CONSTRAINT chkEmail CHECK (Email like '%@%.[a-z][a-z][a-z]' or Email like '%@%.[a-z]
[a-z].[a-z][a-z]')

A column-level check constraint for the EmployeeID looks like this:

CHECK (EmployeeID like '[A-Z][0-9][0-9][0-9][A-Z][A-Z][A-Z][A-Z][A-Z][A-Z]')

MORE INFO Constraints and pattern matching

Creating pattern matches can become complex. For more information about the allowed operators
and wildcards, see the SQL Server 2005 Books Online topics “CHECK Constraints” and “CREATE
RULE (Transact-SQL).”

Rules
You define check constraints within the table definition and cannot reuse them. Rules
provide the same functionality as check constraints, except that you create them as a
separate object.

Because rules are not associated with a specific table or column when you create
them, they cannot reference columns or tables in their definition. Instead, you use
variables as placeholders. Rules provide the same features and complex comparisons
via AND, OR, and NOT as check constraints and allow pattern matching.

The following examples show the previous two check constraints implemented as
rules:

CREATE RULE EmailValidator
AS
@value like '%@%.[a-z][a-z][a-z]' or @value like '%@%.[a-z][a-z].[a-z][a-z]';

Lesson 2: Implementing Constraints 129

C0362271X.fm Page 129 Friday, April 29, 2005 7:30 PM
CREATE RULE EmployeeIDValidator
AS
@column like '[A-Z][0-9][0-9][0-9][A-Z][A-Z][A-Z][A-Z][A-Z][A-Z]';

After defining a rule, you then bind it to columns or user-defined data types by using
the sp_bindrule system stored procedure.

MORE INFO Binding rules

For complete information about binding rules to columns or user-defined data types, see the SQL
Server 2005 Books Online article “CREATE RULE (Transact-SQL).”

Default Constraints
Another mechanism for enforcing a business rule in a table is a default constraint,
which enables SQL Server to write a value to a column when the user doesn’t specify
a value. Common uses for a default constraint are when a “typical” value or very “com-
mon” value exists for a column, but that value is not necessarily the only possible
choice. For example, let’s say the company we have been creating tables for is a retail
store located in Grand Prairie, TX. Most customers have an address with a city of
Grand Prairie. However, customers might still come into the store from nearby Arling-
ton or Irving.

You can add a default constraint to the City column in the CustomerAddress table using
the following example:

CREATE TABLE dbo.CustomerAddress
(CustomerAddressID int IDENTITY(1,1),
AddressType char(4) NOT NULL,
PrimaryAddressFlag bit NOT NULL,
AddressLine1 varchar(30) NOT NULL,
AddressLine2 varchar(30) NULL,
AddressLine3 varchar(30) NULL,
City varchar(50) NOT NULL DEFAULT 'Grand Prairie',
StateProvinceID int NULL,
PostalCode char(10) NULL,
CountryID int NULL)

Unique Constraints
A unique constraint prohibits a column or combination of columns from allowing
duplicate values. You might use a unique constraint to enforce a business rule stating
that each customer name must be unique.

130 Chapter 3 Creating Tables, Constraints, and User-Defined Types

C0362271X.fm Page 130 Friday, April 29, 2005 7:30 PM
You can add a unique constraint to the CustomerName column in the Customer table
by using the following:

CREATE TABLE dbo.Customer
(CustomerID int IDENTITY(1,1),
CustomerName varchar(50) NOT NULL UNIQUE NONCLUSTERED,
CreditLine smallmoney NULL,
OutstandingBalance smallmoney NULL,
AvailableCredit AS (CreditLine - OutstandingBalance),
CreationDate datetime NOT NULL)

NOTE Clustered and nonclustered indexes

A unique constraint is physically implemented in the database as a unique index. Indexes can be
either clustered or nonclustered. Within this chapter, we are explicitly avoiding the discussion of
indexes, including clustered and nonclustered indexes. Chapter 4, “Creating Indexes,” covers these
topics in detail.

Primary Key Constraints
Your choice of primary key constraint is critical in creating a sound structure for a
table. A primary key defines the column or combination of columns that allow a row
to be uniquely identified.

MORE INFO Primary key choice

Choosing the columns for a primary key is beyond the scope of this book, as is the discussion of
whether a primary key should have business meaning or be implemented as an internal database
structure. For details on these topics, see MCITP Self-Paced Training Kit (Exam 70-443): Designing a
Database Server Infrastructure by Using Microsoft SQL Server 2005, Microsoft Press, 2007.

You implement a primary key on the StateProvinceID column of the StateProvince
table as follows:

CREATE TABLE dbo.StateProvince
(StateProvinceID int IDENTITY(1,1) PRIMARY KEY,
StateProvince varchar(50) NOT NULL)

Foreign Key Constraints
You use foreign key constraints to implement a concept called referential integrity.
Foreign keys ensure that the values that can be entered in a particular column exist in
a specified table. Users cannot enter values in this column that do not exist in the
specified table.

Lesson 2: Implementing Constraints 131

C0362271X.fm Page 131 Friday, April 29, 2005 7:30 PM
For example, the CustomerAddress table should be allowed to specify only valid values
for the StateProvince column. Providing a valid list of states and provinces for a user
to select from and enforcing the range of available values ensures that data is not only
consistent but also valid.

To enforce referential integrity on the StateProvince column in the CustomerAddress
table, you could use the following code, which uses the REFERENCES keyword:

CREATE TABLE dbo.CustomerAddress
(CustomerAddressID int IDENTITY(1,1),
AddressType char(4) NOT NULL,
PrimaryAddressFlag bit NOT NULL,
AddressLine1 varchar(30) NOT NULL,
AddressLine2 varchar(30) NULL,
AddressLine3 varchar(30) NULL,
City varchar(50) NOT NULL DEFAULT 'Grand Prairie',
StateProvinceID int NULL REFERENCES dbo.StateProvince(StateProvinceID),
PostalCode char(10) NULL,
CountryID int NULL)

Or you could use the following code, which uses the FOREIGN KEY keyword:

CREATE TABLE dbo.CustomerAddress
(CustomerAddressID int IDENTITY(1,1),
AddressType char(4) NOT NULL,
PrimaryAddressFlag bit NOT NULL,
AddressLine1 varchar(30) NOT NULL,
AddressLine2 varchar(30) NULL,
AddressLine3 varchar(30) NULL,
City varchar(50) NOT NULL DEFAULT 'Grand Prairie',
StateProvinceID int NULL FOREIGN KEY (StateProvinceID)
REFERENCES dbo.StateProvince(StateProvinceID),

PostalCode char(10) NULL,
CountryID int NULL)

When you add a foreign key to a table, it not only enforces the values that can be used
in a column but it also enforces a dependency chain. You cannot drop a foreign key
table unless you do one of the following first:

■ Drop the table that references it.

■ Remove the foreign key constraint with an ALTER TABLE statement.

For example, you could not drop the StateProvince table without either dropping the
CustomerAddress table first or removing the foreign key constraint from the Customer-
Address table.

132 Chapter 3 Creating Tables, Constraints, and User-Defined Types

C0362271X.fm Page 132 Friday, April 29, 2005 7:30 PM
IMPORTANT Referencing tables

For a foreign key to work, it must be able to uniquely identify each row in the referenced table.
Therefore, you must create a primary key on the column that is used to enforce referential integrity.

Foreign Keys vs. Check Constraints
A foreign key constraint is really nothing more than a check constraint with a list
of allowed values. So the question becomes, when should you use a check con-
straint and when should you use a foreign key?

You should use check constraints when you need to validate patterns, perform
calculations to compare against, or use comparison operators such as >, <, >=,
and so on.

You should always use foreign keys when you need to validate the column
against a list of acceptable values. Even if the list contains only one or two values,
you should still implement it as a foreign key.

If you implement a list validation as a check constraint, whenever you want to
add a new value to the list, you have to modify the table structure by using an
ALTER TABLE command. By implementing the list as a foreign key, you simply
insert the new value into the table.

Using a foreign key for list validation also leads to a maintainable design. When
a database is initially designed, you might not know the list of acceptable values.
Or the list might be completely valid at the time it was created, but five years
later, the list of valid values might have changed. Application developers can eas-
ily add a maintenance screen into an application to allow one or more desig-
nated users to modify the list of allowed values, and the foreign key constraint
prevents a value from being removed from the table if it has been used. Adding
a new value to the table then becomes a simple action performed by a user
instead of becoming a request to the database administrator (DBA) team, as
would happen if the list were in a check constraint.

Lesson 2: Implementing Constraints 133

C0362271X.fm Page 133 Friday, April 29, 2005 7:30 PM
Quick Check
■ What are the six types of constraints, and what purpose does each serve?

Quick Check Answer

■ Check constraints restrict the allowable values in a column.

■ Rules implement the same functionality as check constraints but are imple-
mented as objects separate from a specific table, so a rule can be created
once and used in many places.

■ A default constraint causes a value to be entered into a column when one is
not specified by a user.

■ A unique constaint ensures that duplicate values do not exist in a column or
combination of columns.

■ A primary key ensures that each row in a table can be uniquely identified by
the column or a combination of specified columns. Only one primary key
can exist on a table, whereas multiple unique constraints can be created.

■ A foreign key forces a column to allow only values that exist in a referenced
table.

PRACTICE Implement Constraints
In this practice, you will apply a variety of constraints to the Customer, Customer-
Address, StateProvince, and Country tables so that they more closely match what you
would see in an actual production environment.

1. If necessary, launch SSMS, connect to your instance, and open a new query window.

2. Before you begin this exercise, drop all the tables that you created previously by
using the following batch:

DROP TABLE dbo.CustomerAddress;
DROP TABLE dbo.Customer;
DROP TABLE dbo.Country;
DROP TABLE dbo.StateProvince;

NOTE Errors

If you receive any errors when executing the preceding batch, you can ignore them. Any
error you might receive will say something like “could not drop table because it does not
exist.” Chapter 9, “Creating Functions, Stored Procedures, and Triggers,” explains how to write
batches that contain error checking and handling.

134 Chapter 3 Creating Tables, Constraints, and User-Defined Types

C0362271X.fm Page 134 Friday, April 29, 2005 7:30 PM
3. Re-create the Country and StateProvince tables with primary keys, as follows:

CREATE TABLE dbo.StateProvince
(StateProvinceID int IDENTITY(1,1) PRIMARY KEY CLUSTERED,
StateProvince varchar(50) NOT NULL);

CREATE TABLE dbo.Country
(CountryID int IDENTITY(1,1) PRIMARY KEY CLUSTERED,
Country varchar(50) NOT NULL);

4. Create a new table for the list of allowed address types, as follows:

CREATE TABLE dbo.AddressType
(AddressTypeID tinyint IDENTITY(1,1) PRIMARY KEY CLUSTERED,
AddressType varchar(20) NOT NULL);

5. Create the CustomerAddress table with a primary key and enforce referential integ-
rity for the StateProvinceID, CountryID, and AddressType columns, as follows:

CREATE TABLE dbo.CustomerAddress
(CustomerAddressID int IDENTITY(1,1) PRIMARY KEY CLUSTERED,
AddressType char(4) NOT NULL FOREIGN KEY (AddressType) REFERENCE
S dbo.AddressType(AddressTypeID),
PrimaryAddressFlag bit NOT NULL,
AddressLine1 varchar(30) NOT NULL,
AddressLine2 varchar(30) NULL,
AddressLine3 varchar(30) NULL,
City varchar(50) NOT NULL,
StateProvinceID int NULL FOREIGN KEY (StateProvinceID) REFERENCE
S dbo.StateProvince(StateProvinceID),
PostalCode char(10) NULL,
CountryID int NULL FOREIGN KEY (CountryID) REFERENCES dbo.
Country(CountryID));

NOTE Data type mismatches

You should have received an error message when trying to create this table. Before reading
on, can you explain why?

The AddressType column is defined as a char(4), but the foreign key references an integer
column in the AddressType table. A character value cannot be implicitly converted to a tinyint
for comparison. Although the column name in the CustomerAddress table does not have to
match the column name in the AddressType table, the data types must be compatible. How-
ever, for consistency and readability, the columns names should match.

6. Fix the error by redefining the CustomerAddress table, as follows:

CREATE TABLE dbo.CustomerAddress
(CustomerAddressID int IDENTITY(1,1) PRIMARY KEY CLUSTERED,
AddressTypeID tinyint NOT NULL FOREIGN KEY (AddressTypeID) REFEREN
CES dbo.AddressType(AddressTypeID),
PrimaryAddressFlag bit NOT NULL,
AddressLine1 varchar(30) NOT NULL,

Lesson 2: Implementing Constraints 135

C0362271X.fm Page 135 Friday, April 29, 2005 7:30 PM
AddressLine2 varchar(30) NULL,
AddressLine3 varchar(30) NULL,
City varchar(50) NOT NULL,
StateProvinceID int NULL FOREIGN KEY (StateProvinceID)
REFERENCES dbo.StateProvince(StateProvinceID),

PostalCode char(10) NULL,
CountryID int NULL FOREIGN KEY (CountryID) REFERENCES
dbo.Country(CountryID));

7. Create the Customer table with a primary key, enforcing no duplicate customer
names and a credit line between 0 and 50,000. Default the available balance to
0, and default the creation date to the current date and time, as follows:

CREATE TABLE dbo.Customer
(CustomerID int IDENTITY(1,1) PRIMARY KEY CLUSTERED,
CustomerName varchar(50) NOT NULL UNIQUE NONCLUSTERED,
CreditLine smallmoney NULL CHECK (CreditLine >= 0 AND CreditLine <
= 50000),
OutstandingBalance smallmoney NULL DEFAULT 0,
AvailableCredit AS (CreditLine - OutstandingBalance),
CreationDate datetime NOT NULL DEFAULT getdate());

8. Our customer minidatabase is looking pretty good at this point, but there is one
problem. Customers can be entered, and addresses can be entered, but there is
no way to associate a customer to an address. Create a table that provides an
association between the Customer and CustomerAddress tables, as follows:

CREATE TABLE dbo.CustomerToCustomerAddress
(CustomerID int NOT NULL FOREIGN KEY (CustomerID) REFERENCES
dbo.Customer(CustomerID),

CustomerAddressID int NOT NULL FOREIGN KEY (CustomerAddressID)
REFERENCES dbo.CustomerAddress(CustomerAddressID),

CONSTRAINT PK_CustomerToCustomerAddress PRIMARY KEY CLUSTERED(CustomerID,
CustomerAddressID));

NOTE Cross-reference tables

The CustomerToCustomerAddress table is generally referred to as a cross-reference table. You
could have linked the Customer and CustomerAddress tables together by adding a Custom-
erID column to the CustomerAddress table. However, the cross-reference table allows flexibil-
ity in the design and minimizes the amount of data that needs to be stored. For example,
you could have multiple customers at the same address, such as with multiple people in the
same household. If the CustomerID column were added to the CustomerAddress table, each
customer at the same address would require you to duplicate the address in the CustomerAd-
dress table. However, the cross-reference table allows you to associate a single row in the
CustomerAddress table with one or more customers. The opposite is also true: you can asso-
ciate a single customer with multiple addresses.

136 Chapter 3 Creating Tables, Constraints, and User-Defined Types

C0362271X.fm Page 136 Friday, April 29, 2005 7:30 PM
Lesson Summary
■ You use constraints to enforce additional business rules within a table.

■ You can use constraints to ensure that duplicate values cannot be entered into a
column or that a column can allow only values that meet a specified condition.

■ You can use constraints to enforce complex pattern matching such as the Vehicle
Identification Number (VIN) that is used to uniquely identify every vehicle.

■ You can also create constraints to ensure that a value cannot be entered in one
table unless it already exists in another table, for example, not allowing an
address to be entered unless a customer already exists for the address.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following objects can you use in a check constraint? (Choose all
that apply.)

A. System function

B. Stored procedure

C. User-defined function (UDF)

D. View

Lesson 3: Creating User-Defined Types 137

C0362271X.fm Page 137 Friday, April 29, 2005 7:30 PM
Lesson 3: Creating User-Defined Types
User-defined types (UDTs) have two purposes in SQL Server 2005. You can use
Transact-SQL-based UDTs to enforce consistency in table definitions, and you can use
Common Language Runtime (CLR) UDTs to create new data types that do not exist
in SQL Server. In this lesson, you see how and when to create each type of UDT.

After this lesson, you will be able to:

■ Explain the differences between Transact-SQL and CLR UDTs.

■ Create a Transact-SQL UDT.

■ Create a CLR UDT.

Estimated lesson time: 20 minutes

Transact-SQL UDTs
You use Transact-SQL UDTs essentially as an aliasing mechanism to provide consis-
tency in table definitions within a database. For example, you might have customers,
vendors, manufacturers, and employees stored in the same database. Because of dif-
ferences in the data that you store for each entity, you might have separate address
tables for each one. Even though you have four different address tables, a City column
exists in each one. The City column holds variable-length character data with a max-
imum size of 30 characters.

You could implement the City column as a varchar(30) in each table, or you could use
a Transact-SQL UDT to ensure that all City columns are defined the same. To create
a UDT, you use the CREATE TYPE command as follows:

CREATE TYPE [schema_name.] type_name
{

FROM base_type
[(precision [, scale])]
[NULL | NOT NULL]

| EXTERNAL NAME assembly_name [.class_name]
} [;]

The following command would create a UDT for the City column discussed previ-
ously:

CREATE TYPE udt_city
FROM varchar(30) NOT NULL ;

138 Chapter 3 Creating Tables, Constraints, and User-Defined Types

C0362271X.fm Page 138 Friday, April 29, 2005 7:30 PM
You could then use this UDT when you are defining a table, as follows:

CREATE TABLE dbo.CustomerAddress
(CustomerAddressID int IDENTITY(1,1) PRIMARY KEY CLUSTERED,
AddressTypeID tinyint NOT NULL FOREIGN KEY (AddressTypeID) REFERENCES
dbo.AddressType(AddressTypeID),

PrimaryAddressFlag bit NOT NULL,
AddressLine1 varchar(30) NOT NULL,
AddressLine2 varchar(30) NULL,
AddressLine3 varchar(30) NULL,
City udt_city NOT NULL,
StateProvinceID int NULL FOREIGN KEY (StateProvinceID) REFERENCES
dbo.StateProvince(StateProvinceID),

PostalCode char(10) NULL,
CountryID int NULL FOREIGN KEY (CountryID) REFERENCES
dbo.Country(CountryID));

Transact-SQL UDTs are always created using base data types.

CLR UDTs
You can use the CLR integration in SQL Server 2005 to create your own data types
beyond those that already exist within SQL Server.

Defining New Data Types
There is at least one person reading this whose brain shifted into overdrive when
they read that you can create new data types in SQL Server 2005. So before we
get started on this topic, we need to do a serious reality check.

First, you cannot create CLR UDTs unless you turn on CLR capability by using
the Surface Area Configuration utility.

Second, SQL Server is NOT an object database. Thousands of developers have
invested tens of thousands of man-years of development in SQL Server. The same
goes for Oracle, DB2, and Sybase. Together, these four database management sys-
tems (DBMSs) represent nearly all the database market. And none of these DBMSs
has support for object data types. That doesn’t mean that someone can’t come up
with a way to do create such data types; it simply means that if an actual market
existed for such things, at least one of the vendors would have written it by now or
at least licensed an implementation from someone and added into their product.

Before you go out and spend several hundred hours creating the Person data type or
the Customer data type, carefully consider exactly what you are imposing on your
system. CLR data types must be written to a specification that places 15 very strin-
gent requirements on the interfaces and code specification. You must also create

Lesson 3: Creating User-Defined Types 139

C0362271X.fm Page 139 Friday, April 29, 2005 7:30 PM
your own methods to serialize and deserialize all data being stored in your new data
type. That means every time SQL Server reads or writes data into a column or vari-
able that uses your new data type, it must make a call to your code to process the
request. As the complexity of your logic increases, the performance dramatically
decreases. With very large result sets, performance can grind to a screeching halt.

So, what are good choices for CLR data types? Date and time should be at the top
of everyone’s list because they have been on feature request lists since before
Microsoft licensed the first version of SQL Server from Sybase. Other good
choices are compressed encodings or custom encryption algorithms. In other
words, you should consider using CLR data types only for small, discrete types
of data that have clearly defined value domains requiring a minimal amount of
code in the data type definition.

To use a CLR UDT, you must first enable the CLR within the Surface Area Configura-
tion utility. If the CLR is ever disabled, all columns defined with CLR UDTs will no
longer be accessible.

To create a CLR UDT, you must create a class by using one of the Microsoft .NET pro-
gramming languages, such as C#, that conforms to the UDT specification. You need
to compile the class to a dynamic-link library (DLL), and a member of the sysadmin
fixed server role must register the assembly in the SQL Server instance. Only then can
a CLR UDT be implemented within a database.

NOTE Creating CLR UDTs

Full coverage of CLR UDTs is beyond the scope of this book and the 70-431 exam. For comprehen-
sive information about CLR UDTs, including specifications, restrictions, and code samples, see the
SQL Server 2005 Books Online article “CLR User-Defined Types.”

Quick Check
■ What are the two classes of UDTs, and what is the purpose of each?

Quick Check Answer

■ Transact-SQL UDTs give you a way to standardize data type definition based
on a native SQL Server data type that can then be used within tables to
ensure consistency within a database.

■ CLR UDTs let you introduce new data types that do not exist within SQL
Server, such as geospatial coordinates.

140 Chapter 3 Creating Tables, Constraints, and User-Defined Types

C0362271X.fm Page 140 Friday, April 29, 2005 7:30 PM
Implement a Transact-SQL UDT
In this exercise, you will create a Transact-SQL UDT for the City column in our Cus-
tomerAddress table so that any other tables in our database that store a city will have
a consistent definition.

1. If necessary, launch SSMS, connect to your instance, and open a new query
window.

2. Drop the previously created CustomerAddress and CustomerToCustomer tables:

DROP TABLE dbo.CustomerToCustomerAddress
DROP TABLE dbo.CustomerAddress;

3. Create the city data type by using the following code:

CREATE TYPE udt_city
FROM varchar(50) NOT NULL ;

4. Use the following code to re-create the CustomerAddress table with the new UDT
and to create the CustomerToCustomerAddress table:

CREATE TABLE dbo.CustomerAddress
(CustomerAddressID int IDENTITY(1,1) PRIMARY KEY CLUSTERED,
AddressTypeID tinyint NOT NULL FOREIGN KEY (AddressTypeID) REFERENCES
dbo.AddressType(AddressTypeID),

PrimaryAddressFlag bit NOT NULL,
AddressLine1 varchar(30) NOT NULL,
AddressLine2 varchar(30) NULL,
AddressLine3 varchar(30) NULL,
City udt_city NOT NULL,
StateProvinceID int NULL FOREIGN KEY (StateProvinceID) REFERENCES
dbo.StateProvince(StateProvinceID),

PostalCode char(10) NULL,
CountryID int NULL FOREIGN KEY (CountryID) REFERENCES
dbo.Country(CountryID));

CREATE TABLE dbo.CustomerToCustomerAddress
(CustomerID int NOT NULL FOREIGN KEY (CustomerID) REFERENCES
dbo.Customer(CustomerID),

CustomerAddressID int NOT NULL FOREIGN KEY (CustomerAddressID) REFERENCES
dbo.CustomerAddress(CustomerAddressID),

CONSTRAINT PK_CustomerToCustomerAddress PRIMARY KEY CLUSTERED(CustomerID,
CustomerAddressID));

Lesson 3: Creating User-Defined Types 141

C0362271X.fm Page 141 Friday, April 29, 2005 7:30 PM
Lesson Summary
■ Transact-SQL UDTs provide a means for enforcing consistency in data type def-

initions across multiple tables.

■ One of the most exciting new capabilities in SQL Server 2005 is the capability to
use the CLR to define UDTs that are not native to SQL Server, such as latitudes
and longitudes or geometric coordinates. However, beware of performance
issues if you decide to create something like a customer or order data type.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. What are the requirements to create a CLR based user-defined type? (Choose all
that apply.)

A. The CLR must be enabled for the database.

B. The CLR must be enabled for the instance.

C. A class created with a Microsoft .NET language.

D. A class created with a CLR-compatible language.

142 Chapter 3 Review

C0362271X.fm Page 142 Friday, April 29, 2005 7:30 PM
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can

■ Review the chapter summary.

■ Review the list of key terms introduced in this chapter.

■ Complete the case scenario. This scenario sets up a real-world situation
involving the topics of this chapter and asks you to create a solution.

■ Complete the suggested practices.

■ Take a practice test.

Chapter Summary
■ Without tables in a database, you cannot store data. Therefore, tables become

the base of everything you do with SQL Server. However, you need to do more
than simply create a bunch of tables and start throwing data into them. Without
a structure to the data, your applications will be difficult to write, and perform-
ing comparisons among the data will become difficult, if not impossible.

■ The initial structure for data is provided by a set of data types that define the type
as well as basic limitations on the data. The broad categories of data types are as
follows:

❑ Exact numeric Stores precise numbers either with or without decimals.

❑ Approximate numeric Stores numeric values with or without decimals.

❑ Monetary Stores numeric values with decimal places. Used specifically for
currency values with up to four decimal places.

❑ Date and time Stores date and time information and enables special chro-
nological enforcement, such as rejecting a value of February 30.

❑ Character Stores character-based values of varying lengths.

❑ Binary Stores data in a strict binary (0 and 1) representation.

❑ Special purpose Complex data types for data that requires specialized
handling, such as XML documents or GUIDs.

■ You can further enforce business rules by using constraints. The set of SQL
Server constraints that you can use are the following:

❑ Check Enforces boundary values on a column and can also force specific
formatting requirements for data.

Chapter 3 Review 143

C0362271X.fm Page 143 Friday, April 29, 2005 7:30 PM
❑ Rule Functionally equivalent to check constraints, but can be reused for
more than one column.

❑ Default Provides a value to a column when one is not specified by the user.

❑ Unique Ensures that duplicate values cannot be stored in a column or
group of columns.

❑ Primary key Provides a way to uniquely identify each row in a table.

❑ Foreign key Forces all values entered into a column to exist in another
table.

■ You can use Transact-SQL UDTs to create a consistent definition for columns
based on a native SQL Server data type. When the native SQL Server data types
are not sufficient, you can define your own data types with custom processing by
using the CLR integration.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ constraint

■ foreign key

■ primary key

■ table

Case Scenario: Designing a Database
In the following case scenario, you will apply what you’ve learned in this chapter. You
can find answers to these questions in the “Answers” section at the end of this book.

Contoso Limited, a health care company located in Bothell, WA, manages patient
claims data. To support the business, you need to create a database to store the wide
variety of data related to patient claims.

You need to create structures for basic patient data, such as name, address, date of
birth, and Social Security number. The database also needs to store the companies
that Contoso works with, including the company name, address, and people to con-
tact. Each patient claim must be associated with a company in the database. And the
database needs to associate a list of doctors with a claim and also store various sup-
porting documents.

144 Chapter 3 Review

C0362271X.fm Page 144 Friday, April 29, 2005 7:30 PM
All pieces of data need to be uniquely identified within the tables. Referential integrity
is crucial to the successful operation of the database application.

How would you define the table structures to meet the needs of the patient claims
database?

Suggested Practices
Before doing the following suggested practices, skip forward in this book to read
Chapter 5, “Working with Transact-SQL.” This chapter familiarizes you with the
basics of adding data to a table as well as retrieving it. Understanding these functions
is important for performing the practice tasks, which will help you see how the vari-
ous table structures interact with data.

Creating Tables
■ Practice 1 Insert some data into the StateProvince, Country, and AddressType

tables. Retrieve the data from the table and inspect the identity column. Change
the seed, increment, or both for the identity column and insert more rows.
Retrieve the data from the table. Are the values in the identity column what you
expected?

■ Practice 2 Concatenate the City, StateProvince, and PostalCode columns
together. Change the data type of the resulting new column from a varchar to a
char. Execute the same query you used in Practice 1. Why do the results differ?

Creating Constraints
■ Practice 1 Insert some data into the CustomerAddress table. What happens when

you do not specify an AddressType? What happens when you do not specify
either a Country or StateProvince?

■ Practice 2 Change the value in one of the foreign key columns to another value
that exists in the referenced table. What happens? Change the value to some-
thing that does not exist in the referenced table. What happens? Is this what you
expected?

■ Practice 3 Try to insert a row into the Customer table that has a negative value for
the credit line. Are the results what you expected?

■ Practice 4 Insert a row into the Customer table without specifying a value for the
outstanding balance. Retrieve the row. What are the values for the outstanding
balance and available credit? Are they what you expected?

Chapter 3 Review 145

C0362271X.fm Page 145 Friday, April 29, 2005 7:30 PM
Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-431 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the “How to Use the Practice Tests” sec-
tion in this book’s Introduction.

C0362271X.fm Page 146 Friday, April 29, 2005 7:30 PM

C0462271X.fm Page 147 Friday, April 29, 2005 7:31 PM
Chapter 4

Creating Indexes

As you saw in Chapter 3, “Creating Tables, Constraints, and User-Defined Types,” cre-
ating tables is the first step of building a useful database. You then need to add data
to the tables. However, if you never retrieve the data in the table, you are simply wast-
ing storage space. SQL Server does not need to have indexes on a table to retrieve
data. It can simply scan a table to find the piece of data that is requested. However,
most organizations store massive amounts of data in a table and need to be able to
retrieve data instantly. To allow rapid data retrieval while ensuring that performance
does not decline as users add rows to a table, you need to add indexes to your tables.

Indexes are not a new concept or strictly a database concept. We use indexes every
day. At the back of this book, you will find an index in printed form. If you wanted to
read about full-text indexes to prepare for your exam, you could find the information
in two different ways. You could open this book, start at page 1, and scan each page
until you found the information you needed. Or you could turn to the index at the
back of the book, locate full-text indexing, and then go directly to the corresponding
page or pages that discuss this topic. You find the information either way, but using
the index is much more efficient. In this chapter, you will explore how SQL Server
builds and uses indexes to ensure fast data retrieval and performance stability. You
will then learn how to build clustered, nonclustered, and covering indexes on your
tables to achieve the optimal balance between speed and required index maintenance
overhead.

Exam objectives in this chapter:
■ Implement indexes.

❑ Specify the filegroup.

❑ Specify the index type.

❑ Specify relational index options.

❑ Specify columns.

❑ Disable an index.

❑ Create an online index by using an ONLINE argument.
147

148 Chapter 4 Creating Indexes

C0462271X.fm Page 148 Friday, April 29, 2005 7:31 PM
Lessons in this chapter:
■ Lesson 1: Understanding Index Structure . 149

■ Lesson 2: Creating Clustered Indexes . 154

■ Lesson 3: Creating Nonclustered Indexes. 161

Before You Begin
To complete the lessons in this chapter, you must have

■ SQL Server 2005 installed.

■ A copy of the AdventureWorks sample database installed in the instance.

Real World
Michael Hotek

Several years ago, after SQL Server 6.5 had been on the market for awhile, I started
a project with a new company in the Chicago area. This company had the great
idea to help people find apartments in the area that met the customers’ criteria.
One of the employees had read about a programming language called Visual Basic
that would enable them to create the type of application they needed to manage
the hundreds of apartment complexes in the area. The application was created,
tested, and put in production. Four months later, the business was growing rap-
idly, and the company opened offices in several dozen other cities.

This is when the company started having problems. Finding apartments by using
the SQL Server database application was taking longer and longer. Many associates
were getting so frustrated that they started keeping their own paper-based files. The
developer had reviewed all the code and couldn’t reproduce the problem. So
the company called me to take a look at the SQL Server side of the equation.

The first thing I did was ask the developer whether he had reviewed the indexes
on the tables in SQL Server. I had my answer to the performance problem when
the developer asked what an index was. It took me an hour to get to the cus-
tomer’s office downtown, and the performance problem was solved 15 minutes
later with the addition of some key indexes. I spent the rest of the day indexing
the other tables so they wouldn’t become problems in the future and explaining
to the developer what an index was, why it would help, and how to determine
what should be indexed.

Lesson 1: Understanding Index Structure 149

C0462271X.fm Page 149 Friday, April 29, 2005 7:31 PM
Lesson 1: Understanding Index Structure
An index is useful only if it can help find data quickly regardless of the volume of data
stored. Take a look at the index at the back of this book. The index contains only a
small sampling of the words in the book, so it provides a compact way to search for
information. If the index were organized based on the pages that a word appears on,
you would have to read many entries and pages to find your information. Instead, the
index is organized alphabetically, which means you can go to a specific place in the
index to find what you need. It also enables you to scan down to the word you are
looking for. After you find the word you are looking for, you know that you don’t have
to search any further. The way an index is organized in SQL Server is very similar. In
this lesson, you will see how SQL Server uses the B-tree structure to build indexes that
provide fast data retrieval even with extremely large tables.

After this lesson, you will be able to:

■ Explain SQL Server’s index structure.

Estimated lesson time: 20 minutes

Exploring B-Trees
The structure that SQL Server uses to build and maintain indexes is called a Balanced
tree, or B-tree. The illustration in Figure 4-1 shows an example of a B-tree.

Figure 4-1 General index architecture

A B-tree consists of a root node that contains a single page of data, zero or more inter-
mediate levels containing additional pages, and a leaf level.

Intermediate

Root

Leaf

150 Chapter 4 Creating Indexes

C0462271X.fm Page 150 Friday, April 29, 2005 7:31 PM
The leaf-level pages contain entries in sorted order that correspond to the data being
indexed. The number of index rows on a page is determined by the storage space
required by the columns defined in the index. For example, an index defined on a
4-byte integer column will have five times as many values per page as an index defined
on a char(60) column that requires 60 bytes of storage per page.

SQL Server creates the intermediate levels by taking the first entry on each leaf-level
page and storing the entries in a page with a pointer to the leaf-level page. The root
page is constructed in the same manner.

MORE INFO Index internals

For a detailed explanation of the entries on an index page as well as how an index is constructed,
see Inside Microsoft SQL Server 2005: The Storage Engine by Kalen Delaney (Microsoft Press, 2006)
and Inside Microsoft SQL Server 2005: T-SQL Querying by Itzik Ben-Gan (Microsoft Press, 2006).

By constructing an index in this manner, SQL Server can search tables that have bil-
lions of rows of data just as quickly it can tables that have a few hundred rows of data.
Let’s look at the B-tree in Figure 4-2 to see how a query uses an index to quickly find
data.

Figure 4-2 Building an index

If you were looking for the term “SQL Server,” the query would scan the root page. It
would find the value O as well as the value T. Because S comes before T, the query
knows that it needs to look on page O to find the data it needs. The query would then
move to the intermediate-level page that entry O points to. Note that this single oper-
ation has immediately eliminated three-fourths of the possible pages by scanning a
very small subset of values. The query would scan the intermediate-level page and

A, H
O, T

D, E,
F, G

U, V,
W, X,
Y, Z

A
D

H, I,
J, K

L, M,
N

H
L

O
S

T
U

O, P,
Q, R

S T
A, B,

C

Intermediate

Root

Leaf

Lesson 1: Understanding Index Structure 151

C0462271X.fm Page 151 Friday, April 29, 2005 7:31 PM
find the value S. It would then jump to the page that this entry points to. At this point,
the query has scanned exactly two pages in the index to find the data that was
requested. Notice that no matter which letter you choose, locating the page that con-
tains the words that start with that letter requires scanning exactly two pages.

This behavior is why the index structure is called a B-tree. Every search performed
always transits the same number of levels in the index—and the same number of pages
in the index—to locate the piece of data you are interested in.

Inside Index Levels
The number of levels in an index, as well as the number of pages within each level of
an index, is determined by simple mathematics. As previous chapters explained, a
data page in SQL Server is 8,192 bytes in size and can store up to 8,060 bytes of actual
user data.

If you built an index on a char(60) column, each row in the table would require
60 bytes of storage. That also means 60 bytes of storage for each row within the index.

If there are only 100 rows of data in the table, you would need 6,000 bytes of storage.
Because all the entries would fit on a single page of data, the index would have a single
page that would be the root page as well as the leaf page. In fact, you could store 134
rows in the table and still allocate only a single page to the index.

As soon as you add the 135th row, all the entries can no longer fit on a single page, so
SQL Server creates two additional pages. This operation creates an index with a root
page and two leaf-level pages. The first leaf-level page contains the first half of the
entries, the second leaf-level page contains the second half of the entries, and the root
page contains two rows of data. This index does not need an intermediate level
because the root page can contain all the values at the beginning of the leaf-level
pages. At this point, a query needs to scan exactly two pages in the index to locate any
row in the table.

You can continue to add rows to the table without affecting the number of levels in the
index until you reach 17,957 rows. At 17,956 rows, you have 134 leaf-level pages con-
taining 134 entries each. The root page has 134 entries corresponding to the first row
on each of the leaf-level pages. When you add the 17,957th row of data to the table,
SQL Server needs to allocate another page to the index at the leaf level, but the root
page cannot hold 135 entries because this would exceed the 8,060 bytes allowed per
page. So SQL Server adds an intermediate level that contains two pages. The first page
contains the initial entry for the first half of the leaf-level pages, and the second page

152 Chapter 4 Creating Indexes

C0462271X.fm Page 152 Friday, April 29, 2005 7:31 PM
contains the initial entry for the second half of the leaf pages. The root page now con-
tains two rows, corresponding to the initial value for each of the two intermediate-
level pages.

The next time SQL Server would have to introduce another intermediate level would
occur when the 2,406,105th row of data is added to the table.

As you can see, this type of structure allows SQL Server to very quickly locate the rows
that satisfy queries, even in extremely large tables. In this example, finding a row in a
table that has nearly 2.5 million rows requires SQL Server to scan only three pages of
data. And the table could grow to more than 300 million rows before SQL Server
would have to read four pages to find any row.

Keep in mind that this example uses a char(60) column. If you created the index on
an int column requiring 4 bytes of storage, SQL Server would have to read just one
page to locate a row until the 2,016th row was entered. You could add a little more
than 4 million rows to the table and still need to read only two pages to find a row. It
would take more than 8 billion rows in the table before SQL Server would need to
read three pages to find the data you were looking for.

Quick Check
■ What structure guarantees that every search performed will always transit

the same number of levels in the index—and the same number of pages in
the index—to locate the piece of data you are interested in?

Quick Check Answer

■ The B-tree structure that SQL Server uses to build its indexes.

Lesson Summary
■ A SQL Server index is constructed as a B-tree, which enables SQL Server to

search very large volumes of data without affecting the performance from one
query to the next.

■ The B-tree structure delivers this performance stability by ensuring that each
search will have to transit exactly the same number of pages in the index, regard-
less of the value being searched on.

Lesson 1: Understanding Index Structure 153

C0462271X.fm Page 153 Friday, April 29, 2005 7:31 PM
■ At the same time, the B-tree structure results in very rapid data retrieval by
enabling large segments of a table to be excluded based on the page traversal in
the index.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which levels of the index can have multiple pages? (Choose all that apply.)

A. Root

B. Intermediate

C. Leaf

D. B-tree

154 Chapter 4 Creating Indexes

C0462271X.fm Page 154 Friday, April 29, 2005 7:31 PM
Lesson 2: Creating Clustered Indexes
The first type of index you should create on a table is a clustered index. As a general rule
of thumb, every table should have a clustered index. And each table can have only one
clustered index. In this lesson, you will see how to create a clustered index by using
the CREATE INDEX Transact-SQL command, including which options you can spec-
ify for the command. You will also learn how to disable and then reenable a clustered
index.

After this lesson, you will be able to:

■ Implement clustered indexes.

■ Disable and reenable an index.

Estimated lesson time: 20 minutes

Implementing Clustered Indexes
The columns you define for a clustered index are called the clustering key. A clustered
index causes SQL Server to order the data in the table according to the clustering key.
Because a table can be sorted only one way, you can create only one clustered index
on a table.

In addition, the leaf level of a clustered index is the actual data within the table. So
when the leaf level of a clustered index is reached, SQL Server does not have to use a
pointer to access the actual data in the table because it has already reached the actual
data pages in the table.

IMPORTANT Physical ordering

It is a common misconception that a clustered index causes the data to be physically ordered in a
table. That is not entirely correct: A clustered index causes the rows in a table as well as the data
pages in the doubly linked list that stores all the table data to be ordered according to the cluster-
ing key. However, this ordering is still logical. The table rows can be stored on the physical disk
platters all over the place. If a clustered index caused a physical ordering of data on disk, it would
create a prohibitive amount of disk activity.

As a general rule of thumb, every table should have a clustered index, and this clus-
tered index should also be the primary key.

Lesson 2: Creating Clustered Indexes 155

C0462271X.fm Page 155 Friday, April 29, 2005 7:31 PM
IMPORTANT Clustered index selection

Several readers probably turned purple when they read that the clustered index should also be the
primary key. General rule of thumb does not mean “always.” The primary key is not always the best
choice for a clustered index. However, we don’t have the hundreds of pages in this book to explain
all the permutations and considerations for selecting the perfect clustering key. Even if we did have
the space to devote to the topic, we would still end up with the same general rule of thumb. Clus-
tering the primary key is always a better choice than not having a clustered index at all. You can
read all the considerations required to make the appropriate choice for clustered index in the
“Inside SQL Server” book series from Microsoft Press.

You use the CREATE…INDEX Transact-SQL command to create a clustered index. The
general syntax for this command is as follows:

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name
ON <object> (column [ASC | DESC] [,...n])
[INCLUDE (column_name [,...n])]
[WITH (<relational_index_option> [,...n])]
[ON { partition_scheme_name (column_name)

| filegroup_name
| default
}

][;]

We already covered the UNIQUE keyword in Chapter 3. All primary keys and unique
constraints are implemented as unique indexes.

The CLUSTERED and NONCLUSTERED options designate the type of index you are
creating. We will cover the NONCLUSTERED option in Lesson 3, “Creating Nonclus-
tered Indexes,” of this chapter.

After you specify that you want to create a clustered index, you need to specify a name
for your index. Every index must have a name that conforms to the rules for object
identifiers.

Next, you use the ON clause to specify the object to create the index against. You can
create an index on either a table or a view (we cover indexed views in Chapter 7,
“Implementing Views”). After you specify the table or view to create the index
against, you specify in parentheses the columns on which you will create the index.
The ASC and DESC keywords specify whether the sort order should be ascending or
descending.

156 Chapter 4 Creating Indexes

C0462271X.fm Page 156 Friday, April 29, 2005 7:31 PM
You also use the ON clause to specify the physical storage on which you want to place
the index. You can specify either a filegroup or a partition scheme for the index (we
cover partition schemes in Chapter 6, “Creating Partitions”). If you do not specify a
location, and the table or view is not partitioned, SQL Server creates the index on the
same filegroup as the underlying table or view.

The next part of the CREATE INDEX command enables you to specify relational index
options. Covering each option in detail is beyond the scope of this book, but Table 4-1
briefly describes the relational options you can set for an index.

Table 4-1 Relational Index Options

Option Description

PAD_INDEX Specifies index padding. When set to ON, this option
applies the percentage of free space specified by the
FILLFACTOR option to the intermediate-level pages of
the index. When set to OFF (the default) or when
FILLFACTOR isn’t specified, the intermediate-level
pages are filled to near capacity, leaving enough space
for at least one row of the maximum size the index
can have.

FILLFACTOR Specifies a percentage (0–100) that indicates how full
the database engine should make the leaf level of each
index page during index creation or rebuild.

SORT_IN_TEMPDB Specifies whether to store temporary sort results in the
tempdb database. The default is OFF, meaning interme-
diate sort results are stored in the same database as
the index.

IGNORE_DUP_KEY Specifies the error response to duplicate key values in a
multiple-row insert operation on a unique clustered or
unique nonclustered index. The default is OFF, which
means an error message is issued and the entire
INSERT transaction is rolled back. When this option is
set to ON, a warning message is issued, and only the
rows violating the unique index fail.

Lesson 2: Creating Clustered Indexes 157

C0462271X.fm Page 157 Friday, April 29, 2005 7:31 PM
Of these options, let’s look a little more closely at the ONLINE option, which is new
in SQL Server 2005. As the table description notes, this option enables you to specify
whether SQL Server creates indexes online or offline. The default is ONLINE OFF.
When a clustered index is built offline, SQL Server locks the table, and users cannot
select or modify data. If a nonclustered index is built offline, SQL Server acquires a
shared table lock, which allows SELECT statements but no data modification.

When you specify ONLINE ON, during index creation, SELECT queries and data-mod-
ification statements can access the underlying table or view. When SQL Server creates
an index online, it uses row-versioning functionality to ensure that it can build the

STATISTICS_
NORECOMPUTE

Specifies whether distribution statistics are recom-
puted. When set to OFF, the default, automatic
statistics updating is enabled. When set to ON, out-of-
date statistics are not automatically recomputed.

DROP_EXISTING When set to ON, specifies that the named, preexisting
clustered or nonclustered index is dropped and rebuilt.
The default is OFF.

ONLINE When set to ON, specifies that underlying tables and
associated indexes are available for queries and data
modification during the index operation. The default is
OFF.

ALLOW_ROW_LOCKS When set to ON, the default, specifies that row locks are
allowed.

ALLOW_PAGE_LOCKS When set to ON, the default, specifies that page locks
are allowed.

MAXDOP Overrides the max degree of parallelism configuration
option for the duration of the index operation. MAX-
DOP limits the number of processors used in a parallel
plan execution. The maximum is 64 processors. (Paral-
lel index operations are available only in SQL Server
2005 Enterprise Edition.)

Table 4-1 Relational Index Options

Option Description

158 Chapter 4 Creating Indexes

C0462271X.fm Page 158 Friday, April 29, 2005 7:31 PM
index without conflicting with other operations on the table. Online index creation is
available only in SQL Server 2005 Enterprise Edition.

MORE INFO Index options

For more information about the options available to create an index, see the SQL Server 2005
Books Online topic “CREATE INDEX (Transact-SQL).” SQL Server 2005 Books Online is installed as
part of SQL Server 2005. Updates for SQL Server 2005 Books Online are available for download at
www.microsoft.com/technet/prodtechnol/sql/2005/downloads/books.mspx.

Disabling an Index
You can disable an index by using the ALTER INDEX Transact-SQL statement, as
follows:

ALTER INDEX { index_name | ALL }
ON <object>
DISABLE [;]

When you disable an index, the index definition remains in the system catalog, but
SQL Server no longer uses it. SQL Server does not maintain the index as data in the
table changes, and the index cannot be used to satisfy queries. And if you disable a
clustered index, the entire table becomes inaccessible.

To enable an index, you must drop it and then re-create it to regenerate and populate
the B-tree structure. You can do this by using the following ALTER INDEX command,
which uses the REBUILD clause:

ALTER INDEX { index_name | ALL }
ON <object>
REBUILD [;]

Quick Check
■ What requirement does a clustered index impose on logical storage of a

table?

Quick Check Answer

■ A clustered index forces rows on data pages, as well as data pages within
the doubly linked list, to be sorted by the clustering key.

Lesson 2: Creating Clustered Indexes 159

C0462271X.fm Page 159 Friday, April 29, 2005 7:31 PM
PRACTICE Create a Clustered Index
In this practice, you will create a clustered index. You will then disable the index and
reenable it.

1. Launch SQL Server Management Studio (SSMS), connect to your instance, and
open a new query window.

2. Change the context to the AdventureWorks database.

3. Create a clustered index on the PostTime column of the DatabaseLog table by
executing the following command:

CREATE CLUSTERED INDEX ci_postdate
ON dbo.DatabaseLog(PostTime);

4. Run the following query to verify that data can be retrieved from the table:

SELECT * from dbo.DatabaseLog;

5. Disable the index by executing the following command:

ALTER INDEX ci_postdate ON dbo.DatabaseLog DISABLE;

6. Verify that the table is now inaccessible by executing the following query:

SELECT * from dbo.DatabaseLog;

7. Reenable the clustered index and verify that the table can be accessed by execut-
ing the following query:

ALTER INDEX ci_postdate ON dbo.DatabaseLog REBUILD;
GO
SELECT * from dbo.DatabaseLog;

Lesson Summary
■ You can create only one clustered index on a table.

■ The clustered index, generally the primary key, causes the data in the table to be
sorted according to the clustering key.

■ When a clustered index is used to locate data, the leaf level of the index is also
the data pages of the table.

■ New in SQL Server 2005, you can specify online index creation, which enables
users to continue to select and update data during the operation.

160 Chapter 4 Creating Indexes

C0462271X.fm Page 160 Friday, April 29, 2005 7:31 PM
Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which type of index physically orders the rows in a table?

A. Unique index

B. Clustered index

C. Nonclustered index

D. Foreign key

2. Which index option causes SQL Server to create an index with empty space on
the leaf level of the index?

A. PAD_INDEX

B. FILLFACTOR

C. MAXDOP

D. IGNORE_DUP_KEY

Lesson 3: Creating Nonclustered Indexes 161

C0462271X.fm Page 161 Friday, April 29, 2005 7:31 PM
Lesson 3: Creating Nonclustered Indexes
After you build your clustered index, you can create nonclustered indexes on the
table. In contrast with a clustered index, a nonclustered index does not force a sort
order on the data in a table. In addition, you can create multiple nonclustered indexes
to most efficiently return results based on the most common queries you execute
against the table. In this lesson, you will see how to create nonclustered indexes,
including how to build a covering index that can satisfy a query by itself. And you will
learn the importance of balancing the number of indexes you create with the over-
head needed to maintain them.

After this lesson, you will be able to:

■ Implement nonclustered indexes.

■ Build a covering index.

■ Balance index creation with maintenance requirements.

Estimated lesson time: 20 minutes

Implementing a Nonclustered Index
Because a nonclustered index does not impose a sort order on a table, you can create
as many as 249 nonclustered indexes on a single table. Nonclustered indexes, just like
clustered indexes, create a B-tree structure. However, unlike a clustered index, in a
nonclustered index, the leaf level of the index contains a pointer to the data instead
of the actual data.

This pointer can reference one of two items. If the table has a clustered index, the
pointer points to the clustering key. If the table does not have a clustered index, the
pointer points at a relative identifier (RID), which is a reference to the physical loca-
tion of the data within a data page.

When the pointer references a nonclustered index, the query transits the B-tree struc-
ture of the index. When the query reaches the leaf level, it uses the pointer to find the
clustering key. The query then transits the clustered index to reach the actual row of
data. If a clustered index does not exist on the table, the pointer returns a RID, which
causes SQL Server to scan an internal allocation map to locate the page referenced by
the RID so that it can return the requested data.

You use the same CREATE…INDEX command to create a nonclustered index as you
do to create a clustered index, except that you specify the NONCLUSTERED keyword.

162 Chapter 4 Creating Indexes

C0462271X.fm Page 162 Friday, April 29, 2005 7:31 PM
Creating a Covering Index
An index contains all the values contained in the column or columns that define the
index. SQL Server stores this data in a sorted format on pages in a doubly linked list.
So an index is essentially a miniature representation of a table.

This structure can have an interesting effect on certain queries. If the query needs to
return data from only columns within an index, it does not need to access the data
pages of the actual table. By transiting the index, it has already located all the data it
requires.

For example, let’s say you are using the Customer table that we created in Chapter 3 to
find the names of all customers who have a credit line greater than $10,000. SQL
Server would scan the table to locate all the rows with a value greater than 10,000 in
the Credit Line column, which would be very inefficient. If you then created an index
on the Credit Line column, SQL Server would use the index to quickly locate all the
rows that matched this criterion. Then it would transit the primary key, because it is
clustered, to return the customer names. However, if you created a nonclustered
index that had two columns in it—Credit Line and Customer Name—SQL Server
would not have to access the clustered index to locate the rows of data. When SQL
Server used the nonclustered index to find all the rows where the credit line was
greater than 10,000, it also located all the customer names.

An index that SQL Server can use to satisfy a query without having to access the table
is called a covering index.

Even more interesting, SQL Server can use more than one index for a given query. In
the preceding example, you could create nonclustered indexes on the credit line and
on the customer name, which SQL Server could then use together to satisfy a query.

NOTE Index selection

SQL Server determines whether to use an index by examining only the first column defined in the
index. For example, if you defined an index on FirstName, LastName and a query were looking for
LastName, this index would not be used to satisfy the query.

Balancing Index Maintenance
Why wouldn’t you just create dozens or hundreds of indexes on a table? At first
glance, knowing how useful indexes are, this approach might seem like a good idea.
However, remember how an index is constructed. The values from the column that

Lesson 3: Creating Nonclustered Indexes 163

C0462271X.fm Page 163 Friday, April 29, 2005 7:31 PM
the index is created on are used to build the index. And the values within the index
are also sorted. Now, let’s say a new row is added to the table. Before the operation can
complete, the value from this new row must be added to the correct location within
the index.

If you have only one index on the table, one write to the table also causes one write to
the index. If there are 30 indexes on the table, one write to the table causes 30 addi-
tional writes to the indexes.

It gets a little more complicated. If the leaf-level index page does not have room for the
new value, SQL Server has to perform an operation called a page split. During this
operation, SQL Server allocates an empty page to the index, moving half the values on
the page that was filled to the new page. If this page split also causes an intermediate-
level index page to overflow, a page split occurs at that level as well. And if the new row
causes the root page to overflow, SQL Server splits the root page into a new interme-
diate level, causing a new root page to be created.

As you can see, indexes can improve query performance, but each index you create
degrades performance on all data-manipulation operations. Therefore, you need to
carefully balance the number of indexes for optimal operations. As a general rule of
thumb, if you have five or more indexes on a table designed for online transactional
processing (OLTP) operations, you probably need to reevaluate why those indexes
exist. Tables designed for read operations or data warehouse types of queries gener-
ally have 10 or more indexes because you don’t have to worry about the impact of
write operations.

Using Included Columns
In addition to considering the performance degradation caused by write operation,
keep in mind that indexes are limited to a maximum of 900 bytes. This limit can cre-
ate a challenge in constructing more complex covering indexes.

An interesting new indexing feature in SQL Server 2005 called included columns
helps you deal with this challenge. Included columns become part of the index at the
leaf level only. Values from included columns do not appear in the root or intermedi-
ate levels of an index and do not count against the 900-byte limit for an index.

164 Chapter 4 Creating Indexes

C0462271X.fm Page 164 Friday, April 29, 2005 7:31 PM
Quick Check
■ What are the two most important things to consider for nonclustered

indexes?

Quick Check Answer

■ The number of indexes must be balanced against the overhead required to
maintain them when rows are added, removed, or modified in the table.

■ You need to make sure that the order of the columns defined in the index
match what the queries need, ensuring that the first column in the index is
used in the query so that the query optimizer will use the index.

PRACTICE Create Nonclustered Indexes
In this practice, you will add a nonclustered index to the tables that you created in
Chapter 3.

1. If necessary, launch SSMS, connect to your instance, and open a new query
window.

2. Because users commonly search for a customer by city, add a nonclustered index
to the CustomerAddress table on the City column, as follows:

CREATE NONCLUSTERED INDEX idx_CustomerAddress_City ON dbo.CustomerAddress(City);

Lesson Summary
■ You can create up to 249 nonclustered indexes on a table.

■ The number of indexes you create must be balanced against the overhead
incurred when data is modified.

■ An important factor to consider when creating indexes is whether an index can
be used to satisfy a query in its entirety, thereby saving additional reads from
either the clustered index or data pages in the table. Such an index is called a
covering index.

■ SQL Server 2005’s new included columns indexing feature enables you to add
values to the leaf level of an index only so that you can create more complex
index implementations within the index size limit.

Lesson 3: Creating Nonclustered Indexes 165

C0462271X.fm Page 165 Friday, April 29, 2005 7:31 PM
Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which index option causes an index to be created with empty space on the inter-
mediate levels of the index?

A. PAD_INDEX

B. FILLFACTOR

C. MAXDOP

D. IGNORE_DUP_KEY

166 Chapter 4 Review

C0462271X.fm Page 166 Friday, April 29, 2005 7:31 PM
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can

■ Review the chapter summary.

■ Review the list of key terms introduced in this chapter.

■ Complete the case scenario. This scenario sets up a real-world situation involv-
ing the topics of this chapter and asks you to create a solution.

■ Complete the suggested practices.

■ Take a practice test.

Chapter Summary
■ Indexes on SQL Server tables, just like indexes on books, provide a way to

quickly access the data you are looking for—even in very large tables.

■ Clustered indexes cause rows to be sorted according to the clustering key. In
general, every table should have a clustered index. And you can have only one
clustered index per table, usually built on the primary key.

■ Nonclustered indexes do not sort rows in a table, and you can create up to 249
per table to help quickly satisfy the most common queries.

■ By constructing covering indexes, you can satisfy queries without needing to
access the underlying table.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ B-tree

■ clustered index

■ clustering key

■ covering index

■ intermediate level

■ leaf level

■ nonclustered index

■ online index creation

Chapter 4 Review 167

C0462271X.fm Page 167 Friday, April 29, 2005 7:31 PM
■ page split

■ root node

Case Scenario: Indexing a Database
In the following case scenario, you will apply what you’ve learned in this chapter. You
can find answers to these questions in the “Answers” section at the end of this book.

Contoso Limited, a health care company located in Bothell, WA, has just implemented
a new patient claims database. Over the course of one month, more than 100 employ-
ees entered all the records that used to be contained in massive filing cabinets in the
basements of several new clients.

Contoso formed a temporary department to validate all the data entry. As soon as the
data-validation process started, the IT staff began to receive user complaints about the
new database’s performance.

As the new database administrator (DBA) for the company, everything that occurs
with the data is in your domain, and you need to resolve the performance problem.
You sit down with several employees to determine what they are searching for. Armed
with this knowledge, what should you do?

Suggested Practices
To help you successfully master the exam objectives presented in this chapter, com-
plete the following practice tasks.

Creating Indexes
■ Practice 1 Locate all the tables in your databases that do not have primary keys.

Add a primary key to each of these tables.

■ Practice 2 Locate all the tables in your databases that do not have clustered
indexes. Add a clustered index or change the primary key to clustered for each
of these tables.

■ Practice 3 Identify poorly performing queries in your environment. Create non-
clustered indexes that the query optimizer can use to satisfy these queries.

■ Practice 4 Identify the queries that can take advantage of covering indexes. If
indexes do not already exist that cover the queries, use the included columns
clause to add additional columns to the appropriate index to turn it into a cov-
ering index.

168 Chapter 4 Review

C0462271X.fm Page 168 Friday, April 29, 2005 7:31 PM
Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-431 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the “How to Use the Practice Tests” sec-
tion in this book’s Introduction.

C0562271X.fm Page 169 Friday, April 29, 2005 7:32 PM
169

Chapter 5

Working with Transact-SQL

The query language that Microsoft SQL Server uses is a variant of the ANSI-standard
Structured Query Language, SQL. The SQL Server variant is called Transact-SQL.
Database administrators and database developers must have a thorough knowledge
of Transact-SQL to read data from and write data to SQL Server databases. Using
Transact-SQL is the only way to work with the data.

Exam objectives in this chapter:
■ Retrieve data to support ad hoc and recurring queries.

❑ Construct SQL queries to return data.

❑ Format the results of SQL queries.

❑ Identify collation details.

■ Manipulate relational data.

❑ Insert, update, and delete data.

❑ Handle exceptions and errors.

❑ Manage transactions.

Lessons in this chapter:
■ Lesson 1: Querying Data . 171

■ Lesson 2: Formatting Result Sets . 186

■ Lesson 3: Modifying Data . 192

■ Lesson 4: Working with Transactions . 198

Before You Begin
To complete the lessons in this chapter, you must have

■ SQL Server 2005 installed.

■ A connection to a SQL Server 2005 instance in SQL Server Management Studio
(SSMS).

■ The AdventureWorks database installed.

170 Chapter 5 Working with Transact-SQL

C0562271X.fm Page 170 Friday, April 29, 2005 7:32 PM
Real World
Adam Machanic

In my work as a database consultant, I am frequently asked by clients to review
queries that aren’t performing well. More often than not, the problem is simple:
Whoever wrote the query clearly did not understand how Transact-SQL works
or how best to use it to solve problems.

Transact-SQL is a fairly simple language; writing a basic query requires knowl-
edge of only four keywords! Yet many developers don’t spend the time to under-
stand it, and they end up writing less-than-desirable code.

If you feel like your query is getting more complex than it should be, it probably
is. Take a step back and rethink the problem. The key to creating well-perform-
ing Transact-SQL queries is to think in terms of sets instead of row-by-row oper-
ations, as you would in a procedural system.

Lesson 1: Querying Data 171

C0562271X.fm Page 171 Friday, April 29, 2005 7:32 PM
Lesson 1: Querying Data
Data in a database would not be very useful if you could not get it back out in a desired
format. One of the main purposes of Transact-SQL is to enable database developers to
write queries to return data in many different ways.

In this lesson, you will learn various methods of querying data by using Transact-
SQL, including some of the more advanced options that you can use to more easily get
data back from your databases.

After this lesson, you will be able to:

■ Determine which tables to use in the query.

■ Determine which join types to use.

■ Determine the columns to return.

■ Create subqueries.

■ Create queries that use complex criteria.

■ Create queries that use aggregate functions.

■ Create queries that format data by using the PIVOT and UNPIVOT operators.

■ Create queries that use Full-Text Search (FTS).

■ Limit returned results by using the TABLESAMPLE clause.

Estimated lesson time: 35 minutes

Determining Which Tables to Use in the Query
The foundations of any query are the tables that contain the data needed to satisfy the
request. Therefore, your first job when writing a query is to carefully decide which
tables to use in the query. A database developer must ensure that queries use as few
tables as possible to satisfy the data requirements. Joining extra tables can cause per-
formance problems, making the server do more work than is necessary to return the
data to the data consumer.

Avoid the temptation of creating monolithic, do-everything queries that can be used
to satisfy the requirements of many different parts of the application or that return
data from additional tables just in case it might be necessary in the future. For
instance, some developers are tempted to create views that join virtually every table in
the database to simplify data access code in the application layer. Instead, you should

172 Chapter 5 Working with Transact-SQL

C0562271X.fm Page 172 Friday, April 29, 2005 7:32 PM
carefully partition your queries based on specific application data requirements,
returning data only from the tables that are necessary. Should data requirements
change in the future, you can modify the query to include additional tables.

By choosing only the tables that are needed, database developers can create more
maintainable and better-performing queries.

Determining Which Join Types to Use
When working with multiple tables in a query, you join the tables to one another to
produce tabular output result sets. You have two primary choices for join types when
working in Transact-SQL: inner joins and outer joins. Inner joins return only the data
that satisfies the join condition; nonmatching rows are not returned. Outer joins, on
the other hand, let you return nonmatching rows in addition to matching rows.

Inner joins are the most straightforward to understand. The following query uses an
inner join to return all columns from both the Employee and EmployeeAddress tables.
Only rows that exist in both tables with the same value for the EmployeeId column
are returned:

SELECT *
FROM HumanResources.Employee AS E
INNER JOIN HumanResources.EmployeeAddress AS EA ON

E.EmployeeId = EA.EmployeeId

NOTE Table alias names

This query uses the AS clause to create a table alias name for each table involved in the query.
Creating an alias name can simplify your queries and mean less typing—instead of having to type
“HumanResources.Employee” every time the table is referenced, the alias name, “E”, can be used.

Outer joins return rows with matching data as well as rows with nonmatching data.
There are three types of outer joins available to Transact-SQL developers: left outer
joins, right outer joins, and full outer joins. A left outer join returns all the rows from
the left table in the join, whether or not there are any matching rows in the right table.
For any matching rows in the right table, the data for those rows will be returned. For
nonmatching rows, the columns in the right table will return NULL. Consider the fol-
lowing query:

SELECT *
FROM HumanResources.Employee AS E
LEFT OUTER JOIN HumanResources.EmployeeAddress AS EA ON

E.EmployeeId = EA.EmployeeId

Lesson 1: Querying Data 173

C0562271X.fm Page 173 Friday, April 29, 2005 7:32 PM
This query will return one row for every employee in the Employee table. For each row
of the Employee table, if a corresponding row exists in the EmployeeAddress table, the
data from that table will also be returned. However, if for a row of the Employee table
no corresponding row exists in EmployeeAddress, the row from the Employee table will
still be returned, with NULL values for each column that would have been returned
from the EmployeeAddress table.

A right outer join is similar to a left outer join except that all rows from the right table
will be returned, instead of rows from the left table. The following query is, therefore,
identical to the query listed previously:

SELECT *
FROM HumanResources.EmployeeAddress AS EA
RIGHT OUTER JOIN HumanResources.Employee AS E ON

E.EmployeeId = EA.EmployeeId

The final outer join type is the full outer join, which returns all rows from both tables,
whether or not matching rows exist. Where matching rows do exist, the rows will be
joined. Where matching rows do not exist, NULL values will be returned for which-
ever table does not contain corresponding values.

Generally speaking, inner joins are the most common join type you’ll use when work-
ing with SQL Server. You should use inner joins whenever you are querying two tables
and know that both tables have matching data or would not want to return missing
data. For instance, assume that you have an Employee table and an EmployeePhone-
Number table. The EmployeePhoneNumber table might or might not contain a phone
number for each employee. If you want to return a list of employees and their phone
numbers and not return employees without phone numbers, use an inner join.

You use outer joins whenever you need to return nonmatching data. In the example
of the Employee and EmployeePhoneNumber tables, you probably want a full list of
employees—including those without phone numbers. In that case, you use an outer
join instead of an inner join.

Determining the Columns to Return
Just as it’s important to limit the tables your queries use, it’s also important when writ-
ing a query to return only the columns absolutely necessary to satisfy the request.
Returning extra unnecessary columns in a query can have a surprisingly negative
effect on query performance.

174 Chapter 5 Working with Transact-SQL

C0562271X.fm Page 174 Friday, April 29, 2005 7:32 PM
The performance impact of choosing extra columns is related to two factors: network
utilization and indexing. From a network standpoint, bringing back extra data with
each query means that your network might have to do a lot more work than necessary
to get the data to the client. The smaller the amount of data you send across the net-
work, the faster the transmission will go. By returning only necessary columns and
not returning additional columns just in case, you will preserve bandwidth.

The other cause of performance problems is index utilization. In many cases, SQL
Server can use nonclustered indexes to satisfy queries that use only a subset of the col-
umns from a table. This is called index covering. If you add additional columns to a
query, the query might no longer be covered by the index, and therefore performance
will decrease. For more information about indexing, see Chapter 4, “Creating
Indexes.”

BEST PRACTICES Queries

Whenever possible, avoid using SELECT * queries, which return all columns from the specified
tables. Instead, always specify a column list, which will ensure that you don’t bring back any more
columns than you’re intending to, even as additional columns are added to underlying tables.

MORE INFO Learning query basics

For more information about writing queries, see the “Query Fundamentals” topic in SQL Server
2005 Books Online, which is installed as part of SQL Server 2005. Updates for SQL Server 2005
Books Online are available for download at www.microsoft.com/technet/prodtechnol/sql/2005/
downloads/books.mspx.

How to Create Subqueries
Subqueries are queries that are nested in other queries and relate in some way to the
data in the query in which they are nested. The query in which a subquery partici-
pates is called the outer query. As you work with Transact-SQL, you will find that you
often have many ways to write a query to get the same output, and each method will
have different performance characteristics. For example, in many cases, you can use
subqueries instead of joins to tune difficult queries.

You can use subqueries in a variety of different ways and in any of the clauses of a
SELECT statement. There are several types of subqueries available to database
developers.

Lesson 1: Querying Data 175

C0562271X.fm Page 175 Friday, April 29, 2005 7:32 PM
The most straightforward subquery form is a noncorrelated subquery. Noncorrelated
means that the subquery does not use any columns from the tables in the outer query.
For instance, the following query selects all the employees from the Employee table if
the employee’s ID is in the EmployeeAddress table:

SELECT *
FROM HumanResources.Employee AS E
WHERE E.EmployeeId IN
(

SELECT AddressId
FROM HumanResources.EmployeeAddress

)

The outer query in this case selects from the Employee table, whereas the subquery
selects from the EmployeeAddress table.

You can also write this query using the correlated form of a subquery. Correlated
means that the subquery uses one or more columns from the outer query. The follow-
ing query is logically equivalent to the preceding noncorrelated version:

SELECT *
FROM HumanResources.Employee AS E
WHERE EXISTS
(

SELECT *
FROM HumanResources.EmployeeAddress EA
WHERE E.EmployeeId = EA.EmployeeId

)

In this case, the subquery correlates the outer query’s EmployeeId value to the sub-
query’s EmployeeId value. The EXISTS predicate returns true if at least one row is
returned by the subquery. Although they are logically equivalent, the two queries
might perform differently depending on your data or indexes. If you’re not sure
whether to use a correlated or noncorrelated subquery when tuning a query, test both
options and compare their performances.

You can also use subqueries in the SELECT list. The following query returns every
employee’s ID from the Employee table and uses a correlated subquery to return the
employee’s address ID:

SELECT
EmployeeId,
(

SELECT EA.AddressId
FROM HumanResources.EmployeeAddress EA
WHERE EA.EmployeeId = E.EmployeeId

) AS AddressId
FROM HumanResources.Employee AS E

176 Chapter 5 Working with Transact-SQL

C0562271X.fm Page 176 Friday, April 29, 2005 7:32 PM
Note that in this case, if the employee did not have an address in the EmployeeAddress
table, the AddressId column would return NULL for that employee. In many cases
such as this, you can use correlated subqueries and outer joins interchangeably to
return the same data.

Quick Check
■ What is the difference between a correlated and noncorrelated subquery?

Quick Check Answer

■ A correlated subquery references columns from the outer query; a noncor-
related subquery does not.

Creating Queries That Use Complex Criteria
You often must write queries to express intricate business logic. The key to effectively
doing this is to use a Transact-SQL feature called a case expression, which lets you build
conditional logic into a query. Like subqueries, you can use case expressions in virtu-
ally all parts of a query, including the SELECT list and the WHERE clause.

As an example of when to use a case expression, consider a business requirement that
salaried employees receive a certain number of vacation hours and sick-leave hours
per year, and nonsalaried employees receive only sick-leave hours. The following
query uses this business rule to return the total number of hours of paid time off for
each employee in the Employee table:

SELECT
EmployeeId,
CASE SalariedFlag

WHEN 1 THEN VacationHours + SickLeaveHours
ELSE SickLeaveHours

END AS PaidTimeOff
FROM HumanResources.Employee

MORE INFO Case expression syntax

If you’re not familiar with the SQL case expression, see the “CASE (Transact-SQL)” topic in SQL
Server 2005 Books Online.

This query conditionally checks the value of the SalariedFlag column, returning the
total of the VacationHours and SickLeaveHours columns if the employee is salaried.
Otherwise, only the SickLeaveHours column value is returned.

Lesson 1: Querying Data 177

C0562271X.fm Page 177 Friday, April 29, 2005 7:32 PM
IMPORTANT Case expression output paths

All possible output paths of a case expression must be of the same data type. If all the columns you
need to output are not the same type, make sure to use the CAST or CONVERT functions to make them
uniform. See the section titled “Using System Functions” later in this chapter for more information.

Creating Queries That Use Aggregate Functions
You can often aggregate data stored in tables within a database to produce important
types of business information. For instance, you might not be interested in a list of
employees in the database but instead want to know the average salary for all the
employees. You perform this type of calculation by using aggregate functions. Aggre-
gate functions operate on groups of rows rather than individual rows; the aggregate
function processes a group of rows to produce a single output value.

Transact-SQL has several built-in aggregate functions, and you can also define aggre-
gate functions by using Microsoft .NET languages. Table 5-1 lists commonly used
built-in aggregate functions and what they do.

As an example, the following query uses the AVG aggregate function to return the
average number of vacation hours for all employees in the Employee table:

SELECT AVG(VacationHours)
FROM HumanResources.Employee

Table 5-1 Commonly Used Built-in Aggregate Functions

Function Description

AVG Returns the average value of the rows in the group.

COUNT/COUNT_BIG Returns the count of the rows in the group. COUNT
returns its output typed as an integer, whereas
COUNT_BIG returns its output typed as a bigint.

MAX/MIN MAX returns the maximum value in the group. MIN
returns the minimum value in the group.

SUM Returns the sum of the rows in the group.

STDEV Returns the standard deviation of the rows in the group.

VAR Returns the statistical variance of the rows in the group.

178 Chapter 5 Working with Transact-SQL

C0562271X.fm Page 178 Friday, April 29, 2005 7:32 PM
If you need to return aggregated data alongside nonaggregated data, you must use
aggregate functions in conjunction with a GROUP BY clause. You use the nonaggre-
gated columns to define the groups for aggregation. Each distinct combination of
nonaggregated data will comprise one group. For instance, the following query
returns the average number of vacation hours for the employees in the Employee table,
grouped by the employees’ salary status:

SELECT SalariedFlag, AVG(VacationHours)
FROM HumanResources.Employee
GROUP BY SalariedFlag

Because there are two distinct salary statuses in the Employee table—salaried and non-
salaried—the results of this query are two rows. One row contains the average number
of vacation hours for salaried employees, and the other contains the average number
of vacation hours for nonsalaried employees.

Creating Queries That Format Data by Using PIVOT and UNPIVOT
Operators

Business users often want to see data formatted in what’s known as a cross-tabulation.
This is a special type of aggregate query in which the grouped rows for one of the col-
umns become columns themselves. For instance, the final query in the last section
returned two rows: one containing the average number of vacation hours for salaried
employees and one containing the average number of vacation hours for nonsalaried
employees. A business user might instead want the output formatted as a single row
with two columns: one column for the average vacation hours for salaried employees
and one for the average vacation hours for nonsalaried employees.

You can use the PIVOT operator to produce this output. To use the PIVOT operator,
perform the following steps:

1. Select the data you need by using a special type of subquery called a derived table.

2. After you define the derived table, apply the PIVOT operator and specify an
aggregate function to use.

3. Define which columns you want to include in the output.

Lesson 1: Querying Data 179

C0562271X.fm Page 179 Friday, April 29, 2005 7:32 PM
The following query shows how to produce the average number of vacation hours for
all salaried and nonsalaried employees in the Employee table in a single output row:

SELECT [0], [1]
FROM
(

SELECT SalariedFlag, VacationHours
FROM HumanResources.Employee

) AS H
PIVOT
(

AVG(VacationHours)
FOR SalariedFlag IN ([0], [1])

) AS Pvt

In this example, the data from the Employee table is first selected in the derived table
called H. The data from the table is pivoted using the AVG aggregate to produce two
columns—0 and 1—each corresponding to one of the two salary types in the Employee
table. Note that the same identifiers used to define the pivot columns must also be
used in the SELECT list if you want to return the columns’ values to the user.

The UNPIVOT operator does the exact opposite of the PIVOT operator. It turns col-
umns back into rows. This operator is useful when you are normalizing tables that
have more than one column of the same type defined.

Creating Queries That Use Full-Text Search
If your database contains many columns that use string data types such as VARCHAR
or NVARCHAR, you might find that searching these columns for data by using the
Transact-SQL = and LIKE operators does not perform well. A more efficient way to
search text data is to use the SQL Server FTS capabilities.

To do full-text searching, you first must enable full-text indexes for the tables you
want to query. To query a full-text index, you use a special set of functions that differ
from the operators that you use to search other types of data. The main functions for
full-text search are CONTAINS and FREETEXT.

The CONTAINS function searches for exact word matches and word prefix matches.
For instance, the following query can be used to search for any address containing the
word “Stone”:

SELECT *
FROM Person.Address
WHERE CONTAINS(AddressLine1, 'Stone')

180 Chapter 5 Working with Transact-SQL

C0562271X.fm Page 180 Friday, April 29, 2005 7:32 PM
This query would find an address at “1 Stone Way”, but to match “23 Stoneview
Drive” you need to add the prefix identifier, *, as in the following example:

SELECT *
FROM Person.Address
WHERE CONTAINS(AddressLine1, '"Stone*"')

Note that you must also use double quotes if you use the prefix identifier. If the dou-
ble quotes are not included, the string will be searched as an exact match, including
the prefix identifier.

If you need a less-exact match, use the FREETEXT function instead. This function uses
a fuzzy match to get more results when the search term is inexact. For instance, the
following query would find an address at “1 Stones Way”, even though the search
string “Stone” is not exact:

SELECT *
FROM Person.Address
WHERE FREETEXT(AddressLine1, 'Stone')

FREETEXT works by generating various forms of the search term, breaking single
words into parts as they might appear in documents and generating possible syn-
onyms using thesaurus functionality. This predicate is useful when you want to let
users search based on the term’s meaning, rather than only exact strings.

Both CONTAINS and FREETEXT also have table-valued versions: CONTAINSTABLE
and FREETEXTTABLE, respectively. The table-valued versions have the added benefit
of returning additional data along with the results, including the rank of each result
in a column called RANK. The rank is higher for closer matches, so you can order
results for users based on relevance. You can join to the result table by using the
generic KEY column, which joins to whatever column in your base table was used as
the unique index when creating the full-text index.

MORE INFO Creating full-text indexes

For information on creating full-text indexes, see the “CREATE FULLTEXT INDEX (Transact-SQL)”
topic in SQL Server 2005 Books Online.

Lesson 1: Querying Data 181

C0562271X.fm Page 181 Friday, April 29, 2005 7:32 PM
Quick Check
■ Which function should you use to query exact or prefix string matches?

Quick Check Answer

■ The CONTAINS function lets you query either exact matches or matches
based on a prefix.

Limiting Returned Results by Using the TABLESAMPLE Clause
In some cases, you might want to evaluate only a small random subset of the returned
values for a certain query. This can be especially relevant, for instance, when testing
large queries. Instead of seeing the entire result set, you might want to analyze only a
fraction of its rows.

The TABLESAMPLE clause lets you specify a target number of rows or percentage of
rows to be returned. The SQL Server query engine randomly determines the segment
from which the rows will be taken.

The following query returns approximately 10 percent of the addresses in the Address
table:

SELECT *
FROM Person.Address
TABLESAMPLE(10 PERCENT)

CAUTION TABLESAMPLE returns random rows

The TABLESAMPLE clause works by returning rows from a random subset of data pages determined
by the percentage specified. Because some data pages contain more rows than others, this means
that the number of returned rows will almost never be exact. When using the TABLESAMPLE clause,
do not write queries that expect an exact number of rows to be returned.

182 Chapter 5 Working with Transact-SQL

C0562271X.fm Page 182 Friday, April 29, 2005 7:32 PM
PRACTICE Query and Pivot Employees’ Pay Rates
In the following practice exercises, you will write queries that retrieve employees’ pay
rate information using aggregate functions and then pivot the data using the PIVOT
operator.

� Practice 1: Retrieve Employees’ Current Pay Rate Information

In this exercise, you will practice writing a query that uses aggregate functions to get
employees’ current pay rate information from the AdventureWorks database.

1. Open SSMS and connect to your SQL Server.

2. Open a new query window and select AdventureWorks as the active database.

3. Type the following query and execute it:

SELECT
EPH.EmployeeId,
EPH.Rate,
EPH.RateChangeDate

FROM HumanResources.EmployeePayHistory EPH

4. This shows that the table EmployeePayHistory has one row for each employee’s
pay rate and the date it changed.

5. To find the current pay rate, you need to determine which change date is the
maximum for each employee.

6. Type the following query and execute it:

SELECT
EPH.EmployeeId,
EPH.Rate,
EPH.RateChangeDate

FROM HumanResources.EmployeePayHistory EPH
WHERE EPH.RateChangeDate =
(

SELECT MAX(EPH1.RateChangeDate)
FROM HumanResources.EmployeePayHistory EPH1

)

7. This query, however, returns rows for only a few of the employees; it uses a non-
correlated subquery, which gets the most recent RateChangeDate for the whole
table. So only employees who had their rate changed on that day are returned.
Instead, you need to use a correlated subquery. For each employee, the query
needs to compare the most recent RateChangeDate.

Lesson 1: Querying Data 183

C0562271X.fm Page 183 Friday, April 29, 2005 7:32 PM
8. Type the following query and execute it:

SELECT
EPH.EmployeeId,
EPH.Rate,
EPH.RateChangeDate

FROM HumanResources.EmployeePayHistory EPH
WHERE EPH.RateChangeDate =
(

SELECT MAX(EPH1.RateChangeDate)
FROM HumanResources.EmployeePayHistory EPH1
WHERE EPH1.EmployeeId = EPH.EmployeeId

)

9. This query, which uses the correlated subquery, returns the most recent pay rate
for every employee.

� Practice 2: Pivot Employees’ Pay Rate History

In this exercise, you will practice writing a query that uses the PIVOT operator to cre-
ate a report that shows each employee’s pay rate changes in each year.

1. If necessary, open SSMS and connect to your SQL Server.

2. Open a new query window and select AdventureWorks as the active database.

3. Type the following query and execute it:

SELECT
EmployeeId,
YEAR(RateChangeDate) AS ChangeYear,
Rate

FROM HumanResources.EmployeePayHistory

4. This query returns the rate of each change made for each employee, along with
the year in which the change was made.

5. Next, you need to store this information in a derived table, as the following
query shows:

SELECT *
FROM
(

SELECT
EmployeeId,
YEAR(RateChangeDate) AS ChangeYear,
Rate

FROM HumanResources.EmployeePayHistory
) AS EmpRates

6. Execute the query and then analyze the years returned. Notice that the data
ranges between 1996 and 2003.

184 Chapter 5 Working with Transact-SQL

C0562271X.fm Page 184 Friday, April 29, 2005 7:32 PM
7. You can now pivot this derived table. One requirement of PIVOT is to use an
aggregate function on the data being pivoted. Because that data is employee sal-
ary, the most obvious function is MAX, which would report the maximum
change for each year.

8. Based on the date range in the data and the chosen aggregate function, the fol-
lowing PIVOT query can be written:

SELECT *
FROM
(

SELECT
EmployeeId,
YEAR(RateChangeDate) AS ChangeYear,
Rate

FROM HumanResources.EmployeePayHistory
) AS EmpRates
PIVOT
(

MAX(Rate)
FOR ChangeYear IN
(

[1996],
[1997],
[1998],
[1999],
[2000],
[2001],
[2002],
[2003]

)
) AS Pvt

9. Executing this query returns a report with a column for each year, showing
whether or not the employee received a pay rate change during that year. Years
without changes show NULL for that employee.

Lesson Summary
■ Avoid including unnecessary tables and columns in queries.

■ Subqueries and outer joins can often be used interchangeably to query for
matching and nonmatching data.

■ Aggregate functions and the PIVOT operator can assist in creating more useful
output for business users.

■ The FTS functions can be used to more efficiently query text data.

Lesson 1: Querying Data 185

C0562271X.fm Page 185 Friday, April 29, 2005 7:32 PM
Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of this book.

1. Which types of joins let you retrieve nonmatching data? (Choose all that apply.)

A. Full outer join

B. Inner join

C. Right outer join

D. Left outer join

2. Which of the following aggregate functions returns a row count as an integer?

A. AVG

B. COUNT_BIG

C. STDEV

D. COUNT

3. You need to find all matches from your Product table in which the Description
column includes either the words “book” or “booklet”. Which of the following
FTS syntaxes should you use?

A. FREETEXT(Description, ‘“Book”’)

B. FREETEXT(Description, ‘“Book*”’)

C. CONTAINS(Description, ‘“Book”’)

D. CONTAINS(Description, ‘“Book*”’)

186 Chapter 5 Working with Transact-SQL

C0562271X.fm Page 186 Friday, April 29, 2005 7:32 PM
Lesson 2: Formatting Result Sets
Lesson 1 covered many of the finer points for basic data querying. However, this
knowledge is not enough for most projects. In many cases, you will need to do more
than just query the data; you’ll have to return it in a useful format so that your users
can understand it.

In this lesson, you will learn how to format data using functions, query Common Lan-
guage Runtime (CLR) user-defined data types, and use alias columns to make data
easier for your users to consume.

After this lesson, you will be able to:

■ Use system functions.

■ Use user-defined functions (UDFs).

■ Query CLR user-defined types (UDTs).

■ Create column aliases.

Estimated lesson time: 20 minutes

Using System Functions
SQL Server includes a variety of built-in functions that can help with data formatting.
Table 5-2 describes the most commonly used functions.

Table 5-2 Commonly Used Data-Formatting Functions

Function Description

CAST/CONVERT The CAST and CONVERT functions let you convert
between data types. CONVERT is especially useful
because it lets you change formatting when converting
certain types (for example, datetime) to strings.

DAY/MONTH/
YEAR/DATENAME

The DAY, MONTH, and YEAR functions return the
numeric value corresponding to the day, month, or year
represented by a datetime data type. The DATENAME
function returns the localized name for whatever part of
the date is specified.

REPLACE The REPLACE function replaces occurrences of a sub-
string in a string with another string.

Lesson 2: Formatting Result Sets 187

C0562271X.fm Page 187 Friday, April 29, 2005 7:32 PM
These functions are most commonly used in a query’s SELECT list to modify the out-
put of the query to satisfy user requirements. For instance, the following query uses
the CONVERT function to convert all the birth dates in the Employee table to the ANSI
two-digit year format:

SELECT CONVERT(CHAR(10), BirthDate, 2)
FROM HumanResources.Employee

CAUTION Do not use functions in WHERE clauses

Avoid using formatting functions in your queries’ WHERE clauses. Using such functions can cause
performance problems by making it difficult for the query engine to use indexes.

Using User-Defined Functions in Queries
In addition to the system functions available for formatting, database developers can
create custom functions called user-defined functions (UDFs). Once defined, you can
use these functions anywhere that you can use a built-in function. The only difference
between using a built-in function and a UDF is that UDFs must be scoped by the name
of the database schema in which they participate. The following query uses the ufnGet-
ProductListPrice UDF that is defined in the dbo schema of the AdventureWorks database:

SELECT
ProductId,
dbo.ufnGetProductListPrice(ProductId, ModifiedDate)

FROM Sales.SalesOrderDetail

The function has two parameters—product ID and order date—and returns the price
for the given product as of the order date. Because the function is in the dbo schema,
to call the function, you must prefix it with dbo. This prefix tells SQL Server that
you’re using a UDF rather than a system function.

STUFF The STUFF function lets you insert strings inside of
other strings at the specified position.

SUBSTRING/LEFT/
RIGHT

The SUBSTRING function returns a slice of a string start-
ing at a specified position. LEFT and RIGHT return slices
of the string from the left or right, respectively.

STR The STR function converts numeric types into strings.

Table 5-2 Commonly Used Data-Formatting Functions

Function Description

188 Chapter 5 Working with Transact-SQL

C0562271X.fm Page 188 Friday, April 29, 2005 7:32 PM
Quick Check
■ What is the main difference between querying a UDF and a built-in func-

tion?

Quick Check Answer

■ When querying a UDF, you must specify the function’s schema. Built-in
functions do not participate in schemas.

Querying CLR User-Defined Types
You can use .NET CLR user-defined types (UDTs) to programmatically extend SQL
Server’s type system. Querying CLR UDTs is not quite the same as querying built-in
types. If you need the results returned as a string, you must use the ToString method
that all CLR UDTs define. Assume that the PhoneNumber column of the ContactInfor-
mation table uses a UDT. The following query would return the phone numbers as
strings if your database used a UDT for the PhoneNumber column:

SELECT PhoneNumber.ToString()
FROM ContactInformation

In addition to exposing the ToString method for returning strings, CLR UDTs can have
additional methods and properties defined that can help to retrieve data in various
ways. For instance, the PhoneNumber type might have a property called AreaCode that
returns only the area code for the phone number. In that case, you could use the fol-
lowing query to get all the area codes from the ContactInformation table, again only if
your database used a UDT for the PhoneNumber column:

SELECT PhoneNumber.AreaCode
FROM ContactInformation

Quick Check
■ How do you return the value of a CLR UDT as a string?

Quick Check Answer

■ All CLR UDTs expose a method called ToString, which you can call to
retrieve a string representation of the type.

Lesson 2: Formatting Result Sets 189

C0562271X.fm Page 189 Friday, April 29, 2005 7:32 PM
Creating Column Aliases
When writing queries, you often need to change the name of output columns to make
them more user-friendly. You do this by using the AS modifier. For instance, in the fol-
lowing query, the SalariedFlag column will appear to the user as a column called
“IsSalaried”:

SELECT
EmployeeId,
SalariedFlag AS IsSalaried

FROM HumanResources.Employee

You can also use the AS modifier to define a column name whenever one doesn’t exist.
For example, if you use an expression or a scalar function to define the column, the
column name by default will be NULL.

BEST PRACTICES Use distinct column names

It’s a good idea to make sure that every output column of a query has a distinct column name.
Applications should always be able to rely on column names for programmatically retrieving data
from a query and should not be forced to use column ordinal position.

PRACTICE Formatting Column Output
In this exercise, you will practice using some of the system functions available for for-
matting column output.

Assume that you have the following business requirement: Write a query that returns
for every employee in the Employee table that employee’s hire date formatted using the
ANSI date format, number of vacation hours, and the employee’s login ID, without
the standard prefix. All data must be concatenated for each employee into a single
comma-delimited string, and the column should be called “EmpData”.

1. If necessary, open SSMS and connect to your SQL Server.

2. Open a new query window and select AdventureWorks as the active database.

3. Type the following query and execute it:

SELECT
HireDate,
VacationHours,
LoginId

FROM HumanResources.Employee

190 Chapter 5 Working with Transact-SQL

C0562271X.fm Page 190 Friday, April 29, 2005 7:32 PM
4. Note the formatting problems: HireDate is not formatted according to the ANSI
date format, and LoginId needs to have the “adventure-works\” prefix removed.

5. First, format HireDate according to the ANSI date format by using the CONVERT
function. Type the following query and execute it:

SELECT
CONVERT(CHAR(10), HireDate, 2),
VacationHours,
LoginId

FROM HumanResources.Employee

6. Next, remove the prefix from the login ID. You can do this easily by using the
REPLACE, SUBSTRING, or STUFF function. The following code example shows
how to remove the prefix by using REPLACE to replace the prefix with an empty
string:

SELECT
CONVERT(CHAR(10), HireDate, 2),
VacationHours,
REPLACE(LoginId, 'adventure-works\', '')

FROM HumanResources.Employee

7. Before concatenating the information, you need to convert VacationHours into a
string:

SELECT
CONVERT(CHAR(10), HireDate, 2),
STR(VacationHours),
REPLACE(LoginId, 'adventure-works\', '')

FROM HumanResources.Employee

8. Now you can concatenate the data by using the concatenation operator (+):

SELECT
CONVERT(CHAR(10), HireDate, 2) + ', ' +
STR(VacationHours) + ', ' +
REPLACE(LoginId, 'adventure-works\', '')

FROM HumanResources.Employee

9. Finally, you apply the column alias:

SELECT
CONVERT(CHAR(10), HireDate, 2) + ', ' +
STR(VacationHours) + ', ' +
REPLACE(LoginId, 'adventure-works\', '') AS EmpData

FROM HumanResources.Employee

Lesson 2: Formatting Result Sets 191

C0562271X.fm Page 191 Friday, April 29, 2005 7:32 PM
Lesson Summary
■ Use system functions and UDFs to format your data for more useful query out-

put.

■ UDTs can expose methods and properties to make data formatting much easier.

■ Use column aliases to provide better column names for your data consumers.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of this book.

1. Which of the following functions can you use to convert integers into strings?
(Choose all that apply.)

A. STR

B. STUFF

C. CAST

D. CONVERT

2. Which of the following methods is exposed by all CLR UDTs for returning the
UDT data as a string?

A. GetString

B. ConvertString

C. ToString

D. MakeString

3. Which keyword is used to create a column alias?

A. STR

B. AS

C. FROM

D. COLUMN

192 Chapter 5 Working with Transact-SQL

C0562271X.fm Page 192 Friday, April 29, 2005 7:32 PM
Lesson 3: Modifying Data
In addition to knowing how to select and format data, database developers need to
understand how to modify the data in the database. In this lesson, you will learn some
of the best practices to consider when writing data-modification code so that you can
create efficient, maintainable queries.

After this lesson, you will be able to:

■ Understand cursors.

■ Create local and global temporary tables.

■ Use the SELECT INTO command.

Estimated lesson time: 20 minutes

Understanding Cursors
One of the most important foundations of quality Transact-SQL programming is an
understanding of how to think in terms of sets instead of procedurally. In almost
every case, data access inside of SQL Server can be performed using set-based tech-
niques—that is, using standard SELECT statements. Even when working with very
complex formatting requirements, this holds true.

However, you can develop nonset-based SQL Server code by using cursors. Cursors
operate by iterating through a data set one row at a time, letting the developer operate
on individual rows rather than on sets of data.

SQL Server supports three types of cursors: static, keyset, and dynamic. Each uses
more resources than the last to detect changes to the data being queried. Static cur-
sors use few resources because they do not detect any changes during processing.
Keyset cursors detect some changes and, therefore, use more resources. Dynamic cur-
sors detect all changes to the underlying data and are the most resource-intensive.

SQL Server’s query optimizer cannot generate query plans for cursors, so they are
often much slower than set-based queries. Add to this the fact that keyset and
dynamic cursors often must hold locks on underlying rows for the entire scope of the
cursor, and it is not hard to see why cursors are considered the SQL of last resort. The
combination of slow processing and holding locks during the entire course of that
processing can result in extreme blocking issues, decreasing overall database perfor-
mance and scalability.

Lesson 3: Modifying Data 193

C0562271X.fm Page 193 Friday, April 29, 2005 7:32 PM
MORE INFO Locks

If you’re not familiar with the SQL Server locking mechanisms, see the “Locking in the Database
Engine” topic in SQL Server 2005 Books Online.

BEST PRACTICES Try to steer clear of cursors

Avoid cursors whenever possible. Ideally, cursors should be used only for administrative purposes
when a set-based solution is impossible to implement.

Quick Check
■ Which cursor types can detect changes to the underlying data?

Quick Check Answer

■ Keyset and dynamic cursors can detect changes to the underlying data.

Creating Local and Global Temporary Tables
When working with complex queries, it is often helpful to break up the logic into
smaller, more manageable chunks. Breaking the logic can help simplify queries and
stored procedures, especially when iterative logic is necessary. It can also help perfor-
mance in many cases. If you need to apply the results of a complex query to other que-
ries, it is often cheaper to cache the results of the query in a temporary table and reuse
them than to reexecute the complex query each time.

You can cache intermediate results in special tables called temporary tables. These
tables act just like other SQL Server tables, but they are actually created in the tempdb
system database. When you are finished using temporary tables, you do not have to
drop them; they are automatically dropped when the connection using them is closed.

SQL Server has two types of temporary tables: local and global. Local temporary
tables are visible only to the connection that created them. Global temporary tables,
on the other hand, are visible to all connections.

194 Chapter 5 Working with Transact-SQL

C0562271X.fm Page 194 Friday, April 29, 2005 7:32 PM
Create a local temporary table by using the CREATE TABLE command and prefixing
the table name with #:

CREATE TABLE #LocalTempTable
(

Column1 INT,
Column2 VARCHAR(20)

)

Create global temporary tables by prefixing the table name with ##:

CREATE TABLE ##GlobalTempTable
(

Column1 INT,
Column2 VARCHAR(20)

)

Using the SELECT INTO Command
In many situations, developers need to create tables that have the same column defi-
nition as a table that already exists. Or developers might need to create a table based
on the results of a query. In either case, you can use the SELECT INTO command to
create a new table.

By adding the INTO clause to a SELECT statement after the SELECT list, SQL Server
creates the table name in the INTO clause, using the results of the SELECT, if the table
does not already exist. If the table already exists, SQL Server returns an exception.

To create a table that has the same columns and data as another table already in the
system, use SELECT INTO with SELECT *. The following query creates a table called
Address2 from the data in the Address table:

SELECT *
INTO Address2
FROM Person.Address

SELECT INTO is commonly used in stored procedures to create local temporary
tables. Instead of using the CREATE TABLE syntax and inserting the data into the tem-
porary table, developers can use the SELECT INTO command to do both operations.
The following query creates a local temporary table called #FemaleEmployees that con-
tains all employee IDs for female employees in the Employee table:

SELECT EmployeeId
INTO #FemaleEmployees
FROM HumanResources.Employee
WHERE Gender = 'F'

Lesson 3: Modifying Data 195

C0562271X.fm Page 195 Friday, April 29, 2005 7:32 PM
Quick Check
■ Should you use SELECT INTO to insert data into tables that already exist?

Quick Check Answer

■ No. If you use SELECT INTO, and the target table already exists, an error
will be returned.

PRACTICE Create and Use a Temporary Table
In this practice, you will create a temporary table and use it to join to another table.

Assume that you need to find all addresses for salaried employees.

1. If necessary, open SSMS and connect to your SQL Server.

2. Open a new query window and select AdventureWorks as the active database.

3. Type the following query and execute it:

SELECT EmployeeId
FROM HumanResources.Employee
WHERE SalariedFlag = 1

4. This query returns all employee IDs for salaried employees. To create a tempo-
rary table with this data, you can use SELECT INTO. Type and execute the fol-
lowing query:

SELECT EmployeeId
INTO #SalariedEmployees
FROM HumanResources.Employee
WHERE SalariedFlag = 1

5. A local temporary table called #SalariedEmployees now exists. You can see the
employee IDs in the table by using the following query:

SELECT EmployeeId
FROM #SalariedEmployees

6. The following query returns all addresses from the EmployeeAddress table:

SELECT *
FROM HumanResources.EmployeeAddress

196 Chapter 5 Working with Transact-SQL

C0562271X.fm Page 196 Friday, April 29, 2005 7:32 PM
7. Add a WHERE clause to the query that includes a noncorrelated subquery using
the IN predicate:

SELECT *
FROM HumanResources.EmployeeAddress
WHERE EmployeeId IN
(

SELECT EmployeeId
FROM #SalariedEmployees

)

8. Execute the query.

Lesson Summary
■ Use cursors as sparingly as possible, preferably only for administrative tasks.

■ Temporary tables can make it easier to express complex logic in a maintainable
way and improve performance, letting you cache intermediate results.

■ SELECT INTO lets you create tables that have the same column definition as a
table that already exists or to create a table based on the results of a query.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of this book.

1. What are the three types of cursors available in SQL Server? (Choose all that
apply.)

A. Static

B. Firehose

C. Dynamic

D. Keyset

Lesson 3: Modifying Data 197

C0562271X.fm Page 197 Friday, April 29, 2005 7:32 PM
2. Which of the following syntaxes will create a global temporary table?

A. CREATE TABLE #TableName (Column INT)

B. CREATE TABLE ##TableName (Column INT)

C. DECLARE @TableName TABLE (Column INT)

D. SELECT CONVERT (INT, NULL) INTO #TableName

3. Which situations can you use SELECT INTO for? (Choose all that apply.)

A. Create a new local temporary table.

B. Create a new permanent table.

C. Insert data into an existing global temporary table.

D. Create a new global temporary table.

198 Chapter 5 Working with Transact-SQL

C0562271X.fm Page 198 Friday, April 29, 2005 7:32 PM
Lesson 4: Working with Transactions
When modifying data, it’s important to ensure that only correct data gets written to
the database. By controlling transactions and handling errors, developers can make
sure that if problems do occur when modifying data, incorrect data can be selectively
kept out of the database.

After this lesson, you will be able to:

■ Begin and commit or roll back transactions.

■ Programmatically handle errors.

Estimated lesson time: 20 minutes

Beginning and Committing or Rolling Back Transactions
When modifying data in the database, one of the most important things developers
need to consider is how best to keep the data in a consistent state. Consistent state
means that all data in the database should be correct at all times—incorrect data must
be removed or, better yet, not inserted at all.

Transactions are the primary mechanism by which you can programmatically enforce
data consistency. When you begin a transaction, any data changes you make are, by
default, visible only to your connection. Other connections reading the data cannot
see the changes you make and have to wait until you either commit the transaction—
thereby saving the changes to the database—or roll it back, thereby removing the
changes and restoring the data to the state it was in before the transaction started.

The basic process to use when working with transactions is as follows:

1. Start transactions by using the BEGIN TRANSACTION command.

2. After you start a transaction by using BEGIN TRANSACTION, the transaction will
encompass all data modifications made by your connection, including inserts,
updates, and deletes.

3. The transaction ends only when you either commit it or roll it back.

You can commit a transaction, saving the changes, by using the COMMIT TRANSAC-
TION command. You roll back a transaction by using the ROLLBACK TRANSACTION
command. If at any time after the start of the transaction you detect that a problem
has occurred, you can use ROLLBACK TRANSACTION to return the data to its original
state.

Lesson 4: Working with Transactions 199

C0562271X.fm Page 199 Friday, April 29, 2005 7:32 PM
BEST PRACTICES Use transactions for testing

Transactions can be very useful if you’re testing code that modifies data in the database. Begin a
transaction before running your code, and then roll back the transaction when you’re done testing.
Your data will be in the same state it was in when you started.

Programmatically Handle Errors
The ability to begin transactions and selectively commit them or roll them back is not
quite enough to be able to effectively deal with problems when they occur. The other
necessary component is the ability to programmatically detect and handle errors.

You perform error checking in Transact-SQL by using the TRY and CATCH control-of-
flow statements. TRY defines a block within which you place code that might cause an
error. If any of the code in the block causes an error, processing immediately halts,
and the code in the CATCH block is run. The following code shows the basic TRY/
CATCH format:

BEGIN TRY
--Put error-prone code here

END TRY
BEGIN CATCH

--Put error handling code here
END CATCH

Within the CATCH block, you can determine what caused the error and get informa-
tion about the error by using the Transact-SQL error handling system functions. The
most commonly used o f t hese funct ions are ERROR_NUMBER and
ERROR_MESSAGE, which return the error number for the error and the text descrip-
tion for the error, respectively. Other available functions include ERROR_LINE,
ERROR_SEVERITY, and ERROR_STATE. By using these functions in the CATCH block,
you can determine whether you need to use ROLLBACK to roll back your transaction.

Quick Check
■ Into which block should you place code that might cause an error?

Quick Check Answer

■ Code that might cause an error should be put into the TRY block.

200 Chapter 5 Working with Transact-SQL

C0562271X.fm Page 200 Friday, April 29, 2005 7:32 PM
PRACTICE Seeing the Effect of Transactions
In this practice, you will see how transactions affect other connections.

1. If necessary, open SSMS and connect to your SQL Server.

2. Open a new query window and select AdventureWorks as the active database.

3. Type the following query and execute it:

BEGIN TRANSACTION

4. A transaction starts. Any data modification you do will not be visible to other
connections.

5. Type the following query and execute it:

UPDATE HumanResources.Employee
SET Title = 'TestTitle'
WHERE EmployeeId = 150

6. To verify the modification, type the following query and execute it:

SELECT Title
FROM HumanResources.Employee
WHERE EmployeeId = 150

7. “TestTitle” should be returned. You updated the data, but it is visible only to
your connection.

8. Open a new query window and select AdventureWorks as the active database.

9. In the new window, type the following query and execute it:

SELECT Title
FROM HumanResources.Employee
WHERE EmployeeId = 150

10. The query does not return because it is waiting for the transaction started in the
other window. Go back to the first window, type the following query, and exe-
cute it:

ROLLBACK

11. The data modification has now been rolled back. Return to the second window,
and notice that the query will have completed, returning the data “Network
Manager”.

Lesson 4: Working with Transactions 201

C0562271X.fm Page 201 Friday, April 29, 2005 7:32 PM
Lesson Summary
■ Use transactions to help ensure that inconsistent data does not get written to the

database.

■ Use TRY and CATCH blocks for error handling and to gain better control over
transactions.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which command is used to save the data modified in a transaction so that other
connections can see it?

A. DELETE FROM TRANSACTION

B. COMMIT TRANSACTION

C. UPDATE TRANSACTION

D. SELECT TRANSACTION

2. Which function can be used inside the CATCH block to find out the number for
the error that occurred?

A. ERROR_STATE

B. ERROR_MESSAGE

C. ERROR_SEVERITY

D. ERROR_NUMBER

202 Chapter 5 Review

C0562271X.fm Page 202 Friday, April 29, 2005 7:32 PM
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can

■ Review the chapter summary.

■ Review the list of key terms introduced in this chapter.

■ Complete the case scenarios. These scenarios set up real-world situations involv-
ing the topics of this chapter and ask you to create solutions.

■ Complete the suggested practices.

■ Take a practice test.

Chapter Summary
■ To improve query performance, don’t include extraneous tables or columns in

queries.

■ Use correlated subqueries or inner joins to return information from other tables
with matching data. Use noncorrelated subqueries or outer joins when other
tables have nonmatching data.

■ Use the FTS functions to efficiently search text data.

■ Use system functions, UDFs, and aggregate functions to help format output data
for business requirements.

■ Avoid cursors; instead, use temporary tables if you need to break up query logic.

■ Use transactions and error handling code to keep inconsistent data out of the
database.

Chapter 5 Review 203

C0562271X.fm Page 203 Friday, April 29, 2005 7:32 PM
Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ aggregate function

■ case expression

■ cross-tabulation

■ derived table

■ inner join

■ outer join

■ subquery

■ temporary table

Case Scenarios
In the following case scenarios, you will apply what you’ve learned in this chapter. You
can find answers to these questions in the “Answers” section at the end of this book.

Case Scenario 1: Database-Backed Authoring Application
Proseware, a textbook organization in San Francisco, CA, is writing a new database-
backed application for authors to use to submit text and various types of changes.

The application must take special care to ensure that only well-formed data gets into
the database. The database developers have written a series of data-validation stored
procedures that throw exceptions if there are issues.

Management requires a variety of reports, including the number of submissions by
each author and a quarterly report that shows the number of submissions by each
author every week for the quarter.

1. How should Proseware write data-insertion code to make sure that no invalid
data is stored in the database?

2. What aggregate function can be used to determine how many submissions each
author had?

3. How should the quarterly report be created?

204 Chapter 5 Review

C0562271X.fm Page 204 Friday, April 29, 2005 7:32 PM
Case Scenario 2: Banking Corporation
Northwind Partners is a new banking organization in the southeastern United States.
The firm has decided to write its own custom back-end software for running most of
its business.

Because the software deals with financial data, it is imperative that errors do not affect
data modifications. Should an error occur, any modification already made should be
backed out, and the error should be logged.

An important part of the application will be used by the bank’s customer service
department when creating new accounts. The customer service agents need to be able
to search by name or parts of addresses and find whether the customer has a preex-
isting account. Because the agents sometimes make typos, and the bank wants to
reduce the probability of mistakes, the system must do its best to match existing data,
even if it’s slightly different than what was typed in.

1. Northwind Partners needs to write code to transfer funds between accounts.
How can this code be written to ensure that data modifications can be backed
out in the event of a problem?

2. How can Northwind Partners make sure that all errors that occur are logged?

3. How should the search functionality be written so that slight differences in input
text still match the correct preexisting customer data?

Suggested Practices
To help you successfully master the exam objectives presented in this chapter, com-
plete the following practice tasks.

Writing Queries Against the Sales Schema of the AdventureWorks
Database

For this task, write the following queries in order to practice using various query tech-
niques.

Practice 1
■ Write a query that uses an aggregate function to return the total sales per cus-

tomer from the SalesOrderHeader table.

Chapter 5 Review 205

C0562271X.fm Page 205 Friday, April 29, 2005 7:32 PM
Practice 2
■ Rewrite the query from Practice 1 to return customers’ names along with the

aggregated data. Make sure that customers who have not made purchases are
also included in the output results.

Practice 3
■ Rewrite the query from Practice 2 as many different ways as you can, making

sure that it always returns the same results. Try using different combinations of
subqueries and join types.

■ You can store the results of different queries you come up with in temporary
tables so that you can verify that the results are the same.

Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-431 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the section titled “How to Use the Prac-
tice Tests” in this book’s Introduction.

C0562271X.fm Page 206 Friday, April 29, 2005 7:32 PM

C0662271X.fm Page 207 Friday, April 29, 2005 7:34 PM
Chapter 6

Creating Partitions

Microsoft SQL Server 2005 introduces a new functionality called partitioning. Parti-
tioning lets you split a table across multiple storage units called filegroups, based on
a user specification. Database administrators (DBAs) have been able to separate tables
and even indexes onto specific filegroups since SQL Server 7.0, so what is so impor-
tant about partitions?

By using partitions, you can place a subset of a table or index on a designated filegroup.
This capability lets you separate specific pieces of a table or index onto individual file-
groups and effectively manage file input/output (I/O) for volatile tables. Additionally, as
organizations collect more and more data and keep it longer for analysis purposes, tables
continue to grow larger and larger. Managing such massive tables can be difficult. With par-
titioning, however, you can segregate data within a table based on age, which lets you target
backups at only a subset of a table. The final and most important reason for partitions is
that they enable you to easily manage archival routines and data-loading operations.

To partition a table or index, you perform the following tasks:

1. Create a partition function.

2. Create a partition scheme mapped to a partition function.

3. Create the table or index on the partition scheme.

This chapter walks you through these tasks and shows you how to query and manage
partitions.

Exam objectives in this chapter:
■ Implement partitions.

Lessons in this chapter:
■ Lesson 1: Creating a Partition Function . 210

■ Lesson 2: Creating a Partition Scheme. 215

■ Lesson 3: Partitioning Tables and Indexes . 218

■ Lesson 4: Querying Partitions. 223

■ Lesson 5: Managing Partitions . 226
207

208 Chapter 6 Creating Partitions

C0662271X.fm Page 208 Friday, April 29, 2005 7:34 PM
Before You Begin
To complete the lessons in this chapter, you must have

■ SQL Server 2005 installed

Real World
Michael Hotek

As I was writing this chapter, I received an instant message from one of the men-
tors within our company: Solid Quality Learning. He was working with a cus-
tomer on a very large data warehouse and running into problems with the daily
data-load operations.

The table contained millions of rows of data. Each day, operations would load
the most recent set of rows to the table and remove data older than 90 days.
Because each operation involved hundreds of thousands or millions of rows,
each was a reasonably challenging operation but nothing that using regular
insert and delete processes couldn’t handle.

The real challenge was that the table had a large number of indexes. The cus-
tomer couldn’t drop the indexes for the insert operation because re-creating
them would cause several hours of downtime on the table. (The company wasn’t
aware of the ONLINE option for creating indexes.) Loading the data into the
table with the indexes in place required hours, with much of that time spent in
index maintenance that also caused severe blocking. Archiving data older than
90 days caused similar problems.

If only there were a way to load this data into the table without incurring any of
the index maintenance overhead and then incrementally build the portion of
the index for the new data. With SQL Server 2005, there is.

SQL Server 2005 introduces a feature called table partitioning. By using this fea-
ture, regardless of the number of rows inserted, this company could add data to
the operational table in less than one second without requiring indexes to be
rebuilt or causing any contention. The same process could be applied to
archiving the data, which would allow the company to remove as many rows as
it wants in less than a second, also without requiring indexes to be rebuilt or
incurring any contention. How does this feature work? Read Lesson 5, “Manag-
ing Partitions,” in this chapter to find out.

Before You Begin 209

C0662271X.fm Page 209 Friday, April 29, 2005 7:34 PM
NOTE Partitioning and SQL Server Management Studio (SSMS)

Partitioning is one SQL Server 2005 feature that does not have a graphical user interface (GUI) in
SSMS. You must use code to perform all operations related to partitions.

210 Chapter 6 Creating Partitions

C0662271X.fm Page 210 Friday, April 29, 2005 7:34 PM
Lesson 1: Creating a Partition Function
A partition function is a stand-alone object in the database that defines the boundary
points for partitioning data. Creating a partition function is the first step of partition-
ing a table, index, or indexed view. These are the only objects that you can partition
because they are the only objects that store data in a database. In this lesson, you will
see how to create a partition function to define the boundary points for partitioning
data.

After this lesson, you will be able to:

■ Create a partition function.

Estimated lesson time: 20 minutes

How to Create a Partition Function
You use the CREATE PARTITION FUNCTION Transact-SQL command to create a par-
tition function. The general syntax for this command is as follows:

CREATE PARTITION FUNCTION partition_function_name (input_parameter_type)
AS RANGE [LEFT | RIGHT]
FOR VALUES ([boundary_value [,...n]]) [;]

You first give the partition function a name that conforms to the rules for object iden-
tifiers. Then you must specify a data type for the input parameter. You can use any
data type except text, ntext, varchar(max), image, xml, timestamp, nvarchar(max), varbi-
nary(max), Transact-SQL user-defined data types (UDTs), and common language
runtime (CLR) data types.

Range partitioning is the only type of partitioning that SQL Server 2005 supports. In
the command’s RANGE clause, you specify a value of either RIGHT or LEFT to specify
which partition a boundary point value belongs in. And in the VALUES clause, you
specify the list of boundary points for the partition function.

To explain how to use this command, let’s look at the following example:

CREATE PARTITION FUNCTION partfunc (int) AS
RANGE LEFT FOR VALUES (1000, 2000, 3000, 4000, 5000);

This command creates a partition function named partfunc that is applied to values of
data type integer. This means that you cannot apply the function to columns that

Lesson 1: Creating a Partition Function 211

C0662271X.fm Page 211 Friday, April 29, 2005 7:34 PM
either are not defined as an integer data type or are not implicitly converted to an
integer data type.

The RANGE LEFT clause in the example specifies that each boundary point defined
for the function resides in the left-hand partition. The VALUES clause defines the
boundary points for the partitions. A partition function always maps the entire range
of allowed values without any holes, so every possible value is always defined to a spe-
cific partition. The partition function partfunc defines six partitions, as Table 6-1
shows.

If you defined the partition function as RANGE RIGHT instead of RANGE LEFT, the
values would map as shown in Table 6-2.

Table 6-1 Partition Function partfunc’s Six Partitions

Partition ID Range of Values

1 –infinity to 1,000

2 1,001 to 2,000

3 2,001 to 3,000

4 3,001 to 4,000

5 4,001 to 5,000

6 5,001 to +infinity

Table 6-2 Partition Values If Partition Function Were Defined as RANGE RIGHT

Partition ID Range of Values

1 –infinity to 999

2 1,000 to 1,999

3 2,000 to 2,999

4 3,000 to 3,999

5 4,000 to 4,999

6 5,000 to +infinity

212 Chapter 6 Creating Partitions

C0662271X.fm Page 212 Friday, April 29, 2005 7:34 PM
Note that a partition function does not do the following:

■ Specify a table, index, or indexed view

■ Specify a filegroup

■ Reference physical data of any kind

The partition scheme and table or index creation statement uses a stand-alone data-
base object to implement partitioning.

Quick Check
1. What does the RANGE clause of the CREATE PARTITION FUNCTION com-

mand define?

2. What does the VALUES clause of the CREATE PARTITION FUNCTION com-
mand define?

Quick Check Answers

1. The RANGE clause specifies the partition that boundary values belong to.

2. The VALUES clause defines the boundary points for the partition function.

PRACTICE Create a Partition Function
In this practice, you will create a partition function to use in subsequent practices. To
simplify this, we use a test database.

1. Launch SSMS, connect to your instance, and open a new query window.

2. If you have not already created a directory called C:\test, create it now.

3. Create a new database called partitiontest by using the following script:

USE master
GO
CREATE DATABASE partitiontest
ON PRIMARY
(NAME = db_dat,

FILENAME = 'c:\test\db.mdf',
SIZE = 2MB),

FILEGROUP FG1
(NAME = FG1_dat,

FILENAME = 'c:\test\FG1.ndf',
SIZE = 2MB),

FILEGROUP FG2
(NAME = FG2_dat,

FILENAME = 'c:\test\FG2.ndf',
SIZE = 2MB),

Lesson 1: Creating a Partition Function 213

C0662271X.fm Page 213 Friday, April 29, 2005 7:34 PM
FILEGROUP FG3
(NAME = FG3_dat,

FILENAME = 'c:\test\FG3.ndf',
SIZE = 2MB),

FILEGROUP FG4
(NAME = FG4_dat,

FILENAME = 'c:\test\FG4.ndf',
SIZE = 2MB)

LOG ON
(NAME = db_log,

FILENAME = 'c:\test\log.ndf',
SIZE = 2MB,
FILEGROWTH = 10%);

GO
USE partitiontest
GO

4. Create a partition function by using the following command:

CREATE PARTITION FUNCTION partfunc (int) AS
RANGE LEFT FOR VALUES (1000, 2000)
GO

5. View the results of executing this command by executing the following query:

SELECT * FROM sys.partition_range_values;

Lesson Summary
■ Defining a partition function is the first step of partitioning a table, view, or

indexed view.

■ Partition functions are stand-alone objects that define the boundary points that
are used to partition data.

■ The CREATE PARTITION FUNCTION statement’s RANGE clause specifies the
partition that boundary values belong to, and the VALUES clause defines the
boundary points for the partition function.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

214 Chapter 6 Creating Partitions

C0662271X.fm Page 214 Friday, April 29, 2005 7:34 PM
1. What does a partition function define?

A. Boundary points for a partition

B. Physical storage for a partition

C. A rowset that returns the values in a partition

D. The number of the partition containing a specified value

Lesson 2: Creating a Partition Scheme 215

C0662271X.fm Page 215 Friday, April 29, 2005 7:34 PM
Lesson 2: Creating a Partition Scheme
The second step of partitioning a table, index, or indexed view is creating a partition
scheme. The partition scheme defines the physical storage structures, or filegroups,
that will be used with a specific partition function. In this lesson, you will see how to
create a partition scheme that maps partitions to filegroups.

After this lesson, you will be able to:

■ Create a partition function.

Estimated lesson time: 20 minutes

How to Create a Partition Scheme
You use the CREATE PARTITION SCHEME Transact-SQL command to create a parti-
tion scheme. The general syntax for this command is as follows:

CREATE PARTITION SCHEME partition_scheme_name
AS PARTITION partition_function_name
TO ({ file_group_name | [PRIMARY] } [,...n])[;]

You begin by naming your partition scheme according to the rules for object identifi-
ers. You then use the PARTITION clause to specify the name of the partition function
that will be mapped to this partition scheme.

In the command’s TO clause, you specify the list of filegroups that define the on-disk
storage for any data using the partition scheme. Any filegroups you specify in this
clause must already be added to the database, must have at least one file assigned to
them, and must not be marked read-only.

The following example shows how to use the command to define a partition scheme
called partscheme:

CREATE PARTITION SCHEME partscheme AS
PARTITION partfunc TO
([FG1], [FG2], [FG3], [FG4], [FG5], [FG6])
GO

Notice that we still have not specified a table, view, or indexed view or referenced any
other object in the database with the exception of the partition function. A partition
scheme simply specifies a name for a physical storage structure.

How does this partition scheme work with the partition function from Lesson 1? The
partition function partfunc had six partitions. Based on the partition scheme

216 Chapter 6 Creating Partitions

C0662271X.fm Page 216 Friday, April 29, 2005 7:34 PM
definition, SQL Server stores any values that reside in Partition 1 in FG1, values in Par-
tition 2 in FG2, values in Partition 3 in FG3, and so on. So by carefully designing your
partition functions and partition schemes, you can determine the exact set of data
within a table, index, or indexed view that resides within a particular filegroup.

Quick Check
1. What does a partition scheme define?

2. What are the requirements for creating a partition scheme?

Quick Check Answers

1. A partition scheme defines a physical storage structure composed of one or
more filegroups.

2. The filegroups defined in the partition scheme must already be part of the
database, must have a file assigned to them, and must not be marked read-
only.

PRACTICE Create a Partition Scheme
In this practice, you create the partition scheme for the partition function you created
in the practice of Lesson 1.

1. If necessary, launch SSMS, connect to your instance, open a new query window,
and change the context to the partitiontest database.

2. Create a partition scheme by executing the following command:

CREATE PARTITION SCHEME partscheme AS
PARTITION partfunc TO
([FG1], [FG2], [FG3]);

3. View the results of executing the command by running the following query:

SELECT * FROM sys.partition_schemes;

Lesson Summary
■ A partition scheme maps a partition function to a physical storage structure.

■ Any object that uses the partition function will store its data within the associ-
ated partition scheme.

Lesson 2: Creating a Partition Scheme 217

C0662271X.fm Page 217 Friday, April 29, 2005 7:34 PM
Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. What does a partition scheme define?

A. Boundary points for a partition

B. Physical storage for a partition

C. A rowset that returns the values in a partition

D. The number of the partition containing a specified value

218 Chapter 6 Creating Partitions

C0662271X.fm Page 218 Friday, April 29, 2005 7:34 PM
Lesson 3: Partitioning Tables and Indexes
After you create a partition function and a partition scheme, you are ready to partition
a table, index, or indexed view. In this lesson, you learn how to partition a table as you
create the table, how to partition an index as you create the index, and how to parti-
tion an existing table or index.

After this lesson, you will be able to:

■ Specify a partition scheme when creating a table.

■ Specify a partition scheme when creating an index.

Estimated lesson time: 20 minutes

Creating a Partitioned Table, Index, or Indexed View
To create a partitioned table or index, you use the same syntax as when you create a
regular table or index. Partitioning an indexed view is simply a matter of partitioning
the index for the view. The general syntax of the CREATE TABLE Transact-SQL com-
mand is as follows:

CREATE TABLE
[database_name . [schema_name] . | schema_name .] table_name

({ <column_definition> | <computed_column_definition> }
[<table_constraint>] [,...n])

[ON { partition_scheme_name (partition_column_name) | filegroup
| "default" }]

[{ TEXTIMAGE_ON { filegroup | "default" }] [;]

The general syntax of the CREATE INDEX Transact-SQL command is as follows:

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name
ON <object> (column [ASC | DESC] [,...n])
[INCLUDE (column_name [,...n])]
[WITH (<relational_index_option> [,...n])]
[ON { partition_scheme_name (column_name)

| filegroup_name | default }][;]

The important partition-related clause in each command is the ON clause. To parti-
tion a table or index, instead of specifying a filegroup for the ON clause, you specify a
partition scheme.

The following code example shows the CREATE PARTITION FUNCTION, CREATE
PARTITION SCHEME, and CREATE TABLE statements you would use to partition the
CustomerAddress table:

CREATE PARTITION FUNCTION partfunc (int) AS
RANGE LEFT FOR VALUES (1000, 2000, 3000, 4000, 5000);

Lesson 3: Partitioning Tables and Indexes 219

C0662271X.fm Page 219 Friday, April 29, 2005 7:34 PM
GO

CREATE PARTITION SCHEME partscheme AS
PARTITION partfunc TO
([FG1], [FG2], [FG3], [FG4], [FG5], [FG6])
GO

CREATE TABLE dbo.CustomerAddress
(CustomerAddressID int IDENTITY(1,1) PRIMARY KEY CLUSTERED,
AddressTypeID tinyint NOT NULL,
PrimaryAddressFlag bit NOT NULL,
AddressLine1 varchar(30) NOT NULL,
AddressLine2 varchar(30) NULL,
AddressLine3 varchar(30) NULL,
City varchar(50) NOT NULL,
StateProvinceID int NULL,
PostalCode char(10) NULL,
CountryID int NULL)
ON partscheme(CustomerAddressID);

This example does the following:

■ Creates a partition function called partfunc

■ Creates a partition scheme called partscheme

■ Creates the dbo.CustomerAddress table with the specified definition

■ Stores the table on the partition scheme partscheme

■ Uses the CustomerAddressID column in the table to determine which rows in
the table belong within a given partition

As data is added to the table, any rows with a CustomerAddressID of 1,000 or less will
fall into Partition 1 and be stored on FG1, addresses with an ID of 1,001 to 2,000
will fall into Partition 2 and be stored on FG2, and so on.

Partitioned Indexes and Included Columns
The following example shows how to create a partitioned index on the same table:

CREATE NONCLUSTERED INDEX idx_CustomerAddress_City ON dbo.CustomerAddress(City)
ON partscheme(CustomerAddressID);

The interesting piece of syntax here is that the index is defined on the City column.
However, the index is partitioned by the CustomerAddressID column, which does
not exist in the index definition. Partitioning takes advantage of the included col-
umns feature that Chapter 4, “Creating Indexes,” discusses. With the included
columns feature, any columns that make up the clustered index are automatically
migrated into any index created against the table. This lets you partition the indexes

220 Chapter 6 Creating Partitions

C0662271X.fm Page 220 Friday, April 29, 2005 7:34 PM
the same way you partition the table. In Lesson 5 of this chapter, we will discuss why
this is important.

When you create this index, SQL Server stores the portion of the index that corre-
sponds to a CustomerAddressID less than or equal to 1,000 in FG1, stores the portion
from 1,001 to 2,000 in FG2, and so on.

Partitioning an Existing Table or Index
You can partition an existing table or index without dropping and re-creating the
table or index. Instead, if you drop a clustered index and re-create it on another file-
group, SQL Server moves the entire contents of the table into the same filegroup as
the clustered index.

You can use this process to partition a table or index that already exists by performing
the following steps:

1. Create a partition function.

2. Create a partition scheme.

3. Drop the existing clustered index.

4. Re-create the clustered index on the partition scheme.

By following this process, the table is automatically partitioned according to the par-
tition scheme that the clustered index is placed on, using the partition function that
is mapped to the partition scheme. The clustering key is automatically migrated into
each nonclustered index as an included column, and each nonclustered index is par-
titioned the same way as the table.

You can partition each nonclustered index by using a different partition function and
scheme than the table. However, you cannot partition the clustered index differently
from the table.

Quick Check
■ Which clause do you use to partition a table or index?

Quick Check Answer

■ You use the ON clause of the CREATE TABLE or CREATE INDEX command
to partition tables and indexes, respectively. Instead of specifying a file-
group for this clause, you specify a partition scheme.

Lesson 3: Partitioning Tables and Indexes 221

C0662271X.fm Page 221 Friday, April 29, 2005 7:34 PM
PRACTICE Create a Partitioned Table
In this practice, you create a partitioned table on the partition scheme you created in
Lesson 2.

1. If necessary, launch SSMS, connect to your instance, open a new query window,
and change the context to the partitiontest database.

2. Create a partitioned test table by executing the following code, which specifies
the partition scheme partscheme in the ON clause:

CREATE TABLE dbo.t1 (
id INT
, v CHAR(1000) DEFAULT 'aaaa',
CONSTRAINT ci_t1_id PRIMARY KEY CLUSTERED (id))
ON partscheme(id);

3. View the results of executing this command by running the following query:

SELECT * FROM sys.partitions
WHERE object_id = OBJECT_ID('dbo.t1');

4. Next, add some rows of data to the table by executing the following batch:

SET NOCOUNT ON
DECLARE @i INT
SET @i=10
WHILE @i<=3000
BEGIN
INSERT dbo.t1 (id) SELECT @i
SET @i=@i+10
END
GO

5. View the data in the table by executing the following query:

SELECT * from dbo.t1

6. View the state of the partitions by executing the following query:

SELECT * FROM sys.partitions
WHERE object_id = OBJECT_ID('dbo.t1');

Lesson Summary
■ You create partitioned tables and indexes by using the same commands that you

use to create unpartitioned tables and indexes: CREATE TABLE and CREATE
INDEX. An unpartitioned table or index specifies a filegroup in the commands’
ON clause. A partitioned table or index specifies a partition scheme in the ON
clause.

222 Chapter 6 Creating Partitions

C0662271X.fm Page 222 Friday, April 29, 2005 7:34 PM
■ Nonclustered indexes can be partitioned using a different partition function
and/or partition scheme than the table, but you must partition a clustered index
the same way that you partition the table.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which objects can you partition?

A. Tables

B. Indexes

C. Views

D. Databases

Lesson 4: Querying Partitions 223

C0662271X.fm Page 223 Friday, April 29, 2005 7:34 PM
Lesson 4: Querying Partitions
A nice feature of partitioning is that the process is completely hidden from developers.
Data in a table is retrieved and modified in exactly the same way for both partitioned
tables and nonpartitioned tables. However, you can query the internals of a partition
to determine its structural elements or to restrict a result set to a particular partition.
This lesson shows you how to use the $PARTITION function to determine the parti-
tion number that a particular value would correspond to or to restrict a query to a
specific partition.

After this lesson, you will be able to:

■ Query partitions.

Estimated lesson time: 10 minutes

How to Query Partitions
You can query partitions by using a special function called $PARTITION. The general
syntax for this function is as follows:

[database_name.] $PARTITION.partition_function_name(expression)

The $PARTITION function returns a partition number based on the column values for
a particular partition function. The most common ways to use this function are the
following:

■ Determine the partition number to which a particular value would correspond.

■ Restrict a query to a specific partition.

The following SELECT query shows how you could use the $PARTITION function to
determine the partition number for a given value:

SELECT $partition.partfunc (2784) as [PartitionNum];

The following code example shows how to use $PARTITION to restrict a query to a
specific partition, in this case, partition number 3:

SELECT * FROM dbo.CustomerAddress
WHERE $partition.partfunc (CustomerAddressID) = 3

224 Chapter 6 Creating Partitions

C0662271X.fm Page 224 Friday, April 29, 2005 7:34 PM
Quick Check
■ What does the $PARTITION function return?

Quick Check Answer

■ The $PARTITION function returns the number of the partition correspond-
ing to the column values for a given partition function.

PRACTICE Query Partitions
In this practice, you use the $PARTITION function to return the partition number for
a given value, the number of rows in each partition that contain data, and all the rows
within a specified partition.

1. If necessary, launch SSMS, connect to your instance, open a new query window,
and change the context to the partitiontest database.

2. Return the number of rows for each partition by executing the following query:

SELECT $partition.partfunc(id) AS [PartitionNum], count(*) [NumRows]
FROM dbo.t1 GROUP BY $partition.partfunc(id)
ORDER BY $partition.partfunc(id);

3. Return the partition that the value 4,000 would belong to by executing the
following query:

SELECT $partition.partfunc(4000) as [PartitionNum];

4. Return all the rows in partition number 2 by executing the following query:

SELECT * FROM dbo.t1
WHERE $partition.partfunc(id)=2

5. Now, add data to the table and view the results by executing the following batch:

SET NOCOUNT ON
DECLARE @i INT, @max INT
SELECT @max=MAX(id) + 10 FROM dbo.t1
SET @i= @max
WHILE @i<= @max + 3000 - 10
BEGIN
INSERT dbo.t1 (id) SELECT @i
SET @i=@i+10
END
GO

--What is the data distribution in the table now?
SELECT $partition.partfunc(id) AS [PartitionNum], count(*) [NumRows]
FROM dbo.t1 GROUP BY $partition.partfunc(id)
ORDER BY $partition.partfunc(id)
GO

Lesson 4: Querying Partitions 225

C0662271X.fm Page 225 Friday, April 29, 2005 7:34 PM
NOTE Even data distribution

SQL Server does not evenly distribute data between the partitions. The even distribution of data in
the initial examples was an accident of how the data was inserted. Data is partitioned on the
boundary points only. If a particular partition contains more data than another, it is because more
rows match the range defined for the partition. If you want to rebalance the way data is distributed
between partitions, you must manually rebalance the distribution by using the operations we will
discuss in Lesson 5.

Lesson Summary
■ You can use the $PARTITION function in a SELECT query to

❑ Determine the partition number to which a particular value belongs.

❑ Restrict queries to a specific partition number.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. What does the $PARTITION function define?

A. Boundary points to a partition

B. Physical storage for a partition

C. A rowset that returns the values in a partition

D. The number of the partition containing a specified value

226 Chapter 6 Creating Partitions

C0662271X.fm Page 226 Friday, April 29, 2005 7:34 PM
Lesson 5: Managing Partitions
After you partition a table, index, or indexed view, data modifications cause SQL
Server to place rows into the appropriate partition and hence into a specific filegroup
on disk. However, partitioning is not a static process. In this lesson, you see how to
manage partitions by using three operators: SPLIT, MERGE, and SWITCH.

After this lesson, you will be able to:

■ Use the SPLIT or MERGE operator to add or remove partitions.

■ Use the SWITCH operator to add and remove rows from a table.

Estimated lesson time: 20 minutes

Split and Merge
You use the SPLIT and MERGE operators with the ALTER PARTITION FUNCTION
Transact-SQL command to introduce new boundary points or remove boundary
points from a partition function, respectively. The general syntax is as follows:

ALTER PARTITION FUNCTION partition_function_name()
{

SPLIT RANGE (boundary_value)
| MERGE RANGE (boundary_value)

} [;]

The following example command introduces a new boundary point to the partition
function named partfunc:

ALTER PARTITION FUNCTION partfunc ()
SPLIT RANGE (6000);

This statement causes the number of partitions for the table to be increased by one.
Any data with a value greater than 6,000 that existed in the table would be moved to
the new partition. Note that this operation could cause a large number of writes as
SQL Server moves the rows to a different filegroup.

The following example removes a boundary point from the partition function named
partfunc.

ALTER PARTITION FUNCTION partfunc ()
MERGE RANGE (1000);

This statement causes the number of partitions for the table to decrease by one. Any
data that existed in the partition that was removed would be combined into a single

Lesson 5: Managing Partitions 227

C0662271X.fm Page 227 Friday, April 29, 2005 7:34 PM
partition. This also could cause a large number of writes as SQL Server moves the
rows to a different filegroup.

SWITCH
You can use the SWITCH operator of the ALTER TABLE Transact-SQL command to
perform two actions:

■ Add rows to a table.

■ Remove rows from a table.

You can add rows to a table by using an INSERT statement and remove them by using
a DELETE statement. So what is so special about the SWITCH operator? An INSERT or
DELETE operation causes SQL Server to acquire locks on a table, which blocks other
processes. If you are adding or removing a large number of rows from a table, the
operation can result in severe contention and take a long time to complete.

The SWITCH operator, in contrast, is infinitely scalable and does not cause blocking
on a table. It also lets you add or remove any number of rows in less than one second.

To understand how SWITCH works, you first need to understand how data is stored
within SQL Server. All data is stored on a series of 8-KB pages within a database. Each
table and each index has its own series of 8-KB pages, which are constructed in a dou-
bly linked list. A doubly linked list simply means that each page points to the previous
page as well as the next page within the chain (for example, page 3 points to pages 2
and 4, whereas page 4 points to pages 3 and 5).

When a table is partitioned, SQL Server splits the data structure across filegroups so
that each partition contains a sequential series of pages. If you were to go into the last
page within a partition and remove the entry that points to the first page in the next
partition, the entire series of pages within that partition would immediately disappear
from the table. At the same time, if you were to go into the last page in a table (whose
next page pointer would be null, indicating that it is the last page in the table) and
change the next page entry to a page in another partition, the entire series of pages in
that partition would immediately become part of the table.

Remember that a SWITCH operation occurs between tables. Let’s look at a simple
example to see what happens when you perform a SWITCH operation. Suppose that
you have a reporting application that allows queries against the orders. The table con-
tains only the last 12 months of orders, and orders are added to this table once per
month. You create two tables: Orders and Orderstage. Orders for the current month are

228 Chapter 6 Creating Partitions

C0662271X.fm Page 228 Friday, April 29, 2005 7:34 PM
added into the Orderstage table. As long as the Orders and Orderstage tables have the
same definition and the same indexes, the only difference is that the data resides in
two different tables. Let’s say that you go to the last page of the Orders table and
change the next page pointer to the first page in the Orderstage table, while also chang-
ing the first page in the Orderstage table to the last page in the Orders table. All the
pages of the Orderstage table would immediately be associated with the Orders table,
and the Orderstage table would have no pages associated with it. This is a very simple
example. In practice, the process is slightly more complicated because a table must
have at least one page attached to it, but this example explains what occurs.

To ensure that a SWITCH operation is infinitely scalable, only a metadata operation
occurs when the command is executed. In other words, the operation modifies only
page pointers. If SQL Server must move data during this operation, the SWITCH fails.
This architecture places several restrictions on a SWITCH operation. Some of these
restrictions are as follows:

■ A full partition must be switched with an empty partition.

■ Both tables must be aligned (that is, must use the same partition function and
partition scheme).

■ Both tables must have exactly the same structure for tables as well as indexes.

■ The range of values in the partition being switched must not exist in the target
table.

MORE INFO SWITCH Requirements

For the full list of requirements for the SWITCH operation, see the SQL Server 2005 Books Online
topic “Transferring Data Efficiently by Using Partition Switching.” SQL Server 2005 Books Online is
installed as part of SQL Server 2005. Updates for SQL Server 2005 Books Online are available for
download at www.microsoft.com/technet/prodtechnol/sql/2005/downloads/books.mspx.

The general syntax for a SWITCH operation is as follows:

ALTER TABLE [database_name . [schema_name] . | schema_name .] table_name
SWITCH [PARTITION source_partition_number_expression]

TO [schema_name.] target_table
[PARTITION target_partition_number_expression] [;]

You can find a specific example of using SWITCH in this lesson’s practice.

Lesson 5: Managing Partitions 229

C0662271X.fm Page 229 Friday, April 29, 2005 7:34 PM
Quick Check
■ What are the three operations you can use to manage partitions, and what

is the purpose of each?

Quick Check Answer

■ SPLIT introduces a new boundary point for a partition function.

■ MERGE removes a boundary point for a partition function.

■ SWITCH exchanges partitions between two tables.

PRACTICE Manage Partitions
In this practice, you merge two partitions, split partitions, load data into a staging
table, and use the SWITCH operator to merge this data into a master table.

1. If necessary, launch SSMS, connect to your instance, open a new query window,
and change the context to the partitiontest database.

2. Combine Partitions 1 and 2 by executing the following command:

ALTER PARTITION FUNCTION partfunc()
MERGE RANGE (1000);

3. View the results of this operation by executing the following queries:

SELECT * FROM sys.partitions
WHERE object_id = OBJECT_ID('dbo.t1')

SELECT $partition.partfunc(id) AS [PartitionNum], count(*) [NumRows]
FROM dbo.t1 GROUP BY $partition.partfunc(id)
ORDER BY $partition.partfunc(id)
GO

4. Add another filegroup to the partition scheme by executing the following com-
mand, which also designates that the next partition created be assigned to this
filegroup:

ALTER PARTITION SCHEME partscheme
NEXT USED [FG4];

5. Introduce a new boundary point into the partition function:

ALTER PARTITION FUNCTION partfunc()
SPLIT RANGE (4000);

6. View the results of this operation by executing the following queries:

SELECT * FROM sys.partitions
WHERE object_id = OBJECT_ID('dbo.t1')

230 Chapter 6 Creating Partitions

C0662271X.fm Page 230 Friday, April 29, 2005 7:34 PM
SELECT $partition.partfunc(id) AS [PartitionNum], count(*) [NumRows]
FROM dbo.t1 GROUP BY $partition.partfunc(id)
ORDER BY $partition.partfunc(id)

7. Create a staging table and add some data to it:

CREATE TABLE dbo.t2 (
id INT
, v CHAR(1000) DEFAULT 'bbbb',
CONSTRAINT ci_t2_id PRIMARY KEY CLUSTERED (id)
, CONSTRAINT check_t2 CHECK (ID>6000)
) ON [FG3]

GO

--Insert rows into staging table t2.
SET NOCOUNT ON
DECLARE @i INT, @max INT
SELECT @max=MAX(id) + 10 FROM dbo.t1
SET @i= @max
WHILE @i<= @max + 6000 - 10
BEGIN

INSERT dbo.t2 (id) SELECT @i
SET @i=@i+10

END
GO

8. Add a new filegroup and file to the database and alter the partition scheme for
this new filegroup by executing the following batch:

--Add a new filegroup to the database and add a file to that new filegroup.
ALTER DATABASE [partitiontest]
ADD FILEGROUP [FG5]
GO

ALTER DATABASE [partitiontest]
ADD FILE
(NAME = db5_dat,

FILENAME = 'c:\test\FG5.ndf',
SIZE = 2MB)

TO FILEGROUP [FG5]
GO

--Alter the partition scheme to include the newly created and empty
--filegroup just added to the database.
ALTER PARTITION SCHEME partscheme
NEXT USED [FG5];
GO

9. Split the range to introduce a new empty partition, as follows:

ALTER PARTITION FUNCTION partfunc()
SPLIT RANGE (6000);

Lesson 5: Managing Partitions 231

C0662271X.fm Page 231 Friday, April 29, 2005 7:34 PM
10. View the partitions on the t1 table by executing the following commands:

SELECT * FROM sys.partitions
WHERE object_id = OBJECT_ID('dbo.t1')

SELECT $partition.partfunc(id) AS [PartitionNum], count(*) [NumRows]
FROM dbo.t1 GROUP BY $partition.partfunc(id)
ORDER BY $partition.partfunc(id)
GO

11. Verify the number of rows in the two tables at this point as well as the MIN and
MAX values by executing the following queries:

SELECT COUNT(*), MIN(id), MAX(id) FROM dbo.t2
GO
SELECT COUNT(*), MIN(id), MAX(id) FROM dbo.t1
GO

12. Now add the rows in t2 to t1 by executing the following command:

/*Now, instead of performing a heavy insert operation to move data from the staging
table to the warehouse table, use a partition feature to move the data in table t2
into the empty partition in table t1. This is a full data swap. At the end of this
operation, which is infinitely scalable, nearly instantaneous, and incurs ZERO locking
overhead, table t2 will be empty and table t1 will contain its original data plus the
data that was loaded into t2.*/
ALTER TABLE dbo.t2
SWITCH TO dbo.t1 PARTITION 4
GO

13. Verify the number of rows in the two tables at this point as well as the MIN and
MAX values by executing the following queries:

SELECT COUNT(*), MIN(id), MAX(id) FROM dbo.t2
GO
SELECT COUNT(*), MIN(id), MAX(id) FROM dbo.t1
GO

Lesson Summary
■ You use SPLIT to introduce a new boundary point into a partition function.

■ You use MERGE to remove a boundary point from a partition function.

■ The most powerful partitioning operator is SWITCH. As long as a table and its
associated indexes are aligned, you can use SWITCH to either add an entire par-
tition already populated with data to a table or to remove all the data from a table
that corresponds to a particular partition. The SWITCH operation is infinitely
scalable and does not incur any locking overhead on the table.

232 Chapter 6 Creating Partitions

C0662271X.fm Page 232 Friday, April 29, 2005 7:34 PM
Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which operator do you use to move partitions between tables?

A. SWITCH

B. MERGE

C. SPLIT

D. INTERSECT

Chapter 6 Review 233

C0662271X.fm Page 233 Friday, April 29, 2005 7:34 PM
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can

■ Review the chapter summary.

■ Review the list of key terms introduced in this chapter.

■ Complete the case scenario. This scenario sets up a real-world situation involv-
ing the topics of this chapter and asks you to create a solution.

■ Complete the suggested practices.

■ Take a practice test.

Chapter Summary
■ The partitioning capability of SQL Server 2005 enables you to divide the data in

a table, index, or indexed view into multiple filegroups based on user-defined
criteria.

■ To partition a table, index, or indexed view, you perform the following tasks:

1. Create a partition function.

2. Create a partition scheme mapped to a partition function.

3. Create a table or index mapped to the partition scheme.

■ You can use the $PARTITION function to determine the number of a partition
that contains a specific value or to restrict a query to a particular partition.

■ To manage partitioning, SQL Server provides the following operators: SPLIT, to
introduce a new boundary point into a partition function; MERGE, to remove a
boundary point from a partition function, and SWITCH, to scalably add a set of
rows to a table or remove a set of rows from a table.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ $PARTITION

■ alignment

■ boundary points

234 Chapter 6 Review

C0662271X.fm Page 234 Friday, April 29, 2005 7:34 PM
■ MERGE

■ partition function

■ partition scheme

■ SPLIT

■ SWITCH

Case Scenario: Archiving Data
In the following case scenario, you will apply what you’ve learned in this chapter. You
can find answers to these questions in the “Answers” section at the end of this book.

Contoso Limited, a health care company located in Bothell, WA, manages patient
claims data. The company keeps claims in the online transaction processing (OLTP)
database for 12 months before archiving them to a separate server used for research.

How can you design the process of archiving data from the Claims table in the OLTP
database to the Research database on a separate server without causing locking con-
tention in the table?

Suggested Practice
To help you successfully master the exam objectives presented in this chapter, com-
plete the following task.

Partitioning Tables
■ Practice 1 Create three tables in a database that all use the same partition func-

tion and partition scheme and that have the same structure. Name the tables
Stage, Main, and Archive. Add data into Main. Using the SPLIT, MERGE, and
SWITCH operations, remove data from Main and add it to Archive. Move data
from Archive into Stage.

Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-431 certification exam content. You can set up the test so that it closely

Chapter 6 Review 235

C0662271X.fm Page 235 Friday, April 29, 2005 7:34 PM
simulates the experience of taking a certification exam, or you can set it up in study
mode so that you can look at the correct answers and explanations after you answer
each question.

MORE INFO Practice tests

For details about all the practice test options available, see the “How to Use the Practice Tests” sec-
tion in this book’s Introduction.

C0662271X.fm Page 236 Friday, April 29, 2005 7:34 PM

C0762271X.fm Page 237 Friday, April 29, 2005 7:35 PM
Chapter 7

Implementing Views

A view is simply a SELECT statement that has a name and is stored in Microsoft SQL
Server. Views act as virtual tables to provide several benefits. A view gives developers
a standardized way to execute queries, enabling them to write certain common que-
ries once as views and then include the views in application code so that all applica-
tions use the same version of a query. A view can also provide a level of security by
giving users access to just a subset of data contained in the base tables that the view
is built over and can give users a more friendly, logical view of data in a database. In
addition, a view with indexes created on it can provide dramatic performance
improvements, especially for certain types of complex queries. Most views allow only
read operations on underlying data, but you can also create updateable views that let
users modify data via the view. This chapter shows you how to leverage the power and
flexibility of views by creating regular views, updateable views, and indexed views.

Exam objectives in this chapter:
■ Implement a view.

❑ Create an indexed view.

❑ Create an updateable view.

❑ Assign permissions to a role or schema for a view.

Lessons in this chapter:
■ Lesson 1: Creating a View . 240

■ Lesson 2: Modifying Data Through Views . 245

■ Lesson 3: Creating an Indexed View . 248

Before You Begin
To complete the lessons in this chapter, you must have

■ SQL Server 2005 installed.

■ A copy of the AdventureWorks sample database installed in the instance.
237

238 Chapter 7 Implementing Views

C0762271X.fm Page 238 Friday, April 29, 2005 7:35 PM
Real World
Michael Hotek

A couple of years ago, I had a two-week project with a customer who was expe-
riencing performance issues. When I started looking into the database, I knew I
was in for a big challenge. There were tens of thousands of lines of code spread
among almost 2,000 stored procedures, functions, and triggers—along with
about 350 tables. What really stood out at first glance were the more than 800
views in the database.

Having a large number of views in a database isn’t necessarily a problem. But
having more than twice as many views as tables told me that either the tables
were poorly designed or the views were not being properly used. Unfortunately,
in this case, it was both—but that is a story for a different day.

As I investigated, I found views that did nothing more than select a handful of col-
umns from a single table by using a simple WHERE clause. After looking at about
the 50th view, I discovered that something wasn’t right. Cross-referencing back to
the views I already looked at, I found a duplicate. Then I found another and
another and another. In one instance, I found 23 views that all did the same thing.

It turns out that the developers were in a hurry to create applications and deploy
new features. At some point, one of the database administrators (DBAs) dictated
that all data access had to be through views because the DBA mistakenly
thought that a view gave a performance improvement. So several years later, the
company had hundreds of views embedded in the applications. And finding
anything was so difficult that developers simply created new views whenever
they needed anything, making a bad situation even worse.

Fortunately, the applications were not directly accessing tables or views; data
access was through stored procedures. So the first step in the process was to wade
through the stored procedure, function, and trigger code for references to dupli-
cate views. By removing all the duplicates, we could drop more than 400 views.

We then took the second step of eliminating anything that really shouldn’t have
been a view in the first place. We defined unnecessary views as views that
accessed only one table through a simple WHERE clause; views that imple-
mented things that did not belong in a view, such as a hard-coded list of states;
and views that contained simple logic that any developer should understand.

Before You Begin 239

C0762271X.fm Page 239 Friday, April 29, 2005 7:35 PM
The end result of this process was a database that contained only 34 views. The
only views that survived contained complex calculations or complex joins that
needed to be encapsulated either to ensure consistency or to avoid a significant
amount of effort in correctly constructing the query in the future.

The lesson learned by the developers was that SQL Server gives you a lot of tools
to accomplish a task. But just because you can do something doesn’t necessarily
mean that you should. Before creating an object in a database, you have to under-
stand how it will improve the application and be able to justify why creating the
object is the best approach.

240 Chapter 7 Implementing Views

C0762271X.fm Page 240 Friday, April 29, 2005 7:35 PM
Lesson 1: Creating a View
Certain SQL Server objects are necessary or generally recommended. For example,
you must have database tables to store data, and you should create certain indexes on
your tables to improve performance. However, you should create views only when
there is a clear advantage to having them. Views that don’t have demonstrated bene-
fits just take up space. Suppose that you need to return the name of a customer who
has a credit line in excess of $10,000. A view would provide no advantage in this case
because the SELECT statement to generate this result is simple and straightforward.
However, if you need to return the name of a customer with the primary address and
most recent payment, while keeping in the output all of the customers who have not
made a payment, creating a view is probably useful because generating this result
requires a combination of inner and outer joins to at least five different tables. In this
lesson, you see how to define a view over one or more tables. You also learn why it is
important to ensure that you have appropriate permissions assigned for the view and
any underlying tables the view is based on.

After this lesson, you will be able to:

■ Create a view.

■ Assign permissions to a role or schema for a view.

Estimated lesson time: 20 minutes

How to Create a View
You use the Transact-SQL CREATE VIEW command to create a view over one or more
tables. The syntax for the command follows:

CREATE VIEW [schema_name .] view_name [(column [,...n])]
[WITH <view_attribute> [,...n]]
AS select_statement [;]
[WITH CHECK OPTION]

<view_attribute> ::=
{

[ENCRYPTION]
[SCHEMABINDING]
[VIEW_METADATA] }

You begin by naming your view. As with all objects, a view must have a name that
meets the rules for identifiers.

Lesson 1: Creating a View 241

C0762271X.fm Page 241 Friday, April 29, 2005 7:35 PM
The command’s first WITH clause lets you apply three different options to the view:
ENCRYPTION, SCHEMABINDING, and VIEW_METADATA. ENCRYPTION specifies
that SQL Server should encrypt the definition of the view when it is stored in the data-
base. The definition of an encrypted view is not visible to anyone, including a member
of the sysadmin fixed server role. So when you encrypt a view, you must ensure that you
keep the original source code somewhere because you cannot decrypt the definition.

When you specify the SCHEMABINDING option, you cannot drop any tables, views,
or functions referenced by the view without first dropping the view.

BEST PRACTICES Schema binding trick

An old trick that many DBAs use in a production environment is to create a view for each table that
selects all columns in the table and specifies the SCHEMABINDING option. These views are never
used with any application or by any user. The only purpose of the views is to prevent a DBA from
accidentally dropping a table or a column within a table. This trick does not prevent a DBA from
purposefully dropping a table because the DBA can also drop the view and then drop the table.
But dropping an object on purpose that should not be dropped is a security issue.

The VIEW_METADATA option returns metadata about a view to client-side data
access libraries.

You use the command’s AS clause to specify the SELECT statement that defines the
view. The SELECT statement can be of any complexity as long as the query is valid and
can reference tables, views, user-defined functions (UDFs), and system functions. The
only restrictions are that the view’s SELECT statement CANNOT do the following:

■ Use the COMPUTE or COMPUTE BY clause

■ Use the INTO keyword

■ Use the OPTION clause

■ Reference a temporary table or table variable

■ Use the ORDER BY clause unless it also specifies the TOP operator

The command’s last option, WITH CHECK OPTION, is something you use to create an
updateable view. Lesson 2, “Modifying Data Through Views,” covers this option.

After you have created a view, you can use it just like any table in a database. However,
a view does NOT contain any data. A view is simply a SELECT statement that has a
name associated with it. So when a view is referenced in a SELECT statement, the
query optimizer substitutes the reference with the definition of the view in the
SELECT statement before generating an execution plan.

242 Chapter 7 Implementing Views

C0762271X.fm Page 242 Friday, April 29, 2005 7:35 PM
For example, consider the following code:

CREATE VIEW v_CustomerAddress
AS
SELECT a.CustomerID, a.CustomerName, c.AddressLine1, c.AddressLine2, c.AddressLine3,
c.City, d.StateProvince, c.PostalCode, e.Country

FROM dbo.Customer a INNER JOIN dbo.CustomerToCustomerAddress b ON a.CustomerID =
b.CustomerID

INNER JOIN dbo.CustomerAddress c ON b.CustomerAddressID = c.CustomerAddressID
INNER JOIN dbo.StateProvince d ON c.StateProvinceID = d.StateProvinceID
INNER JOIN dbo.Country e ON c.CountryID = e.CountryID;

SELECT a.CustomerName, b.CreditLine FROM v_CustomerAddress a INNER JOIN dbo.Customer b
ON a.CustomerID = b.CustomerID;

The optimizer would locate the reference to the v_CustomerAddress view and substi-
tute the view definition, rewriting the submitted query into a query similar to the
following:

SELECT a.CustomerName, f.CreditLine
FROM dbo.Customer a INNER JOIN dbo.CustomerToCustomerAddress b ON a.CustomerID =
b.CustomerID

INNER JOIN dbo.CustomerAddress c ON b.CustomerAddressID = c.CustomerAddressID
INNER JOIN dbo.StateProvince d ON c.StateProvinceID = d.StateProvinceID
INNER JOIN dbo.Country e ON c.CountryID = e.CountryID
INNER JOIN dbo.Customer f ON a.CustomerID = f.CustomerID;

Understanding Ownership Chains
Because a view references other objects, there is the potential for permission issues.
Consider the objects and object owners that the diagram in Figure 7-1 shows.

Figure 7-1 Defining an ownership chain

Let’s say that UserA grants SELECT permission to UserD on the v_CustomerAddress
view. Even though UserD has permission to execute a SELECT statement against the
view, this user would receive an error when he attempts to use the view because
the view is defined against the Customer and CustomerAddress tables, which are owned
by a different user than either UserA or UserD. When the ownership across a chain of

V_CustomerAddress
owned by UserA

CustomerAddress
owned by UserC

Customer
owned by UserB

Lesson 1: Creating a View 243

C0762271X.fm Page 243 Friday, April 29, 2005 7:35 PM
dependent objects causes an error due to insufficient permissions, you have a broken
ownership chain.

For UserD to be able to execute a SELECT statement against the v_CustomerAddress
view, the following has to occur:

■ UserA grants UserD SELECT permission to the view.

■ UserB grants UserD SELECT permission to dbo.Customer.

■ UserC grants UserD SELECT permission to dbo.CustomerAddress.

MORE INFO Ownership chains

For more information about ownership chains, see the SQL Server 2005 Books Online topic “Owner-
ship Chains.” SQL Server 2005 Books Online is installed as part of SQL Server 2005. Updates for SQL
Server 2005 Books Online are available for download at www.microsoft.com/technet/prodtechnol/sql/
2005/downloads/books.mspx.

Quick Check
■ What are the restrictions on the SELECT statement within a view?

Quick Check Answer

■ COMPUTE or COMPUTE BY clauses are not allowed. You cannot use the
INTO keyword or OPTION clause. Temporary tables and table variables
cannot be referenced. An ORDER BY clause cannot be specified unless the
TOP operator is also used.

PRACTICE Create a View
In this practice, you use the database that contains the tables you created in Chapter 3,
“Creating Tables, Constraints, and User-Defined Types,” to create a view to return cus-
tomer information for customers who live in Canada.

1. Launch SQL Server Management Studio (SSMS), connect to your instance, open
a new query window, and change context to the database containing the tables
you created in Chapter 3.

2. Create a view to return information for customers who live in Canada by execut-
ing the following statement:

CREATE VIEW v_CanadaCustomerAddress
AS
SELECT a.CustomerID, a.CustomerName, c.AddressLine1, c.AddressLine2, c.AddressLine3,
c.City, d.StateProvince, c.PostalCode, e.Country

244 Chapter 7 Implementing Views

C0762271X.fm Page 244 Friday, April 29, 2005 7:35 PM
FROM dbo.Customer a INNER JOIN dbo.CustomerToCustomerAddress b ON a.CustomerID =
b.CustomerID

INNER JOIN dbo.CustomerAddress c ON b.CustomerAddressID = c.CustomerAddressID
INNER JOIN dbo.StateProvince d ON c.StateProvinceID = d.StateProvinceID
INNER JOIN dbo.Country e ON c.CountryID = e.CountryID

WHERE e.Country = 'Canada'
AND PrimaryAddressFlag = 1;

3. Construct a SELECT statement to verify that the view returns only customers
from Canada.

Lesson Summary
■ A view is simply a SELECT statement that you name and store in SQL Server as

a sort of “virtual table” that lets you give users access to just a subset of data and
that lets you improve performance, especially for complex queries.

■ After it’s defined, the view can be referenced in a SELECT statement just like a
table, although it does not contain any data.

■ When granting permissions to a view, you must pay careful attention to the own-
ership chain to ensure that the user has access to the view as well as all underly-
ing objects that the view is built on.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following options can prevent a table from being dropped?

A. CHECK OPTION

B. SCHEMABINDING

C. UNION

D. QUOTED_IDENTIFIER

Lesson 2: Modifying Data Through Views 245

C0762271X.fm Page 245 Friday, April 29, 2005 7:35 PM
Lesson 2: Modifying Data Through Views
As noted previously, a view is just a named SELECT statement. In effect, a view is a
pass-through reference to one or more base tables. Although most views provide read
access to underlying data, because a view is a pass-through you can also make data
modifications through it. A view that enables you to modify data is called an update-
able view. This lesson explains how you can perform INSERT, UPDATE, DELETE, BCP,
and BULK INSERT operations against a view.

After this lesson, you will be able to:

■ Create an updateable view.

Estimated lesson time: 20 minutes

Creating Updateable Views
Although you can define a view based on more than one table, SQL Server restricts
any data modifications you execute through the view to a single table. In addition, all
changes must directly reference columns and not derivations of a column.

Thus, you cannot modify columns that are derived through an aggregate function,
such as AVG, COUNT, SUM, MIN, or MAX, or through a computation that involves
other columns or operations on a column, such as SUBSTRING. Changes cannot ref-
erence columns generated by using operators such as UNION, CROSSJOIN, and
INTERSECT. In addition, the view definition cannot contain a GROUP BY, HAVING, or
DISTINCT clause. And you cannot use TOP when you specify WITH CHECK OPTION.

BEST PRACTICES Using views to modify data

Although you can use views to insert, update, and delete data, views are almost never used for that
purpose. Stored procedures are always a better option because you can more easily validate
changes via stored procedures. Stored procedures are also more flexible.

In your view definition, you can include a WHERE clause that limits the range of rows
that the view returns. However, the WHERE clause does not restrict the changes that
users can make through the view. To restrict the changes that users can make, you use
the CREATE VIEW command’s WITH CHECK OPTION clause when defining the view.

Let’s look at a brief example to see how the CHECK OPTION clause works. Suppose
that you define a view that shows customers who have a credit line greater than
$1,000. A user could insert a new customer who has a credit line of $500 and not
cause an error. However, doing so could cause confusion because although the insert

246 Chapter 7 Implementing Views

C0762271X.fm Page 246 Friday, April 29, 2005 7:35 PM
was successful, the view cannot display the inserted data, and a user might think that
the data had been lost. So to restrict the changes that users can make so that the data
is always visible through the view, you should define the view by using the WITH
CHECK OPTION clause. If you define the preceding view with the CHECK OPTION
clause, a user’s attempt to insert a customer with a credit line of $1,000 or less causes
an error to be returned.

You can also create triggers on a view, which are useful for performing data-modifica-
tion operations. You create a special kind of trigger on views called an INSTEAD OF
trigger. INSTEAD OF triggers operate exactly as you would expect: Instead of SQL
Server performing the operation against the view, SQL Server executes the trigger to
perform an alternative operation.

MORE INFO INSTEAD OF triggers

For more information about triggers, see Chapter 9, “Creating Functions, Stored Procedures, and Triggers.”

Quick Check
■ Which clause should you use to make data modifications visible through

the view?

Quick Check Answer

■ The WITH CHECK OPTION clause places a constraint on INSERT, UPDATE,
DELETE, BCP, and BULK INSERT statements, so the operations can occur
only on the set of rows that match the criteria in the view’s WHERE clause.

PRACTICE Create an Updateable View
In this practice, you create a view that you can use to make changes to the Customer
table for any customer who has a credit line greater than $1,000.

1. If necessary, launch SSMS, connect to your instance, open a new query window,
and change the context to the database that contains the customer tables you
created in Chapter 3.

2. Create a Customer view on the Customer table by executing the following statement:

CREATE VIEW dbo.v_Customer
AS
SELECT CustomerID, CustomerName, CreditLine, AvailableCredit
FROM dbo.Customer
WHERE CreditLine > 1000
WITH CHECK OPTION;

Lesson 2: Modifying Data Through Views 247

C0762271X.fm Page 247 Friday, April 29, 2005 7:35 PM
3. Execute the following INSERT statement and observe the results:

INSERT INTO dbo.Customer
(CustomerName, CreditLine)
VALUES('Customer1',5000);

4. Execute the following INSERT statement and observe the results:

INSERT INTO dbo.v_Customer
(CustomerName, CreditLine)
VALUES('Customer2',300);

Lesson Summary
■ Although stored procedures are a better alternative for performing data modifi-

cations, you can use views to INSERT, UPDATE, DELETE, BCP, or BULK INSERT
data.

■ The view is used as a pass-through to apply the changes directly to a single base
table.

■ To constrain the changes to only the set of rows that match the view’s WHERE
clause, you use the WITH CHECK OPTION clause when creating the view.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following options restricts changes to data to conform to the select
criteria of a view?

A. SCHEMABINDING

B. CHECK OPTION

C. ANSI_NULLS

D. QUOTED_IDENTIFIER

248 Chapter 7 Implementing Views

C0762271X.fm Page 248 Friday, April 29, 2005 7:35 PM
Lesson 3: Creating an Indexed View
As you saw earlier in this chapter, when a query references a regular view, the query
optimizer replaces the reference with the stored definition of the view before execut-
ing the SELECT statement. However, SQL Server still computes any joins or aggrega-
tions for the query at execution time. Indexed views provide a way to precalculate the
result set a view returns. Using indexed views becomes valuable when the cost for
SQL Server to constantly execute the query far outweighs the cost required to main-
tain the results of the SELECT statement in a view as data is modified. This lesson
explains how to create an indexed view and some appropriate situations for indexed
views.

After this lesson, you will be able to:

■ Create an indexed view.

Estimated lesson time: 20 minutes

Prerequisites for an Indexed View
In theory, creating an indexed view is simply a process of creating a view and then cre-
ating a clustered index on the view. In practice, the process is not so straightforward.

To create an indexed view, the base tables for the view must meet many criteria. The
view then has additional restrictions. Finally, the index has even more restrictions.

MORE INFO Restrictions on creating an indexed view

For details about all the requirements and restrictions for creating an indexed view, see the SQL
Server 2005 Books Online topic “Creating Indexed Views.”

The purpose of all these restrictions is to ensure that SQL Server can perform a con-
sistent calculation. An indexed view, also called a materialized view, causes SQL
Server to execute the SELECT statement in the view definition. SQL Server then builds
a clustered index on the view’s results, and stores the data and index within the data-
base. As you change data in the base tables, SQL Server propagates these changes to
the indexed view. If the result of the view could change from one execution to another
or could change if different query options were set, the entire set of data SQL Server
calculated and stored would be invalidated. Therefore, all the operators or functions
that can cause varying results are disallowed.

Lesson 3: Creating an Indexed View 249

C0762271X.fm Page 249 Friday, April 29, 2005 7:35 PM
Some examples of these restrictions are as follows:

■ The SELECT statement cannot reference other views.

■ All functions must be deterministic. For example, you cannot use getdate()
because every time it is executed, it returns a different date result.

■ AVG, MIN, MAX, and STDEV are not allowed.

You use the CREATE INDEX Transact-SQL command to create a clustered index on a
view. For details about this command, see Chapter 4, “Creating Indexes.” You can also
create nonclustered indexes on a view to give the query optimizer more options for
satisfying a query. You also use the CREATE INDEX command to create nonclustered
indexes on a view.

Query Substitution
Lesson 1, “Creating a View,” discussed the query substitution that happens when a
SELECT statement references a regular view. Indexed views work differently because
an indexed view is, in fact, a table. So queries that reference the indexed view return
the data directly from the view. The query optimizer does not substitute the view def-
inition into the query.

Although you can create an indexed view in any version of SQL Server 2005, Enter-
prise Edition contains an interesting optimizer feature. If the optimizer determines
that it can use an indexed view more efficiently to satisfy a query than a base table, it
will rewrite the query to use the indexed view instead. You do not even have to specify
the indexed view in the query; the query needs to specify only a table on which you
have defined an indexed view. The practice in this lesson demonstrates this substitu-
tion behavior, which is available only if you are using the Enterprise or Developer edi-
tions of SQL Server 2005. To use an indexed view in any other edition of SQL Server,
you must explicitly reference it in the query.

Quick Check
■ What is the difference between a regular view and an indexed view?

Quick Check Answer

■ A regular view is a SELECT statement that is referenced by a name and
stored in SQL Server. It does not contain any data. An indexed view is a
view that has a clustered index created against it, which causes SQL Server
to materialize and store the results of the query defined in the view on disk.
An indexed view must meet very stringent requirements for the view, the
base tables that the view references, and the index on the view.

250 Chapter 7 Implementing Views

C0762271X.fm Page 250 Friday, April 29, 2005 7:35 PM
PRACTICE Create an Indexed View
In this practice, you create an indexed view in the AdventureWorks database.

1. If necessary, launch SSMS, connect to your instance, open a new query window,
and change the context to the AdventureWorks database.

2. Create an indexed view called Orders by executing the following code:

--Set the options to support indexed views.
SET NUMERIC_ROUNDABORT OFF;
SET ANSI_PADDING, ANSI_WARNINGS, CONCAT_NULL_YIELDS_NULL, ARITHABORT,

QUOTED_IDENTIFIER, ANSI_NULLS ON;
GO
--Create view with schemabinding.
IF OBJECT_ID ('Sales.vOrders', 'view') IS NOT NULL
DROP VIEW Sales.vOrders ;
GO
CREATE VIEW Sales.vOrders
WITH SCHEMABINDING
AS

SELECT SUM(UnitPrice*OrderQty*(1.00-UnitPriceDiscount)) AS Revenue,
OrderDate, ProductID, COUNT_BIG(*) AS COUNT

FROM Sales.SalesOrderDetail AS od, Sales.SalesOrderHeader AS o
WHERE od.SalesOrderID = o.SalesOrderID
GROUP BY OrderDate, ProductID;

GO
--Create an index on the view.
CREATE UNIQUE CLUSTERED INDEX IDX_V1

ON Sales.vOrders (OrderDate, ProductID);
GO

3. Execute the following queries, which use the indexed view even though the view
is not explicitly referenced in the queries:

SELECT SUM(UnitPrice*OrderQty*(1.00-UnitPriceDiscount)) AS Rev,
OrderDate, ProductID

FROM Sales.SalesOrderDetail AS od
JOIN Sales.SalesOrderHeader AS o ON od.SalesOrderID=o.SalesOrderID

AND ProductID BETWEEN 700 and 800
AND OrderDate >= CONVERT(datetime,'05/01/2002',101)

GROUP BY OrderDate, ProductID
ORDER BY Rev DESC;

SELECT OrderDate, SUM(UnitPrice*OrderQty*(1.00-UnitPriceDiscount)) AS Rev
FROM Sales.SalesOrderDetail AS od

JOIN Sales.SalesOrderHeader AS o ON od.SalesOrderID=o.SalesOrderID
AND DATEPART(mm,OrderDate)= 3
AND DATEPART(yy,OrderDate) = 2002

GROUP BY OrderDate
ORDER BY OrderDate ASC;

Lesson 3: Creating an Indexed View 251

C0762271X.fm Page 251 Friday, April 29, 2005 7:35 PM
Lesson Summary
■ You create an indexed view by creating a clustered index on the view.

■ By creating a clustered index on a view, SQL Server stores the result set of que-
rying the view on disk, which can dramatically improve performance, especially
for queries that perform aggregations or computations.

■ If you are using SQL Server 2005 Enterprise Edition, the query optimizer will
automatically rewrite a query to use an indexed view if it determines that the
indexed view would be more efficient than the base table in satisfying the query.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following settings are required to create an indexed view? (Choose
all that apply.)

A. QUOTED_IDENTIFIER ON

B. Three-part names

C. SCHEMABINDING

D. ANSI_NULLS OFF

252 Chapter 7 Review

C0762271X.fm Page 252 Friday, April 29, 2005 7:35 PM
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can

■ Review the chapter summary.

■ Review the list of key terms introduced in this chapter.

■ Complete the case scenario. This scenario sets up a real-world situation involv-
ing the topics of this chapter and asks you to create a solution.

■ Complete the suggested practices.

■ Take a practice test.

Chapter Summary
■ Views are simply a named SELECT statement stored in SQL Server.

■ You can use a view just like a table without having to be concerned about the
complexity of the underlying SELECT statement.

■ Because views depend on underlying base tables to access the data, you must
pay attention to the chain of permissions that are required to return data.

■ To safely use views to insert, update, and delete data in a single base table, use
the WITH CHECK OPTION clause on the CREATE VIEW command to constrain
the changes to only the set of rows that match the view’s WHERE clause.

■ You can improve performance by creating a clustered index on a view. Indexed
views cause the returned data, including aggregations and calculations, to be
materialized on disk instead of computed at execution time. SQL Server 2005
Enterprise Edition can use an indexed view, even if it is not directly referenced in
a SELECT statement.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ broken ownership chain

■ indexed view

■ ownership chain

■ updateable view

■ view

Chapter 7 Review 253

C0762271X.fm Page 253 Friday, April 29, 2005 7:35 PM
Case Scenario: Creating Views
In the following case scenario, you will apply what you’ve learned in this chapter. You
can find answers to these questions in the “Answers” section at the end of this book.

Contoso Limited, an insurance company located in Bothell, WA, handles insurance
policies and claims for individuals. The development group has been evaluating select
pieces of code within applications that perform the same function but return different
results. The group has also identified several complex queries that perform poorly
because of the large number of tables that they join together.

To fix the issues, the development team needs to standardize queries and improve the
performance of key queries. How should the group solve these problems?

Suggested Practices
To help you successfully master the exam objectives presented in this chapter, com-
plete the following practice tasks.

Creating a View
■ Practice 1 Take several of your more complex queries and turn them into views.

Substitute these new views back into your code.

Creating an Indexed View
■ Practice 1 Take one of the views that you created in Practice 1 and turn it into an

indexed view. Compare the performance of the indexed view against the perfor-
mance of the underlying SELECT statement.

Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on all
the 70-431 certification exam content. You can set up the test so that it closely simulates
the experience of taking a certification exam, or you can set it up in study mode so that
you can look at the correct answers and explanations after you answer each question.

MORE INFO Practice tests

For details about all the practice test options available, see the “How to Use the Practice Tests” sec-
tion in this book’s Introduction.

C0762271X.fm Page 254 Friday, April 29, 2005 7:35 PM

C0862271X.fm Page 255 Friday, April 29, 2005 7:38 PM
255

Chapter 8

Managing XML Data

The addition of native XML support in Microsoft SQL Server 2005 represents a learn-
ing curve for database specialists who are used to relational data representation. But
the effort is worth it. XML is a multipurpose, extensible data representation technol-
ogy that expands the possibilities for how applications can consume and manipulate
data. Unlike relational data, XML data can represent structured, semistructured, and
unstructured data. XML support in SQL Server 2005 is fully integrated with the rela-
tional engine and query optimizer, allowing the retrieval and modification of XML
data and even the conversion between XML and relational data representations.

This chapter covers the key aspects of working with XML structures, shows you how
to retrieve and modify XML data, and describes how to convert between XML and
relational data. You also see how you can optimize the new XML data type in SQL
Server 2005 for data retrieval by using different types of indexes.

Exam objectives in this chapter:
■ Manage XML data.

❑ Identify the specific structure needed by a consumer.

❑ Retrieve XML data.

❑ Modify XML data.

❑ Convert between XML data and relational data.

❑ Create an XML index.

❑ Load an XML schema.

Lessons in this chapter:
■ Lesson 1: Working with XML Structures . 257

■ Lesson 2: Retrieving XML Data by Using SQL Server
Server-Side Technologies . 269

■ Lesson 3: Retrieving XML Data by Using SQL Server
Middle-Tier Technologies. 298

■ Lesson 4: Modifying XML Data . 309

■ Lesson 5: Converting Between XML Data and Relational Data. 320

■ Lesson 6: Creating XML Indexes . 334

256 Chapter 8 Managing XML Data

C0862271X.fm Page 256 Friday, April 29, 2005 7:38 PM
Before You Begin
To complete the lessons in this chapter, you must have

■ A general understanding of XML and its related technologies, specifically XML
schemas and XPATH.

■ A general understanding of the supported XML data features in previous ver-
sions of SQL Server.

■ The SQL Server 2005 AdventureWorks sample database installed.

■ Microsoft Visual Studio 2005 or Microsoft Visual C# 2005 Express Edition
installed. You can download Visual C# 2005 Express Edition from http://
msdn.microsoft.com/vstudio/express/.

Real World
Adolfo Wiernik

As a software architect, I’ve had to create the necessary database schema in an
entity-relationship diagram to model structured data for relational databases. To
represent some kinds of complex data in a relational format, I’ve had to use mod-
els that relax the rules of normalization. But I’ve also worked with data—such as
order-dependent data, hierarchical data, complex object graphs, and recursive
data—that is difficult to fit into the homogeneous structure of a relational model.

In the past, I usually ended up representing in the database only the structured
data and choosing for the unstructured data another data source, such as an
XML file on the file system. However, the implementation of a native XML data
type in SQL Server 2005 gives me the ability to represent all my data in the same
relational data source and use all the power built into the relational query engine
to favor other types of data. Although you might need to spend some time to
become comfortable with the XML features in SQL Server, the flexibility and
extensibility they can provide will make it well worth your while.

Lesson 1: Working with XML Structures 257

C0862271X.fm Page 257 Friday, April 29, 2005 7:38 PM
Lesson 1: Working with XML Structures
XML is a platform-independent, data-representation format that offers certain bene-
fits over a relational format for specific data-representation requirements. XML has
been widely used in user-interface rendering and data-transformation scenarios but
has not been used much as a data-storage format. Until recently, relational databases
didn’t support XML data manipulation (other than composing XML documents from
a relational representation). In 2003, the International Organization for Standardiza-
tion (ISO) and the American National Standards Institute (ANSI) released Part 14 of
the SQL Standard XML-Related Specifications (SQLXML), which specifies how a rela-
tional database can natively manage XML data. And SQL Server 2005 embraces this
specification to give database administrators (DBAs) and developers more flexibility
in working with different types of data. This lesson focuses on the strategies you can
use to store XML data in a SQL Server 2005 relational database and the structures
required to efficiently support this storage.

After this lesson, you will be able to:

■ Choose the proper XML storage option.

■ Define table columns, parameters, and Transact-SQL variables by using the XML
data type.

■ Add type information to an XML data type column, parameter, or variable by using
an XML schema.

Estimated lesson time: 30 minutes

Storage Options for XML data
Storing data as XML offers several benefits. First, XML is self-describing, so applica-
tions can consume XML data without knowing its schema or structure. XML data is
always arranged hierarchically as a tree structure. XML tree structures must always
have a root, or parent, node that is known as an XML document. If a set of XML nodes
doesn’t have a root node, it is said to be an XML fragment.

Second, XML maintains document ordering. Because XML structure is hierarchical,
maintaining node order is important because it dictates the distance between nodes
inside the tree structure.

Third, schema declaration provides type information and structure validation. XML
Schema language is a standard language that you use to define a valid structure for a
specific XML document or fragment. XML schemas also provide type information to

258 Chapter 8 Managing XML Data

C0862271X.fm Page 258 Friday, April 29, 2005 7:38 PM
the data in the XML structure. XML Schema enables you to declare optional sections
inside the schema or generic types that accept any XML fragment. This capability
means you can represent not only structured data but also semistructured and
unstructured data.

Fourth, XML data is searchable. Because of XML’s hierarchical structure, you can
apply multiple algorithms to search inside tree structures. XQUERY and XPATH are
query languages designed to search XML data.

And fifth, XML data is extensible. You can manipulate XML data by inserting, modi-
fying, or deleting nodes. This capability means that you can create new XML instances
out of existing XML structures.

NOTE Data representation types

Here are definitions of the three data representation types:

■ Structured data Homogeneous static data structure in which all instances of the
data follow the same structure.

■ Semistructured data Heterogeneous data structure that can contain dynamic or
optional structures. Instances can look completely different from each other but
still conform to the same schema.

■ Unstructured data Heterogeneous data that does not conform to a schema. In
XML, data can exist without having a schema to define its structure.

Applications that manipulate XML execute a variety of actions on data, such as creat-
ing new XML documents, filtering an XML document and extracting relevant nodes
based on a filter expression, transforming an XML fragment into another XML struc-
ture, and updating or modifying the current data inside the XML structure.

The way applications store XML data affects which of these possible actions are at
your disposal. SQL Server 2005 enables you to store XML data in two ways:

■ As XML in the database in a text column

■ As XML in the database in an XML data type column

MORE INFO Storing XML data as relational data

Lesson 5 in this chapter covers storing data as a relational representation and applying composi-
tion and shredding techniques to transform relational data into XML and back.

Lesson 1: Working with XML Structures 259

C0862271X.fm Page 259 Friday, April 29, 2005 7:38 PM
Storing XML in Text Columns
You can store XML data in a text column by using the (n)char, (n)varchar, or varbinary
data types. For these data types, SQL Server 2005 introduces the MAX argument,
which allocates a maximum storage size of 2 GB. The following code example stores
XML data in the nvarchar data type:

DECLARE @myXML AS nvarchar(max)
SET @myXML = '<log><application>Sales</application><description>The connection timed
out</description></log>'

CAUTION Deprecated data types

Microsoft intends to drop support for the text, ntext, and image data types in upcoming SQL Server
versions. For this reason, Microsoft recommends that you stop using these data types.

The key benefits of storing XML data in SQL Server 2005 text columns are the
following:

■ XML provides textual fidelity. All details such as comments and white space are
preserved.

■ It does not depend on database capabilities.

■ It reduces the processing workload on the database server because all process-
ing of XML data happens in a middle tier.

■ It provides the best performance for document-level insertion and retrieval. Doc-
ument-level means that if you want to execute operations at the node level, you
are forced to work with the complete XML document because SQL Server is not
aware of what is stored in this column.

Some limitations of storing XML in SQL Server 2005 text columns are as follows:

■ Coding complexity (and related higher maintenance cost) is added in the mid-
dle tier.

■ You can’t manipulate, extract, or modify XML data at the node level.

■ Searching XML data always involves reading the entire document because XML
is interpreted as text by the database server.

■ XML validation, well-formedness, and type checking must be executed in the
middle tier.

260 Chapter 8 Managing XML Data

C0862271X.fm Page 260 Friday, April 29, 2005 7:38 PM
MORE INFO Well-formed XML

Well-formed XML is an XML document that meets a set of constraints specified by the World Wide
Web Consortium (W3C) Recommendation for XML 1.0. For example, well-formed XML must contain a
root-level element, and any other nested elements must open and close properly without intermixing.

SQL Server 2005 validates some of the well-formedness constraints. Some rules, such as the
requirement for a root-level element, are not enforced.

For a complete list of well-formedness requirements, read the W3C Recommendation for XML 1.0
at http://www.w3.org/TR/REC-xml.

Quick Check
1. What are two benefits of storing XML in a text column in SQL Server 2005?

2. What are two disadvantages of storing XML in a text column in SQL Server
2005?

Quick Check Answers

1. Possible answers include the following: XML provides textual fidelity, does
not depend on database capabilities, reduces the processing workload on
the database server, and provides the best performance for document-level
insertion and retrieval.

2. Possible answers include the following: it’s impossible to manipulate,
extract, or modify the data at the node level; searching XML data always
involves reading the entire document; XML validation must be executed in
the middle tier; and there is extra coding complexity in the middle tier.

Storing XML in XML Data Type Columns
You can use the new XML data type in SQL Server 2005 as you use any other native
SQL Server data type: to define columns on tables, to define parameters for functions
and stored procedures, and to create variables. As the following code example dem-
onstrates, the XML data type column accepts both XML documents and XML frag-
ments; this behavior is specified in the SQL/XML ISO-ANSI Standard Part 14.

CREATE TABLE UniversalLog(recordID int, description XML)

INSERT UniversalLog(recordID, description)
VALUES(1, '<log><application>Sales</application><description>The connection timed
out.</description></log>')

INSERT UniversalLog(recordID, description)
VALUES(1, 'database unavailable')

Lesson 1: Working with XML Structures 261

C0862271X.fm Page 261 Friday, April 29, 2005 7:38 PM
You can also use the XML data type to define parameters and variables, as the follow-
ing code example demonstrates:

CREATE PROCEDURE AddRecordToLog (@record AS XML)
AS

-- procedure body
GO

DECLARE @logRecord AS XML
SET @logRecord = '<log><application>Sales</
application><description>The connection timed out.</description></log>'

EXEC AddRecordToLog @logRecord

SQL Server automatically converts the data types (n)char, (n)varchar, (n)text, varbi-
nary, and image to the XML data type when assigning values to an XML parameter,
column, or variable.

The benefits of storing XML data by using the XML data type in SQL Server 2005 are
as follows:

■ The XML data type is fully integrated with the SQL Server query engine and all
other SQL Server services. The same query processor and query optimizer are
used for both relational and XML queries.

■ The data is stored and manipulated natively as XML.

■ SQL Server 2005 provides fine-grained support for selecting, inserting, modify-
ing, or deleting at the node level.

■ Performance improves for data-retrieval operations because multiple indexing is
possible with the XML data type, so SQL Server reads only relevant nodes.

■ Document order and structure are preserved.

Limitations of storing XML using the XML data type in SQL Server 2005 include the
following:

■ Textual fidelity is not preserved. White space, the XML declaration at the top of
the document, comments in the XML, attribute ordering, and other nondata ele-
ments are removed from the structure.

■ The maximum allowed node depth is 128 levels.

■ The maximum allowed storage size is 2 GB.

262 Chapter 8 Managing XML Data

C0862271X.fm Page 262 Friday, April 29, 2005 7:38 PM
Quick Check
1. Which of the following INSERT statements will fail? (Choose all that

apply.)

A. INSERT UniversalLog(recordID, description) VALUES (1, '<ROOT/>')

B. INSERT UniversalLog(recordID, description) VALUES (1, 'ROOT')

C. INSERT UniversalLog(recordID, description) VALUES (1, '<ROOT>')

D. INSERT UniversalLog(recordID, description) VALUES (1, '<ROOT>
<A></ROOT>')

Quick Check Answers

1. Will succeed: Represents a single-node XML document.

2. Will succeed: Represents an XML fragment.

3. Will fail: SQL Server validates the well-formedness of the XML document.
The <ROOT> node is opened but never closed.

4. Will fail: SQL Server validates the well-formedness of the XML document.
The hierarchy constructed by the A and B nodes is not closed properly.
Also, XML is case sensitive, so the A node is not the same as the a node.

Typing and Validating XML Data with XML Schemas
An XML schema describes the structure and constrains the contents of XML docu-
ments. Additionally, XML schemas provide type information that describes the nature
of the data in elements and attributes. SQL Server 2005 supports untyped XML data
and typed XML data. By binding an XML data type variable, column, or parameter to
an XML schema, SQL Server gets input that lets it validate the correctness of the XML
instance and to strongly type the nodes and contents of the XML instance.

If an XML document conforms to what is declared inside an XML schema, the XML
document is said to be valid. An invalid XML document does not conform to what is
declared inside an XML schema.

XML schemas are declared at the database level and deployed to SQL Server. XML
schemas are valuable to SQL Server because they provide metadata that defines and
constrains XML data types. After creating the XML schema as the following code
shows, you can type and validate any XML data type column, variable, or parameter
according to the XML schema collection.

Lesson 1: Working with XML Structures 263

C0862271X.fm Page 263 Friday, April 29, 2005 7:38 PM
Creating an XML Schema in SQL Server 2005
CREATE XML SCHEMA COLLECTION LogRecordSchema AS
'<schema xmlns="http://www.w3.org/2001/XMLSchema">

<element name="log">
<complexType>

<sequence>
<element name="application" type="string"/>
<element name="description" type="string"/>

</sequence>
</complexType>

</element>
</schema>'

In the following code example, SQL Server validates the contents of the @myXML
variable by the rules specified in all the XML schemas that compose the LogRecord-
Schema schema collection:

DECLARE @myXML AS XML(LogRecordSchema)
SET @myXML = '<log><date>2005-11-07</date></log>'

The assignment in the example fails because the XML instance does not conform to
the XML structure declared by the XML schema collection.

NOTE Loading an XML schema from a file

In most cases, instead of retyping the complete XML schema, it is easier to load it from an XML
schema file (extension .xsd). Use the OPENROWSET command in SQL Server 2005 to load the file
into a variable of type XML:

DECLARE @schema XML
SELECT @schema = c FROM OPENROWSET (

BULK 'MyXMLSchema.xsd', SINGLE_BLOB) AS TEMP(c)
CREATE XML SCHEMA COLLECTION MySchema AS @schema

PRACTICE Creating a New Database
In this practice, you will create a new database. In the database, you will create a new
XML schema collection, loading it from an .xsd file. Then, you will create a table with
columns of XML data type and constrain the XML columns to the XML schema col-
lection. Finally, you will load data into the table. This database is the basic database
you will use in the other lessons in this chapter.

NOTE Code available on the companion CD

The practices for this chapter are code intensive. So that you don’t have to type in the code exam-
ples in the practices, the Practice Files\Chapter8 folder provides the code needed for all the prac-
tices in this chapter. For solutions to the exercises in the Lesson 1 practice, see the Practice
Files\Chapter8\Lesson 1\CompleteLesson1.sql file on the CD.

264 Chapter 8 Managing XML Data

C0862271X.fm Page 264 Friday, April 29, 2005 7:38 PM
� Practice 1: Create the TK431Chapter8 Database, UniversalLog Table, and XML Schema

In this exercise, you will create the necessary database schema elements to support
typed XML data inside a database.

1. Open SQL Server Management Studio (SSMS) and open a connection to SQL
Server 2005.

2. Issue a CREATE DATABASE statement to create a new database called
TK431Chapter8.

CREATE DATABASE TK431Chapter8
GO

3. Copy the Chapter8 folder from the companion CD to the root of the C drive.
Then create an XML schema collection called LogRecordSchema. Your code
might look like the following:

USE TK431Chapter8
GO

declare @schema XML
SELECT @schema = c FROM OPENROWSET (

BULK 'C:\Chapter8\Lesson 1\logRecordSchema.xsd', SINGLE_BLOB) AS TEMP(c)
CREATE XML SCHEMA COLLECTION LogRecordSchema AS @schema

4. Load the XML schema from the .xsd file in the C:\Chapter8 folder. The follow-
ing code shows the LogRecordSchema XML schema:

<?xml version="1.0" encoding="utf-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="logRecord" type="logRecordType" />

<xsd:simpleType name="flagEnum">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="warning" />
<xsd:enumeration value="information" />
<xsd:enumeration value="failure" />
<xsd:enumeration value="custom" />

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="eventEnum">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="appStart"/>
<xsd:enumeration value="appClose"/>
<xsd:enumeration value="logIn"/>
<xsd:enumeration value="logOut"/>

</xsd:restriction>
</xsd:simpleType>

Lesson 1: Working with XML Structures 265

C0862271X.fm Page 265 Friday, April 29, 2005 7:38 PM
<xsd:complexType name="logRecordType">
<xsd:choice maxOccurs="unbounded">

<xsd:element name="information" type="informationType"/>
<xsd:element name="error" type="errorType"/>
<xsd:element name="post" type="postType"/>

</xsd:choice>
<xsd:attribute name="machine" type="xsd:string" />
<xsd:attribute name="timestamp" type="xsd:dateTime" />

</xsd:complexType>

<xsd:complexType name="postType">
<xsd:sequence>

<xsd:element name="moreInformation" type="xsd:string" maxOccurs="1"
minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="eventType" type="eventEnum"/>

</xsd:complexType>

<xsd:complexType name="informationType">
<xsd:sequence>

<xsd:element name="message" type="xsd:string" />
</xsd:sequence>
<xsd:attribute name="flag" type="flagEnum" />

</xsd:complexType>

<xsd:complexType name="errorType">
<xsd:sequence>

<xsd:element name="message" type="xsd:string" />
<xsd:element name="module" type="xsd:string" />

</xsd:sequence>
<xsd:attribute name="number" type="xsd:int" />

</xsd:complexType>
</xsd:schema>

5. Issue a CREATE TABLE statement to create a new table called UniversalLog that
contains the following columns:

❑ ID: INT data type. Set it as an identity column. Do not accept null values.

❑ LogDateTime: DATETIME data type. Default to current date and time. Do
not accept null values.

❑ ApplicationName: NVARCHAR (50) data type. Do not accept null values.

❑ LogRecord: XML data type. Accept null values and bind the column to the
LogRecordSchema schema collection.

Your code should look like this:

CREATE TABLE UniversalLog
(ID INT IDENTITY(1,1) NOT NULL,

LogDateTime DATETIME NOT NULL CONSTRAINT [DF_UniversalLog_LogDateTime]
DEFAULT (GetDate()),

ApplicationName NVARCHAR(50) NOT NULL,
LogRecord XML(LogRecordSchema) NULL)

266 Chapter 8 Managing XML Data

C0862271X.fm Page 266 Friday, April 29, 2005 7:38 PM
NOTE Altering the LogRecord column

If you created the table first and then the XML schema collection, you can alter the column in the
table to map it to the XML schema by using the following code:

ALTER TABLE UniversalLog ALTER COLUMN LogRecord XML (LogRecordSchema)

� Practice 2: Insert Log Records into the UniversalLog Table

In this exercise, you will insert XML data representing log records into the Universal-
Log table you created in Practice 1.

1. If necessary, open SSMS and open a connection to SQL Server 2005.

2. Connect to the TK431Chapter8 database you created in Practice 1.

3. Open the LogRecordsXML.sql file in the C:\Chapter8 folder. The file contains
the following INSERT statements:

INSERT UniversalLog(ApplicationName, LogRecord)
VALUES ('SalesApp',

'<logRecord machine="server1" timestamp="2000-01-12T12:13:14Z"/>')

INSERT UniversalLog(ApplicationName, LogRecord)
VALUES ('SalesApp',

'<logRecord machine="server1"><information/></logRecord>')

INSERT UniversalLog(ID, ApplicationName, LogRecord)
VALUES (1, 'SalesApp',

'<logRecord machine="server1" timestamp="2000-01-12T12:13:14Z">
<post eventType="appStart">

<moreInformation>All Services starting</moreInformation>
</post>

</logRecord>')

INSERT UniversalLog(ID,ApplicationName, LogRecord)
VALUES (2, 'Inventory',

'<logRecord machine="server2" timestamp="2000-01-13T12:13:14Z">
<post eventType="appStart"/>
<information flag="warning">

<message>Duplicate IP address</message>
</information>

</logRecord>')

INSERT UniversalLog(ID,ApplicationName, LogRecord)
VALUES (3, 'HR',

'<logRecord machine="server1" timestamp="2000-01-14T12:13:14Z">
<error number="1001">

<message>The user does not have enough permissions to execute query</message>
<module>DataAccessLayer</module>

</error>
</logRecord>')

Lesson 1: Working with XML Structures 267

C0862271X.fm Page 267 Friday, April 29, 2005 7:38 PM
INSERT UniversalLog(ID,ApplicationName, LogRecord)
VALUES (4, 'CustomerService',

'<logRecord machine="server2" timestamp="2000-01-15T12:13:14Z">
<post eventType="logOut"/>
<information flag="custom">

<message>User must change password on next login</message>
</information>

</logRecord>')

INSERT UniversalLog(ID,ApplicationName, LogRecord)
VALUES (5, 'HoursReport',

'<logRecord machine="server2" timestamp="2000-01-11T12:13:14Z">
<information flag="failure">

<message>Hard Disk with ID #87230283 is not responding</message>
</information>
<error number="18763">

<message>Application can not start</message>
<module>AppLoader</module>

</error>
<post eventType="appStart"/>

</logRecord>')

4. Execute each of the INSERT code segments in the file in turn by selecting the
code and pressing F5 to execute. The first two INSERT statements are meant to
return validation errors because the XML data does not conform to the XML
schema collection. Pay attention to the messages SQL Server returns.

Lesson Summary
■ The XML data-representation format is used to represent semistructured and

unstructured data that you cannot represent relationally.

■ SQL Server 2005 provides a new XML data type for native storage of XML doc-
uments and fragments in the relational database.

■ XML data can be typed and untyped. Typed XML is constrained by the declara-
tions in an XML schema registered in an XML schema collection.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of this book.

268 Chapter 8 Managing XML Data

C0862271X.fm Page 268 Friday, April 29, 2005 7:38 PM
1. You are developing a book-management application for your city’s public library.
You are required to store each book’s index structure as XML data so that you
can display the indexes to users in a Web page. You decide to store this informa-
tion in a text column. Which of the following statements best justify this deci-
sion? (Choose all that apply.)

A. Preserves document order and structure

B. Allows complex queries involving mixing relational and XML data

C. Doesn’t require node-level modifications or filtering

D. Allows indexing for fast retrieval

2. XML schemas provide which functions? (Choose all that apply.)

A. Indexes to improve performance

B. Validation constraints for the XML instance

C. Data type information about the XML instance

D. Methods to insert, delete, and update XML data

Lesson 2: Retrieving XML Data by Using SQL Server Server-Side Technologies 269

C0862271X.fm Page 269 Friday, April 29, 2005 7:38 PM
Lesson 2: Retrieving XML Data by Using SQL Server
Server-Side Technologies

SQL Server 2005 offers multiple options for retrieving XML data. This lesson covers
the various techniques for retrieving XML data from SQL Server 2005, regardless of
whether the data is stored in a relational representation, as a textual column, or in an
XML data type column. In this lesson, you will see how to use the FOR XML construct
in Transact-SQL to retrieve relational data by using an XML representation. This les-
son also covers the various methods implemented by the XML data type. Some of
these methods are used to extract XML data stored as XML in an XML data type by
executing an XQUERY or XPATH query instruction.

After this lesson, you will be able to:

■ Choose the proper FOR XML mode (RAW, AUTO, PATH, EXPLICIT), depending on
the required result.

■ Define nested queries to create complex multilevel XML documents.

■ Extract XML fragments from the data contained inside an XML data type column,
variable, or parameter.

■ Transform existing XML fragments into new XML structures by using the XQUERY
query language.

■ Combine relational and XML structures into new result sets, and choose the proper
representation—either tabular format or XML format.

Estimated lesson time: 60 minutes

Converting Relational Data to XML
Both SQL Server 2000 and SQL Server 2005 enable you to compose relational data
into an XML representation by using the FOR XML clause in the SELECT statement.
SQL Server 2005 extends the FOR XML capabilities, making it easier to represent
complex hierarchical structures, and adds new keywords to modify the resulting XML
structure.

The FOR XML clause converts the result sets from a query into an XML structure, and
it provides different modes of formatting:

■ FOR XML RAW

■ FOR XML AUTO

■ FOR XML PATH

■ FOR XML EXPLICIT

270 Chapter 8 Managing XML Data

C0862271X.fm Page 270 Friday, April 29, 2005 7:38 PM
Let’s look into the differences between them.

Using FOR XML RAW
The default behavior for the FOR XML RAW mode creates a new XML element iden-
tified as <row> for each row found in the result set. An XML attribute is added to the
<row> element for each column in the SELECT statement, using the column name as
the attribute name.

To rename the <row> element, you can specify a new tag name right after the RAW key-
word. To rename each attribute, you can specify an alias for each column. To change
the formatting from attribute-centric to element-centric (create a new element for each
column, instead of attributes), specify the ELEMENTS keyword after the FOR XML
RAW clause.

The following code example applies all these techniques. The query uses the Human-
Resources.Department and the HumanResources.EmployeeDepartmentHistory tables in
the AdventureWorks sample database to list all the employees ordered by time in
department, from the employee who has worked longest in each department to the
department’s most recently hired employee.

SELECT Department.[DepartmentID]
,History.[EmployeeID]
,History.[StartDate]
,Department.[Name] AS DepartmentName
,DATEDIFF(year, History.[StartDate], GetDate()) AS YearsToDate

FROM HumanResources.Department, HumanResources.EmployeeDepartmentHistory History
WHERE Department.DepartmentID = History.DepartmentID
AND History.EndDate IS NULL

ORDER BY Department.[DepartmentID], History.[StartDate]
FOR XML RAW('OldestEmployeeByDepartment'), ELEMENTS

A partial result of executing this query is as follows:

NOTE Viewing XML results in SSMS

If you are using SSMS to execute this sample Transact-SQL code, configure the results pane to show
the results in grid view. The XML data will be displayed as a link. When you click this link, the com-
plete XML result will open in an independent window.

<OldestEmployeeByDepartment>
<DepartmentID>1</DepartmentID>
<EmployeeID>3</EmployeeID>
<StartDate>1997-12-12T00:00:00</StartDate>
<DepartmentName>Engineering</DepartmentName>
<YearsToDate>9</YearsToDate>

</OldestEmployeeByDepartment>

Lesson 2: Retrieving XML Data by Using SQL Server Server-Side Technologies 271

C0862271X.fm Page 271 Friday, April 29, 2005 7:38 PM
<OldestEmployeeByDepartment>
<DepartmentID>1</DepartmentID>
<EmployeeID>9</EmployeeID>
<StartDate>1998-02-06T00:00:00</StartDate>
<DepartmentName>Engineering</DepartmentName>
<YearsToDate>8</YearsToDate>

</OldestEmployeeByDepartment>

NOTE Using XML RAW

FOR XML RAW provides limited formatting capabilities, but it is the easiest way to retrieve basic XML
structures out of relational representation in SQL Server 2005.

Here are some important observations to note about XML RAW formatting:

■ No root node is provided, so the XML structure is not a well-formed XML docu-
ment. It represents an XML fragment.

■ All the columns must be formatted in the same way. It is impossible to set some
columns as XML attributes and other columns as XML elements.

■ XML RAW generates a one-level hierarchy. Notice that all elements are at the
same level. To construct complex nested XML structures, SQL Server supports
nested FOR XML queries (explained later in this lesson).

MORE INFO Using FOR XML RAW

For more information about the settings available to FOR XML RAW, read the topic “Using RAW
Mode” in SQL Server 2005 Books Online. SQL Server 2005 Books Online is installed as part of
SQL Server 2005. Updates for SQL Server 2005 Books Online are available for download at
www.microsoft.com/technet/prodtechnol/sql/2005/downloads/books.mspx.

Using FOR XML AUTO
FOR XML AUTO creates nested XML structures. For each table you specify in the
SELECT query, FOR XML AUTO creates a new level in the XML structure. The order
for nesting the XML data is based on the column order as you declared it in the
SELECT clause.

As in XML RAW, the default formatting is attribute-centric. To change the formatting
from attribute-centric to element-centric (and create a new element for each column,
instead of attributes), specify the ELEMENTS keyword after the XML AUTO clause.
With XML AUTO, the XML tags take their names from the table and column names
you declare in the SELECT clause.

272 Chapter 8 Managing XML Data

C0862271X.fm Page 272 Friday, April 29, 2005 7:38 PM
Exam Tip If you declared a table by using a four-part name in the FROM clause of the SELECT
query, the XML elements will be named with a three-part name when queried from the local com-
puter and with a four-part name when queried from a remote server. In the following code, MySer-
verName represents the name of a SQL Server instance:

SELECT TOP 2 [Name]

FROM MyServerName.AdventureWorks.HumanResources.Department

FOR XML AUTO

It returns the following when executed from the local server:

<AdventureWorks.HumanResources.Department Name="Document Control" />
<AdventureWorks.HumanResources.Department Name="Engineering" />

And it returns the following code when executed from a remote server:

<MyServerName.AdventureWorks.HumanResources.Department Name="Document Control" />
<MyServerName.AdventureWorks.HumanResources.Department Name="Engineering" />

To implement a more predictable outcome, use two-part names, or use table aliases in the query.

The following code example uses the same query as the previous example, but
instead of XML RAW, it is formatted as XML AUTO:

SELECT Department.[DepartmentID]
,History.[EmployeeID]
,History.[StartDate]
,Department.[Name] AS DepartmentName
,DATEDIFF(year, History.[StartDate], GetDate()) AS YearsToDate

FROM HumanResources.Department, HumanResources.EmployeeDepartmentHistory History
WHERE Department.DepartmentID = History.DepartmentID
AND History.EndDate IS NULL

ORDER BY Department.[DepartmentID], History.[StartDate] FOR XML AUTO, ELEMENTS

A partial result of executing this query is as follows:

<HumanResources.Department>
<DepartmentID>1</DepartmentID>
<DepartmentName>Engineering</DepartmentName>
<History>

<EmployeeID>3</EmployeeID>
<StartDate>1997-12-12T00:00:00</StartDate>
<YearsToDate>9</YearsToDate>

</History>
<History>

<EmployeeID>9</EmployeeID>
<StartDate>1998-02-06T00:00:00</StartDate>
<YearsToDate>8</YearsToDate>

</History>
</HumanResources.Department>

Lesson 2: Retrieving XML Data by Using SQL Server Server-Side Technologies 273

C0862271X.fm Page 273 Friday, April 29, 2005 7:38 PM
Important observations to note about XML AUTO formatting include the following:

■ No root node is provided, so the XML structure is not a well-formed XML docu-
ment. It represents an XML fragment.

■ All the columns must be formatted in the same way. It is impossible to set some
columns as XML attributes and other columns as XML elements.

■ XML AUTO generates a new hierarchy level for each table in the SELECT query,
constructed in the following order:

❑ The first level in the XML structure is mapped to the table that owns the
first column declared on the SELECT query. The second level in the XML
structure is mapped to the table that owns the next column declared on the
SELECT query, and so on to the other levels. Notice in the previous exam-
ple that Department.[DepartmentID] is the first column declared. It means
that Department elements will be the first level in the XML structure and
EmployeeDepartmentHistory will be nested inside the Department ele-
ments.

❑ If columns are mixed in with the SELECT query, XML AUTO will reorder
the XML nodes so that all nodes belonging to the same level are grouped
under the same parent node. Notice in the previous example that the
Department.[Name] column is declared fourth in the SELECT query, but it
appears before History.[EmployeeID] in the XML structure.

■ FOR XML AUTO does not provide a renaming mechanism the way XML RAW
does. XML AUTO uses the table and column names and aliases if present. (See
the History nodes in the previous example.)

■ The formatting is applied by row; to construct complex nested XML struc-
tures, SQL Server supports nested FOR XML queries (explained later in this
lesson).

Figure 8-1 shows these facts.

274 Chapter 8 Managing XML Data

C0862271X.fm Page 274 Friday, April 29, 2005 7:38 PM
Figure 8-1 Using XML AUTO when joining multiple tables

MORE INFO Using FOR XML AUTO

For more information about the different settings available to FOR XML AUTO, read the topic “Using
AUTO Mode” in SQL Server 2005 Books Online.

Using FOR XML PATH
FOR XML PATH is new to SQL Server 2005. With XML PATH, developers have full
control over how the XML structure is generated, including having some columns as
attributes and others as elements. Each column is configured independently.

Each column is given a column alias that tells SQL Server where to locate this node in
the XML hierarchy. If a column doesn’t receive a column alias, the default node <row>
is used (as in XML RAW). You declare column aliases by using pseudo-XPATH expres-
sions. Table 8-1 describes some of the different options for configuring columns in
FOR XML PATH.

No root node
HumanResources.
Department table

HumanResources.
EmployeeDepartmentHistory
table

History elements
repeated for each
employee in the
department

Lesson 2: Retrieving XML Data by Using SQL Server Server-Side Technologies 275

C0862271X.fm Page 275 Friday, April 29, 2005 7:38 PM
The following code example is based on the same query as the previous examples.
The order of the column declarations in the SELECT statement has been changed a lit-
tle to show the most important features of using XML PATH.

SELECT History.[StartDate] '@StartDate'
,Department.[DepartmentID] 'Department/@id'
,Department.[Name] 'comment()'
,History.[EmployeeID] 'Department/Employee/@id'
,'Years in role:' 'Department/Employee/data()'
,DATEDIFF(year, History.[StartDate], GetDate()) 'Department/Employee/data()'

FROM HumanResources.Department, HumanResources.EmployeeDepartmentHistory History
WHERE Department.DepartmentID = History.DepartmentID
AND History.EndDate IS NULL

ORDER BY Department.[DepartmentID], History.[StartDate] FOR XML PATH ('ForEachRow')

Table 8-1 Configuring Columns in FOR XML PATH

Option Description

'elementName' An XML element, <elementName>, is created with
the content of that column on the context node.

'@attributeName' An XML attribute, attributeName, is created with
the content of that column on the context node.

'elementName/nestedElement' An XML element, <elementName>, is created;
beneath it, a <nestedElement> XML element is cre-
ated with the content of that column.

'elementName/@attributeName' An XML element, <elementName>, is created, and
an XML attribute, attributeName, is created with
the content of that column.

text() Inserts the content of that column as a text node
in the XML structure.

comment() Inserts the content of that column as an XML
comment in the XML structure.

node() The content of that column is inserted as if no
column name were specified.

data() The content of that column is treated as an
atomic value. A space character is added to the
XML if the next item in the serialization is also an
atomic value.

276 Chapter 8 Managing XML Data

C0862271X.fm Page 276 Friday, April 29, 2005 7:38 PM
Here is a partial result of executing this query:

<ForEachRow StartDate="2001-02-18T00:00:00">
<Department id="1" />
<!--Engineering-->
<Department>

<Employee id="270">Years in role: 5</Employee>
</Department>

</ForEachRow>
<ForEachRow StartDate="1998-01-11T00:00:00">

<Department id="2" />
<!--Tool Design-->
<Department>

<Employee id="5">Years in role: 8</Employee>
</Department>

</ForEachRow>
<ForEachRow StartDate="2000-07-01T00:00:00">

<Department id="2" />
<!--Tool Design-->
<Department>

<Employee id="4">Years in role: 6</Employee>
</Department>

</ForEachRow>

In the previous example

■ The XML PATH instruction renames the default <row> element to <ForEachRow>.

■ The StartDate column is formatted as the 'StartDate' attribute. Because it does
not specify where to locate the attribute in the XML structure, it is created on the
context node, the <ForEachRow> element.

■ The DepartmentID column is formatted as the 'id' attribute for the <Department>
element that is created beneath the <ForEachRow> element.

■ The Name column is formatted as a comment. Because it does not specify where
to locate the comment in the XML structure, it is created under the context
node, the <Department> element.

■ The EmployeeID column is formatted as the 'id' attribute for the <Employee>
element that is created under the <Department> element. The <Department>
element is created beneath the <ForEachRow> element.

■ A constant value column is formatted as an atomic value for the <Employee>
element that is created under the <Department> element. The <Department>
element is created under the <ForEachRow> element.

■ The computed column is formatted as an atomic value for the <Employee> element
that is created under the <Department> element, which is created under the
<ForEachRow> element. Because the previous column is also an atomic value in
exactly the same location, SQL Server will add an extra space between the two values.

Lesson 2: Retrieving XML Data by Using SQL Server Server-Side Technologies 277

C0862271X.fm Page 277 Friday, April 29, 2005 7:38 PM
Note the following important observations about XML PATH formatting:

■ No root node is provided, so the XML structure is not a well-formed XML docu-
ment. It represents an XML fragment.

■ The declared XML structure is repeated for each of the rows. To construct com-
plex nesting XML structures, SQL Server supports nested FOR XML queries
(explained later in this lesson).

■ Developers have full control over the number of levels that the XML structure
will have.

■ The XML attribute declarations must be declared before the XML element declara-
tions, so column order does matter. Column order also indicates the context node
to locate column values that do not specify their position in the XML structure.

■ Table aliases are ignored by the formatting mechanism in XML PATH.

MORE INFO Using FOR XML PATH

For more information about the different settings available to FOR XML PATH, read the topic “Using
PATH Mode” in SQL Server 2005 Books Online.

Adding a Root Node
All the examples shown so far in this lesson represent XML fragments. The results of
these queries do not represent an XML document because the result is not well-
formed; it is missing a root node to contain all the nested elements.

When you declare a ROOT instruction after the FOR XML clause, SQL Server adds a
node containing the resulting XML structure, so the XML will be ready for consump-
tion by calling applications. Developers can give the ROOT instruction a name tag, so
instead of using the default <root> node, developers can specify a proper node name
for the root node.

You can use the ROOT instruction with all formatting modes. The following code
example shows how to use it with FOR XML RAW:

SELECT TOP 1 Department.[DepartmentID]
,History.[EmployeeID]
,History.[StartDate]
,Department.[Name] AS DepartmentName
,DATEDIFF(year, History.[StartDate], GetDate()) AS YearsToDate

FROM HumanResources.Department, HumanResources.EmployeeDepartmentHistory History
WHERE Department.DepartmentID = History.DepartmentID
AND History.EndDate IS NULL

ORDER BY Department.[DepartmentID], History.[StartDate]
FOR XML RAW('OldestEmployeeByDepartment'), ELEMENTS, ROOT('QueryResult')

278 Chapter 8 Managing XML Data

C0862271X.fm Page 278 Friday, April 29, 2005 7:38 PM
The result of executing this query is the following:

<QueryResult>
<OldestEmployeeByDepartment>

<DepartmentID>1</DepartmentID>
<EmployeeID>3</EmployeeID>
<StartDate>1997-12-12T00:00:00</StartDate>
<DepartmentName>Engineering</DepartmentName>
<YearsToDate>9</YearsToDate>

</OldestEmployeeByDepartment>
</QueryResult>

Adding Support for NULL Values in XML
By default, the XML formatting mechanism of SQL Server 2005 ignores NULL values.
When using element-centric formatting, you can instruct SQL Server to generate
empty rows for columns with NULL values.

In the following example, col3 contains the constant value NULL:

SELECT 100 'col1',
200 'col2',
NULL 'col3',
400 'col4'

FOR XML RAW, ELEMENTS

The result of executing this query is as follows:

<row>
<col1>100</col1>
<col2>200</col2>
<col4>400</col4>

</row>

If you add the XSINIL instruction to the ELEMENTS clause in the FOR XML construc-
tion, SQL Server 2005 generates an empty XML element for NULL values.

In the following example, col3 contains the constant NULL, but ELEMENTS XSINIL
is specified:

SELECT 100 'col1',
200 'col2',
NULL 'col3',
400 'col4'

FOR XML RAW, ELEMENTS XSINIL

The result of executing this query is the following:

<row xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<col1>100</col1>
<col2>200</col2>
<col3 xsi:nil="true" />
<col4>400</col4>

</row>

Lesson 2: Retrieving XML Data by Using SQL Server Server-Side Technologies 279

C0862271X.fm Page 279 Friday, April 29, 2005 7:38 PM
Returning XML as an XML Data Type Instance
In its default execution mode, the FOR XML construction returns the resulting
XML as text. This result could be assigned to a literal type variable or to an XML
data type variable. In the former case, the XML fragment is converted automati-
cally to the XML data type, as the following example shows:

DECLARE @myXML NVARCHAR(MAX)
SET @myXML = (SELECT 100 'col1',

200 'col2',
NULL 'col3',
400 'col4'

FOR XML RAW, ELEMENTS XSINIL)
SELECT @myXML

In SQL Server 2005, the FOR XML construction supports the TYPE instruc-
tion, which tells SQL Server to return the result of the FOR XML query as an
XML data type instead of text. This capability opens greater manipulation pos-
sibilities, as we cover later in this lesson. The XML data type provides a set of
methods to execute XQUERY and XPATH queries as well as methods to
update the XML.

The following example shows how to use the TYPE instruction:

DECLARE @myXML XML
SET @myXML = (SELECT 100 'col1',

200 'col2',
NULL 'col3',
400 'col4'

FOR XML RAW, ELEMENTS XSINIL, TYPE)
SELECT @myXML

Using Nested Queries to Create Complex Hierarchical Structures
As you saw in previous examples, FOR XML RAW, AUTO, and PATH all provide differ-
ent capabilities for creating complex hierarchical XML structures. XML RAW enables
you to create one-level XML structures only. XML AUTO creates a new level per par-
ticipating table, but the structure is repeated per row. XML PATH allows each column
to specify its location in the XML structure, but again, the structure is repeated
per row.

By using nested queries, you can modify the XML structure so that a set of nodes can
really be contained by a parent node; not for each row, but for a set of rows.

280 Chapter 8 Managing XML Data

C0862271X.fm Page 280 Friday, April 29, 2005 7:38 PM
The following example retrieves the same information as the FOR XML RAW example
shown previously in this lesson. The difference is that by using a nested query, we can
create sublevels in the resulting XML structure:

SELECT Department.[DepartmentID],
Department.[Name],
(

SELECT EmployeeDepartmentHistory.[EmployeeID]
,EmployeeDepartmentHistory.[StartDate]
,DATEDIFF(year, EmployeeDepartmentHistory.[StartDate], GetDate()) AS
YearsToDate

FROM HumanResources.EmployeeDepartmentHistory
WHERE Department.DepartmentID = EmployeeDepartmentHistory.DepartmentID

AND EmployeeDepartmentHistory.EndDate IS NULL
ORDER BY EmployeeDepartmentHistory.[StartDate]
FOR XML RAW('Employee'), TYPE

) AS Employees
FROM HumanResources.Department

ORDER BY Department.[DepartmentID]
FOR XML RAW('Department'), ELEMENTS, ROOT ('OldestEmployeeByDepartment')

A partial result of executing this query follows:

<OldestEmployeeByDepartment>
<Department>

<DepartmentID>15</DepartmentID>
<Name>Shipping and Receiving</Name>

<Employees>
<Employee EmployeeID="34" StartDate="1999-01-08T00:00:00" YearsToDate="7" />
<Employee EmployeeID="35" StartDate="1999-01-08T00:00:00" YearsToDate="7" />
<Employee EmployeeID="72" StartDate="1999-01-27T00:00:00" YearsToDate="7" />
<Employee EmployeeID="85" StartDate="1999-02-03T00:00:00" YearsToDate="7" />
<Employee EmployeeID="121" StartDate="1999-02-21T00:00:00" YearsToDate="7" />
<Employee EmployeeID="195" StartDate="1999-03-30T00:00:00" YearsToDate="7" />

</Employees>
</Department>
<Department>

<DepartmentID>16</DepartmentID>
<Name>Executive</Name>
<Employees>

<Employee EmployeeID="109" StartDate="1999-02-15T00:00:00" YearsToDate="7" />
<Employee EmployeeID="140" StartDate="2003-12-16T00:00:00" YearsToDate="3" />

</Employees>
</Department>
</OldestEmployeeByDepartment>

Compare this XML structure with the previous structures shown for FOR XML RAW,
FOR XML AUTO, and FOR XML PATH. This is a much more intuitive and rich
structure.

Lesson 2: Retrieving XML Data by Using SQL Server Server-Side Technologies 281

C0862271X.fm Page 281 Friday, April 29, 2005 7:38 PM
■ Department information is formatted as element-centric, and Employee informa-
tion is formatted as attribute-centric.

■ The departments are under the root node, each contained in a parent <Depart-
ment> node.

■ The employees are nested together by department and contained in a parent
<Employees> node.

■ The ordering of the department information can be different from the ordering
of the employee information.

NOTE Using TYPE in nested FOR XML queries

Because you use the TYPE instruction in the FOR XML clause in nested queries, SQL Server inter-
prets and manipulates the resulting XML as an XML type instead of simply copying it as text in the
containing node.

Using FOR XML EXPLICIT
The formatting mode FOR XML EXPLICIT provides the greater degree of control for
developers to be able to generate complex XML structures. For FOR XML EXPLICIT to
work, the query result set must follow a specific pattern called a Universal Table.

The Universal Table requires specific columns that must be provided, and columns
aliases must be formatted using a specific pattern. This formatting provides metadata
for the XML formatter in SQL Server 2005 to construct the XML, as Table 8-2
describes.

Table 8-2 FOR XML EXPLICIT Result Set Requirements

Option Description

Tag column Must be the first column in the result set. The Tag
column indicates the depth in the XML structure,
starting from 1.

Parent column Must be the second column in the result set. The
Parent column indicates the node parent in the XML
structure. The node parent is identified by its Tag
identifier.

282 Chapter 8 Managing XML Data

C0862271X.fm Page 282 Friday, April 29, 2005 7:38 PM
The Universal Table also requires specific ordering for the rows in the result set. The
XML structure is constructed following row order; the rows in the result set must be
ordered so that each parent node is immediately followed by its child nodes.

SELECT 1 as Tag,
NULL as Parent,
Department.[DepartmentID] as [Department!1!id],
Department.[Name] as [Department!1!name],

Column name pattern:

ElementName!Tag-
Number!AttributeName!
Directive

Data columns must provide an alias following this
pattern.

ElementName is the name you want to assign to the
XML element.

TagNumber indicates the level (according to the tag
column) at which this node must be located.

AttributeName is optional if you indicate a directive; it
indicates the name to provide to the XML attribute
that holds the value.

Directive is optional; it provides more information to
the XML formatting mechanism. Some of its possible
values include these:

■ hide: Indicates that this column should not be
included in the resulting XML structure. Use
this value for columns you might need just for
ordering purposes.

■ element: Generate the column value as an XML
element, not as an XML attribute. NULL values
will be ignored.

■ elementxsinil: Generate the column value as an
XML element, not as an XML attribute. NULL
values will not be ignored; an empty element will
be provided.

■ cdata: Generate the column value as an XML
comment inside a CDATA section.

Table 8-2 FOR XML EXPLICIT Result Set Requirements

Option Description

Lesson 2: Retrieving XML Data by Using SQL Server Server-Side Technologies 283

C0862271X.fm Page 283 Friday, April 29, 2005 7:38 PM
NULL as [Employee!2!id],
NULL as [Employee!2!StartDate],
NULL as [Employee!2!YearsInRole]

FROM HumanResources.Department
UNION ALL
SELECT 2 as Tag,

1 as Parent,
Department.[DepartmentID],
NULL,
History.EmployeeID,
History.StartDate,
DATEDIFF(year, History.[StartDate], GetDate())

FROM HumanResources.EmployeeDepartmentHistory History, HumanResources.Department
WHERE Department.DepartmentID = History.DepartmentID

AND History.EndDate IS NULL
ORDER BY [Department!1!id], [Employee!2!YearsInRole]
FOR XML EXPLICIT, ROOT('OldestEmployeeByDepartment')

A partial result of executing this query is as follows:

<OldestEmployeeByDepartment>
<Department id="1" name="Engineering">

<Employee id="267" StartDate="2001-01-30T00:00:00" YearsInRole="5" />
<Employee id="270" StartDate="2001-02-18T00:00:00" YearsInRole="5" />
<Employee id="11" StartDate="1998-02-24T00:00:00" YearsInRole="8" />
<Employee id="12" StartDate="1998-03-03T00:00:00" YearsInRole="8" />
<Employee id="9" StartDate="1998-02-06T00:00:00" YearsInRole="8" />
<Employee id="3" StartDate="1997-12-12T00:00:00" YearsInRole="9" />

</Department>
<Department id="2" name="Tool Design">

<Employee id="265" StartDate="2001-01-23T00:00:00" YearsInRole="5" />
<Employee id="263" StartDate="2001-01-05T00:00:00" YearsInRole="5" />
<Employee id="4" StartDate="2000-07-01T00:00:00" YearsInRole="6" />
<Employee id="5" StartDate="1998-01-11T00:00:00" YearsInRole="8" />

</Department>
</OldestEmployeeByDepartment>

If you execute the same query without the FOR XML EXPLICIT clause, you can see the
Universal Table format, as Figure 8-2 shows.

284 Chapter 8 Managing XML Data

C0862271X.fm Page 284 Friday, April 29, 2005 7:38 PM
Figure 8-2 Universal Table format

Here are some important observations to note about XML EXPLICIT formatting:

■ You can combine multiple queries by a UNION operator to provide a complete
Universal Table. There is one query for each level in the hierarchy.

■ No root node is provided, so the XML structure is not a well-formed XML docu-
ment. It represents an XML fragment unless you specify the ROOT instruction.

■ Developers have full control over the number of levels that the XML structure
will have.

■ Column order in the SELECT clause is unimportant.

■ Table aliases are ignored by the formatting mechanism.

MORE INFO Using FOR XML EXPLICIT

For more information about the different settings available to FOR XML EXPLICIT, read the topic
“Using EXPLICIT Mode” in SQL Server 2005 Books Online.

Quick Check
1. What FOR XML modes support mixing XML elements and attributes?

2. What instruction is used to return well-formed XML documents instead of
XML fragments when using FOR XML?

Lesson 2: Retrieving XML Data by Using SQL Server Server-Side Technologies 285

C0862271X.fm Page 285 Friday, April 29, 2005 7:38 PM
Quick Check Answers

1. Only FOR XML PATH and FOR XML EXPLICIT allow you to choose inde-
pendently the column formatting in an XML element or an XML attribute.

2. The ROOT(‘rootNodeName’) instruction allows you declare that the result-
ing XML must have a root element.

Retrieving XML Data from the XML Data Type
The XML data type provides greater searching and querying capabilities over an XML
structure. More importantly, it provides developers with the ability to transform an
XML instance into another XML instance; extract a value into the SQL type system;
test for the existence of nodes and values inside the XML structure; and modify an
existing XML structure by adding, updating, or deleting existing nodes.

The XML data type provides five methods that enable you to manipulate the XML
fragment. Table 8-3 lists these methods.

You will see how to use the query(), value(), and exist() methods later in this lesson.
And following lessons cover the use of the modify() and nodes() methods.

Table 8-3 XML Data Type Methods

Method Description

query() Provides the ability to execute an XPATH or XQUERY expression
and returns the resulting XML fragment.

value() Provides the ability to execute an XPATH or XQUERY expression
and returns a single scalar value that is converted into a SQL type.

exist() Provides the ability to execute an XPATH or XQUERY expression
to check for the existence of nodes. If the query returns a node
collection, the exist() method returns true; otherwise, the exist()
method returns false.

modify() Provides XML data-manipulation capabilities (covered in later
lessons).

nodes() Provides the ability to execute an XPATH or XQUERY expression
and returns the resulting XML fragment shredded into a row set
(covered in later lessons).

286 Chapter 8 Managing XML Data

C0862271X.fm Page 286 Friday, April 29, 2005 7:38 PM
XQUERY and XPATH
The W3C has created two querying languages, XQUERY and XPATH, which combine
to provide powerful capabilities for manipulating XML structures.

XQUERY is a query language designed to query XML data. It has been designed
around the following principles:

■ Compositionality The result of an expression can be used as the input for
another expression, much as in a functional programming language.

■ Closure It has been designed as a closed language with no extensibility points.

■ Integration It is aligned to existing and broadly used XML technologies such as
XML Schema Definition (XSD) files and XPATH to use existing knowledge.

■ Simplicity The language declares a small set of keywords to keep its develop-
ment simple, yet provides very powerful capabilities.

■ Completeness The language allows for the declaration of a broad range of que-
ries.

■ Static analysis XQUERY is a compiled language, and as such, a static analysis is
first executed on the XQUERY expressions before they are executed.

MORE INFO XQUERY specification and SQL Server 2005

An XQUERY working draft was accepted as a candidate recommendation in November 2005. SQL
Server 2005 is aligned to the July 2004 working draft of XQUERY. For more information, read
“XQuery 1.0: An XML Query Language” at www.w3.org/TR/xquery/.

The most important XQUERY expression is the FLWOR expression. By declaring a
FLWOR expression, developers can write complex query logic that iterates through a
set of nodes that match a specified filter. For each matching node, the developer can
apply different data-manipulation functions, extraction methods, and constructors.

You build a FLWOR expression by using the following clauses:

■ FOR One or more FOR expressions can be applied to an XQUERY expression.
The FOR clause declares variables that contain a sequence of nodes resulting
from an XPATH expression. This sequence is the input sequence for the
XQUERY expression to process. The FOR clause will iterate through all the items
in the set of nodes; for each one of them, the FLWOR expression will return a
result.

Lesson 2: Retrieving XML Data by Using SQL Server Server-Side Technologies 287

C0862271X.fm Page 287 Friday, April 29, 2005 7:38 PM
■ LET Not supported in SQL Server 2005. In the XQUERY recommendation, it is
used to declare variables that contain a single value or a sequence of nodes that
match a specific XPATH expression. The difference about the FOR clause is that
the FLWOR expression does not iterate through the items in the LET variables.

■ WHERE An optional clause. It gives the XQUERY expression the capability to
filter further the input sequences that use different types of operators (for exam-
ple, conditional and logical comparison operators) and functions (for example,
aggregate, numeric, and boolean functions).

■ ORDER BY An optional clause. It gives the XQUERY expression the capability
to order the output sequence in a different order than the input sequence. The
input sequence is processed in document order as generated by the XPATH
expression in the FOR clause.

■ RETURN Only one is permitted. It declares the structure of the output
sequence (the resulting XML fragment). The return section of the XQUERY
expression allows developers to extract and manipulate data coming from the
input sequence and to create new XML structures by means of XQUERY con-
structors (special functions used to create new XML elements, attributes, and
other XML structures).

MORE INFO XQUERY

XQUERY is a complete programming language and is beyond the scope of this book. A recom-
mended starting point is to read the subtopics under the section “XQuery Against the xml Data
Type” in SQL Server 2005 Books Online.

Using the query() Method
You use the query() method to execute an XQUERY or an XPATH expression over the
XML structure contained inside a column, parameters, or variables of type XML. The
result of executing a query() method is an untyped instance of XML data type. It is
said to be untyped because SQL Server does not verify whether it conforms to an XML
schema.

The following code blocks show an example of using a query() method to execute a
FLWOR expression. The first code block declares a variable of type XML and assigns
to it the result of a FOR XML PATH query, typing the resulting XML as XML data type
by using the TYPE instruction:

DECLARE @EMPLOYEES XML
SET @EMPLOYEES = (SELECT Department.[DepartmentID] 'Department/@id',

Department.[Name] 'Department/@name',

288 Chapter 8 Managing XML Data

C0862271X.fm Page 288 Friday, April 29, 2005 7:38 PM
(
SELECT History.[EmployeeID] 'Employee/@id'

,History.[StartDate] 'Employee/@StartDate'
,DATEDIFF(year, History.[StartDate], GetDate()) 'Employee/@YearsInRole'

FROM HumanResources.EmployeeDepartmentHistory History
WHERE Department.DepartmentID = History.DepartmentID

AND History.EndDate IS NULL
ORDER BY History.[StartDate]
FOR XML PATH(''), TYPE
) 'Department/Employees'

FROM HumanResources.Department
ORDER BY Department.[DepartmentID]

FOR XML PATH (''), TYPE)

The next code block issues a SELECT statement and uses the query() method of the
XML variable to execute a FLWOR expression:

SELECT @EMPLOYEES.query('
for $dept in /Department,

$emp in $dept/Employees/Employee[1]
where count($dept/Employees/Employee) >= 10
order by number($emp/@YearsInRole) descending
return

<BigDepartment employees="{count($dept/Employees/Employee)}"
averageYears="{avg($dept/Employees/Employee/@YearsInRole)}">

<SeniorEmployee firstDay="{$emp/@StartDate}"
yearsInRole="{$emp/@YearsInRole}">

{data($emp/@id)}
</SeniorEmployee>

</BigDepartment>')
FOR XML PATH(''), ROOT('Departments')

In the previous code example, the for clause declares two variables: $dept and $emp.
(You must precede all variables in XQUERY with the dollar sign [$].) The $dept vari-
able contains a sequence of Department nodes as a result from the /Department
XPATH expression, which returns all nodes of type Department.

The $emp variable contains a sequence of a single Employee node resulting from the
execution of the $dept/Employees/Employee[1] XPATH expression. When the
Employee XML elements were generated, they were ordered by History.[StartDate] so
that the first employee found always represents the employee who has been with the
department the longest.

The FLWOR expression iterates through each of the nodes returned by the XPATH
expressions.

The where clause filters the input sequence further by ignoring all departments with
fewer than 10 employees.

Lesson 2: Retrieving XML Data by Using SQL Server Server-Side Technologies 289

C0862271X.fm Page 289 Friday, April 29, 2005 7:38 PM
The order by clause orders the output sequence of nodes. In this example, the output
XML fragment is ordered according to the number of years that the employee has
worked for that department, starting from the employee who has worked there the
longest to the most recent employee.

The return clause declares the structure of the resulting XML sequence as a constant.
Dynamic content is created by enclosing the code in curly braces ({code}). By using the
variables $dept and $emp, the code is referencing the current node being processed,
also known as the context node.

A BigDepartment XML element will be created with two XML attributes: employees and
averageYears. The employees attribute will contain the number of employees in that
department, and the averageYears attribute will contain the average number of years
that all the employees combined have worked for the department. Notice the use of
the count and avg XQUERY functions.

The BigDepartment element contains a nested XML element called SeniorEmployee,
which is created with two XML attributes: firstDay and yearsInRole. The firstDay
attribute contains the employee’s work start date, and the yearsInRole contains the
number of years that the employee has worked in that department.

The employee ID is created as the SeniorEmployee element’s data. By using the data()
function, the value of the id attribute is extracted and inserted in the new resulting
structure as the node value for the SeniorEmployee element.

The result should be similar to this structure:

<Departments>
<BigDepartment employees="179" averageYears="6.89944134078212">

<SeniorEmployee firstDay="1996-07-31T00:00:00" yearsInRole="10">1</SeniorEmployee>
</BigDepartment>
<BigDepartment employees="12" averageYears="5.83333333333333">

<SeniorEmployee firstDay="1999-03-14T00:00:00" yearsInRole="7">164</SeniorEmployee>
</BigDepartment>
<BigDepartment employees="10" averageYears="7">

<SeniorEmployee firstDay="1999-01-19T00:00:00" yearsInRole="7">59</SeniorEmployee>
</BigDepartment>
<BigDepartment employees="10" averageYears="7">

<SeniorEmployee firstDay="1999-01-05T00:00:00" yearsInRole="7">28</SeniorEmployee>
</BigDepartment>
<BigDepartment employees="18" averageYears="4.44444444444444">

<SeniorEmployee firstDay="2001-02-04T00:00:00" yearsInRole="5">268</SeniorEmployee>
</BigDepartment>

</Departments>

290 Chapter 8 Managing XML Data

C0862271X.fm Page 290 Friday, April 29, 2005 7:38 PM
Sql:Variable and Sql:Column
The XQUERY implementation in SQL Server 2005 has been extended to support the
scenarios in which the XML data must interact with data coming from outside the
XQUERY expression, as Transact-SQL parameters or even with data coming from the
relational environment, such as a column value.

By using the sql:variable function, you can include outside values coming from Trans-
act-SQL variables inside an XQUERY and XPATH expression.

By using the sql:column function, you can include outside values coming from an
existing column in a table inside an XQUERY and XPATH expression.

Using the value() Method
You use the value() method to execute an XQUERY or an XPATH expression over the
XML structure contained inside a column, parameters, or variables of type XML. The
difference is that the value() method must return a scalar value.

The resulting value of the value method is then converted to a Transact-SQL type.
Developers must be careful to write the XQUERY/XPATH expression correctly for it
to return a single value.

Examples of scalar values in XPATH could be the result of executing a count() func-
tion or a predicate specified in an expression to return a single result.

The following example is based on the same query shown in the last code example. It
returns the value of the name attribute in a Department element and an id attribute
with a value of 5 (“Purchasing”); the result is converted to a Transact-SQL nvar-
char(max) data type:

SELECT @EMPLOYEES.value('(/Department[@id=5]/@name)[1]','nvarchar(max)')

Even if there is a single Department XML element in the XML structure with id with
a value of 5, you must specify the [1] predicate. When SQL Server compiles the
XPATH expression, the [1] indicates the cardinality of the result of executing such
expression, and the value method validates that there is only one result.

Using the exist() Method
You use the exist() method to execute an XQUERY or an XPATH expression on the
XML structure contained inside a column, parameters, or variable of type XML. The
result of executing the exist() method is a Boolean value of 1 or 0. A 1 is returned

Lesson 2: Retrieving XML Data by Using SQL Server Server-Side Technologies 291

C0862271X.fm Page 291 Friday, April 29, 2005 7:38 PM
when the XQUERY or XPATH expression returned at least one resulting node. A 0 is
returned when the XQUERY or XPATH expression did not return any resulting node.

The exist() method is usually used in the WHERE clause of the SELECT statement in
Transact-SQL to validate that the expression actually has matching nodes.

The following code sections walk you through an example of how to apply several
XML manipulation techniques:

1. Create a new table with an XML column:

--CREATE TABLE
CREATE TABLE OLDEMPLOYEES(ID INT IDENTITY, EMPLOYEE_DATA XML)
GO

2. Create a new variable of type XML, initialize the variable with the result of a FOR
XML query, and insert the XML stored in the variable into the table declared in
step 1:

DECLARE @EMPLOYEES XML
SET @EMPLOYEES = (SELECT Department.[DepartmentID] 'Department/@id'

,Department.[Name] 'Department/@name',
(
SELECT History.[EmployeeID] 'Employee/@id'

,History.[StartDate] 'Employee/@StartDate'
,DATEDIFF(year, History.[StartDate], GetDate())

'Employee/@YearsInRole'
FROM HumanResources.EmployeeDepartmentHistory History
WHERE Department.DepartmentID = History.DepartmentID

AND History.EndDate IS NULL
ORDER BY History.[StartDate]
FOR XML PATH(''), TYPE
) 'Department/Employees'

FROM HumanResources.Department
ORDER BY Department.[DepartmentID]

FOR XML PATH (''), TYPE)

INSERT OLDEMPLOYEES(EMPLOYEE_DATA)
VALUES (@EMPLOYEES)

3. Execute an XPATH expression on the XML data stored in the table:

DECLARE @YEARS INT
SET @YEARS = 7
SELECT EMPLOYEE_DATA.query(
'/Department[@name = sql:column("D.Name")]//
Employee[@YearsInRole>sql:variable("@YEARS")]')
FROM HumanResources.Department D, OLDEMPLOYEES

292 Chapter 8 Managing XML Data

C0862271X.fm Page 292 Friday, April 29, 2005 7:38 PM
WHERE D.DepartmentID in
(

SELECT DepartmentID
FROM HumanResources.Department
WHERE GroupName = 'Manufacturing'

) AND
EMPLOYEE_DATA.exist(
'/Department[@name = sql:column("D.Name")]//
Employee[@YearsInRole>sql:variable("@YEARS")]') = 1
FOR XML RAW('Candidates'), ROOT('Bonus')

Notice the use of the query() method, the use of the sql:variable function, the use of
the sql:column function, and the use of the exist() method.

The result you see should be similar to this structure:

<Bonus>
<Candidates>

<Employee id="1" StartDate="1996-07-31T00:00:00" YearsInRole="10" />
<Employee id="7" StartDate="1998-01-26T00:00:00" YearsInRole="8" />
<Employee id="8" StartDate="1998-02-06T00:00:00" YearsInRole="8" />
<Employee id="10" StartDate="1998-02-07T00:00:00" YearsInRole="8" />
<Employee id="13" StartDate="1998-03-05T00:00:00" YearsInRole="8" />
<Employee id="14" StartDate="1998-03-11T00:00:00" YearsInRole="8" />
<Employee id="15" StartDate="1998-03-23T00:00:00" YearsInRole="8" />
<Employee id="16" StartDate="1998-03-30T00:00:00" YearsInRole="8" />
<Employee id="17" StartDate="1998-04-11T00:00:00" YearsInRole="8" />
<Employee id="18" StartDate="1998-04-18T00:00:00" YearsInRole="8" />
<Employee id="19" StartDate="1998-04-29T00:00:00" YearsInRole="8" />

</Candidates>
</Bonus>

Quick Check
1. What is the main difference between using the query() method and using

the value() method of the XML data type?

2. What function is used to input external values into an XQUERY FLWOR
expression?

Quick Check Answers

1. The query() method returns an untyped XML fragment as a result. The
value() method returns a scalar Transact-SQL typed value.

2. There are two functions—sql:variable and sql:column—that enable you to
include external values from the relational context into the XML expression.

Lesson 2: Retrieving XML Data by Using SQL Server Server-Side Technologies 293

C0862271X.fm Page 293 Friday, April 29, 2005 7:38 PM
PRACTICE Use XQUERY to Query the UniversalLog Table
This practice uses the results of the Lesson 1 practice. If you have not completed that
practice, please go back and follow the instructions to complete it.

In this exercise, you query the data in the UniversalLog table in the TK431Chapter8
database. You create the appropriate queries to return the results in the requested
format. Remember that the LogRecord column in the UniversalLog table is of type
XML.

NOTE Code available on the companion CD

For solutions to the exercises in the Lesson 2 practice, see the Practice Files\Chapter8\Lesson 2\
CompleteLesson2.sql file on the companion CD.

1. Create a query to retrieve all records from the UniversalLog table by using the
query() method and XPATH. The result should resemble this structure:

<UniversalLog>
<logRecord machine="server1" timestamp="2000-01-12T12:13:14Z">

<post eventType="appStart">
<moreInformation>All Services starting</moreInformation>

</post>
</logRecord>
<logRecord machine="server2" timestamp="2000-01-13T12:13:14Z">

<post eventType="appStart" />
<information flag="warning">

<message>Duplicate IP address</message>
</information>

</logRecord>
...........
<UniversalLog>

2. Retrieve records from the UniversalLog table by using the query() method and
XPATH. Filter the results for log records that apply to Server2. The result should
resemble this structure:

<UniversalLog>
<logRecord machine="server2" timestamp="2000-01-13T12:13:14Z">

<post eventType="appStart" />
<information flag="warning">

<message>Duplicate IP address</message>
</information>

</logRecord>
...........
<UniversalLog>

294 Chapter 8 Managing XML Data

C0862271X.fm Page 294 Friday, April 29, 2005 7:38 PM
3. Retrieve records from the UniversalLog table by using the query() method and
XPATH. Filter the results for log records that notify about a failure. The result
should resemble this structure:

<UniversalLog>
<logRecord machine="server2" timestamp="2000-01-11T12:13:14Z">

<information flag="failure">
<message>Hard Disk with ID #87230283 is not responding</message>

</information>
<error number="18763">

<message>Application can not start</message>
<module>AppLoader</module>

</error>
<post eventType="appStart" />

</logRecord>
</UniversalLog>

4. Retrieve records from the UniversalLog table by using the query() method and
XPATH, but include in the XML structure data stored in the relational infrastruc-
ture; for example, include the LogDateTime and ApplicationName columns. The
result should resemble this structure:

<UniversalLog>
<LogDateTime>2006-01-27T19:29:44.420</LogDateTime>
<ApplicationName>SalesApp</ApplicationName>
<logRecord machine="server2" timestamp="2000-01-11T12:13:14Z">

<information flag="failure">
<message>Hard Disk with ID #87230283 is not responding</message>

</information>
<error number="18763">

<message>Application can not start</message>
<module>AppLoader</module>

</error>
<post eventType="appStart" />

</logRecord>
</UniversalLog>

5. Retrieve records from the UniversalLog table by using the query() method and
XQUERY. Return an XML structure representing a report with all logged errors.
The result should resemble this structure:

<UniversalLog>
<errorReport issuedby="dbo" date="Jan 27 2006 11:59PM" />
<error number="1001" timestamp="2000-01-14T12:13:14Z" server="server1">

<message>The user does not have enough permissions to execute query</message>
<module>DataAccessLayer</module>

</error>
<error number="18763" timestamp="2000-01-11T12:13:14Z" server="server2">

<message>Application can not start</message>
<module>AppLoader</module>

</error>
</UniversalLog>

Lesson 2: Retrieving XML Data by Using SQL Server Server-Side Technologies 295

C0862271X.fm Page 295 Friday, April 29, 2005 7:38 PM
6. Retrieve independent values from the UniversalLog table by using the value()
method and XPATH. Return a tabular structure representing a report with all
logged errors. The result should resemble the following structure:

Lesson Summary
■ SQL Server 2005 provides multiple Transact-SQL constructs you can use to

compose relational data into XML structures, to transform XML fragments into
new XML formats, and to extract data out of existing XML fragments.

■ The FOR XML clause enables you to compose relational data into an XML repre-
sentation. There are four different formatting modes: RAW, AUTO, PATH, and
EXPLICIT.

■ By using nested queries in SQL Server 2005, developers can return complex
multilevel XML structures that were impossible to create previously.

■ The XML data type provides five methods that you can use to manipulate the
contained XML fragment: query(), value(), exist(), modify(), and nodes(). The
input to the XML data type’s methods can be XQUERY and XPATH expressions.

■ XQUERY and XPATH provide a complete query language for XML structures.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of this book.

Error-
Number

TimeStamp Server-
Name

Message Module

1001 2000-01-
14T12:13:14Z

server1 The user does
not have enough
permissions to
execute query

DataAccess-
Layer

18763 2000-01-
11T12:13:14Z

server2 Application
cannot start

AppLoader

296 Chapter 8 Managing XML Data

C0862271X.fm Page 296 Friday, April 29, 2005 7:38 PM
1. You are a database developer for your company. Your database contains one
table to store Contact information in the following columns: ID, FirstName, Last-
Name, and Company. You are asked to return an XML structure needed to bind
this data to a Web page. The XML structure should look like this:

<ContactList>
<Contact>

<CompanyName> company </CompanyName>
<NumberOfContacts> 1 </NumberOfContacts>
<Contacts>

<Contacts FirstName="fName" LastName="lName" />
</Contacts>

</Contact>
........
<ContactList>

Which of the following queries will return the desired structure?

A.

SELECT Contact.Company AS [CompanyName], COUNT(Contact.ID) AS [NumberOfContacts],
FirstName, LastName

FROM Contacts AS Contact
GROUP BY Company, FirstName, LastName
FOR XML AUTO, ELEMENTS, ROOT('ContactList')

B.

SELECT Contact.Company AS [CompanyName], COUNT(Contact.ID) AS [NumberOfContacts],
(

SELECT FirstName, LastName
FROM Contacts
WHERE Contact.Company = Contact.Company
FOR XML AUTO

) AS [ContactList]
FROM Contacts AS Contact
GROUP BY Contact.Company
FOR XML AUTO

C.

SELECT Contact.Company AS [CompanyName], COUNT(Contact.ID) AS [NumberOfContacts],
(

SELECT FirstName, LastName
FROM Contacts
WHERE Contacts.Company = Contact.Company
FOR XML AUTO, TYPE, ROOT('Contacts')

)
FROM Contacts AS Contact
GROUP BY Contact.Company
FOR XML AUTO, ELEMENTS, ROOT('ContactList')

Lesson 2: Retrieving XML Data by Using SQL Server Server-Side Technologies 297

C0862271X.fm Page 297 Friday, April 29, 2005 7:38 PM
D.

SELECT Contact.Company AS [CompanyName], COUNT(Contact.ID) AS [NumberOfContacts],
(

SELECT FirstName, LastName
FROM Contacts
WHERE Contacts.Company = Contact.Company
FOR XML AUTO, ELEMENTS, TYPE, ROOT('Contacts')

)
FROM Contacts AS Contact
GROUP BY Contact.Company
FOR XML AUTO, ROOT('ContactList')

2. Which of the methods implemented by the XML data type enables you to exe-
cute the following XQUERY expression? (Choose all that apply.)

for $c in /companies
where $c/company/@profit > 1000000
return

<successful>
<company ticker="{data($c/@StockSymbol)}">

{data($c/company/@profit)}
</company>

</successful>

A. exist()

B. modify()

C. value()

D. query()

298 Chapter 8 Managing XML Data

C0862271X.fm Page 298 Friday, April 29, 2005 7:38 PM
Lesson 3: Retrieving XML Data by Using SQL Server
Middle-Tier Technologies

In Lesson 2, you saw how to use the FOR XML construct in Transact-SQL to retrieve
relational data by using an XML representation and how to execute XQUERY and
XPATH query instructions to extract data stored as XML in the XML data type. SQL
Server 2005 also comes with SQLXML 4.0, a COM middle-tier application program-
ming interface (API) that gives client applications the capability to extract XML data
out of relational data without requiring you to write any Transact-SQL code.

At the core of SQLXML is the capability to define annotated XSD language schemas.
By annotating a regular XSD schema with special keywords, you define a mapping
between the XML schema and a database schema that enables developers to manip-
ulate relational data without having to write Transact-SQL code. SQLXML generates
all the required Transact-SQL code based on the activities executed against the XML
structure.

Using annotated XSD schemas enables you to do the following:

■ Extract information from the database and generate an XML instance.

■ Execute XPATH queries over the annotated XSD schema.

■ Update information in the database based on changes executed on an XML
instance. If nodes have been added, updated, or removed, those activities will
generate the required INSERT, UPDATE, and DELETE statements.

■ Bulk load XML data from a file into a database.

This lesson covers how to use annotated XSD schemas and how to query them by
using XML view files.

MORE INFO Using SQLXML to modify and bulk load data

For information about how to use SQLXML to update data, see Lesson 4 in this chapter. For infor-
mation about bulk loading XML data into the database using a mapping schema, see Lesson 5.

After this lesson, you will be able to:

■ Create annotated XSD schemas.

■ Create XML views.

■ Use SQLXML 4.0 to query XSD schemas and XML views.

Estimated lesson time: 30 minutes

Lesson 3: Retrieving XML Data by Using SQL Server Middle-Tier Technologies 299

C0862271X.fm Page 299 Friday, April 29, 2005 7:38 PM
Using SQLXML-Annotated XSD Schemas
Annotated XSD schemas declare a mapping between an XML schema and a relational
schema so that SQLXML components can infer the relational operations to execute
on the database based on the operations executed against the XML structure.

NOTE Different uses of the term “schema”

For the rest of this lesson, we will use the following terms to refer to different types of schemas:

■ The declaration of the physical structure of data is called a “schema.”

■ Data in XML format is referred to as an “XML schema.”

■ Data in a relational-tabular format is referred to as a “relational schema.”

■ The SQLXML mapping mechanism is called an “annotated XSD schema.”

You build annotated XSD schemas by enhancing regular XSD schemas with specific
keywords. The annotated keywords are defined in the xmlns:sql="urn:schemas-
microsoft-com:mapping-schema" XML namespace and namespace prefix. Table 8-4
describes the most common keywords you use to annotate XSD schemas.

Table 8-4 Common Annotated Keywords

Keyword Description

sql:relation Maps XML element declarations to tables in the
database.

sql:fields Maps XML content elements and attributes to columns
in a table in the database.

sql:key-fields Declares the primary keys from a table in the database
so that SQLXML can formulate Transact-SQL queries
by using the correct keys to filter data.

sql:relationship Declares the relationship between two tables and is
used when the XML code has nested elements that
are related to different tables. It is translated into
a Transact-SQL join.

sql:is-constant Declares that the XML element should be copied as-is
to the resulting structure. It does not map to any table
or column in the database.

300 Chapter 8 Managing XML Data

C0862271X.fm Page 300 Friday, April 29, 2005 7:38 PM
MORE INFO Mapping keywords

For information about all the mapping keywords available and how to use each of them, see the
topic “Using Annotations in XSD Schemas” in SQL Server 2005 Books Online.

Here is an example of an annotated XML schema that returns all employees, grouped
by their department, as in previous examples:

<?xml version="1.0"?>
<xsd:schema id="EmployeeHiredDate"

xmlns:sql="urn:schemas-microsoft-com:mapping-schema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="EmployeesByDepartment" sql:is-constant="true">
<xsd:complexType>

<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:element name="Department" sql:relation="HumanResources.Department"

sql:key-fields="DepartmentID">
<xsd:complexType>

<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:element name="Employee" sql:relation="HumanResources.Employee"

sql:key-fields="EmployeeID">
<xsd:annotation>
<xsd:appinfo>

<sql:relationship parent="HumanResources.Department"
parent-key="DepartmentID"

child="HumanResources.EmployeeDepartmentHistory"
child-key="DepartmentID" />

<sql:relationship
parent="HumanResources.EmployeeDepartmentHistory"

parent-key="EmployeeID"
child="HumanResources.Employee" child-key="EmployeeID" />

</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Title"/>
<xsd:element name="HireDate"/>

</xsd:sequence>
<xsd:attribute name="ID" sql:field="EmployeeID"/>
<xsd:attribute name="LoginID"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="ID" sql:field="DepartmentID"/>
<xsd:attribute name="Name"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Lesson 3: Retrieving XML Data by Using SQL Server Middle-Tier Technologies 301

C0862271X.fm Page 301 Friday, April 29, 2005 7:38 PM
The is-constant attribute is added to the EmployeesByDepartment root node because it
does not map to any table in the database.

Notice that the sql:relationship elements declare a many-to-many relationship between
the HumanResources.Department table and the HumanResources.EmployeeDepartment-
History table and then between the HumanResources.EmployeeDepartmentHistory table
and the HumanResources.Employee table.

An implicit mapping is applied when an element or attribute does not declare its
source table or column. An explicit mapping is applied when the sql:relation or
sql:field attributes are used, as you can see by looking at the ID attributes in the
Employee element in the above example.

A partial result of retrieving XML by using this annotated XML schema looks like
this:

<EmployeesByDepartment>
...
<Department ID="2" Name="Tool Design">
<Employee ID="4" LoginID="adventure-works\rob0">
<Title>Senior Tool Designer</Title>
<HireDate>1998-01-05T00:00:00</HireDate>
</Employee>

<Employee ID="5" LoginID="adventure-works\thierry0">
<Title>Tool Designer</Title>
<HireDate>1998-01-11T00:00:00</HireDate>
</Employee>

<Employee ID="263" LoginID="adventure-works\ovidiu0">
<Title>Senior Tool Designer</Title>
<HireDate>2001-01-05T00:00:00</HireDate>
</Employee>

<Employee ID="265" LoginID="adventure-works\janice0">
<Title>Tool Designer</Title>
<HireDate>2001-01-23T00:00:00</HireDate>
</Employee>
</Department>

...
</EmployeesByDepartment>

A clear benefit of using SQLXML-annotated XML schemas is that developers can
design the structure of the XML data to fit their own needs.

Using SQLXML XML Views
A SQLXML XML view is an XML file that declares optional input parameters, a query,
and a resulting XML structure. The result of executing an XML view is an XML
fragment.

302 Chapter 8 Managing XML Data

C0862271X.fm Page 302 Friday, April 29, 2005 7:38 PM
The input parameters enable you to accept external values that you can then use as
arguments in the queries declared inside the XML view. The queries inside an XML
view can be of two types: XPATH queries, which are executed over an annotated XSD
schema, or Transact-SQL queries that use the FOR XML expression. You can write
any number of queries inside the XML view, and different queries can fill in different
sections of the resulting XML structure.

The following sample XML view combines all these features:

<BonusCandidates xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:header>

<sql:param name="DeptID">1</sql:param>
</sql:header>
<NineAndTenYears>

<sql:query>
SELECT EmployeeID, StartDate, DATEDIFF(year, StartDate, GETDATE()) AS 'YearsInRole'
FROM HumanResources.EmployeeDepartmentHistory AS Employee
WHERE (EndDate IS NULL) AND (DATEDIFF(year, StartDate, GETDATE()) > 8)
ORDER BY StartDate
FOR XML AUTO

</sql:query>
</NineAndTenYears>
<DepartmentOfTheMonth>

<sql:xpath-query mapping-schema="EmployeeHiredDate.xsd">
EmployeesByDepartment/Department[@ID=$DeptID]

</sql:xpath-query>
</DepartmentOfTheMonth>
</BonusCandidates>

The result of executing this XML view is the following:

<BonusCandidates xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<NineAndTenYears>

<Employee EmployeeID="1" StartDate="1996-07-31T00:00:00" YearsInRole="10"/>
<Employee EmployeeID="2" StartDate="1997-02-26T00:00:00" YearsInRole="9"/>
<Employee EmployeeID="3" StartDate="1997-12-12T00:00:00" YearsInRole="9"/>

</NineAndTenYears>
<DepartmentOfTheMonth>

<Department ID="2" Name="Tool Design">
<Employee ID="4" LoginID="adventure-works\rob0">

<Title>Senior Tool Designer</Title>
<HireDate>1998-01-05T00:00:00</HireDate>

</Employee>
<Employee ID="5" LoginID="adventure-works\thierry0">

<Title>Tool Designer</Title>
<HireDate>1998-01-11T00:00:00</HireDate>

</Employee>
<Employee ID="263" LoginID="adventure-works\ovidiu0">

<Title>Senior Tool Designer</Title>
<HireDate>2001-01-05T00:00:00</HireDate>

</Employee>

Lesson 3: Retrieving XML Data by Using SQL Server Middle-Tier Technologies 303

C0862271X.fm Page 303 Friday, April 29, 2005 7:38 PM
<Employee ID="265" LoginID="adventure-works\janice0">
<Title>Tool Designer</Title>
<HireDate>2001-01-23T00:00:00</HireDate>

</Employee>
</Department>

</DepartmentOfTheMonth>
</BonusCandidates>

XML view files accept the keywords that Table 8-5 describes.

Some important restrictions that exist when using XML views include these:

■ SQLXML 4.0 does not support all XPATH functions and syntaxes. For example,
SQLXML 4.0 does not support the root query (/). Every XPATH query must
begin at the top-level element in the schema.

■ In SQLXML 4.0, document order is not always maintained, so XPATH numeric
predicates and axes that use document order are not implemented. XPATH axes
represent a step in an XPATH expression that defines the set of nodes that the
expression should return. And XPATH predicates represent a conditional filter
applied to the collection of nodes defined by the axes in an XPATH expression.

Table 8-5 Keywords for XML View Files

Keyword Description

sql:header Declares a header section used to declare input parameters.

sql:param Declares an input parameter. The name attribute indicates the
parameter’s identification name. The content value represents
the default value in case the parameter is not sent when the
view is executed.

sql:query Declares a section in which a Transact-SQL query can be writ-
ten. This query statement is sent as-is to the database server,
so you have access to all query features supported by SQL
Server 2005, including the different FOR XML modes
explained previously.

sql:xpath-query Declares a section in which an XPATH expression can be writ-
ten. The mapping-schema attribute points to an annotated XSD
schema to be used as source. Note in the previous example
that the DeptID attribute is prefixed with the dollar sign ($)
when used inside the query.

304 Chapter 8 Managing XML Data

C0862271X.fm Page 304 Friday, April 29, 2005 7:38 PM
Only matching nodes will be returned by the XPATH expression. For example,
the XPATH expression Customer[1] indicates that only the first Customer element
found should be retrieved. This expression is illegal in SQLXML 4.0.

■ SQLXML 4.0 does not support cross-product XPATH queries. For example,
SQLXML does not support the following query, which selects all Customers with
any Order for which the OrderDate equals the ShipDate of any Order: Custom-
ers[Order/@OrderDate=Order/@ShipDate].

■ Some XPATH expressions that might contain characters with special meanings
in XML (for example, <, >, &, ‘, “) must be written as escape sequences in the
XPATH expressions (for example, < for less than, > for greater than, &
for ampersand, &apos for apostrophe, and " for quotation mark).

Quick Check
■ What is the result of executing an XML view?

Quick Check Answer

■ The result of executing an XML view is an XML fragment.

Querying Annotated XML Schemas and XML Views from .NET
SQLXML provides a managed API to execute queries against annotated XML schemas
and XML views. Following the same object model as the ADO.NET classes, the API
provides Command, DataAdapter, and Parameter classes that specialize in querying
annotated XSD schemas. The SQLXML API is defined inside the Microsoft.Data.SqlXml
dynamic-link library (DLL).

IMPORTANT Use SqlOleDB provider

When connecting to a database by using the SQLXML classes, you must use the SqlOleDB
provider.

To use SQLXML to execute an XPATH query against an annotated XSD schema, use
the following code:

SqlXmlCommand cmd = new SqlXmlCommand("connection_string");
cmd.CommandText = "XPATH_expression";
cmd.CommandType = SqlXmlCommandType.XPath;
cmd.SchemaPath = "Annotated_XML_Schema_file.xml";
Stream s = cmd.ExecuteStream();

Lesson 3: Retrieving XML Data by Using SQL Server Middle-Tier Technologies 305

C0862271X.fm Page 305 Friday, April 29, 2005 7:38 PM
To execute an XML view file, use the following code:

SqlXmlCommand cmd = new SqlXmlCommand("connection_string");
cmd.CommandText = "XML_View_file.xml";
cmd.CommandType = SqlXmlCommandType.TemplateFile;
System.Xml.XmlReader xr = cmd.ExecuteXmlReader();

The SqlXmlCommand.CommandType property indicates the type of command that will
be processed next. Note that the result of executing an XML view file can be pro-
cessed by either a System.IO.Stream object or a System.Xml.XmlReader object.

The following example shows how to consume the result by using a System.Data.DataSet
and how to pass input parameters to an XML view file:

SqlXmlCommand cmd = new SqlXmlCommand("connection_string");
cmd.CommandText = "XML_View_file.xml";
cmd.CommandType = SqlXmlCommandType.TemplateFile;

SqlXmlParameter param = cmd.CreateParameter();
param.Name = "@param_name";
param.Value = "param_value";

SqlXmlAdapter da = new SqlXmlAdapter(cmd);
System.Data.DataSet ds = new System.Data.DataSet();
da.Fill(ds);

The main benefit of using XML views and annotated XML schemas to query XML
data is that they are easy to maintain because they are stored as files on the file system;
any changes you make to the queries do not require recompiling the application.
Another benefit is that the XML rendering happens where the XML views and anno-
tated XML schemas are deployed, which can be on a different machine than the data-
base server.

PRACTICE Use SQLXML to Query the UniversalLog Table
In this practice, you create an annotated XSD schema for the UniversalLog table. Then
you execute multiple XPATH queries directly from the annotated XSD schema by
using an XML view file. For solutions to the steps in this practice, see the Practice
Files\Chapter8\Lesson 3\SQLXMLViews\SQLXMLViews.csproj Visual Studio 2005
project file on the companion CD.

1. Annotate the following XSD schema with the proper keywords to make this
schema valid as an SQLXML-annotated XSD schema for the UniversalLog table:

<?xml version="1.0"?>
<xsd:schema id="UniversalLogSchema" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Log">
<xsd:complexType>

306 Chapter 8 Managing XML Data

C0862271X.fm Page 306 Friday, April 29, 2005 7:38 PM
<xsd:sequence>
<xsd:element name="Application" />
<xsd:element name="Details"/>

</xsd:sequence>
<xsd:attribute name="ID"/>
<xsd:attribute name="Timestamp" />

</xsd:complexType>
</xsd:element>

</xsd:schema>

❑ The Application element maps to the ApplicationName column.

❑ The Details element maps to the LogRecord column. Because it is an XML-
typed column, it must be marked with the sql:datatype="xml" attribute in
the annotated XSD schema.

❑ The ID attribute maps to the ID column.

❑ The Timestamp attribute maps to the LogDateTime column.

2. Create an XML view file with the following XPATH query: Log[Application=
"SalesApp"]

3. Create a console application in Visual Studio 2005 to execute the XPATH query
directly against the annotated XSD schema or through the XML view file.

4. To create a console application, open Visual Studio 2005 or Visual C# 2005
Express Edition.

5. Point to New in the File Menu and choose Project.

6. In the New Project dialog box, select the Console Application template and
click OK.

7. In the Project menu, choose Add Reference. When the Add Reference dialog box
opens, scroll down and select Microsoft.Data.SqlXml and click OK.

8. Add the following code at the beginning of the file:

using Microsoft.Data.SqlXml;
using System.IO;

9. Add the following code inside the Main method:

string connectionString = "Provider=sqloledb; Data Source=(local);";
connectionString += "Initial Catalog=TK431Chapter8; User Id=sa;";
SqlXmlCommand cmd = new SqlXmlCommand(connectionString);
cmd.CommandText = "Log";
cmd.CommandType = SqlXmlCommandType.XPath;
cmd.SchemaPath = "UniversalLogSchema.xsd";
cmd.RootTag = "UniversalLog";

StreamReader r = new StreamReader(cmd.ExecuteStream());

Console.WriteLine(r.ReadToEnd());
Console.ReadLine();

Lesson 3: Retrieving XML Data by Using SQL Server Middle-Tier Technologies 307

C0862271X.fm Page 307 Friday, April 29, 2005 7:38 PM
Notice that for this code to work, you must modify the connection string to your
specific environment. Set the Data Source to point to the correct SQL Server
instance that you will be connecting, and set the User ID and Password to a cor-
rect credential with permissions to execute queries on the TK431Chapter8 data-
base.

10. Make sure that the connection string in the code points to the correct server and
is using the correct identity to connect to the SQL Server instance.

11. Make sure to copy the UniversalLogSchema.xsd file and the UniversalLog-
View.xml file to the C:\Chapter8\Lesson 3\SQLXMLViews\bin\Debug direc-
tory before running it.

12. Press F5 to start running the sample application.

Lesson Summary
■ SQLXML is a middle-tier COM component that can compose relational data into

XML data by using annotated XSD schemas and XML views.

■ Annotated XSD schemas declare a mapping between an XML schema and a rela-
tional schema so that SQLXML components can infer the relational operations
to execute on the database based on the operations executed against the XML
structure.

■ SQLXML provides a managed API that provides Command, DataAdapter, and
Parameter classes that specialize in querying annotated XSD schemas. The
SQLXML API is defined inside the Microsoft.Data.SqlXml DLL.

■ SQLXML XML view files provide an easy way to manage the format of the result-
ing XML of multiple Transact-SQL and XPATH queries within the same file.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of this book.

308 Chapter 8 Managing XML Data

C0862271X.fm Page 308 Friday, April 29, 2005 7:38 PM
1. What is the mechanism you use to define a mapping between the XML schema
and a relational schema that enables developers to manipulate relational data
without having to write Transact-SQL code?

A. exist() method

B. XML schema collection

C. Annotated XML schema

D. Relational schema

2. What are the main benefits of using XML views and annotated XML schemas to
query XML data? (Choose all that apply.)

A. XML views and annotated XML schemas validate your XML.

B. They are stored as files on the file system, so you don’t have to recompile
the application if you change the files.

C. The XML rendering happens where you deploy the XML views and anno-
tated XML schemas, which can be on a different machine than the database
server.

D. XML views and annotated XML schemas compare the original and current
views of the XML data and automatically create the required Transact-SQL
commands to synchronize the changes from the XML data into relational
data in the database.

Lesson 4: Modifying XML Data 309

C0862271X.fm Page 309 Friday, April 29, 2005 7:38 PM
Lesson 4: Modifying XML Data
SQL Server 2005 offers two technologies that give you the capability to modify an
XML instance by deleting, adding, or updating nodes in the XML structure or by
changing the node contents. The XML data type implements XML data manipulation
language (XML DML) as an extension to the XQUERY and XPATH expressions
already supported. And the SQLXML middle-tier API gives you the option of using
updategrams, so instead of declaring the actual queries to execute, applications just
need to provide the final view of the XML instance. By comparing the original and the
final versions of the XML structure, SQLXML can formulate the set of Transact-SQL
operations required to synchronize the XML data with the relational data.

This lesson covers the most important techniques for updating XML data in SQL
Server 2005 and, when appropriate, provides references to external documentation
so that you can learn more about a specific feature. All the code examples in this les-
son use the AdventureWorks sample database installed by the SQL Server 2005 Setup.

After this lesson, you will be able to:

■ Choose whether to use the XML data type or SQLXML to modify XML data.

■ Use the modify() method of the XML data type to insert, modify, or delete XML con-
tent and XML structure elements.

■ Use SQLXML updategrams to generate Transact-SQL INSERT, UPDATE, and DELETE
statements without writing any Transact-SQL code.

Estimated lesson time: 30 minutes

Real World
Adolfo Wiernik

Previous versions of SQL Server did not provide a way to update XML data at the
node level. The only technology available was SQLXML updategrams, which are
covered in this lesson. But updategrams enable you to modify relational data rep-
resented as XML data. Updategrams provide modification capabilities for data
viewed as XML and not stored as XML. Another possibility was to use OPENXML,
convert the XML structure into a tabular format, update it, and then convert it
back into XML. Of course, this caused heavy processor and memory usage. The
last and easiest solution was to update the XML data by using a middle-tier tech-
nology such as Document Object Model (DOM) or Simple API for XML (SAX), but
this meant that the database was not aware of the changes being made.

310 Chapter 8 Managing XML Data

C0862271X.fm Page 310 Friday, April 29, 2005 7:38 PM
But with SQL Server 2005, I have another, easier, option. I can store data in the
new XML data type and use the modify() method to insert, delete, or update the
XML data. And what’s great about the modify() method is that it enables me to
modify both values inside XML nodes and the XML structure.

Modifying XML Values and XML Structure
Depending on how XML data is stored, SQL Server 2005 offers two different technol-
ogies for modifying the data:

■ If the data is stored in an XML data type, use the modify() method to insert,
delete, or update the XML data. The modify() method supports modifying both
the values inside XML nodes and the structure of the XML fragment.

■ If the data is stored in a relational structure but processed as XML, by using
either the FOR XML statements or an annotated XSD schema, use the SQLXML
Updategrams feature, which supports modifying the XML values inside the
XML nodes. Because the data is not stored natively as XML, it does not support
modifying the XML structure.

Using the modify() Method in the XML Data Type
The XQUERY language does not provide data-manipulation keywords. But Microsoft
has extended the XQUERY capabilities in SQL Server 2005 by including a set of
instructions that you can use to add, update, or delete XML data (XML DML). The
modify() method of the XML data type receives a single input parameter that must be
a valid XML DML expression and executes it over the XML fragment that it contains.

The XML DML language provided by SQL Server 2005 supports the following
keywords:

■ insert Instructs SQL Server 2005 to insert one or more nodes as children or
siblings of a specified node. The insert construction is made of two expressions
and an operator. The first expression can return a single node or a set of nodes.
The second expression must return a single node. Both expressions can be con-
structed by using constant values or by providing an XQUERY expression. The
operator that joins both expressions can be one of the following:

❑ into Indicates that the nodes must be inserted as children of the node
identified by the second expression. If the node already has child nodes,
the XML DML expression could indicate whether the new nodes should be

Lesson 4: Modifying XML Data 311

C0862271X.fm Page 311 Friday, April 29, 2005 7:38 PM
inserted as the first nodes (by specifying as first into) or as the last nodes
(by specifying as last into, which is the default).

❑ after Indicates that the nodes must be inserted after the node identified
by the second expression so that they become siblings.

❑ before Indicates that the nodes must be inserted before the node identi-
fied by the second expression so that they become siblings.

❑ replace value of Instructs SQL Server 2005 to update the value of a spec-
ified node. The replace value of construction comprises two expressions.
The first expression must be a single node. The second expression can be
constructed by using constant values or by providing an XQUERY expres-
sion that returns a set of nodes.

❑ delete Instructs SQL Server 2005 to delete one or more nodes from the
XML structure. The delete construction is made of a single XQUERY
expression that returns a set of nodes to be removed from the XML
instance.

You call the modify() method of the XML data type by using the SET expression,
either as a stand-alone expression or as part of an UPDATE statement.

When modifying a typed XML instance, the final XML format must be a valid instance
of that type as declared on an XML schema collection. Otherwise, a validation error is
returned.

The examples in this lesson are based on the following initial query from Lesson 2 in
this chapter:

USE AdventureWorks
GO
DECLARE @X XML

SET @X = (SELECT Department.[DepartmentID] 'Department/@id'

,Department.[Name] 'Department/@name',
(
SELECT History.[EmployeeID] 'Employee/@id'

,History.[StartDate] 'Employee/@StartDate'
,DATEDIFF(year, History.[StartDate], GetDate()) 'Employee/@YearsInRole'

FROM HumanResources.EmployeeDepartmentHistory History
WHERE Department.DepartmentID = History.DepartmentID

AND History.EndDate IS NULL
ORDER BY History.[StartDate]
FOR XML PATH(''), TYPE
) 'Department/Employees'

FROM HumanResources.Department
ORDER BY Department.[DepartmentID]

FOR XML PATH (''),ROOT('Departments'), TYPE)

312 Chapter 8 Managing XML Data

C0862271X.fm Page 312 Friday, April 29, 2005 7:38 PM
If you display the contents of the @X variable, you see the following partial result:

<Departments>
...

<Department id="2" name="Tool Design">
<Employees>

<Employee id="5" StartDate="1998-01-11T00:00:00" YearsInRole="8" />
<Employee id="4" StartDate="2000-07-01T00:00:00" YearsInRole="6" />
<Employee id="263" StartDate="2001-01-05T00:00:00" YearsInRole="5" />
<Employee id="265" StartDate="2001-01-23T00:00:00" YearsInRole="5" />

</Employees>
</Department>

...
</Departments>

To demonstrate the modify() method and the XML DML keywords, let’s walk through
a short series of scenarios. Suppose you were assigned the task of creating a new
department for customer service. Because customer service is very important, all
employees who have been working for the company more than eight years will be
assigned to that department. The following XML DML expression uses the insert key-
word with the before operator to insert a new Department node:

SET @X.modify('
insert <Department id="17" name="Customer Service"><Employees/></Department>
before (/Departments/Department)[1]')

The next XML DML expression uses the insert keyword with the into operator to
insert all employees who have been working for the company more than eight years
into the newly created department node:

SET @X.modify('
insert /Departments/Department/Employees/Employee[@YearsInRole>8]
into (/Departments/Department[@id=17]/Employees)[1]')

The following XML DML modify() expression uses insert with the into operator to
modify the XML structure by adding a new bonus attribute for the employees who
have been with the company the longest as an incentive for moving into the new
department:

SET @X.modify('
insert attribute bonus {"true"}
into (/Departments/Department[@id=17]/Employees/Employee[@YearsInRole =
max(/Departments/Department[@id=17]/Employees/*/@YearsInRole)])[1]')

If you display the contents of the @X variable, you see the following partial result:

<Departments>
<Department id="17" name="Customer Service">

<Employees>
<Employee id="3" StartDate="1997-12-12T00:00:00" YearsInRole="9" />

Lesson 4: Modifying XML Data 313

C0862271X.fm Page 313 Friday, April 29, 2005 7:38 PM
<Employee id="2" StartDate="1997-02-26T00:00:00" YearsInRole="9" />
<Employee bonus="true" id="1" StartDate="1996-07-31T00:00:00" YearsInRole="10" />

</Employees>
</Department>

...
<Departments>

Now, let’s say that you must remove the Employee nodes with IDs 1, 2, and 3 from
their previous departments (7, 4, 1) by using the delete keyword:

SET @X.modify('delete /Departments/Department[@id=7]/Employees/Employee[@id=1]')
SET @X.modify('delete /Departments/Department[@id=4]/Employees/Employee[@id=2]')
SET @X.modify('delete /Departments/Department[@id=1]/Employees/Employee[@id=3]')

And management has also decided that the new department should not be called
Customer Service; you need to use the replace value of keyword to change its name
to Customer Assistance:

SET @X.modify('
replace value of (/Departments/Department[@id=17]/@name)[1]
with "Customer Assistance"')

Quick Check
1. What are the three keywords in XML DML as defined by SQL Server 2005?

2. How would you use the modify() method in a Transact-SQL UPDATE state-
ment?

Quick Check Answers

1. The three XML DML keywords in SQL Server 2005 are insert, replace value
of, and delete.

2. The following code example shows how you would use the modify()
method in a Transact-SQL UPDATE statement:

UPDATE UniversalLog
SET LogRecord.modify('

replace value of (logRecord/error/module)[1]
with "BusinessLayerComponent" ')

WHERE ID = 5

Using SQLXML Updategrams
An updategram is an XML fragment that declares an original and a current view of an
XML structure. By comparing the original and current views of the XML data,
SQLXML can create the required Transact-SQL commands to synchronize the
changes from the XML data into relational data in the database.

314 Chapter 8 Managing XML Data

C0862271X.fm Page 314 Friday, April 29, 2005 7:38 PM
An annotated XSD schema can support an updategram, so SQLXML can be aware of
the mapping between the XML schema and the relational schema. If an annotated
XSD schema is not available, the updategram implementation in SQLXML tries to do
an implicit mapping, taking the names of the XML nodes as table and column names.

An updategram comprises three sections:

■ Namespace declaration The following namespace declares the reserved update-
gram keywords: xmlns:updg="urn:schemas-microsoft-com:xml-updategram"

■ Optional header section As in the XML views, the optional header section allows
for the declaration of input parameters in the updategram.

■ One or more sync sections Each sync section declares a transaction scope. All the
operations inside each sync section are executed as an atomic operation: they
must either all succeed or all fail. Each sync section can be associated with a dif-
ferent annotated XSD schema by using the mapping-schema attribute. The sync
section contains any number of before and after sections (they should be
declared in pairs). The before section represents the original version of the XML
data; the after section represents the current version of the XML data.

When using SQLXML updategrams to generate Transact-SQL statements to insert,
delete, and update data, remember the following requirements:

■ If you want to generate a Transact-SQL INSERT statement, the XML fragment
must be in the after section. The before section can be omitted.

■ If you want to generate a Transact-SQL DELETE statement, the XML fragment
must be in the before section. The after section can be omitted.

■ If you want to generate a Transact-SQL UPDATE statement, the before section
and the after section must be declared. Based on the differences between them,
SQLXML formulates the UPDATE statement.

MORE INFO Special updategram keywords for Insert, Update, and Delete

Special keywords enable you to execute different tasks such as handling null values, handling
automatic values such as Identity columns or globally unique identifier (GUID) columns, and
matching a specific before version of the data with an after version of the data when multiple
before and after nodes are provided inside the same sync section.

Read the following sections in SQL Server 2005 Books Online for more information about the
special keywords that you can specify in the XML structure:

❑ “Inserting Data Using XML Updategrams”

❑ “Updating Data Using XML Updategrams”

❑ “Deleting Data Using XML Updategrams”

Lesson 4: Modifying XML Data 315

C0862271X.fm Page 315 Friday, April 29, 2005 7:38 PM
Let’s take the same example we used for the modify() method of the XML data type
and adjust it to use updategrams. First, let’s create an annotated XSD schema called
Department.xsd for the HumanResources.Departments table in the AdventureWorks
database:

<?xml version="1.0"?>
<xs:schema id="Department" xmlns:sql="urn:schemas-microsoft-com:mapping-schema"

xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="NewDepartment" sql:relation="HumanResources.Department">

<xs:complexType>
<xs:sequence>

<xs:element name="ID" sql:field="DepartmentID" />
<xs:element name="Name" />
<xs:element name="GroupName" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Now we can create an updategram to insert a new department, saved in a file called
DepartmentUpdg.xml:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:header>

<updg:param name="DepartmentName"></updg:param>
</updg:header>
<updg:sync mapping-schema="Department.xsd">
<updg:before>
</updg:before>
<updg:after>

<NewDepartment>
<Name>@DepartmentName</Name>
<GroupName>Quality Assurance</GroupName>

</NewDepartment>
</updg:after>
</updg:sync>

</ROOT>

And last, let’s create a .NET application to execute the updategram. Remember to add
a reference to Microsoft.Data.dll:

SqlXmlCommand cmd = new SqlXmlCommand("connection_string");

cmd.CommandStream = new FileStream("DepartmentUpdg.xml", FileMode.Open, FileAccess.Read);
cmd.CommandType = SqlXmlCommandType.DiffGram;

SqlXmlParameter p = cmd.CreateParameter();
p.Name = "@DepartmentName";
p.Value = "Customer Assistance";

cmd.ExecuteNonQuery();

316 Chapter 8 Managing XML Data

C0862271X.fm Page 316 Friday, April 29, 2005 7:38 PM
When you execute this code, it generates the following dynamic Transact-SQL code to
be executed by SQL Server 2005:

exec sp_executesql N' SET XACT_ABORT ON
BEGIN TRAN
DECLARE @eip INT, @r__ int, @e__ int
SET @eip = 0
INSERT HumanResources.Department (Name, GroupName) VALUES (N''@DepartmentName'', N''Quality
Assurance''); SELECT @e__ = @@ERROR, @r__ = @@ROWCOUNT
IF (@e__ != 0 OR @r__ != 1) SET @eip = 1

IF (@eip != 0) ROLLBACK ELSE COMMIT
SET XACT_ABORT OFF
',N'@DepartmentName nvarchar(19)',N'Customer Assistance'

MORE INFO Be careful when handling database concurrency issues

If one user alters the data in the database right before another user, it could be that both the
before and after sections of data are out of date. Updategrams take an optimistic concurrency
approach to handling concurrent updates to data in the database. This topic is beyond the scope
of this chapter, but to learn how to handle database concurrency issues in updategrams, see the
topic “Handling Database Concurrency Issues in Updategrams” in SQL Server 2005 Books Online.

PRACTICE Modifying XML Data
This practice is constructed over the results of the previous practices in Lessons 2 and
3. If you have not completed these practices, please go back and follow the instruc-
tions to complete them. In this practice, you modify the XML data inside the Univer-
salLog table by using XML DML. Then you create an updategram to insert new
records into the UniversalLog table.

NOTE Code available on the companion CD

The Practice Files\Chapter8\Lesson 4\CompleteLesson4.sql file provides the solution for the exer-
cises in Practice 1 in this lesson.

� Practice 1: Modify XML Data by Using XML DML

In this exercise, you create the Transact-SQL statements to modify the contents of the
UniversalLog table. If you completed the practices from previous lessons, the Universal-
Log table contains five rows.

1. The first row is from the SalesApp application. The LogRecord column contains
the following XML fragment:

<logRecord machine="server1" timestamp="2000-01-12T12:13:14Z">
<post eventType="appStart">

Lesson 4: Modifying XML Data 317

C0862271X.fm Page 317 Friday, April 29, 2005 7:38 PM
<moreInformation>All Services starting</moreInformation>
</post>

</logRecord>

2. Issue an UPDATE statement by using the modify() method of the XML data type
to modify this XML into a fragment that looks like this:

<logRecord machine="server1" timestamp="2000-01-12T12:13:14Z">
<post eventType="appStart">

<moreInformation>All Services starting</moreInformation>
</post>

<information flag="custom">
<message>SQL Server service is starting</message>

</information>
</logRecord>

3. The fifth row is from the HoursReport application. Update the XML data con-
tained in the LogRecord column. Change the information message in the
logRecord/information/message XML element to be “Not enough memory.”

4. The fourth row is from the CustomerService application. Update the XML data
contained in the LogRecord column. Delete the logRecord/post XML element.

5. Execute a SELECT statement to read all data from the UniversalLog table and ver-
ify that the changes were applied.

NOTE Code available on the companion CD

The files in the Chapter8\Lesson 4\Updategram\Updategram.csproj Visual Studio project
provide the solution for the exercises in Practice 2 in this lesson.

� Practice 2: Insert New Rows by Using a SQLXML Updategram

In the practice in Lesson 3, you created an annotated XSD schema for the Universal-
Log table. In this exercise, you create an updategram that matches that schema and
use it to insert new records into the UniversalLog table.

1. Create an updategram to insert new values into the UniversalLog table. Use this
updategram as a reference:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:header>

<updg:param name="AppName"></updg:param>
<updg:param name="Message"></updg:param>

</updg:header>
<updg:sync mapping-schema="UniversalLogSchema.xsd">
<updg:before>
</updg:before>

318 Chapter 8 Managing XML Data

C0862271X.fm Page 318 Friday, April 29, 2005 7:38 PM
<updg:after>
<Log Timestamp="2000-01-01T06:00:00.000">

<Application>$AppName</Application>
<Details>$Message</Details>

</Log>
</updg:after>
</updg:sync>

</ROOT>

2. Create a console application in Visual Studio 2005 to execute this updategram.
Your code should look like this:

SqlXmlCommand cmd = new SqlXmlCommand("Provider=sqloledb;Data Source=(local);
Initial Catalog=TK431Chapter8;User Id=sa;");

cmd.CommandStream = new FileStream("NewLogRecordUpdategram.xml",

FileMode.Open, FileAccess.Read);
cmd.CommandType = SqlXmlCommandType.DiffGram;

SqlXmlParameter appName = cmd.CreateParameter();
appName.Name = "@AppName";
appName.Value = "CustomerAssistance";

SqlXmlParameter message = cmd.CreateParameter();
message.Name = "@Message";
message.Value = @"<logRecord machine='WebHostingServer' timestamp='2000-01-
01T06:00:00Z'>

<post eventType='appStart'><moreInformation>The web server is under attack</
moreInformation>

</post></logRecord>";

cmd.ExecuteNonQuery();

Lesson Summary
■ SQL Server 2005 supports updating XML documents. It supports modifying

both XML values and the XML structure.

■ The XML data type in SQL Server 2005 implements the modify() method to
allow updating of XML data. The modify() method accepts as input parameters
an XQUERY language extension for data manipulation.

■ SQLXML updategrams enable you to update relational data represented as XML
data. SQLXML updategrams are XML documents that compare the original and
current versions of XML data. They then execute Transact-SQL INSERT,
UPDATE, and DELETE statements based on the differences between the
versions.

■ You can execute updategrams from .NET applications.

Lesson 4: Modifying XML Data 319

C0862271X.fm Page 319 Friday, April 29, 2005 7:38 PM
Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of this book.

1. Which of the following technologies would you use to update the XML values as
well as the XML structure of an XML document?

A. SQLXML-annotated XSD schemas

B. SQLXML updategrams

C. The modify() method of the XML data type with XML DML

D. OPENXML in an UPDATE statement

2. What is the result of executing the following XML DML expression?

SET @X.modify('
insert

for $e in /Departments/Department[@id=1]/Employees/Employee
return $e

before (/Departments/Department[@id=1]/Employees/Employee)[1]')

A. Inserts the constant expression “for $e in /Departments/Department
[@id=1]/Employees/Employee return $e” as a child of the /Departments/
Department[@id=1]/Employees/Employee node.

B. Duplicates the nodes contained inside /Departments/Department[@id=1]/
Employees/Employee.

C. Copies the contents of the /Departments/Department[@id=1]/Employees/
Employee node into the first Employee node found under Employees, under
Department, and under Departments.

D. Returns an error: XQUERY not supported with the insert XML DML
keyword.

320 Chapter 8 Managing XML Data

C0862271X.fm Page 320 Friday, April 29, 2005 7:38 PM
Lesson 5: Converting Between XML Data and
Relational Data

Previous lessons examined the various techniques you can use to retrieve XML data
from SQL Server 2005. This lesson focuses on the opposite operation: converting
XML data into relational data, often called shredding. SQL Server 2005 offers three
options for shredding XML data:

■ Use OPENXML and the XML stored procedures.

■ Use the XML data type’s nodes() method along with the APPLY operators.

■ Use the SQLXML middle-tier API to bulk load XML data.

This lesson covers the most important techniques for converting XML data into rela-
tional data and, where appropriate, references external documentation so that you
can learn more about a specific feature. All code examples in this lesson use the Adven-
tureWorks sample database installed by SQL Server 2005 Setup.

After this lesson, you will be able to:

■ Choose the proper strategy between using OPENXML, the nodes() method in the
XML data type, and SQLXML-annotated XSD schemas when shredding XML data.

■ Decide when to use implicit or explicit mapping when using OPENXML.

■ Use the APPLY operators when querying an XML data type column.

■ Create annotated XSD schemas and bulk load XML data into the database.

Estimated lesson time: 40 minutes

Shredding XML Using OPENXML and XML Stored Procedures
SQL Server 2000 first provided support for shredding XML data into a relational rep-
resentation by using the OPENXML Transact-SQL instructions and XML stored pro-
cedures. SQL Server provides two important stored procedures for shredding XML
documents:

■ sp_xml_preparedocument takes an XML document, parses it using an XML parser,
and loads it into memory in a DOM-like structure. The stored procedure returns
a memory handle to the in-memory parsed structure as an output parameter.

■ sp_xml_removedocument receives a memory handle to a parsed XML structure;
then deallocates and cleans up the memory space.

Lesson 5: Converting Between XML Data and Relational Data 321

C0862271X.fm Page 321 Friday, April 29, 2005 7:38 PM
Between these two calls, developers must use the OPENXML statement to transform
the loaded XML structure into tabular format.

The OPENXML statement returns a result set, so you can use it wherever a result set
is expected inside the Transact-SQL language—for example, in the FROM clause of a
SELECT statement.

SQL Server 2005 implements two important changes to the way OPENXML works:

■ It adds support to the new data types available in SQL Server 2005, including
the XML data type and the (n)varchar(max) data types.

■ It uses a new version of the MSXML parser that is used to parse the input XML,
optimized especially for SQL Server loading requirements.

CAUTION Memory requirements for using OPENXML

One of the most important issues in using OPENXML is that you need to fully load the XML docu-
ment into memory before shredding it into relational data. Depending on the size of the XML doc-
ument, this process can allocate a lot of memory from the database server. You need to run tests
to ensure that loading the XML document into memory will not overly tax your installation.

Using OPENXML
The OPENXML statement receives three input parameters: the handle to the in-mem-
ory parsed XML structure, an XPATH expression that filters the XML nodes to be pro-
cessed, and an optional mapping scheme. The mapping scheme is used to define the
relationship between the XML elements and attributes and a table schema.
OPENXML supports two mapping modes: implicit mapping and explicit mapping.

The OPENXML statement also enables you to declare a table schema to define the
table format that should be returned by the execution of the OPENXML statement.

The examples in this lesson will be based on the initial query from Lesson 2 in this
chapter:

USE AdventureWorks
GO
DECLARE @X XML

SET @X = (SELECT Department.[DepartmentID] 'Department/@id'

,Department.[Name] 'Department/@name',
(
SELECT History.[EmployeeID] 'Employee/@id'

,History.[StartDate] 'Employee/@StartDate'
,DATEDIFF(year, History.[StartDate], GetDate()) 'Employee/@YearsInRole'

322 Chapter 8 Managing XML Data

C0862271X.fm Page 322 Friday, April 29, 2005 7:38 PM
FROM HumanResources.EmployeeDepartmentHistory History
WHERE Department.DepartmentID = History.DepartmentID

AND History.EndDate IS NULL
ORDER BY History.[StartDate]
FOR XML PATH(''), TYPE
) 'Department/Employees'

FROM HumanResources.Department
ORDER BY Department.[DepartmentID]

FOR XML PATH (''),ROOT('Departments'), TYPE)

A partial result of executing this query is as follows:

<Departments>
...

<Department id="2" name="Tool Design">
<Employees>

<Employee id="5" StartDate="1998-01-11T00:00:00" YearsInRole="8" />
<Employee id="4" StartDate="2000-07-01T00:00:00" YearsInRole="6" />
<Employee id="263" StartDate="2001-01-05T00:00:00" YearsInRole="5" />
<Employee id="265" StartDate="2001-01-23T00:00:00" YearsInRole="5" />

</Employees>
</Department>

...
</Departments>

Implicit Mapping in OPENXML
The OPENXML statement provides an implicit XML mapping infrastructure in which
SQL Server tries to automatically map XML elements and attributes into columns.
The mapping is based on two items:

■ A flag value that tells SQL Server to interpret the XML as an attribute-centric struc-
ture, as an element-centric structure, or as a combination of the two. Table 8-6
describes the key values to specify in the flags parameter.

Table 8-6 Flag Values for Implicit Mapping in OPENXML

Value Description

0 SQL Server 2005 will try to extract the values by using attribute-centric
mapping. Each XML attribute will be converted into a column.

1 SQL Server 2005 will try to extract the values by using attribute-centric
mapping. Each XML attribute will be converted into a column. If col-
umns are not mapped yet, element-centric mapping is applied.

2 SQL Server 2005 will try to extract the values by using element-centric
mapping. Each XML element will be converted into a column.

Lesson 5: Converting Between XML Data and Relational Data 323

C0862271X.fm Page 323 Friday, April 29, 2005 7:38 PM
■ The (case sensitive) names of the elements in the XML structure, which must
match the name of the columns as declared on the returning table schema.

The following code example shows how to use OPENXML properly with implicit
mapping:

DECLARE @h INT

EXEC sp_xml_preparedocument @h OUTPUT, @X
SELECT *
FROM OPENXML(@h , '/Departments/Department/Employees/Employee', 3)
WITH (id INT,

YearsInRole int,
StartDate datetime)

WHERE YearsInRole >= 8

EXEC sp_xml_removedocument @h
GO

The @h variable will contain the memory handle to the parsed XML structure. The @X
variable contains the XML structure. It is of type XML. The OPENXML statement filters
the XML structure by executing the given XPATH query. The resulting XML nodes are
converted into the table structure declared inside the WITH clause. Figure 8-3 shows
the result of this query.

Figure 8-3 Result of running example OPENXML query with implicit mapping

Explicit Mapping in OPENXML
Using the explicit XML mapping syntax, developers can manually specify the rela-
tionship between an XML structure and the return table schema. Instead of using the
flags parameter and the element names, you must provide a column mapping pattern

324 Chapter 8 Managing XML Data

C0862271X.fm Page 324 Friday, April 29, 2005 7:38 PM
to explicitly specify how to map each column to the XML data, as shown in the fol-
lowing code example:

DECLARE @h INT

EXEC sp_xml_preparedocument @h OUTPUT, @X

SELECT *
FROM OPENXML(@h , '/Departments/Department/Employees/Employee')
WITH (

ID INT '../../@id',
StartDate datetime,
[Name] nvarchar(max) '../../@name',
YearsInRole int)

WHERE YearsInRole = 8

EXEC sp_xml_removedocument @h
GO

Notice that the column declarations inside the WITH clause explicitly indicate how to
extract the values from the values contained inside the XML document. The ID col-
umn is mapped to the ID attribute of the Department element, and the Name column
is mapped to the name attribute of the Department element. Figure 8-4 shows the
result of this query.

Figure 8-4 Result of running example OPENXML query with explicit mapping

MORE INFO Edge Table

If the WITH clause is not specified in the OPENXML statement, SQL Server returns an internal rela-
tional representation of the XML data called an Edge Table. The Edge Table can be further queried
to get information about the structure of the XML data. To learn about the structure of the Edge
Table, see the topic “OPENXML (Transact-SQL)” in SQL Server 2005 Books Online.

Lesson 5: Converting Between XML Data and Relational Data 325

C0862271X.fm Page 325 Friday, April 29, 2005 7:38 PM
Shredding XML by Using the XML Data Type’s nodes() Method
With the inclusion of the XML data type in SQL Server 2005, Microsoft had to solve
a new problem: how to shred the contained XML data from the XML data type
instance into a tabular-relational format. Instead of having to convert the XML data
into a string type and paying the high price of loading the whole XML structure into
memory by using OPENXML, the XML data type provides its own shredding mecha-
nism: the nodes() method.

The nodes() method returns a tabular result set. This result set represents a table con-
taining a single column of type XML. A new row is returned for each XML node that
matches a given XQUERY expression.

Because the result set returned from the nodes() method contains a single column of
type XML, you should apply the other methods available in the XML data type—
value(), query(), exist()—to extract data out of each row.

The following code shows how to use the nodes() method:

SELECT C.value('@id','int') AS ID,
C.value('@name','nvarchar(max)') AS [NAME],
C.value('count(./Employees/*)', 'int') AS EMPLOYEE_COUNT,
C.query('./Employees') AS EMPLOYEE_LIST

FROM @X.nodes('/Departments/Department') T(C)
GO

Figure 8-5 shows the result of this query.

Figure 8-5 Result of query that uses the nodes() method

326 Chapter 8 Managing XML Data

C0862271X.fm Page 326 Friday, April 29, 2005 7:38 PM
NOTE OPENXML and nodes() method performance

The nodes() method is more efficient than the OPENXML statement because it does not have to load
into memory and parse the XML structure before querying and shredding it. The XML data type in SQL
Server 2005 stores the XML data in an internal structure that looks very similar to an Edge Table.

Using CROSS APPLY and OUTER APPLY Operators
When a table contains a column of type XML, you cannot call the nodes() method in
the SELECT expression. Because the nodes() method returns a result set, the SELECT
expression will not permit you to call it; thus, you cannot use a query like the follow-
ing example:

-- Create a new table
CREATE TABLE T(C1 XML);

-- Query the table
SELECT C1.nodes('XQUERY expression')
FROM T

Because the nodes() method must be called at the XML column, it is also impossible
to call the nodes method in the FROM section of a SELECT expression, so you can’t
use the following query, either:

-- Create a new table
CREATE TABLE T(C1 XML);

-- Query the table
SELECT *
FROM T.C1.nodes('XQUERY expression')

To call the nodes() method on an XML type column, you must use the APPLY opera-
tors, which enable you to invoke a function for each row returned from a query.

The CROSS APPLY operator returns from the invoked function only those results that
are not NULL. The OUTER APPLY operator returns all results, even if they are NULL.
By using the APPLY operators, you can invoke the nodes() method for each row
returned from a query.

The following code shows how to use the nodes() method from an XML type column
by using the CROSS APPLY operator:

SELECT T.C.value('@id','int') AS ID,
T.C.value('@name','nvarchar(max)') AS [NAME],
T.C.value('count(./Employees/*)', 'int') AS TOTAL_EMPLOYEE_COUNT,
T2.C.query('.') EMPLOYEES_OLDER_THAN_7

FROM @X.nodes('/Departments/Department') T(C)
CROSS APPLY T.C.nodes('./Employees[Employee/@YearsInRole>7]') T2(C)

Lesson 5: Converting Between XML Data and Relational Data 327

C0862271X.fm Page 327 Friday, April 29, 2005 7:38 PM
Figure 8-6 shows the result of this query.

Figure 8-6 Results of query that uses the nodes() method with the CROSS APPLY operator

The following code shows how to use the nodes() method from an XML type column
by using the OUTER APPLY operator:

SELECT T.C.value('@id','int') AS ID,
T.C.value('@name','nvarchar(max)') AS [NAME],
T.C.value('count(./Employees/*)', 'int') AS TOTAL_EMPLOYEE_COUNT,
T2.C.query('.') EMPLOYEES_OLDER_THAN_7

FROM @X.nodes('/Departments/Department') T(C)
OUTER APPLY T.C.nodes('./Employees[Employee/@YearsInRole>7]') T2(C)

Figure 8-7 shows the result of this query.

Figure 8-7 Results of query using the nodes() method with the Outer Apply operator

Quick Check
■ Why are the APPLY operators necessary?

Quick Check Answer

■ You need the APPLY operators to correlate the results from the nodes()
method with the results of other XML data type methods being called in
the SELECT statement. Otherwise, you would not be able to call any of the
XML data type methods.

328 Chapter 8 Managing XML Data

C0862271X.fm Page 328 Friday, April 29, 2005 7:38 PM
Shredding XML by Using SQLXML
SQLXML-annotated XSD schemas enable you to bulk load XML data coming from a
file into a database and to transform that data into tabular-relational format when the
data is inserted. To bulk load XML data by using SQLXML, you must execute the fol-
lowing steps:

1. Create the database schema by issuing the required CREATE DATABASE and
CREATE TABLE statements.

2. Update the XML schema file with the necessary annotations to create an anno-
tated XSD schema, as you learned in Lesson 3.

3. Use the SQLXML API to load both the annotated schema and the XML data that
needs to be loaded into the database and to bulk load the XML data into the
database. To do this, follow these steps:

A. Open a .NET Framework 2.0 SDK command-line window and navigate to
C:\Program Files\Common Files\System\Ole DB.

B. Type tlbimp xblkld4.dll to generate a proxy for the COM library; then
press Enter to execute it.

C. The utility should print “Type library imported to SQLXMLBULKLOADLib.dll”
if it succeeded.

D. Add a reference to the SQLXMLBULKLOADLib.dll assembly from the
Visual Studio 2005 project in which you want to bulk load XML data.

E. If the project is an executable assembly, add the [STAThread] attribute to the
Main method. If the SQLXMLBULKLOADLib.SQLXMLBulkLoad4Class
object is being called from a custom secondary thread, use the Thread.Set-
ApartmentState(ApartmentState.MTA) method before starting the thread. If
the project is a Web application, set the ASPCompat attribute of the @Page
directive like this: <%@ Page AspCompat="true">

F. Add the following code to execute the bulk load:

string connectionString = "Provider=sqloledb; Data Source=SERVER;
Initial Catalog=DATABASE; User Id=USER; Password=PWD";

SQLXMLBULKLOADLib.SQLXMLBulkLoad4Class objBL =
new SQLXMLBULKLOADLib.SQLXMLBulkLoad4Class();
objBL.ConnectionString = connectionString;
objBL.Execute("annotated_XSD_schema.xsd", "XML_data_file.xml");

Lesson 5: Converting Between XML Data and Relational Data 329

C0862271X.fm Page 329 Friday, April 29, 2005 7:38 PM
The SQLXMLBULKLOADLib.SQLXMLBulkLoad4Class object provides different flags
that you can set to enable different functionality, which Table 8-7 describes.

MORE INFO Bulk Loading XML

For more information about the bulk-loading API, see the “SQL Server XML Bulk Load Object
Model” topic in SQL Server Books Online.

Table 8-7 Properties from the SQLXMLBULKLOADLib.SQLXMLBulkLoad4Class Class

Property Description

BulkLoad

SchemaGen

SGDropTables

The combination of these three properties enables you to config-
ure the bulk-load mechanism to generate the relational schema
based on the annotated XSD schema.

■ Set the BulkLoad property to false so that no XML data will
be loaded into the database.

■ Set the SchemaGen property to true so that SQLXML will
issue the required CREATE TABLE Transact-SQL code
based on what is declared on the mapping schema.

■ Set the SGDropTables property to true so that SQLXML will
drop the tables before creating them if they already exist.

XMLFragment If you set the XMLFragment property to true, SQLXML enables
you to bulk load XML fragments (XML data without a root node)
instead of XML documents.

ErrorLogFile Set the ErrorLogFile property to a file name. SQLXML will log in
this file any unhandled errors that occurred during XML bulk
loading.

Transaction

ForceTableLock

SQLXML uses default implicit transactions, so each BULK
INSERT statement will execute in its own transaction.

■ Set the Transaction property to true so that all XML loading
will occur in a single transaction.

■ If necessary, set the ForceTableLock property to true to force
a table-level lock during the bulk insert operation.

330 Chapter 8 Managing XML Data

C0862271X.fm Page 330 Friday, April 29, 2005 7:38 PM
PRACTICE Bulk Loading XML Files
In this practice, you use OPENXML and SQLXML Bulk Load to upload two XML files
into the database. Then you query the data in the UniversalLog table to build some
reports. The queries require you to shred XML into relational data by using the
nodes() method of the XML data type.

NOTE Code available on the companion CD

The Practice Files\Chapter8\Lesson 5\CompleteLesson5.sql file provides the solution for Practice 1
and Practice 3 in this lesson.

� Practice 1: Use OPENXML to Load XML Data

The UniversalLog administrator found an XML file that contains old data that must be
uploaded into the database. The XML file must be loaded into memory by using the
SQLXML XML stored procedures. You then need to insert the data into the Universal-
Log table.

1. The C:\Chapter8\Lesson5\UniversalLog.xml file contains 500 log entries that
you need to upload into the UniversalLog table.

2. Load the UniversalLog.xml file into a XML-typed variable in SQL Server. (Les-
son 1 covered how to load XML files by using the OPENROWSET function in
Transact-SQL.)

3. Use the sp_xml_preparedocument stored procedure to load the XML data into
memory.

4. Issue an INSERT..SELECT statement to insert into the UniversalLog table the data
read by using OPENXML. Remember that you must use explicit mapping in the
OPENXML declaration because the XML is in a different format.

5. Use the sp_xml_removedocument stored procedure to clean up the server memory.

6. Execute the queries and then use a SELECT COUNT statement to validate that
the data has been inserted into the table.

NOTE Code available on the companion CD

The Practice Files\Chapter8\Lesson 5\ BulkLoad\SQLXMLBulkLoad.csproj Visual Studio project
file provides the solution for Practice 2 in this lesson.

Lesson 5: Converting Between XML Data and Relational Data 331

C0862271X.fm Page 331 Friday, April 29, 2005 7:38 PM
� Practice 2: Use SQLXML Bulk Load to Load XML Data

The UniversalLog administrator found another XML file that contains old data that
must be uploaded into the database. The XML file must be loaded into memory by
using the SQLXML Bulk Load COM component, so you need to write a .NET appli-
cation to do this. The data should be inserted into the UniversalLog table.

1. The C:\Chapter8\Lesson 5\ForBulkLoad.xml file contains 500 log entries that
you need to upload into the UniversalLog table.

2. Use Visual Studio 2005 to write a console application to load the file into mem-
ory. The console application must use the SQL Server Bulk Load component.
Add the following code to execute the bulk load:

SQLXMLBULKLOADLib.SQLXMLBulkLoad4Class objBL =
new SQLXMLBULKLOADLib.SQLXMLBulkLoad4Class();
objBL.ConnectionString = "Provider=sqloledb;Data Source=DEMOS;Initial Catalog=
TK431Chapter8;User Id=sa;";
objBL.Execute("UniversalLogSchema.xsd", "ForBulkLoad.xml");

3. Use the provided C:\Chapter8\Lesson 5\ UniversalLogSchema.xsd annotated
XSD schema to map the XML data to the relational database.

4. Run the application to upload the XML data into the database.

5. Validate the data load by running a SELECT COUNT statement in SSMS.

� Practice 3: Shred XML Data by Using the nodes() Method

The UniversalLog administrator needs to build a reporting application to analyze the
most common errors raised by applications logging into the UniversalLog table. You
need to develop the queries that extract the information needed by the reporting
application.

1. The first report must show four columns, with the application name in the first
column and the logRecord data from all the logged messages divided into three
columns: Error Messages, Post Messages, and Informational Messages.

SELECT
ApplicationName,
LogRecord.value('(/logRecord//error/

message)[1]','nvarchar(max)') As 'Error Messages',
LogRecord.value('(/logRecord//post/

moreInformation)[1]','nvarchar(max)') As 'Post Messages',
LogRecord.value('(/logRecord//information/

message)[1]','nvarchar(max)') As 'Informational Messages'
FROM UniversalLog

2. Use the CROSS APPLY operator to show log records that contain all three types
of messages.

332 Chapter 8 Managing XML Data

C0862271X.fm Page 332 Friday, April 29, 2005 7:38 PM
SELECT
ApplicationName,
Errors.C.value('./message','nvarchar(max)') As 'Error Messages',
Posts.C.value('./moreInformation','nvarchar(max)') As 'Post Messages',
Info.C.value('./message','nvarchar(max)') As 'Informational Messages'

FROM UniversalLog
CROSS APPLY LogRecord.nodes('/logRecord//error') Errors(C)
CROSS APPLY LogRecord.nodes('/logRecord//post') Posts(C)
CROSS APPLY LogRecord.nodes('/logRecord//information') Info(C)

3. Use the OUTER APPLY operator to show all log records and to see the messages
for each record.

SELECT
ApplicationName,
Errors.C.value('./message','nvarchar(max)') As 'Error Messages',
Posts.C.value('./moreInformation','nvarchar(max)') As 'Post Messages',
Info.C.value('./message','nvarchar(max)') As 'Informational Messages'

FROM UniversalLog
OUTER APPLY LogRecord.nodes('/logRecord//error') Errors(C)
OUTER APPLY LogRecord.nodes('/logRecord//post') Posts(C)
OUTER APPLY LogRecord.nodes('/logRecord//information') Info(C)

Lesson Summary
■ OPENXML supports implicit and explicit mapping.

■ Always remember to call the sp_xml_removedocument after using OPENXML.

■ OPENXML loads the whole XML structure into memory.

■ The nodes() method of the XML data type returns a new row for each XML node
that matches a given XQUERY expression. Use the value(), query(), and exist()
methods available in the XML data type to extract data from each row.

■ The APPLY operator enables you to invoke a function for each row returned from
a query.

■ The CROSS APPLY operator returns from the invoked function only those results
that are not NULL.

■ The OUTER APPLY operator returns all results, even if they are NULL.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

Lesson 5: Converting Between XML Data and Relational Data 333

C0862271X.fm Page 333 Friday, April 29, 2005 7:38 PM
NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of this book.

1. An application you wrote uses OPENXML to parse XML data into a relational
table. As soon as the XML data got bigger, you started to see that SQL Server was
running out of memory, and your OPENXML query started to return memory
errors. What can you do to improve performance? (Choose all that apply.)

A. When possible, process all XML documents at once instead of splitting the
documents into multiple smaller files.

B. Check that you are calling sp_xml_removedocument as soon as possible after
executing OPENXML.

C. Reduce the size of the XML files by making the XML tag names smaller.

D. When possible, split the XML data into multiple smaller files and process
each of them independently.

2. Under which circumstances should you use the nodes() method instead of
OPENXML? (Choose all that apply.)

A. The XML data is already stored in an XML data type column.

B. You need to extract XML data out of multiple columns, not just a single
source.

C. You need to use an XPATH expression not supported by OPENXML but
supported by the XML data type implementation.

D. You are migrating stored procedure code from a previous version of SQL
Server.

334 Chapter 8 Managing XML Data

C0862271X.fm Page 334 Friday, April 29, 2005 7:38 PM
Lesson 6: Creating XML Indexes
Lessons 2 and 3 examined different alternatives for retrieving XML data out of SQL
Server 2005. Depending on the size of this data, extraction can be a costly operation.
By implementing different indexing options on the XML data type, you can have SQL
Server 2005 resolve queries on XML data types by inspecting only a certain set of
nodes and not navigating through the complete XML document or fragment. In this
lesson, you see the benefits of indexing XML data as well as the best indexes to use for
different scenarios.

After this lesson, you will be able to:

■ Describe the benefits of creating a primary XML index.

■ Define a strategy to create secondary indexes.

■ Choose the appropriate secondary index based on the queries to be executed.

■ Create XML indexes.

Estimated lesson time: 30 minutes

Indexing an XML Data Type Instance
The XML data type in SQL Server 2005 can store a maximum of 2-GB of information.
When XML data is assigned to an XML data type instance, it is transformed into an
internal binary large object (BLOB) representation. When you use XML data type
methods to query the XML data, SQL Server performs a lookup on the table data
rows to extract the required nodes.

You can gain a performance improvement when you index the XML internal struc-
ture. Instead of having to look up the queried data in the 2 GB binary representation
of all the XML data, the SQL Server query processor can perform an index lookup
and probe fewer memory pages to serve the query. You can create two general types of
indexes on the XML data type: a primary index and a secondary index (of which there
are three types).

Indexes improve performance when reading data because fewer data pages must be
read into memory to return the desired result. On the other hand, performance can be
affected under a heavy load of insert, update, and delete operations because of SQL
Server having to update the index structures in addition to the table itself.

Lesson 6: Creating XML Indexes 335

C0862271X.fm Page 335 Friday, April 29, 2005 7:38 PM
Creating an XML Data Type Primary Index
XML data type instances can have only one primary index. The primary index ana-
lyzes the complete XML structure, so the number of rows in the index is approxi-
mately equal to the number of nodes in the XML BLOB.

The primary index in an XML data type instance maintains the information that
Table 8-8 describes.

The primary index maintains document order and document structure. It is built in
reverse order, so lookups can be recursive and work when only the path suffix is
known—for example, when you use // in XPATH. You can rebuild the XML data by
using the information in the primary index.

You can create a primary XML index for each XML column in a table. The primary
index is built on the relational B+ tree structure of a clustered index on the table’s pri-
mary key column, so you must create the table’s clustered index first.

Table 8-8 XML Data Type Primary Index Columns

Column Description

Ordering
Information

The primary index is clustered by this column. Order is
maintained by a special structure called ORDPATH, which
keeps the node hierarchy.

Primary Key This column corresponds to the base table primary key. It
is duplicated to maintain a reference to the relational data
associated with the XML instance.

Tag This column maintains the XML node tag name. Instead of
keeping the string characters, it is tokenized, so it keeps a
reference to the real node tag name in the BLOB structure.

Node Type This column maintains the node’s XSD type, indicating
whether the node is an XML element, an XML attribute,
XML text, and so on.

Node Value This column holds the node contents.

Path This column maintains the complete path from the root
node to the current node. It is used for path-based lookups.

336 Chapter 8 Managing XML Data

C0862271X.fm Page 336 Friday, April 29, 2005 7:38 PM
MORE INFO SQL Server 2005 indexing features

Please refer to Chapter 4, “Creating Indexes,” for more information on SQL Server 2005 indexing
features.

You create XML indexes by using the same Transact-SQL data definition language
(DDL) statements you use to create relational indexes. The syntax for creating a pri-
mary XML index is as follows:

CREATE PRIMARY XML INDEX Index_Identifier
ON table_name (XML_typed_column_name);

Creating XML Data Type Secondary Indexes
Having a primary index improves performance because instead of having to navi-
gate the BLOB structure, the SQL Server query processor can execute lookups on
the primary index. Those lookups are executed sequentially based on the primary
index key.

However, you can achieve further performance gains by declaring secondary indexes
that let SQL Server avoid sequential lookups on the primary index. Secondary
indexes are built on top of the primary index, so they provide different lookup
schemes depending on the secondary index keys. Table 8-9 lists the three types of sec-
ondary indexes you can create.

Table 8-9 Three Types of XML Data Type Secondary Indexes

Secondary
Index Type

Description

PATH This type of XML secondary index uses the Path and Node
Value columns from the primary index. Those two columns
allow for more efficient seeks when SQL Server is searching
for paths in the XML data. Instead of having to search sequen-
tially for a path in the primary index, SQL Server can fully
serve from the secondary index any query that executes path-
based queries.

Lesson 6: Creating XML Indexes 337

C0862271X.fm Page 337 Friday, April 29, 2005 7:38 PM
Here is the syntax to create a secondary PATH XML index:

CREATE XML INDEX Secondary_Index_Identifier
ON table_name (XML_typed_column_name);
USING XML INDEX Primary_Index_Identifier
FOR PATH

The syntax to create a secondary VALUE XML index is as follows:

CREATE XML INDEX Secondary_Index_Identifier
ON table_name (XML_typed_column_name);
USING XML INDEX Primary_Index_Identifier
FOR VALUE

And the syntax to create a secondary PROPERTY XML index is the following:

CREATE XML INDEX Secondary_Index_Identifier
ON table_name (XML_typed_column_name);
USING XML INDEX Primary_Index_Identifier
FOR PROPERTY

Choosing Secondary XML Indexes
The PATH secondary index is best used for queries that filter based on the XML struc-
ture or for queries for which the complete XML path is unknown. It can also be used
for queries that combine path-based queries and value filtering. For example, the
query /Employees/Employee[@Bonus] retrieves all Employee elements that have a

VALUE You build this type of XML secondary index by using the
Node Value and Path columns from the primary index. Those
two columns produce more efficient seeks when searching for
specific values in the XML data. Instead of having to search
sequentially for a value in the primary index, SQL Server can
fully serve from the secondary index a query that executes
value-based queries.

PROPERTY This type of XML secondary index is based on the Primary
Key, Node Value, and Path columns from the primary index.
Those three columns give more efficient seeks when SQL
Server is searching for specific values that must be associated
with their parent row in the base table.

Table 8-9 Three Types of XML Data Type Secondary Indexes

Secondary
Index Type

Description

338 Chapter 8 Managing XML Data

C0862271X.fm Page 338 Friday, April 29, 2005 7:38 PM
Bonus attribute. And /Departments/Department[@ID = 10] retrieves all nodes under
the Departments element that have an ID attribute with the value 10.

The VALUE secondary index works best for queries that filter based on values and
if the path is not fully specified or if it includes a wildcard. For example, //
Employee[@YearsInRole = 8] retrieves all Employee elements (no matter where they
appear in the XML structure) that have a YearsInRole attribute with a value of 8. And
//Employees/Employee[@* = "Smith"] retrieves all Employee elements that have any
attribute with the value Smith.

The PROPERTY secondary index is best used for queries that use the value method of the
XML data type and that filter based on the table’s primary key, as this example shows:

SELECT EmployeeData.value('(/Employee/FirstName)[1]', 'nvarchar(100)')
FROM EmployeesTable
WHERE EmployeeID = 101

Quick Check
■ Which type of secondary index works best for queries that filter based on

values and if the path is not fully specified or if it includes a wildcard?

Quick Check Answer

■ The VALUE secondary index works best for those types of queries.

PRACTICE Create Appropriate Indexes for XML Data
In this practice, you will create the appropriate indexes on the LogRecord XML col-
umn in the UniversalLog table.

1. In the TK431Chapter8 database, modify the UniversalLog table and add a clus-
tered primary key constraint on the ID column:

ALTER TABLE UniversalLog
ADD CONSTRAINT ULogPK PRIMARY KEY CLUSTERED (ID)

2. Execute a CREATE INDEX statement to create the XML primary index:

CREATE PRIMARY XML INDEX LogRecordPrimaryIdx
ON UniversalLog (LogRecord);

3. Execute a CREATE INDEX statement to create an XML PATH secondary index:

CREATE XML INDEX LogRecordSecondaryIdxPath
ON UniversalLog (LogRecord)
USING XML INDEX LogRecordPrimaryIdx
FOR PATH;

Lesson 6: Creating XML Indexes 339

C0862271X.fm Page 339 Friday, April 29, 2005 7:38 PM
4. Execute a CREATE INDEX statement to create the XML VALUE secondary index:

CREATE XML INDEX LogRecordSecondaryIdxValue
ON UniversalLog (LogRecord)
USING XML INDEX LogRecordPrimaryIdx
FOR VALUE;

5. Execute a CREATE INDEX statement to create the XML PROPERTY secondary
index:

CREATE XML INDEX LogRecordSecondaryIdxProperty
ON UniversalLog (LogRecord)
USING XML INDEX LogRecordPrimaryIdx
FOR PROPERTY;

Lesson Summary
■ Indexes help the SQL Server query engine optimize the query execution plan.

■ The XML data type primary index requires a clustered index on the base table’s
primary key column.

■ XML data type columns accept one primary index and three types of secondary
indexes.

■ Create secondary indexes based on the type of queries that will be executed:
PATH, VALUE, or PROPERTY.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of this book.

1. Users of the sales application have been complaining about the time it takes to
generate the TotalSalesPerDay report. The report is created from the SalesByDate
XML data type column in the Sales tables. The TotalSalesPerDay report is fed by
the TotalSalesPerDaySP stored procedure, which executes the following query:

SELECT SalesByDate.query('/Sales[//@reportDate = sql:variable("@today")]')
FROM Sales

340 Chapter 8 Managing XML Data

C0862271X.fm Page 340 Friday, April 29, 2005 7:38 PM
How can you improve the performance on this query?

A. Create a PATH secondary XML index.

B. Create a PROPERTY secondary XML index.

C. Create a VALUE secondary XML index.

D. Create a clustered index on the XML column.

2. The end of the fiscal year is coming up, and users of the accounting application
are inserting 200 new records per minute. Each record is made up of four XML
documents representing different tax forms that need to be filled in. The users
have been complaining because the rate of inserted records per minute was
three times higher last year at this time. Which action would provide the best
performance in this application?

A. Create a PROPERTY secondary XML index.

B. Drop the secondary indexes on the XML columns.

C. Create a PATH secondary XML index.

D. Drop all indexes on the XML columns.

Chapter 8 Review 341

C0862271X.fm Page 341 Friday, April 29, 2005 7:38 PM
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can

■ Review the chapter summary.

■ Review the list of key terms introduced in this chapter.

■ Complete the case scenarios. These scenarios set up real-world situations involv-
ing the topics of this chapter and ask you to create a solution.

■ Complete the suggested practices.

■ Take a practice test.

Chapter Summary
■ SQL Server 2005 takes the XML feature set provided by SQL Server 2000 and

adds the capability to manipulate XML in and out of the database server, to com-
pose relational data into XML data, and to shred XML data into relational data.

■ The biggest benefit of SQL Server 2005’s XML capabilities is that you can repre-
sent data in whichever format is best for that specific data—whether it is struc-
tured data, semi-structured data, or unstructured data—and still use the same
query engine to return query results.

■ The new XML data type is central in SQL Server 2005’s XML infrastructure, giv-
ing you methods for manipulating XML data and structure through XQUERY
and XPATH query expressions.

■ SQLXML, a middle-tier COM component, enables you to compose relational
data into XML data by using annotated XSD schemas and XML views, which
give you an easy way to manage the XML result from multiple Transact-SQL and
XPATH queries in just one file.

■ You can create indexes on the XML data type column to help the SQL Server
query engine optimize the query execution plan. The XML data type column
accepts one primary index and three types of secondary indexes.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ composition

■ Document Object Model (DOM)

342 Chapter 8 Review

C0862271X.fm Page 342 Friday, April 29, 2005 7:38 PM
■ Edge Table

■ FLWOR expression

■ parse

■ semistructured data

■ shredding

■ Simple API for XML (SAX)

■ structured data

■ typed XML data

■ unstructured data

■ untyped XML data

■ updategram

■ XML validation

■ XPATH

■ XPATH axes

■ XPATH predicates

■ XQUERY

Case Scenarios
In the following case scenarios, you will apply what you’ve learned in this chapter. You
can find answers to these questions in the “Answers” section at the end of this book.

Case Scenario 1: Troubleshooting XML Performance by
Choosing the Correct Indexing Strategy

You are a database developer for one of the biggest news syndication agencies in the
country. Your application subscribes to RSS feeds from diverse sources spread around
the world. Your customers subscribe to your syndication service by providing specific
keywords that they are interested in being notified about when they occur in any feed
from any source.

Your application scans nearly 2,000 sources every 5 minutes for new feeds. The results
of such scanning are saved in XML format in a SQL Server 2005 database, in which a
second process probes for the keywords defined by customers. The second process uses
the XQUERY language through the query() method in the XML data type.

Chapter 8 Review 343

C0862271X.fm Page 343 Friday, April 29, 2005 7:38 PM
You wrote the following function to probe for the keywords:

CREATE FUNCTION fn_FindKeyword(@keyword AS nvarchar(100))
RETURNS @xml TABLE (result XML)
AS
BEGIN

INSERT INTO @xml

SELECT FEED.query('
for $item in /rss/channel/item,

$title in $item/title,
$desc in $item/desc

return
<result>
{
if (fn:contains(string($title), sql:variable("@keyword")) or
fn:contains(string($desc), sql:variable("@keyword")))

then
<found/>

else
<notfound/>

}
</result>

')
FROM RSS

RETURN
END
GO

The fn_FindKeyword function is called by the following code:

SELECT * FROM Customer_Keywords CK
CROSS APPLY dbo.fn_FindKeyword (CK.keywords)

To enhance query performance, you created an XML VALUE index on the FEED column.

1. Will this index provide the best performance?

2. Which other XML index could you use to improve performance?

3. Are there any other search alternatives that would meet the requirements for this
specific case scenario?

Case Scenario 2: Handling Data as XML or as Relational
Representation

You are working as a database developer for a global company with offices in more
than 150 countries. The Human Resources (HR) department must evaluate every
employee at the end of the fiscal year. To do so, the HR department asks you to
develop an Employee Evaluation questionnaire application.

344 Chapter 8 Review

C0862271X.fm Page 344 Friday, April 29, 2005 7:38 PM
The application must handle approximatly 1500 questions. Each question can be cat-
alogued, given a different evaluation weight, and use different answer formats. For
example, some questions are answered on a 1–10 scale, and other questions require
conditional answers (depending on the response in previous questions, different
answer choices must appear).

Your manager, who has worked at the company for 25 years, wants to implement the
solution by using Microsoft Office Word documents saved in the file system and sent
to each employee by e-mail. The employee must fill in the Word document and send
it back to a reply e-mail address.

You proposed instead to use the Smart Document features in Office 2003 so that the
Word document can communicate to the server via XML Web services. This way, the
document content would be generated dynamically, based on the questions and
answers stored as XML in a SQL Server 2005 database.

Your manager does not understand very much XML yet but has been working with
relational databases for the past 25 years. What justifications would you use to per-
suade your manager to use the Smart Document features and XML Web services?

Suggested Practices
To help you successfully master the exam objectives presented in this chapter, com-
plete the following practice tasks.

Working with XML Structures
For this task, you should complete at least Practices 1 and 3. If you want hands-on
experience with every aspect of the exam objectives, complete all four practices.

Practice 1
■ Use SSMS to define a new table that has multiple columns of type XML. Try

inserting information into the table by using different types of XML structures.

Practice 2
■ Use SSMS to define a new stored procedure and a user-defined function (UDF)

with multiple parameters of type XML. Try to call the stored procedure by using
different types of XML structures.

Chapter 8 Review 345

C0862271X.fm Page 345 Friday, April 29, 2005 7:38 PM
Practice 3
■ Use SSMS to define a new XML schema collection. Load multiple schemas on

the same collection. Try loading an in-line XML schema and a schema loaded
from a file.

Practice 4
■ Alter some of the columns in the table you defined in Practice 1 and then bind

the XML columns to the XML schema collection that you created in Practice 3.
Try inserting information into the table by using different types of XML
structures.

Retrieving XML Data
For this task, you should complete all the practices to exercise the different skills
needed to retrieve XML data.

Practice 1
■ Apply the different FOR XML modes by using an existing complex query that

contains at least two joins.

■ Design an XML schema that uses complex nesting, and try to generate XML that
matches that schema by using FOR XML modes and nested queries.

Practice 2
■ Take the XML structure that resulted from Practice 1 and assign it to an XML

data type variable. Execute different XQUERY expressions against the XML vari-
able by using the XML data type query() method so that the resulting informa-
tion will be in XML format. Use the exist() method of the XML data type to
further filter the results.

■ Take the XML structure that resulted from Practice 1 and assign it to an XML
data type variable. Execute different XQUERY expressions against the XML vari-
able by using the XML data type value() method so that the resulting informa-
tion will be in tabular format. Use the exist() method of the XML data type to
further filter the results.

Practice 3
■ Annotate the XML schema that you created in Practice 1 with the necessary key-

words to map its structure to a table in a database.

346 Chapter 8 Review

C0862271X.fm Page 346 Friday, April 29, 2005 7:38 PM
■ Create XML views that reuse the annotated XML schema and query it using the
SQLXML API.

Modifying XML Data
For this task, you should complete at least Practice 1. If you want a more well-rounded
understanding of how to use updategrams, also complete Practice 2.

Practice 1
■ Use the XML data type’s modify() method to insert new nodes in an XML docu-

ment. Extend the exercise to include inserting a new attribute in an existing
XML element. Try inserting new data instead of using a new structure.

■ Use the modify() method in the XML data type to delete nodes from an XML
document. Extend the exercise to include deleting attributes in an existing XML
element. Try deleting data instead of the structure.

■ Use the modify() method in the XML data type to update existing nodes in an
XML document. Extend the exercise to include updating an existing attribute in
an existing XML element. Try updating data instead of the structure.

Practice 2
■ Create an annotated XML schema. Then create an updategram to insert new

nodes, update existing nodes, and delete nodes.

■ Use the SQLXML API to execute the updategram.

Converting Between XML Data and Relational Data
For this task, you should complete Practice 1 to practice using the nodes() method of
the XML data type. If you want a more well-rounded understanding of using the
nodes() method, you should also complete Practice 2. Practice 3 covers using the
SQLXML Bulkload API to insert an XML document in the database.

Practice 1
■ Use the OPENXML Transact-SQL instruction and the XML stored procedures to

load an existing XML document and insert the data into a database. Use differ-
ent sample XML documents—one with an element-centric structure, another
with an attribute-centric structure, and another combining elements and
attributes in a complex nesting structure.

Chapter 8 Review 347

C0862271X.fm Page 347 Friday, April 29, 2005 7:38 PM
Practice 2
■ Create an XML data type variable and then use the nodes() method to execute an

XQUERY expression. Extract the resulting data by using the value() method.

■ Create a new table and create a column of the XML data type. Load the column
with data and then use the nodes() method to execute an XQUERY expression.
Extract the resulting data by using the value() method. Remember that you must
use the APPLY operators.

Practice 3
■ Using the XML document from Practice 1, write a .NET application that uses the

SQXML Bulkload API to insert the XML document into a database. Remember
that you must write an annotated XSD schema.

Creating XML Indexes
For this task, complete all three practices to get a well-rounded understanding of
indexing options.

Practice 1
■ Create a complex XQUERY expression and execute it by using the query()

method of the XML data type. The XQUERY expression must filter the data by
its structure—for example, by querying if an attribute appears in the XML struc-
ture. Time the execution as you process a fairly large amount of XML data.

■ Create an XML PATH index, reexecute the query, and time it again.

Practice 2
■ Create a complex XQUERY expression, and execute it by using the query()

method of the XML data type. The XQUERY expression must filter the data by
its content—for example, by querying the value of an existing attribute that
appears in the XML structure. Do not fully specify the path to the attribute;
instead, use //. Time the execution as you process a fairly large amount of XML
data.

■ Create an XML VALUE index, reexecute the query, and then time it again.

Practice 3
■ Create a complex XQUERY expression, and execute it by using the value()

method of the XML data type and filtering by the table’s primary key. The

348 Chapter 8 Review

C0862271X.fm Page 348 Friday, April 29, 2005 7:38 PM
XQUERY expression must filter the data by its content—for example, by query-
ing the value of an existing attribute that appears in the XML structure. Time the
execution as you process a fairly large amount of XML data.

■ Create an XML PROPERTY index, reexecute the query, and then time it again.

Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-431 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the “How to Use the Practice Tests”
section in this book’s Introduction.

C0962271X.fm Page 349 Friday, April 29, 2005 7:49 PM
Chapter 9

Creating Functions, Stored
Procedures, and Triggers

SQL Server provides three types of programmable objects: functions, stored procedures,
and triggers. Instead of executing a single statement or command, these objects support
the creation of rich programming logic, including looping, flow control, decision mak-
ing, and branching. In addition to the built-in set of functions in SQL Server, you can cre-
ate user-defined functions (UDFs) to encapsulate commonly used code for reuse in
multiple programs. You use stored procedures, which are saved batches of code, as the
interface for all application access to a database, letting you control data access and ease
maintenance by avoiding hard-coding SQL into applications. And you use triggers to
automatically execute code in response to certain database events. New in SQL Server
2005, you can write the code for each of these objects by using either Transact-SQL or a
Microsoft .NET Framework–supported language such as C# or Visual Basic.

MORE INFO Language coverage

For the sake of brevity, we cover the core programming structures of SQL Server by using Transact-
SQL code instead of common language runtime (CLR) code. For more information about imple-
menting triggers, functions, and stored procedures by using the CLR, see the following SQL Server
2005 Books Online articles “CLR Stored Procedures,” “CLR Triggers,” and “CLR User-Defined Func-
tions.” SQL Server 2005 Books Online is installed as part of SQL Server 2005. Updates for SQL
Server 2005 Books Online are available for download at www.microsoft.com/technet/prodtechnol/sql/
2005/downloads/books.mspx.

Exam objectives in this chapter:
■ Implement functions.

Create a function.

Identify deterministic versus nondeterministic functions.

■ Implement stored procedures.

Create a stored procedure.

Recompile a stored procedure.

Assign permissions to a role for a stored procedure.
349

350 Chapter 9 Creating Functions, Stored Procedures, and Triggers

C0962271X.fm Page 350 Friday, April 29, 2005 7:49 PM
■ Implement triggers.

Create a trigger.

Create DDL triggers for responding to database structure changes.

Identify recursive triggers.

Identify nested triggers.

Lessons in this chapter:
■ Lesson 1: Implementing Functions . 352

■ Lesson 2: Implementing Stored Procedures . 360

■ Lesson 3: Implementing Triggers . 367

Before You Begin
To complete the lessons in this chapter, you must have

■ SQL Server 2005 installed.

■ A copy of the AdventureWorks sample database installed in the instance.

Real World
Michael Hotek

A customer of mine was having some major performance issues with its applica-
tions. After discussing the issues the company was encountering, we started dig-
ging around in the database. There were a lot of tables, very few indexes, and not
a single stored procedure. Although stored procedures don’t necessarily mean
better performance, the lack of procedures meant that any performance tuning
would be extremely invasive within the application.

Using SQL Server Profiler (which Chapter 15, “Monitoring and Troubleshooting
SQL Server Performance,” discusses), we captured all the queries being issued
against the database in a 30-minute window to get a snapshot of what was going
on. The results were staggering. An application that only 15 users were working
in had generated more than 300,000 queries in just 30 minutes. Something was
clearly wrong. So we connected to a test system for further investigation and
found some interesting behavior. A user would click a button that would return
four rows of data—and execute more than 1,500 queries.

Before You Begin 351

C0962271X.fm Page 351 Friday, April 29, 2005 7:49 PM
It turns out that the developers used a development environment that “does
everything for you” and never paid attention to what was going on in the data-
base. But, of course, the performance problem was “SQL Server’s fault.”
Although everyone wanted to blame SQL Server, executing more than 1,500
queries to retrieve 4 rows of data was clearly the application’s fault.

After figuring out what the users really needed, we wrote a stored procedure to
return the results. We went back to the test system and clicked the button;
almost instantly, the results popped up in the application. However, instead of
listening and waiting until the solution was complete, the customer shoved the
new code directly into production, where it promptly blew up. Why? To point
the application at the stored procedure, it was necessary to rewrite a section
of the application code and recompile it. The new code was never tested, and
no one noticed that the developer had inadvertently disabled a critical piece of
functionality.

Over the next four months, we systematically ripped apart every section of the
application and replaced the ad hoc SQL code with stored procedures. In the
end, the process required rewriting the entire application and going through full
functional testing, load testing, and user-acceptance testing. When we finally
deployed the application, it had only slightly better performance than before
because we hadn’t had the time to optimize everything. But over the next week,
we were able to systematically tune each of the stored procedures and deploy
them directly into production without having to touch a single line of applica-
tion code.

The moral of the story is that even if stored procedures do not directly improve
performance, if you use them, any subsequent tuning does not require develop-
ers to rip apart their applications, retest, and run the risk of breaking something
that is currently working.

352 Chapter 9 Creating Functions, Stored Procedures, and Triggers

C0962271X.fm Page 352 Friday, April 29, 2005 7:49 PM
Lesson 1: Implementing Functions
SQL Server provides a set of built-in functions that you can plug into your applica-
tions to provide common functionality. For example, you can use the GETDATE()
function to return the current system date and time in the SQL Server 2005 standard
internal format for datetime values. Although SQL Server provides a nice variety of
built-in functions, you can also build your own functions to encapsulate pieces of
commonly used code, letting you develop the code once and reuse it across applica-
tions. Typically, you create UDFs to encapsulate complex pieces of code so that the
implementation is seamless to applications. In this lesson, you see how to implement
two types of UDFs: scalar functions, which return a scalar value result, and table-valued
functions, which return a result in the form of a table. You also learn how to identify
deterministic and nondeterministic functions, which affect whether you can define
indexes on the results the functions return.

After this lesson, you will be able to:

■ Create a function.

■ Identify deterministic vs. nondeterministic functions.

Estimated lesson time: 20 minutes

Scalar Functions
Scalar functions accept 0 or more input parameters and return a single scalar value.
You use the CREATE FUNCTION Transact-SQL statement to create a function. The
general syntax of the statement is as follows:

CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name [AS][type_schema_name.] parameter_data_type

[= default] }
[,...n]

]
)
RETURNS return_data_type

[WITH <function_option> [,...n]]
[AS]
BEGIN

function_body
RETURN scalar_expression

END [;]
<function_option>::=
{

[ENCRYPTION]
| [SCHEMABINDING]
| [EXECUTE_AS_Clause]

}

Lesson 1: Implementing Functions 353

C0962271X.fm Page 353 Friday, April 29, 2005 7:49 PM
Each function must have a unique name that conforms to the rules for object
identifiers.

Although you do not have to define input parameters for functions, it is rare for UDFs
to not have input parameters. So you will usually specify one or more input parame-
ters along with the data type of each parameter.

You use the statement’s RETURNS clause to specify the data type of the scalar value
that the function will return. There are several options that you can specify for this
clause. When you specify ENCRYPTION, SQL Server encrypts the definition of the
function when it is stored. The SCHEMABINDING option prevents any objects that
the function depends on from being dropped. The EXECUTE AS option specifies the
security context of the function.

The body of the function is delimited by a BEGIN…END construct, which must
include a RETURN clause that is used to output the value that the function calculates.

The body of the function is obviously where all the interesting work happens.
Although you can execute virtually any valid batch of code within a function, func-
tions do have some restrictions. The most significant restriction is that you cannot use
a function to change the state of any object in a database or the database itself. There-
fore, you cannot insert, update, or delete data in tables, nor can you create, alter, or
drop objects in the database. However, you can create one or more table variables and
issue INSERT, UPDATE, and DELETE statements against the table variable.

MORE INFO Table variables

A table variable is a special type of variable used to temporarily store a set of rows that will be
returned as the result of a table-valued function. For information about table variables, see the SQL
Server 2005 Books Online topic “Table (Transact-SQL).”

Because scalar functions return a single value, you normally use them in the column
list of a SELECT statement and can use them in the WHERE clause as well.

The following example shows you how to define a scalar-valued function that returns
the stock level for a given product ID:

CREATE FUNCTION [dbo].[ufnGetStock](@ProductID [int])
RETURNS [int]
AS
-- Returns the stock level for the product. This function is used
-- internally only.
BEGIN

DECLARE @ret int;

354 Chapter 9 Creating Functions, Stored Procedures, and Triggers

C0962271X.fm Page 354 Friday, April 29, 2005 7:49 PM
SELECT @ret = SUM(p.[Quantity])
FROM [Production].[ProductInventory] p
WHERE p.[ProductID] = @ProductID

AND p.[LocationID] = '6'; -- Only look at inventory in the
-- misc storage.

IF (@ret IS NULL)
SET @ret = 0

RETURN @ret
END;

You can then use the function in a query, as follows:

SELECT *, dbo.ufnGetStock(Production.Product.ProductID)
FROM Production.Product;

Table-Valued Functions
Table-valued functions adhere to the same rules as scalar functions. The difference is
that table-valued functions return a table as output. Therefore, they are generally used
in the FROM clause of a SELECT statement and possibly joined to other tables or
views.

The general syntax of a table-valued function is as follows:

CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name [AS] [type_schema_name.] parameter_data_type

[= default] }
[,...n]

]
)
RETURNS @return_variable TABLE < table_type_definition >

[WITH <function_option> [,...n]]
[AS]
BEGIN

function_body
RETURN

END [;]

The following code shows an example of a table-valued function that takes a contact
ID and returns contact information (contact ID, first name, last name, job title, and
contact type) in the form of a table:

CREATE FUNCTION [dbo].[ufnGetContactInformation](@ContactID int)
RETURNS @retContactInformation TABLE
(

-- Columns returned by the function:
[ContactID] int PRIMARY KEY NOT NULL,
[FirstName] [nvarchar](50) NULL,
[LastName] [nvarchar](50) NULL,
[JobTitle] [nvarchar](50) NULL,
[ContactType] [nvarchar](50) NULL

)

Lesson 1: Implementing Functions 355

C0962271X.fm Page 355 Friday, April 29, 2005 7:49 PM
AS
-- Returns the first name, last name, job title, and contact type
-- for the specified contact.
BEGIN

DECLARE
@FirstName [nvarchar](50),
@LastName [nvarchar](50),
@JobTitle [nvarchar](50),
@ContactType [nvarchar](50);

-- Get common contact information.
SELECT

@ContactID = ContactID,
@FirstName = FirstName,
@LastName = LastName

FROM [Person].[Contact]
WHERE [ContactID] = @ContactID;

SET @JobTitle =

CASE
-- Check for employee.
WHEN EXISTS(SELECT * FROM [HumanResources].[Employee] e

WHERE e.[ContactID] = @ContactID)
THEN (SELECT [Title]

FROM [HumanResources].[Employee]
WHERE [ContactID] = @ContactID)

-- Check for vendor.
WHEN EXISTS(SELECT * FROM [Purchasing].[VendorContact] vc

INNER JOIN [Person].[ContactType] ct
ON vc.[ContactTypeID] = ct.[ContactTypeID]

WHERE vc.[ContactID] = @ContactID)
THEN (SELECT ct.[Name]

FROM [Purchasing].[VendorContact] vc
INNER JOIN [Person].[ContactType] ct
ON vc.[ContactTypeID] = ct.[ContactTypeID]

WHERE vc.[ContactID] = @ContactID)

-- Check for store.
WHEN EXISTS(SELECT * FROM [Sales].[StoreContact] sc

INNER JOIN [Person].[ContactType] ct
ON sc.[ContactTypeID] = ct.[ContactTypeID]

WHERE sc.[ContactID] = @ContactID)
THEN (SELECT ct.[Name]

FROM [Sales].[StoreContact] sc
INNER JOIN [Person].[ContactType] ct
ON sc.[ContactTypeID] = ct.[ContactTypeID]

WHERE [ContactID] = @ContactID)

ELSE NULL
END;

356 Chapter 9 Creating Functions, Stored Procedures, and Triggers

C0962271X.fm Page 356 Friday, April 29, 2005 7:49 PM
SET @ContactType =
CASE

-- Check for employee.
WHEN EXISTS(SELECT * FROM [HumanResources].[Employee] e

WHERE e.[ContactID] = @ContactID)
THEN 'Employee'

-- Check for vendor.
WHEN EXISTS(SELECT * FROM [Purchasing].[VendorContact] vc

INNER JOIN [Person].[ContactType] ct
ON vc.[ContactTypeID] = ct.[ContactTypeID]

WHERE vc.[ContactID] = @ContactID)
THEN 'Vendor Contact'

-- Check for store.
WHEN EXISTS(SELECT * FROM [Sales].[StoreContact] sc

INNER JOIN [Person].[ContactType] ct
ON sc.[ContactTypeID] = ct.[ContactTypeID]

WHERE sc.[ContactID] = @ContactID)
THEN 'Store Contact'

-- Check for individual consumer.
WHEN EXISTS(SELECT * FROM [Sales].[Individual] i

WHERE i.[ContactID] = @ContactID)
THEN 'Consumer'

END;

-- Return the information to the caller.
IF @ContactID IS NOT NULL
BEGIN

INSERT @retContactInformation
SELECT @ContactID, @FirstName, @LastName, @JobTitle, @ContactType;

END;

RETURN;
END;
SELECT * FROM dbo.ufnGetContactInformation(1);

Deterministic vs. Nondeterministic Functions
When working with functions, it’s important to know whether the function you are
using is deterministic or nondeterministic. Deterministic functions return, for the
same set of input values, the same value every time you call them. The SQL Server
built-in function COS, which returns the trigonometric cosine of the specified angle,
is an example of a deterministic function. In contrast, a nondeterministic function can
return a different result every time you call it. An example of a nondeterministic
function is the SQL Server built-in function GETDATE(), which returns the current
system time and date. SQL Server also considers a function nondeterministic if the

Lesson 1: Implementing Functions 357

C0962271X.fm Page 357 Friday, April 29, 2005 7:49 PM
function calls a nondeterministic function or if the function calls an extended
stored procedure.

Whether a function is deterministic or not also determines whether you can build an
index on the results the function returns and whether you can define a clustered
index on a view that references the function. If the function is nondeterministic, you
cannot index the results of the function, either through indexes on computed col-
umns that call the function or through indexed views that reference the function.

Quick Check
■ What are the two types of UDFs, and how are they used?

Quick Check Answer

■ Scalar functions return a single value and are generally used in column lists
and WHERE clauses.

■ Table-valued functions return a table variable and are used in the FROM
clause.

PRACTICE Create a Function
In this practice, you create a scalar function to return the model name for a product
given a particular product ID. You then create a table-valued function to return the
contents of the Product table for a given model ID.

1. Launch SQL Server Management Studio (SSMS), connect to your instance, open
a new query window, and change the context to the AdventureWorks database.

2. Create and test the GetModelNameForProduct scalar function by executing the
following code:

CREATE FUNCTION dbo.GetModelNameForProduct (@ProductID int)
RETURNS nvarchar(50)
WITH EXECUTE AS CALLER
AS
BEGIN

DECLARE @ModelName nvarchar(50)

SELECT @ModelName = Production.ProductModel.Name
FROM Production.Product INNER JOIN Production.ProductModel

ON Production.Product.ProductModelID =
Production.ProductModel.ProductModelID

WHERE Production.Product.ProductID = @ProductID

358 Chapter 9 Creating Functions, Stored Procedures, and Triggers

C0962271X.fm Page 358 Friday, April 29, 2005 7:49 PM
RETURN(@ModelName)
END;
GO

SELECT dbo.GetModelNameForProduct(717);

3. Create and test the table-valued function GetProductsForModelID by executing
the following code:

CREATE FUNCTION dbo.GetProductsForModelID (@ProductModelID int)
RETURNS @Products TABLE
(
ProductID int NOT NULL,
Name dbo.Name NOT NULL,
ProductNumber nvarchar(25) NOT NULL,
MakeFlag dbo.Flag NOT NULL,
FinishedGoodsFlag dbo.Flag NOT NULL,
Color nvarchar(15) NULL,
SafetyStockLevel smallint NOT NULL,
ReorderPoint smallint NOT NULL,
StandardCost money NOT NULL,
ListPrice money NOT NULL,
Size nvarchar(5) NULL,
SizeUnitMeasureCode nchar(3) NULL,
WeightUnitMeasureCode nchar(3) NULL,
Weight decimal(8, 2) NULL,
DaysToManufacture int NOT NULL,
ProductLine nchar(2) NULL,
Class nchar(2) NULL,
Style nchar(2) NULL,
ProductSubcategoryID int NULL,
ProductModelID int NULL,
SellStartDate datetime NOT NULL,
SellEndDate datetime NULL,
DiscontinuedDate datetime NULL,
rowguid uniqueidentifier NOT NULL,
ModifiedDate datetime NOT NULL
)
WITH EXECUTE AS CALLER
AS
BEGIN

INSERT INTO @Products
SELECT ProductID, Name, ProductNumber, MakeFlag, FinishedGoodsFlag,

Color, SafetyStockLevel, ReorderPoint, StandardCost, ListPrice,
Size, SizeUnitMeasureCode, WeightUnitMeasureCode, Weight,
DaysToManufacture, ProductLine, Class, Style,
ProductSubcategoryID, ProductModelID, SellStartDate, SellEndDate,
DiscontinuedDate, rowguid, ModifiedDate

FROM Production.Product
WHERE Production.Product.ProductModelID = @ProductModelID

Lesson 1: Implementing Functions 359

C0962271X.fm Page 359 Friday, April 29, 2005 7:49 PM
RETURN
END;
GO

SELECT * FROM dbo.GetProductsForModelID(6);

Lesson Summary
■ SQL Server lets you create two types of UDFs—scalar and table-valued—to encap-

sulate complex queries for reuse.

■ Scalar functions return a single value.

■ Table-valued functions return a table variable.

■ Computed columns or views based on deterministic functions, which return the
same value every time they are called, can be indexed. Those using nondeter-
ministic functions, which can return different results every time they are called,
cannot be indexed.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following are valid commands to use within a function?

A. UPDATE Table1 SET Column1 = 1

B. SELECT Column1 FROM Table2 WHERE Column2 = 5

C. EXEC sp_myproc

D. INSERT INTO @var VALUES (1)

360 Chapter 9 Creating Functions, Stored Procedures, and Triggers

C0962271X.fm Page 360 Friday, April 29, 2005 7:49 PM
Lesson 2: Implementing Stored Procedures
Stored procedures are the most-used programmatic structures within a database. A pro-
cedure is simply a name associated with a batch of SQL code that is stored and exe-
cuted on the server. Stored procedures, which can return scalar values or result sets,
are the primary interface that applications should use to access any data within a data-
base. Not only do stored procedures enable you to control access to the database, they
also let you isolate database code for easy maintenance instead of requiring you to
find hard-coded SQL statements throughout an application if you need to make
changes. In this lesson, you see how to create a stored procedure, recompile a stored
procedure, and assign permissions to a role for a stored procedure.

After this lesson, you will be able to:

■ Create a stored procedure.

■ Recompile a stored procedure.

■ Assign permissions to a role for a stored procedure.

Estimated lesson time: 20 minutes

Creating a Stored Procedure
Stored procedures can contain virtually any construct or command that is possible to
execute within SQL Server. You can use procedures to modify data, return scalar val-
ues, or return entire result sets.

Stored procedures also provide a very important security function within a database.
You can grant users permission to execute stored procedures that access data without
having to grant them the ability to directly access the data. Even more important,
stored procedures hide the structure of a database from a user as well as only permit
users to perform operations that are coded within the stored procedure.

The general Transact-SQL syntax for creating a stored procedure is the following:

CREATE { PROC | PROCEDURE } [schema_name.] procedure_name [; number]
[{ @parameter [type_schema_name.] data_type }

[OUT | OUTPUT]
] [,...n]

[WITH <procedure_option> [,...n]]
[FOR REPLICATION]
AS { <sql_statement> [;][...n] | <method_specifier> }
[;]

Lesson 2: Implementing Stored Procedures 361

C0962271X.fm Page 361 Friday, April 29, 2005 7:49 PM
<procedure_option> ::=
[ENCRYPTION]
[RECOMPILE]
[EXECUTE_AS_Clause]

<sql_statement> ::=
{ [BEGIN] statements [END] }

<method_specifier> ::=
EXTERNAL NAME assembly_name.class_name.method_name

Each procedure must have a name that is unique within the database and that con-
forms to the rules for object identifiers.

Procedures can accept any number of input parameters, which are used within the
stored procedure as local variables. You can also specify output parameters, which let
a stored procedure pass one or more scalar values back to the routine that called the
procedure.

You can create procedures with three options. When you create a procedure with the
ENCRYPTION option, SQL Server encrypts the procedure definition. Specifying the
RECOMPILE option forces SQL Server to recompile the stored procedure each time
the procedure is executed. The EXECUTE AS option provides a security context for
the procedure.

BEST PRACTICES Recompilation

Stored procedures are compiled into the query cache when executed. Compilation creates a query
plan as well as an execution plan. SQL Server can reuse the query plan for subsequent executions,
which conserves resources. But the RECOMPILE option forces SQL Server to discard the query plan
each time the procedure is executed and create a new query plan. There are only a few extremely
rare cases when recompiling at each execution is beneficial, such as if you add a new index from
which the stored procedure might benefit. Thus, you typically should not add the RECOMPILE
option to a procedure when you create it.

The body of the stored procedure contains the batch of commands you want to exe-
cute within the procedure. The following are the only commands that you cannot exe-
cute within a stored procedure:

■ SET SHOWPLAN_TEXT

■ SET SHOWPLAN_ALL

■ USE <database>

362 Chapter 9 Creating Functions, Stored Procedures, and Triggers

C0962271X.fm Page 362 Friday, April 29, 2005 7:49 PM
The following code shows a sample stored procedure that logs errors in a table called
ErrorLog:

CREATE PROCEDURE [dbo].[uspLogError]
@ErrorLogID [int] = 0 OUTPUT -- contains the ErrorLogID of the row

-- inserted by uspLogError in the
AS -- ErrorLog table.
BEGIN

SET NOCOUNT ON;

-- Output parameter value of 0 indicates that error
-- information was not logged.
SET @ErrorLogID = 0;

BEGIN TRY

-- Return if there is no error information to log.
IF ERROR_NUMBER() IS NULL

RETURN;

-- Return if inside an uncommittable transaction.
-- Data insertion/modification is not allowed when
-- a transaction is in an uncommittable state.
IF XACT_STATE() = -1
BEGIN

PRINT 'Cannot log error since the current transaction is in an uncommittable
state. '

+ 'Rollback the transaction before executing uspLogError in order to
successfully log error information.';

RETURN;
END

INSERT [dbo].[ErrorLog]

(
[UserName],
[ErrorNumber],
[ErrorSeverity],
[ErrorState],
[ErrorProcedure],
[ErrorLine],
[ErrorMessage]
)

VALUES
(
CONVERT(sysname, CURRENT_USER),
ERROR_NUMBER(),
ERROR_SEVERITY(),
ERROR_STATE(),
ERROR_PROCEDURE(),
ERROR_LINE(),
ERROR_MESSAGE()
);

Lesson 2: Implementing Stored Procedures 363

C0962271X.fm Page 363 Friday, April 29, 2005 7:49 PM
-- Pass back the ErrorLogID of the row inserted
SET @ErrorLogID = @@IDENTITY;

END TRY
BEGIN CATCH

PRINT 'An error occurred in stored procedure uspLogError: ';
EXECUTE [dbo].[uspPrintError];
RETURN -1;

END CATCH
END;

Assign Permissions to a Role for a Stored Procedure
As with all objects and operations in SQL Server, you must explicitly grant a user per-
mission to use an object or execute an operation. To allow users to execute a stored
procedure, you use the following general syntax:

GRANT EXECUTE ON <stored procedure> TO <database principle>

Chapter 2, “Configuring SQL Server 2005,” covers the GRANT statement and data-
base principles.

The use of permissions with stored procedures is an interesting security mechanism.
Any user granted execute permissions on a stored procedure is automatically dele-
gated permissions to the objects and commands referenced inside the stored proce-
dure based on the permission set of the user who created the stored procedure.

To understand this delegation behavior, consider the previous example code. The
stored procedure dbo.uspLogError inserts rows into the dbo.ErrorLog table. UserA has
insert permissions on dbo.ErrorLog and also created this stored procedure. UserB
does not have any permissions on dbo.ErrorLog. However, when UserA grants EXE-
CUTE permissions on the dbo.uspLogError procedure, UserB can execute this proce-
dure without receiving any errors because the SELECT and INSERT permissions
necessary to add the row to the dbo.ErrorLog table are delegated to UserB. However,
UserB receives those permissions only when executing the stored procedure and still
cannot directly access the dbo.ErrorLog table.

The permission delegation possible with stored procedures provides a very powerful
security mechanism within SQL Server. If all data access—insertions, deletions,
updates, or selects—were performed through stored procedures, users could not
directly access any table in the database. Only by executing the stored procedures
would users be able to perform the actions necessary to manage the database. And
although users would have the permissions delegated through the stored procedures,

364 Chapter 9 Creating Functions, Stored Procedures, and Triggers

C0962271X.fm Page 364 Friday, April 29, 2005 7:49 PM
they would still be bound to the code within the stored procedure, which can perform
actions such as the following:

■ Allowing certain operations to be performed only by users who are on a speci-
fied list, which is maintained in another table by a user functioning in an admin-
istrative role

■ Validating input parameters to prevent security attacks such as SQL injection.

Quick Check
1. What is a stored procedure?

2. Which operations can a stored procedure perform?

Quick Check Answers

1. A stored procedure is a name for a batch of Transact-SQL or CLR code that
is stored within SQL Server.

2. A procedure can execute any commands within the Transact-SQL language
except USE, SET SHOWPLAN_TEXT ON, and SET SHOWPLAN_ALL ON.

PRACTICE Create a Stored Procedure
In this practice, you create two stored procedures that will update the hire date for all
employees to today’s date and then compare the procedures.

1. If necessary, launch SSMS, connect to your instance, open a new query window,
and change the context to the AdventureWorks database.

2. Create a stored procedure to update the hire date by executing the following
code:

CREATE PROCEDURE dbo.usp_UpdateEmployeeHireDateInefficiently
AS
DECLARE @EmployeeID int

DECLARE curemp CURSOR FOR SELECT EmployeeID FROM HumanResources.Employee
OPEN curemp
FETCH curemp INTO @EmployeeID

WHILE @@FETCH_STATUS = 0
BEGIN

UPDATE HumanResources.Employee
SET HireDate = GETDATE()
WHERE EmployeeID = @EmployeeID

Lesson 2: Implementing Stored Procedures 365

C0962271X.fm Page 365 Friday, April 29, 2005 7:49 PM
FETCH curemp INTO @EmployeeID
END

CLOSE curemp
DEALLOCATE curemp

3. Create a second stored procedure to update the hire date by executing the
following code:

CREATE PROCEDURE dbo.usp_UpdateEmployeeHireDateEfficiently
AS
DECLARE @now DATETIME

SET @now = GETDATE()

UPDATE HumanResources.Employee
SET HireDate = @now

4. Compare the execution between the two procedures by executing each of the
queries in the following code separately:

EXEC dbo.usp_UpdateEmployeeHireDateInefficiently
EXEC dbo.usp_UpdateEmployeeHireDateEfficiently

BEST PRACTICES Code efficiency

Databases are built and optimized for set-oriented processes instead of row-at-a-time processes.
When constructing stored procedures, you always want to use the minimum amount of code that
also minimizes the amount of work performed. Although both of the procedures in this practice
accomplish the requirement to change all employees’ hire dates, the second procedure executes
significantly faster. The first procedure not only reads in the entire list of employees, but it also exe-
cutes an update as well as a call to a function for each employee. The second procedure executes
the GETDATE() function only once and performs a single update operation.

Lesson Summary
■ Stored procedures are stored batches of code that are compiled when executed.

■ Procedures can be used to execute almost any valid command while also provid-
ing a security layer between a user and the tables within a database.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

366 Chapter 9 Creating Functions, Stored Procedures, and Triggers

C0962271X.fm Page 366 Friday, April 29, 2005 7:49 PM
NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which stored procedure option regenerates the query plan every time a proce-
dure is executed?

A. ENCRYPTION

B. RECOMPILE

C. VARYING

D. EXECUTE AS

Lesson 3: Implementing Triggers 367

C0962271X.fm Page 367 Friday, April 29, 2005 7:49 PM
Lesson 3: Implementing Triggers
A trigger is a specialized implementation of a Transact-SQL or CLR batch that auto-
matically runs in response to an event within the database. You can create two types
of triggers in SQL Server 2005: data manipulation language (DML) triggers and data def-
inition language (DDL) triggers. DML triggers run when INSERT, UPDATE, or DELETE
statements modify data in a specified table or view. DDL triggers, which run in
response to DDL events that occur on the server such as creating, altering, or drop-
ping an object, are used for database administration tasks such as auditing and con-
trolling object access. In this lesson, you see how to create AFTER and INSTEAD OF
DML triggers, how to identify and manage recursive and nested triggers, and how to
create DDL triggers to perform administration tasks.

After this lesson, you will be able to:

■ Create DML triggers.

■ Create DDL triggers.

■ Identify recursive and nested triggers.

Estimated lesson time: 20 minutes

DML Triggers
Unlike stored procedures and functions, DML triggers are not stand-alone objects,
and you cannot directly execute them. A DML trigger is attached to a specific table or
view and defined for a particular event. When the event occurs, SQL Server automat-
ically executes the code within the trigger, known as “firing the trigger.” The events
that can cause a trigger to fire are INSERT, UPDATE, and DELETE operations.

Triggers can fire in two different modes: AFTER and INSTEAD OF.

An AFTER trigger fires after SQL Server completes all actions successfully. For exam-
ple, if you insert a row into a table, a trigger defined for the INSERT operation fires
only after the row passes all constraints defined by primary keys, unique indexes, con-
straints, rules, and foreign keys. If the insert fails any of these validations, SQL Server
does not execute the trigger. You can define AFTER triggers only on tables. And you
can create any number of AFTER triggers on a view or table.

An INSTEAD OF trigger causes SQL Server to execute the code in the trigger instead
of the operation that caused the trigger to fire. If you were to define an INSTEAD OF
trigger on the table in the previous example, the insert would not be performed, so

368 Chapter 9 Creating Functions, Stored Procedures, and Triggers

C0962271X.fm Page 368 Friday, April 29, 2005 7:49 PM
none of the validation checks would be performed. SQL Server would execute the
code in the trigger instead. You can create INSTEAD OF triggers on views and tables.
The most common usage is to use INSTEAD OF triggers on views to update multiple
base tables through a view. You can define only one INSTEAD OF trigger for each
INSERT, UPDATE, or DELETE event for a view or table.

The code within a trigger can be composed of any statements and constructs valid for
a batch, with some exceptions. Following is a brief list of some of the more important
commands or constructs that you cannot use within a trigger:

■ Databases cannot be created, altered, dropped, backed up, or restored.

■ Structural changes cannot be made to the table that caused the trigger to fire,
such as CREATE/ALTER/DROP INDEX, ALTER/DROP TABLE, and so on.

MORE INFO Trigger exceptions

You can find the full list of commands and constructs that are not allowed within a trigger in the
SQL Server 2005 Books Online article “CREATE TRIGGER (Transact-SQL).”

SQL Server does not support triggers against system objects such as system tables and
dynamic management views. Also, triggers will fire only in response to logged opera-
tions. Minimally logged operations such as TRUNCATE and WRITETEXT do not cause
a trigger to fire.

BEST PRACTICES Referential integrity

You can use triggers to enforce referential integrity. However, you should not use triggers in place
of declarative referential integrity (DRI) via a FOREIGN KEY constraint. DRI is enforced when the
modification is made, before the change is part of the table, and is much more efficient than exe-
cuting trigger code. However, you cannot define FOREIGN KEY constraints across databases. To
enforce referential integrity across databases, you must use triggers.

Triggers have access to two special tables that are dynamically generated: INSERTED
and DELETED. INSERTED and DELETED tables are visible only within a trigger and
cannot be accessed by any other construct such as a stored procedure or function.
The structure of the INSERTED and DELETED tables exactly matches the column def-
inition of the table on which the trigger was created. Therefore, you can reference col-
umns by using the same name as the table for which the trigger was defined.

When you execute an INSERT operation, the INSERTED table contains each row that
was inserted into the table, whereas the DELETED table does not contain any rows.
When you execute a DELETE statement, the DELETED table contains each row that

Lesson 3: Implementing Triggers 369

C0962271X.fm Page 369 Friday, April 29, 2005 7:49 PM
was deleted from the table, whereas the INSERTED table does not contain any rows.
When you execute an UPDATE statement, the INSERTED table contains the after
image of each row you updated, and the DELETED table contains the before image of
each row that you updated. The before image is simply a copy of the row as it existed
before you executed the UPDATE statement. The after image reflects the data in the
row after the UPDATE statement has changed appropriate values.

The general Transact-SQL syntax for creating a DML trigger is as follows:

CREATE TRIGGER [schema_name .]trigger_name
ON { table | view }
[WITH <dml_trigger_option> [,...n]]
{ FOR | AFTER | INSTEAD OF }
{ [INSERT] [,] [UPDATE] [,] [DELETE] }
[WITH APPEND]
[NOT FOR REPLICATION]
AS { sql_statement [;] [,...n] | EXTERNAL NAME <method specifier [;] > }

<dml_trigger_option> ::=

[ENCRYPTION]
[EXECUTE AS Clause]

Every trigger must have a name that conforms to the rules for object identifiers.

You use the ON clause to specify the table or view that the trigger will be created
against. If the table or view is dropped, any triggers that were created against the table
are also dropped.

Using the WITH clause, you can do the following:

■ Specify whether the code in the trigger will be encrypted when it is created.

■ Specify an execution context.

The FOR clause specifies whether the trigger is an AFTER or INSTEAD OF trigger as
well as the event(s) that cause the trigger to fire. You can specify more than one event
for a given trigger if you choose.

Most people can ignore the WITH APPEND clause, which applies only to 65 compat-
ibility mode, because most organizations should have upgraded their SQL Server 6.5
databases by now. The NOT FOR REPLICATION clause is covered in Chapter 19,
“Managing Replication.”

Following the AS clause, you specify the code that you want to execute when the trig-
ger is fired.

370 Chapter 9 Creating Functions, Stored Procedures, and Triggers

C0962271X.fm Page 370 Friday, April 29, 2005 7:49 PM
Let’s look at an example of how to use triggers. Human Resources has a strict policy
that requires any changes to an employee’s pay rate to be audited. The audit must
include prior pay rate, current pay rate, the date the change was made, and the name
of the person who made the change. You could accomplish the audit process within
an application, but you cannot guarantee that all pay rate changes take place through
applications that you control. So you decide to implement a trigger on the Employee
table that fires on an UPDATE operation and logs pay-rate audit information into the
EmployeeAudit table:

CREATE TRIGGER tu_employeepayaudit
ON dbo.Employee
FOR UPDATE
AS

DECLARE @now DATETIME

SET @now = getdate()

BEGIN TRY

INSERT INTO dbo.EmployeeAudit
(RowImage, PayRate, ChangeDate, ChangeUser)
SELECT 'BEFORE', INSERTED.PayRate, @now, suser_sname()
FROM DELETED

INSERT INTO dbo.EmployeeAudit
(RowImage, PayRate, ChangeDate, ChangeUser)
SELECT 'AFTER', INSERTED.PayRate, @now, suser_sname()
FROM INSERTED

END TRY

BEGIN CATCH

--Some error handling code
ROLLBACK TRANSACTION

END CATCH

Recursive and Nested Triggers
Because triggers fire in response to a DML operation and can also perform additional
DML operations, there is the possibility for a trigger to cause itself to fire or to fire
additional triggers in a chain.

A trigger causing itself to fire is called recursion. For example, suppose that an UPDATE
TRIGGER is created on the Customers table that modifies a column in the Customers
table. The modification in the trigger causes the trigger to fire again. The trigger mod-
ifies the Customers table again, causing the trigger to be fired yet again. Because this
recursion can lead to an unending chain of transactions, SQL Server has a mechanism

Lesson 3: Implementing Triggers 371

C0962271X.fm Page 371 Friday, April 29, 2005 7:49 PM
to control recursive triggers. The RECURSIVE_TRIGGERS option of a database is nor-
mally set to OFF, preventing recursion by default. If you want triggers to fire recur-
sively, you must explicitly turn on this option.

NOTE INSTEAD OF triggers

An INSTEAD OF trigger does not fire recursively.

Recursion can also occur indirectly. For example, suppose that an UPDATE operation
on the Customers table causes a trigger to fire to update the Orders table. The update
to the Orders table then fires a trigger that updates the Customers table. Indirect recur-
sion is a subset of the cases referred to as nested triggers.

The most general case of nested triggers is when a trigger makes a change that causes
another trigger to fire. By setting the NESTED TRIGGERS option to 0 at the server
level, you can disable all forms of nested triggers.

DDL Triggers
New in SQL Server 2005 is the ability to create triggers for DDL operations, such as
when a table is created, a login is added to the instance, or a new database is created.
The main purposes of DDL triggers are to audit and regulate actions performed on a
database. DDL triggers let you restrict DDL operations even if a user might normally
have the permission to execute the DDL command.

For example, you might want to prevent anyone, including members of the sysadmin
fixed server role, from altering or dropping tables in a production environment. You
can create a DDL trigger for the ALTER TABLE and DROP TABLE events that causes
the commands to be rolled back and a message returned telling the users that
approval is needed before they can alter or drop the table.

The general syntax for creating a DDL trigger is as follows:

CREATE TRIGGER trigger_name
ON { ALL SERVER | DATABASE }
[WITH <ddl_trigger_option> [,...n]]
{ FOR | AFTER } { event_type | event_group } [,...n]
AS { sql_statement [;] [,...n] | EXTERNAL NAME < method specifier > [;] }

<ddl_trigger_option> ::=

[ENCRYPTION]
[EXECUTE AS Clause]

<method_specifier> ::=

assembly_name.class_name.method_name

372 Chapter 9 Creating Functions, Stored Procedures, and Triggers

C0962271X.fm Page 372 Friday, April 29, 2005 7:49 PM
MORE INFO Event groups

You can find the events that are valid for DDL triggers in the SQL Server 2005 Books Online article
“Event Groups for Use with DDL Triggers.”

An example of a DDL trigger to prevent the dropping or altering of a table is as fol-
lows:

CREATE TRIGGER tddl_tabledropalterprevent
ON DATABASE
FOR DROP_TABLE, ALTER_TABLE
AS

PRINT 'Tables cannot be dropped or altered!'
ROLLBACK ;

Quick Check
1. What are the two types of triggers?

2. What are they generally used for?

Quick Check Answers

1. SQL Server 2005 provides DML and DDL triggers.

2. DML triggers fire in response to INSERT, UPDATE, and DELETE statements
executed against a specific table. DML triggers are generally used to per-
form operations against the data that was modified in a table. DDL triggers
fire in response to DDL commands being executed on the server. DDL trig-
gers are used mainly for security and auditing purposes.

PRACTICE Creating DML and DDL Triggers
In these practices, you create a DML trigger that audits list-price changes and a DDL
trigger that prevents dropping tables in a database.

� Practice 1: Create a DML Trigger

In this practice, you create a DML trigger on the Production.Product table that audits
when the list price changes.

1. If necessary, launch SSMS, connect to your instance, open a new query window,
and change the database context to the AdventureWorks database.

Lesson 3: Implementing Triggers 373

C0962271X.fm Page 373 Friday, April 29, 2005 7:49 PM
2. Create an auditing table by executing the following command:

CREATE TABLE Production.ProductAudit
(AuditID int identity(1,1) PRIMARY KEY,
ProductID int NOT NULL,
ListPriceBefore money NOT NULL,
ListPriceAfter money NOT NULL,
AuditDate datetime NOT NULL,
ChangeUser sysname NOT NULL);

3. Create a trigger against the Production.Product table that logs all changes in the
audit table. For simplicity, store everything in an XML column:

CREATE TRIGGER tuid_ProductAudit
ON Production.Product
FOR UPDATE
AS
INSERT INTO Production.ProductAudit
(ProductID, ListPriceBefore, ListPriceAfter, AuditDate, ChangeUser)
SELECT INSERTED.ProductID, DELETED.ListPrice, INSERTED.ListPrice, getdate(),
suser_sname()
FROM INSERTED INNER JOIN DELETED ON INSERTED.ProductID = DELETED.ProductID;

4. Change a row of data in the Production.Product table.

5. Observe the effect of the trigger by selecting the data from the audit table.

6. Can you explain why there are two rows of data in the Production.ProductAudit
table for each row that is changed?

� Practice 2: Create a DDL Trigger

In this practice, you create a DDL trigger that prevents any table from being dropped.

1. If necessary, launch SSMS, connect to your instance, open a new query window,
and change the database context to the AdventureWorks database.

2. Create the DDL trigger by executing the following code:

CREATE TRIGGER tddl_tabledropprevent
ON DATABASE
FOR DROP_TABLE
AS

PRINT 'Tables cannot be dropped!'
ROLLBACK ;

3. Create a table for testing purposes, as follows:

CREATE TABLE dbo.DropTest
(ID int NOT NULL);

374 Chapter 9 Creating Functions, Stored Procedures, and Triggers

C0962271X.fm Page 374 Friday, April 29, 2005 7:49 PM
4. Try to drop the table you just created by executing the following code:

DROP TABLE dbo.DropTest;

5. Verify that the table still exists by executing the following code:

SELECT ID from dbo.DropTest

Lesson Summary
■ SQL Server supports two types of triggers: DML and DDL.

■ DML triggers can be either AFTER or INSTEAD OF triggers. You can create any
number of AFTER triggers for a table or view, but you can create only one
INSTEAD OF trigger for each data-modification operation for a table or view.
When DML triggers fire, they have access to special tables named INSERTED
and DELETED.

■ DDL triggers fire in response to DDL events that occur on the server, such as cre-
ating, altering, or dropping an object. The main purposes of DDL triggers are to
provide an additional means of security and to audit any DDL commands issued
against a database.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following operators is allowed in a trigger?

A. CREATE INDEX

B. RESTORE DATABASE

C. INSERT

D. ALTER DATABASE

Chapter 9 Review 375

C0962271X.fm Page 375 Friday, April 29, 2005 7:49 PM
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can

■ Review the chapter summary.

■ Review the list of key terms introduced in this chapter.

■ Complete the case scenario. This scenario sets up a real-world situation involv-
ing the topics of this chapter and asks you to create a solution.

■ Complete the suggested practices.

■ Take a practice test.

Chapter Summary
■ UDFs, stored procedures, and triggers are the programmatic constructs used

within SQL Server.

■ You use UDFs to encapsulate complex functionality and return either a single
value or a table variable. Functions cannot make changes that cause the state of
the database or server to change.

■ You use stored procedures to perform any programmatic actions on a server.
Stored procedures, which can return scalar values or result sets, are the primary
interface that applications should use to access any data within a database.

■ Triggers are a special type of stored procedure that you use to execute code in
response to specified actions. DML triggers execute in response to INSERT,
UPDATE, and DELETE operations. DDL triggers execute in response to DDL
commands.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ data definition language (DDL) trigger

■ data manipulation language (DML) trigger

■ deterministic function

■ function

■ input parameter

376 Chapter 9 Review

C0962271X.fm Page 376 Friday, April 29, 2005 7:49 PM
■ nested trigger

■ nondeterministic function

■ output parameter

■ recursive trigger

■ scalar function

■ stored procedure

■ table-valued function

■ trigger

Case Scenario: Creating Triggers, Functions, and
Stored Procedures

In the following case scenario you will apply what you’ve learned in this chapter. You
can find answers to these questions in the “Answers” section at the end of this book.

Contoso Limited, a health care company located in Bothell, WA, has completed the
initial design of its new patient claims database. All the table structures are defined,
along with the necessary indexes, views, and partitioning. The company now has to
implement all the rest of the parts of the application, including auditing all changes,
calculating patient risk scores (a common calculation), and providing access to the
data. What should Contoso be designing in the database?

Suggested Practices
To help you successfully master the exam objectives presented in this chapter, com-
plete the following tasks.

Creating Functions
■ Practice 1 Within your existing databases, locate a calculation or result set that

is generated on a frequent basis and that isn’t straightforward to re-create each
time. Encapsulate this code into a function and adjust your application code to
use the function instead of using ad hoc SQL code.

Chapter 9 Review 377

C0962271X.fm Page 377 Friday, April 29, 2005 7:49 PM
Creating Stored Procedures
■ Practice 1 Move all the ad hoc SQL code from your applications into stored pro-

cedures and call the procedures to perform the actions. Once all access
(INSERT/UPDATE/DELETE/SELECT) is through stored procedures, remove all
direct permissions to any base tables from all users.

Creating Triggers
■ Practice 1 Add triggers to your databases that audit changes made to data

within your databases.

■ Practice 2 Add triggers to your production SQL Server instances for all DROP
operations that cause the action to be rolled back. Create DDL triggers for CRE-
ATE and ALTER actions that also roll back those operations. This process creates
a structure that prevents any accidental changes to objects within any database
on the server. To perform these operations, a sysadmin would have to disable the
DDL trigger first. Make sure that you do not prevent yourself from altering a
DDL trigger; if you do, you won’t be able to make any changes.

Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-431 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the “How to Use the Practice Tests”
section in this book’s Introduction.

C0962271X.fm Page 378 Friday, April 29, 2005 7:49 PM

C1062271X.fm Page 379 Friday, April 29, 2005 7:53 PM
Chapter 10

Working with Flat Files

A common task when working with a database is importing data from other sources.
One of the most frequently used methods of transferring data is by using one or more
flat files. A flat file is a file that is not hierarchical in nature or a file that contains data
meant for a single table in the database. Using flat files for data import and export is
beneficial because the format is often common between the source and destination
systems. Flat files can also provide a layer of abstraction between the source and des-
tination. This chapter covers the factors you need to consider before performing any
data-load operations. It then covers the different methods you can use to efficiently
import files into SQL Server, including bulk copy program (bcp), the BULK INSERT
Transact-SQL command, the OPENROWSET Transact-SQL function, and the SQL
Server Integration Services (SSIS) Import/Export Wizard.

Exam objectives in this chapter:
■ Import and export data from a file.

❑ Set a database to the bulk-logged recovery model to avoid inflating the
transaction log.

❑ Run the bcp utility.

❑ Perform a Bulk Insert task.

❑ Import bulk XML data by using the OPENROWSET function.

❑ Copy data from one table to another by using the SQL Server 2005 Integra-
tion Services (SSIS) Import/Export Wizard.

Lessons in this chapter:
■ Lesson 1: Preparing to Work with Flat Files. 381

■ Lesson 2: Running the bcp Utility. 387

■ Lesson 3: Performing a BULK INSERT Task . 393

■ Lesson 4: Importing Bulk XML Data . 398

■ Lesson 5: Using the SSIS Import/Export Wizard . 402
379

380 Chapter 10 Working with Flat Files

C1062271X.fm Page 380 Friday, April 29, 2005 7:53 PM
Before You Begin
To complete the lessons in this chapter, you must have

■ A computer that meets the hardware and software requirements for Microsoft
SQL Server 2005.

■ SQL Server 2005 Developer, Workgroup, Standard, or Enterprise Edition
installed.

Real World
Daren Bieniek

My work since the mid-1990s has focused mostly on business intelligence (BI)
and data warehousing, so I have loaded a lot of flat files into many databases. In
fact, I have loaded hundreds of terabytes of data from flat files (nearly all into
SQL Server), and I consider flat files an excellent choice for loading databases
large or small.

From my experience, here is a quick story about the importance of using the
appropriate file formats for data loads. I was working with a client who was
bringing in data from several systems, more than 25 GB a week in flat files, and
the client suggested that we leave behind the “old” flat files and move to the
“newer” XML files. The client could not give me any good reasons why he
wanted to change, other than saying it was a general industry direction. I pro-
tested and told the client that this is not one of XML’s strengths and that the
company would incur unnecessary overhead. However, the client insisted that
we run a test, and I did.

First, the client’s 25 GB in flat files grew to more than 100 GB as XML files
because of XML’s tag overhead, so we now needed four times the storage and
bringing the file across the network took more than four times as long. Second,
while loading from the XML files, processor utilization increased substantially
(from the overhead of XML tag parsing because tags now made up more than
75 percent of the files’ size), and other resources were also more heavily taxed
during this time. Additionally, the load time tripled, causing the load to now
extend past the maintenance window. Having learned his lesson, the client
immediately decided that it was best to stay with the flat files. The moral of this
story is that you should use the format that best fits the data you are loading; not
switch to the “latest” format just because it is there.

Lesson 1: Preparing to Work with Flat Files 381

C1062271X.fm Page 381 Friday, April 29, 2005 7:53 PM
Lesson 1: Preparing to Work with Flat Files
Before starting the file imports, it is important to review the factors that influence log-
ging behavior and performance of the bulk data loads. You need to consider factors
related to the source of the import, the import mechanism you are using, and the des-
tination of the data. You also need to make sure the database you’re loading into is set
to the Bulk-Logged recovery model.

After this lesson, you will be able to:

■ List items that affect the logging and performance of bulk operations.

■ Explain the impact of recovery models during bulk loads.

■ Change the recovery model for a database in preparation for a bulk load.

Estimated lesson time: 15 minutes

Source File Location
The source of the data is important because it is a major determining factor in the
speed and complexity of the import. For example, if the source is a flat file on a net-
work share, other factors outside of the import server’s control can influence perfor-
mance. These factors include network performance and file server performance.
Regardless of how fast the import mechanisms and data destination, the import will
run only as fast as the source data can be read. Therefore, it is important to consider
the performance of the data source as a factor in determining overall import perfor-
mance. As with any operation on a computer, the process is only as fast as the slowest
component involved.

Import Mechanism
The import mechanism (bcp, BULK INSERT, OPENROWSET, or SSIS) you choose is
important in many ways, most of which we will explore later in this chapter. However,
keep in mind that although there is substantial overlap in the functionality of the dif-
ferent import mechanisms, they each have their place for certain types of imports.

Data Destination
The destination of the data is probably the single most important factor in determin-
ing not only the performance of your import, but also its overall impact on the server.
Included in the definition of data destination are the database server, the database,
and the data structure. The database server in general is important because its overall

382 Chapter 10 Working with Flat Files

C1062271X.fm Page 382 Friday, April 29, 2005 7:53 PM
design and usage plays a major role in determining the method and performance of
the data load. However, a discussion of server design is outside of the scope of this
book. The next factor is the database itself. You need to ask many questions about
your database to determine which data-load mechanism works best. What level of
uptime is needed? Is there a maintenance window during which you can load the
data? What recovery model is being used? Many other database factors can affect your
decision. The last data destination item that affects the data import is the data struc-
ture, or table design, itself. Does the table have clustered and/or nonclustered
indexes? Does the table have active constraints or triggers? Does the table already
have several million rows, or is it empty? Is the table a source for replication?

A Best-Case Scenario
The best-case scenario is bulk-loading data into an empty heap (a table with no
indexes) that is not involved in replication, with no constraints or triggers, with the
database placed into the Bulk-Logged recovery model, and during a maintenance win-
dow. Here is what makes this a best-case scenario.

First, the database is using the Bulk-Logged recovery model. This model differs from
the Full recovery model in many ways, one of which is that bulk-load operations are
minimally logged so the transaction log will not be filled by the bulk-load operation.
There are several caveats surrounding minimal logging. For example, if the table that
is being bulk-loaded already has data and has a clustered index, the bulk load will be
fully logged, even if the database is using the Bulk-Logged recovery model. (See the
sidebar titled “Ensuring Minimal Logging” for more information.)

Ensuring Minimal Logging
You use the Bulk-Logged recovery model to minimize bloating the transaction
log during bulk loads. However, it is important to remember that simply setting
the recovery model to Bulk-Logged is not enough. Other conditions must be met
for minimal logging to occur. The following conditions are necessary for mini-
mal logging:

■ Database recovery model is set to Bulk-Logged.

■ Table is not replicated.

■ TABLOCK hint is used.

■ Destination table meets population and indexing requirements (as shown
in Table 10-1).

Lesson 1: Preparing to Work with Flat Files 383

C1062271X.fm Page 383 Friday, April 29, 2005 7:53 PM
Table 10-1 shows the level of logging (Minimal, Index, or Full) that will occur
under different circumstances.

Note that the table population and indexing criteria are applied at the batch
level, not the load level. Therefore, if you load 100,000 rows in 10 batches with
10,000 rows per batch into an empty table with a clustered index, SQL Server
logs the first 10,000 rows minimally and fully logs the remaining rows (90,000).

Quick Check
■ Why is it useful to switch the recovery mode to Bulk-Logged before bulk-

loading data?

Quick Check Answer

■ Switching logging modes from Full to Bulk-Logged lets the database possi-
bly perform minimal logging during the data load. Data that is loaded dur-
ing a bulk load usually has no need for the point-in-time recovery capability
of the Full recovery model. Decreasing the volume of log writes improves
performance and helps alleviate the log bloat that occurs during bulk loads.

It is important to performance that you complete the bulk load during a maintenance
window. The obvious reason is so that the bulk load won’t have to contend with users
for server resources. But the less obvious reasons are that the bulk load can use a table
lock, and the recovery model can be altered. The load operation can acquire a table
lock instead of the more granular locks that it would acquire otherwise. A table lock
is not only more efficient, it is also required for minimal logging to occur. Additionally,
most databases operate using the Full recovery model during normal usage. There-
fore, if you perform the bulk load during a maintenance window, you can switch the
database to the Bulk-Logged recovery model. Although you can switch the database to
the Bulk-Logged recovery model during normal usage, certain recovery capabilities
are lost, such as point-in-time recovery. To switch to the Bulk-Logged recovery model,

Table 10-1 Logging Level Under Different Conditions

Clustered Index Nonclustered Indexes

Yes No Yes No

Table Empty Minimal Minimal Minimal Minimal

Has Data Full Minimal Index Minimal

384 Chapter 10 Working with Flat Files

C1062271X.fm Page 384 Friday, April 29, 2005 7:53 PM
use either the ALTER DATABASE Transact-SQL command or SQL Server Management
Studio (SSMS). An example of using ALTER DATABASE to set the recovery model to
Bulk-Logged follows:

ALTER DATABASE AdventureWorks SET RECOVERY BULK_LOGGED;

After you complete the bulk loads, you should switch the database back to the Full
recovery model and immediately perform a transaction log backup. Doing so reen-
ables point-in-time recovery from the time of the log backup forward. This log backup
not only stores the minimal logging that occurred during the bulk load but also
places a copy of the bulk-loaded data into the log backup. This distinction is impor-
tant because the log backup needs access to the log files and the data files that were
the destination of the bulk load. Starting a log backup while a bulk load is occurring
to the same data file might introduce contention, which causes both operations to
occur more slowly than they would separately. Therefore, it is usually wise to wait
until you have finished the bulk loads and placed the database back into Full recovery
mode before starting the log backup.

SQL Server Recovery Models
SQL Server provides three recovery models: Full, Bulk-Logged, and Simple. For
the most part, the recovery model affects the way SQL Server uses and manages
a database’s transaction log.

The Full recovery model records every change caused by every transaction at a
granular level, which allows for point-in-time recovery. You must back up the
transaction log to allow SQL Server to reuse log space.

The Bulk-Logged recovery model is similar to the Full recovery model, but varies
when you bulk load data. If certain conditions are met, the Bulk-Logged recovery
model does not record the row inserts at a granular level; instead, it logs only
extent allocations, which saves a significant amount of log space. Like the Full
recovery model, you must perform a transaction log backup for SQL Server to
reuse log space.

The Simple recovery model is the same as Bulk-Logged, except that you do not
need to back up the transaction log for space to be cleared and reused. Therefore,
when using the Simple recovery model, transaction log backups are unreliable.

For more information about recovery models, see Chapter 2, “Configuring SQL
Server 2005.”

Lesson 1: Preparing to Work with Flat Files 385

C1062271X.fm Page 385 Friday, April 29, 2005 7:53 PM
PRACTICE Change the Recovery Model
In this practice, you will change the recovery model of the AdventureWorks database
from Full to Bulk-Logged and back again.

1. Open SSMS.

2. In the Connect To Server window, specify a Server type of Database Engine,
enter the appropriate Server name, and use the appropriate Authentication infor-
mation for your environment. Click Connect.

3. Press Ctrl+N to open a new query window.

4. To see the current recovery model that AdventureWorks is using, type the follow-
ing command:

SELECT DATABASEPROPERTYEX('AdventureWorks', 'Recovery');

If you are still using the default recovery model, the query should return ‘FULL’.
If anything else is returned, just use the command from step 7 to change the
recovery model back to Full.

5. In the query window, above the SELECT command from step 4, type the follow-
ing command to set the recovery model to Bulk-Logged:

ALTER DATABASE AdventureWorks SET RECOVERY BULK_LOGGED;

Now, the query window should look like the following:

ALTER DATABASE AdventureWorks SET RECOVERY BULK_LOGGED;
SELECT DATABASEPROPERTYEX('AdventureWorks', 'Recovery');

6. Click Execute, and the result set should now show ‘BULK_LOGGED’, which
means that you have successfully changed the recovery model to Bulk-Logged.

7. In the query window, replace the words BULK_LOGGED with FULL so that the
query window now reads as follows:

ALTER DATABASE AdventureWorks SET RECOVERY FULL;
SELECT DATABASEPROPERTYEX('AdventureWorks', 'Recovery');

8. Click Execute, and the result set should now show ‘FULL’, meaning that you
have successfully changed the recovery model back to Full.

Lesson Summary
■ Many factors are involved in efficiently bulk-loading data, including the charac-

teristics of the data source, the bulk-load mechanism, and the destination of the
import.

386 Chapter 10 Working with Flat Files

C1062271X.fm Page 386 Friday, April 29, 2005 7:53 PM
■ Placing a database into the Bulk-Logged recovery model helps to minimize the
bloating of the transaction log during a bulk load, but only if several other
requirements are met.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Why is it best to bulk load data during a maintenance cycle? (Choose all that
apply.)

A. It is safer to set the recovery model of a database to Bulk-Logged when it is
not in use by end users.

B. Minimal logging requires that a table have a clustered index, and clustered
indexes can be created only when the database is in single-user mode.

C. A table lock must be acquired to minimize logging, and this is not practical
during regular usage.

D. bcp can be run only when the database is in single-user mode.

Lesson 2: Running the bcp Utility 387

C1062271X.fm Page 387 Friday, April 29, 2005 7:53 PM
Lesson 2: Running the bcp Utility
One of the oldest and most well-known methods of bulk loading data into a SQL
Server database is by using the bcp command-line utility. Many people consider bcp to
be the “quick and easy” method of bulk loading data, and they are mostly right. In this
lesson, you learn what bcp is good for and what it is not good for. Then you will see
how to use bcp to import data into SQL Server.

After this lesson, you will be able to:

■ Explain the use of the bcp command-line utility.

■ Explain certain situations when bcp should not be used.

■ List certain common bcp parameters and explain their use.

■ List the permissions necessary for a user to bulk-load data into a table by using bcp.

■ Execute the bcp command to import data.

Estimated lesson time: 15 minutes

What Is bcp?
The abbreviation bcp stands for bulk copy program. Because bcp is a program, you do
not execute it from within a query window or batch but rather from the command
line. It is an external program, which means it runs outside of the SQL Server process.
As its name indicates, you use bcp to bulk copy data either into or out of SQL Server.
However, this lesson primarily explores the import or loading of data.

Here are two limitations to keep in mind about bcp:

■ bcp has limited data-transformation capabilities. If the data that you are loading
needs to go through complex transforms or validations, bcp is not the correct
tool to use.

■ bcp has limited error handling capabilities. bcp might know that an error occurred
while loading a given row, but it has limited reaction options. Based on the settings
you use during the bcp load, bcp can react to an erroneous row by either erroring
out of the bcp load or by logging the row and error (up to a user-specified maxi-
mum count) and then erroring out of the bcp load. The program does not have the
native capability to recover and retry a given row or set of rows during the same
load process, as SSIS might do, or to send a notification to someone about the
errors that occurred.

388 Chapter 10 Working with Flat Files

C1062271X.fm Page 388 Friday, April 29, 2005 7:53 PM
bcp Command-Line Syntax
The syntax for the bcp command is as follows:

bcp {[[database_name.][owner].]{table_name | view_name} | "query"}
{in | out | queryout | format} data_file
[-mmax_errors] [-fformat_file] [-x] [-eerr_file]
[-Ffirst_row] [-Llast_row] [-bbatch_size]
[-n] [-c] [-w] [-N] [-V (60 | 65 | 70 | 80)] [-6]
[-q] [-C { ACP | OEM | RAW | code_page }] [-tfield_term]
[-rrow_term] [-iinput_file] [-ooutput_file] [-apacket_size]
[-Sserver_name[\instance_name]] [-Ulogin_id] [-Ppassword]
[-T] [-v] [-R] [-k] [-E] [-h"hint [,...n]"]

As you can see, there are many parameters and options. The following discussion cen-
ters on the most frequently used bcp parameters.

MORE INFO bcp parameters

For a full description of all the parameters available for bcp, see the SQL Server 2005 Books Online
topic “bcp Utility.” SQL Server 2005 Books Online is installed as part of SQL Server 2005. Updates
for SQL Server 2005 Books Online are available for download at www.microsoft.com/technet/
prodtechnol/sql/2005/downloads/books.mspx.

Flat files can come in many formats: with or without header rows, varying field delim-
iters or row delimiters, and so on. Some of the parameters that help with these vari-
ances are -t, -r, and -F.

IMPORTANT Parameters are case-sensitive

Note that bcp parameters are case-sensitive. Therefore, -t and -T are different and unrelated
parameters.

-t defines the column delimiter or field “t”erminator. The default for this parameter is
\t (tab character), or tab delimited. If you are familiar with importing and exporting
files in Microsoft Office Excel, you are probably familiar with tab-delimited files.

-r defines the “r”ow delimiter or “r”ow terminator. The default for this parameter is \n
(newline character).

-F defines the number of the “F”irst row to import from the data file. This parameter
can be useful in many ways, including telling bcp to skip the first row because it is the
file header. You can also use -F in a case in which part of a file has been processed and
you want to restart processing where it left off.

Lesson 2: Running the bcp Utility 389

C1062271X.fm Page 389 Friday, April 29, 2005 7:53 PM
NOTE Most common bcp parameters

The bcp parameters -t, -r, and -F are the most commonly used parameters for bulk importing an
ASCII character file.

bcp Hint Parameter
In addition to the previously mentioned commonly used bcp parameters, the -h or
“h”int parameter can have a substantial impact on both performance and logging
overhead of the data-load operation. Unlike some of the other bcp parameters, you use
the -h parameter to specify a set of hints for use during the bulk import. There are sev-
eral hints you can use, including TABLOCK and ORDER. You use the TABLOCK hint
to tell the bcp command to use a table lock while loading data into the destination
table. As noted before, using a table lock decreases locking overhead and allows the
Bulk-Logged recovery model to perform minimal logging. Use the ORDER hint to
specify that the records in the data file are ordered by certain columns. If the order of
the data file matches the order of the clustered index of the destination table, bulk-
import performance is enhanced. If the order of the data file is not specified or does
not exactly match the ordering of the clustered index of the destination table, the
ORDER hint is ignored.

Exam Tip The Hint parameter applies only to importing data from a file to a table. When used
with out, queryout, or format, the Hint parameter is ignored.

Exam Tip Both the bcp TABLOCK and ORDER hints are important for import performance. But
ORDER is useful only if it exactly matches the sort order of the destination table’s clustered index.

bcp Permissions
The minimum security permissions a user needs to successfully import data to a table
by using bcp are the SELECT/INSERT permissions. However, unlike SQL Server 2000,
SQL Server 2005 requires that the user have ALTER TABLE permissions to suspend
trigger execution, to suspend constraint checking, or to use the KEEPIDENTITY
option.

390 Chapter 10 Working with Flat Files

C1062271X.fm Page 390 Friday, April 29, 2005 7:53 PM
Quick Check
■ What permissions are needed to run the following bcp command?

bcp Table1 in c:\test.txt -T -c

Quick Check Answer

■ First, the -T parameter instructs bcp to use a trusted connection, which
means that all database work will be done using the permissions granted to
the Microsoft Windows user executing the command. Second, to import
data with bcp, the user must have SELECT and INSERT permissions on the
target table. Finally, the defaults that are implied by the command are that
triggers and constraints will be disabled; therefore, the user also needs
ALTER TABLE permission.

PRACTICE Importing Data by Using bcp
In this practice, you create the necessary objects and run a bcp import to a table.

NOTE See the companion CD for practice files

Lessons 2, 3, and 4 in this chapter use the files in the \Practice Files\Chapter 10 folder on the
companion CD.

� Practice 1: Prepare the Environment

In this practice, you create a database, a table, a folder, and a file to be used for testing
purposes. The folder stores the import file and text files that contain the script to cre-
ate the table and some commands that are pretyped to help you move quickly
through the exercise.

1. In the root folder of the C drive, create a folder named FileImportPractice.

2. Copy all the files in the \Practice Files\Chapter 10 folder on the companion CD
to the folder you just created.

3. Open SSMS and connect to the Database Engine.

4. Create a database named FileImportDB. It does not need to be very large (10 MB
should be enough), and for our learning purposes, you should configure the
database to use the Simple recovery model.

5. Using Windows Explorer, in the FileImportPractice folder, double-click the
ExamTableCreateScript.sql file.

Lesson 2: Running the bcp Utility 391

C1062271X.fm Page 391 Friday, April 29, 2005 7:53 PM
6. A Connect To Database Engine dialog box opens. Make sure that you connect to
the test server in which you created the FileImportDB database.

7. Click Execute to run the script and create a table named Exam within the File-
ImportDB database.

8. Verify that the script ran without error and that the Exam table was created.

9. Become familiar with the ExamImportFile.txt file. (Open the file in Notepad.) It
is ANSI character data, with four columns separated (delimited) by tabs, and
rows delimited by the newline character. Also note that the fourth column is
always empty (NULL in our case). You will use the fourth column in a later prac-
tice. The four columns in the file are ExamID, ExamName, ExamDescription,
and ExamXML, in that order.

10. Don’t open any of the bcp, BulkInsert, or OpenRowSet command files yet. They
are included in case you have difficulty in later practices.

� Practice 2: Run bcp

In this practice, you run the bcp command to import 500 rows into the new Exam
table that you created in Practice 1.

1. Open Notepad.

2. Try to formulate the proper bcp command to copy the ExamImportFile.txt into
the FileImportDB..Exam table. Remember that the defaults for column and row
terminators are /t (tab) and /n (newline), respectively.

3. When you think you have the right command, paste it into a command prompt
and run it. It doesn’t matter if the data is imported more than once, so you do not
need to clear the table between attempts.

4. Hints: If you are having trouble, remember that there are actually several ways to
form the bcp command properly. However, the quickest is to use the -c parame-
ter, which means that the import file is character data and defaults to using /t
(tab) and /n (newline) as column and row terminators.

5. You also need to specify how to connect to the SQL Server. The easiest and best
way to do this is to simply use the -T parameter, which instructs bcp to connect
using a trusted connection (Windows Authentication).

6. Therefore, here is the simplest command:

bcp FileImportDB..Exam in "c:\FileImportPractice\ExamImportFile.txt" -T -c

392 Chapter 10 Working with Flat Files

C1062271X.fm Page 392 Friday, April 29, 2005 7:53 PM
7. If you like, the command is also available in the bcpImportCommand.txt file.
Simply copy it to the command prompt and run it. You should get a message say-
ing that 500 rows were imported. The message also tells you how long the
import took and how many rows per second it extrapolates to.

Lesson Summary
■ bcp is an out-of-process command-line utility for importing or exporting data

quickly to or from a file.

■ bcp has extremely limited data-transformation and error-handling capabilities.

■ bcp provides numerous parameters that give you substantial flexibility in using
the utility. The -t, -r, and -F parameters are the most commonly used parameters
for bulk importing an ASCII character file.

■ Certain bcp hints, such as TABLOCK, must be used for minimal logging to occur.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. When loading data from a file that uses a comma for the field delimiter and new-
line for the row delimiter, and the file has a header row at the beginning, which
arguments MUST you specify? (Choose all that apply.)

A. -T

B. -t

C. -r

D. -F

Lesson 3: Performing a BULK INSERT Task 393

C1062271X.fm Page 393 Friday, April 29, 2005 7:53 PM
Lesson 3: Performing a BULK INSERT Task
BULK INSERT is the in-process brother to the out-of-process bcp utility. The BULK
INSERT Transact-SQL command uses many of the same switches that bcp uses,
although in a less cryptic format. For example, instead of using -t to designate the
column terminator, as it is in bcp, you can use FIELDTERMINATOR = , which is much
easier to read and remember. In this lesson, you learn the differences between bcp and
BULK INSERT, and see how to use BULK INSERT to insert data into a SQL
Server table.

After this lesson, you will be able to:

■ Explain the differences between bcp and BULK INSERT.

■ Explain certain situations when BULK INSERT should not be used.

■ List certain common BULK INSERT parameters and explain their use.

■ List the permissions necessary for a user to bulk load data into a table by using BULK
INSERT.

■ Execute a BULK INSERT command to import data into SQL Server.

Estimated lesson time: 15 minutes

Differences Between BULK INSERT and bcp
Two of the biggest differences between bcp and BULK INSERT are that BULK INSERT
can only import data and it executes inside SQL Server. Whereas bcp can either
import or export data, BULK INSERT (as its name implies) can only import (insert)
data into a SQL Server database. Also, bcp is executed from the command line and
runs outside of the SQL Server process space, meaning that all communications
between bcp and SQL Server are done via InterProcess Communications (IPC). In
contrast, BULK INSERT runs inside the SQL Server process space and is executed
from a query window or query batch. Other than these two differences and some
minor variations in security, the commands behave almost exactly the same.

NOTE bcp vs. BULK INSERT

bcp runs out-of-process and is executed from the command line, whereas BULK INSERT runs in-
process and is executed from a query window or Transact-SQL batch.

394 Chapter 10 Working with Flat Files

C1062271X.fm Page 394 Friday, April 29, 2005 7:53 PM
All of the caveats that apply to bcp for minimal logging—for example, there can be no
clustered index on a populated table and you must use the TABLOCK hint—also
apply to BULK INSERT.

Following is the syntax for the BULK INSERT command:

BULK INSERT
[database_name . [schema_name] . | schema_name .] [table_name | view_name]

FROM 'data_file'
[WITH

(
[[,] BATCHSIZE = batch_size]
[[,] CHECK_CONSTRAINTS]
[[,] CODEPAGE = { 'ACP' | 'OEM' | 'RAW' | 'code_page' }]
[[,] DATAFILETYPE =

{ 'char' | 'native'| 'widechar' | 'widenative' }]
[[,] FIELDTERMINATOR = 'field_terminator']
[[,] FIRSTROW = first_row]
[[,] FIRE_TRIGGERS]
[[,] FORMATFILE = 'format_file_path']
[[,] KEEPIDENTITY]
[[,] KEEPNULLS]
[[,] KILOBYTES_PER_BATCH = kilobytes_per_batch]
[[,] LASTROW = last_row]
[[,] MAXERRORS = max_errors]
[[,] ORDER ({ column [ASC | DESC] } [,...n])]
[[,] ROWS_PER_BATCH = rows_per_batch]
[[,] ROWTERMINATOR = 'row_terminator']
[[,] TABLOCK]
[[,] ERRORFILE = 'file_name']
)]

The BULK INSERT command uses nearly all the same parameters as bcp, but in a less
cryptic fashion. Additionally, you can use any format files you create for bcp with
BULK INSERT. And any files you extract from a SQL Server database by using bcp,
including those you extract in native formats, you can load into a SQL Server database
by using BULK INSERT.

MORE INFO BULK INSERT parameters

For a detailed description of the BULK INSERT command’s many options, see the SQL Server 2005
Books Online topic “BULK INSERT (Transact-SQL).”

Let’s look at the same parameters we discussed for bcp to compare what they look like
in BULK INSERT.

Lesson 3: Performing a BULK INSERT Task 395

C1062271X.fm Page 395 Friday, April 29, 2005 7:53 PM
■ FIELDTERMINATOR Specifies the field or column terminator or delimiter. As
with the bcp -t parameter, the default value is /t (tab character). To explicitly
declare a different field terminator, such as | (the pipe character), you would
specify the following as part of the BULK INSERT command:

FIELDTERMINATOR = ‘|’

■ ROWTERMINATOR Specifies the row terminator or delimiter. As with the bcp
-r parameter, the default value is /n (newline character). To explicitly declare a
different row terminator, such as |>| (the pipe, greater than, and pipe characters
concatenated together), you specify the following as part of the BULK INSERT
command:

ROWTERMINATOR = ‘|>|’

■ FIRSTROW Specifies the first row in the file that will be inserted into the table.
As with the bcp -F parameter, FIRSTROW can be used to skip a header row or to
restart the loading of a file at a certain row number. To explicitly declare a row to
start at, such as row 2, you would specify the following as part of the BULK
INSERT command:

FIRSTROW = 2

BULK INSERT Permissions
When it comes to BULK INSERT security, there are a few things to note, especially
because SQL Server 2005 handles security differently from SQL Server 2000. SQL
Server 2005 varies from SQL Server 2000 in how it verifies file access permissions. In
SQL Server 2000, it didn’t matter what type of login was used (Windows user or SQL
login); the BULK INSERT command would access the import file by using the security
privileges of the SQL Server service account. This was a potential security issue that
might allow users to get access to a file that their Windows user accounts could not
get to directly. In SQL Server 2005, using an integrated login, the BULK INSERT com-
mand uses the file access privileges of the user account that is executing the query,
not the SQL Server service account. The only exception to this is if SQL Server is oper-
ating in Mixed Mode, and the BULK INSERT command is executed by a SQL Server
login that does not map to a Windows user account. In this case, SQL Server still uses
the file access permissions of the SQL Server service account.

In addition, to use the BULK INSERT command, the user executing the BULK INSERT
command must have at least INSERT and ADMINISTER BULK OPERATION permis-
sions. And if the BULK INSERT command will suspend trigger execution, suspend
constraint checking, or use the KEEPIDENTITY option, the user must also have
ALTER TABLE permissions.

396 Chapter 10 Working with Flat Files

C1062271X.fm Page 396 Friday, April 29, 2005 7:53 PM
Quick Check
■ What permissions are needed to run the following BULK INSERT

command?

BULK INSERT Table1 FROM 'c:\test.txt'

Quick Check Answer

■ To import data by using the BULK INSERT command, the user must have
INSERT permissions on the target table and ADMINISTER BULK OPERA-
TION permission on the server. Additionally, the defaults that are implied
by the preceding command are that triggers and constraints will be
disabled; therefore, the user also needs ALTER TABLE permission.

PRACTICE Import Data by Using BULK INSERT
In this practice, you run the BULK INSERT command to import 500 rows into the
Exam table in the FileImportDB database.

IMPORTANT Perform Lesson 2, Practice 1 first

The necessary database, table, and files for this practice were created or copied during Practice 1,
“Prepare the Environment,” in Lesson 2 of this chapter. Perform that practice before attempting the
following exercise.

1. If necessary, open SSMS and connect to the server that you are using for these
exercises.

2. Open a new query window by pressing Ctrl+N.

3. Try to formulate the proper BULK INSERT command to copy the ExamImport-
File.txt into the FileImportDB..Exam table. Remember that the defaults for col-
umn and row terminators are /t (tab) and /n (newline), respectively.

4. When you think you have the right command, try executing it in the SQL win-
dow. It doesn’t matter whether the data is imported more than once, so there is
no need to clear the table between attempts.

5. Hints: If you are having trouble, remember that there are several ways to form
the BULK INSERT command properly. However, unlike the bcp command, you
do not have to specify that it is character data because that is the default for
BULK INSERT.

6. Here is the simplest command:

BULK INSERT FileImportDB..Exam FROM 'c:\FileImportPractice\ExamImportFile.txt'

Lesson 3: Performing a BULK INSERT Task 397

C1062271X.fm Page 397 Friday, April 29, 2005 7:53 PM
You can also include the TABLOCK hint by appending WITH (TABLOCK) to
the end of the command.

7. If you like, the command is also available in the BulkInsertCommand.sql file.
Simply copy the command to the SQL window and execute it, or double-click
the file for a new SQL window and connection; then execute the command. You
should get a message saying that 500 row(s) were affected.

Lesson Summary
■ The BULK INSERT Transact-SQL command is the in-process brother to bcp.

■ BULK INSERT has similar arguments to bcp, but they are less cryptic.

■ The BULK INSERT permissions have changed from SQL Server 2000 to SQL
Server 2005.

■ Similar to bcp, certain hints, such as TABLOCK, must be used with BULK
INSERT for minimal logging to occur.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. When loading data from a file by using BULK INSERT on a SQL Server 2005
instance that uses only Windows Authentication, file access permissions are ver-
ified based on which user’s credentials?

A. The user account that the SQL Server service is running as.

B. The user account of the person executing the BULK INSERT command.

C. The user account of the SQL Server Agent service.

D. File permissions are ignored because a program, not a person, is trying to
access the file.

398 Chapter 10 Working with Flat Files

C1062271X.fm Page 398 Friday, April 29, 2005 7:53 PM
Lesson 4: Importing Bulk XML Data
SQL Server provides several options for importing XML documents. You can use the
OPENROWSET Transact-SQL function to read data, including XML data, from a file.
SQL Server also offers OPENXML and XML stored procedures; the XML data type’s
nodes() method; or the SQLXML middle-tier API to load XML data as relational data,
a process called shredding. Lesson 5 of Chapter 8, “Managing XML Data,” covers the
shredding methods for loading XML data. This lesson discusses using the BULK
rowset provider for OPENROWSET to read data from a file without having to load the
data into a target table. With this method, you can use OPENROWSET with a simple
SELECT statement.

After this lesson, you will be able to:

■ List the main uses of the OPENROWSET function.

■ Load an XML file into a table by using the OPENROWSET function.

■ Explain some of the options and parameters of the OPENROWSET function.

Estimated lesson time: 10 minutes

OPENROWSET Function
You can use the OPENROWSET function in any standard SQL statement as a table
reference, thus enabling you to use data from any valid OLE DB data source in a query
without first having to load it into a table. The syntax of the function is the following:

OPENROWSET
({ 'provider_name' , { 'datasource' ; 'user_id' ; 'password'

| 'provider_string' }
, { [catalog.] [schema.] object
| 'query'

}
| BULK 'data_file' ,

{ FORMATFILE = 'format_file_path' [<bulk_options>]
| SINGLE_BLOB | SINGLE_CLOB | SINGLE_NCLOB }

})

 <bulk_options> ::=
[, CODEPAGE = { 'ACP' | 'OEM' | 'RAW' | 'code_page' }]
[, ERRORFILE = 'file_name']
[, FIRSTROW = first_row]
[, LASTROW = last_row]
[, MAXERRORS = maximum_errors]
[, ROWS_PER_BATCH = rows_per_batch]

Lesson 4: Importing Bulk XML Data 399

C1062271X.fm Page 399 Friday, April 29, 2005 7:53 PM
There are many uses of the OPENROWSET function, including using the function as
a target of an INSERT, UPDATE, or DELETE query. For example, you can use this func-
tion to make a flat file appear to be a table and then you can treat the file as a table by
using joins, WHERE clauses, SELECT statements, and so on without having to load
the data in a table first. Or you can use OPENROWSET with a different data provider
to allow a SQL query to see data in an Analysis Services Measure Group as a flattened
table, and all the same uses apply. However, the focus of this chapter and lesson is
importing data from files.

To use OPENROWSET to bulk load XML data, you use the BULK option, which lets
you specify where to start and end reading data, how to deal with errors, and how to
interpret data. For example, when importing a single XML document into a column of
one row, you specify the BULK option along with the SINGLE_BLOB format. A sample
statement to perform this task is the following:

INSERT INTO Documents(XmlCol)
SELECT * FROM OPENROWSET(

BULK 'c:\XMLDocs\XMLDoc9.txt',
SINGLE_BLOB) AS x

This statement bulk imports the contents of the ‘c:\XMLDocs\XMLDoc9.txt’ file as a
SINGLE_BLOB and inserts that BLOB into the XmlCol of a single row in the Docu-
ments table.

The SINGLE_BLOB format tells the OPENROWSET function to treat the entire file as
a single unit, rather than parsing it in some way.

MORE INFO OPENROWSET

For comprehensive coverage of OPENROWSET, see the SQL Server 2005 Books Online topic
“OPENROWSET (Transact-SQL).”

Quick Check
■ Can OPENROWSET be used only to load data from XML files?

Quick Check Answer

■ No. You can use OPENROWSET to make data from many different data pro-
viders available for use inside a query.

400 Chapter 10 Working with Flat Files

C1062271X.fm Page 400 Friday, April 29, 2005 7:53 PM
PRACTICE Import Data by Using OPENROWSET
In this practice, you use the OPENROWSET function in an UPDATE statement to
import data from a text file that contains an XML fragment and update specific rows
in the Exam table with the imported XML fragment.

IMPORTANT Work through the Lessons 2 and 3 practices first

The necessary database, table, and files for this practice were created or copied during Practice 1,
“Prepare the Environment,” in Lesson 2 of this chapter. Be sure to finish that exercise before
attempting the following practice. Also, you need to perform at least one of the bcp or BULK INSERT
import exercises before doing this practice.

1. If necessary, open SSMS and connect to the server that you are using for these
exercises.

2. Open a new query window by pressing Ctrl+N.

3. Here is the base UPDATE statement you use:

UPDATE EXAM
SET ExamXML = (SELECT A.Col1
FROM OPENROWSET(
…) AS A(Col1))

WHERE ExamID=1

4. Try to formulate the proper OPENROWSET section of the preceding UPDATE
statement. Remember that the defaults for column and row terminators are /t
(tab) and /n (newline), respectively.

5. When you think you have the right command, try executing it in the SQL win-
dow. It doesn’t matter if you run the command more than once, so there is no
need to reset any rows between attempts, and you can always change which
ExamID the statement is updating.

6. Here is the complete UPDATE statement:

UPDATE EXAM
SET ExamXML = (SELECT A.Col1
FROM OPENROWSET(

BULK 'c:\FileImportPractice\XMLTest.txt',
SINGLE_BLOB) AS A(Col1))

WHERE ExamID=1

Lesson 4: Importing Bulk XML Data 401

C1062271X.fm Page 401 Friday, April 29, 2005 7:53 PM
7. If you like, the statement is also available in the OpenRowsetCommand.sql file.
Simply copy the command to the SQL window and execute it, or double-click
the file for a new SQL window and connection and then execute the command.
You should get a message saying that a few row(s) were affected. The number of
affected rows depends on how many times you ran the bcp and BULK INSERT
commands in previous exercises.

Lesson Summary
■ The OPENROWSET function, which can be used with an OLE DB data provider,

allows you to use data from a file in a query without having to load it into a table
first.

■ To import an XML file into a single column and row, use OPENROWSET with the
BULK option and SINGLE_BLOB format.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following are valid places to use the OPENROWSET function?
(Choose all that apply.)

A. In the FROM clause of a query in place of a regular table

B. In bcp as a data source for import into SQL Server 2005

C. In BULK INSERT as a data source for import into SQL Server 2005

D. As the target of an INSERT, UPDATE, or DELETE query

402 Chapter 10 Working with Flat Files

C1062271X.fm Page 402 Friday, April 29, 2005 7:53 PM
Lesson 5: Using the SSIS Import/Export Wizard
The most robust way to import or export data is with SSIS. SSIS is the SQL Server
2005 successor to the popular Data Transformation Services (DTS) extraction, trans-
formation, and loading (ETL) tool that ships as part of SQL Server 2000 and SQL
Server 7.0. Exploring the full power, flexibility, and usage of SSIS are well beyond the
scope of this book, but this lesson provides a basic overview of the SSIS Import/
Export Wizard as it pertains to importing a flat file.

After this lesson, you will be able to:

■ List ways to start the SSIS Import/Export Wizard.

■ Explain the wizard’s screens.

■ Explain how starting the wizard from different applications alters its behavior.

Estimated lesson time: 15 minutes

How to Start the SSIS Import/Export Wizard
There are several ways to instantiate the SSIS Import/Export Wizard. You can start it
by going through SSMS, Business Intelligence Development Studio (BIDS), or the
command prompt.

SSMS
Starting the SSIS Import/Export Wizard from within SSMS is similar to how you
access the Import/Export Wizard in SQL Server 2000 Enterprise Manager. To start
the SSIS Import/Export Wizard in SSMS, begin by connecting to a Database Engine
server type in the object browser. Under the Databases node, right-click any database
container in the tree, choose Tasks, and then choose either Import Data or Export
Data, as Figure 10-1 shows.

BIDS
There are two ways to start the SSIS Import/Export Wizard from within BIDS. The
first method is to right-click the SSIS Packages folder and then choose SSIS Import
And Export Wizard. The second method is to click SSIS Import And Export Wizard
on the Project menu.

Lesson 5: Using the SSIS Import/Export Wizard 403

C1062271X.fm Page 403 Friday, April 29, 2005 7:53 PM
Figure 10-1 Starting the SSIS Import/Export Wizard from within SSMS

Command Prompt
You can also start the SSIS Import/Export Wizard by running DTSWizard.exe, which
by default is located in C:\Program Files\Microsoft SQL Server\90\DTS\Binn. After
typing the command, the standard graphical user interface (GUI) for the wizard is
launched.

Walking Through the Import/Export Wizard
After displaying the Welcome screen, the wizard guides you through selecting the
data source, destination, mapping, and package save and execution options.

Choose a Data Source
The wizard first has you specify a data source and its related options. There are many
options for a data source, which vary based on the data providers installed. Because
this chapter is about importing flat files, Figure 10-2 shows Flat File Source selected as
the data source.

When you select Flat File Source as your data source, the SQL Server Import And
Export Wizard displays the options that pertain to a flat file, including an option to
select the file for import, the types of delimeters used, and whether or not the file con-
tains headers. After you have set up everything properly for your situation, click Next.

404 Chapter 10 Working with Flat Files

C1062271X.fm Page 404 Friday, April 29, 2005 7:53 PM
Figure 10-2 Selecting Flat File Source as the data source for the import

Choose a Destination
The next page, Choose A Destination, enables you to select the destination for the
data import. Again, this can be any valid data provider. Using the example of import-
ing data from a flat file into a SQL Server table, you use the default destination of SQL
Native Client, shown in Figure 10-3.

Figure 10-3 Selecting SQL Native Client as the destination for the import

Lesson 5: Using the SSIS Import/Export Wizard 405

C1062271X.fm Page 405 Friday, April 29, 2005 7:53 PM
As before, after you select the provider, the wizard shows provider-specific options,
which in this case include Server Name, Authentication Method, and Database. After
you configure the options, click Next.

Select Source Tables And Views
The Select Source Tables And Views page, as Figure 10-4 shows, enables you to specify
which source you want to map to which destination and how you want that mapping
to occur. For the flat file import example, you use a single source and single destina-
tion. Clicking Edit in the Mapping column lets you specify column-level mapping and
other options such as Identity Insert.

Figure 10-4 Mapping source and destination for the import

Save And Execute Package
In the next page, Save And Execute Package, you specify whether you want to execute
the import now and/or save the package for later. Selecting the Execute Immediately
check box (see Figure 10-5) means that SQL Server executes the import when you
complete the wizard. Selecting the Save SSIS Package check box enables you to save
the import package for later use.

Saving the package is useful for several reasons, including tracing data lineage, reus-
ing the package, and using the package as a base for other packages. You can use the
package for a basic form of data lineage in which someone can open the package and
see what transformations and mappings occurred during the import. Also, you can

406 Chapter 10 Working with Flat Files

C1062271X.fm Page 406 Friday, April 29, 2005 7:53 PM
reuse the package for additional imports, possibly with minor variations such as a dif-
ferent file name or source file path. Finally, many people use the wizard to create a
base package for performing complex imports. They use the wizard to create the basic
package with minimal transforms; then they can edit the saved package within SSIS to
make it more robust.

Figure 10-5 Specifying execution options for the import

NOTE Different option if wizard started from within BIDS

If you start the SQL Server Import And Export Wizard from an Integration Services project in BIDS,
you cannot run the package immediately. Instead, the wizard adds the package to the project and
then you can run the package in BIDS.

Complete The Wizard
The Complete The Wizard screen gives you a high-level review of the options that you
selected before implementing your choices, as Figure 10-6 shows.

From this screen, clicking Finish executes the package and returns a window that
reports whether the tasks were successful, shown in Figure 10-7.

Lesson 5: Using the SSIS Import/Export Wizard 407

C1062271X.fm Page 407 Friday, April 29, 2005 7:53 PM
Figure 10-6 Reviewing your data-import options

Figure 10-7 Reporting success or failure of the data import tasks

Quick Check
■ Why is it useful to save the SSIS package created by the Import/Export

Wizard?

Quick Check Answer

■ Saving the package is useful for several reasons, including being able to
trace data lineage, reuse the package, and use the package as a base for
other packages.

408 Chapter 10 Working with Flat Files

C1062271X.fm Page 408 Friday, April 29, 2005 7:53 PM
Lesson Summary
■ The SSIS Import/Export Wizard can be started from SSMS, BIDS, or the com-

mand prompt.

■ When the wizard is started from within BIDS, the package cannot be immedi-
ately executed by the wizard.

■ The wizard can use many data providers (flat file, SQL Native Client, Microsoft
OLE DB for SQL Server, and so on) as the source of the data load, the destination
of the data load, or both.

■ The packages created by the wizard can either be immediately executed and dis-
carded or saved for later use.

■ You can use the wizard to get a “jump start” on more robust data-load projects.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. When you start the SSIS Import/Export Wizard from a command prompt rather
than from within BIDS, which of the following are different in the wizard?

A. The interface. When you start the wizard from the command line, it has a
non-GUI command-line interface. When you start it from within BIDS, it
has a graphical interface.

B. When you start the wizard from within BIDS, several additional options are
added to the wizard.

C. You cannot start the wizard from the command prompt.

D. When you start the wizard from BIDS, the option to immediately execute
the package is removed from the wizard.

Chapter 10 Review 409

C1062271X.fm Page 409 Friday, April 29, 2005 7:53 PM
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can

■ Review the chapter summary.

■ Review the list of key terms introduced in this chapter.

■ Complete the case scenario. This scenario sets up a real-world situation involv-
ing the topics of this chapter and asks you to create a solution.

■ Complete the suggested practices.

■ Take a practice test.

Chapter Summary
■ Setting the recovery model of a database to Bulk-Logged before bulk loading

data can significantly decrease logging overhead, as long as certain other condi-
tions are met.

■ Although bcp is an efficient but cryptic command-line tool that you can use to
load and unload data from a database, it has limited data-transformation and
error-handling capabilities.

■ BULK INSERT is similar to bcp except that it runs in-process, has less-cryptic
parameters, and can only import data into a database.

■ OPENROWSET can be used to import or export data (if the provider is capable of
it) and can use data from an external source without having to put it in a table first.

■ The SSIS Import/Export Wizard can take data from any provider (for example,
SQL Server, Oracle, or flat file) as a source and can transform it and put the data
into a destination using any provider (SQL Server, Oracle, or flat file). The pack-
age created by the wizard can be used immediately (in most cases) or can be
saved for later use or as a base to build more-robust SSIS packages from it.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ bcp

■ BULK INSERT

410 Chapter 10 Review

C1062271X.fm Page 410 Friday, April 29, 2005 7:53 PM
■ extraction, transformation, and loading (ETL)

■ flat file

■ point-in-time recovery

■ recovery model

■ source

■ target or destination

Case Scenario: Fixing a Bloated Transaction Log
In the following case scenario, you will apply what you’ve learned in this chapter. You
can find answers to these questions in the “Answers” section at the end of this book.

A company has data in several flat files that it loads into its Logging table once per
week. The IT team does the load during a weekly maintenance window, during which
it also performs backups. Members of the team want to do the backups after the data
load is complete, but they have found that the database log files are nearly full after
about 70 percent of the files are loaded. Therefore, they have to complete a log backup
before the loading can finish, which puzzles the database administrators (DBAs)
because they are setting the recovery model of the database to Bulk-Logged before the
loads start.

The Logging table contains five weeks’ worth of logs, and before the latest week is
loaded, the oldest week is deleted. The company is currently working on a partition-
ing strategy, but needs help in the meantime. The company is loading the data by
using the BULK INSERT command. The Logging table has a clustered index on the pri-
mary key, which is an identity column, and four nonclustered indexes.

You review the loading scripts and find that the BULK INSERT commands are not
using any hints and that the scripts do not do anything to the table except delete and
bulk insert data. You also find that the beginning and ending identity value for each
week’s load is stored in another table. What should you do to help minimize logging
during the data loads?

Suggested Practices
To help you successfully master the exam objectives presented in this chapter, com-
plete the following tasks.

Chapter 10 Review 411

C1062271X.fm Page 411 Friday, April 29, 2005 7:53 PM
Using bcp and BULK INSERT to Load Tables
■ Practice 1 Create a data file, practice loading this file by using bcp with different

parameters, and note the differences in load behavior.

■ Practice 2 Using the same data file as in Practice 1, practice loading the file by
using BULK INSERT with different options and note the difference in load
behavior.

Using SSIS to Load Tables
■ Practice 1 Using the same file as the previous practices, try loading the table by

using the SSIS Import/Export Wizard. Be sure to save the package created by the
wizard for later review.

■ Practice 2 Open the SSIS package that was saved in the preceding practice and
review the data flow to see how the wizard constructed the import. Try changing
several options in the package designer and note what happens when you run
the package.

Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-431 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the “How to Use the Practice Tests”
section in this book’s Introduction.

C1062271X.fm Page 412 Friday, April 29, 2005 7:53 PM

C1162271X.fm Page 413 Friday, April 29, 2005 7:54 PM
Chapter 11

Backing Up, Restoring, and Moving
a Database

Maintaining at least one copy of an operational database in case of a disaster is the
most fundamental task a database administrator (DBA) can perform. And performing
a database backup is the most common method for accomplishing this task. Just
because performing a database backup is a common operation, however, does not
mean it is unimportant. This chapter emphasizes how important database backups
are to your restore strategy, which defines how you can recover your database while
meeting business requirements for allowed amounts of downtime and maximum
data loss. Without a restore strategy, backing up a database has virtually no purpose.
After describing Microsoft SQL Server’s flexible options for backing up a database,
this chapter explains how to restore those backups to recover data up to a specific
point in time. You will also learn how to move databases by using backup/restore,
detach/attach, or the Copy Database Wizard.

MORE INFO SSMS backup and restore facilities

In this chapter, we explore all the SQL Server 2005 backup and restore features by using the command
syntax. Although you can access most of the features we cover via the SQL Server Management Studio
(SSMS) graphical interface, walking through the screens does little to explain this subject. In addition,
you cannot perform some options and restore processes through the graphical user interface (GUI).

For details about using the SSMS backup and restore facilities, see the SQL Server 2005 Books
Online reference page “Backing Up and Restoring How-to Topics.” SQL Server 2005 Books Online is
installed as part of SQL Server 2005. Updates for SQL Server 2005 Books Online are available for
download at www.microsoft.com/technet/prodtechnol/sql/2005/downloads/books.mspx.
413

414 Chapter 11 Backing Up, Restoring, and Moving a Database

C1162271X.fm Page 414 Friday, April 29, 2005 7:54 PM
Exam objectives in this chapter:
■ Back up a database.

❑ Perform a full backup.

❑ Perform a differential backup.

❑ Perform a transaction log backup.

❑ Initialize a media set by using the FORMAT option.

❑ Append or overwrite an existing media set.

❑ Create a backup device.

❑ Back up filegroups.

■ Restore a database.

❑ Identify which files are needed from the backup strategy.

❑ Restore a database from a single file and from multiple files.

❑ Choose an appropriate restore method.

■ Move a database between servers.

❑ Choose an appropriate method for moving a database.

Lessons in this chapter:
■ Lesson 1: Backing Up a Database. 416

■ Lesson 2: Restoring a Database. 427

■ Lesson 3: Moving a Database . 437

Before You Begin
To complete the lessons in this chapter, you must have

■ SQL Server 2005 installed.

■ A connection to a SQL Server 2005 instance.

■ A copy of the AdventureWorks sample database.

■ Completed Chapter 2, “Configuring SQL Server 2005,” in this book.

Before You Begin 415

C1162271X.fm Page 415 Friday, April 29, 2005 7:54 PM
Real World
Michael Hotek

I finally was going to be home for more than a couple of days straight and was
looking forward to spending the day working on new projects on the lathe. But
on my way through the house and to the woodshop, the phone rang. I didn’t
know the desperate caller, who was from an organization that I had never heard
of. But a DBA from an organization that I had worked with a couple of years ago
had given him my phone number.

The organization had a big problem: A disk in its drive array had failed, and the
person who swapped in a new drive unfortunately chose the wrong drive and
caused the entire system to shut down with a completely unrecoverable redun-
dant array of inexpensive disks (RAID) array. I was apparently the organization’s
last resort to try to fix a problem no one else had been able to solve. I’ve spent
almost two decades doing emergency disaster recovery for hundreds of organi-
zations around the globe, with a pretty high success rate. Most of the projects
involved working to recover production systems that I had never seen before.
The damages were caused by nearly every disaster you could think of: flood, fire,
tornado, hurricane, tsunami, lightning, earthquake, water immersion, explo-
sives, bullets, every “normal” hardware failure imaginable, security breeches,
and even end-user error.

After a virtual private network (VPN) into the organization’s system and a several-
hour-long conference call to work through everything, we managed to recon-
struct just about everything by using a combination of backups, data extracts to
other systems, and Lumigent Technologies’ Log Explorer product. We could not
recover a small amount of data that was damaged during an initial failed recovery
operation, but the organization could manually reconstruct the data.

About the time I was finishing up with this customer, an e-mail popped into my
inbox, asking if I could help yet another organization. It seems its hosting provider
had toasted the drive array on which its data was sitting. Even better, there were no
backups for the database. For the hundredth time, I had to ask myself, when were
people ever going to learn? Having a functional, tested backup and restore strat-
egy, and deploying that strategy correctly, is the most fundamental part of any
database implementation. Thankfully, I typically don’t get several of these calls
daily and have even managed an entire month in the last decade when I didn’t
have to deal with one. But I would have really liked to have spent a nice, relaxing
day at my lathe, creating something that didn’t have to do with a computer…

416 Chapter 11 Backing Up, Restoring, and Moving a Database

C1162271X.fm Page 416 Friday, April 29, 2005 7:54 PM
Lesson 1: Backing Up a Database
Maintaining a duplicate copy of data that you can recover in the event of data loss is
critical. And SQL Server 2005 provides a variety of features that you can use to accom-
plish this goal. The most common way to maintain duplicate copies of data is by using
the backup capabilities built into SQL Server. Some of these capabilities will be famil-
iar to anyone who has used a previous version of SQL Server. In addition, SQL Server
2005 includes a significant step forward in providing greater flexibility with ways to
perform backups. This lesson will explain the basics of each option that is available
within the SQL Server backup engine.

IMPORTANT Understanding database and log structures

To get a better understanding of the backup and restore architecture, you first need to be familiar
with the basic structure of SQL Server databases, filegroups, extents, data pages, and transaction
logs. Refer to Chapter 2 before starting this lesson.

After this lesson, you will be able to:

■ Perform a full backup.

■ Perform a differential backup.

■ Perform a transaction log backup.

■ Perform a filegroup backup.

■ Initialize a media set by using the FORMAT option.

■ Append or overwrite an existing media set.

■ Create a backup device.

Estimated lesson time: 45 minutes

NOTE Backup permissions

Unlike previous SQL Server versions, SQL Server 2005 aims to strengthen security by implementing
the principle of least privilege, using only the minimum set of permissions required to perform an
operation. So you need to know what permissions are required to execute backups. Backups, no
matter how you initiate them, execute within the database engine under the security context of the
SQL Server service account. You need to grant this account permissions to read and write to any
directories or tape devices that you will be using to back up to; otherwise, your backups will fail
due to insufficient permissions. To grant a user permissions to back up the database without allow-
ing additional access, add the user as a member of the db_backupoperator role, which is allowed
only to back up the database, log, or checkpoint in the database. No other access is allowed.

Lesson 1: Backing Up a Database 417

C1162271X.fm Page 417 Friday, April 29, 2005 7:54 PM
Performing Full Backups
The purpose of a full database backup is to capture all the data that is stored in the
database. The backup engine accomplishes this task by extracting every extent in the
database that is allocated to an object. You can then use a full backup by itself to re-cre-
ate the entire database. Note that this backup method is always available, regardless
of the recovery model you configure for a database.

NOTE Inside backup granularity

You will find many books that say a SQL Server backup backs up a data page instead of an extent.
This is inaccurate. SQL Server does not allocate a single data page to an object that needs space;
it allocates a full extent. The backup engine works on the same principle. It extracts any pages allo-
cated to an object, and because allocation occurs one extent at a time, the backup engine is in fact
backing up all extents that SQL Server has allocated to objects, regardless of whether SQL Server
has written data to all the pages within the extent.

The backup engine is configured to perform a backup as quickly as possible while
using a minimum of resources. When you initiate a backup, the backup engine writes
pages to the backup device without regard to the order of pages. Because the backup is
not concerned with the precise ordering of pages, SQL Server can open multiple
threads to write data as fast as it can be accepted by the media. The only limiting factor
in the backup speed is how fast data can be written to a device.

Because a backup is not instantaneous and can occur while users are connected to the
database and issuing queries, logical inconsistency in the database is a possibility. If a
page of data were written to the backup media and then modified by another request,
for example, restoring this backup would place the database in an inconsistent state.

SQL Server, however, does not allow this to happen because it enforces the following
specific series of steps during a full backup:

1. Lock the database, blocking all transactions.

2. Place a mark in the transaction log.

3. Release the database lock.

4. Back up all pages in the database.

5. Lock the database, blocking all transactions.

6. Place a mark in the transaction log.

7. Release the database lock.

8. Extract all transactions between the two log marks and append to the backup.

418 Chapter 11 Backing Up, Restoring, and Moving a Database

C1162271X.fm Page 418 Friday, April 29, 2005 7:54 PM
This process ensures that the database is completely consistent as of the time that the
backup completes.

The basic command to back up a database is as follows:

BACKUP DATABASE <database name> TO DISK = ’<directory>\<filename>‘ WITH INIT

You use the TO clause in the BACKUP DATABASE command to specify the backup
device to send the backup to, which can be the name of a logical backup device that
is created, or you can specify an explicit path to either DISK or TAPE. The WITH clause
has more than a dozen parameters, all of which are optional. The INIT parameter,
which is the most common, tells SQL Server to overwrite anything in the backup
device that might already exist before starting the backup operation.

MORE INFO Backup syntax

For a complete discussion of the BACKUP DATABASE command, including all possible options, see
the article “BACKUP (Transact-SQL)” in SQL Server 2005 Books Online.

Performing Differential Backups
A differential backup captures all the extents that have changed since the last full
backup. And the main purpose of a differential backup is to reduce the number of
transaction log backups that need to be restored. You use a differential backup along
with a full backup. If a full backup does not exist, you cannot create a differential
backup. As with a full backup, you can perform a differential backup of a database no
matter what recovery model is specified for the database.

Note that a differential backup is NOT an incremental backup. An incremental
backup captures any changes since the previous incremental backup. Therefore,
restoring an incremental backup requires all other incremental backups. A differential
backup always captures every extent that has changed since the last full backup. So
each differential backup contains everything that any previous differential backup
taken after a full backup contains. For example, suppose that a full backup occurs at
midnight, with differential backups taken every four hours during the day. The differ-
ential backup at 04:00 contains all extents that have changed since midnight. The dif-
ferential backup at 08:00 contains all extents that have changed since midnight. And
the noon differential backup contains all extents that have changed since midnight.

To determine the extents that need to be backed up by a differential backup, SQL
Server maintains an extent map. An extent map is just another data page within the

Lesson 1: Backing Up a Database 419

C1162271X.fm Page 419 Friday, April 29, 2005 7:54 PM
database, with each bit on the page representing an extent. When SQL Server changes
an extent, it changes the corresponding bit for that extent from 0 to 1. When you per-
form a full backup, SQL Server resets all bits to 0. In this way, SQL Server has to inter-
rogate only this page to determine which extents it needs to back up. Because
databases can be an unlimited size and data pages are only 8 KB in size, SQL Server
creates one of these mapping pages for approximately every 8,192 extents that it allo-
cates to objects in the database. So a single page can cover thousands of data pages.

The simplest command to perform a differential backup is as follows:

BACKUP DATABASE <database name> TO DISK = ’<directory>\<filename>‘ WITH DIFFERENTIAL

This command is almost exactly the same as the command to perform a full database
backup except that it requires use of the DIFFERENTIAL parameter. All other options
are the same as with a full backup.

Transaction Log Backups
You can perform transaction log backups only for databases you have configured to
use the Full or Bulk-Logged recovery model and that have not yet had a minimally
logged transaction executed. Transaction log backups are also allowed only after a full
backup has been performed. A transaction log backup contains only a subset of data
and requires that you also have at least a full backup to recover the database.

A log backup backs up the active log. It starts at the Log Sequence Number (LSN) at
which the previous log backup completed. SQL Server then backs up all subsequent
transactions until the backup encounters an open transaction. After SQL Server
encounters an open transaction, the log backup completes. Any LSNs that are backed
up are then allowed to be removed from the transaction log, which enables the system
to reuse log space.

NOTE Transaction log, replication, and database mirroring

If you are implementing either transactional replication or database mirroring, an additional
requirement is imposed on a transaction log. Both these features guarantee delivery of data and
therefore must ensure that data is successfully delivered before SQL Server can remove a transac-
tion from the log, regardless of whether it has been backed up. When you are using these features,
a transaction can be removed only when

1. It has been successfully committed to the distribution database.

2. It has been successfully committed on the mirror database.

420 Chapter 11 Backing Up, Restoring, and Moving a Database

C1162271X.fm Page 420 Friday, April 29, 2005 7:54 PM
The simplest way to execute a transaction log backup is to issue the following state-
ment (see the SQL Server 2005 Books Online article noted previously for syntax
details):

BACKUP LOG <database name> TO DISK = ’<directory>\<filename>‘ WITH INIT

Quick Check
■ How do full, differential, and transaction log backups interact with each

other?

Quick Check Answer

■ A full backup is required before you can perform either a differential or a
transaction log backup. Differential and transaction log backups occur
independently of each other. The main purpose of a differential backup is
to reduce the number of transaction log backups that you must restore in
the event of a database failure.

Performing Filegroup Backups
Filegroup backups provide an alternative backup strategy to full backups. Instead of
backing up the entire database, you can perform a filegroup backup to back up indi-
vidual filegroups within the database. The starting point for a filegroup backup strat-
egy must include a backup of all filegroups within the database so that you can
reassemble all the filegroups within that database.

BEST PRACTICES Using filegroup backups

You should select a filegroup backup method when the size of a database makes it impractical to
either back up or restore an entire database while still meeting your recovery requirements.

Because a filegroup backup enables you to back up portions of a database, it requires
you to configure the database in the Full or Bulk-Logged recovery model so that you
can perform a filegroup backup that is read/write. To restore, you can then use file-
group, differential, and transaction log backups.

NOTE Recovering from a filegroup backup

If you are restoring one or more filegroups with backups taken at different times, transaction log
backups are a minimum requirement to roll all filegroups forward to a consistent point in time.

Lesson 1: Backing Up a Database 421

C1162271X.fm Page 421 Friday, April 29, 2005 7:54 PM
The simplest way to perform a filegroup backup is as follows:

BACKUP DATABASE <database name> FILEGROUP = ’<filegroup name>‘ TO DISK = ’<directory>\<filen
ame>‘

You can also take a differential backup on either a database or filegroup basis. The
simplest form of a filegroup differential backup command is this:

BACKUP DATABASE <database name> FILEGROUP = ’<filegroup name>‘ TO DISK = ’<directory>\<filen
ame>‘ WITH DIFFERENTIAL

Performing Mirrored Backups
Each backup operation creates a single copy of data on either disk or tape. It is then
up to an administrator to create additional copies to protect your organization from
media failure. This duplication process can be tedious and time-consuming, and the
single backup becomes a potential single point of failure during the process.

SQL Server 2005 introduces a new capability to the BACKUP command. You can
create additional copies of a backup called mirrors during the backup operation.
You accomplish this operation by using the following optional clause in the
BACKUP command:

[[MIRROR TO <backup_device> [,...n]][...next-mirror]]

You can create up to four mirrors, with three being specified in the MIRROR TO
clause. A mirrored backup also places some restrictions on the media that you use.
The media for each mirror must be of the same type as well as have the same number
of devices. Each must also possess similar properties. For example, if you are backing
up to disk, all mirrors must also be disks; if you are backing up to tape, all mirrors
must be tape.

NOTE Inside backup striping

A media set generally contains a single physical device, such as a file or tape drive. However, a
media set can be constructed of up to 64 devices. When a media set encompasses multiple physi-
cal devices, the backup engine spawns one thread per physical device and writes a portion of the
data within the backup to each device. This is not the same as the striping capability present in
RAID technology, but it is similar in concept to what occurs with RAID 0. Each mirror must be iden-
tical. Therefore, if you specify a media set that contains two disk devices, each mirror must also
contain two disk devices. Similarly, if your media set contains 64 tape devices, the mirror must
specify 64 tape devices.

422 Chapter 11 Backing Up, Restoring, and Moving a Database

C1162271X.fm Page 422 Friday, April 29, 2005 7:54 PM
When you use mirrored backups, SQL Server reads the page from the data files once
and then creates multiple copies as it writes the page to disk or tape. This process has
the effect of writing the same page of data to each mirror at the same time. The restric-
tion on each mirror being of the same device type with similar properties is to ensure
minimal performance impact when using this capability.

NOTE Backup locations

A common misconception is that devices you are using for backups must be physically attached to
the SQL Server machine. Backups can be sent to locally attached devices. You can also send back-
ups to a Universal Naming Convention (UNC) path. When sending backups to a UNC path, you
must consider the backup’s impact on the network bandwidth.

The following example backs up the PUBS database to a two-disk media set and cre-
ates three mirrors of the backup. The first backup occurs to a locally attached disk,
whereas each of the mirrors is a network resource accessed via a UNC path.

BACKUP DATABASE PUBS TO DISK=‘C:\DEMO\BACKUP\PUBS1B.BAK’, DISK=‘C:\DEMO\BACKUP\PUBS1B.BAK’
MIRROR TO DISK=‘\\BAKSERVER1\BACKUP\PUBSMIRROR1A.BAK’, DISK=‘\\BAKSERVER1\BACKUP\
PUBSMIRROR1B.BAK’

MIRROR TO DISK=‘\\BAKSERVER2\BACKUP\PUBSMIRROR2A.BAK’, DISK=‘\\BAKSERVER2\BACKUP\
PUBSMIRROR2B.BAK’

MIRROR TO DISK=‘\\BAKSERVER3\BACKUP\PUBSMIRROR3A.BAK’, DISK=‘\\BAKSERVER3\BACKUP\
PUBSMIRROR3B.BAK’

WITH FORMAT
GO

NOTE FORMAT clause

The FORMAT clause is normally an optional parameter. This parameter writes a new media header
to each media set, overwriting the previous header and invalidating any other backups contained
on the media. However, the FORMAT clause is required for a mirrored backup.

Partial Backups
It is possible to have databases in which some of the filegroups can be written to,
whereas others are read-only. In previous versions of SQL Server, a full backup cap-
tured all allocated extents in a database, even when a filegroup was marked as read-
only, which meant that there were no changes to the data. SQL Server 2005 intro-
duces an additional parameter to the BACKUP command to handle this situation. The
READ_WRITE_FILEGROUPS clause causes the backup engine to skip any filegroups
that are marked as read-only, saving time and space in the backup by having the
backup engine gather only the set of extents that could change.

Lesson 1: Backing Up a Database 423

C1162271X.fm Page 423 Friday, April 29, 2005 7:54 PM
An example of a statement to execute a partial backup is the following:

BACKUP DATABASE PUBS READ_WRITE_FILEGROUPS TO DISK=‘C:\DEMO\BACKUP\PUBS1.BAK’

PRACTICE Backing Up a Database by Using Full/Differential/Transaction
Log and Filegroup/Filegroup Differential/Transaction Log
Backups
In this practice, you will create backups for the AdventureWorks database using two
different methods: full/differential/transaction log and filegroup/differential/transac-
tion log.

� Practice 1: Back Up a Database by Using Full, Differential, and Transaction Log Backups

In this practice, you will back up the AdventureWorks database by using a series of full,
differential, and transaction log backups.

1. Launch SSMS, connect to your SQL Server instance, and open a new query win-
dow.

2. Create a directory named c:\test.

3. Execute the following command to create a full database backup:

BACKUP DATABASE AdventureWorks TO DISK = ’C:\TEST\AW.BAK’

4. Make a change to the Production.Product table in the AdventureWorks database.

5. Execute the following command to back up the transaction log and capture the
change you just made:

BACKUP LOG AdventureWorks TO DISK = ’C:\TEST\AW1.TRN’

6. Make another change to the Production.Product table.

7. Execute the following command to perform a differential backup of the data-
base:

BACKUP DATABASE AdventureWorks TO DISK = ’C:\TEST\AWDIFF1.BAK’ WITH DIFFERENTIAL

8. Make another change to the Production.Product table.

9. Execute the following command to perform a full database backup to the speci-
fied disk location:

BACKUP LOG AdventureWorks TO DISK = ’C:\TEST\AW2.TRN’

424 Chapter 11 Backing Up, Restoring, and Moving a Database

C1162271X.fm Page 424 Friday, April 29, 2005 7:54 PM
� Practice 2: Back Up a Database by Using Filegroup, Filegroup Differential, and
Transaction Log Backups

In this practice, you will add a second filegroup to the AdventureWorks database and then
perform a series of full filegroup, differential filegroup, and transaction log backups.

1. If necessary, launch SSMS, connect to your SQL Server instance, and open a new
query window.

2. If necessary, create a directory named c:\test.

3. Execute the following batch to add the filegroup FG1:

ALTER DATABASE [AdventureWorks]
ADD FILEGROUP [FG1]
GO

ALTER DATABASE [AdventureWorks]
ADD FILE
(NAME = AW1DATA,

FILENAME = ’C:\TEST\FG1.NDF’,
SIZE = 5MB)

TO FILEGROUP [FG1]
GO

--Now, create a testing table on the filegroup.
CREATE TABLE dbo.t1 (

id INT
, v CHAR(1000) DEFAULT ’bbbb’,
) ON [FG1]

GO

4. To perform a full filegroup backup, execute the following command:

BACKUP DATABASE AdventureWorks FILEGROUP = ’PRIMARY’ TO DISK = ’C:\TEST\AWPRI.BAK’
go
BACKUP DATABASE AdventureWorks FILEGROUP = ’FG1’ to disk = ’C:\TEST\AWFG1.BAK’
go

5. Insert a row of data into the dbo.t1 table.

6. To perform a transaction log backup of the database, execute the following
command:

BACKUP LOG AdventureWorks TO DISK = ’C:\TEST\AW3.TRN’

7. Insert another row into the dbo.t1 table.

8. Now perform a differential filegroup backup by executing the following
command:

BACKUP DATABASE AdventureWorks FILEGROUP = ’FG1’ TO DISK = ’C:\TEST\FG1DIFF1.BAK’ WITH
DIFFERENTIAL

Lesson 1: Backing Up a Database 425

C1162271X.fm Page 425 Friday, April 29, 2005 7:54 PM
9. Insert another row into the dbo.t1 table.

10. Execute the following command to perform another transaction log backup to
capture the latest data change:

BACKUP LOG AdventureWorks TO DISK = ’C:\TEST\AW4.TRN’

Lesson Summary
■ The backup engine in SQL Server 2005 provides a flexible set of tools to ensure

that your data is backed up and available for restore to provide protection in case
of a disaster.

■ You can use full backups with differential and transaction log backups to capture
the entire database as well as any changes occurring since the last full backup.

■ You can use filegroup backups in conjunction with differential and transaction
log backups to target portions of a database for backup.

■ You can also mirror each type of backup to as many as three devices, enabling
you to use a single command to create up to four equivalent backups simulta-
neously.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. If you want to let a member of your technical support staff back up a database
without having to grant any other permission to a database or SQL Server
instance, to which role should you add the staff member?

A. db_accessadmin

B. db_owner

C. db_backupoperator

D. sysadmin

426 Chapter 11 Backing Up, Restoring, and Moving a Database

C1162271X.fm Page 426 Friday, April 29, 2005 7:54 PM
2. You perform a differential backup of the AdventureWorks database every four
hours starting at 04:00, with a full backup being run at midnight. What data
does the differential backup taken at noon contain?

A. The data pages that have changed since midnight.

B. The extents that have changed since midnight.

C. The data pages that have changed since 08:00.

D. The extents that have changed since 08:00.

3. You perform a full backup of the AdventureWorks database that completes at
midnight. Differential backups are scheduled to run every four hours beginning
at 04:00. Transaction log backups are scheduled to run every five minutes. What
information does the transaction log backup created at 09:15 contain?

A. All transactions that have been issued since 09:10.

B. Transactions that have been committed since 09:10.

C. Pages that have changed since 09:10.

D. Extents that have changed since 09:10.

Lesson 2: Restoring a Database 427

C1162271X.fm Page 427 Friday, April 29, 2005 7:54 PM
Lesson 2: Restoring a Database
The ability to restore a backup determines how quickly your databases can resume
responding to business requests after damage occurs. This lesson explains all the
options that are now available in SQL Server 2005 to restore all or part of a database.
You can use this lesson to form the basis of any disaster recovery planning that is per-
formed within your organization.

After this lesson, you will be able to:

■ Identify which files are needed from the backup strategy.

■ Restore a database from a single file and from multiple files.

■ Choose an appropriate restore method.

Estimated lesson time: 45 minutes

IMPORTANT Recovery-oriented planning

Don’t be confused by the fact that restoring a database is the second lesson in this chapter. Restor-
ing is the most important concept for you to master. The topic is covered second because you first
need to know what types of backups you can create to design a restore strategy. The restore strat-
egy is what makes any backup useful. As the saying goes, “If you have never restored a backup,
you do not have any backups.”

Restoring a Full Backup
Most restore operations begin by re-creating the database at a specific point in time
and then applying subsequent backups to bring the database up to a particular point
in time. This process begins with a restore of a full backup.

As explained previously, a full backup contains the entire contents of a database. To
reconstruct a database, the restore operation must place the pages back into the data-
base in sequential order. This process ensures a completely coherent database when
finished. It also takes additional time. Restoring a full backup generally requires about
30 percent more time to complete than the backup being restored took to generate.

428 Chapter 11 Backing Up, Restoring, and Moving a Database

C1162271X.fm Page 428 Friday, April 29, 2005 7:54 PM
BEST PRACTICES Overwriting and moving databases

Restoring a full backup overwrites a database of the same name, if it already exists on the instance.
If the database does not exist, the restore operation creates the files and filegroups for the data-
base before restoring pages. Because creating the files from scratch can consume a significant
amount of time, you should not drop a database before a restore if you are going to overwrite it.
If you are using backup and restore to move a database to a different server with a different direc-
tory structure or the directory structure has changed, you can use the WITH MOVE option to cause
the restore operation to create the underlying files in a path different from the original backup.

An example of the syntax for a full database restore is as follows:

RESTORE DATABASE PUBS FROM DISK = ’C:\DEMO\BACKUP\PUBSFULL.BAK’ WITH REPLACE, STANDBY = ’C:\
DEMO\BACKUP\PUBSSTANDBY.STN’

This command uses the contents of the PUBSFULL.BAK file for the restore operation.
The REPLACE option tells SQL Server to overwrite the existing database named
PUBS. The STANDBY option leaves the database in a restoring state: Writes are not
allowed to occur in the database, but users can connect to the database and issue
SELECT statements.

The other important clauses in any restore command are WITH RECOVERY or WITH
NORECOVERY.

When a restore operation uses the WITH RECOVERY option, the database is brought
online, the LSN is rolled forward, and then the database is allowed to accept transac-
tions. No further restore operations are allowed after you recover a database by using
the WITH RECOVERY option.

When a restore operation uses the WITH NORECOVERY option, the database or file-
group state remains set to RESTORING. In this state, you can restore additional back-
ups, such as differential and transaction log backups, to apply any changes that have
occurred since the full backup was taken.

NOTE Inside restore operations

A restore operation can be a single step in which a full backup is restored and then the database is
recovered and allowed to process transactions. However, in most production environments, a
restore operation consists of multiple backup files that are restored one after another to place a
database in a particular state and ensure recovery of the maximum amount of data. To accomplish
this, the RESTORE command must enable the user to explicitly specify when the last restore opera-
tion has completed, and the database should be recovered and placed into service.

Lesson 2: Restoring a Database 429

C1162271X.fm Page 429 Friday, April 29, 2005 7:54 PM
Restoring a Differential Backup
To restore a differential backup, you must first restore a full backup while ensuring
that the database is NOT recovered. The most recent differential backup is then
applied to the database.

NOTE Filegroup differential restore

The process for restoring a filegroup differential backup is very similar to restoring a differential
backup. It requires that you execute a full filegroup restore first and that you do not recover the file-
group.

Consider the following example of this sequence of operations for a full backup fol-
lowed by a differential backup:

RESTORE DATABASE PUBS FROM DISK = ’C:\DEMO\BACKUP\PUBSFULL.BAK’ WITH NORECOVERY
RESTORE DATABASE PUBS FROM DISK = ’C:\DEMO\BACKUP\PUBSDIFF.BAK’ WITH RECOVERY

The first command restores the full backup, leaving the database unrecovered. The
second command applies a differential backup and then recovers the database.

NOTE Restoring a differential backup

The syntax to restore a full backup is the same as it is to restore a differential backup. SQL Server
simply takes the extents from the differential backup and writes them into the database.

An example of this sequence of operations for a filegroup backup, along with a file-
group differential backup, is as follows:

RESTORE DATABASE AdventureWorks FILEGROUP = ’FG1’ FROM DISK = ’C:\TEST\AWFG1.BAK’ WITH
NORECOVERY

RESTORE DATABASE AdventureWorks FROM DISK = ’C:\TEST\FG1DIFF1.BAK’ WITH RECOVERY

When restoring a differential backup to roll a filegroup restore forward, you do not
need to specify the filegroup to which the differential is being applied. SQL Server
automatically recognizes the filegroups that are in a RESTORING state as well as the
extents within the differential backup that can be applied to the filegroup. Any extents
that do not correspond to a filegroup that is in a RESTORING state are ignored.

430 Chapter 11 Backing Up, Restoring, and Moving a Database

C1162271X.fm Page 430 Friday, April 29, 2005 7:54 PM
Restoring a Transaction Log Backup
You use transaction log backups to roll a database forward to a specific point in time.
This point in time is generally the last operation that was executed against the data-
base, but you can select a different point. Transaction logs can be applied to a full
backup or after a differential backup has been restored.

A transaction log backup contains a sequence of transactions identified by an LSN.
Transactions can also be explicitly named by placing a mark in the transaction log.
The exact time a transaction was executed is logged along with the change that was
made.

CAUTION Restoring to a specific point

You can use the STOPAT option to restore a database to a particular LSN, named transaction, or
point in time. This capability enables a database to be restored so that it does not contain all the
transactions up to the most recent. You usually choose this option when restoring a database that
has become corrupted so that you can restore to just before the corruption occurred. You can also
use it to recover a database in which data has been accidentally deleted; you restore the database
to a point in time just before the delete was executed. But because this process causes any trans-
actions after this point to be lost, you must use it with caution.

Transaction Log Chains
When a database is created, the LSN starts at 1 and increments to infinity. This
LSN is written into the header of each file that comprises a database. As long as
a database is never switched to the Simple recovery model or the BACKUP
LOG…WITH TRUNCATE_ONLY command is not issued, the transaction log
backups executed against a database form a continuous chain back to when the
database was created.

This log chain crosses every full, differential, and filegroup backup that is ever
performed. As long as you keep all full backups and all subsequent transaction
log backups, you can always recover a database to a point in time by starting with
any full backup and then applying every subsequent transaction log backup.

In extreme cases, databases have even been recovered by restoring a full backup
that was created years before and then subsequently restoring the thousands of
transaction log backups that had been created over a several-year time span.

Lesson 2: Restoring a Database 431

C1162271X.fm Page 431 Friday, April 29, 2005 7:54 PM
An example of two different restore sequences follows:

--Restore sequence using a full, differential, and transaction log backup.
--Full
RESTORE DATABASE AdventureWorks FILEGROUP = ’FG1’ FROM DISK = ’C:\TEST\AWFG1.BAK’ WITH
NORECOVERY

--Differential
RESTORE DATABASE AdventureWorks FROM DISK = ’C:\TEST\FG1DIFF1.BAK’ WITH NORECOVERY
--Transaction log
RESTORE LOG AdventureWorks FROM DISK = ’C:\TEST\AW2.TRN’ WITH RECOVERY

--Restore sequence using a full backup and multiple transaction log backups.
--Full
RESTORE DATABASE AdventureWorks FILEGROUP = ’FG1’ FROM DISK = ’C:\TEST\AWFG1.BAK’ WITH
NORECOVERY

--Transaction log
RESTORE LOG AdventureWorks FROM DISK = ’C:\TEST\AW1.TRN’ WITH NORECOVERY
RESTORE LOG AdventureWorks FROM DISK = ’C:\TEST\AW2.TRN’ WITH RECOVERY

BEST PRACTICES Recovering to a point in time following a disaster

Recovering databases without any data loss would be much easier if problems always occurred just
after you completed a backup and before your application issued any additional transactions. Alas,
we are never that lucky. So in any disaster scenario, you always have transactions in the log that
have not yet been backed up.

For this reason, your first step in any recovery operation is to issue one final BACKUP LOG com-
mand. This process captures all remaining committed transactions that have not been backed up
and is commonly referred to as backing up the tail of the log. Because you can issue a BACKUP LOG
command against a database even if every data file, including the primary data file, is no longer
available, the only excuse for not backing up the tail of the log would be when the transaction log
no longer exists.

The backup of the tail of the log then becomes the final transaction log that you apply in a restore
process, enabling the database to be recovered without any loss of data.

Quick Check
■ What is required to restore multiple backups to a database?

Quick Check Answer

■ You must start with a full backup or a filegroup backup. These backups are
restored while specifying the WITH NORECOVERY option. Additional dif-
ferential and/or transaction log backups are applied, also using the WITH
NORECOVERY option. The final restore operation specifies the WITH
RECOVERY option, which rolls the LSN forward, places the database into
service, and prevents any additional differential or transaction log backups
from being applied.

432 Chapter 11 Backing Up, Restoring, and Moving a Database

C1162271X.fm Page 432 Friday, April 29, 2005 7:54 PM
Performing a Partial Restore
A new capability in SQL Server 2005 enables you to partially restore a database while
the remainder of the database is accessible to requests. As long as a query does not
request data within the filegroup(s) you are restoring, users do not even know any-
thing is happening.

This partial restore is accomplished by taking advantage of the fact that each filegroup,
except the primary filegroup, has a state that is independent of the database. You
accomplish partial restores always by using filegroup backups.

NOTE Restore granularity

Depending on how your database is constructed, the restore of a filegroup can affect multiple
tables, a single table, or—in the case of partitioning—a portion of a table.

After the filegroups are restored to the database, you can apply differential and/or
transaction log backups to bring the database current with all of the other filegroups.
It is not possible to restore a portion of a database to a specific point in time because
all filegroups within a database must be rolled forward to the current LSN to enable
a write to a particular filegroup to occur.

Restoring a Corrupt Page
Although not common, corruption to one or more pages in a table can occur. In pre-
vious SQL Server versions, this corruption caused a severe error and could take the
entire database offline. Fixing this type of error depended on the specific page that
became corrupted. If the corruption happened on an index page, the index could be
dropped and re-created. However, if it was corruption in a data page, you had to
restore a backup, which would take the entire database offline during the restore pro-
cess.

SQL Server 2005 provides an alternative to this process: the PAGE_VERIFY CHECK-
SUM option. After enabling this verification in the database, any page that becomes
corrupted is logged and quarantined, which is commonly referred to as a corrupt page
quarantine. To enable verification, execute the following command:

ALTER DATABASE <database name> SET PAGE_VERIFY CHECKSUM

This option is off by default because it does incur a small amount of overhead for
reads and writes to any page in the database. After it is enabled, each time a data page
needs to be read or written to, SQL Server calculates a checksum for the page. If this

Lesson 2: Restoring a Database 433

C1162271X.fm Page 433 Friday, April 29, 2005 7:54 PM
checksum does not match the checksum previously stored on the page, the page has
become corrupted. This mismatch causes an error to be thrown, and the transaction
encountering the corrupt page is rolled back. The page is then logged into the
suspect_pages table in the msdb database.

To fix the problem, you can restore the individual page from a backup. An example of
the set of commands to perform a restore of a corrupt page is as follows:

--Back up tail of log.
BACKUP LOG PUBS TO DISK=‘C:\HA\DEMO\BACKUP\PUBS1.TRN’ WITH INIT
GO

--Restore corrupt page from a recent backup.
--Note: This command requires all users to be out of the database,
-- so it will incur a very brief outage of generally 1 – 2 seconds.
USE MASTER
GO
RESTORE DATABASE PUBS PAGE = ’1:88’
FROM DISK=‘C:\HA\DEMO\BACKUP\PUBSMIRROR1.BAK’
WITH RECOVERY
GO

--Additional transaction logs are applied to roll the page forward.
--Apply tail of the log to bring database to current point in time.
USE MASTER
GO
RESTORE LOG PUBS
FROM DISK = ’C:\HA\DEMO\BACKUP\PUBS1.TRN’
WITH RECOVERY
GO

Restoring with Media Errors
The most difficult problem to overcome during a restore is having media that has
been damaged. In previous SQL Server versions, media damage always made a bad sit-
uation even worse. Damage to the backup media is rarely detected before a backup
begins. And after a restore starts, it wipes out everything that had previously existed
in the database. If the restore operation were to abort, you would be left with a com-
pletely invalid database. Unfortunately, this is what occurs when the backup media is
damaged.

SQL Server 2005 now has an option for the RESTORE command that enables SQL
Server to skip damaged media sectors and finish the restore operation. By using the
WITH CONTINUE_AFTER_ERROR option, damaged media sectors are skipped, and
any readable parts of the media will be restored.

434 Chapter 11 Backing Up, Restoring, and Moving a Database

C1162271X.fm Page 434 Friday, April 29, 2005 7:54 PM
Although the restore operation completes, it does not guarantee that the database will
be usable or that it will even contain any data. At the completion of a RESTORE oper-
ation in which media errors have occurred, the database is placed in emergency
mode. In this mode, you can make a connection to the database and execute SELECT
statements, but you cannot make changes to the data. If you determine that the data-
base is intact and operational, you can change the state to allow normal operations. In
a worst-case scenario, any intact data can be extracted from the database.

Although this solution isn’t perfect, it is better than nothing. That is why this feature
is more popularly known as a best-effort restore.

Validating a Backup
You have performed several backups, but how do you know the backups are usable?
The only way to guarantee that a backup is usable is to restore it and verify all the data.
This process can be very time-consuming and is rarely practical. However, SQL Server
provides a way to verify the integrity of a backup. Although not the same as actually
restoring a database, it provides a very thorough check of the backup integrity.

You use the following command to verify a backup’s integrity:

RESTORE VERIFYONLY FROM <backup_device> [,...n]

When you execute this command, SQL Server checks the media header to ensure that
it is intact. It then verifies the backup checksum, reads the internal page chains, and
recalculates the backup checksum for comparison. A variety of checks are performed
to ensure that the backup is intact. However, SQL Server does not check the actual
data structures in the backup.

NOTE Previous versions and backup verification

Previous versions of SQL Server also had a RESTORE VERIFYONLY… command, which checked the
media header and then returned a success or an error. The entire backup set could be invalid, and
every other sector on the media could be bad. But as long as the media header was intact, it would
return a success. This behavior effectively rendered this command worthless in previous versions
because the command didn’t actually check anything useful. So, everyone recommended not using
this command. However, SQL Server 2005 now performs the necessary checks, so you should exe-
cute this command every time you perform a backup.

Lesson 2: Restoring a Database 435

C1162271X.fm Page 435 Friday, April 29, 2005 7:54 PM
PRACTICE Restoring the AdventureWorks Database
Using the backups from Lesson 1, restore the AdventureWorks database to the current
point in time.

1. If necessary, launch SSMS, connect to your SQL Server instance, and open a new
query window.

2. Change the context to the master database.

3. Back up the tail of the log by executing the following command:

BACKUP LOG AdventureWorks TO DISK = ’C:\TEST\AWTAIL.TRN’

4. Execute the following RESTORE commands to restore the AdventureWorks data-
base:

RESTORE DATABASE AdventureWorks FROM DISK = ’C:\TEST\AW.BAK’ WITH NORECOVERY
RESTORE DATABASE AdventureWorks FROM DISK = ’C:\TEST\AWDIFF1.BAK’ WITH NORECOVERY
RESTORE LOG AdventureWorks FROM DISK = ’C:\TEST\AW2.TRN’ WITH NORECOVERY
RESTORE LOG AdventureWorks FROM DISK = ’C:\TEST\AWTAIL.TRN’ WITH RECOVERY

5. If you have performed both exercises from Lesson 1, the AdventureWorks data-
base should have only a single filegroup, and the dbo.t1 table should not exist.

6. If you did not perform the filegroup backup from Lesson 1, you need to verify
that the AdventureWorks database contains all the changes that were made.

Lesson Summary
■ SQL Server 2005 provides a flexible and granular way to restore damaged data.

■ To recover an entire database, you can perform a full restore along with restoring
differential and transaction logs.

■ You can use the STOPAT option to restore a database to a particular LSN, named
transaction, or point in time.

■ You can restore individual filegroups, and as long as the primary filegroup is not
restored, the rest of the database can remain online and operational.

■ You can restore individual pages to fix corruption issues.

■ Restore operations can continue past bad sectors within backup media to make
a “best effort” to recover as much data as possible.

436 Chapter 11 Backing Up, Restoring, and Moving a Database

C1162271X.fm Page 436 Friday, April 29, 2005 7:54 PM
Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Your database has become damaged. Which of the following can be used to
determine which backups can be used to restore the database? (Choose all that
apply.)

A. SQL Server error log

B. msdb.dbo.sysbackuphistory table

C. msdb.dbo.backupset table

D. Windows Application Event Log

2. The patient claims database at Contoso Limited contains a very sophisticated
structure. The database contains six filegroups: PRIMARY, FG1, FG2, FG3, FG4,
and FG5. FG4 and FG5 contain the claims table, which is partitioned. Active
claims are in FG4, and inactive claims are in FG5. Full database backups are per-
formed once per week on Sunday, with differential backups occurring every 12
hours and transaction log backups running every five minutes. Because of the
highly volatile nature of the active claims data, FG4 has a filegroup backup run
against it once per day, with filegroup differential backups every hour. Claims
are only moved from an active to an inactive state during a maintenance routine
that occurs at midnight on Saturday. On Thursday afternoon, a portion of the
claims table containing the inactive claims becomes damaged and needs to be
restored. Which backups will accomplish this? (Choose all that apply.)

A. Filegroup backup

B. Full backup

C. Transaction log backups

D. Filegroup differential backup

Lesson 3: Moving a Database 437

C1162271X.fm Page 437 Friday, April 29, 2005 7:54 PM
Lesson 3: Moving a Database
Occasionally, databases need to be moved either within the same server or between
servers. SQL Server provides three mechanisms that you can use to move databases.
The first method, backup and restore, has already been discussed in the previous two
lessons. This lesson will cover the other two methods: using detach/attach and the
Copy Database Wizard, which enables you to use detach/attach or SQL Management
Objects (SMO).

After this lesson, you will be able to:

■ Choose an appropriate method for moving a database.

Estimated lesson time: 20 minutes

Moving a Database by Using Detach/Attach
You can unmount databases from a SQL Server by detaching them. This process
removes the entries in the system tables for this database, causing it to no longer be
accessible on the SQL Server instance. Although the database is inaccessible, the files
that contain all the objects and data still exist on the operating system in the location
in which you created them. After they are detached, you can copy these files to any
location on your network because they are no longer being accessed by SQL Server.

To make the database accessible again, you only have to attach it. This process adds an
entry in the system tables for the database. And SQL Server then enables access to the
database.

NOTE Detach/attach performance

The detach operation requires SQL Server only to close the files and remove an entry in the system
tables. And an attach requires SQL Server to simply open the files and make an entry in the system
tables. Each operation requires only 1–2 seconds at most to complete.

The following example shows the command required to perform a detach operation:

EXEC sp_detach_db ’AdventureWorks’, ’true’

And the next example shows the command to attach a database:

CREATE DATABASE AdventureWorks ON
(FILENAME = ’C:\TEST\AdventureWorks_Data.mdf’),
(FILENAME = ’C:\TEST\AdventureWorks_Log.ldf’)
FOR ATTACH

438 Chapter 11 Backing Up, Restoring, and Moving a Database

C1162271X.fm Page 438 Friday, April 29, 2005 7:54 PM
MORE INFO Attach options

For all options that you can use with the detach or attach command, see the SQL Server 2005
Books Online article “CREATE DATABASE (Transact-SQL).”

Using the Copy Database Wizard

IMPORTANT Make sure SQL Server Integration Services is installed

The Copy Database Wizard runs via custom tasks within SQL Server Integration Services (SSIS). To
use this wizard, you must have SSIS installed. The proxy account that the package is running under
also has to be a member of the sysadmin role on both the source and destination instances.

SQL Server’s Copy Database Wizard enables you to copy all objects within a database
to another instance or to another database within the same instance. This process
copies all database objects, users, schemas, and permissions, creating an exact dupli-
cate. You must copy server-level objects such as logins separately.

To access the Copy Database Wizard, right-click a database and select Tasks, Copy
Database. When the splash screen appears, click Next. Select the source server from
which the database will be copied and click Next. Select the destination server to
which the database will be copied and then click Next.

Select either detach/attach or SMO. When you select the detach/attach method, SSIS
detaches the database, copies it to the destination, and attaches the database. This
process is exactly the same as described previously in this lesson. Selecting SMO
leaves the database online and accessible to users while the scripting APIs are used to
generate scripts to re-create all objects on the destination as well as move all the data.
Copying a database by using SMO is much slower than using either detach/attach or
backup/restore.

Click Next to select the databases you want to move or copy. If you specify move, the
database is created on the destination and then removed from the source. If you spec-
ify copy, the database is created on the destination as well as left on the source. Click
Next to display the Configure Destination Database page shown in Figure 11-1.

Lesson 3: Moving a Database 439

C1162271X.fm Page 439 Friday, April 29, 2005 7:54 PM
Figure 11-1 Configuring the destination database

You can specify the name of the destination database along with the file locations. If
the database already exists on the target, you can specify the copy to either fail or over-
write the existing database. Click Next to specify the options for the SSIS package,
such as package name and logging options. Clicking Next enables you to specify
whether you want the package to execute immediately or at a scheduled time, and
specify under which proxy account it should run. Clicking Next enables you to verify
the options selected. To complete the wizard, click Finish.

Quick Check
■ What are the three methods to move a database, listed in order of the least

amount of time required?

Quick Check Answer

■ The detach/attach method is the fastest possible method because it
requires only a modification to a system table, a copy of the files, and then
a modification to a system table to bring the database online. Backup/
restore is the next-fastest method. It is slower than a detach/attach because
the restore operation might have to re-create the files for the database as
well as place the pages into the files in order. SMO is the slowest method
because it needs to script out all objects, extract all data, re-create all
objects, and then load the data.

440 Chapter 11 Backing Up, Restoring, and Moving a Database

C1162271X.fm Page 440 Friday, April 29, 2005 7:54 PM
PRACTICE Using Detach/Attach to Move a Database
In this exercise, you will detach the AdventureWorks database, copy it to a new loca-
tion, and then attach it by using SSMS.

NOTE File names

The actual names of the files in your AdventureWorks database might vary. You might also have
added filegroups to the database in previous exercises. Therefore, this practice refers to file names
in a generic manner. You will need to make appropriate adjustments to match your environment.

1. If necessary, launch SSMS and connect to your SQL Server instance.

2. Ensure that no connections have been created to the AdventureWorks database.

3. Within Object Explorer, right-click the AdventureWorks database and select
Tasks, Detach.

4. Click OK.

5. Open Windows Explorer and copy the AdventureWorks .mdf, .ndf, and .ldf files
to the c:\test directory created earlier.

6. Right-click the Database node in Object Explorer and select Attach.

7. Click Add and select the AdventureWorks .mdf file.

8. Click OK.

9. Verify that the AdventureWorks database now appears in Object Explorer and
that you can access the database and read data from and write data to the data-
base.

Lesson Summary
■ Although not a frequent need, you will occasionally have to move databases

between instances. SQL Server provides three ways to accomplish this task:

❑ Using backup/restore

❑ Using attach/detach

❑ Using SMO through the Copy Database Wizard

■ Using SMO through the Copy Database Wizard will move the database, but any
server-level objects such as logins or linked servers that an application needs to
work with the database have to be copied separately.

Lesson 3: Moving a Database 441

C1162271X.fm Page 441 Friday, April 29, 2005 7:54 PM
Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. You need to move a large database from Server1 to Server2. During this opera-
tion, users still have to be able to execute reports, but they will not be modifying
data. Which methods can you use to accomplish this task? (Choose all that
apply.)

A. data pump

B. detach/attach

C. backup/restore

D. SMO

442 Chapter 11 Review

C1162271X.fm Page 442 Friday, April 29, 2005 7:54 PM
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can

■ Review the chapter summary.

■ Review the list of key terms introduced in this chapter.

■ Complete the case scenario. This scenario sets up a real-world situation involv-
ing the topics of this chapter and asks you to create solutions.

■ Complete the suggested practices.

■ Take a practice test.

Chapter Summary
■ Database backup and restore provides the core capabilities for any disaster

recovery planning. Without backups, data cannot be restored if it becomes dam-
aged. Although you might be able to create workarounds by using technologies
such as replication, bulk copy program (BCP), or scripting, these processes can
be error-prone and can have a high probability of failure.

■ Backups provide the following:

❑ A way to capture all allocated pages in a database, including all schema,
data, and permissions.

❑ A way to capture any extents that have changed by using differential back-
ups.

❑ A way to capture all incremental transactions with transaction log backups.

❑ A way to back up only a portion of a database by using filegroup backups.

■ A restore operation can leverage each of these backups in a very flexible manner
to restore an entire database, an entire filegroup, a portion of a table, or even a
single page.

■ SQL Server provides three mechanisms that you can use to move databases:
backup and restore, detach/attach, and SMO through the Copy Database Wiz-
ard.

Chapter 11 Review 443

C1162271X.fm Page 443 Friday, April 29, 2005 7:54 PM
Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ active log

■ backup device

■ backup strategy

■ best-effort restore

■ corrupt page quarantine

■ differential backup

■ differential restore

■ filegroup backup

■ filegroup restore

■ full database backup

■ full database restore

■ log pointer

■ media set

■ mirrored backup

■ partial backup

■ partial restore

■ point in time recovery

■ recovery model

■ restore strategy

■ tail of the log

■ transaction log backup

■ transaction log restore

444 Chapter 11 Review

C1162271X.fm Page 444 Friday, April 29, 2005 7:54 PM
Case Scenario: Designing a Backup Strategy
In the following case scenario, you will apply what you’ve learned in this chapter. You
can find answers to these questions in the “Answers” section at the end of this book.

Contoso Limited, a health care company located in Bothell, WA, has a very volatile
database that contains patient claims data. The patient claims data is essential to Con-
toso’s business. Any loss of data would cause severe business damage and, in the
worst-case scenario, might cause the company to go out of business. Because of the
mission-critical nature of its database, the company has invested in a storage area net-
work (SAN) to ensure that data is always available.

With the rapid growth of its customer base, Contoso’s management has finally
decided that it needs to hire a DBA to manage its database. Upon joining the company
as that DBA, you find out that the data volume is passing the 500-GB mark and rap-
idly heading toward 1 terabyte. Management has indicated that it needs to ensure that
the data is always available; at maximum, the company can have a 30-minute unavail-
ability. That is why the company spent so much money on its SAN.

To your horror, you find out that everything relies on the SAN because management
has been convinced by the solution provider who recommended and installed the
SAN that the SAN is completely bulletproof and can never fail.

After many discussions, you finally explain to management that guaranteeing zero
data loss is a complete impossibility and exists only in the minds of salespeople want-
ing to sell the company software. Management has agreed that although it would like
to avoid all data loss, the company can handle up to five minutes of data loss.

1. What tasks do you immediately need to perform to protect the company’s data
before something goes wrong?

2. What backups should you implement to ensure that you can recover data?

3. What actions should you take for a longer-term approach to managing the mis-
sion-critical data?

Chapter 11 Review 445

C1162271X.fm Page 445 Friday, April 29, 2005 7:54 PM
Suggested Practices
To help you successfully master the exam objectives presented in this chapter, com-
plete the following practice tasks.

Backing Up a Database
■ Practice 1 Create and test a backup strategy for your databases that includes

full, differential, and transaction log backups.

■ Practice 2 Create and test a backup strategy for your databases that includes
filegroup, differential, and transaction log backups.

■ Practice 3 Create a database that contains both read-only and read-write file-
groups, and back up only the read-write filegroups.

■ Practice 4 Change the backup strategies created in Practices 1 and 2 to include
duplicates of each backup by using the new mirrored backup capability.

Restoring a Database
■ Practice 1 Test your backups created in “Backing Up a Database” Practice 1 by

restoring them.

■ Practice 2 Test your backups created in “Backing Up a Database” Practice 2 by
restoring them.

■ Practice 3 Test your backups created in “Backing Up a Database” Practice 3 by
restoring them.

■ Practice 4 Test your backups created in “Backing Up a Database” Practice 4 by
restoring from a mirror.

■ Practice 5 Restore a single filegroup (not the primary filegroup) into a database
and then observe that any objects in filegroups not being restored can be
accessed.

■ Practice 6 Restore a page into a database to simulate a corrupted page that
needs to be restored.

■ Practice 7 Shut down SQL Server, delete the master.mdf, and then restore the
master database and verify that all databases are intact and accessible. (You are
backing up your master database, right?)

■ Practice 8 Create a Database Snapshot against a database. Make some changes.
Restore the database by using the Database Snapshot and verify that your
changes no longer exist in the database.

446 Chapter 11 Review

C1162271X.fm Page 446 Friday, April 29, 2005 7:54 PM
Moving a Database
■ Practice 1 Move a database by using the detach/attach method. Determine

which other objects also need to be moved to make the database fully accessible
to applications.

■ Practice 2 Move a database by using the Copy Database Wizard. Select the SMO
option and observe the move process. Determine which other objects also need
to be moved to make the database fully accessible to applications.

Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-431 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the section titled “How to Use the Prac-
tice Tests” in this book’s Introduction.

C1262271X.fm Page 447 Friday, April 29, 2005 7:55 PM
447

Chapter 12

Using Transact-SQL to Manage
Databases

Maintaining your databases is often a complex and time-consuming task that
involves a multitude of steps you need to perform on a periodic basis. Database
administrators (DBAs) often perform their maintenance tasks by using the Mainte-
nance Plan Wizard or the Microsoft SQL Server 2005 main graphical user interface
(GUI): SQL Server Management Studio (SSMS). However, this chapter will show you
how to accomplish the common maintenance tasks of managing index fragmenta-
tion and statistics, shrinking databases, and performing integrity checks by using the
power of Transact-SQL.

Exam objectives in this chapter:
■ Manage databases by using Transact-SQL.

❑ Manage index fragmentation.

❑ Manage statistics.

❑ Shrink files.

❑ Perform database integrity checks by using DBCC CHECKDB.

Lessons in this chapter:
■ Lesson 1: Managing Index Fragmentation . 449

■ Lesson 2: Managing Statistics . 457

■ Lesson 3: Shrinking Files . 463

■ Lesson 4: Using DBCC CHECKDB . 469

Before You Begin
To complete the lessons in this chapter, you must have:

■ SQL Server 2005 installed.

■ A connection to a SQL Server 2005 instance.

■ A copy of the AdventureWorks sample database.

448 Chapter 12 Using Transact-SQL to Manage Databases

C1262271X.fm Page 448 Friday, April 29, 2005 7:55 PM
Real World
Randy Dyess

Having been a DBA for many years in a large variety of environments, I have been
responsible for the maintenance of literally thousands of SQL Server databases.
The main responsibility of DBAs is keeping their databases up and running in
the best possible condition. To achieve this goal, database maintenance is often
one of the first tasks new DBAs learn as they begin their career managing SQL
Server. The ability to perform database maintenance in a scriptable manner by
using Transact-SQL helps newer DBAs transition from managing one database
at a time to managing numerous databases at the same time. This multitasking
skill is vital to the growth and productivity of DBAs as they efficiently manage
applications and serve end users.

Lesson 1: Managing Index Fragmentation 449

C1262271X.fm Page 449 Friday, April 29, 2005 7:55 PM
Lesson 1: Managing Index Fragmentation
Indexes are an essential component for ensuring optimum query execution. Proper
indexing often is the difference between substandard query execution and excep-
tional query execution. However, unlike other objects created in SQL Server 2005,
indexes can lose their effectiveness over time if they are not properly maintained—
because of fragmentation of the index pages supporting the indexes. The level of
index fragmentation and the degree of index maintenance you perform as a DBA often
determine which indexes the SQL Server query optimizer uses to execute the query
successfully and which indexes the optimizer does not use for any queries. The opti-
mizer could also end up using indexes that have a large degree of fragmentation,
which actually hurts a query’s performance. This lesson covers the types of index frag-
mentation your indexes could suffer from, how to identify index fragmentation, and
which statements you should issue to correct different types of index fragmentation.

After this lesson, you will be able to:

■ Understand index fragmentation.

■ Identify index fragmentation.

■ Effectively manage index fragmentation levels by using Transact-SQL.

Estimated lesson time: 30 minutes

Understanding Index Fragmentation
Index fragmentation can occur whenever data in a table is modified and this modifi-
cation affects an index page. Whenever a process performs an INSERT, DELETE, or
UPDATE operation against the data in a table, the corresponding clustered and non-
clustered indexes for that table are affected as well.

NOTE Index pages and data pages in SQL Server 2005

A SQL Server 2005 index can contain both index pages and data pages. Clustered and nonclus-
tered indexes both contain index pages that hold information about the index key values and infor-
mation about any pointers to the rest of the data in the table that are needed by the index.
However, only clustered indexes contain data pages; the bottom level of a clustered index is actu-
ally the table data itself—not index rows containing pointers to the table data, as in nonclustered
indexes.

450 Chapter 12 Using Transact-SQL to Manage Databases

C1262271X.fm Page 450 Friday, April 29, 2005 7:55 PM
Processes performing DELETE operations often cause space in the underlying index
pages to be freed, which can cause an index’s pages to contain only a fraction of the
index rows they would normally hold if they were full. The condition when pages are
not as full as they should be is called internal fragmentation.

With internal fragmentation, index pages do not use disk space efficiently, which
leads to an increase in the number of pages needed to hold the same number of index
rows. This increase in the number of pages causes SQL Server to read a larger number
of pages into memory to satisfy a READ operation against an index. Paging is the phys-
ical act of retrieving the data or index pages from the hard disk subsystem into mem-
ory. Because the hard disk subsystem is typically the slowest component on a server,
any actions that you can take to reduce the amount of paging improve the overall per-
formance of SQL Server.

INSERT and UPDATE operations can cause SQL Server to create additional index
pages if the page in which it needs to place the index row or data row already contains
the maximum amount of information a single data or index page can contain.

NOTE Maximum size of index and data pages

SQL Server 2005 allows a maximum of 8,060 bytes on a single data or index page. The number of
data or index rows allowed on a single page is the result of 8,060 divided by the size of the indi-
vidual data or index row. For example, if you have an index containing 800 bytes of column key val-
ues, SQL Server can store only 10 index rows per index page.

When SQL Server needs to place additional rows of data on an index page or data
page and that page cannot accommodate the additional row, a page split occurs—a new
page is added, and SQL Server splits the rows of data or index information on the
original page between the original page and the new page. Page splits maintain the
logical order of the rows in the index key; SQL Server knows which page the next
index key is located on. But page splits do not maintain the physical ordering of the
page; the new page usually won’t be physically adjacent to the original page on the
disk. When pages are not in physical order, there is external fragmentation.

External fragmentation is always undesirable in an index, whereas a small amount of
internal fragmentation can be desirable in highly transactional databases because it
prevents large numbers of page splits. However, large-scale internal and external frag-
mentations adversely affect the performance of retrieving data.

In the case of internal fragmentation, rows are distributed sparsely across a large num-
ber of pages, increasing the number of disk input/output (I/O) operations that SQL
Server must perform to read the index pages into memory as well as the number of
logical reads it must perform to read multiple index rows from memory.

Lesson 1: Managing Index Fragmentation 451

C1262271X.fm Page 451 Friday, April 29, 2005 7:55 PM
External fragmentation causes a noncontiguous sequence of index pages on the disk,
with new leaf pages far from the original leaf pages and their physical ordering differ-
ent from their logical ordering. Consequently, when SQL Server performs a range
scan on an index that has external fragmentation, it needs to switch between corre-
sponding extents more than what would be ideal. Also, a range scan on an externally
fragmented index will not benefit from read-ahead operations performed on the disk.
If the pages are arranged contiguously, SQL Server can perform a read-ahead opera-
tion to read pages in advance without much head movement.

MORE INFO Indexes

For information about creating indexes and the types of indexes you can create, see Chapter 4,
“Creating Indexes,” in this book and the “Indexes” topic in SQL Server 2005 Books Online. SQL
Server 2005 Books Online is installed as part of SQL Server 2005. Updates for SQL Server 2005 Books
Online are available for download at www.microsoft.com/technet/prodtechnol/sql/2005/downloads/
books.mspx.

Identifying Index Fragmentation
To help you determine the amount of external and internal fragmentation on
indexes that are contained within a database, SQL Server 2005 provides the
sys.dm_db_index_physical_stats dynamic management function (DMF). By issuing a
simple SELECT statement against this index DMF, you can check the values contained
in the avg_fragmentation_in_percent and avg_page_space_used_in_percent col-
umns, as the following sample query shows, and determine whether your indexes are
suffering from fragmentation:

--Determine index fragmentation for all tables in the AdventureWorks database
SELECT OBJECT_NAME(dt.object_id), si.name,
dt.avg_fragmentation_in_percent, dt.avg_page_space_used_in_percent
FROM
(SELECT object_id, index_id, avg_fragmentation_in_percent, avg_page_space_used_in_percent
FROM sys.dm_db_index_physical_stats (DB_ID(‘AdventureWorks’), NULL, NULL, NULL, ’DETAILED’)
WHERE index_id <> 0) as dt --does not return information about heaps
INNER JOIN sys.indexes si
ON si.object_id = dt.object_id
AND si.index_id = dt.index_id

DBAs should review the value in the avg_fragmentation_in_percent column to deter-
mine whether the index contains external fragmentation. External fragmentation is
indicated when this value exceeds 10.

452 Chapter 12 Using Transact-SQL to Manage Databases

C1262271X.fm Page 452 Friday, April 29, 2005 7:55 PM
DBAs should review the value in the avg_page_space_used_in_percent column to
determine whether the index contains internal fragmentation. Internal fragmentation
is indicated when this value falls below 75.

NOTE Test to find the best threshold for your system

These thresholds for determining whether your system is suffering from external or internal frag-
mentation provide a guideline for determining when you should use either ALTER INDEX…REORGA-
NIZE or ALTER INDEX…REBUILD. Because the actual thresholds can vary depending on your
environment, you should perform tests to determine the best thresholds for your system.

Managing Index Fragmentation
If you determine that your indexes have external or internal fragmentation, you should
execute either the ALTER INDEX…REORGANIZE or ALTER INDEX…REBUILD state-
ments periodically to prevent index fragmentation from affecting query performance.

ALTER INDEX…REORGANIZE
Using ALTER INDEX…REORGANIZE reorganizes an index. This statement defrag-
ments the leaf level of clustered and nonclustered indexes on tables and views by
physically reordering the leaf-level pages to match the logical, left-to-right order of the
leaf nodes while compacting the index pages. The level of page compaction is based
on the existing fill factor value for the index. You can find the fill factor value in the
sys.indexes catalog view.

USE AdventureWorks;

ALTER INDEX PK_Employee_EmployeeID ON HumanResources.Employee
REORGANIZE;

MORE INFO Fill factor

For information about fill factor, see Chapter 4, “Creating Indexes,” in this book and the topic
“sys.indexes (Transact-SQL)” in SQL Server 2005 Books Online.

ALTER INDEX…REBUILD
Using the ALTER INDEX…REBUILD statement rebuilds an index. This statement
removes both external and internal fragmentation by dropping and re-creating the
index. This process removes external fragmentation by reordering the index rows in

Lesson 1: Managing Index Fragmentation 453

C1262271X.fm Page 453 Friday, April 29, 2005 7:55 PM
contiguous pages and removes internal fragmentation by compacting the pages based
on the specified or existing fill factor setting.

USE AdventureWorks;

ALTER INDEX PK_Employee_EmployeeID ON HumanResources.Employee
REBUILD;

NOTE Using the ALL option

By specifying the ALL option on the ALTER INDEX…REBUILD statement, you can specify that all
indexes on a table be dropped and re-created in a single transaction.

When rebuilding an index, you have the option of performing the index rebuild by
using the ONLINE option. When this option is ON, the table and associated indexes
are available for queries and data modification during the rebuild process.

DBAs can perform concurrent online index operations on the same table only when
performing the following index operations:

■ Creating multiple nonclustered indexes

■ Reorganizing different indexes on the same table

■ Reorganizing different indexes while rebuilding nonoverlapping indexes on the
same table

Determining Which Statement to Execute
How do you know whether to execute ALTER INDEX…REORGANIZE or ALTER
INDEX…REBUILD against user tables? When your indexes are not heavily fragmented,
you can reorganize indexes, which uses few system resources and runs automatically
online. For heavily fragmented indexes, you probably need to rebuild the indexes.

To help you determine which statement to use, periodically run a SELECT statement
against the sys.dm_db_index_physical_stats DMF and use the following thresholds as a
guideline for your decision:

■ Execute ALTER INDEX…REORGANIZE to defragment indexes that fall under the
following fragmentation thresholds: avg_page_space_used_in_percent < 75 and
> 60 or avg_fragmentation_in_percent > 10 and < 15.

■ Execute ALTER INDEX…REBUILD to defragment indexes that fall under the fol-
lowing fragmentation thresholds: avg_page_space_used_in_percent < 60 or
avg_fragmentation_in_percent > 15.

454 Chapter 12 Using Transact-SQL to Manage Databases

C1262271X.fm Page 454 Friday, April 29, 2005 7:55 PM
Quick Check
■ What is external fragmentation?

Quick Check Answer

■ External fragmentation is the condition in which the physical order of
index pages does not match the logical order.

PRACTICE Using ALTER INDEX to Correct Index Fragmentation Levels
DBAs need to learn how to manage index fragmentation levels by using the ALTER
INDEX…REBUILD and ALTER INDEX…REORGANIZE statements. The following two
practices take you through the process of correcting index fragmentation levels by
using these two statements.

� Practice 1: Use ALTER INDEX…REBUILD to Rebuild an Index

In this practice, you rebuild an index by using the ALTER INDEX…REBUILD statement.

1. Start SSMS.

2. Connect to the instance containing the sample AdventureWorks database.

3. In Object Explorer, right-click the AdventureWorks database and choose New
Query to open the Query Editor pane.

4. In the Query Editor pane, type in the following Transact-SQL statement to view
current fragmentation levels, rebuild the indexes on the HumanRe-
sources.Employee table, and view fragmentation levels after the rebuild:

USE AdventureWorks;

--View the current fragmentation levels.
SELECT index_id, avg_fragmentation_in_percent, avg_page_space_used_in_percent
FROM sys.dm_db_index_physical_stats (DB_ID(‘AdventureWorks’),
OBJECT_ID(‘HumanResources.Employee’),NULL, NULL, ’DETAILED’)

WHERE index_id <> 0; --does not return information about heaps

--Rebuild all indexes on the table.
--Create the indexes with a fill factor of 90.
--Allow the index operation to take place ONLINE
ALTER INDEX ALL ON HumanResources.Employee
REBUILD WITH (FILLFACTOR = 90, ONLINE = ON);

--View the fragmentation levels after the index rebuilds.
SELECT index_id, avg_fragmentation_in_percent, avg_page_space_used_in_percent
FROM sys.dm_db_index_physical_stats (DB_ID(‘AdventureWorks’),
OBJECT_ID(‘HumanResources.Employee’),NULL, NULL, ’DETAILED’)

WHERE index_id <> 0; --does not return information about heaps

Lesson 1: Managing Index Fragmentation 455

C1262271X.fm Page 455 Friday, April 29, 2005 7:55 PM
� Practice 2: Use ALTER INDEX…REORGANIZE to Reorganize an Index

In this practice, you will reorganize an index by using the ALTER INDEX…REORGA-
NIZE statement.

1. If necessary, start SSMS and connect to the instance containing the Adventure-
Works sample database. Open the Query Editor pane.

2. In the Query Editor pane, type in the following Transact-SQL statement to view
current fragmentation levels, reorganize the indexes on the HumanRe-
sources.Employee table, and view the fragmentation levels after the reorganization:

USE AdventureWorks;

--View the current fragmentation levels.
SELECT index_id, avg_fragmentation_in_percent, avg_page_space_used_in_percent
FROM sys.dm_db_index_physical_stats (DB_ID(‘AdventureWorks’),
OBJECT_ID(‘HumanResources.Employee’),NULL, NULL, ’DETAILED’)

WHERE index_id <> 0; --does not return information about heaps

--Reorganize all indexes on the table.
ALTER INDEX ALL ON HumanResources.Employee
REORGANIZE;

--View the fragmentation levels after the index reorganization.
SELECT index_id, avg_fragmentation_in_percent, avg_page_space_used_in_percent
FROM sys.dm_db_index_physical_stats (DB_ID(‘AdventureWorks’),
OBJECT_ID(‘HumanResources.Employee’),NULL, NULL, ’DETAILED’)

WHERE index_id <> 0; --does not return information about heaps

Lesson Summary
■ Indexes become fragmented during INSERT, DELETE, and UPDATE opera-

tions, and this fragmentation can degrade query performance.

■ Internal index fragmentation occurs when the index pages are not filled to the
maximum amount allowed under the current fill factor setting.

■ External index fragmentation occurs when the physical ordering of index pages
does not match the logical ordering of the pages.

■ You can check index fragmentation levels by running a SELECT statement
against the sys.dm_db_index_physical_stats dynamic management function.

■ You can correct index fragmentation by executing either the ALTER
INDEX…REORGANIZE or the ALTER INDEX…REBUILD Transact-SQL
statement.

456 Chapter 12 Using Transact-SQL to Manage Databases

C1262271X.fm Page 456 Friday, April 29, 2005 7:55 PM
Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. You are a DBA tasked with maintaining an installation of SQL Server 2005.One
of your jobs is to determine the index fragmentation levels for all user tables in
your database. Which dynamic management view or function can you use to
review index fragmentation levels?

A. sys.dm_db_index_operational_stats

B. sys.dm_db_index_usage_stats

C. sys.dm_db_missing_index_details

D. sys.dm_db_index_physical_stats

2. You are a DBA tasked with maintaining an installation of SQL Server 2005.You
need to determine whether your tables contain external fragmentation. Which
column would you use to find whether your indexes are externally fragmented?

A. avg_fragment_size_in_pages

B. avg_page_space_used_in_percent

C. avg_fragmentation_in_percent

D. avg_record_size_in_bytes

3. You are a DBA tasked with maintaining an installation of SQL Server 2005.One
of your jobs is to correct the index fragmentation levels for all user tables in your
database. During your fragmentation investigation, you determine that an index
has external fragmentation levels greater than 30 percent. Which statement
would you use to correct this amount of external fragmentation?

A. ALTER INDEX…REBUILD

B. ALTER INDEX...REORGANIZE

C. ALTER INDEX…DISABLE

D. ALTER INDEX…SET STATISTICS_NORECOMPUTE = ON

Lesson 2: Managing Statistics 457

C1262271X.fm Page 457 Friday, April 29, 2005 7:55 PM
Lesson 2: Managing Statistics
Another important aspect of achieving top query performance is the statistical
information that SQL Server creates about the distribution of values in a column.
During its evaluation of a query, the query optimizer uses these statistics to estimate
the cost of using an index to satisfy the query. To ensure optimum query perfor-
mance, you need to understand the importance of statistics and decide when to let
SQL Server automatically generate and update them, and when to manually gener-
ate and update them.

After this lesson, you will be able to:

■ Explain the purpose of statistics.

■ Manage index and column statistics.

Estimated lesson time: 25 minutes

Understanding Statistics
When SQL Server creates column and index statistics, the database engine sorts the
values of the columns on which the statistics are being built and creates a histogram.
Histograms are based on up to 200 values contained in the column, separated by
intervals. The histogram specifies how many rows exactly match each interval value,
how many rows fall within an interval, and the density of values contained within an
interval. These statistics on column values help the query optimizer determine
whether using an index improves query performance.

SQL Server 2005 introduces additional information that is collected by statistics cre-
ated on char, varchar, varchar(max), nchar, nvarchar, nvarchar(max), text, and ntext col-
umns. This additional information, called a string summary, helps the query optimizer
estimate the selectivity of query predicates on string patterns, which leads to better
estimates of result set sizes when a query uses LIKE conditions.

Automatic Statistics Generation
When a DBA creates an index, the query optimizer stores statistical information about
the indexed columns. Additionally, if the AUTO_CREATE_STATISTICS database
option is set to ON, the database engine creates statistics on columns that are not con-
tained in indexes but that are used in query predicates.

458 Chapter 12 Using Transact-SQL to Manage Databases

C1262271X.fm Page 458 Friday, April 29, 2005 7:55 PM
An additional benefit to having the AUTO_UPDATE_STATISTICS database option set
to ON is that the query optimizer also automatically updates statistical information
periodically as the data in the tables changes. This statistics update operation is initi-
ated whenever the statistics used in a query execution plan fail a test for current statis-
tics. This test is a random sampling across data pages taken either from the table or the
smallest nonclustered index on the columns needed by the statistics. Almost always,
statistical information is updated when approximately 20 percent of the data rows
have changed; however, the query optimizer ensures that a minimum number of rows
are sampled, with tables smaller than 8 MB being fully scanned to gather statistics.

This test is important because when data in a column changes, index and column sta-
tistics can become out of date. As a result, the query optimizer might make less-than-
optimal decisions about how to process a query, which causes those queries to exe-
cute with dramatically substandard performance.

Manual Statistics Generation
You can also manually create statistics. To create statistics on all eligible columns in all
user tables in the current database by using just one statement, you can execute the
sp_createstats system stored procedure. To create statistics on specific table or view
columns, you can use the CREATE STATISTICS statement. To manually update statis-
tics, you can execute the UPDATE STATISTICS statement or execute the sp_updatestats
system stored procedure. And you can drop statistics by using the DROP STATISTICS
statement.

A key benefit of creating statistics manually is that you can create statistics that con-
tain densities of values for a combination of columns. By having statistics for a com-
bination of columns, the database engine could make a better estimate for query
execution.

Viewing Column Statistics Information
SQL Server 2005 gives DBAs several ways to obtain information about column
statistics:

■ The sp_autostats system stored procedure displays or changes the automatic
UPDATE STATISTICS setting for a specific index and statistics or for all indexes
and statistics for a specified table or indexed view in the current database.

■ The sys.stats catalog view displays a row for each statistic of a tabular object of the
type U, V, or TF.

Lesson 2: Managing Statistics 459

C1262271X.fm Page 459 Friday, April 29, 2005 7:55 PM
■ The sys.stats_columns catalog view displays a row for each column that is part of
sys.stats statistics.

■ The STATS_DATE function returns the date that the statistics for the specified
index were last updated.

■ The DBCC SHOW_STATISTICS statement displays the current distribution sta-
tistics for the specified target on the specified table.

Quick Check
■ Why are statistics important to query performance?

Quick Check Answer

■ During its evaluation of a query, the query optimizer uses the statistical
information to estimate the cost of using an index and determine the opti-
mal query plan for a query.

PRACTICE Manually Creating and Updating Statistics
The following two practices walk you through the process of manually creating and
updating statistics.

� Practice 1: Create Statistics

In this practice, you create statistics by using the CREATE STATISTICS statement.

1. If necessary, start SSMS and connect to the instance containing the Adventure-
Works sample database. Open the Query Editor pane.

2. In the Query Editor pane, type the following Transact-SQL statement to view
which columns in the HumanResources.Employee table do not have statistics built
on them:

USE AdventureWorks;

--Determine which columns do not have statistics on them.
SELECT c.name
FROM sys.columns c
LEFT OUTER JOIN sys.stats_columns sc
ON sc.[object_id] = c.[object_id]
AND sc.column_id = c.column_id
WHERE c.[object_id] = OBJECT_ID(‘HumanResources.Employee’)
AND sc.column_id IS NULL
ORDER BY c.column_id

460 Chapter 12 Using Transact-SQL to Manage Databases

C1262271X.fm Page 460 Friday, April 29, 2005 7:55 PM
You might see a result set like the one shown following (actual column names
returned will depend upon your database environment):

BirthDate
MaritalStatus
Gender
SalariedFlag
VacationHours
SickLeaveHours
CurrentFlag
ModifiedDate

3. In the Query Editor pane, type the following Transact-SQL statements to create
statistics on the columns in the HumanResources.Employee table that do not cur-
rently have statistics on them, and then recheck for columns that do not have
statistics:

--Create statistics for the columns needing statistics.
CREATE STATISTICS st_BirthDate

ON HumanResources.Employee (BirthDate)
WITH FULLSCAN;

CREATE STATISTICS st_MaritalStatus

ON HumanResources.Employee (MaritalStatus)
WITH FULLSCAN;

CREATE STATISTICS st_Gender

ON HumanResources.Employee (Gender)
WITH FULLSCAN;

CREATE STATISTICS st_SalariedFlag

ON HumanResources.Employee (SalariedFlag)
WITH FULLSCAN;

CREATE STATISTICS st_VacationHours

ON HumanResources.Employee (VacationHours)
WITH FULLSCAN;

CREATE STATISTICS st_SickLeaveHours

ON HumanResources.Employee (SickLeaveHours)
WITH FULLSCAN;

CREATE STATISTICS st_CurrentFlag

ON HumanResources.Employee (CurrentFlag)
WITH FULLSCAN;

Lesson 2: Managing Statistics 461

C1262271X.fm Page 461 Friday, April 29, 2005 7:55 PM
CREATE STATISTICS st_ModifiedDate
ON HumanResources.Employee (ModifiedDate)
WITH FULLSCAN;

--Determine which columns still do not have statistics on them.
SELECT c.name
FROM sys.columns c
LEFT OUTER JOIN sys.stats_columns sc
ON sc.[object_id] = c.[object_id]
AND sc.column_id = c.column_id
WHERE c.[object_id] = OBJECT_ID(‘HumanResources.Employee’)
AND sc.column_id IS NULL
ORDER BY c.column_id;

� Practice 2: Update Statistics

In this practice, you will manually update statistics by using the UPDATE STATISTICS
statement.

1. If necessary, start SSMS and connect to the instance containing the Adventure-
Works sample database. Open the Query Editor pane.

2. In the Query Editor pane, type the following Transact-SQL statements to view
when the statistics were last updated, update all statistics on the HumanRe-
sources.Employee table, and check when the statistics were last updated:

USE AdventureWorks;

--View date the statistics were last updated.
SELECT ’Index Name’ = i.[name]
, ’Statistics Date’ = STATS_DATE(i.[object_id], i.index_id)
FROM sys.objects o
INNER JOIN sys.indexes i
ON o.name = ’Employee’
AND o.[object_id] = i.[object_id];

--Update statistics on all indexes on the table.
UPDATE STATISTICS HumanResources.Employee
WITH FULLSCAN;

--View date the statistics were last updated.
SELECT ’Index Name’ = i.[name]
, ’Statistics Date’ = STATS_DATE(i.[object_id], i.index_id)
FROM sys.objects o
INNER JOIN sys.indexes i
ON o.name = ’Employee’
AND o.[object_id] = i.[object_id];

462 Chapter 12 Using Transact-SQL to Manage Databases

C1262271X.fm Page 462 Friday, April 29, 2005 7:55 PM
Lesson Summary
■ Statistics on table or view columns play an important role in optimizing query

performance; the SQL Server query optimizer uses these statistics to evaluate
the cost of using an index to satisfy a query.

■ When you create an index, the query optimizer automatically stores statistical
in fo r m at i o n a b o u t t h e i n d e xed c o lu m n s . Yo u c a n a l so s e t t h e
AUTO_CREATE_STATISTICS database option to ON to have the database
engine automatically create statistics on columns that are not contained in
indexes but that are used in query predicates and to automatically update statis-
tical information periodically as the data in the tables changes.

■ Alternatively, you can manually create and update statistics by using Transact-
SQL statements and stored procedures.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which Transact-SQL function shows the last time statistics were updated for a
specified index?

A. sys.stats_columns

B. DBCC SHOWCONTIG

C. DBCC SHOW_STATISTICS

D. STATS_DATE

2. Which Transact-SQL statement allows SQL Server to automatically update sta-
tistics?

A. sp_autostats

B. sys.stats

C. UPDATE STATISTICS

D. CREATE STATISTICS

Lesson 3: Shrinking Files 463

C1262271X.fm Page 463 Friday, April 29, 2005 7:55 PM
Lesson 3: Shrinking Files
In SQL Server 2005, certain operations such as large delete operations or one-time
data loads might leave database files larger than they need to be. SQL Server 2005
enables a DBA to shrink each file within a database to remove unused pages and
regain disk space. And although the SQL Server database engine is designed to reuse
space effectively, there are times when a database or a database file no longer needs to
be as large as it once was. You might then need to shrink the database or file either
through a manual process of shrinking all the database files or certain files individu-
ally or by setting the database to automatically shrink at specified intervals. In this les-
son, you learn how to determine when you should shrink database files and what
Transact-SQL statements you can use to shrink databases and database files.

After this lesson, you will be able to:

■ Determine when it is appropriate to shrink database files.

■ Use Transact-SQL statements to shrink databases and database files.

Estimated lesson time: 15 minutes

Shrinking Database Files Automatically
SQL Server 2005 enables you to set a database option that allows the database engine
to automatically shrink databases that have free space. When you set the ALTER
DATABASE AUTO_SHRINK option to ON, the database engine periodically examines
the database’s space usage and reduces the size of the database files for that database.

CAUTION Be careful when allowing AUTO_SHRINK

The AUTO_SHRINK option is set to OFF by default, and you should take care when setting this
option to ON. Although the shrink process takes place in the background and does not affect users
in the database, the process of shrinking a database can consume system resources, which can
degrade the performance of the server. Also, continually shrinking and regrowing a database can
lead to fragmentation at the file level, which often cannot be easily addressed in today’s 24 x 7
database environments.

464 Chapter 12 Using Transact-SQL to Manage Databases

C1262271X.fm Page 464 Friday, April 29, 2005 7:55 PM
Shrinking Database Files Manually
When you need to shrink a database, transaction log, or single database file to recover
unused space, it is often a better choice to manually shrink the file rather than to let
SQL Server 2005 perform the operation automatically. Manually shrinking the data-
base or database files enables you to choose when the shrink operation takes place,
which can dramatically reduce the pressure that the shrink operation can cause on
system resources.

BEST PRACTICES Shrinking databases

As with the automatic shrink setting, the manual shrink process takes place in the background and
does not affect users in the database, but the process of shrinking a database can consume system
resources and degrade server performance. Also, as with auto shrinks, continually shrinking and
regrowing a database can lead to fragmentation at the file level, which can be difficult to fix in busy
database environments. DBAs should perform database shrink operations or transaction log shrink
operations (covered in a moment) only when they are certain that the unused space being
reclaimed will not be needed in the future.

You can manually shrink databases and database files by using the DBCC SHRINKDA-
TABASE statement or the DBCC SHRINKFILE statement, respectively. Note that when
using the DBCC SHRINKDATABASE statement, you cannot shrink a database to a size
that is smaller than its original size. You also cannot shrink a database file smaller
than the used portion of the database. For example, unless you use the DBCC
SHRINKFILE statement against the individual database files, you cannot shrink a
database created with a size of 100 GB to below 100 GB, even if the database contains
only 50 MB of data.

MORE INFO DBCC SHRINKDATABASE and DBCC SHRINKFILE

For full details about executing the DBCC SHRINKDATABASE and DBCC SHRINKFILE statements, see
the SQL Server 2005 Books Online topics “DBCC SHRINKDATABASE (Transact-SQL)” and “DBCC
SHRINKFILE (Transact-SQL),” respectively.

Shrinking the Transaction Log
Database transaction logs are created with fixed boundaries in which you can shrink a
transaction log file. The size of the virtual log files contained within the transaction log
determines the reduction in size that is possible when shrinking the transaction log.
This means that you cannot shrink the transaction log to a size less than the virtual log

Lesson 3: Shrinking Files 465

C1262271X.fm Page 465 Friday, April 29, 2005 7:55 PM
file. Take, for example, a transaction log file that is 10 GB in size and that contains 50
virtual log files, each 200 MB in size. Let’s say that shrinking the transaction log
would delete unused virtual log files but leave at least two virtual log files intact. In
this example, you could shrink the transaction log file only to 400 MB—the size of the
two remaining virtual log files. Also note that any virtual log files that are still active
and contain uncommitted transactions or unwritten operations will not be part of the
shrink process.

Quick Check
■ How can you shrink a database without having to shrink each file individ-

ually?

Quick Check Answer

■ DBAs wanting to shrink an entire database can issue the DBCC SHRINK-
DATABASE statement against the database.

PRACTICE Shrinking a Database
The following two practices walk you through the processes of setting a database to
shrink automatically and manually shrinking a database.

� Practice 1: Set a Database to Shrink Automatically

In this practice, you will use the ALTER DATABASE statement to set a database to
shrink automatically.

1. If necessary, start SSMS and connect to the instance containing the Adventure-
Works sample database. Open the Query Editor pane.

466 Chapter 12 Using Transact-SQL to Manage Databases

C1262271X.fm Page 466 Friday, April 29, 2005 7:55 PM
2. In the Query Editor pane, type the following Transact-SQL statements to check
the current auto shrink setting for the database, set the database to shrink auto-
matically, and then verify that the auto shrink setting was changed:

USE master;

--View the current setting for the database.
SELECT CASE DATABASEPROPERTYEX(‘AdventureWorks’,’IsAutoShrink’)

WHEN 0 THEN ’Database is not set to shrink automatically’
WHEN 1 THEN ’Database is set to shrink automatically’
ELSE ’Error’
END;

--Set the database to shrink automatically.
ALTER DATABASE AdventureWorks
SET AUTO_SHRINK ON;

--View the current setting for the database.
SELECT CASE DATABASEPROPERTYEX(‘AdventureWorks’,’IsAutoShrink’)

WHEN 0 THEN ’Database is not set to shrink automatically’
WHEN 1 THEN ’Database is set to shrink automatically’
ELSE ’Error’
END;

� Practice 2: Manually Shrink a Database

In this practice, you will use the DBCC SHRINKDATABASE statement to manually
shrink a database.

1. If necessary, start SSMS and connect to the instance containing the Adventure-
Works sample database. Open the Query Editor pane.

2. In the Query Editor pane, perform the following operations by typing the Trans-
act-SQL statements that follow the list of operations:

❑ View the current size of the database.

❑ Create and then drop a table to create unused database space so that you
can shrink the database.

❑ Check the size of the database.

❑ Manually shrink the database.

❑ Check the size of the database after shrinking it.

Lesson 3: Shrinking Files 467

C1262271X.fm Page 467 Friday, April 29, 2005 7:55 PM
USE AdventureWorks;

--View the current size of the database.
SELECT file_id, name, physical_name, size FROM sys.database_files;

--Create a table, fill the table, and then drop to table to create unused database
space.

CREATE TABLE dropme
(
col1 CHAR(8000)
)

DECLARE @counter INTEGER
SET @counter = 2000

WHILE @counter > 0
BEGIN

INSERT INTO dropme VALUES (‘ ’)
SET @counter = @counter - 1

END

--View the current size of the database.
SELECT file_id, name, physical_name, size FROM sys.database_files;

--Drop the table.
DROP TABLE dropme;

--Shrink the AdventureWorks database, leaving no free space.
DBCC SHRINKDATABASE (AdventureWorks, 0);

--View the current size of the database.
SELECT file_id, name, physical_name, size FROM sys.database_files;

Lesson Summary
■ You can shrink SQL Server 2005 databases to regain disk space.

■ DBAs have the option of shrinking the database manually or allowing the data-
base engine to automatically shrink the database.

■ You can shrink an entire database by using the DBCC SHRINKDATABASE state-
ment or individual database files by using the DBCC SHRINKFILE statement.

■ As part of your database maintenance, you can also shrink database transaction
logs.

468 Chapter 12 Using Transact-SQL to Manage Databases

C1262271X.fm Page 468 Friday, April 29, 2005 7:55 PM
Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. You are a DBA working at a SQL Server hosting company. You need to ensure
that none of your company’s client installations wastes disk space. As part of
your maintenance tasks, you are charged with periodically shrinking databases.
You want to automatically shrink entire databases at a time. How can you
achieve this maintenance goal?

A. Execute the DBCC SHRINKDATABASE statement.

B. Execute the DBCC SHRINKFILE statement.

C. Set each database to shrink automatically by using the ALTER DATABASE
statement against each database.

D. You cannot shrink SQL Server 2005 database files automatically.

2. You need to ensure that none of your databases contains unused space because
recent database growth is quickly filling up disk space. How can you shrink indi-
vidual database files during the night when the system is not being used by your
end users?

A. Create a job that will execute the DBCC SHRINKFILE statement against the
individual files during the night.

B. Execute the ALTER DATABASE statement to allow the database to be
shrunk only at night.

C. Execute the DBCC SHRINKDATABASE statement, specifying the time you
want the database to be shrunk.

D. Alter the database to allow the database engine to automatically shrink the
database.

Lesson 4: Using DBCC CHECKDB 469

C1262271X.fm Page 469 Friday, April 29, 2005 7:55 PM
Lesson 4: Using DBCC CHECKDB
As part of your regular database maintenance, you need to check your databases for
integrity issues. To help you complete this task, SQL Server 2005 provides the DBCC
CHECKDB database console command. DBAs need to become familiar with this com-
mand, its uses, and its output to ensure the stability of their databases. This lesson
gives you an overview of DBCC CHECKDB and some tips about using it to check the
integrity of your database.

After this lesson, you will be able to:

■ Perform database integrity checks by using the DBCC CHECKDB command.

Estimated lesson time: 15 minutes

DBCC CHECKDB
The DBCC CHECKDB command performs a variety of checks on the database you
issue it against to verify the allocation, structural integrity, and logical integrity of all
objects in the database. You need to become familiar with the command and the
checks that it issues so that you use the appropriate options and so that you don’t
duplicate the checks it performs during the often-limited maintenance windows
found in today’s database environment.

The DBCC CHECKDB statement performs the following integrity checks:

■ Issues DBCC CHECKALLOC on the database

■ Issues DBCC CHECKTABLE on every table and view in the database

■ Issues DBCC CHECKCATALOG on the database

■ Validates Service Broker data in the database

■ Validates the contents of every indexed view in the database

MORE INFO DBCC CHECKDB

To see all the many options available with the DBCC CHECKDB command, see the SQL Server 2005
Books Online topic “DBCC CHECKDB (Transact-SQL).”

470 Chapter 12 Using Transact-SQL to Manage Databases

C1262271X.fm Page 470 Friday, April 29, 2005 7:55 PM
DBAs should keep in mind the following best practices associated with running
DBCC CHECKDB:

■ Because of the time DBCC CHECKDB can take to run against larger databases,
you should execute the command with the PHYSICAL_ONLY option if you are
doing frequent checks on production systems. PHYSICAL_ONLY provides a
small-overhead check of the physical consistency of the database and can detect
torn pages, checksum failures, and common hardware failures that can compro-
mise a user’s data.

■ To get a full integrity check of your database, periodically execute DBCC
CHECKDB with no options specified so that you don’t limit the check.

■ When errors are reported during the execution of DBCC CHECKDB, restore the
database from a recent database backup chain to resolve the issues. If the data-
base cannot be restored because of its size, a lack of valid database backups, or
other issues, consider executing the DBCC CHECKDB command by using one of
the command’s repair options: REPAIR_ALLOW_DATA_LOSS, REPAIR_FAST, or
REPAIR_REBUILD. However, using a repair option, which specifies that DBCC
CHECKDB should repair the found issues, should be a last resort because repair
operations do not consider any constraints that might exist on or between tables.

NOTE Repair options require single-user mode

Note that to use one of the three repair options of DBCC CHECKDB, the specified database must be
in single-user mode.

Quick Check
■ What other DBCC statements does the DBCC CHECKDB statement execute?

Quick Check Answer

■ The DBCC CHECKDB statement executes the following DBCC statements:
DBCC CHECKALLOC, DBCC CHECKTABLE, and DBCC CHECKCATALOG.

PRACTICE Executing the DBCC CHECKDB Statement
The following two practices will walk you through the process of executing a DBCC
CHECKDB statement to ensure database integrity and using that statement to repair
any integrity issues found.

Lesson 4: Using DBCC CHECKDB 471

C1262271X.fm Page 471 Friday, April 29, 2005 7:55 PM
� Practice 1: Execute DBCC CHECKDB to Review Integrity Issues

In this practice, you execute the DBCC CHECKDB statement and review the output for
database integrity issues.

1. If necessary, start SSMS and connect to the instance containing the Adventure-
Works sample database. Open the Query Editor pane.

2. In the Query Editor pane, type the following Transact-SQL statement to execute
the DBCC CHECKDB statement:

USE master;

--Check for database integrity issues.
--Show all error messages.
DBCC CHECKDB (‘AdventureWorks’) WITH ALL_ERRORMSGS;

3. Scroll down the output from the statement to review any error messages.

� Practice 2: Execute DBCC CHECKDB to Review Integrity Issues and Allow for Issue
Correction

In this practice, you execute the DBCC CHECKDB statement and allow the statement
to correct integrity issues.

1. If necessary, start SSMS and connect to the instance containing the Adventure-
Works sample database. Open the Query Editor pane.

2. In the Query Editor pane, type the following Transact-SQL statements to set the
database to single-user mode, execute the DBCC CHECKDB statement, and
allow the statement to attempt to repair any issues found:

USE master;

--Check for database integrity issues.
--Allow the statement to attempt to repair issues with possible loss of data.
--Show all error messages.

--Database must be in single-user mode.
ALTER DATABASE AdventureWorks
SET SINGLE_USER;

DBCC CHECKDB (‘AdventureWorks’, ’REPAIR_ALLOW_DATA_LOSS’) WITH ALL_ERRORMSGS;

3. Scroll down the output from the statement to review any error messages.

4. In the Query Editor pane, type the following Transact-SQL statement to execute
the following statement to set the database back to multiple-user mode:

--Remove from single-user mode.
ALTER DATABASE AdventureWorks
SET MULTI_USER;

472 Chapter 12 Using Transact-SQL to Manage Databases

C1262271X.fm Page 472 Friday, April 29, 2005 7:55 PM
Lesson Summary
■ You use the DBCC CHECKDB statement to validate database integrity.

■ The DBCC CHECKDB statement executes DBCC CHECKALLOC, DBCC CHECK-
TABLE, and DBCC CHECKCATALOG statements, making individual execution
of these statements unnecessary.

■ Although the DBCC CHECKDB statement has options to repair issues found dur-
ing its execution, it is recommended that DBAs attempt to restore the database
from valid backup sets before attempting to use DBCC CHECKDB to repair integ-
rity issues.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. The DBCC CHECKDB statement issues which of the following statements?

A. DBCC CHECKCATALOG

B. DBCC CHECKIDENT

C. DBCC NEWALLOC

D. DBCC TEXTALLOC

2. Which DBCC CHECKDB option is recommended for frequent checks against
large databases?

A. NOINDEX

B. REPAIR_FAST

C. PHYSICAL_ONLY

D. NO_INFOMSGS

Chapter 12 Review 473

C1262271X.fm Page 473 Friday, April 29, 2005 7:55 PM
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can

■ Review the chapter summary.

■ Review the list of key terms introduced in this chapter.

■ Complete the case scenarios. These scenarios set up real-world situations involv-
ing the topics of this chapter and ask you to create a solution.

■ Complete the suggested practices.

■ Take a practice test.

Chapter Summary
■ To achieve maximum performance for your database queries, you should per-

form periodic index maintenance to keep index fragmentation in your databases
to a minimum level.

■ Index and column statistics are key to query performance. Because the query
optimizer uses them to determine the execution plan of the query, you need to
make sure that statistics are up to date.

■ Another important database maintenance task is shrinking databases and data-
base files that contain unneeded and unused space to a smaller size to recapture
the unused disk space.

■ You need to periodically check the integrity of your databases by using the DBCC
CHECKDB command and handle errors found during its execution by restoring
the database from a valid backup.

474 Chapter 12 Review

C1262271X.fm Page 474 Friday, April 29, 2005 7:55 PM
Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ external fragmentation

■ histogram

■ index fragmentation

■ index rebuild

■ index reorganization

■ internal fragmentation

■ page split

■ statistics

■ string summary

Case Scenarios
In the following case scenarios, you apply what you’ve learned about how to maintain
SQL Server 2005 by using Transact SQL. You can find answers to these questions in
the “Answers” section at the end of this book.

Case Scenario 1: Defragmenting an Index
You are a DBA for a local book publisher. As part of your job, you must design a
method to manage index fragmentation levels. You have decided to create a SQL
Server Agent job that checks index fragmentation levels and issues the appropriate
ALTER INDEX statement to defragment fragmented indexes. To achieve this goal, you
need to answer the following questions:

1. What mechanism will your job use to check index fragmentation levels?

2. What threshold will the job use to determine whether the indexes have external
fragmentation?

3. What threshold will the job use to determine whether your indexes have inter-
nal fragmentation?

Chapter 12 Review 475

C1262271X.fm Page 475 Friday, April 29, 2005 7:55 PM
Case Scenario 2: Maintaining Database Integrity
You are a DBA for a large phone company. You need to design a database integrity
check job in SQL Server Agent. During a planning meeting, your manager asks you
the following questions about your integrity job:

1. In large databases, what options will you use with the DBCC CHECKDB state-
ment to minimize any performance impact of running the statement?

2. What other options will you use when you run the DBCC CHECKDB statement
against all databases?

3. How can you make sure that if the integrity-check job finds an issue, you can cor-
rect the problem and ensure the database’s integrity?

Suggested Practices
To help you successfully master the exam objectives presented in this chapter, com-
plete the following practice tasks.

Managing Index Fragmentation
For this task, you should complete both practices to gain experience in correcting
index-fragmentation levels.

■ Practice 1 Practice executing ALTER INDEX…REBUILD to understand how you
can issue this statement against indexes needing to be defragmented. Make sure
that you understand when to use the statement and how it performs when run-
ning as an ONLINE operation.

■ Practice 2 Practice executing ALTER INDEX…REORGANIZE to understand how
you can issue this statement against indexes needing to be defragmented. Make
sure that you understand the limitations of this statement and how it might not
be suited for every table in the database.

Managing Statistics
For this task, complete both practices to gain experience managing statistics on col-
umns in SQL Server 2005 databases.

■ Practice 1 Review and understand the importance of column statistics by drop-
ping column statistics on tables in a test database and then comparing query
execution times before and after the statistics are dropped.

476 Chapter 12 Review

C1262271X.fm Page 476 Friday, April 29, 2005 7:55 PM
■ Practice 2 Understand the importance of up-to-date statistics by turning off the
capability to automatically update statistics. Then perform a large number of
inserts in a table, execute a query, update the statistics, and reexecute the same
query. Compare query execution times when the statistics are out of date to
when the statistics are up to date.

Shrinking Files
For this task, complete all three practices to gain experience in deciding when to
shrink files and the appropriate statement to issue to shrink the files.

■ Practice 1 Perform a database shrink operation by using the DBCC SHRINKDA-
TABASE statement and then watch system resource utilization.

■ Practice 2 Perform a database shrink operation by using the DBCC SHRINK-
FILE statement and then watch system resource utilization.

■ Practice 3 Set a database to automatically shrink, and use SQL Server Profiler to
watch how many times the shrink operation takes place.

Using DBCC CHECKDB to Perform Database Integrity Checks
For this task, complete both practices to gain experience in deciding when and how
to issue a DBCC CHECKDB statement and how to read the output.

■ Practice 1 Perform a DBCC CHECKDB statement against all databases, and
watch system resource utilization.

■ Practice 2 Perform a DBCC CHECKDB statement with a repair option against a
test database to become familiar with setting the database to single-user mode
and back to multiple-user mode.

Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on all
the 70-431 certification exam content. You can set up the test so that it closely simulates
the experience of taking a certification exam, or you can set it up in study mode so that
you can look at the correct answers and explanations after you answer each question.

MORE INFO Practice tests

For details about all the practice test options available, see the section titled “How to Use the Prac-
tice Tests” in this book’s Introduction.

C1362271X.fm Page 477 Friday, April 29, 2005 7:56 PM
Chapter 13

Working with HTTP Endpoints

In today’s distributed and often global IT environments, service-oriented applications
are in demand. The architecture that supports service-oriented applications relies on
Web services that can receive requests and send responses in a platform-independent
format called SOAP. SOAP uses XML as an encoding scheme for request and response
parameters and uses HTTP as a transport mechanism.

Within its new endpoints technology for governing connections to Microsoft SQL
Server, SQL Server 2005 provides HTTP endpoints that enable developers to expose
the stored procedures and functions within a database as methods that can be called
from any application using the SOAP protocol. This chapter covers the important
security considerations for implementing HTTP endpoints and then shows you how
to create and secure these endpoints so that Web services can securely make direct
calls to your database.

Exam objectives in this chapter:
■ Implement an HTTP endpoint.

❑ Create an HTTP endpoint.

❑ Secure an HTTP endpoint.

Lessons in this chapter:
■ Lesson 1: Understanding HTTP Endpoint Security. 479

■ Lesson 2: Creating a Secure HTTP Endpoint . 484

Before You Begin
To complete the lessons in this chapter, you must have

■ SQL Server 2005 installed.

■ A copy of the AdventureWorks sample database installed in the instance.
477

478 Chapter 13 Working with HTTP Endpoints

C1362271X.fm Page 478 Friday, April 29, 2005 7:56 PM
Real World
Michael Hotek

In SQL Server 2000, you could expose stored procedures directly to a Web ser-
vice. Although this new functionality provided an important capability to appli-
cations, the configuration was messy, and you had very little ability to fine-tune
security permissions. However, SQL Server 2005 provides an open and straight-
forward method for exposing stored procedures and functions to Web services
by using its new endpoint technology. HTTP endpoints in SQL Server 2005 pro-
vide a variety of options for securing endpoints while allowing broader access to
your database. As more and more organizations require Web services to access
data, you can turn to HTTP endpoints as a secure mechanism for meeting this
business need.

Lesson 1: Understanding HTTP Endpoint Security 479

C1362271X.fm Page 479 Friday, April 29, 2005 7:56 PM
Lesson 1: Understanding HTTP Endpoint Security
To communicate with SQL Server, an application must connect to a port number on
which that SQL Server is configured to listen. Previous SQL Server versions have left
this connection point unsecured as well as unrestricted. However, SQL Server 2005
has redefined its entire connection infrastructure to strengthen communication secu-
rity. This lesson provides an overview of the flexible and very granular security fea-
tures that you can take advantage of for an HTTP endpoint.

After this lesson, you will be able to:

■ Explain the seven layers of HTTP endpoint security.

■ Secure an HTTP endpoint.

Estimated lesson time: 20 minutes

Seven Layers of HTTP Endpoint Security
All connectivity to SQL Server or a feature within SQL Server is accomplished by using
endpoints. Lesson 2 walks through the details of creating an HTTP endpoint, but you
first need to understand the security features that SQL Server 2005 provides for HTTP
endpoints. You can configure seven layers of security for an HTTP endpoint:

■ Endpoint type

■ Endpoint payload

■ Endpoint state

■ Authentication method

■ Encryption

■ Login type

■ Endpoint permissions

Let’s look at each of these layers in turn.

Endpoint type
The endpoint type defines which types of traffic the endpoint allows. Endpoints can
be of two different types:

■ TCP Responds only to TCP requests

■ HTTP Responds to either HTTP or HTTPS requests

480 Chapter 13 Working with HTTP Endpoints

C1362271X.fm Page 480 Friday, April 29, 2005 7:56 PM
Endpoint payload
The payload setting describes the particular subset of traffic that the endpoint allows.
Accepted endpoint payloads are TSQL , SOAP , SERVICE_BROKER , and
DATABASE_MIRRORING. An HTTP endpoint allows only one type of payload: SOAP.
The options within the SOAP payload setting are key to creating a secure HTTP end-
point; Lesson 2 covers these important options.

MORE INFO Endpoint payloads

For information about the TSQL payload, see Chapter 5, “Working with Transact-SQL.” For informa-
tion about the SERVICE_BROKER payload, see Chapter 20, “Working with Service Broker.” And for
information about the DATABASE_MIRRORING payload, see Chapter 17, “Implementing Database
Mirroring.”

Endpoint state
The possible states for an endpoint are STARTED, STOPPED, and DISABLED. For an
endpoint to respond to requests, the state must be set to STARTED. An endpoint with
a state of STOPPED returns an error in response to any connection attempt, whereas
an endpoint with a state of DISABLED does not respond to any request. To comply
with the SQL Server 2005 “off by default” approach to security, the default state is
STOPPED.

Authentication method
You can use either Windows authentication or certificates as the authentication
method for the endpoint connection. You set Windows-based authentication by spec-
ifying the NTLM, KERBEROS, or NEGOTIATE option. The NEGOTIATE option causes
instances to dynamically select the authentication method. For certificate-based
authentication, you can use a certificate from a trusted authority or generate your own
Windows certificate.

BEST PRACTICES Authentication

When all instances reside within a single domain or across trusted domains, you should use Win-
dows authentication. When instances span nontrusted domains, you should use certificate-based
authentication.

Lesson 1: Understanding HTTP Endpoint Security 481

C1362271X.fm Page 481 Friday, April 29, 2005 7:56 PM
Encryption
Endpoints also provide encryption options. The PORTS clause enables you to specify
whether communication is in clear text or whether Secure Sockets Layer (SSL) is
enabled. When you specify the CLEAR option, the endpoint sends and receives HTTP
traffic. When you specify the SSL option, the communication must be accomplished
via HTTPS.

Login type
Within the SOAP payload, the LOGIN_TYPE parameter controls which type of
accounts are used to connect to the endpoint. Setting this option to WINDOWS allows
authentication by using Windows accounts. Setting this option to MIXED allows con-
nections to be made using either Windows credentials or a SQL Server login.

Endpoint permissions
Even if you set all of the previous options to the least-restrictive security permissions,
all traffic to the endpoint is still restricted. To allow a login to connect to an endpoint,
you must grant it CONNECT permission on the endpoint.

Quick Check
■ You have created an HTTP endpoint and specified all security options that

are available. You have verified that your application meets all the security
permissions, is granted access to the database, and is making the appropri-
ate calls to the HTTP endpoint. However, you continue to get access errors.
What is the problem?

Quick Check Answer

■ Although you have created the endpoint and verified that all options are
enabled and compatible for your application, you have an additional step to
perform. You must grant CONNECT permission to the login that you are
using to connect to the endpoint.

Lesson Summary
■ HTTP endpoints enable you to specify very granular settings across the following

seven layers of security.

❑ The endpoint type of HTTP accepts only HTTP and HTTPS traffic.

482 Chapter 13 Working with HTTP Endpoints

C1362271X.fm Page 482 Friday, April 29, 2005 7:56 PM
❑ The payload must be specified as SOAP so that the endpoint accepts only
SOAP requests.

❑ The endpoint must be in a state of STARTED to respond to requests and
return results.

❑ To restrict the types of clients that can send requests, you can specify
the enforcement of a specific authentication method such as NTLM or
KERBEROS.

❑ Setting the PORTS clause to SSL encrypts all communications and causes
traffic to require HTTPS.

❑ The type of login can be limited to WINDOWS to restrict access to clients
that have been authenticated by Windows.

❑ Finally, the login you are using to connect to the endpoint must be granted
the CONNECT permission.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. HTTP endpoints are restricted to which of the following elements? (Choose all
that apply.)

A. SOAP payload

B. HTTP or HTTPS traffic

C. TSQL payload

D. Windows authentication

Lesson 1: Understanding HTTP Endpoint Security 483

C1362271X.fm Page 483 Friday, April 29, 2005 7:56 PM
2. You are working in a very secure environment and must enable HTTP endpoints
to meet new application needs. You must ensure that only members authenti-
cated to your domain can send requests to the endpoint and that even if some-
one were to hack into your network, data being sent to clients cannot be read.
Which options would you need to enable to meet these requirements? (Choose
all that apply.)

A. LOGIN_TYPE = MIXED

B. LOGIN_TYPE = WINDOWS

C. PORTS(CLEAR)

D. PORTS(SSL)

484 Chapter 13 Working with HTTP Endpoints

C1362271X.fm Page 484 Friday, April 29, 2005 7:56 PM
Lesson 2: Creating a Secure HTTP Endpoint
You create HTTP endpoints to expose stored procedures and functions to SOAP
requests from Web services. You can use Transact-SQL statements or SQL Server
Management Objects (SMOs) to create and manage HTTP endpoints; in this lesson,
we will cover the Transact-SQL commands you can use. We will also focus on the
SOAP payload option, which defines all the actions that are exposed to the Web ser-
vice and all the formatting options available for the returned results.

After this lesson, you will be able to:

■ Create a secure HTTP endpoint.

Estimated lesson time: 20 minutes

Creating an HTTP Endpoint
You use the Transact-SQL CREATE ENDPOINT statement to create an endpoint,
including an HTTP endpoint. The statement has two general sections. The first section
enables you to specify the transport protocol as either TCP or HTTP; you specify
HTTP to create an HTTP endpoint. You also set a listening port number and the
authentication method for the endpoint as well as other HTTP protocol configuration
settings for the endpoint.

In the second section of the CREATE ENDPOINT statement, you define the payload
that the endpoint supports. As noted in Lesson 1, an HTTP endpoint supports only
the SOAP payload.

The following example shows the general syntax for the CREATE ENDPOINT
statement:

CREATE ENDPOINT endPointName [AUTHORIZATION login]
STATE = { STARTED | STOPPED | DISABLED }
AS { HTTP | TCP } (

<protocol_specific_arguments>
)

FOR { SOAP | TSQL | SERVICE_BROKER | DATABASE_MIRRORING } (
<language_specific_arguments>

MORE INFO Protocol-specific arguments

For information about all the options available for configuring the protocol-specific arguments for
an HTTP endpoint, see the SQL Server 2005 Books Online article “CREATE ENDPOINT (Transact-
SQL).” SQL Server 2005 Books Online is installed as part of SQL Server 2005. Updates for SQL
Server 2005 Books Online are available for download at www.microsoft.com/technet/prodtechnol/sql/
2005/downloads/books.mspx.

Lesson 2: Creating a Secure HTTP Endpoint 485

C1362271X.fm Page 485 Friday, April 29, 2005 7:56 PM
Perhaps the most important settings for creating a secure HTTP endpoint are in the
language_specific_arguments section of the SOAP payload. We cover the key options for
this configuration section later in this lesson.

You use the ALTER ENDPOINT statement to add a new method to an existing end-
point, modify or drop a method from the endpoint, or change the properties of an
endpoint. And you use the DROP ENDPOINT statement to drop an existing endpoint.

Specifying Web Methods
To make an HTTP endpoint meaningful, the SOAP payload must specify at least one
Web method. Web methods simply expose stored procedures and functions as public
methods that a Web service can call. In the WEBMETHOD portion of the SOAP pay-
load’s language-specific arguments, you map specific stored procedures and functions
you want to expose in the endpoint as Web methods.

The general format of the WEBMETHOD portion of the SOAP payload is as follows:

[{ WEBMETHOD ['namespace' .] 'method_alias'
(NAME = 'database.owner.name'

[, SCHEMA = { NONE | STANDARD | DEFAULT }]
[, FORMAT = { ALL_RESULTS | ROWSETS_ONLY | NONE}]

)

The namespace and method_alias that you specify define the name of the Web method
that is exposed on the HTTP endpoint. The name must be unique for the entire SQL
Server instance.

You use the NAME clause to specify the fully qualified name of the stored procedure
or function that you are mapping to the Web method.

BEST PRACTICES Object security

The name of the method that is exposed on the endpoint, method_alias, should not be the same as
the actual stored procedure or function name. Using a different name prevents a hacker from inter-
rogating an HTTP endpoint for exposed methods and then using them to attempt to gain direct
access to the underlying stored procedures or functions.

The SCHEMA option defines whether an inline XML Schema Definition (XSD) will be
returned for a WEBMETHOD in the SOAP response. The FORMAT option controls
how results are sent back in the SOAP request. You can choose to send just the result
set generated or to also include the row count, along with warning and error
messages.

486 Chapter 13 Working with HTTP Endpoints

C1362271X.fm Page 486 Friday, April 29, 2005 7:56 PM
Specifying WSDL Support, Schemas, and Namespaces
Each HTTP endpoint includes a clause in the SOAP payload to specify Web Services
Description Language (WSDL) support. When you specify NONE, the endpoint does
not provide any WSDL support. If you specify DEFAULT, a default WSDL is returned
for the endpoint.

MORE INFO WSDL

A discussion of WSDL is beyond the scope of this chapter. For information about WSDL and WSDL
support, see the SQL Server 2005 Books Online article “Default WSDL.”

As part of the SOAP payload configuration, you can define a SCHEMA for the HTTP
endpoint. An HTTP endpoint has a default SCHEMA option that can be overridden by
a particular WEBMETHOD, if chosen. If you specify NONE for the SCHEMA option, an
inline XSD is not returned in the SOAP request. If you specify STANDARD, an inline
XSD is returned along with the result set.

NOTE Loading result sets

If you want to load a result set from the SOAP request into a DataSet object, an XSD is required.

In addition, the SOAP payload area enables you to specify an explicit namespace for
an HTTP endpoint. The default namespace is the namespace for each WEBMETHOD.
This option can be overridden within the WEBMETHOD definition. If you leave this
option at the DEFAULT value, which is typical, or don’t specify anything for it, the
namespace is assumed to be http://tempuri.org.

Additional SOAP Payload Parameters
You can specify several other parameters for the SOAP payload to control various
behaviors for the endpoint. Besides the options covered earlier, you can set the follow-
ing options for the SOAP payload:

[BATCHES = { ENABLED | DISABLED }]
[, SESSIONS = { ENABLED | DISABLED }]
[, SESSION_TIMEOUT = timeoutInterval | NEVER]
[, DATABASE = { 'database_name' | DEFAULT }
[, CHARACTER_SET = { SQL | XML }]
[, HEADER_LIMIT = int]

Lesson 2: Creating a Secure HTTP Endpoint 487

C1362271X.fm Page 487 Friday, April 29, 2005 7:56 PM
The BATCHES option controls whether a connection can issue ad hoc SQL queries
against the endpoint. When you enable this parameter, a connection to the database
can issue any ad hoc SQL query. The commands that a connection can successfully
execute are governed by security permissions within the database.

BEST PRACTICES Enabling ad hoc SQL

You should always disable the BATCHES option. Allowing a connection to execute ad hoc SQL que-
ries against the endpoint provides an open invitation to hackers to go after your database. For
everything that is exposed in an HTTP endpoint, you should use the WEBMETHOD clause to define
a specific set of procedures or functions allowed.

By enabling SESSIONS support, multiple SOAP request/response pairs are treated as
a single SOAP session. This allows an application to make multiple calls to the end-
point during a single SOAP session.

When you specify a value for the DATABASE parameter, the connection to the HTTP
endpoint changes context to the database that you specified; otherwise, the default
database defined for the login is used.

MORE INFO SOAP payload parameters

For a discussion of all possible SOAP payload options for an endpoint, see the SQL Server 2005
Books Online article “CREATE ENDPOINT (Transact-SQL).”

Quick Check
1. Which parameter should you specify for the SOAP payload to make the

endpoint meaningful?

2. Which parameter should never be enabled due to security concerns?

Quick Check Answers

1. The WEBMETHOD parameter specifies the procedure or function that is
exposed by the endpoint. Each HTTP endpoint should always use this
parameter to restrict the possible commands that can be executed against it.

2. The BATCHES parameter allows a connection to execute ad hoc SQL que-
ries against the endpoint; you should disable this parameter to limit the
potential exposure to your database from Web service calls.

488 Chapter 13 Working with HTTP Endpoints

C1362271X.fm Page 488 Friday, April 29, 2005 7:56 PM
PRACTICE Creating an Endpoint
In this exercise, you will create an HTTP endpoint that requires integrated security as
well as SSL. The endpoint will expose the stored procedure uspGetBillOfMaterials
from the AdventureWorks database as a Web method.

1. Launch SQL Server Management Studio (SSMS), connect to your instance, and
open a new query window.

2. Type the following command to create the endpoint, specifying the endpoint as
type HTTP, as using integrated authentication, and as using a PORTS setting of
SSL. The statement also specifies the payload as SOAP and uses the WEB-
METHOD parameter to expose the uspGetBillOfMaterials stored procedure as a
Web method:

CREATE ENDPOINT sql_endpoint
STATE = STARTED
AS HTTP(

PATH = '/sql',
AUTHENTICATION = (INTEGRATED),
PORTS = (SSL),
SITE = 'SERVER'
)

FOR SOAP (
WEBMETHOD 'BillofMaterials'

(name='AdventureWorks.dbo.uspGetBillOfMaterials'),
WSDL = DEFAULT,
SCHEMA = STANDARD,
DATABASE = 'AdventureWorks',
NAMESPACE = 'http://tempUri.org/'
);

GO

CAUTION Error creating HTTP endpoint

Depending on the specific operating system and the applications that are installed on your
machine, you might receive an error message when executing this command. To resolve this issue,
see the MSDN article “Guidelines and Limitations in Native XML Web Services” at http://
msdn2.microsoft.com/en-us/library/ms189092.aspx.

Lesson Summary
■ You define HTTP endpoints in two sections of the Transact-SQL CREATE END-

POINT command: one that defines the endpoint as HTTP and another that
defines the payload as SOAP.

Lesson 2: Creating a Secure HTTP Endpoint 489

C1362271X.fm Page 489 Friday, April 29, 2005 7:56 PM
■ The SOAP payload defines the operations allowed for the endpoint as well as
how result sets are formatted for the SOAP response.

■ The most important parameter within the SOAP payload is the WEBMETHOD
option, which specifies the stored procedure or function that is exposed by the
endpoint.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of this book.

1. Which of the following commands enable a Web service to call the uspGetBillOf-
Materials stored procedure in the AdventureWorks database and ensure that all
data remains encrypted? The result set will be loaded into a DataSet object.

A.

CREATE ENDPOINT sql_endpoint
STATE = STARTED
AS HTTP(

PATH = '/sql',
AUTHENTICATION = (INTEGRATED),
PORTS = (CLEAR),
SITE = 'SERVER'
)

FOR SOAP (
WEBMETHOD 'BillofMaterials'

(name='AdventureWorks.dbo.uspGetBillOfMaterials'),
WSDL = DEFAULT,
SCHEMA = STANDARD,
DATABASE = 'AdventureWorks',
NAMESPACE = 'http://tempUri.org/'
);

B.

CREATE ENDPOINT sql_endpoint
STATE = STARTED
AS HTTP(

PATH = '/sql',
AUTHENTICATION = (INTEGRATED),

490 Chapter 13 Working with HTTP Endpoints

C1362271X.fm Page 490 Friday, April 29, 2005 7:56 PM
PORTS = (SSL),
SITE = 'SERVER'
)

FOR SOAP (
WEBMETHOD 'BillofMaterials'

(name='AdventureWorks.dbo.uspGetBillOfMaterials',
SCHEMA = STANDARD),

WSDL = DEFAULT,
SCHEMA = STANDARD,
DATABASE = 'AdventureWorks',
NAMESPACE = 'http://tempUri.org/'
);

C.

CREATE ENDPOINT sql_endpoint
STATE = STARTED
AS HTTP(

PATH = '/sql',
AUTHENTICATION = (INTEGRATED),
PORTS = (SSL),
SITE = 'SERVER'
)

FOR SOAP (
WEBMETHOD 'BillofMaterials'

(name='AdventureWorks.dbo.uspGetBillOfMaterials'),
WSDL = DEFAULT,
SCHEMA = STANDARD,
DATABASE = 'AdventureWorks',
NAMESPACE = 'http://tempUri.org/'
);

D.

CREATE ENDPOINT sql_endpoint
STATE = DISABLED
AS HTTP(

PATH = '/sql',
AUTHENTICATION = (INTEGRATED),
PORTS = (SSL),
SITE = 'SERVER'
)

FOR SOAP (
WEBMETHOD 'BillofMaterials'

(name='AdventureWorks.dbo.uspGetBillOfMaterials'),
WSDL = DEFAULT,
SCHEMA = STANDARD,
DATABASE = 'AdventureWorks',
NAMESPACE = 'http://tempUri.org/'
);

Chapter 13 Review 491

C1362271X.fm Page 491 Friday, April 29, 2005 7:56 PM
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can

■ Review the chapter summary.

■ Review the list of key terms introduced in this chapter.

■ Complete the case scenario. This scenario sets up a real-world situation involv-
ing the topics of this chapter and asks you to create solutions.

■ Complete the suggested practices.

■ Take a practice test.

Chapter Summary
■ Service-oriented applications are the new “old” architecture currently in vogue.

This architecture relies on the creation of Web services that can receive requests
and send responses in a platform-independent format called SOAP.

■ HTTP endpoints enable developers to expose the stored procedures and func-
tions within a SQL Server 2005 database as methods that can be called from any
application using the SOAP protocol.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ HTTP endpoint

■ SOAP

■ Web service

■ Web Services Description Language (WSDL)

Case Scenario: Creating HTTP Endpoints
In this case scenario, you will apply what you’ve learned in this chapter. You can find
answers to these questions in the “Answers” section at the end of this book.

Contoso Limited, a health care company located in Bothell, WA, has just contracted
with a service provider that will perform research for certain patient claims. The

492 Chapter 13 Review

C1362271X.fm Page 492 Friday, April 29, 2005 7:56 PM
service provider is not allowed access to the Contoso network because of security con-
cerns related to all the company’s proprietary and confidential data.

1. How can you create a solution that enables the service provider to access the
claims it needs to research as well as to write the results back into the database?

2. How can you ensure that the access meets all company security requirements
and that all data is encrypted anywhere on the network?

Suggested Practices
To successfully master the exam objectives presented in this chapter, complete the fol-
lowing practice tasks.

Creating HTTP Endpoints
■ Practice 1 Create an HTTP endpoint that exposes each of the stored procedures

in the AdventureWorks database as Web methods.

■ Practice 2 Write a Microsoft Visual Studio application that will make calls to the
HTTP endpoint and display the results of each call in a grid attached to a DataSet
object.

Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-431 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the “How to Use the Practice Tests” sec-
tion in this book’s Introduction.

C1462271X.fm Page 493 Friday, April 29, 2005 7:57 PM
Chapter 14

Working with SQL Server
Agent Jobs

Microsoft SQL Server features a powerful and flexible job-scheduling engine called
SQL Server Agent. This chapter explains how you can use SQL Server Agent to define
jobs and schedule them to automatically execute on a scheduled basis. You will see
how to create maintenance plans to specify maintenance tasks such as backups to be
performed against one or more databases. And this chapter shows you how to define
operators to send messages about job success or failure and how to configure alerts,
which enable you to monitor the system for specified conditions and execute jobs to
proactively address potential issues.

Exam objectives in this chapter:
■ Implement and maintain SQL Server Agent jobs.

❑ Set a job owner.

❑ Create a job schedule.

❑ Create job steps.

❑ Configure job steps.

❑ Disable a job.

❑ Create a maintenance job.

❑ Set up alerts.

❑ Configure operators.

❑ Modify a job.

❑ Delete a job.

❑ Manage a job.

■ Monitor SQL Server Agent job history.

❑ Identify the cause of a failure.

❑ Identify outcome details.

❑ Find out when a job last ran.
493

494 Chapter 14 Working with SQL Server Agent Jobs

C1462271X.fm Page 494 Friday, April 29, 2005 7:57 PM
Lessons in this chapter:
■ Lesson 1: Creating a SQL Server Agent Job. 495

■ Lesson 2: Creating a Maintenance Plan . 504

■ Lesson 3: Configuring Operators . 515

■ Lesson 4: Configuring Alerts . 519

Before You Begin
To complete the lessons in this chapter, you must have

■ SQL Server 2005 installed.

■ A connection to a SQL Server 2005 instance in SQL Server Management Studio
(SSMS).

■ The AdventureWorks database installed.

■ SQL Server Integration Services (SSIS) installed.

Real World
Michael Hotek

As a database administrator (DBA), I need to perform many tasks on a recurring
basis. The most common task is performing backups of my databases. All back-
ups need to be done on a scheduled basis, such as running a transaction log
backup every five minutes. Fortunately, SQL Server ships with a scheduling
engine called SQL Server Agent.

To meet my requirements of executing backups on a regularly scheduled basis,
I create jobs that are then executed on the schedules that I define by using SQL
Server Agent. Without having a scheduling engine in the database system, I
would have to purchase third-party software to accomplish such management
tasks.

Executing backups on a scheduled basis is just one way to use SQL Server Agent
to improve your productivity as a DBA and to ensure that important manage-
ment tasks are performed when needed. Anything that you need to execute on
a scheduled basis can take advantage of the services that this component offers.

Lesson 1: Creating a SQL Server Agent Job 495

C1462271X.fm Page 495 Friday, April 29, 2005 7:57 PM
Lesson 1: Creating a SQL Server Agent Job
SQL Server Agent is the scheduling engine within SQL Server. One of the primary
purposes of this engine is to execute defined jobs at specified intervals. You can define
SQL Server Agent jobs to execute a variety of important tasks such as database back-
ups, reindexing, and integrity checks. In this lesson, you will learn how to create a job
in SQL Server Agent and how to configure the job options that are available.

After this lesson, you will be able to:

■ Create a job.

■ Set a job owner.

■ Create job steps.

■ Create job schedules.

Estimated lesson time: 20 minutes

How to Create a SQL Server Agent Job
A job in SQL Server Agent consists of job steps, an owner to provide the security con-
text for the job, and one or more schedules for executing the job.

The high-level steps for creating a new job are as follows:

1. Create a new job and give it a name, a database context, and an owner.

2. Add one or more job steps to the job.

3. Optionally specify a schedule on which to execute the job.

To create a new job, you need to expand the SQL Server Agent node within the Object
Explorer in SSMS, as shown in Figure 14-1.

Right-click the Jobs node and choose New Job. The New Job window opens. In this
window, you can define several general properties for each job, including name, job
category, and description. A job name can be up to 64 characters long. Be sure to use
a descriptive job name that clearly identifies the basic purpose of the job.

You can use the job category to group jobs together based on the types of actions they
perform. For example, you should specify Database Maintenance as the category for
any jobs that execute maintenance tasks. You can use any of the built-in job categories
that ship with SQL Server or you can create your own categories.

496 Chapter 14 Working with SQL Server Agent Jobs

C1462271X.fm Page 496 Friday, April 29, 2005 7:57 PM
Figure 14-1 Managing all jobs, alerts, and operators from within the SQL Server Agent node

A description text box enables you to enter additional details about a job. If specific
business rules govern a job or the way it is constructed, you should specify them in
the job description to facilitate future job-maintenance actions. You see the New Job
window completed in Figure 14-2.

Figure 14-2 Defining a new job from the New Job window

Lesson 1: Creating a SQL Server Agent Job 497

C1462271X.fm Page 497 Friday, April 29, 2005 7:57 PM
How to Specify a Job Owner
On the New Job General page, you also specify the job owner, which defines the user
or group who manages the job. Only the job owner or a member of the sysadmin role
is allowed to modify a job. If the owner of the job is not a member of the sysadmin role,
you need to ensure that the job owner has access to any proxy accounts necessary to
execute a step within the job.

You use SQL Server Agent proxy accounts to control fine-grained permissions to SQL
Server Agent. These proxy accounts control access to certain external subsystems
within SQL Server such as replication, SSIS, SQL Server Analysis Services, CmdExec,
and ActiveX. When a job step requires the use of one of these subsystems, the job
owner is validated for access to the proxy. Once validated, SQL Server Agent imper-
sonates the proxy account to allow execution of the job step.

MORE INFO Proxy accounts

For more information about proxy accounts, see the SQL Server 2005 Books Online article “How to:
Configure a User to Create and Manage SQL Server Agent Jobs.” SQL Server 2005 Books Online is
installed as part of SQL Server 2005. Updates for SQL Server 2005 Books Online are available for
download at www.microsoft.com/technet/prodtechnol/sql/2005/downloads/books.mspx.

For job steps that execute Transact-SQL statements, the security context for the job
step is derived from the job owner.

The SQL Server Agent proxies used, along with the job owner, prevent a user from
gaining elevated permissions within SQL Server by using SQL Server Agent.

Quick Check
■ Under what security context does a job step run?

Quick Check Answer

■ A job step is executed using the security credentials of the job owner. For
job steps that access external resources such as the file system, SSIS, and
replication, a proxy account is used.

How to Create Job Steps
The core of a job is one or more job steps, which define the actual action(s) to be per-
formed within the jobs.

498 Chapter 14 Working with SQL Server Agent Jobs

C1462271X.fm Page 498 Friday, April 29, 2005 7:57 PM
The high-level steps for defining a job step are the following:

1. Create a new job step, specifying a name and type.

2. Define the command you want to execute.

3. Define logging and notification actions.

To define a job step, select the Steps page within the New Job window, as shown in
Figure 14-3.

Figure 14-3 Defining a new job step

After clicking New, you can define the job step’s properties, as the example shows in
Figure 14-4.

For each job step, you need to define a name, which can be up to 64 characters. You
also need to define a job step as a specific type.

The most common type of job step is Transact-SQL. With this type of job step, you
define the database context in which to run the Transact-SQL batch that you specify.
You can define a simple batch of Transact-SQL statements to execute as the job step,
but more often you specify a call to a stored procedure. Other types of job steps cor-
respond to SSIS, Analysis Services, replication, and ActiveX calls.

Lesson 1: Creating a SQL Server Agent Job 499

C1462271X.fm Page 499 Friday, April 29, 2005 7:57 PM
Figure 14-4 Defining job step properties

Depending on the type of job step you select, you have various configuration options
available. You access the job step options by selecting the Advanced page in the New
Job Step window, as Figure 14-5 shows.

Figure 14-5 Specifying success, failure, and output file options

500 Chapter 14 Working with SQL Server Agent Jobs

C1462271X.fm Page 500 Friday, April 29, 2005 7:57 PM
You can specify actions to take when the step completes successfully, such as Go To
The Next Step, and actions to take when the step fails, such as Quit The Job, Report-
ing Failure. You can define how many times and at what interval to retry the job step.
You can also specify logging options, such as writing to an output file.

IMPORTANT Logging options

DBAs rarely specify logging options for job steps. However, without logging, it is much more diffi-
cult to troubleshoot why a job step may be failing. You should always output to a file at a mini-
mum. You can then scan the output file for error messages.

How to Create Job Schedules
After you create job steps for your SQL Server Agent job, you can attach one or more
schedules to the job. Without a schedule, a job can be executed only on demand from
another process.

To create a new job schedule, select the Schedules page in the New Job window and
then click New, as shown in Figure 14-6.

Figure 14-6 Creating a job schedule

On the resulting New Job Schedule dialog box, shown in Figure 14-7, you specify the
schedule name, type, frequency, and duration. You can define job schedules to run on
a periodic basis—such as daily, weekly, or monthly—with a variety of options available

Lesson 1: Creating a SQL Server Agent Job 501

C1462271X.fm Page 501 Friday, April 29, 2005 7:57 PM
depending on the base interval you choose. The most common job schedule fre-
quency is to run the job daily, and within each day, every n hours or n minutes.

Figure 14-7 Specifying scheduling options

Instead of specifying a time interval for executing the job, you can use the Schedule
Type drop-down list to schedule the job to execute based on CPU idle conditions, to
execute when SQL Server Agent starts, or to execute only once. In addition, you can
specify start and end dates for each schedule, allowing a particular job schedule to
remain in effect only within that period.

NOTE Job schedule differences in SQL Server 2005

In SQL Server 2000, job schedules are specific to a given job. In SQL Server 2005, however, job
schedules are treated as separate entities. You can create a job schedule once and then use the
same schedule for multiple jobs.

Lesson Summary
■ SQL Server Agent is a basic scheduling engine included with SQL Server 2005

that enables you to define jobs and the schedules on which to automatically
execute them.

502 Chapter 14 Working with SQL Server Agent Jobs

C1462271X.fm Page 502 Friday, April 29, 2005 7:57 PM
■ A job in SQL Server Agent consists of job steps: an owner to provide the security
context for the job and one or more schedules for executing the job.

■ To create a job step, you specify a name and type for the step, define the com-
mand to be executed in the step, define notification actions to occur on job step
success or failure, and specify logging.

■ You can define one or more job schedules to attach to a job, specifying the recur-
ring interval for executing the job.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. What is the role of a job owner? (Choose all that apply.)

A. Categorize a job.

B. Provide the security context for a job step.

C. Execute the job.

D. Control access to the job.

2. Which of the following are valid scheduling options? (Choose all that apply.)

A. Once per day

B. When CPU utilization exceeds 80 percent

C. When SQL Server Agent starts

D. Every five seconds

PRACTICE Create a SQL Server Agent Job
In this exercise, you will practice creating a SQL Server Agent job to back up the
AdventureWorks database on a daily basis at 23:00.

NOTE Naming conventions

The exercises in this chapter do not explicitly specify the names to give entities. Each DBA has spe-
cific naming conventions, so all names should follow your standard naming conventions.

Lesson 1: Creating a SQL Server Agent Job 503

C1462271X.fm Page 503 Friday, April 29, 2005 7:57 PM
1. Open SSMS and connect to your SQL Server.

2. Expand the SQL Server Agent node.

3. Right-click Jobs and choose New Job.

4. Give the job a name and set a job owner with the authority to back up the Adven-
tureWorks database.

5. Change the category to Database Maintenance.

6. Enter a description for the job.

7. Select the Steps page and click New to begin defining the backup job step.

8. Give the job step a name and specify Transact-SQL as the type.

9. Verify that the master database is selected in the Database drop-down list.

NOTE Database context

For exercises involving a database backup, this book specifies the master database as the
database context because it will always exist on your SQL Server instance. However, there are
no particular requirements to set a backup job to a specific database context.

10. Type the following command for the job step to run:

BACKUP DATABASE AdventureWorks to DISK = '<dirpath>\AdventureWorks.bak'

NOTE Backup file placement

Replace <dirpath> with the directory in which you want to place the backup file, for example: m:\
program files\microsoft sql server\mssql.1\mssql\backup\adventureworks\fullbackup\20060201\
adventureworks.bak.

11. Click OK to create the job step.

12. Select the Schedules page and click New to define a new schedule to attach to
the job.

13. Give the schedule a name.

14. Specify the following settings:

❑ Schedule Type: Recurring

❑ Occurs: Daily

❑ Recurs Every: One day

❑ Occurs Once At: 23:00, or 11:00 PM

15. Click OK to create the new job schedule.

16. Click OK to close the New Job window and create your new backup job.

504 Chapter 14 Working with SQL Server Agent Jobs

C1462271X.fm Page 504 Friday, April 29, 2005 7:57 PM
Lesson 2: Creating a Maintenance Plan
Maintenance plans in SQL Server 2005 have undergone a dramatic rearchitecture. All
maintenance plans are now implemented as monolithic SSIS packages, and each
package can have only one schedule attached to it. Thus, if you have multiple sched-
ules that you want to attach to a maintenance plan, you will need to create one plan
per schedule, which means that you will define many more plans than you had to in
SQL Server 2000. Still, if you do not want to write code to perform your maintenance
operations, a maintenance plan is a good starting point.

Within a maintenance plan, you can specify tasks for full, differential, and transaction
log backups as well as tasks for integrity checks and reindexing operations.

MORE INFO Database backups

For more information about database backups, see Chapter 11, “Backing Up, Restoring, and Mov-
ing a Database.” And for more information about integrity checks and reindexing, see Chapter 12,
“Using Transact-SQL to Manage Databases.”

After this lesson, you will be able to:

■ Create a maintenance plan.

Estimated lesson time: 20 minutes

How to Create a Maintenance Plan
The most straightforward way to create a maintenance plan is to use the SQL Server
Maintenance Plan Wizard. The high-level steps that you take to define a maintenance
plan within the wizard are the following:

1. Specify the target server.

2. Specify maintenance tasks to perform.

3. Define task properties.

4. Specify SSIS flow control.

5. Create a schedule.

6. Define logging options.

To access the Maintenance Plan Wizard, open the Management node in SSMS,
right-click Maintenance Plans, and choose Maintenance Plan Wizard, as shown in
Figure 14-8.

Lesson 2: Creating a Maintenance Plan 505

C1462271X.fm Page 505 Friday, April 29, 2005 7:57 PM
Figure 14-8 Launching the Maintenance Plan Wizard

After launching the Maintenance Plan Wizard for the first time, disable the introduc-
tory splash screen so that you go directly into the wizard. By clicking Next, you will
access the target server definition screen (see Figure 14-9). On this screen, you give
your maintenance plan a name and description, select the server on which you want
to run the maintenance tasks, and specify how you want to authenticate to that server.

Figure 14-9 Specifying target server and connection parameters

506 Chapter 14 Working with SQL Server Agent Jobs

C1462271X.fm Page 506 Friday, April 29, 2005 7:57 PM
Click Next to display the Select Maintenance Tasks page, which enables you to select
the check boxes for one or more maintenance tasks to perform, as shown in Figure 14-10.
Table 14-1 lists the available maintenance tasks and their purposes.

Figure 14-10 Specifying job tasks

Table 14-1 Maintenance Tasks

Task Purpose

Pointer Changes the cursor to a point on the design surface

Backup Database Task Performs a full, differential, or transaction log
backup

Check Database Integrity
Task

Checks database integrity

Execute SQL Server Agent
Job Task

Executes a SQL Server Agent job

Execute T-SQL Statement
Task

Executes the specified Transact-SQL statement

History Cleanup Task Cleans up the job history

Maintenance Cleanup Task Cleans up backups and reports

Lesson 2: Creating a Maintenance Plan 507

C1462271X.fm Page 507 Friday, April 29, 2005 7:57 PM
NOTE Each backup plan has only one task

The most common tasks to perform in a maintenance plan are backups. You will never execute full,
differential, and transaction log backups on the same schedule. Unfortunately, because you can
specify only one schedule for the entire maintenance plan, each backup maintenance plan that you
create will have only one task defined within it.

Click Next to display the Select Maintenance Task Order page. Because a maintenance
plan can contain multiple tasks, you can specify the execution order for these tasks,
as shown in Figure 14-11.

Figure 14-11 Specifying task order

Notify Operator Task Sends a notification to an operator

Rebuild Index Task Rebuilds one or more indexes

Reorganize Index Task Reorganizes one or more indexes

Shrink Database Task Shrinks a database

Update Statistics Task Updates the statistics on one or more tables and
indexes

Table 14-1 Maintenance Tasks

Task Purpose

508 Chapter 14 Working with SQL Server Agent Jobs

C1462271X.fm Page 508 Friday, April 29, 2005 7:57 PM
NOTE Can’t execute multiple tasks on same schedule

Remember that when creating a maintenance plan, you are in essence creating an SSIS package,
so you are defining the flow control definition within the SSIS package. However, you will not
be executing multiple maintenance tasks on the same schedule, so this step in the wizard is
superfluous.

Depending on the maintenance task you select, the options that you can specify at
this point in the wizard vary. If you select a maintenance plan for a database
backup, you’ll see the option to select the databases to apply the task to, as shown
in Figure 14-12.

Figure 14-12 Specifying databases to back up

After you select the check box for the databases you want to back up, click OK.
You can then specify the folder in which you want to store the backups, along
with whether you want to verify the backup integrity, as Figure 14-13 shows. Click
Next.

When you have specified all the appropriate task options, you can define a schedule,
as shown in Figure 14-14. To access scheduling options, click Change.

Lesson 2: Creating a Maintenance Plan 509

C1462271X.fm Page 509 Friday, April 29, 2005 7:57 PM
Figure 14-13 Specifying backup options

Figure 14-14 Defining one schedule for the entire maintenance plan

510 Chapter 14 Working with SQL Server Agent Jobs

C1462271X.fm Page 510 Friday, April 29, 2005 7:57 PM
The scheduling options available are the same as when you are scheduling a
SQL Server Agent job (see Figure 14-15). The difference is that for a regular SQL
Server Agent job, you can define multiple schedules for a regular job and reuse previ-
ously created job schedules, but you can define only one schedule for a maintenance
plan.

Figure 14-15 Specifying scheduling options

Click OK to close the New Job Schedule dialog box. After defining the schedule, you
see a summary of the scheduling options displayed within the Maintenance Plan Wiz-
ard, as Figure 14-16 shows. Click Next.

For reporting purposes, you can configure each maintenance plan to write an out-
put file or to e-mail the report about the actions it performs, as shown in Figure 14-17.
You will usually specify writing to an output file that you can scan for errors. Click
Next.

Lesson 2: Creating a Maintenance Plan 511

C1462271X.fm Page 511 Friday, April 29, 2005 7:57 PM
Figure 14-16 Single schedule definition for the maintenance plan

Figure 14-17 Specifying reporting options

At this point, you have completed the creation of a maintenance plan, and the wizard
asks you to verify your choices, as Figure 14-18 shows. When you click Finish, the wiz-
ard performs the following steps:

1. Generates an SSIS package.

2. Stores that SSIS package within the msdb database.

512 Chapter 14 Working with SQL Server Agent Jobs

C1462271X.fm Page 512 Friday, April 29, 2005 7:57 PM
3. Creates a job in SQL Server Agent to execute the maintenance plan.

4. Creates entries in the sys.dbmaintplan* tables within the msdb database.

Figure 14-18 Finishing maintenance plan creation

Quick Check
1. What operations can a maintenance plan perform?

2. How many schedules can you apply to a maintenance plan?

Quick Check Answers

1. A maintenance plan can back up databases, delete old backup files from
the operating system, maintain indexes, execute another job, and shrink a
database.

2. You can apply only one schedule to a maintenance plan.

PRACTICE Create a Maintenance Job
In this exercise, you will practice the creation of a maintenance plan to back up the
AdventureWorks database. Instead of using the Maintenance Plan Wizard to create the
maintenance plan, you will define it from a generic maintenance plan.

1. In SSMS, right-click the Maintenance Plans node in Object Explorer and choose
New Maintenance Plan.

Lesson 2: Creating a Maintenance Plan 513

C1462271X.fm Page 513 Friday, April 29, 2005 7:57 PM
2. Specify a name for the maintenance plan and click OK.

3. Click the browser button (…) to the right of the Schedule text box.

4. Configure the maintenance plan to run once per day at 23:00, or 11:00 PM.
When you’re done, click OK to close the Job Schedule Properties dialog box.

5. Click Connections to open the Manage Connections dialog box. Click Add and
specify the server connection options. Click OK to save your changes and then
click OK again to close the Manage Connections dialog box.

6. Click Logging and configure the logging options you want to use for this plan.

7. In the Maintenance Plan Tasks toolbox, drag and drop the Back Up Database
Task onto the surface of the maintenance plan.

8. Double-click the Back Up Database Task and specify the AdventureWorks data-
base to perform a full backup. Click OK to close the Back Up Database Task
dialog box.

9. Drag and drop a Maintenance Cleanup Task onto the surface of the maintenance
plan.

10. Select the Back Up Database Task.

11. Drag the green arrow from the Back Up Database Task to the Maintenance
Cleanup Task, which creates a dependency between the two tasks so that the
backup task runs first and the cleanup task runs second.

12. Double-click the Maintenance Cleanup Task and specify saving the backups for
one day. When you’re done, click OK to close the Maintenance Cleanup Task
dialog box.

13. Click Save on the toolbar to save your maintenance plan.

Lesson Summary
■ A maintenance plan enables you to graphically configure SQL Server to perform

one or more predefined maintenance tasks on a scheduled basis against one or
more databases.

■ The most common type of maintenance plan that you will create is to back up a
database on a regular basis.

■ Each maintenance plan is a monolithic SSIS package that can have only one
schedule defined for it.

514 Chapter 14 Working with SQL Server Agent Jobs

C1462271X.fm Page 514 Friday, April 29, 2005 7:57 PM
Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. What types of tasks can you define with the Maintenance Plan Wizard? (Choose
all that apply.)

A. Database creation

B. Database backup

C. Index rebuilding

D. SSIS package execution

Lesson 3: Configuring Operators 515

C1462271X.fm Page 515 Friday, April 29, 2005 7:57 PM
Lesson 3: Configuring Operators
The SQL Server Agent subsystem enables you to define operators to receive notifica-
tions about jobs. You can use this mechanism to enable SQL Server Agent to send a
notice when a job has failed, for example, alerting DBAs so that they can quickly eval-
uate and repair problems.

After this lesson, you will be able to:

■ Configure operators.

Estimated lesson time: 10 minutes

How to Configure an Operator
You configure an operator by naming it and specifying various notification methods
for the operator and other parameters, such as an e-mail address to send the notifica-
tion to. To begin the configuration, in SSMS, right-click the Operators node below
SQL Server Agent, and choose New Operator to define properties for an operator, as
Figure 14-19 shows.

Figure 14-19 Defining operator parameters

516 Chapter 14 Working with SQL Server Agent Jobs

C1462271X.fm Page 516 Friday, April 29, 2005 7:57 PM
Each operator needs a name. You then specify which notification methods—e-mail, net
send, and pager—are valid for that operator.

NOTE Enable the Messenger Service

In order to use a net send, the Messenger Service must be enabled.

You specify addresses or numbers for each valid notification method. In addition, you
can configure an operator to receive notifications only during specific on-duty hours.

NOTE Specifying a work week

Unfortunately, the graphical user interface (GUI) assumes that the work week is Monday through
Friday for everyone in the world.

Selecting the Notifications page displays all jobs and alerts for which a particular oper-
ator is configured to receive notifications. Click OK to create the operator.

Quick Check
■ Which notification methods are valid for an operator?

Quick Check Answer

■ You can notify an operator using net send, e-mail, or text messaging.

Managing and Troubleshooting Jobs
You can manage SQL Server Agent jobs within SSMS. To access the list of jobs
that are configured on an instance, expand the SQL Server Agent node within
SSMS, right-click the Job Activity Monitor item, and choose View Job Activity.
The Job Activity Monitor displays a list of the jobs for the instance, along
with the date and time the job was last run and the next date and time the job
will run.

The Job Activity Monitor also displays whether the job is enabled and whether
the last run was successful. You can enable, disable, start, and stop a job by right-
clicking it within the job activity grid. The shortcut menu also enables you to
access the detailed history for a particular job, including any error messages that
might have occurred during job execution.

Lesson 3: Configuring Operators 517

C1462271X.fm Page 517 Friday, April 29, 2005 7:57 PM
PRACTICE Configuring Operators
In this practice, you will configure an operator to receive e-mail notifications.

1. Expand the SQL Server Agent node.

2. Right-click Operators and choose New Operator.

3. Specify a name for the operator.

4. Specify an e-mail address for the operator.

5. Click OK.

NOTE Sending e-mail

To send e-mail to this operator, you must enable and configure Database Mail. Because text mes-
saging also relies on the mail subsystem, it also requires you to configure Database Mail. For infor-
mation about configuring Database Mail, see Lesson 2, “Configuring Database Mail,” in Chapter 2,
“Configuring SQL Server 2005.”

Lesson Summary
■ SQL Server Agent enables you to define operators to receive notifications from

jobs via e-mail, net send, or pager.

■ Operators provide a convenient way to refer to one or more messaging addresses
by a single name.

■ To send e-mail or text messages, you need to have SQL Server Database Mail con-
figured and enabled.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

518 Chapter 14 Working with SQL Server Agent Jobs

C1462271X.fm Page 518 Friday, April 29, 2005 7:57 PM
1. Which notification methods are available for an operator? (Choose all that
apply.)

A. cell phone

B. pager

C. e-mail

D. instant messaging

Lesson 4: Configuring Alerts 519

C1462271X.fm Page 519 Friday, April 29, 2005 7:57 PM
Lesson 4: Configuring Alerts
The alert subsystem within SQL Server Agent enables you to notify administrators
when specific conditions within an environment are met. SQL Server Agent polls the
system on a periodic basis to check for any alert conditions.

After this lesson, you will be able to:

■ Configure alerts.

Estimated lesson time: 10 minutes

How to Configure Alerts
The high-level steps for configuring alerts are the following:

1. Create a new alert.

2. Select a type of alert.

3. Configure conditions to monitor.

4. Define an action to be taken when a condition is met.

5. Define additional messaging options.

You find SQL Server alerts in a node under SQL Server Agent. To configure a new
alert, right-click the Alerts node and choose New Alert. All alerts should have a name
associated with them that describes the purpose of the alert. You also define an alert
as based on one of three types of events: performance condition, SQL Server event, or
Windows Management Instrumentation (WMI) event.

You base a performance-condition alert on a performance counter. You can specify
only one performance counter for an alert, so if you need something more sophisti-
cated that uses multiple counters, you cannot use a SQL Server alert. The example
that Figure 14-20 shows specifies an alert condition when the percentage of the
transaction log space used in the AdventureWorks database exceeds 80 percent.

You base a SQL Server event alert on either an error code or a severity level, as shown
in Figure 14-21. You can further refine the particular alert by restricting it to errors
that contain a specific string within the error text.

520 Chapter 14 Working with SQL Server Agent Jobs

C1462271X.fm Page 520 Friday, April 29, 2005 7:57 PM
Figure 14-20 Specifying alert parameters for a SQL Server performance condition

Figure 14-21 Specifying alert parameters for a SQL Server event

Figure 14-22 shows the final type of alert you can create: a WMI event. For this type
of alert, you specify a predefined notification query for SQL Server Agent to use or
enter your own custom notification query.

Lesson 4: Configuring Alerts 521

C1462271X.fm Page 521 Friday, April 29, 2005 7:57 PM
Figure 14-22 Specifying alert parameters for a WMI event

When SQL Server detects that a condition specified by the alert is met, it raises the alert
and executes a response based on the response configuration you define. The response
to an alert can be as simple as notifying an operator by e-mail, pager, or the net send
command. In some scenarios, you can configure SQL Server to respond by executing a
job that contains a set of steps designed to address the particular alert event.

If the response to an alert is to notify an operator, you can specify additional options
for the notification, as Figure 14-23 shows.

522 Chapter 14 Working with SQL Server Agent Jobs

C1462271X.fm Page 522 Friday, April 29, 2005 7:57 PM
Figure 14-23 Specifying alert options

Quick Check
■ What types of alerts can you define?

Quick Check Answer

■ You can define alerts for a single SQL Server performance counter, SQL
Server error code, error severity level, or WMI event.

PRACTICE Configure Alerts
In this exercise, you will practice the creation of an alert to notify an operator when
the AdventureWorks database has a fatal integrity error.

1. Open the SQL Server Agent node in SSMS.

2. Right-click Alerts and choose New Alert.

3. Enter a name for the alert.

4. In the Type drop-down list, verify that a SQL Server Event Alert is selected.

5. From the Database Name drop-down list, select the AdventureWorks database.

6. From the Severity drop-down list, select 023–Fatal Error: Database Integrity
Suspect.

Lesson 4: Configuring Alerts 523

C1462271X.fm Page 523 Friday, April 29, 2005 7:57 PM
7. Select the Response page.

8. Select the Notify Operators check box.

9. In the Operator List, select an operator to notify by selecting the operator’s E-Mail,
Pager, or Net Send check boxes.

10. Select the Options page.

11. Select the E-Mail check box to configure the alert to include the error informa-
tion in the e-mail it sends to operators.

12. Click OK to save the alert.

Lesson Summary
■ Alerts provide a basic monitoring capability within SQL Server.

■ You can monitor SQL Server for alert conditions related to performance
counters, error codes, error severity levels, or WMI events.

■ When an alert is triggered, you can send a notification or configure the alert to
execute a SQL Server Agent job that will resolve the situation.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. What types of alerts can you define? (Choose all that apply.)

A. Performance conditions for CPU utilization

B. Performance conditions for SQL Server

C. Security permissions being changed for a login

D. Errors generated by an application

524 Chapter 14 Review

C1462271X.fm Page 524 Friday, April 29, 2005 7:57 PM
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can

■ Review the chapter summary.

■ Review the list of key terms introduced in this chapter.

■ Complete the case scenario. This scenario sets up a real-world situation involv-
ing the topics of this chapter and asks you to create solutions.

■ Complete the suggested practices.

■ Take a practice test.

Chapter Summary
■ SQL Server Agent provides a powerful and flexible scheduling engine within

SQL Server.

■ By using the capabilities exposed in SQL Server Agent, you can configure oper-
ations to automatically execute on a scheduled basis without requiring user
intervention.

■ You can use the Database Maintenance Plan Wizard to define maintenance
tasks, such as database backups or reindexing tasks, to perform against one or
more databases.

■ You can configure operators to receive notifications such as job failure via e-mail,
net send, or pager.

■ By combining alerts with the job subsystem, you can use SQL Server Agent to
monitor the system for conditions that you specify and then to execute jobs to
proactively address potential issues.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ alert

■ job

■ job schedule

■ job step

Chapter 14 Review 525

C1462271X.fm Page 525 Friday, April 29, 2005 7:57 PM
■ maintenance job

■ maintenance plan

■ operator

■ SQL Server Agent proxy

Case Scenario: Scheduling Administrative Actions
In the following case scenario, you will apply what you’ve learned in this chapter. You
can find answers to these questions in the “Answers” section at the end of this book.

Contoso Limited, a health care company located in Bothell, WA, has a volatile data-
base containing patient claims data. Contoso is under strict regulation and is required
to protect all customer data within a database.

Government regulations allow for minimal data loss in the event of a natural disaster.
In the case of Contoso, minimal data loss is defined as no more than 10 minutes of
data loss.

In addition, Contoso needs to ensure that performance within its patient claims data-
base is optimal.

Each evening, Contoso receives data feeds from several external vendors that process
payments to patients. Frequently, data in the feeds needs to be edited and reimported
based on validation scripts that reconcile the data within the patient claims database
with the data feeds submitted by the external vendors. While the import processes
execute, no other transactions are issued against the patient claims database. The cur-
rent process creates a full backup of the patient claims database at 23:00 before the
import routines are executed.

Contoso also executes a full database backup at 06:00. The exact time that this
backup executes is not important as long as it executes before business operations
begin for the day.

At 04:00 each day, the system administrators at Contoso shut down the SQL Servers
to perform routine maintenance such as applying service packs and hotfixes to the
operating system and other software on the server.

Contoso wants to improve its backup strategy to ensure that government regulations
are met, as well as requiring a maximum of eight restore operations to recover a
database.

526 Chapter 14 Review

C1462271X.fm Page 526 Friday, April 29, 2005 7:57 PM
1. How does Contoso guarantee that a full backup is created before the patient
claims import routines are executed?

2. How do the Contoso DBAs guarantee that a full backup is performed before
business operations start in the morning?

3. What backup strategy should be implemented to ensure that a database can be
recovered with a maximum of eight restore operations?

Suggested Practices
To help you successfully master the exam objectives presented in this chapter, com-
plete the following tasks.

Create a SQL Server Agent job
For this task, practice creating the following jobs:

■ Practice 1 Create a job to perform a differential backup of the AdventureWorks
database twice per day—at 23:00 and 16:00.

■ Practice 2 Create a job to perform a transaction log backup of the Adventure-
Works database every 10 minutes.

Create a Maintenance Plan
For this task, practice creating the following maintenance plans:

■ Practice 1 Using the Maintenance Plan Wizard, create a maintenance plan to
perform a differential backup of the AdventureWorks database twice per day—at
11:00 and 16:00.

■ Practice 2 Using the Maintenance Plan Wizard, create a maintenance plan to per-
form a transaction log backup of the AdventureWorks database every 10 minutes.

Create an Alert
For this task, practice creating the following alert:

■ Practice 1 Create an alert to notify an operator when there is a table-integrity
error.

Chapter 14 Review 527

C1462271X.fm Page 527 Friday, April 29, 2005 7:57 PM
Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-431 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the “How to Use the Practice Tests” sec-
tion in this book’s Introduction.

C1462271X.fm Page 528 Friday, April 29, 2005 7:57 PM

C1562271X.fm Page 529 Friday, April 29, 2005 7:59 PM
Chapter 15

Monitoring and Troubleshooting
SQL Server Performance

Monitoring and troubleshooting Microsoft SQL Server is a broad topic that spans a
variety of tools and processes. All database administrators (DBAs) eventually face per-
formance issues or errors they have to resolve. In addition, effective monitoring can
help DBAs proactively address many issues before they affect applications, users, or
customers. This chapter covers the various tools that you can use to monitor the
health of your databases, including SQL Server Profiler, Windows System Monitor,
the Database Engine Tuning Advisor (DTA), and SQL Server 2005 Dynamic Manage-
ment Views (DMVs) and Dynamic Management Functions (DMFs). You will also
explore the processes for correlating various pieces of data from these tools together
to proactively manage databases. A key element in troubleshooting performance
problems is understanding SQL Server locking and blocking mechanisms and how to
resolve deadlocks, which this chapter also covers. And you will see how to connect to
SQL Server via the new dedicated administrator connection (DAC), which guarantees
that you will never be locked out of a SQL Server that you need to troubleshoot.

MORE INFO SQL Server performance monitoring and troubleshooting

Many books have been devoted to the topic of SQL Server performance monitoring and troubleshoot-
ing. This chapter gives you an overview of essential tools and processes and gets you started with the
basic and most tried-and-true techniques for finding and resolving performance problems. For com-
plete information about each topic in this chapter, see SQL Server 2005 Books Online. SQL Server 2005
Books Online is installed as part of SQL Server 2005. Updates for SQL Server 2005 Books Online are
available for download at www.microsoft.com/technet/prodtechnol/sql/2005/downloads/books.mspx.

MORE INFO Top performance Web sites

You can also obtain a wealth of performance information from the following valuable Web
resources:

■ Microsoft SQL Server Customer Advisory Team blog at http://blogs.msdn.com/sqlcat/

■ Gert Draper’s SQLDEV.Net Web site at www.sqldev.net, which contains useful utilities and
background information

Both these Web sites should be in your Favorites list.
529

530 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 530 Friday, April 29, 2005 7:59 PM
Exam objectives in this chapter:
■ Gather performance and optimization data by using the SQL Server Profiler.

❑ Start a new trace.

❑ Save the trace logs.

❑ Configure SQL Server Profiler trace properties.

❑ Configure a System Monitor counter log.

❑ Correlate a SQL Server Profiler trace with System Monitor log data.

■ Gather performance and optimization data by using the Database Engine Tun-
ing Advisor.

❑ Build a workload file by using SQL Server Profiler.

❑ Tune a workload file by using the Database Engine Tuning Advisor.

❑ Save recommended indexes.

■ Monitor and resolve blocks and deadlocks.

❑ Identify the cause of a block by using the sys.dm_exec_requests system view.

❑ Terminate an errant process.

❑ Configure SQL Server Profiler trace properties.

❑ Identify transaction blocks.

■ Diagnose and resolve database server errors.

❑ Connect to a nonresponsive server by using the dedicated administrator
connection (DAC).

❑ Review SQL Server startup logs.

❑ Review error messages in event logs.

■ Gather performance and optimization data by using DMVs.

Lessons in this chapter:
■ Lesson 1: Working with SQL Server Profiler . 532

■ Lesson 2: Working with System Monitor . 548

■ Lesson 3: Using the Database Engine Tuning Advisor 554

■ Lesson 4: Using Dynamic Management Views and Functions 566

■ Lesson 5: Correlating Performance and Monitoring Data 575

■ Lesson 6: Resolving Blocking and Deadlocking Issues. 582

■ Lesson 7: Resolving Database Errors . 593

Before You Begin 531

C1562271X.fm Page 531 Friday, April 29, 2005 7:59 PM
Before You Begin
To complete the lessons in this chapter, you must have

■ SQL Server 2005 installed.

■ A copy of the AdventureWorks sample database installed in the instance.

Real World
Michael Hotek

The phone rang at 12:30, just as I was heading out for a lunch meeting with a
customer. We were going to discuss a possible week-long project to analyze the
customer’s application for performance issues. It was the customer on the other
end of the line.

His ordering system couldn’t accept orders. The servers were running, and SQL
Server was online. Queries were coming in, but they were taking so long to exe-
cute that applications were timing out or customers were going elsewhere. So,
30 minutes later, I was in the company’s office instead of at lunch.

While I was driving to the office, I asked the DBAs to launch a SQL Server Pro-
filer trace to begin gathering data. After I reached the office, we saved the current
trace data and began the analysis process. We immediately found two stored pro-
cedures that were creating most of the issues—but not all of them.

We also found that someone in the marketing department had connected
Microsoft Office Access to the company’s production database and was running
several queries. Unfortunately, the marketing staffer had neglected to join tables
together and was executing cross joins instead. Of course, no one in the com-
pany would admit to running any queries against production data. After remov-
ing the marketing department user’s access, customers could suddenly
complete orders, but performance was still an issue.

Based on our Profiler traces, we tuned the two procedures that were degrading
performance the most. Although these quick fixes didn’t solve all of the com-
pany’s performance issues, which we resolved over the next three weeks, they
did patch the performance problems enough that customers could complete
orders on the company’s Web site instead of taking their business to the
competitors.

532 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 532 Friday, April 29, 2005 7:59 PM
Lesson 1: Working with SQL Server Profiler
SQL Server Profiler is a powerful but rarely used tool for analyzing database perfor-
mance issues. By using Profiler to capture traces of database activity, you can analyze
query patterns to detect performance problems even before applications are affected.
This lesson describes Profiler’s role and how to use it to configure traces that capture
the information you need to resolve performance issues. You will see how to save a
trace in a format that enables you to perform advanced analysis and how various trace
options affect the data that Profiler gathers. Note that Profiler captures only SQL
Server events, not operating system or networking conditions that might be affecting
database performance.

After this lesson, you will be able to:

■ Define a trace.

■ Start, pause, and stop a trace.

■ Save a trace log.

■ Gather showplan data.

■ Create a replay trace.

Estimated lesson time: 45 minutes

Defining a Trace
Inside the database engine, SQL Server provides an event subsystem called SQL Trace
that is based on an external application programming interface (API). This external
API enables you to call SQL Trace by using a variety of parameters that define events
and columns of data to capture. The SQL Trace subsystem also enables you to specify
optional filters on the data being captured so that you can focus your analysis.

Although you can write the call to SQL Trace by using Transact-SQL code or SQL
Server Management Object (SMO), the most common way to work with the SQL Trace
API is through the SQL Server Profiler graphical user interface (GUI). Let’s look at
how to define a trace within Profiler.

You launch SQL Server Profiler from the SQL Server 2005 Performance Tools menu.
After it opens, choose File, New Trace. A connection dialog box appears. Connect to
the SQL Server instance in which the sample AdventureWorks database is installed.
You then see the Trace Definition dialog box shown in Figure 15-1.

Lesson 1: Working with SQL Server Profiler 533

C1562271X.fm Page 533 Friday, April 29, 2005 7:59 PM
Figure 15-1 Defining the basic attributes for a trace

Each trace that you define must first have a name associated with it. Use a descriptive
name that enables you to identify the trace.

Profiler ships with several trace templates designed for common monitoring opera-
tions. You can start with a blank template and define all your own options, start from
a predefined trace template and then customize the options, or use a predefined trace
template without modification. Profiler also enables you to define your own template,
save it, and then reuse it.

BEST PRACTICES Start with a predefined template

Although you can start from scratch and define your own blank template, it is much easier to start
with a predefined template. The two most common templates for Profiler traces are Tuning and
TSQL_Replay.

You can have the trace data displayed only on the screen within Profiler, saved to a file
(SQL Server saves the data in binary format), or saved to a table. If you choose to save
to a file or a table, Profiler also displays the data, so traces are rarely displayed only on
the screen.

When you specify a file to save the trace data to, you can specify three optional param-
eters. Setting a maximum size for the trace file enables you to generate trace files that
are of a manageable size. The maximum file size setting is always used in conjunction
with enabling file rollover. With file rollover enabled, Profiler automatically closes out

534 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 534 Friday, April 29, 2005 7:59 PM
one file when the maximum size is reached and begins filling a new file. The naming
convention for a series of trace files is <filename>_nx.trc, where nx is a number that
starts at 1 and increments infinitely. You can also specify whether Profiler will process
the trace or whether the server will process the trace.

BEST PRACTICES Saving trace data to a file

When I specify a maximum file size, I usually use 500-MB files. This size file is small enough for me
to quickly and easily copy or import. And it also captures a large enough amount of data per file so
that the number of rollover files is minimal, even when I run traces for an extended period of time
on very busy systems.

I never use the option for the server to process the trace. Running a trace against a live SQL Server
imposes a performance load due to the active monitoring that is occurring. When the server pro-
cesses the trace, no events are dropped—even if it means sacrificing server performance to cap-
ture all events. Whereas if Profiler is processing the trace, it will skip events if the server gets too
busy. I’ve never seen skipping events to pose an issue because I am not looking for a single event
but for a pattern of events over time.

You also have the option to save the trace data directly to a table in SQL Server. When
you specify this option, Profiler prompts you to connect to a SQL Server and then
specify a table name to store the trace data in.

CAUTION Avoid saving trace data to a table

It is strongly recommended that you do not choose the option to save trace data to a table. SQL
Trace can generate hundreds of thousands of rows of trace data per minute on busy servers. Sav-
ing this data directly to a table as it is processed incurs a severe performance penalty. When load-
ing the data into a table, the transaction load can easily be enough to completely saturate the
processing on a SQL Server. As you will see in a moment, there are other less-invasive ways to load
trace data into a table.

You can enable a trace stop time, which specifies when the trace should be automati-
cally stopped and closed. But you can configure this option only when you are pro-
grammatically creating and executing traces.

MORE INFO Programmatic trace generation

Programmatic generation of traces is beyond the scope of this book, but you can find a wealth of
information about this topic by using your favorite search engine.

After you specify how you want to see the trace data, you can click the Events Selection
tab, which displays a screen similar to the one shown in Figure 15-2.

Lesson 1: Working with SQL Server Profiler 535

C1562271X.fm Page 535 Friday, April 29, 2005 7:59 PM
Figure 15-2 Specifying trace events and data columns

Selecting the trace events and data columns to capture is the most important step in
defining a trace. Omissions at this stage require you to redefine a trace, while gather-
ing too many events can cause you to be completely overwhelmed with data.

CAUTION Avoid too much data

You never want to set up a trace that gathers all events and all data columns. Such a trace gener-
ates so much data that it becomes useless. It can also bring a SQL Server to a halt. Instead, you
should start with broad categories related to what you want to investigate and then narrow down
your criteria so that you are targeting at a fairly granular level.

Selecting the trace template called Tuning (refer to Figure 15-1) causes a default selec-
tion of events and data columns, as Figure 15-2 shows. You can then add other events
and select additional data columns. To access all the events that you can define, you
can select the Show All Events check box. To display all the columns that you can cap-
ture, you can select the Show All Columns check box.

NOTE SP: StmtCompleted and SP: StmtStarting events

You should specify the SP: StmtCompleted or SP: StmtStarting event only after you have narrowed
the focus of your trace. These events capture every statement executed within a stored procedure.
On high-volume systems, capturing every statement can quickly generate extremely large trace
logs.

536 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 536 Friday, April 29, 2005 7:59 PM
Note that the trace defined in this lesson does not include any additional events, but
it does contain several more columns of data beyond what the default Tuning tem-
plate specifies. I have added the columns for CPU, Reads, Writes, and RequestID; you
will see why later in this chapter.

After you select the events and data columns you want to capture, you can apply filters
to your trace to limit the scope of the data that is returned. You specify filters in the
same way that you enter criteria for a LIKE clause in Transact-SQL. To set filters for
a trace, click Column Filters to display the Edit Filter dialog box that is shown in
Figure 15-3.

Figure 15-3 Specifying trace filter criteria

BEST PRACTICES Filters

By default, the default Profiler trace templates do not specify any filters. However, it is recom-
mended that you specify filters to target data for your application. Using filters can eliminate
all the background processes that issue queries to the system databases. Filters also enable
you to isolate your monitoring to a particular database or database-related activity for a single
application.

By clicking Organize Columns, you can specify the display order for data within the
grid in Profiler. This does not change the internal storage order for the trace data. Fig-
ure 15-4 shows the Organize Columns dialog box.

Lesson 1: Working with SQL Server Profiler 537

C1562271X.fm Page 537 Friday, April 29, 2005 7:59 PM
Figure 15-4 Change the order of columns as they are displayed in Profiler.

MORE INFO Events and Data Columns

For a complete list of events and data columns available for capture, see the SQL Server 2005
Books Online articles “SQL Server Event Class Reference” and “Describing Events by Using Data
Columns.”

At this point, the trace is fully defined. All you need to do is start the trace and begin gath-
ering data. Click Run to launch the trace. Figures 15-5 and 15-6 show a running trace.

Figure 15-5 Running a trace against an active database

538 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 538 Friday, April 29, 2005 7:59 PM
Figure 15-6 Continuation of a tuning trace against AdventureWorks

Starting, Pausing, and Stopping a Trace
After a trace is running, you can control it from within Profiler. In the middle of the
toolbar are buttons to start, pause, and stop a trace.

When you click Pause, the data gathering is suspended at the server level. Any events
that occur while the trace is paused are not captured. Pausing a trace can be useful
when you are looking at a trace in Profiler while data is being captured. Because of the
speed at which Profiler logs the data into the grid, it becomes very difficult to look at
individual pieces of data. So, you can pause the data capture so that you can investi-
gate trace results for a particular query. Periodically pausing and then restarting a
trace is common in the initial stages of investigation, letting DBAs or developers sam-
ple query activity to get an idea of where issues might be occurring. You can then rede-
fine the trace with more targeted events and filters.

Stopping a trace closes the trace session. Although you can then restart the trace, the
data capture is reset, and all previous data is discarded. Thus, you should stop a trace
only when you are finished capturing all of the data you need.

Lesson 1: Working with SQL Server Profiler 539

C1562271X.fm Page 539 Friday, April 29, 2005 7:59 PM
Quick Check
■ What capabilities does SQL Server Profiler provide DBAs and developers?

Quick Check Answer

■ SQL Server Profiler provides a GUI interface to the SQL Trace API. SQL
Trace lets DBAs and developers gather data on a variety of events as they
occur within the server. They can then use the data gathered for these
events to analyze performance or stability issues as well as to track down
the causes of errors.

Saving a Trace Log
Capturing trace data has little value unless you can save it and use it as an input for
further analysis. There are a variety of ways to save a trace definition or the data it
generates.

Saving a Trace Definition
Most environments have traces running either continuously or on predefined inter-
vals. The process of setting up, launching, and closing these traces is automated by
using SQL Server Agent jobs. However, writing a trace is not a trivial process. So, you
can take a shortcut and let Profiler do all the work for you. After you create a new trace
inside Profiler that contains the events, data columns, and filters that you want, click
Run and then immediately stop the trace. Under the File menu, go to the option
Export, Script Trace Definition. You can use this option to generate a Transact-SQL
batch to create a trace for either SQL Server 2005 or SQL Server 2000. You then use
this batch as the basis for a stored procedure that SQL Server Agent calls to manage
the trace.

Saving Trace Data
This lesson has already covered two methods for saving trace data: save to file and
save to table. If during the trace definition you specified to save to a file or table, the
trace data is already saved for you. However, you can explicitly write the contents of
the grid inside Profiler to either a file or table by accessing the File, Save As, Trace File
or File, Save As, Trace Table options. You can also save the trace data in an XML for-
mat that can then be parsed by another program.

540 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 540 Friday, April 29, 2005 7:59 PM
BEST PRACTICES Saving to a table

The Profiler option to save trace data as a table has an interesting limitation that makes it imprac-
tical for production use. Profiler prompts you to create a new table; it does not let you save trace
data into an existing table.

So, let’s say you have created a trace for your server and specified file rollover. Your trace has been
running for awhile and has generated 15 files. All 15 of these files are a single, contiguous trace.
To save the trace data to a table, you would first have to open each file and save each to a sepa-
rate table. After you save each file as a separate table, you would have to manually combine all
15 tables into a single table for analysis.

However, you can eliminate this process with a single line of code. fn_trace_gettable is a built-in
function that returns the contents of a trace file in a tabular format. There is even an option to
iteratively walk down all of the rollover files. Therefore, by creating a statement that performs a
SELECT * INTO <table> FROM fn_trace_gettable (‘<filename>’) operation, you can have all 15 trace
files loaded into a single table. Later in this chapter, we will see where this function becomes
extremely important.

Pulling Out All Transact-SQL Captured by the Trace
Besides saving trace to a file or table, a third way of saving the captured trace data is
to pull out all the Transact-SQL captured by the trace. This option is useful if you want
to take particular statements and execute them against a test machine to perform fur-
ther analysis. By selecting File, Export, Extract SQL Server Events, Extract Transact-
SQL events, a file is generated that contains all the SQL captured during the trace. You
can then load this file into a query window to use as a SQL source.

NOTE Inside SQL Server Management Studio (SSMS)

Most IT professionals using SQL Server perform all their tasks by using SQL Server Management
Studio (SSMS). But have you ever wondered what statements SSMS actually executes when you
click button X? Have you ever encountered an SSMS feature that did almost what you wanted but
didn’t quite meet your needs?

Because SQL Trace is an API interface that enables you to capture nearly any event that occurs
inside the server, you can use SQL Server’s own SQL Trace facility to tell you things about SQL
Server. All you need to do is create a Profiler trace with a filter for SSMS. Then, when you execute
an action inside SSMS, Profiler displays the Transact-SQL statements that were issued to perform
that action. You can also use Profiler to trace what Analysis Services is doing, letting you extract
MDX and DMX queries.

Gathering Showplan Data
One of the most critical factors for any analysis process is to have complete informa-
tion that you can then compare to results on a test machine. For example, SQL Server
can generate dramatically different query plans based on the volume of data in a table,

Lesson 1: Working with SQL Server Profiler 541

C1562271X.fm Page 541 Friday, April 29, 2005 7:59 PM
skew of the data, statistics that have been automatically generated, index variations,
or even which parameters were called for a stored procedure or function. It is com-
mon to find a problem query in production and then not be able to reproduce the
problem in a test environment. One of the main causes of not being able to reproduce
the problem on a test system is having a different query plan generated on the test sys-
tem.

However, you can gather query plan information, called showplans, in a trace. A show-
plan provides a record of the query that was executed along with the plan that was
generated for that execution. By capturing the showplan, you can compare the plans
generated for multiple permutations of the same query to determine whether the plan
changes over time. You can also use this information to analyze where the perfor-
mance issues are occurring within the query.

To include showplan information in a trace, you would look under the Performance
event class, which provides a variety of options. Figure 15-7 shows the Showplan All
and Showplan XML events selected for the trace.

Figure 15-7 Specifying showplan events in a Profiler trace

The Showplan All event provides a text-based query plan in the output. The Showplan
XML event, new in SQL Server 2005, provides an extremely powerful and very rich
capture of performance data.

When you specify Showplan XML, an additional tab, called Events Extraction Set-
tings, appears. This tab, shown in Figure 15-8, enables you to define special handling
for the XML showplan.

542 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 542 Friday, April 29, 2005 7:59 PM
Figure 15-8 Configuring XML extraction handling

You generally leave the output of the Showplan XML event as just another data col-
umn in a trace instead of extracting it to a separate file. However, you can directly load
Showplan XML data into SSMS and display it as a fully interactive diagram for analy-
sis. This capability is especially useful when getting remote help in tuning a query.

Figure 15-9 shows a trace output with the Showplan XML event displayed.

Figure 15-9 Capturing Showplan XML in a trace

Lesson 1: Working with SQL Server Profiler 543

C1562271X.fm Page 543 Friday, April 29, 2005 7:59 PM
Creating a Replay Trace
SQL Server provides a special type of trace called a replay trace, which enables you to
capture a workload that you can then replay on a test system.

CAUTION Synching the replay trace with a database backup

Note that you must synchronize a backup of the database with the replay trace. This action is
required because the replay reexecutes the same statements during the replay, and unless the
database starts in the correct state, the replay creates many errors.

Profiler contains a multithreaded subsystem to handle the replay of a trace. And there
are specific requirements that need to be met for the replay to succeed. You must use
SQL Server authentication only and capture specific events as defined in the Replay
template. The replay cannot handle Windows authentication because it does not have
the ability to impersonate a Windows user.

When Profiler replays a trace, it spawns multiple execution threads that use the same
security context as the original execution. Threads are also synchronized to provide a
realistic duplication of the workload. The start time, end time, and system process ID
(SPID) columns enable Profiler to re-create the exact interleaving of queries that
occurred on the original system.

Figures 15-10 and 15-11 show the output for a replay trace.

Figure 15-10 Capturing a replay trace

544 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 544 Friday, April 29, 2005 7:59 PM
Figure 15-11 Continuation of a replay trace

You can replay traces by using the exact timing of the original or execute them with-
out any delays. When you replay a trace by using the exact timing, if SQL Server did
not receive any queries for a 15-minute time interval, the replay pauses for 15 minutes
before executing the next statement in the trace. Executing without any delays
removes this wait period.

A valuable use for this replay capability is to capture realistic workloads against your
production environment and then run the workloads against test and quality assur-
ance (QA) environments to enable a level of regression testing for any changes you
introduce.

Real World
Michael Hotek

You may have heard about Microsoft’s SQL Server Replay Lab. This lab partici-
pates in the regression testing of service packs and new versions as well as in var-
ious other testing processes. Hundreds of customers have provided database
backups along with replay traces for Microsoft to use in the lab. Microsoft con-
stantly replays these traces against new versions and service packs. The results
of each run are compared to a baseline run to detect any anomalies. This process
enables the SQL Server Development Team to test new code against real-world

Lesson 1: Working with SQL Server Profiler 545

C1562271X.fm Page 545 Friday, April 29, 2005 7:59 PM
workloads before releasing the code. The goal of this program is for Microsoft to
ensure that it delivers code as bug-free as possible while also maintaining or
improving performance with each new code iteration.

PRACTICE Configuring a Baseline Trace
In this practice, you will configure a baseline trace that you can use as the initial inves-
tigative trace for performance issues in the AdventureWorks database. This type of
trace is generally the first step in the data-gathering process, letting you determine
which additional filtering or events you need to add to focus on particular perfor-
mance issues.

1. Launch SQL Server Profiler.

2. From the File menu, choose New Trace.

3. Connect to your SQL Server instance.

4. On the General tab, specify the following options:

A. Name of the trace

B. Blank template

C. Save to file and use the default file name

D. Maximum file size of 50 MB

E. Enable file rollover

5. On the Events tab, select the check boxes for the following events:

A. SQL:BatchCompleted

B. RPC:Completed

C. Showplan XML

6. Specify the following additional data columns:

A. CPU

B. Reads

C. Writes

D. Start Time

E. End Time

7. Run the trace.

546 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 546 Friday, April 29, 2005 7:59 PM
8. Using SSMS, execute several queries against the AdventureWorks database and
observe what is captured in Profiler.

9. In SQL Server Profiler, stop the trace. Close Profiler.

Lesson Summary
■ SQL Server Profiler provides a graphical interface to the SQL Trace API that

enables you to capture data for events within SQL Server. You can then analyze
the trace data to determine causes of performance degradation, blocking, dead-
locking, or other error events.

■ The first step in using Profiler to capture data is to define a trace by selecting the
events and data columns to capture, choosing any filters you want to enable, and
deciding whether you want to save the trace data to a file or table or just display
it in Profiler.

■ You can start, pause, and stop Profiler traces via buttons on the Profiler toolbar.

■ To gather even more complete information about queries that SQL Server is run-
ning, you can specify in Profiler that the trace gather showplan information
about the query execution plans SQL Server is using.

■ You can also create a replay trace to generate a workload that you can replay on
a test system.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which types of events can you trace by using SQL Server Profiler? (Choose all
that apply.)

A. CPU utilization

B. Statements executed within stored procedures

C. Network input/output (I/O)

D. Stored procedure recompiles

Lesson 1: Working with SQL Server Profiler 547

C1562271X.fm Page 547 Friday, April 29, 2005 7:59 PM
2. To which formats can you save a trace? (Choose all that apply.)

A. Binary file

B. Text file

C. SQL Server table

D. Comma-delimited file

3. Which of the following are valid configuration options? (Choose all that apply.)

A. Trace category

B. Enable file rollover

C. Restriction on resources used

D. Event filters

548 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 548 Friday, April 29, 2005 7:59 PM
Lesson 2: Working with System Monitor
System Monitor is the second tool that you can use to gather monitoring data about
conditions that might affect database performance. Included with Windows, System
Monitor captures counters across a variety of system metrics as well as for any appli-
cation that you define a set of custom counters for. This lesson explains how to create
a System Monitor counter log that you can use to correlate Profiler data with system
metrics that Profiler cannot capture. By correlating this data, you can gain a more
complete picture of your system’s health than either Profiler or System Monitor can
provide on its own.

Exam Tip Although System Monitor is the formal name for this tool, virtually everyone in the
industry calls it Performance Monitor, or PerfMon for short, because it is used to capture perfor-
mance counters and you launch it from the Administrative Tools section called Performance. Just
remember that on the exam, this tool is always referred to by its formal name of System Monitor.
But out in the field, most people call it PerfMon.

After this lesson, you will be able to:

■ Configure a System Monitor counter log.

Estimated lesson time: 20 minutes

Real World
Michael Hotek

When performance decreases, the database is always the first to receive blame.
Thus, the DBA receives the first calls from irate users. One of the first things I do
when investigating a performance issue is connect to the SQL Server and look at
the results of the sp_who2 system stored procedure. This stored procedure gives
me a basic idea of whether I have a bunch of queries blocking each other and
bringing the system to a halt.

At one customer site, I went through this process and didn’t see any real issues.
The customer had a large number of connections, but requests were being pro-
cessed very quickly. So, the next step was to open Profiler and run a basic trace
to get an idea of the activity on the system and how long most queries were
taking.

Lesson 2: Working with System Monitor 549

C1562271X.fm Page 549 Friday, April 29, 2005 7:59 PM
The Profiler trace also didn’t show anything out of the ordinary. Queries were
coming through at a very rapid pace, and the average duration of any query was
40 milliseconds. However, the application was still having problems, with
extremely slow performance to customers. Many DBAs would become stuck at
this point because by all indications, SQL Server was running just fine and was
just processing a lot of requests.

However, the DBAs and I opened System Monitor and added the % Processor
Time, cache hit ratio, output queue length, page life expectancy, batches/sec,
and recompilations/sec counters. What we found was very interesting. The
processor was churning at nearly 100 percent, the cache hit ratio was very low,
output queue length was above 15, page life expectancy was very low and drop-
ping, batches/sec was at about 1200, and recompiles/sec had skyrocketed to
almost 1000.

It turns out that someone had been running baseline performance tests on
about 50 stored procedures and decided that it would be a good idea as part of
the process to add the WITH RECOMPILE clause to the procedure. The proce-
dures then got loaded into the production environment. When database activity
increased dramatically in the middle of the day, everything came to a grinding
halt. Every procedure being executed was constantly recompiled, which added
to the total execution time. And because of this longer execution time, more que-
ries were concurrently executing, so there were more execution plans being gen-
erated in the query cache. This, in turn, caused a huge increase in the size of the
query cache. Because the query cache and data cache share memory space, the
large query cache size was causing data to be ejected from the data cache to allo-
cate more room to the query cache. This forced pages to be read from disk and
back into the data cache more frequently, causing the page life expectancy
to drop. Everything was hitting a saturation point, so requests were starting to
queue up in the IP stack at the server as well.

We immediately started pulling the stored procedures that Profiler was telling us
were being executed. We then quickly edited them to remove the RECOMPILE
clause. Immediately, the processor utilization dropped, the recompiles dropped
to almost 0, the page life expectancy quickly started increasing, and the output
queue dropped to 0. We also saw that the average duration for queries in Profiler
was now about 10 milliseconds.

550 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 550 Friday, April 29, 2005 7:59 PM
Profiler could tell us what was executing on the server, but it couldn’t pinpoint
the problem. System Monitor could quantify statistics, but it couldn’t tell us
what was being executed. By using both tools together, we quickly identified a
major performance issue and were able to get the system running efficiently
again.

Creating a Counter Log
Most administrators open System Monitor, add counters, and start their analyses.
There is only one problem: All data is captured in live mode, and there is no option to
log it to a file for later analysis. You should always capture System Monitor counters
in a log if you plan on doing any analysis of the data or correlating with other tools.
Let’s look at how to create a System Monitor counter log.

To capture a counter log, you need to launch System Monitor and select Counter Logs
below the Performance Logs and Alerts node, as shown in Figure 15-12.

Figure 15-12 Capturing a Performance Counter log

By right-clicking Counter Logs, choosing New Log Settings, and entering a name for
the counter log, you start the definition of a counter log, as Figure 15-13 shows.

Lesson 2: Working with System Monitor 551

C1562271X.fm Page 551 Friday, April 29, 2005 7:59 PM
Figure 15-13 Define counters and objects to capture.

There are two buttons in the middle of the screen for defining the counters that you
want System Monitor to capture. Clicking Add Objects enables you to gather all
counters associated with a particular object; Add Counters enables you to specify indi-
vidual counters. The sample interval determines how frequently Windows Server
2003 gathers and logs the objects and counters. The Run As field is set to <Default>.
You should always change it to an explicit Windows user account; otherwise, a
counter log normally fails to start.

BEST PRACTICES Is gathering more counters more expensive?

Many administrators have the misconception that it is more expensive to gather 10 counters than
it is to gather 5 counters. Although there is a bit more effort involved in setting up more counters,
the resources used to gather counters are almost undetectable. So unless you know the precise
counters you need to analyze a problem, you are always better off by clicking Add Objects to
gather all counters for a given object.

After specifying the counters for which you want to gather information, you can then
specify the format for the log file name as well as optional scheduling parameters.
Clicking OK saves your counter log in System Monitor.

If you have specified a schedule for the counter log, Windows Scheduler automati-
cally launches it for you. Otherwise, you need to right-click the counter log and
choose Start. System Monitor will then begin to capture counters into a log file in the

552 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 552 Friday, April 29, 2005 7:59 PM
C:\PerfLogs directory. You can then open this log file in System Monitor for further
analysis, which Lesson 5, “Correlating Performance and Monitoring Data,” covers as
it explains how to leverage performance counters.

Quick Check
1. How do you launch System Monitor?

2. For what purpose do you use System Monitor?

Quick Check Answers

1. You launch System Monitor from the Start menu by selecting Performance
within the Administrative Tools menu on any machine running Windows.

2. You use System Monitor to gather numeric data related to various system
and application metrics. System Monitor cannot tell you what is executing,
but it can quantify an activity for a given system or application component.

PRACTICE Configuring a System Monitor Counter Log
In this practice, you will configure a System Monitor counter log, which you will use
in Lesson 5 to practice how to correlate data between Profiler and System Monitor.

1. Launch System Monitor by choosing Start, Administrative Tools, Performance.

2. Expand the Performance Logs And Alerts node.

3. Right-click Counter Logs and choose New Log Settings.

4. Specify a name for your log file settings and click OK.

5. Click Add Counters and add the following counters:

A. Network Interface\Output Queue Length

B. Processor\% Processor Time

C. SQL Server:Buffer Manager\Buffer Cache Hit Ratio

D. SQL Server:Buffer Manager\Page Life Expectancy

E. SQL Server:SQL Statistics\Batch Requests/Sec

F. SQL Server:SQL Statistics\SQL Compilations/Sec

G. SQL Server:SQL Statistics\SQL Re-compilations/Sec

Lesson 2: Working with System Monitor 553

C1562271X.fm Page 553 Friday, April 29, 2005 7:59 PM
6. Set the interval to one second.

7. Specify a user to run the counter log and enter the user’s password.

8. Leave the Log Files and Schedules tabs at their defaults.

9. Click OK. By default, System Monitor stores log files in the folder C:\PerfLogs. If
this folder does not yet exist, you are prompted to create it. Click Yes.

10. Right-click your new counter log and choose Start.

Lesson Summary
■ System Monitor provides a key tool for gathering statistical data related to hard-

ware and software metrics, which Profiler does not capture.

■ You should always capture System Monitor counters in a log if you plan to do
any analysis of the data or correlating with other tools.

■ To define the counters that System Monitor captures in the counter log, you can
use Add Objects to gather all counters associated with a particular object or Add
Counters to specify individual counters.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. A System Monitor counter log can gather which types of information? (Choose
all that apply.)

A. The applications currently running in Windows

B. Numerical data related to hardware performance

C. Queries being executed against SQL Server

D. The number of orders being placed per second

554 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 554 Friday, April 29, 2005 7:59 PM
Lesson 3: Using the Database Engine Tuning Advisor
The Database Engine Tuning Advisor (DTA) is the greatly enhanced replacement to the
Index Tuning Wizard tool that shipped with previous versions of SQL Server. DTA
plays an important role in an overall performance solution, letting you leverage the
query optimizer to receive recommendations on indexes, indexed views, or partitions
that could improve performance.

Hackers have developed sophisticated algorithms for breaking into secure systems,
but the most time-honored approach and the one that has a 100 percent success rate
is the brute force attack. DTA applies the same concept, taking a workload file as an
input and then exhaustively testing each query against all possible permutations of
indexes, indexed views, and partitions to come up with the best possible solution.
This lesson will explain all of the options available in DTA and how to integrate this
powerful tool into your performance-tuning work.

After this lesson, you will be able to:

■ Build a workload file.

■ Configure DTA to analyze a workload.

■ Save recommendations from DTA.

Estimated lesson time: 45 minutes

IMPORTANT If DTA fails to start

There have been many reports of DTA failing to start and displaying a C++ compile error. This is
a known issue related to incompatible registry settings that older applications might have added.
If you cannot get DTA to start, see the Microsoft article “Bug Details: Database Engine Tuning
Advisor” (at http://lab.msdn.microsoft.com/productfeedback/ViewFeedback.aspx?FeedbackID=631e881c-
4b0f-4c5c-b919-283a71cea5fe) for information about how to fix the problem.

Real World
Michael Hotek

I have been doing performance-tuning work in SQL Server for well over a
decade. What I have heard for too long from too many people is that perfor-
mance tuning is an art form. That could not be further from the truth. Compos-
ing the next number one hit, painting a masterpiece, or building an original

Lesson 3: Using the Database Engine Tuning Advisor 555

C1562271X.fm Page 555 Friday, April 29, 2005 7:59 PM
piece of furniture is an art. Performance tuning is nothing more than the appli-
cation of knowledge based on a set of rules to produce a result.

Although processor utilization, amount of memory available, and disk I/O can
affect database query performance, SQL Server’s query optimizer plays a critical
role in the performance of any query. SQL Server is a piece of software that is
written based on rules. The optimizer applies a defined, but not documented, set
of rules to determine how to gather the data that a query requests. We can only
deduce these basic rules by understanding how data is organized in SQL Server
as well as inspecting showplans to see the query paths that various queries have
taken. From these pieces of information, we can start to apply the rules of per-
formance tuning.

At many organizations, gathering and analyzing data to determine where the
performance issues are is the first hurdle. The second hurdle is in understanding
what to do about the issues to improve performance. Although many perfor-
mance issues require changes to the code that is executing, many more can be
solved simply by adding indexes, dropping indexes, or changing indexes, which
is where DTA plays an important role in any environment. It enables you to get
at core issues related to indexing without having to spend large amounts of time
on analysis.

One of the first things I do at a customer site when dealing with performance
issues is to start Profiler and begin capturing queries. I can then take that Profiler
trace and feed it directly into DTA. Using the trace I give it, DTA simply takes
each query and applies the rules of the optimizer in a nearly exhaustive manner.
It uses the query costing values to determine whether a particular query could
benefit from having indexes or indexed views created for it or whether partition-
ing the table would improve performance.

The index recommendations let me zero in on particular areas as well as partic-
ular queries that I need to look at. In many cases, running DTA regularly and
using its recommendations can help avoid or mitigate performance issues.
Although running DTA doesn’t eliminate the need for further analysis, as I will
describe in subsequent lessons in this chapter, it can at least keep your phone
from ringing off the hook with users upset at the responsiveness of a system and
let you spend more time doing even deeper analysis to accomplish even better
performance.

556 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 556 Friday, April 29, 2005 7:59 PM
Building a Workload File
DTA requires you to provide it with a workload that it can analyze. You can provide
the workload in a variety of formats, including a trace file, a trace table, or a Transact-
SQL script.

The most common workload used within DTA is a trace file. You can generate this
trace by using SQL Server Profiler, which ships with a template designed to capture
the data DTA needs to perform its analysis. To generate the trace file, launch Profiler,
select the Tuning trace template, and save the results to a file. Alternatively, you can
load the trace into a table that DTA uses to perform its analysis.

NOTE Using a Transact-SQL script as a workload file

A Transact-SQL script makes for an interesting workload file, which simply contains a batch of SQL
that you want to analyze. Although there isn’t anything earth-shattering about creating a file that
contains a batch of SQL, this option takes on a new meaning when you integrate it with your devel-
opment processes. For example, you can highlight a query in a batch of SQL in the query window
within SSMS, right-click the query, and select Send To Database Engine Tuning Advisor. This action
launches DTA against the SQL batch you highlighted, letting you perform targeted analysis while
you are developing queries.

Configuring DTA to Analyze a Workload
Analyzing a workload in DTA consists of three basic steps:

1. Launch DTA and connect to your server.

2. Select a workfile to analyze.

3. Specify tuning options.

Let’s walk through each of these steps. First, launch DTA so that you can configure a
new analysis session, as shown in Figure 15-14.

Each session you create will be saved, so you can go back and review previous analysis
sessions and view the recommendations that DTA generated. To easily identify ses-
sions, make sure to give each one a descriptive name. You need to specify the work-
load source along with the database for the workload analysis. You also have to
specify the databases and tables that you want to tune within the workload. DTA uses
the database you specify for the workload analysis as the basis for making tuning deci-
sions. And by specifying the databases and tables for tuning, you let DTA ignore some
of the events in the workload file.

Lesson 3: Using the Database Engine Tuning Advisor 557

C1562271X.fm Page 557 Friday, April 29, 2005 7:59 PM
Figure 15-14 Configuring an analysis session

After you specify the general options for the tuning session, click the Tuning Options
tab (see Figure 15-15).

Figure 15-15 Specifying tuning options to consider

558 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 558 Friday, April 29, 2005 7:59 PM
One of the most important options to set when configuring a tuning session that
involves workloads from production systems is to limit the tuning time. Otherwise,
DTA could run for several days before completing.

DTA performs its analysis by loading the specified workload and starting the first
command to tune. DTA then interrogates the query optimizer with various options
and compares the query cost that the optimizer returns. DTA repeats this interroga-
tion process until it cannot find any options that produce a query plan of a lower cost.
DTA then logs any recommendations for that query—such as creating an index, an
indexed view, or partitioning the table—and moves on to the next statement to repeat
the process.

CAUTION DTA’s performance impact

DTA actively sends requests to the query optimizer, which then returns a query cost. The query cost
is based on the live distribution statistics for data within the database being tuned. Therefore, DTA
generally uses your production database when it is in an analysis session. Thus, you must be very
careful when executing a DTA analysis because the load it puts on the database can affect perfor-
mance. If possible, restore a backup of your production database on another server and use it for
the DTA analysis session.

In general, you will specify that DTA look for both indexes and indexed views to
create for better performance. However, you can restrict the structures that DTA will
consider.

DTA also analyzes whether partitioning a table might improve query performance.
When you are configuring partitioning options in DTA, keep in mind that if you
are using the SWITCH command with partitioning, you will want to restrict DTA’s
analysis to aligned partitions only.

MORE INFO Partitioning

For information about partitioning, see Chapter 6, “Creating Partitions.”

The final tuning options you can specify for DTA concern whether to keep physical
design structures (PDSs). If you specify the option to keep them all, DTA recom-
mends only creation of indexes, indexed views, or partitioning. If you specify any of
the other options, DTA also includes recommendations regarding dropping struc-
tures if that could improve performance.

With the Advanced Options page, shown in Figure 15-16, you can specify whether
you want to have online or offline recommendations.

Lesson 3: Using the Database Engine Tuning Advisor 559

C1562271X.fm Page 559 Friday, April 29, 2005 7:59 PM
Figure 15-16 Specifying advanced tuning options

NOTE Restrictions on online operations

Online operations are restricted by the edition of SQL Server 2005 that you are running. See SQL
Server 2005 Books Online for more information about the specific capabilities of your edition.

After you configure your DTA tuning session, you can start an analysis by clicking
Start Analysis, which displays extended information on the session, as Figure 15-17
shows.

Figure 15-17 Viewing the analysis progress

560 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 560 Friday, April 29, 2005 7:59 PM
DTA displays the progress of each action in the middle of the screen; you will notice
that the majority of the time is spent on the Performing Analysis action. As DTA com-
pletes its analysis of each statement, it displays the statement in the bottom pane.
When DTA encounters a statement that it has already analyzed, it increments the
Frequency counter for that statement and continues to the next statement in the
workload.

To view DTA’s performance recommendations, select the Recommendations tab (see
Figure 15-18).

Figure 15-18 Viewing performance recommendations

DTA displays all recommendations, and you can sort and filter them by using the col-
umn headers on the grid.

Scrolling to the right displays the definition of each recommendation as a hyperlink
(see Figure 15-19). Clicking a hyperlink launches a pop-up window that contains the
complete Transact-SQL statement required to implement the recommendation.

Lesson 3: Using the Database Engine Tuning Advisor 561

C1562271X.fm Page 561 Friday, April 29, 2005 7:59 PM
Figure 15-19 Viewing performance recommendations continued

Each analysis session produces several reports that you can view by selecting the
Reports tab shown in Figure 15-20.

Figure 15-20 Viewing analysis reports

562 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 562 Friday, April 29, 2005 7:59 PM
Selecting a report changes the data in the bottom pane. The only reports that you
can view are shipped with DTA. Although there isn’t an option to add custom
reports, you can export the contents of any report to an XML file from the right-click
menu.

BEST PRACTICES Leveraging trace tables

With DTA, using a trace table can actually provide a more powerful, integrated, and automated
analysis capability than using a trace file. You can set up a job that periodically launches a SQL
Trace to capture a trace and save it to a file. You can then create a second job that explicitly stops
the trace after a given interval. After the trace is stopped, you can move the trace file to a central
location and use fn_tracegettable() to load the trace into a table. By creating one table per SQL
Server instance within a database, you can create a central repository for all traces in your environ-
ment. You can then configure DTA to use your trace table as a workload source for analysis. Set up
DTA to analyze the workload and quit after approximately an hour.

Of course, incremental traces will get loaded into the table. And based on the portion of the table
that DTA has analyzed, you can create a process that executes after an incremental trace is loaded
and removes any rows from the trace table corresponding to queries already analyzed, allowing
each subsequent run of a DTA analysis to work on queries that have not already been covered.
Eventually, after many incremental analysis runs, you will achieve full analysis of the entire
workload.

Remember that when you configure an analysis run, each session is saved and preserves DTA’s
recommendations and reports. You can then clone the session and use the clone to initiate a sub-
sequent analysis run. This capability enables you to quickly and easily use the settings from a
previous run against your trace table to execute another analysis run.

Saving Recommendations from DTA
After a DTA analysis session is complete, you can save DTA’s recommendations
from the Actions menu. When you save recommendations, DTA creates a script
file that contains the Transact-SQL code required to implement all the recommen-
dations.

Instead of saving recommendations to a file, you can apply them directly to a data-
base either immediately or by creating a job in SQL Server Agent to apply them.
However, applying changes directly to a database through DTA is not recom-
mended because this action does not integrate with your source code control sys-
tem and does not maintain your source tree. You also generally have multiple
copies of the same database in development, testing, and production to which you
should apply the changes.

Lesson 3: Using the Database Engine Tuning Advisor 563

C1562271X.fm Page 563 Friday, April 29, 2005 7:59 PM
Quick Check
■ How can you use DTA as a primary tool for performance tuning?

Quick Check Answer

■ Using a workload file generated by SQL Trace, DTA can analyze each state-
ment run against a database to determine whether performance can be
improved by adding indexes, indexed views, partitioning tables, or even
possibly dropping indexes, indexed views, and partitions.

PRACTICE Analyzing a Workload in DTA
In this practice, you will create a workload file and then use that workload file as a
source for DTA to analyze for performance improvements.

1. Open SSMS and connect to your SQL Server instance.

2. Open a new query window and change the context to the AdventureWorks
database.

3. Open SQL Server Profiler (choose Tools, SQL Server Profiler), connect to your
SQL Server instance, and create a new trace.

4. Specify the trace template called Tuning and set Profiler to save the trace to a file.

5. Start the trace.

6. Switch back to your query window and execute several queries against the
AdventureWorks database.

7. Stop the trace and close SQL Server Profiler.

8. Close SSMS without saving your queries.

9. Start DTA and connect to your SQL Server instance.

10. If not already created, create a new session.

11. Specify a name for the session.

12. Select the workload file that you just created in SQL Server Profiler.

13. Select the AdventureWorks database for workload analysis.

14. Select the check box next to the AdventureWorks database and leave the default
for all of the tables.

15. On the Tuning Options tab, leave all default options.

564 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 564 Friday, April 29, 2005 7:59 PM
16. Start the analysis. (Click Start Analysis on the toolbar.)

17. After the analysis is complete, review DTA’s output for recommendations and
look at each report DTA generated for the workload.

Lesson Summary
■ DTA takes a workload file as input and then exhaustively tests each query in the

workload file against all possible permutations of indexes, indexed views, and
partitions to come up with the best possible performance recommendations.

■ The most common workload used within DTA is a trace file. You can generate
the trace file by using SQL Server Profiler’s Tuning template, which is designed
to capture the data DTA needs to perform its analysis.

■ Analyzing a workload in DTA consists of three basic steps: launching DTA,
selecting a workfile to analyze, and specifying tuning options.

■ When you save DTA’s recommendations from the Actions menu, DTA will create
a script file that contains the Transact-SQL code required to implement all its
recommendations.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which types of workloads can DTA use? (Choose all that apply.)

A. Profiler deadlock trace

B. SQL script

C. Table containing trace data

D. Counter log

Lesson 3: Using the Database Engine Tuning Advisor 565

C1562271X.fm Page 565 Friday, April 29, 2005 7:59 PM
2. Which of the following are valid configuration options for tuning a workload?
(Choose all that apply.)

A. Create views

B. Drop indexes

C. Online indexes only

D. Nonclustered indexes

566 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 566 Friday, April 29, 2005 7:59 PM
Lesson 4: Using Dynamic Management Views
and Functions

Dynamic management views (DMVs) and Dynamic management functions (DMFs) fill an
instrumentation gap by providing capabilities that DBAs have long needed to effec-
tively manage SQL Server databases. By leveraging the detailed and extremely granu-
lar information that DMVs and DMFs provide, administrators can rapidly diagnose
problems and get systems back online. They can also use these new tools proactively
to spot patterns and take corrective action before outages occur. Although a full dis-
cussion of using DMVs and DMFs is far beyond the scope of this lesson, it will cover
the basics of SQL Server 2005’s new instrumentation infrastructure and how to begin
using these facilities as core data providers within any monitoring process.

After this lesson, you will be able to:

■ Understand the categories of DMVs and DMFs.

■ Identify key performance and monitoring DMVs and DMFs.

Estimated lesson time: 60 minutes

Real World
Michael Hotek

When SQL Server 2000 was released, the marketing hype was that the database
system provided all the functionality of a true enterprise-class database platform.
I’ve always disagreed with that assessment. Although SQL Server 2000 was a
very good product that provided a lot of valuable functionality, it fell short of
what I consider “enterprise class.”

An enterprise-class database platform isn’t simply capable of storing a large
amount of data. It also needs to have very robust and easy-to-access instrumen-
tation that exposes enough detail to let DBAs quickly diagnose problems and
keep the environment working at optimum levels.

SQL Server 2000 essentially provided a black box for DBAs to use. You could
solve most performance problems by using SQL Trace to extract data from the
black box and then aggregate it to find the queries that were affecting perfor-
mance. However, this process consumed a large amount of time. In addition,

Lesson 4: Using Dynamic Management Views and Functions 567

C1562271X.fm Page 567 Friday, April 29, 2005 7:59 PM
there were entire classes of problems that were extremely difficult to find and
solve, as anyone having to use sp_lock would know.

During the Consumer Technology Preview (CTP) cycle for SQL Server 2005, I
was working with an independent software vendor (ISV) that was benchmark-
ing its application on SQL Server 2005. This was a new version of the applica-
tion, containing new functionality that hadn’t been through rigorous
performance testing yet. The purpose of the first phase of the benchmark was to
determine whether SQL Server 2005 performance characteristics were going to
be good enough to let the ISV aggressively push forward with its plans or if it
was going to need to wait for awhile until SQL Server performance caught up
with its needs.

We launched the first few tests and received mixed results. The performance was
within the ISV’s broad target, but it should have been much better. During the
third run, we started looking at SQL Server 2005’s missing index DMVs and
found two indexes that should have been created but were somehow missed.
Leveraging SQL Server’s new online index creation capability, we added these
indexes during the load test to test whether this process would cause the appli-
cation to crash. The indexes were created without impact, and the application’s
performance immediately improved.

This entire process took about two minutes from start to finish. In SQL Server
2000 and earlier versions, we would have had to start a SQL Server Profiler trace,
captured a significant portion of the queries issued against the test, analyzed the
trace output, found the queries we needed to look at, and then evaluated the
code to determine what improvements we needed to make. With prior versions,
we might have been lucky to complete this process in half a day. After analyzing
lots of query plans, we also would have found only one of the indexes that we
created. If we had been analyzing a production system, the DMVs and DMFs in
SQL Server 2005 would have saved us at least four hours of analysis time that we
could have then devoted to other critical DBA tasks such as sleeping.

Key Performance and Monitoring DMVs and DMFs
DMVs and DMFs are divided into dozens of categories that encompass various features,
subsystems, and statistical categories. Categorization of the views and functions is
achieved by using a standardized naming convention in which the first part of the

568 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 568 Friday, April 29, 2005 7:59 PM
name, or prefix, indicates the category for a DMV or DMF. Table 15-1 lists the prefixes
for each category and the general purpose of the DMVs or DMFs in each category.

Database Statistics
You can use one DMV and two DMFs to gather basic index usage information within
a database.

The sys.dm_db_index_usage_stats DMV contains core statistics about each index
within a database. Use this view when you need to find the number of seeks, scans,
lookups, or updates that have occurred with an index.

BEST PRACTICES Using sys.dm_db_index_usage_stats

The sys.dm_db_index_usage_stats DMV is a good place to start to find any indexes that the query
optimizer is not using. If the system has been running for awhile, and an index does not have any
seeks, scans, or lookups registered for it, it is a strong possibility that the index is not being used to
satisfy any queries. Or an index might show activity but is no longer being used. You can determine
the last time an index was used by examining the last_user_seek, last_user_scan and last_user_lookup
columns.

Of much more interest on a day-to-day basis, however, are the sys.dm_db_index_
operational_stats and sys.dm_db_index_physical_stats DMFs.

The index_operational_stats function takes four parameters: database_id, object_id,
index_id, and partition_id. This function displays all the current I/O statistics related
to locking, latching, and access. You use this function to find out how heavily a par-
ticular index is being used in terms of modifications as well as scans or lookups. You
would also reference the output of this function when you are concerned about lock-
ing or latching contention in the database.

Table 15-1 DMV and DMF Prefixes

Prefix General purpose

dm_db_* Provides general database statistics such as space and index
utilization.

dm_exec_* Provides query statistics.

dm_io_* Provides I/O statistics.

dm_os_* Provides hardware-level information.

Lesson 4: Using Dynamic Management Views and Functions 569

C1562271X.fm Page 569 Friday, April 29, 2005 7:59 PM
The index_physical_stats function takes five parameters: database_id, object_id,
index_id, partition_id, and mode. This function returns row size and fragmentation
information. In previous versions of SQL Server, DBCC SHOWCONTIG was used to
return this type of data.

The final set of views and functions essentially provide a real-time index analysis. The
views beginning with sys.dm_db_missing_index_* track indexes that could be created
against your database. When queries are executed that cause the table to be scanned,
and SQL Server determines that it could have taken advantage of an index to satisfy
the query, it logs entries in sys.dm_db_missing_index_details, sys.dm_db_missing_
index_group_stats, and sys.dm_db_missing_index_groups. The group stats view con-
tains counters for the number of times a particular index could be used as well as the
seeks, scans, and some basic costing values. The index details view contains informa-
tion about the table that should have an index created on it as well as the column for
that index. The index groups view provides an aggregation functionality.

By combining these three views together, you can proactively analyze new indexes
while a system is operating without requiring workload traces to be generated for
analysis in DTA. Although these views are not a replacement for DTA, which also con-
siders indexed views and partitions and provides a more exhaustive analysis of
indexes, they can be a very effective initial level of analysis.

BEST PRACTICES Calculating the value of proposed indexes

The most difficult decision to make is which of the indexes proposed by the sys.dm_db_missing_index*
views can provide the most benefit. Applying some basic calculations, you can derive a numerical
comparison based on SELECT activity only for each of the proposed indexes. The following example
shows the code you can use to apply the calculations:

SELECT *
FROM
(SELECT user_seeks * avg_total_user_cost * (avg_user_impact * 0.01) AS index_advantage,
migs.* FROM sys.dm_db_missing_index_group_stats migs) AS migs_adv

INNER JOIN sys.dm_db_missing_index_groups AS mig ON migs_adv.group_handle =
mig.index_group_handle

INNER JOIN sys.dm_db_missing_index_details AS mid ON mig.index_handle = mid.index_handle
ORDER BY migs_adv.index_advantage

On operational systems, values above 5,000 indicate indexes that should be evaluated for creation.
When the value passes 10,000, you generally have an index that can provide a significant perfor-
mance improvement for read operations.

This algorithm accounts only for read activity, so you will always want to consider the impact of
maintenance operations as well.

570 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 570 Friday, April 29, 2005 7:59 PM
Query Statistics
The query statistics DMVs and DMFs encompass the entire group of functionality
related to executing a query in SQL Server. This functionality is broken into two dis-
tinct groups: connections to the instance and queries executing inside the engine.

Connection information is contained in two DMVs: sys.dm_exec_requests and
sys.dm_exec_sessions. Each connection to a SQL Server instance is assigned a system pro-
cess ID (SPID), with information about each session available in sys.dm_exec_sessions.

You can retrieve session information regarding the user or application creating the
connection, login time, connection method, and a variety of information concerning
the high-level statistics for the state of the connection.

BEST PRACTICES sys.dm_exec_sessions

In previous versions of SQL Server, you would retrieve the information that sys.dm_exec_sessions
provides by executing the sp_who or sp_who2 system stored procedures, or by retrieving rows from
the sysprocesses table. However, sys.dm_exec_sessions contains significantly more information than
previous versions of SQL Server logged.

Each session in SQL Server will normally be executing a single request. However, it is
possible for a single SPID to spawn multiple requests. You can retrieve statistics about
each executing request from sys.dm_exec_requests. The requests DMV forms the basis
for resolving many performance issues.

The information contained within this view can be separated into four categories:
query settings, query execution, transactions, and resource allocation. Query settings
encompass the options that can be applied to each request executed, such as quoted
identifiers, American National Standards Institute (ANSI) nulls, arithabort, transac-
tion isolation level, and so on. Query execution encompasses items such as the mem-
ory handle to the SQL statement, the memory handle to the query plan, CPU time,
reads, writes, the ID of the scheduler, the SPID blocking the request if applicable, and
so on. Transactions encompass such items as the transaction ID, the number of open
transactions, the number of result sets, the deadlock priority, and related statistics.
Resource allocation encompasses the wait type and wait time.

IMPORTANT The DBA’s friend: sys.dm_exec_requests DMV

Because the sys.dm_exec_requests view is used to determine many different operation states, it will
become an extremely familiar tool for any DBA managing a SQL Server server.

Lesson 4: Using Dynamic Management Views and Functions 571

C1562271X.fm Page 571 Friday, April 29, 2005 7:59 PM
Detailed query statistics are contained within the sys.dm_exec_query_stats and
sys.dm_exec_cached_plans DMVs. Query stats provides detailed statistics related to the
performance of a query as well as the amount of resources the query consumed.
Using this DMV, you can determine the number of reads (logical and physical), writes
(logical and physical), CPU, and elapsed time for a query. The DMV tracks these sta-
tistics based on the SQL handle and also contains the plan handle.

MORE INFO Query plans, execution plans, and the query optimizer

Every SQL statement that is executed must be compiled. After it is compiled, it is stored in the
query cache and identified by a memory pointer called a handle. The SQL Server query optimizer
then must determine a query plan for the statement. After the query plan is determined, it is also
stored in the query cache and identified by a memory pointer. The compiled plan then generates
an execution plan for the query to use. When the query executes, the sys.dm_exec_query_stats DMV
tracks the SQL handle with the associated plan handle for that execution, as well as all the statistical
information for that query. The details of query plans, execution plans, and the query optimizer are
beyond the scope of this book, but you can find comprehensive coverage of these topics in the
book Inside SQL Server 2005: The Storage Engine, by Kalen Delaney (Microsoft Press, 2007).

You use the sys.dm_exec_cached_plans DMV, which is similar to syscacheobjects in pre-
vious SQL Server versions, to retrieve information about query plans. SQL Server
query plans can be of two basic types: compiled and execution. A compile plan is gen-
erated for each unique SQL statement that has been executed. Parameters and literals
are substituted with generic placeholders so that execution of a stored procedure with
varying values for parameters, for example, is still treated as the same SQL statement
and does not cause the optimizer to create additional plans. Compiled plans are reen-
trant, meaning that they can be reused.

An execution plan, on the other hand, is created for each concurrent execution of a
particular statement. Thus, if 15 connections were executing the same stored proce-
dure concurrently, regardless of whether the parameters were the same, there would
be one compiled plan and 15 execution plans in the query cache.

Although the SQL handle and the plan handle are meaningful to the SQL Server
engine, they are meaningless to a person. So SQL Server provides two functions to
translate the information. The sys.dm_exec_sql_text DMF takes a single parameter of
the SQL handle and returns in text format the query that was executed. The
sys.dm_exec_query_plans DMF takes a single parameter of the plan handle and returns
an XML showplan.

572 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 572 Friday, April 29, 2005 7:59 PM
BEST PRACTICES An easier way to translate handle information

Although it might be interesting to find handles in the query stats or cached plan DMVs and then
input them into the DMFs to translate everything into human-readable format, there is an easier
way to achieve this translation. The CROSS APPLY operator invokes a table-valued function for each
row within a table. Thus, you can use the following queries to apply this translation for given rows
in the query stats or cached plans DMVs:

SELECT * FROM sys.dm_exec_query_stats CROSS APPLY sys.dm_exec_query_plan(plan_handle)
SELECT * FROM sys.dm_exec_query_stats CROSS APPLY sys.dm_exec_sql_text(sql_handle)
SELECT * FROM sys.dm_exec_cached_plans CROSS APPLY sys.dm_exec_query_plan(plan_handle)

Because an operational system can easily have thousands of rows in sys.dm_exec_query_stats or
sys.dm_exec_cached_plans, you shouldn’t execute the previous queries without providing a WHERE
clause to restrict the scope.

I/O Statistics
The DMVs and DMFs that deal with I/O track the physical I/O to the data files and
the log files for each database.

A key DMF in this category is sys.dm_io_virtual_file_stats, which takes two parameters:
database ID and file ID (both of which can be null). This DMF is comparable to the
fn_virtual_filestats() function in SQL Server 2000, but it contains more granular infor-
mation to enable you to make better decisions. The virtual file stats DMF breaks down
the physical I/O written to each file within a database into reads, writes, bytes read,
and bytes written. It also tracks I/O stalls, broken down by reads and writes. The I/O
statistics are cumulative from the time the SQL Server instance was started. This DMF
helps you evaluate whether you have an I/O imbalance between files for your data-
base. And this information, in turn, enables you to determine whether tables or
indexes should be moved to provide better throughput from physical reads or writes.

Another useful DMF in the I/O statistics category is sys.dm_io_pending_io_requests,
which contains a row for each request that is waiting for an I/O operation to complete.
On a very active system, you always find requests that are pending. However, if you
find a particular request that has to wait a significant amount of time or you have very
large numbers of requests that are pending all the time, you might have a disk I/O
bottleneck.

Hardware Statistics
The final category of DMVs covered in this lesson deals with the operating system
interface between SQL Server and Windows as well as the physical hardware
interaction.

Lesson 4: Using Dynamic Management Views and Functions 573

C1562271X.fm Page 573 Friday, April 29, 2005 7:59 PM
Although you can use System Monitor to gather a variety of counters, the logs gathered
are not formatted to allow you to easily extract and correlate the data with a variety of
other sources. To get a result set that you can more easily manipulate, you can use the
sys.dm_os_performance_counters DMV. This view provides all the counters that a SQL
Server instance exposes in an easily manipulated result set.

NOTE Accessing hardware counters

Keep in mind that the performance counters DMV provides only SQL Server counters and does not
allow access to any hardware counters. To access hardware counters, you have to make Windows
Management Instrumentation (WMI) calls to pull the data into a result set that you can then manipulate.

Another key DMV for hardware statistics is sys.dm_os_wait_stats, which provides the
same data that you could gather by using DBCC SQLPERF(WAITSTATS) in SQL Server
2000. This DMV plays an important role in any performance analysis by aggregating
the amount of time processes had to wait for various resources to be allocated.

MORE INFO Wait types

SQL Server 2000 had 77 wait types. SQL Server 2005 exposes 194 wait types. Although a complete
discussion of each wait type is beyond the scope of this book, for details about wait types see Gert
Drapers’ SQLDEV.Net Web site at www.sqldev.net/misc/sp_waitstats.htm.

Quick Check
■ What function do DMVs and DMFs play in a monitoring and analysis

system?

Quick Check Answer

■ DMVs and DMFs provide a rich granular instrumentation platform for
SQL Server 2005, providing the core resources for gathering virtually any
type of data for an instance or a database.

Lesson Summary
■ Prior versions of SQL Server implemented a basic “black box” approach to the

database engine, which made it difficult to manage and monitor. SQL Server
2005 opens up the black box by providing a large set of detailed interfaces that
expose virtually every operational statistic within the database engine.

574 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 574 Friday, April 29, 2005 7:59 PM
■ SQL Server’s DMVs and DMFs are broken into four general categories, providing
information about database statistics, query statistics, I/O statistics, and hard-
ware statistics.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. You notice that performance of certain high-volume queries has suddenly
degraded, and you suspect that you have contention issues within your data-
bases. Which DMV or DMF do you use to determine whether you have a conten-
tion issue and which users are being affected?

A. sys.dm_os_performance_counters

B. sys.dm_os_wait_stats

C. sys.dm_db_index_physical_stats

D. sys.dm_exec_requests

Lesson 5: Correlating Performance and Monitoring Data 575

C1562271X.fm Page 575 Friday, April 29, 2005 7:59 PM
Lesson 5: Correlating Performance and Monitoring Data
SQL Server Profiler, System Monitor, DTA, DMVs, and DMFs each capture a piece of
monitoring data. Although you can use each individually to solve problems, their true
value comes when you use all these tools in a cohesive manner to monitor systems.
Because SQL Server does not operate in a vacuum, this integration enables you to
evaluate data from all layers: from the disk subsystem, to the operating system,
through the memory space, into the query optimizer, through the data structures,
and out to the client.

The sections in this lesson provide examples of correlating data from multiple sources
to understand a performance issue. These examples are intended to provide a starting
point to demonstrate how each of the tools fit together; they do not provide an
exhaustive treatment of all the ways you can use the tools together, which would eas-
ily fill an entire book. Each of the scenarios in this lesson demonstrates how data from
one tool could lead you down the incorrect path, whereas correlating multiple pieces
of data enables you to pinpoint the correct bottleneck or issue in the system.

After this lesson, you will be able to:

■ Describe the basic processing architecture for queries.

■ Correlate System Monitor data with a SQL Server Profiler trace.

■ Correlate DMVs/DMFs with SQL Server Profiler traces.

■ Correlate DMVs/DMFs with System Monitor data.

■ Correlate several DMVs/DMFs to evaluate performance.

■ Combine data from SQL Server Profiler, System Monitor, DMVs, and DMFs into a
consolidated performance view.

Estimated lesson time: 30 minutes

Basic Query Processing Architecture
SQL Server uses a cooperative multiprocessing model instead of a symmetric multipro-
cessing model. The main difference between these two processing models is the way
processor scheduling is handled. In a cooperative model, only a single thread is exe-
cuting at one time on a processor, and the thread cedes control of the processor when
it does not have work to perform. In this way, it allows multiple threads to cooperate
with each other to maximize the amount of actual work being performed.

576 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 576 Friday, April 29, 2005 7:59 PM
Controlling this cooperative behavior is the job of the User Mode Scheduler (UMS).
When SQL Server starts, it creates one UMS for each logical or physical processor that
it is allowed to use on the system. Instead of handing off threads to the operating sys-
tem to schedule on a processor, SQL Server performs its own scheduling via the UMS.

As connections are made to SQL Server, the corresponding SPID is allocated to a
UMS. This allocation process uses a basic balancing algorithm that seeks to spread
the processing as evenly among the UMSs as possible. Although requests by a partic-
ular connection will generally execute on the same UMS, it is possible for a particular
request to be handled by any UMS that is available.

Each UMS uses three queues to process queries: runnable, running, and waiting.
When a query is executed, it is assigned a thread and placed into the runnable queue.
Threads are taken off this queue on a first in, first out (FIFO) basis. The thread is
placed into the running queue and scheduled on the processor. At the instance the
thread needs to wait for a resource such as I/O, network, or memory to be allocated,
it is swapped off the processor and moved to the waiting queue.

The thread lives on the waiting queue for as long as is necessary to wait for the
resource to be allocated to the thread. During this time, SQL Server tracks the amount
of time the thread is waiting, as indicated by the wait time, as well as the resource that
it is waiting on, as indicated by the wait type.

After the resource is freed up, the thread is swapped off the waiting queue and placed
at the bottom of the runnable queue, where it must wait behind all other processes to
reach the top of the runnable queue. The amount of time a process spends in the run-
nable queue before being swapped onto the processor is called the signal wait.

What does all of this information about processor scheduling internals have to do
with monitoring or performance? When a query executes, it requires a variety of
resources. The query has to be compiled, which requires memory and processor
resources. The compiled plan has to be generated and stored in the query cache,
which requires memory and processor. The executable plan then has to be swapped
onto a processor to execute the query, which requires processor, memory, and poten-
tially disk access. As the query reads and writes data, locks must be established,
requiring yet more memory, processor, and possibly disk I/O. Finally, the results of
the query have to be packaged and sent back to the client, which requires memory,
processor, and network I/O.

Lesson 5: Correlating Performance and Monitoring Data 577

C1562271X.fm Page 577 Friday, April 29, 2005 7:59 PM
All this processing means that memory has to be allocated at least five times. If there
is memory pressure on the system, the thread has to wait for memory to be allocated
each time it is required, resulting in five trips to the waiting queue along with five trips
up the runnable queue. The same goes for processor, disk I/O, memory, locks, and so
on. Each of these resource allocations adds time to the overall duration of a query.
Thus, identifying anything causing a bottleneck increases overall performance. Writ-
ing queries so that they access the minimum amount of data and use the minimum
amount of resources also means better performance.

Minimizing all these factors requires correlating many pieces of data together into a
single cohesive picture of the processing state within a SQL Server instance.

Correlating System Monitor Data with SQL Server Profiler Traces
The most common use of Profiler is to gather traces related to long-running queries.
Although Profiler enables you to capture long-running queries, it does not provide the
context to explain why queries might be running long.

Consider that you have configured Profiler to capture queries that are taking longer
than three seconds to execute. After capturing several dozen queries that meet the cri-
teria, each one is executed against a test system that mimics production in both hard-
ware and database size. Each of the queries completes in 30 milliseconds or less. Why
would these queries take longer than three seconds to complete in production?

To find the answer, you can take advantage of a new capability in SQL Server 2005 to
provide context to a trace being captured in Profiler by correlating the trace to a Sys-
tem Monitor counter log. The Profiler trace must include the Start Time as one of the
data columns to allow events to be correlated.

After a trace has been stopped and is no longer capturing events, you can correlate it
to a counter log by using the File, Import Performance Data menu. After selecting the
counter log and the counters to correlate, you see a consolidated screen like the one
shown in Figure 15-21.

Using the context provided by the counter logs, you can evaluate further information
with respect to the previous trace for long-running queries. You might determine, for
example, that every time a query takes more than three seconds to execute, the pro-
cessor utilization is at 100 percent. So instead of trying to tune the queries, you would
investigate the cause of high CPU utilization to improve query performance.

578 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 578 Friday, April 29, 2005 7:59 PM
Figure 15-21 Correlating a System Monitor counter log with a Profiler trace

Correlating DMVs/DMFs with SQL Server Profiler Traces
Continuing with the earlier trace for queries executing longer than three seconds, you
determine that each query has a less-than-optimal query plan. Instead of using
indexes, each of the queries is performing a table scan. However, all the appropriate
indexes have been created—the query optimizer is simply not using them.

CAUTION Don’t try to outguess the optimizer

In this case, some developers and DBAs would begin trying to rewrite the queries or, even worse,
adding query hints to force the query optimizer to use the indexes. Keep in mind, however, that the
optimizer is an extremely intelligent piece of software that is constantly sampling data distributions
and making adjustments so that it can process queries with the fewest resources possible. It is
extraordinarily rare that anyone is going to outguess the optimizer and force it down a more opti-
mal path than the one it has chosen.

By combining the data from the sys.dm_db_index_physical_stats DMV, you might find
that the optimizer is not selecting the indexes that are expected because they have
become heavily fragmented. Simply rebuilding the indexes to eliminate the fragmen-
tation would cause the optimizer to begin selecting the expected indexes, immedi-
ately improving query performance without anyone ever having to change the code or
the database structure.

Lesson 5: Correlating Performance and Monitoring Data 579

C1562271X.fm Page 579 Friday, April 29, 2005 7:59 PM
Correlating DMVs/DMFs with System Monitor Data
Via System Monitor, you have noticed that certain CPUs are running at 100 percent
utilization, whereas others are sitting nearly idle. The busy CPUs suddenly drop to
very low utilization while others are nearly idle. At the same time, users start com-
plaining about performance issues on the order entry database, which is used for
purely online transaction processing (OLTP) operations.

You launch Profiler, but it does not show any queries that would exhibit the behavior
that you are observing through System Monitor.

By using the sys.dm_os_schedulers DMV, you could determine that processing is nearly
evenly distributed on each UMS and that no single UMS has been overloaded with
executing requests to create a bottleneck. However, the sys.dm_os_wait_stats DMV
shows that there is currently an extremely high wait time value for the CXPACKET
wait type. This condition corresponds to thread synchronization for parallel queries,
which would explain the behavior of the processors along with the query perfor-
mance degradation.

Where a SQL Trace would not provide any solutions to this type of performance prob-
lem, by using the information from the DMVs, you could determine that you need to
change the max degree of parallelism value to 1, which eliminates the possibility of hav-
ing parallel query plans generated. As a result of this change, query performance
would almost immediately improve in an OLTP environment because more queries
could be executed at any given time. You would still need to investigate why parallel
query plans were being selected in the first place. But in the meantime, users wouldn’t
be calling to complain about performance issues.

Correlating Multiple DMVs/DMFs
Consider a situation in which you have severe blocking. You have analyzed all the que-
ries that are constantly blocking each other. Although some blocking is expected to
ensure data integrity as inserts, updates, and deletes are performed against the data-
base, the blocking should not be as severe as what you are seeing in production.

By using the sys.dm_exec_requests DMV and the sys.dm_os_waiting_tasks DMV, you
might find that queries exhibiting the severe blocking are also appearing in this com-
bined list far too frequently to be a coincidence. And the wait type of these problem
queries is almost always WRITELOG.

580 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 580 Friday, April 29, 2005 7:59 PM
By moving the transaction log to dedicated drives that can provide better perfor-
mance, you can reduce the bottleneck to the transaction log. This would cause a sig-
nificant decline in the severity of the blocking issues, getting you back to a level typical
for any multiuser system.

Quick Check
■ What is required to correlate information between SQL Server Profiler, Sys-

tem Monitor, and DMVs/DMFs?

Quick Check Answer

■ You need to capture the Start Time data column in the SQL Server Profiler
trace definition to correlate information. Profiler can display a System Mon-
itor counter log alongside a trace as long as the trace has captured the Start
Time data column. DMVs and DMFs can be used in conjunction with this
data as well if the information is also stamped by a time.

PRACTICE Creating a Consolidated Performance View
With the capability to correlate data from multiple tools to fix issues in near real-time,
the big question becomes how to create a longer-term solution.

You can use SQL Server Profiler to create a script that will allow a trace to be executed
programmatically through SQL Server Agent. You can have the trace data output to a
file and loaded into a table by using fn_trace_gettable. In addition, the DTA has a com-
mand-line interface that allows analysis to be performed programmatically. And
counter logs in System Monitor can be run on a scheduled basis by using the Win-
dows scheduler. You can even log data from DMVs and DMFs to tracking tables to
provide point-in-time snapshots of your system.

By now, you will have worked through a variety of exercises and practices in the chap-
ters within this book. Each of those exercises provided a step-by-step procedure to
create a very specific solution. This exercise takes a different approach.

1. Combine all the information and best practices from this lesson into an auto-
mated (or at least semiautomated) process to gather and analyze monitoring
data for your SQL Server 2005 databases.

Lesson 5: Correlating Performance and Monitoring Data 581

C1562271X.fm Page 581 Friday, April 29, 2005 7:59 PM
Lesson Summary
■ SQL Server uses a cooperative multiprocessing model instead of a symmetric

multiprocessing model for processing queries.

■ Controlling this cooperative query processing behavior is the job of the UMS.

■ By correlating all the information at your disposal from SQL Server Profiler, Sys-
tem Monitor counter logs, and operational statistics in DMVs/DMFs, you can
target the root cause of a performance issue.

■ To correlate this information, your SQL Server Profiler trace must capture Start
Time data.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which data column is required to correlate a System Monitor counter log to a
trace in SQL Server Profiler?

A. Text Data

B. End Time

C. SPID

D. Start Time

582 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 582 Friday, April 29, 2005 7:59 PM
Lesson 6: Resolving Blocking and Deadlocking Issues
If all databases were read-only, we wouldn’t have to deal with concurrent access
issues. However, we also wouldn’t have to worry about any data. Any database that
allows multiuser access and data modifications must have mechanisms to maintain
data consistency. Having locking and blocking is a desired effect. However, having
locking or blocking for an extended period of time or having deadlocks is undesirable
and must be resolved. This lesson discusses the locking mechanisms that SQL Server
uses to manage concurrent access, how to minimize the effect of blocking, and how to
avoid deadlocks.

After this lesson, you will be able to:

■ Identify causes of a block by using DMVs.

■ Terminate processes.

■ Configure SQL Server Profiler for deadlock events.

■ Log deadlock chains to the SQL Server error log.

■ Analyze deadlock chains.

■ Understand how isolation levels affect blocking.

■ Understand how transactions can cause blocking in multiuser systems.

Estimated lesson time: 45 minutes

Understanding Locking
To manage multiuser access to data while maintaining data consistency, SQL Server
uses a locking mechanism for data. This mechanism arbitrates when a process is
allowed to modify data as well as ensuring that reads are consistent.

Locks occur at three different levels and can be of three different types. A lock can be
applied at a row, page, or table level. SQL Server manages the resources allocated by
locks and determines the appropriate level of the lock based on a relatively aggressive
escalation mechanism.

NOTE Do database-level locks exist?

You might find a database-level lock mentioned in some texts about SQL Server. This type of lock
does not exist. Some people use this term simply to indicate that SQL Server has acquired a table-
level lock on all tables within a database.

Lesson 6: Resolving Blocking and Deadlocking Issues 583

C1562271X.fm Page 583 Friday, April 29, 2005 7:59 PM
The main decision threshold occurs at approximately three percent to five percent. If
SQL Server determines that a query requires locks on three percent to five percent of
the rows on a given page, it acquires a page-level lock. Similarly, if SQL Server deter-
mines that a query requires locks on three percent to five percent of the pages in a
given table, it acquires a table-level lock. Because it is not always possible to accurately
predict the percentage of rows or pages that require a lock, SQL Server can automati-
cally promote from fine-grained locks to a coarser level of lock. This process is called
lock escalation.

NOTE Lock escalation paths

It is a common misconception that SQL Server escalates locks from a row level to a page level and
finally to a table level. However, lock escalation has exactly two paths. SQL Server escalates row-
level locks to table-level locks, and it escalates page-level locks to table-level locks.

In addition to the locking levels, SQL Server has three types of locks: shared, exclusive,
and update.

A shared lock, as its name implies, allows shared access to the data. An unlimited
number of connections are allowed to read the data. However, any piece of data that
has a shared lock on it cannot be modified until all shared locks are released.

An exclusive lock, as its name implies, allows only a single connection to access the
locked data. SQL Server uses this type of lock during data modification to ensure that
other users cannot view the data until it has been committed to the database.

An update lock is a special case. This lock begins as a shared lock while SQL Server
locates the rows it must modify within the table. After SQL Server locates the rows, it
promotes the lock to an exclusive lock just before it performs the actual modification
of the data. This lock promotion during an update is the most common cause of dead-
lock issues, which we will cover in a moment.

Understanding Isolation Levels
SQL Server 2005 specifies five different isolation levels that affect the way transactions
are handled and the duration of locks. Table 15-2 describes each of these isolation
levels.

584 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 584 Friday, April 29, 2005 7:59 PM
Understanding Blocking
Because read operations place shared locks on rows, pages, or tables, and update
operations need to place exclusive locks on rows, pages, or tables, conflicts can occur
between locks—an exclusive lock cannot be acquired against a resource that has a
shared lock. This condition is called blocking and is a normal operation in multiuser
environments to ensure integrity of data and of query results.

Any blocking occurring within an environment should be of a very short duration.
Having processes blocked for an extended period of time—generally defined as longer

Table 15-2 SQL Server 2005 Isolation Levels

Isolation level Description

READ UNCOMMITTED This isolation level lets other connections read
data that has not yet been committed.

READ COMMITTED This isolation level prevents other connections
from reading data that is being modified until the
transaction has been committed.

REPEATABLE READ Connection 1 is not allowed to read data that has
been modified but not yet committed by Connec-
tion 2. Additionally, no other connection is
allowed to modify any data that has been read by
Connection 1 until the transaction completes. This
causes shared locks to be placed on all data that is
read, and the locks are held until the transaction
completes.

READ SERIALIZABLE This isolation level places all of the restrictions as
REPEATABLE READ and prevents new rows from
being inserted within the keyset range that is
locked by a transaction.

SNAPSHOT Commonly known as “readers do not block writ-
ers and writers do not block readers,” this isola-
tion level uses row versioning and ensures that a
read operation will return the image of the data as
it existed prior to the start of a modification.

Lesson 6: Resolving Blocking and Deadlocking Issues 585

C1562271X.fm Page 585 Friday, April 29, 2005 7:59 PM
than one second—creates contention, lowers concurrency, and is generally manifested
as performance problems within an application.

To determine whether processes are being blocked and to identify the process that is
creating the blocking, you would use the sys.dm_exec_requests DMV. If a value greater
than 0 exists in the blocking_process_id column, the process is being blocked by the
SPID logged in this column.

You need to carefully monitor blocking issues because they are not actually error con-
ditions. SQL Server is processing requests exactly as intended. However, a blocked
process cannot complete until the process that is blocking it has finished and released
all the competing locks.

Terminating Processes
In severe cases of blocking, you might need to forcibly terminate a process to allow
other processes to complete. Termination should always be a last resort, but it is the
only way to allow other processes to complete when they are being blocked by
another process.

The command to terminate a process is KILL spid, where spid is the session ID
assigned to the blocking process. This command can be executed only by a member
of the sysadmin fixed server role. When executed, this command immediately termi-
nates a process. Any open transactions are rolled back, and an error is returned to the
application.

Understanding Deadlocking
When a process is blocked, SQL Server still maintains a clear process execution order.
After a process that is creating a block has released any competing locks, the blocked
process will continue executing. However, it is possible to have a combination of
blocks that can never be resolved. This situation is called a deadlock.

A deadlock always requires at least two processes, and each of those processes must
be making a modification to data. If Process 1 were to acquire an exclusive lock on a
row while Process 2 acquired an exclusive lock on a different row, you don’t have a
problem. However, if Process 1 then attempted to acquire a shared lock on the row
that is exclusively locked by Process 2, and Process 2 at the same time attempts to
acquire a shared lock on the row that is exclusively locked by Process 1, an impossible
scenario is created. Neither process can ever complete because each process relies on
the other process completing first. Figure 15-22 illustrates this scenario.

586 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 586 Friday, April 29, 2005 7:59 PM
Figure 15-22 Creating a deadlock

Because neither process has the capability to complete a transaction, the locks would
be held forever unless there were a way to detect and resolve the deadlock. SQL Server
can detect a deadlock and, in response, it applies an algorithm (deadlock detection)
that selects one of the processes as a deadlock victim. SQL Server terminates the victim
process, rolls back any open transactions, releases the locks, and returns error 1205
to the application.

The exact error message returned is the following:

Msg 1205, Level 13, State 51, Line 1
Transaction (Process ID 55) was deadlocked on lock resources with another process and has
been chosen as the deadlock victim. Rerun the transaction.

BEST PRACTICES Detecting a 1205 error

Deadlocks are a timing issue. Essentially, two processes happened to be executing at the wrong
moment in time. The data access layer in an application should be coded to detect a 1205 error
being returned. When the application detects this error, it should immediately reissue the transac-
tion instead of displaying an error message to a user.

For DBAs and developers, this error message doesn’t provide very much information
about the cause of the problem. To prevent future deadlocks from occurring, you
need to investigate.

Fortunately, SQL Server Profiler provides detailed information about deadlines via a dead-
lock trace. You create a deadlock trace by selecting the Locks\Deadlock Graph event. When
a deadlock occurs, this trace produces an output similar to that shown in Figure 15-23.

Customers Orders

Locked

Process2

Process1

Locked

Needs to
Acquire

Needs to
Acquire

Lesson 6: Resolving Blocking and Deadlocking Issues 587

C1562271X.fm Page 587 Friday, April 29, 2005 7:59 PM
Figure 15-23 Generating a deadlock graph

Se
rv

er
 p

ro
ce

ss
 Id

: 5
6

Se
rv

er
 b

at
ch

 Id
: 0

Ex
ec

ut
io

n
co

nt
ex

t
Id

: 0
D

ea
d

lo
ck

 p
ri

or
ity

: 0
Lo

g
 U

se
d

: 4
84

O
w

ne
r

Id
: 1

52
71

6
Tr

an
sa

ct
io

n
d

es
cr

ip
to

r:
 0

x8
88

4b
80

St
at

em
en

t:

Ke
y

Lo
ck

H
oB

t
ID

: 7
20

57
59

40
45

00
58

24
as

so
ci

at
ed

 o
b

jid
: 7

20
57

59
40

45
00

58
24

In
d

ex
 n

am
e:

 P
K_

Pr
od

uc
tI

nv
en

to
ry

_
Pr

od
uc

tI
D

_L
oc

at
io

nI
D

Ke
y

Lo
ck

H
oB

t
ID

: 7
20

57
59

40
44

67
81

44
as

so
ci

at
ed

 o
b

jid
: 7

20
57

59
40

44
67

81
44

In
d

ex
 n

am
e:

 P
K_

Pr
od

uc
t_

Pr
od

uc
tI

D

Re
q

u
es

t
M

o
d

e:
 S

O
w

n
er

 M
o

d
e:

 X
Re

q
u

es
t

M
o

d
e:

 S

O
w

n
er

 M
o

d
e:

 X

Se
rv

er
 p

ro
ce

ss
 Id

: 5
5

Se
rv

er
 b

at
ch

 Id
: 0

Ex
ec

ut
io

n
co

nt
ex

t
Id

: 0
D

ea
d

lo
ck

 p
ri

or
ity

: 0
Lo

g
 U

se
d

: 3
56

O
w

ne
r

Id
: 1

58
25

5
Tr

an
sa

ct
io

n
d

es
cr

ip
to

r:
 0

x8
83

54
a8

St
at

em
en

t:

588 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 588 Friday, April 29, 2005 7:59 PM
The deadlock graph is an XML document that you can analyze separately from the
graphical display in Profiler. The XML document generated for the deadlock graph
shown in Figure 15-23 is as follows:

<deadlock-list>
<deadlock victim="process6b9798">
<process-list>
<process id="process6b8f28" taskpriority="0" logused="484"
waitresource="KEY: 5:72057594044678144 (010086470766)"
waittime="5859" ownerId="152716"
transactionname="user_transaction"
lasttranstarted="2006-03-01T21:52:40.877" XDES="0x8884b80"
lockMode="S" schedulerid="1" kpid="4384" status="suspended"
spid="56" sbid="0" ecid="0" priority="0" transcount="2"
lastbatchstarted="2006-03-01T22:12:39.517"
lastbatchcompleted="2006-03-01T22:12:35.893"
clientapp="Microsoft SQL Server Management Studio - Query"
hostname="WAKKO" hostpid="5988" loginname="WAKKO\admin"
isolationlevel="read committed (2)" xactid="152716" currentdb="5"
lockTimeout="4294967295" clientoption1="671090784"
clientoption2="390200">
<executionStack>
<frame procname="adhoc" line="1" stmtstart="24"
sqlhandle="0x0200000065b7c70eb116ee82532161c54e5244ca43966c00">

SELECT [Name],[ReorderPoint],[StandardCost] FROM [Production].[Product]
WHERE [ProductID]=@1

</frame>
<frame procname="adhoc" line="1"
sqlhandle="0x020000000747301e16f4ac6a5a7d86dd22031822e3d9c3c4">

select Name, ReorderPoint, StandardCost
from Production.Product
where ProductID = 1

</frame>
</executionStack>
<inputbuf>

select Name, ReorderPoint, StandardCost
from Production.Product
where ProductID = 1

</inputbuf>
</process>
<process id="process6b9798" taskpriority="0" logused="356"
waitresource="KEY: 5:72057594045005824 (0200b8bc7a9c)"
waittime="1984" ownerId="156255"
transactionname="user_transaction"
lasttranstarted="2006-03-01T22:12:29.860" XDES="0x88854a8"
lockMode="S" schedulerid="1" kpid="6028" status="suspended"
spid="55" sbid="0" ecid="0" priority="0" transcount="1"
lastbatchstarted="2006-03-01T22:12:43.393"
lastbatchcompleted="2006-03-01T22:12:29.860"
clientapp="Microsoft SQL Server Management Studio - Query"
hostname="WAKKO" hostpid="5988" loginname="WAKKO\admin"
isolationlevel="read committed (2)" xactid="156255" currentdb="5"
lockTimeout="4294967295" clientoption1="671090784"
clientoption2="390200">
<executionStack>

Lesson 6: Resolving Blocking and Deadlocking Issues 589

C1562271X.fm Page 589 Friday, April 29, 2005 7:59 PM
<frame procname="adhoc" line="1" stmtstart="46"
sqlhandle="0x02000000c8759f1723746364b90be104dca93fd9cd660dab">

SELECT [ProductID],[LocationID],[Shelf],[Bin],[Quantity]
FROM [Production].[ProductInventory]
WHERE [ProductID]=@1
AND [LocationID]=@2

</frame>
<frame procname="adhoc" line="1"

sqlhandle="0x0200000015377209c7e128bc4aef074f8d4396274ea023a0">
select ProductID, LocationID, Shelf, Bin, Quantity
from Production.ProductInventory
where ProductID = 1
and LocationID = 1

</frame>
</executionStack>
<inputbuf>

select ProductID, LocationID, Shelf, Bin, Quantity
from Production.ProductInventory
where ProductID = 1
and LocationID = 1

</inputbuf>
</process>

</process-list>
<resource-list>
<keylock hobtid="72057594044678144" dbid="5"
objectname="AdventureWorks.Production.Product"
indexname="PK_Product_ProductID" id="lock3b36500" mode="X"
associatedObjectId="72057594044678144">
<owner-list>
<owner id="process6b9798" mode="X"/>

</owner-list>
<waiter-list>
<waiter id="process6b8f28" mode="S" requestType="wait"/>

</waiter-list>
</keylock>
<keylock hobtid="72057594045005824" dbid="5"
objectname="AdventureWorks.Production.ProductInventory"
indexname="PK_ProductInventory_ProductID_LocationID"
id="lock3b36bc0" mode="X"
associatedObjectId="72057594045005824">
<owner-list>
<owner id="process6b8f28" mode="X"/>

</owner-list>
<waiter-list>
<waiter id="process6b9798" mode="S" requestType="wait"/>

</waiter-list>
</keylock>

</resource-list>
</deadlock>

</deadlock-list>

SQL Server Profiler has three events related to deadlocks. The Locks\Lock:Deadlock
Chain and Locks\Lock:Deadlock events contain little information that is useful for resolv-
ing the cause of a deadlock. You should only ever need to use the Locks\Deadlock Graph
event, which provides all the information required to resolve the cause of a deadlock.

590 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 590 Friday, April 29, 2005 7:59 PM
MORE INFO Deadlocks

For more information about deadlocks, see the SQL Server 2005 Books Online topic “Deadlocking.”

Quick Check
■ How is a deadlock created?

Quick Check Answer

■ A deadlock is created by two processes acquiring exclusive locks and then
requesting a shared lock on the resource that is exclusively locked by the
other process. This process produces a blocking situation that cannot
resolve itself, so SQL Server will detect the deadlock and select one of the
processes as the deadlock victim.

PRACTICE Investigating a Deadlock
In this practice, you will configure SQL Server Profiler to capture the Locks\Deadlock
Graph event and then produce a deadlock to observe the results.

1. Launch SQL Server Profiler. Create a new trace and connect to your SQL Server
instance.

2. Select the blank template.

3. On the Events Selection tab, select the Locks\Deadlock Graph event.

4. Click Run to start tracing.

5. Launch SSMS and connect to your SQL Server.

6. Open two query windows and change the database context for both to the
AdventureWorks database.

7. In query window 1, execute the following query:

BEGIN TRANSACTION
UPDATE Production.Product
SET ReorderPoint = 1000
WHERE ProductID = 1

Lesson 6: Resolving Blocking and Deadlocking Issues 591

C1562271X.fm Page 591 Friday, April 29, 2005 7:59 PM
8. In query window 2, execute the following query:

BEGIN TRANSACTION
UPDATE Production.ProductInventory
SET Quantity = 400
WHERE ProductID = 1
AND LocationID = 1

SELECT Name, ReorderPoint, StandardCost
FROM Production.Product
WHERE ProductID = 1

9. Switch to window 1 and execute the following query, making sure that you do
NOT issue a commit transaction statement:

SELECT ProductID, LocationID, Shelf, Bin, Quantity
FROM Production.ProductInventory
WHERE ProductID = 1
AND LocationID = 1

10. Switch to Profiler and review the deadlock graph that is generated.

Lesson Summary
■ Any system that enables multiple users to change data at the same time must

implement a set of rules to ensure data consistency. SQL Server implements
these rules by using shared and exclusive locks on rows, pages, and tables.

■ When a piece of data is exclusively locked, no other process is allowed to read or
modify that data, which inevitably causes blocking to occur as a normal state of
operations.

■ When blocks are retained for a significant amount of time, end users will begin
to complain of slow performance. So it is critical to monitor the sys.dm_
exec_requests DMV to detect any processes producing excessive blocking. In
extreme cases, you might have to terminate the process that is producing the
excessive blocking.

■ In addition to blocking, design flaws in applications can produce deadlocks.
SQL Server will detect a deadlock and automatically select one process to termi-
nate. Capturing a Locks\Deadlock Graph event in Profiler and using the informa-
tion captured to make changes to the application is critical to ensure that your
databases continue to operate without errors.

592 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 592 Friday, April 29, 2005 7:59 PM
Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following are valid locks? (Choose all that apply.)

A. Shared column lock

B. Exclusive column lock

C. Shared table lock

D. Exclusive row lock

Lesson 7: Resolving Database Errors 593

C1562271X.fm Page 593 Friday, April 29, 2005 7:59 PM
Lesson 7: Resolving Database Errors
There are literally hundreds of errors that can occur within SQL Server, not including
errors created in application code. The tools and methods covered in the previous six
lessons of this chapter give you the ability to diagnose and fix any error that can occur
on your database system. However, to diagnose an issue, you must first be able to con-
nect to the SQL Server. In many cases, the SQL Server can be so busy processing
requests that it can no longer allocate memory or processor resources to even allow an
administrator to connect.

This situation caused many issues in previous versions of SQL Server. Administrators
would become locked out of their own servers and could not investigate or determine
the cause of an issue, much less fix the problem. SQL Server 2005 solves this problem
by introducing a feature called the dedicated administrator connection (DAC). This les-
son explains how to use the DAC and notes that you also need to monitor SQL Server
error logs and Windows Application event logs for critical error messages.

After this lesson, you will be able to:

■ Connect to an instance using the DAC.

Estimated lesson time: 10 minutes

Using the DAC
The DAC is implemented as a specific TCP endpoint in a SQL Server instance that is
always attached to a dedicated UMS. The naming of this feature has already caused a
significant amount of unfortunate confusion. The DAC is not intended for use as the
connection for all administrative operations. The DAC was created to provide a con-
nection that could always be used by a member of the sysadmin role to access a SQL
Server instance, thereby guaranteeing that an administrator could not be locked out
of SQL Server due to resource allocation issues.

Although it is always running on a dedicated UMS, the DAC has limited resources
allocated to it, so the operations that can be performed via the DAC are also limited.
Any operation that would spawn multiple threads, such as a backup or restore, are not
allowed within the DAC. Only a single connection at a time is allowed. If the connec-
tion is already being used, any subsequent connections are refused. Additionally, you
create a connection to the DAC in only two ways:

■ Via SQLCMD

■ Through the Query window in SSMS

594 Chapter 15 Monitoring and Troubleshooting SQL Server Performance

C1562271X.fm Page 594 Friday, April 29, 2005 7:59 PM
The DAC does not allow connections from SQL Server Profiler, the DTA, Object
Explorer in SSMS, third-party applications, or any other application.

BEST PRACTICES DAC: A Last Resort

The DAC is intended as a last-resort connection method. If you can create a connection to SQL
Server through normal means, you should use that mechanism, which allows access to anything
with the capability to issue queries against SQL Server. Only when connection by any other method
is unsuccessful should you use the DAC. You should also use it only for simple operations such as
querying DMVs/DMFs and terminating processes.

To connect to the DAC, specify ADMIN: and the name of your instance—for example,
ADMIN:MyMachine\Instance1.

SQL Server and Windows Error Logs
To resolve database errors, you should also review the SQL Server error logs and the
Windows Application Event Log for errors. Although a variety of informational mes-
sages is logged to each of these locations, any error with a severity level of 16 or higher
automatically gets logged to the SQL Server error log and the Windows Application
Event Log. Errors with a severity of 16 or higher are critical errors that you need to
investigate immediately.

Although you can scan each of these logs manually, it is much more common to point
an enterprise monitoring product such as Microsoft Operations Manager at these logs
and then have the monitoring tool page an operator when it encounters errors.

PRACTICE Connecting to the DAC
In this practice, you will create a connection to the DAC and determine whether any
processes are being blocked.

IMPORTANT It would be nice to produce a nonresponsive server to demonstrate the ability to
always be able to connect to the DAC, but we will skip that step to avoid undue complexity.

1. Launch SSMS.

2. Click Database Engine Query.

3. In the Connect To Server dialog box, insert ADMIN: before the instance name.

Lesson 7: Resolving Database Errors 595

C1562271X.fm Page 595 Friday, April 29, 2005 7:59 PM
4. After the query window is open, execute the following query to determine
whether there are any blocked processes:

SELECT session_id, sql_handle, plan_handle FROM sys.dm_exec_requests WHERE
blocking_process_id > 0

Lesson Summary
■ When a SQL Server instance is having performance issues but is so busy that an

administrator cannot connect to even attempt to fix the issue, the DAC provides
a last resort connection method for use by members of the sysadmin role. It is
always available and cannot be locked out.

■ To resolve database errors, you should also review the SQL Server error logs and
the Windows Application Event Log, especially for critical errors with a severity
level of 16 or higher.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following are valid connection options for the DAC?

A. dta command-line utility

B. osql command-line utility

C. Object Browser connection

D. SQLCMD

596 Chapter 15 Review

C1562271X.fm Page 596 Friday, April 29, 2005 7:59 PM
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can

■ Review the chapter summary.

■ Review the list of key terms introduced in this chapter.

■ Complete the case scenario. This scenario sets up a real-world situation involv-
ing the topics of this chapter and asks you to create a solution.

■ Complete the suggested practices.

■ Take a practice test.

Chapter Summary
■ SQL Server 2005 provides a variety of tools that you can use for both monitoring

and troubleshooting.

■ SQL Server Profiler provides an interface to SQL Trace, which exposes hundreds
of events that occur within the database engine, such as any currently executing
queries and their execution statistics.

■ A trace that is generated in Profiler can be used as a workload for analysis by the
DTA, which exhaustively applies the rules of the query optimizer to determine
whether performance can be improved through indexing, indexed views, or
partitioning.

■ The Windows System Monitor can be used to capture performance counters
that can then be correlated to a SQL Trace within Profiler to provide an environ-
ment context to the events that were captured.

■ The most significant step forward within SQL Server 2005 can be found within
DMVs and DMFs, which provide a means of gathering and comparing extremely
granular data via a simple SELECT statement. This set of instrumentation pro-
vides a greater level of detail into the inner operational state of a SQL Server
instance than was ever available before.

■ By using each of these tools, along with an understanding of the locking mech-
anisms that govern all data access within SQL Server, you can quickly diagnose
problems and maximize availability of data to your users. These tools can also be
combined into an automated system that can identify activity patterns and pro-
actively make adjustments to avoid availability issues.

Chapter 15 Review 597

C1562271X.fm Page 597 Friday, April 29, 2005 7:59 PM
■ To enhance SQL Server’s error-resolution capabilities, Microsoft introduced
DAC to provide a connection that could always be used by a member of the
sysadmin role to access a SQL Server instance, thereby guaranteeing that an
administrator could not be locked out of SQL Server because of resource alloca-
tion issues.

■ In addition to using SQL Server Profiler/SQL Trace, System Monitor, and DMVs
and DMFs, you should also monitor SQL Server error logs and the Windows
Application Event Log for error messages.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ blocking

■ cooperative multiprocessing

■ Database Engine Tuning Advisor (DTA)

■ deadlock

■ deadlock detection

■ deadlock trace

■ deadlock victim

■ Dedicated administrator connection (DAC)

■ Dynamic Management Functions (DMFs)

■ Dynamic Management Views (DMVs)

■ isolation levels

■ lock escalation

■ locking level

■ locking promotion

■ PerfMon

■ replay trace

■ showplan

■ SQL Server Management Object (SMO)

■ SQL Server Profiler

598 Chapter 15 Review

C1562271X.fm Page 598 Friday, April 29, 2005 7:59 PM
■ SQL Trace

■ System Monitor

■ system process ID (SPID)

■ trace

■ trace events

■ User Mode Scheduler (UMS)

■ wait type

■ workload file

Case Scenario: Diagnosing Performance Problems
In the following case scenario, you will apply what you’ve learned in this chapter. You
can find answers to these questions in the “Answers” section at the end of this book.

Contoso Limited, a health care company located in Bothell, WA, has a volatile data-
base containing patient claims data. The company has recently undertaken a massive
development process to rewrite the entire patient claims database, currently running
on Microsoft Access, in a Microsoft .NET language with the data being stored in SQL
Server 2005.

The company’s developers could port the Access database and rewrite the patient
claims application’s entire functionality. However, they did not have any DBAs on the
staff to help with any database issues. The developers also have little knowledge about
SQL Server. In development and testing, the new application performed much better
than the previous application, so testing was cut short, and the application was
deployed into production.

At the same time as the new application was put into production, sales signed four
major new customers, which increased application activity almost 30 times more than
before. By the time the support staff was partially done setting up the first customer,
the customer started complaining about some performance issues. And performance
declined rapidly as more data was added. Management concluded that it would be
impossible to get all four of the new customers running on the new application when
it couldn’t even handle the load it already had. In addition, the IT staff was facing
unexplained deadlock errors.

You have been hired by Contoso Limited to fix the performance issues along with
all of the unexplained “deadlock victim” errors. How do you go about fixing this
environment?

Chapter 15 Review 599

C1562271X.fm Page 599 Friday, April 29, 2005 7:59 PM
Suggested Practices
To help you successfully master the exam objectives presented in this chapter, com-
plete the following practice tasks.

Working with SQL Server Profiler
■ Practice 1 Create a trace to capture all the queries being executed against a par-

ticular database. Include the reads, writes, duration, and CPU of each query.

■ Practice 2 Create a replay trace and set up a test environment against which you
can replay it.

■ Practice 3 Create a trace to capture all the queries being executed against a par-
ticular database along with all of the statistics and query plans necessary to ana-
lyze performance issues. Save the trace in a table and then find the top 10
queries by frequency, duration, and impact.

■ Practice 4 Create an automated routine executed from SQL Server Agent that
will start traces every 15 minutes, run them for 10 minutes, and then load the
results into a centralized table.

Working with System Monitor
■ Practice 1 Create a System Monitor counter log to capture the processor, mem-

ory utilization (system and within SQL Server), and SQL Server caching
counters. Run this counter log while you are executing the traces in the other
practices.

Using the Database Engine Tuning Advisor
■ Practice 1 Using the trace generated in “Working with SQL Server Profiler”

Practice 3, use DTA to analyze the workload for performance improvements.

■ Practice 2 Build the semiautomated performance analysis system outlined in
the best practices within the DTA lesson.

Using Dynamic Management Views and Functions
■ Practice 1 Find the indexes in your databases that are not being used.

■ Practice 2 Starting with the DMV that will show you waiting tasks, return the
query that is executing on a process that is tying up a resource, and causing
other processes to have to wait for it to be released.

600 Chapter 15 Review

C1562271X.fm Page 600 Friday, April 29, 2005 7:59 PM
■ Practice 3 Identify indexes that might be good candidates for creation in your
database to improve performance.

■ Practice 4 Identify the top two resources that processes have to wait to be allo-
cated. Clear the statistics and gather this data again. Then, using the individual
processes already created in this practice, build an automated routine to gather
the wait types, wait times, and signal wait times on a 15-minute interval and log
the results to a table for further analysis.

Correlating Performance Data
■ Practice 1 Correlate the trace from “Working with SQL Server Profiler” Practice

1 with the counter log from “Working with System Monitor” Practice 1.

■ Practice 2 Correlate the trace from “Working with SQL Server Profiler” Practice 2
with the counter log from “Working with System Monitor” Practice 1. After gen-
erating a counter log during the trace replay on the test system, correlate the
trace results from the replay with the counter log. Compare the results from the
two systems.

Resolving Blocking and Deadlocking Issues
■ Practice 1 Create a deadlock trace.

Using DAC
■ Practice 1 Create several blocked processes. Connect to the DAC by using SQL-

CMD and return the SPID that is causing the blocking issue.

Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-431 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the “How to Use the Practice Tests” sec-
tion in this book’s Introduction.

C1662271X.fm Page 601 Friday, April 29, 2005 8:00 PM
Chapter 16

Managing Database Snapshots

A Database Snapshot is a new technology in Microsoft SQL Server 2005 that provides
very specific functionality for creating read-only copies of your databases. This chap-
ter explains how to create Database Snapshots, restrictions on their use, and how to
integrate Database Snapshots into a recovery strategy.

Exam objectives in this chapter:
■ Manage database snapshots

❑ Create a snapshot

❑ Revert a database from a snapshot

Lessons in this chapter:
■ Lesson 1: Creating a Database Snapshot. 603

■ Lesson 2: Reverting a Database from a Database Snapshot 609

Before You Begin
To complete the lessons in this chapter, you must have

■ SQL Server 2005 installed.

■ A connection to a SQL Server 2005 instance.

■ A copy of the AdventureWorks sample database.
601

602 Chapter 16 Managing Database Snapshots

C1662271X.fm Page 602 Friday, April 29, 2005 8:00 PM
Real World
Michael Hotek

Database administrators (DBAs) are frequently called upon to manipulate data
within operational systems. When an organization needs to bulk load data or
make mass changes, DBAs are called upon to directly modify data because it is
the most efficient way. Before making any change of this nature to a system, I
always create a backup so that the state of the database can be reverted in the
event of an error during the data change operation.

Creating a backup can account for a significant portion of the maintenance time
required to make the changes. With the new Database Snapshot technology, I
can quickly save the state of the database before making changes. By eliminating
the need to make a full backup, I now have a lot more time to sleep while other
DBAs spend endless nights waiting for a backup to complete.

Lesson 1: Creating a Database Snapshot 603

C1662271X.fm Page 603 Friday, April 29, 2005 8:00 PM
Lesson 1: Creating a Database Snapshot
A Database Snapshot encompasses a set of new technologies in SQL Server 2005 that
allow a DBA to quickly create a data snapshot. This lesson will introduce the key con-
cepts of Database Snapshots along with how to create and use them.

After this lesson, you will be able to:

■ Explain the structure of a Database Snapshot.

■ Explain how copy-on-write works.

■ Create a Database Snapshot.

■ Query a Database Snapshot.

Estimated lesson time: 10 minutes

Database Snapshot Structure
You build a Database Snapshot against a source database. Because a Database Snap-
shot is a point-in-time, read-only copy, it does not contain a transaction log and can-
not be written to.

At the time of creation, the files underneath a Database Snapshot do not contain any
data and consume very little space on disk. This is accomplished by defining the files
as sparse files within the file system. By leveraging sparse file technology, you can cre-
ate Database Snapshots nearly instantaneously, even for multiterabyte databases.

All database objects, along with users and permissions, are the same between the
source database and the Database Snapshot. Because a Database Snapshot is read-
only, you cannot change permissions, add users, or modify any objects or data.

Copy-On-Write Technology
To maintain the Database Snapshot as a point-in-time, read-only copy of a database, as
well as satisfy the condition that a Database Snapshot be very fast to create, a mecha-
nism had to be created to maintain the data state.

At initial creation, a Database Snapshot does not contain any pages of data nor does
it contain any information from the source database. The file structure is created as a
sparse file and the Database Snapshot links back to the source database.

604 Chapter 16 Managing Database Snapshots

C1662271X.fm Page 604 Friday, April 29, 2005 8:00 PM
When a data page changes in the source database, SQL Server writes the original
image of the page into the Database Snapshot, which preserves the state of the data
page at the instant in time that the Database Snapshot was created. Any subsequent
changes to the data page in the source database are ignored by the Database Snap-
shot. This write of the original image of the data page from the source database is
called copy-on-write.

Quick Check
■ What is a Database Snapshot and what information does it contain?

Quick Check Answer

■ A Database Snapshot provides a point-in-time, read-only copy of the source
database. The only information contained within a Database Snapshot are
the pages that changed in the source database since the Database Snapshot
was created.

A Database Snapshot contains a unique structure called a catalog of changed pages,
which is a bitmap that contains a list of the pages within the source database that have
changed since the point in time of the creation of the Database Snapshot. When SQL
Server writes the original image of a data page to the Database Snapshot, it changes
the bit corresponding to that page from 0 to 1 within the catalog of changed pages.

By writing the original image of a data page to the Database Snapshot, it allows the
Database Snapshot to maintain the state of the data at the point in time of the Data-
base Snapshot creation. Because a Database Snapshot contains only the original
image of pages that were changed since creation, very little overhead is incurred on
the system.

Quick Check
■ A Database Snapshot is required to maintain the state of the data at a single

point in time. How is this requirement satisfied?

Quick Check Answer

■ A catalog of changed pages tracks those pages that have been changed
since the Database Snapshot was created. This catalog is used during query
execution to determine whether data should be retrieved from data pages
written to the Database Snapshot or from the source database.

Lesson 1: Creating a Database Snapshot 605

C1662271X.fm Page 605 Friday, April 29, 2005 8:00 PM
Creating a Database Snapshot
You create a Database Snapshot like any other database within SQL Server, but you
must use a special clause in the CREATE DATABASE command.

The CREATE DATABASE statement for a Database Snapshot must meet some specific
requirements:

■ You must include an entry for each filegroup in the source database.

■ You must define the logical name of each filegroup the same as in the source
database.

■ You must specify the AS SNAPSHOT OF clause with the CREATE DATABASE
command.

The general syntax for creating a Database Snapshot is as follows:

CREATE DATABASE database_snapshot_name
ON

(
NAME = logical_file_name,
FILENAME = ’os_file_name’
) [,...n]

AS SNAPSHOT OF source_database_name

A Database Snapshot has some important restrictions:

■ You cannot back up, restore, or detach the Database Snapshot.

■ It must exist on the same SQL Server instance as the source database.

NOTE Database mirroring with Database Snapshots

A Database Snapshot must exist on the same SQL Server instance as the source database.
The mirror database in a Database Mirroring session is not accessible for any operations.
However, it is possible to create a Database Snapshot against a mirror database.

This capability can be used to offload reporting activity to the server containing the mirror.

■ Full-text indexes are not supported.

■ You cannot drop, detach, or restore the source database when a Database Snap-
shot is present.

■ You cannot create Database Snapshots against system databases.

■ Structural changes are not allowed, such as adding or removing filegroups.

606 Chapter 16 Managing Database Snapshots

C1662271X.fm Page 606 Friday, April 29, 2005 8:00 PM
Retrieving Data from a Database Snapshot
Writing a SELECT statement against a Database Snapshot is not any different from
writing a SELECT statement against any other database.

The result set of a query against a Database Snapshot is obtained from two locations,
with the data then combined into a single result set.

■ Data that has not changed since the Database Snapshot was created is obtained
from the source database.

■ Data that has changed since the Database Snapshot was created is obtained from
the data pages written to the Database Snapshot.

PRACTICE Creating a Database Snapshot
In this exercise, you will practice the creation of a Database Snapshot against the
AdventureWorks database.

1. Open SQL Server Management Studio (SSMS).

2. Connect to the SQL Server instance containing the AdventureWorks sample data-
base.

3. Click New Query in the toolbar.

4. Type the following code:

CREATE DATABASE snapshottest
on

(
NAME=‘AdventureWorks_Data’,
FILENAME=‘C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\snapshottest.ds’)

AS SNAPSHOT OF AdventureWorks

NOTE No spaces in path

Be sure not to enter any spaces in the paths contained within the single quotes in the previous
code.

5. Insert data into the AdventureWorks database.

6. Observe that this data does not exist when querying the Database Snapshot.

Lesson 1: Creating a Database Snapshot 607

C1662271X.fm Page 607 Friday, April 29, 2005 8:00 PM
Lesson Summary
■ A Database Snapshot is a point-in-time, read-only copy of a source database that

exists on the same SQL Server instance as the source database. As pages are
changed in the source database, the original image of the data page is written
into the sparse files of the Database Snapshot to preserve the state of the data at
creation time.

■ Although a Database Snapshot can be queried like any other database, you are
not allowed to modify data or structural elements. A Database Snapshot also
cannot be used for backup/restore operations. Even though it is required to exist
on the same SQL Server instance as the source database, a Database Snapshot
can be created against a mirror database within a Database Mirroring session.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which operations can be performed against a Database Snapshot?

A. BACKUP DATABASE

B. ALTER DATABASE

C. SELECT COLUMN1, COLUMN2 FROM TABLE

D. UPDATE TABLE1 SET COLUMN1 = 4

2. You can create a Database Snapshot against which types of databases? (Choose
all that apply.)

A. User database

B. Master database

C. Another Database Snapshot

D. Mirror database

608 Chapter 16 Managing Database Snapshots

C1662271X.fm Page 608 Friday, April 29, 2005 8:00 PM
3. What data is contained within a Database Snapshot? (Choose all that apply.)

A. All original pages of the source database

B. Only the original image of pages changed since the Database Snapshot was
created

C. A catalog of changed pages

D. Metadata about the database objects

Lesson 2: Reverting a Database from a Database Snapshot 609

C1662271X.fm Page 609 Friday, April 29, 2005 8:00 PM
Lesson 2: Reverting a Database from a Database Snapshot
A Database Snapshot provides a point-in-time copy of a source database. Because it
provides a copy of the data in the database, you can use it to recover in a variety of sit-
uations. In the event of data being accidentally damaged or if an administrative pro-
cess makes changes that are unwanted, you can extract the original version of the data
from the Database Snapshot and move it back into the source database using either
an INSERT or UPDATE statement.

In an extreme case, a DBA might want to restore the state of a database back to a pre-
vious point in time. This lesson will explain how to revert a source database to a pre-
vious point in time by using a Database Snapshot.

After this lesson, you will be able to:

■ Revert a database from a Database Snapshot.

Estimated lesson time: 10 minutes

Reverting a Database
Reverting a database is a special subclass of restore operation that you can perform
against a database. During a restore of a database, you can leave the database in a
recovering state to apply subsequent transaction logs to roll a database forward to a
specific point in time. Reverting a database will take a database back to a point in time;
however, you cannot restore subsequent backups after reverting the database to that
point in time.

Using a Database Snapshot to revert a database has some restrictions:

■ Only a single Database Snapshot can exist against a source database.

■ Any full-text catalogs on the source database are dropped and must be re-cre-
ated.

■ The transaction log is rebuilt, which breaks the log chain.

■ The source database and Database Snapshot are offline during the revert.

The syntax to revert a database from a Database Snapshot is as follows:

RESTORE DATABASE <database_name> FROM DATABASE_SNAPSHOT = <database_snapshot_name>

610 Chapter 16 Managing Database Snapshots

C1662271X.fm Page 610 Friday, April 29, 2005 8:00 PM
Quick Check
■ How many Database Snapshots can exist against a source database when

you are restoring?

Quick Check Answer

■ Reverting a database using a Database Snapshot causes all the changed
pages within a Database Snapshot to overwrite the corresponding pages in
the source database. Because this process changes the state of the database,
it would immediately invalidate all Database Snapshots except the one
used to revert from. Therefore, SQL Server enforces the restriction that only
a single Database Snapshot can exist against a source database when you
use the Database Snapshot to revert. In this way, it prevents the possibility
of having invalid Database Snapshots.

PRACTICE Reverting a Database from a Database Snapshot
In this practice, you will revert the AdventureWorks database to a previous version
using the Database Snapshot you created in the previous lesson in this chapter.

1. If necessary, open SSMS and connect to the SQL Server instance containing the
Database Snapshot you created in the previous lesson in this chapter.

2. Click New Query.

3. Type the following code:

RESTORE DATABASE AdventureWorks FROM DATABASE_SNAPSHOT = ’snapshottest’

4. Verify that the data added to the table in the AdventureWorks database during the
previous exercise no longer exists.

Lesson Summary
■ The RESTORE DATABASE command contains a special clause that enables a

DBA to revert a database from a Database Snapshot. This operation would inval-
idate any other Database Snapshots created against the source database, so you
must drop all other Database Snapshots before you can perform a revert. Addi-
tionally, any operation that relies on a contiguous transaction log chain will be
interrupted because the restore process will rebuild the transaction log.

Lesson 2: Reverting a Database from a Database Snapshot 611

C1662271X.fm Page 611 Friday, April 29, 2005 8:00 PM
Lesson Review
The following question is intended to reinforce key information presented in this les-
son. The question is also available on the companion CD if you prefer to review it in
electronic form.

NOTE Answers

Answers to this question and explanations of why each answer choice is right or wrong are located
in the “Answers” section at the end of the book.

1. Which of the following are required before a database can be reverted from a
Database Snapshot? (Choose all that apply.)

A. Full text catalogs on the source database must be dropped.

B. Users cannot be accessing the source database or the Database Snapshot.

C. Log shipping must be stopped.

D. All Database Snapshots except the Database Snapshot used for the revert
must be dropped.

612 Chapter 16 Review

C1662271X.fm Page 612 Friday, April 29, 2005 8:00 PM
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can

■ Review the chapter summary.

■ Review the list of key terms introduced in this chapter.

■ Complete the case scenario. This scenario sets up a real-world situation involv-
ing the topics of this chapter and asks you to create solutions.

■ Complete the suggested practices.

■ Take a practice test.

Chapter Summary
■ A Database Snapshot is a point-in-time, read-only copy of a source database that

can be used for read activities.

■ In addition to read activities, you can use a Database Snapshot to revert a data-
base to a previous point in time defined by the instant in time at which you cre-
ated the Database Snapshot.

■ Because Database Snapshots can be used for read operations as well as recover-
ing to a previous point in time, they are ideal for use in situations in which DBAs
would normally create an interim backup to eliminate a significant amount of
time spent during maintenance operations.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ catalog of changed pages

■ copy-on-write

■ Database Snapshot

■ reverting a database

■ source database

■ sparse file

Chapter 16 Review 613

C1662271X.fm Page 613 Friday, April 29, 2005 8:00 PM
Case Scenario: Implementing Database Snapshots for
Administrative Actions

In the following case scenario, you will apply what you’ve learned in this chapter. You
can find answers to these questions in the “Answers” section at the end of this book.

Contoso Limited, a health care organization located in Bothell, WA, has a very volatile
database that contains patient claims data. The patient data is protected by privacy
laws, and all access to this data is required to be audited. Audit data is written into a
set of audit tables by the stored procedures that control all data access within the
patient claims database.

Auditors within the organization, along with external auditors, require access to audit
data in the patient claims database at specific points in time.

Each evening, Contoso receives data feeds from several external vendors who process
payments to patients. Data in the feeds frequently needs to be edited and reimported
based on validation scripts that reconcile the data within the patient claims database
with the data feeds submitted by the external vendors. During the time when the
import processes execute, no other transactions are issued against the patient claims
database. The current process creates a full backup of the patient claims database
before the import routines are executed.

1. How can Contoso DBAs reduce the amount of time it takes to import data feeds?

2. What mechanism can Contoso use to provide mutiple point-in-time copies of
the data for auditors to query while minimizing the amount of time spent on
administering this solution?

Suggested Practices
Database Snapshots are a very specific feature within SQL Server 2005. A Database
Snapshot has exactly one way to create it, and there is exactly one way to revert a data-
base using a Database Snapshot. Therefore, no additional practices exist for Database
Snapshots beyond those already specified within this chapter.

614 Chapter 16 Review

C1662271X.fm Page 614 Friday, April 29, 2005 8:00 PM
Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-431 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the section titled “How to Use the Prac-
tice Tests” in this book’s Introduction.

C1762271X.fm Page 615 Friday, April 29, 2005 8:02 PM
Chapter 17

Implementing Database Mirroring

Database mirroring is a new Microsoft SQL Server 2005 availability technology that
lets you maintain a hot or warm standby server with automatic failover and no data
latency. Database mirroring, available currently as an evaluation feature that you
enable by using a trace flag, operates at the database level to provide a duplicate copy
of data on a mirror database and server. This chapter introduces you to database mir-
roring, which will be included as a supported feature of SQL Server 2005 in a future
service pack, and it explains each operating mode that you can configure for this long-
awaited feature.

MORE INFO Database mirroring

This chapter covers the basic data mirroring information you need for the 70-431 exam. For full
details about database mirroring, see the white paper “Database Mirroring in SQL Server 2005” by
Ron Talmage at www.microsoft.com/technet/prodtechnol/sql/2005/dbmirror.mspx.

Exam objectives in this chapter:
■ Implement database mirroring.

❑ Prepare databases for database mirroring.

❑ Create endpoints.

❑ Specify database partners.

❑ Specify a witness server.

❑ Configure an operating mode.

Lessons in this chapter:
■ Lesson 1: Understanding Database Mirroring Roles. 618

■ Lesson 2: Preparing Databases for Database Mirroring 622

■ Lesson 3: Establishing Endpoints . 627

■ Lesson 4: Understanding Operating Modes. 634

■ Lesson 5: Failing Over a Database Mirror . 642

■ Lesson 6: Removing Database Mirroring . 645
615

616 Chapter 17 Implementing Database Mirroring

C1762271X.fm Page 616 Friday, April 29, 2005 8:02 PM
Before You Begin
To complete the lessons in this chapter, you must have

■ Three instances of SQL Server 2005 installed.

■ Either Standard or Enterprise Edition for all instances.

■ A copy of the AdventureWorks sample database on one of the instances.

■ Trace flag 1400 enabled on all three instances.

NOTE Enabling database mirroring with trace flag 1400

In the release-to-manufacturing (RTM) version of SQL Server 2005, database mirroring is not a
supported feature and can be enabled only by using trace flag 1400. In a future SQL Server 2005
service pack, database mirroring will be enabled and fully supported within the product. To set a
trace flag, refer to the SQL Server 2005 Books Online article “DBCC TRACEON (Transact-SQL).” SQL
Server 2005 Books Online is installed as part of SQL Server 2005. Updates for SQL Server 2005
Books Online are available for download at www.microsoft.com/technet/prodtechnol/sql/2005/
downloads/books.mspx.

Real World
Michael Hotek

Since I formally entered the database industry more than a decade ago, my pri-
mary focus has been on building systems to predictably achieve high levels of
availability. In the 1980s and 1990s, this was a rather difficult task. It usually
involved complex architectures, complicated components, and a large dose of
custom coding. The tools and technologies were immature at best and nonexist-
ent at worst.

You could divide the availability systems that we designed back then into two
basic categories. Client-oriented systems would receive a transaction and then
write it to multiple destinations. And we generally built server-oriented systems
around code to transfer backups between one or more systems.

As technology matured, we gained additional tools that allowed basic data dupli-
cation across multiple environments in a timely manner. However, this advance-
ment also introduced latency between the primary and secondary databases,
which could lead to data loss. We learned to deal with the potential problem
because we simply could not eliminate it.

Before You Begin 617

C1762271X.fm Page 617 Friday, April 29, 2005 8:02 PM
What we needed was an integrated database technology, transparent to applica-
tions, that would maintain a duplicate copy of the data without incurring
latency. If the technology could also provide mechanisms to automatically fail
over to the secondary database upon failure of the primary database, it would be
a significant evolutionary advancement in availability technologies.

With the addition of database mirroring in SQL Server 2005, we finally have a
technology that fills a significant gap in availability solutions and does not
require custom coding. I can now make a single database within an instance
highly available, with automatic failover, no latency between the primary and
secondary databases, and transparency to the application. It isn’t a perfect solu-
tion yet, but database mirroring is well on the way to fulfilling an availability
requirement that I’ve had for well over ten years.

618 Chapter 17 Implementing Database Mirroring

C1762271X.fm Page 618 Friday, April 29, 2005 8:02 PM
Lesson 1: Understanding Database Mirroring Roles
All new technologies add new terminology to our vocabulary, and database mirroring
is no different. In this lesson, you learn many of the key terms for database mirroring,
including principal database, mirror database, and witness server. And you see how
these different database mirroring roles interact with each other in a database mirror-
ing session.

After this lesson, you will be able to:

■ Define what the principal database does.

■ Define what the mirror database does.

■ Define what the witness server does.

■ Understand how the database mirroring roles work together.

Estimated lesson time: 10 minutes

Database Mirroring Roles
Database mirroring comprises two mandatory roles and a third optional role. You
must define a database in a principal role and another database in a mirror role. You
can also optionally define a SQL Server instance in the role of witness server to govern
automatic failover from the primary to the mirror database. Figure 17-1 shows a refer-
ence diagram for a database mirroring configuration.

Figure 17-1 Database mirroring components

Application

SQL Server

Principal

SQL Server

Mirror

Witness

Lesson 1: Understanding Database Mirroring Roles 619

C1762271X.fm Page 619 Friday, April 29, 2005 8:02 PM
Principal Role
The database you configure in the principal role becomes the source of all transactions
in a data mirroring session. The primary database is recovered, it allows connections,
and applications can read data to and write data from it. Note that you must specify
the Full recovery model for the database to participate in a database mirroring session,
a requirement that Lesson 2 covers in more detail.

NOTE Serving the database

When an instance has a database that allows transactions to be processed against it, it is said to be
“serving the database.”

Mirror Role
The database you define in the mirror role is the partner of the primary database and
continuously receives transactions from the principal database. The database mirror-
ing process is constantly replaying transactions from the primary database into the
transaction log and flushing the transaction log to the data files on the mirror data-
base so that the mirror database includes the same data as the primary database. The
mirror database is in a recovering state, so it does not allow connections of any kind,
and transactions cannot be written directly to it. However, you can perform a database
snapshot against a mirror database to give users read-only access to the database’s
data at a specific point in time. (See Chapter 16, “Managing Database Snapshots,” for
information about database snapshots.)

NOTE Transient operating states

The principal and mirror roles are transient operating states within a database mirroring session.
Because the databases are exact equivalents and are maintained in synchronization with each
other, either database can take on the role of principal or mirror at any time.

Witness Server
The witness server is the third and optional role you can configure within a database
mirroring session. You use this server to implement automatic failure detection and
failover. You configure the witness server by using the High Availability operating mode,
which Lesson 4 discusses. Although database mirroring allows a principal and mirror
to occur only in pairs (for example, a principal cannot have more than one mirror, and
vice versa), a witness server can service multiple database mirroring pairs. Each

620 Chapter 17 Implementing Database Mirroring

C1762271X.fm Page 620 Friday, April 29, 2005 8:02 PM
database mirroring pair that a witness server services has a single row of information
in the sys.database_mirroring_witnesses catalog view. The sole purpose of the witness is
to serve as an arbiter within the High Availability operating mode to ensure that the
database can be served on only one SQL Server instance at a time. If a primary data-
base fails, and the witness confirms the failure, the mirror database can take the pri-
mary role and make its data available to users.

IMPORTANT Database-level vs. server-level roles

Database mirroring’s principal and mirror roles occur at a database level and must be defined
within SQL Server 2005 instances that are either Standard or Enterprise Edition. However, you
define the witness role at an instance level. The instance of SQL Server 2005 that you use for the
witness server can be any edition, including SQL Server Express Edition, which is why we refer to a
principal or mirror database but a witness server.

Quick Check
■ What are the three database mirroring roles and what functions do they

serve?

Quick Check Answer

■ The principal database is currently serving the database to applications.

■ The mirror database is in a recovering state and does not allow
connections.

■ The optional witness server is an instance of SQL Server that is used for
automatic failure detection and failover from a primary to a mirror
database.

Lesson Summary
■ A database participating in a database mirroring session can be in one of two

roles: principal or mirror.

■ The principal database is the database that allows connections and transactions
to be processed.

■ The mirror database is inaccessible to applications and receives transactions
sent from the principal database.

Lesson 1: Understanding Database Mirroring Roles 621

C1762271X.fm Page 621 Friday, April 29, 2005 8:02 PM
■ The witness is a SQL Server instance that functions as an arbiter within a data-
base mirroring session. This is an optional component that you use when you
want to implement automatic failure detection and failover.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which role is valid for database mirroring?

A. Publisher

B. Principal

C. Primary

D. Monitor

2. Which of the following are valid actions for a witness? (Choose all that apply.)

A. Arbitrates a failover for the High Protection operating mode

B. Arbitrates a failover for the High Availability operating mode

C. Serves the database when the principal and mirror are offline

D. Services multiple database mirroring sessions

622 Chapter 17 Implementing Database Mirroring

C1762271X.fm Page 622 Friday, April 29, 2005 8:02 PM
Lesson 2: Preparing Databases for Database Mirroring
You configure database mirroring on a database-by-database basis. Each database you
define must use the Full recovery model to participate in a database mirroring ses-
sion. And you must initialize each mirror database to ensure that it is synchronized
with the principal before you start the mirroring session. This lesson walks through
the four general steps you need to take to prepare for database mirroring:

1. Ensure that databases are set to use the Full recovery model.

2. Back up the primary database.

3. Restore the database to the instance hosting the mirror database by using NORE-
COVERY.

4. Copy all necessary system objects to the instance hosting the mirror database.

After this lesson, you will be able to:

■ Perform the prerequisite steps for enabling database mirroring.

Estimated lesson time: 10 minutes

Recovery Model
SQL Server offers three recovery models for databases: Simple, Bulk-Logged, and Full.
The Simple recovery model minimally logs transactions, removing the inactive por-
tion of the transaction log at each checkpoint. The Bulk-Logged recovery model does
not fully log certain operations such as BULK INSERT, BCP, or CREATE INDEX oper-
ations. Because database mirroring maintains both the primary and mirror databases
as exact duplicates, including synchronizing all internal structures such as Log
Sequence Numbers (LSNs), the Simple and Bulk-Logged recovery models are incom-
patible with database mirroring. Therefore, the only recovery model that a database
can use to participate in database mirroring is the Full recovery model.

NOTE Full recovery model required

You cannot configure database mirroring if the participating databases are not using the Full recov-
ery model. In addition, you cannot change the recovery model of a database that is participating in
database mirroring.

Lesson 2: Preparing Databases for Database Mirroring 623

C1762271X.fm Page 623 Friday, April 29, 2005 8:02 PM
Backup and Restore
Because the principal and mirror databases are duplicates of each other, a mechanism
is needed to ensure that both databases are initialized to the same state. The process
of initialization for database mirroring involves performing a backup of the principal
database and restoring it to the mirror.

When restoring the database to the mirror, it is essential that you specify the NORE-
COVERY option for the RESTORE command, which guarantees that the starting state
of the mirror reflects the state of the principal database, including the LSNs.

You will find that the backup and restore process consumes the most amount of time
during database mirroring configuration. However, you probably will not be able to
take the primary database offline to initialize database mirroring. Instead, because the
database on the mirror is in an unrecovered state, you can apply a chain of transaction
logs to bring the mirror up-to-date.

BEST PRACTICES Initializing the mirror

Instead of performing a backup to initialize the mirror, I always use the last full backup of the pri-
mary database and then apply all subsequent transaction logs. After all log backups are taken, I
execute a final transaction log backup to capture all remaining transactions and then initiate data-
base mirroring. An alternative method uses log shipping to maintain the two databases in synchro-
nization and as the initialization mechanism for database mirroring. In this case, you might still
have to apply at least one transaction log backup before you can initiate the database mirroring
session.

BEST PRACTICES Backup/restore and log shipping

For more information about backup/restore and log shipping, please refer to Chapter 11, “Backing
Up, Restoring, and Moving a Database,” and Chapter 18, “Implementing Log Shipping.”

Copy System Objects
Database mirroring operates at a database level, so it is not responsible for any other
objects on the server. So although you can configure database mirroring to automati-
cally fail over to the mirror database, to allow applications to function after a failover,
you must ensure that all other objects are transferred to the instance hosting the mir-
ror database.

The most common objects that require transfer are the logins that allow applications
to authenticate for database access. You can also have linked servers, SQL Server

624 Chapter 17 Implementing Database Mirroring

C1762271X.fm Page 624 Friday, April 29, 2005 8:02 PM
Integration Services (SSIS) packages, SQL Server Agent jobs, customer error mes-
sages, or other objects configured on the server. Copying all of these objects to the
instance hosting the mirror database is the final step in the initialization process.

NOTE Using SSIS tasks to transfer objects

To transfer objects to the instance hosting the mirror database, you can use SSIS, which includes
the Transfer Logins task for transferring logins from one instance of SQL Server to another while
keeping any passwords encrypted. SSIS also provides tasks for transferring SQL Server Agent jobs,
error messages, and other types of objects.

Quick Check
■ What is the process for preparing a database to participate in a database

mirroring session?

Quick Check Answer

■ Change the recovery model to Full, back up the primary database, restore
to the instance hosting the mirror database with the NORECOVERY option,
and then copy all system objects such as logins and linked servers.

PRACTICE Preparing Databases for Database Mirroring
In this exercise, you will practice preparing databases for database mirroring using
the AdventureWorks database.

1. Connect to the instance hosting the AdventureWorks database that you want to
use as the principal database.

2. Right-click the AdventureWorks database and choose Properties. Select the
Options page.

3. From the Recovery Model drop-down list, select Full. Click OK.

4. Back up the AdventureWorks database.

5. Copy the backup to the machine running the instance on which you want to
host the mirror database.

6. Restore the AdventureWorks database, ensuring that you specify not to recover
the database.

Lesson 2: Preparing Databases for Database Mirroring 625

C1762271X.fm Page 625 Friday, April 29, 2005 8:02 PM
7. Back up the transaction log on the AdventureWorks database, copy the backup to
the machine running the instance in which the mirror database is being hosted,
and restore the transaction log.

8. Transfer to the instance hosting the mirror all logins, jobs, linked servers, and
other objects external to the database that are needed for the application to
work.

Lesson Summary
■ Database mirroring maintains synchronization between the two databases in

the mirroring session.

■ All databases that participate in database mirroring must be set to the Full recov-
ery model to ensure that all transactions are applied to the mirror.

■ You then must initialize the mirror by restoring a backup, ensuring that the
NORECOVERY option is specified.

■ Because database mirroring is responsible only for copying the contents of a
database to the server hosting the mirror database, you must separately copy
over all other server objects, such as logins, linked servers, and jobs.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following is a valid step for preparing a database to participate in a
database mirroring session? (Choose all that apply.)

A. Configure distribution.

B. Back up the database.

C. Restore the database with RECOVERY.

D. Restore the database with NORECOVERY.

626 Chapter 17 Implementing Database Mirroring

C1762271X.fm Page 626 Friday, April 29, 2005 8:02 PM
2. Which database setting is valid for database mirroring?

A. Full recovery model

B. 80 compatibility level

C. Read only

D. Bulk-Logged recovery model

Lesson 3: Establishing Endpoints 627

C1762271X.fm Page 627 Friday, April 29, 2005 8:02 PM
Lesson 3: Establishing Endpoints
SQL Server 2005 introduces a stronger, revamped, multilayer security model. The first
layer of security occurs at the connection point to an instance. And endpoints control
the capability to connect to an instance. Because database mirroring relies on connec-
tivity among up to three instances of SQL Server 2005, you must establish endpoints
to enable communications among these instances. In this lesson, you review the con-
cept of endpoints, walk through endpoint options, and see how to configure end-
points specifically for database mirroring.

After this lesson, you will be able to:

■ Explain endpoint configuration options and best practices.

■ Create endpoints for database mirroring.

Estimated lesson time: 10 minutes

Endpoint Types
In SQL Server 2005, you can create two types of endpoints: TCP or HTTP. Database
mirroring uses TCP endpoints for communications. HTTP endpoints, on the other
hand, service SOAP requests.

MORE INFO HTTP endpoints

For information about HTTP endpoints, see Chapter 13, “Working with HTTP Endpoints.”

Along with a type definition for an endpoint, you specify a payload. TCP endpoints can
have a payload of TSQL, SERVICE_BROKER, or DATABASE_MIRRORING. For a database
mirroring session, you create TCP endpoints with a payload of DATABASE_MIRRORING.
You create an endpoint at the SQL Server instance level instead of at the database level.
So for each SQL Server instance, you can create only one endpoint, which has a payload
of DATABASE_MIRRORING.

MORE INFO Endpoints

For more information about endpoints, see the SQL Server 2005 Books Online article “CREATE
ENDPOINT (Transact-SQL).” SQL Server 2005 Books Online is installed as part of SQL Server 2005.
Updates for SQL Server 2005 Books Online are available for download at www.microsoft.com/
technet/prodtechnol/sql/2005/downloads/books.mspx.

628 Chapter 17 Implementing Database Mirroring

C1762271X.fm Page 628 Friday, April 29, 2005 8:02 PM
Endpoint Security
Endpoints provide multiple layers of security that you can configure for your needs.
The first level of security is in the type and payload definition, as you just saw. When
you create an endpoint for a database mirroring session, the endpoint will not
respond to any requests other than for database mirroring. The endpoint will refuse
any HTTP, Transact-SQL, or Service Broker requests.

The second layer of security is the TCP configuration of the endpoint. Each TCP end-
point requires that you specify a port number. The default port number for a TCP end-
point is 5022. You then configure the Listener IP for the TCP endpoint. By default, the
endpoint accepts connections on any valid IP address (the ALL option). But to further
restrict the requests to which this endpoint responds, you can specify a particular IP
address for it to listen to for requests.

BEST PRACTICES Port numbers

Because port 5022 is the default port number for a TCP endpoint, you should specify a different
port number. Not using the default port number helps foil potential hackers—or at least makes
their job more difficult—by requiring them to use a port scanner instead of just blindly connecting
to port 5022 for a denial of service attack (DoS) or other hacking attack. However, the general rec-
ommendation is to leave the Listener IP set to the default of ALL because a given instance could
have multiple database mirroring sessions running.

The third and fourth layers of security for an endpoint are the authentication method
and the encryption setting. You can use either Microsoft Windows–based authentica-
tion or certificates. You specify Windows-based authentication by selecting the
NTLM, KERBEROS, or NEGOTIATE option. The NEGOTIATE option causes the
instances to dynamically select the authentication method. You can set up certificate-
based authentication by using a certificate from a trusted authority or by generating
your own Windows certificate.

BEST PRACTICES Authentication

When all database mirroring instances reside within a single domain or across trusted domains, you
should use Windows-based authentication. When instances span nontrusted domains, you should
use certificate-based authentication.

All communications between endpoints can be encrypted, and you can specify which
encryption algorithm to use for the communications. The default algorithm is RC4,
but you can specify the much stronger Advanced Encryption Standard (AES)
algorithm.

Lesson 3: Establishing Endpoints 629

C1762271X.fm Page 629 Friday, April 29, 2005 8:02 PM
BEST PRACTICES Encryption

Use RC4 for minimal encryption strength and best performance. Use AES if you require strong
encryption, but note that this algorithm requires more calculation overhead and will affect
performance.

The fifth and sixth layers of security regard state options for an endpoint. You have to
grant CONNECT authority to an endpoint for a connection to be established. Addi-
tionally, you must set the state of the endpoint to STARTED. An endpoint with a state
of STOPPED returns an error for any connection attempt, whereas an endpoint with
a state of DISABLED does not respond to any request. The default option is STOPPED.

Database Mirroring Endpoints
Endpoints that support database mirroring are a special implementation of a TCP
endpoint and have the following characteristics:

■ Endpoint type of TCP

■ Payload of DATABASE_MIRRORING

■ Only one endpoint supporting database mirroring allowed per SQL Server
instance

Database mirroring endpoints establish a seventh layer of security through the use of
the ROLE option. You can specify that an endpoint be a PARTNER, WITNESS, or ALL.
An endpoint specified as PARTNER can participate only as the principal or the mirror.
An endpoint specified as WITNESS can participate only as a witness. An endpoint
specified as ALL can function in any role.

NOTE Endpoints on Express Edition

If you are creating a database mirroring endpoint on SQL Server 2005 Express Edition, it will
support only a role of WITNESS.

The following Transact-SQL example shows how to create a database mirroring
endpoint:

CREATE ENDPOINT [Mirroring]
AS TCP (LISTENER_PORT = 5022)
FOR DATA_MIRRORING (ROLE = PARTNER, ENCRYPTION = REQUIRED);
ALTER ENDPOINT [Mirroring] STATE = STARTED;

630 Chapter 17 Implementing Database Mirroring

C1762271X.fm Page 630 Friday, April 29, 2005 8:02 PM
This code creates an endpoint to service database mirroring sessions on port 5022,
responding to requests from all valid IP addresses. The ROLE = PARTNER option spec-
ifies that the endpoint allows only databases hosted on this SQL Server instance to
participate as a principal or mirror using the RC4 encryption algorithm.

NOTE Configuring database mirroring

You typically configure database mirroring within SQL Server Management Studio (SSMS) from the
Database Properties, Mirroring page. On this page, you click Configure Security, which launches the
Configure Database Mirroring Security Wizard that lets you specify several options. For example,
you can use this wizard to specify whether you plan to use a witness server instance in your
mirroring configuration. When you’re finished with your selections, the wizard executes the two
commands shown in the preceding example—CREATE ENDPOINT and ALTER ENDPOINT—against
each instance hosting a database that participates in a database mirroring session.

Quick Check
■ What are the seven levels of security provided by TCP endpoints servicing

database mirroring sessions?

Quick Check Answer

■ The first layer is the type and payload definition.

■ Layer two defines the TCP options of the port number and Listener IP.

■ Layer three is the authentication method required for the endpoint.

■ Layer four adds encryption options for all communications between
partners.

■ Layer five requires that the account authenticating the connection have
CONNECT permissions.

■ Layer six specifies STATE options that determine whether the endpoint will
allow or respond to connection requests.

■ Layer seven in the endpoint security model restricts the database mirroring
roles that an endpoint supports.

PRACTICE Establishing Endpoints for Database Mirroring
In this practice, you establish the endpoints required for a database mirroring session.
You configure endpoints for a principal, a witness, and a mirror to allow the creation
of a database mirroring session using any operating mode.

Lesson 3: Establishing Endpoints 631

C1762271X.fm Page 631 Friday, April 29, 2005 8:02 PM
1. Connect to the instance hosting the AdventureWorks database that you plan to
use as the principal database.

2. Right-click the AdventureWorks database and choose Properties.

3. Select the Mirroring page.

4. Click Configure Security to launch the Configure Database Mirroring Security
Wizard.

5. On the first screen, the splash screen, select the Do Not Show This Starting Page
Again check box. Click Next. You will now define endpoints for all three
database mirroring roles: principal, mirror, and witness.

6. On the Include Witness Server page, verify that Yes is selected. This option
enables you to configure an endpoint’s security for the witness server instance.
Click Next.

7. On the Choose Servers To Configure page, you see that the Principal Server
check box is selected and unavailable because it is assumed that you are running
the wizard from that instance. Verify that the Mirror Server Instance and Witness
Server Instance check boxes are also selected. Click Next.

8. On the Principal Server Instance page, by default, the Principal Server instance is
already selected. In the Listener Port text box, specify a port number. In the
Endpoint Name text box, type a name for the endpoint. Also verify that the
Encrypt Data Sent Through This Endpoint check box is selected to ensure
secured communications. Click Next.

NOTE Retrieving endpoint information

If an endpoint for database mirroring has already been created for the instance, SQL Server
will retrieve this information and display it in this screen; you cannot edit this information.

9. On the Mirror Server Instance page, click Connect, specify the instance name
and login credentials for the instance on which you want to host the mirror data-
base, and then click Connect. This creates a connection to the instance hosting
the mirror. Specify the port number and a name for the endpoint, and select the
Encrypt Data Sent Through This Endpoint check box to ensure secure commu-
nications. Click Next.

BEST PRACTICES Specifying an endpoint name

I always specify Mirroring as the endpoint name, which standardizes the naming convention
for these types of endpoints so that I can easily distinguish them from other types of
endpoints.

632 Chapter 17 Implementing Database Mirroring

C1762271X.fm Page 632 Friday, April 29, 2005 8:02 PM
10. On the Witness Server Instance page, connect to the witness server instance the
same way you connected to the mirror instance in step 9. Specify the port num-
ber and endpoint name, and then select the Encrypt Data Sent Through This
Endpoint check box to ensure secure communications. Click Next.

CAUTION Configuring endpoints on different instances

For database mirroring, you must configure the principal, mirror, and witness endpoints on
different SQL Server instances.

11. On the Service Accounts page, you specify service accounts. This step is optional.
If all the instances that you are configuring endpoints for have the SQL Server
service running under the same service account, you do not have to specify any-
thing here. Otherwise, specify the service account for the SQL Server service on
all three instances. Click Next.

12. On the Complete The Wizard page, review the configuration settings that the
wizard will implement. If you have any changes to make, click Back until you
reach the appropriate page and then make the necessary changes. If the config-
uration is correct, click Finish.

13. When the wizard completes, click Close. Click OK to close the Database Proper-
ties message box. This message box serves to remind you that mirroring does
not begin until you click Start Mirroring on the Mirroring page of the Database
Properties dialog box for the primary database. Click OK to close the Database
Properties – Adventure Works dialog box.

NOTE Transact-SQL alternative

All the steps you perform within the Configure Database Mirroring Security Wizard are equiv-
alent to connecting to each SQL Server instance and issuing a CREATE ENDPOINT command
along with an ALTER ENDPOINT command to change the state to STARTED.

Lesson Summary
■ Endpoints provide a rich, flexible, and multilayered approach to securing com-

munications.

■ By setting a variety of options for authentication, port number, and encryption,
you can create a secure configuration for database mirroring.

■ You can use Transact-SQL to configure endpoints, but the typical approach is to
use the Database Properties, Mirroring page of SSMS.

Lesson 3: Establishing Endpoints 633

C1762271X.fm Page 633 Friday, April 29, 2005 8:02 PM
Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which types of endpoints and payloads can you create? (Choose all that apply.)

A. TCP endpoint with a TSQL payload

B. HTTP endpoint with a DATABASE_MIRRORING payload

C. TCP endpoint with a DATABASE_MIRRORING payload

D. HTTP endpoint with a TSQL payload

2. Which of the following are endpoint options that are required for transactions to
be exchanged between principal and mirror databases? (Choose all that apply;
each answer represents a portion of a solution.)

A. STATE configured with the default option

B. Port 6083 specified for communications

C. COMPRESSSION set to ENABLED

D. ROLE set to PARTNER

634 Chapter 17 Implementing Database Mirroring

C1762271X.fm Page 634 Friday, April 29, 2005 8:02 PM
Lesson 4: Understanding Operating Modes
You can configure database mirroring for three different operating modes: High Avail-
ability, High Performance, and High Protection. The operating mode governs the way
transactions are transferred between the principal and the mirror databases as well as
the failover processes that are available in the database mirroring session. In this les-
son, you learn about each operating mode, the benefits of each, and how database
mirroring’s caching and transparent client redirect capabilities give it advantages over
other availability technologies.

After this lesson, you will be able to:

■ Explain the differences between each operating mode.

■ Choose the appropriate operating mode for your situation.

■ Explain how database mirroring’s caching and transparent client redirect work.

Estimated lesson time: 10 minutes

Real World
Michael Hotek

One of my customers in the financial services industry had some strict data
availability requirements for its application. The company required the database
to be available more than 99.995 percent of the time as well as a guarantee of
zero data loss—except in the event of a catastrophic failure such as the loss of all
or part of a data center due to an environmental disaster. The organization fur-
ther required that the solution automatically detect any failure of the primary
database as well as automatically fail over to a secondary server. The customer
also wanted all of this to happen without the application’s awareness and with-
out requiring any application code changes.

Replication and log shipping obviously would not work for this set of require-
ments. Although we could get replication to meet the 0.005 percent downtime
requirement, we could not guarantee this level nor could we guarantee zero data
loss. Log shipping could approach but likely not meet the 0.005 percent down-
time requirement and could not automatically detect failure and provide
automatic failover to the secondary server unless we wrote custom code on the
back end. In addition, we could not guarantee zero data loss in a log-shipping
implementation.

Lesson 4: Understanding Operating Modes 635

C1762271X.fm Page 635 Friday, April 29, 2005 8:02 PM
Clustering definitely could not meet the downtime requirements, although it
could meet nearly all of the other requirements if we made a couple of simple
changes to the data access object to add reconnect logic.

To meet this organization’s availability requirements before the introduction of
SQL Server 2005, we would have had to write a lot of custom code and make sig-
nificant changes to the application tier, which the company didn’t want. But the
new database mirroring functionality operating in High Availability operating
mode met all these requirements.

In implementing the data mirroring solution for this customer, we had some ini-
tial issues with application performance until we got the networking layer tuned
properly. We also had to make a small modification to the data access object in
the application to enable the application to detect a disconnect and then auto-
matically reconnect. After we implemented these changes, we had an operating
availability solution that met all the customer’s availability requirements.

High Availability Operating Mode
Database mirroring’s High Availability operating mode provides durable, synchro-
nous transfer between the principal and mirror databases in addition to automatic
failure detection and failover.

SQL Server first writes all transactions into memory buffers within the SQL Server mem-
ory space. The system writes out these memory buffers to the transaction log and then
flushes the log to the data files. When SQL Server writes the transaction to the transaction
log, the system triggers database mirroring to begin transferring the transaction log rows
to the mirror. The transaction rows continue to flow to the mirror. When the application
issues a commit for the transaction, the transaction is first committed on the mirror data-
base. An acknowledgement of the commit is sent back to the principal, which then allows
the commit to be issued. After the commit is issued on the principal, the acknowledg-
ment is sent back to the application, allowing it to continue processing. This process guar-
antees that all transactions are committed and hardened to the transaction log on both
the principal and mirror databases before the commit is returned to the application.

NOTE Classic availability method

The High Availability operating mode uses an availability methodology that has been in practice for
several decades. The application writes directly to at least two servers and does not process the next
request until the transaction has committed to all servers. Database mirroring takes this approach one
step further by extending it into the database, thereby making it transparent to applications.

636 Chapter 17 Implementing Database Mirroring

C1762271X.fm Page 636 Friday, April 29, 2005 8:02 PM
The synchronous transfer of data poses a planning issue for applications. Because a
transaction is not considered committed until SQL Server has successfully committed
it to the transaction log on both the principal and the mirror database, High Availabil-
ity operating mode incurs performance overhead. And as the distance between the
principal and the mirror instances increases, the performance impact also increases.

High Availability operating mode requires a witness server along with the principal
and mirror databases for database mirroring to automatically detect a failure at the
principal and fail over to the mirror. To detect failure, High Availability operating
mode uses a simple ping between each instance that participates in the database mir-
roring session.

CAUTION Ping test limitation

A database can become inaccessible due to a runaway transaction or other operations. However,
database mirroring does not detect these as failures; only a failure of the ping test is considered a
failure.

When the database mirroring session fails over, SQL Server reverses the roles of the
principal and mirror. SQL Server promotes the mirror database to the principal and
begins serving the database, and it then demotes the principal database to the mirror.
SQL Server also automatically reverses the transaction flow. This process is a signifi-
cant improvement over other availability methods such as replication or log shipping,
which require manual intervention or even reconfiguration to reverse the transaction
flow.

In this automatic failover process, the mirror essentially promotes itself to principal
and begins serving the database. But first, the witness server must arbitrate the
failover and role reversal by requiring two of the three database mirroring roles—or a
quorum—to agree on the promotion. A quorum is necessary to prevent the database
from being served on more than one instance within the database mirroring session.
If the principal were to fail, and the mirror could not connect to the witness, it would
be impossible to reach a quorum, and SQL Server would then not promote the mirror
to the principal.

NOTE Split-brain problem

If the mirror were allowed to determine that it should serve the database by itself, it could intro-
duce a situation whereby the database would be accessible to transactions on more than one
server. This is referred to as a “split-brain” problem.

Lesson 4: Understanding Operating Modes 637

C1762271X.fm Page 637 Friday, April 29, 2005 8:02 PM
High Availability operating mode’s automatic failure detection and failover follow
these general steps:

1. The principal and mirror continuously ping each other.

2. The witness periodically pings both principal and mirror.

3. The principal fails.

4. The mirror detects the failure and makes a request to the witness to promote
itself to the principal database.

5. The witness cannot ping the principal but can ping the mirror, so the witness
agrees with the role reversal, and SQL Server promotes the mirror to the principal.

6. The principal server comes back online from the failure and detects that the mir-
ror has been promoted to principal.

7. SQL Server demotes the original principal to a mirror, and transactions begin
flowing to this database to resynchronize it with the new principal.

IMPORTANT Hot standby: witness must be online

If the witness server is offline, there is no automatic failover. This means that you can use
High Availability operating mode to provide a hot standby server only when the witness
server is online. Otherwise, you have a warm standby configuration.

High Performance Operating Mode
Database mirroring’s High Performance operating mode uses a principal and a mirror
database but does not need a witness server. This operating mode provides a warm
standby configuration that does not support automatic failure detection or failover.

High Performance operating mode does not automatically fail over because the appli-
cation’s transactions are sent to the mirror asynchronously. Transactions are commit-
ted to the principal database and acknowledged to the application. A separate process
constantly sends those transactions to the mirror, which introduces latency into the
process. This latency prevents a database mirroring session from automatically failing
over because the process cannot guarantee that SQL Server has received all transac-
tions at the mirror when a failure occurs.

Because the transfer is asynchronous, High Performance operating mode does not
affect application performance, and you can have greater geographic separation
between the principal and mirror. However, this mode increases latency and can lead
to greater data loss in the event of a primary database failure.

638 Chapter 17 Implementing Database Mirroring

C1762271X.fm Page 638 Friday, April 29, 2005 8:02 PM
High Protection Operating Mode
Database mirroring’s High Protection operating mode is the same as High Availability
operating mode, except that you do not configure a witness server. SQL Server trans-
fers transactions synchronously between principal and mirror, but because a two-out-
of-three quorum cannot be achieved without a witness, failover is manual. If the prin-
cipal fails in High Protection operating mode, you must manually promote the mirror
to serve the database.

BEST PRACTICES High Protection operating mode

Because High Protection operating mode’s synchronous transfer can affect application perfor-
mance while not offering the benefit of automatic failover, this operating mode is not recom-
mended for normal operations. You should configure a database mirroring session in High
Protection operating mode only when you need to replace the existing witness server. After you
have replaced or recovered the witness, you should change the operating mode back to High
Availability operating mode.

Caching
Each high availability technology available in SQL Server 2005 has performance and
possibly application implications during a failover. Clustering avoids the application
issues because it uses only one instance; however, the instance must restart on another
node, thereby causing the data and query caches to be repopulated. Log shipping
requires changes to the application to reconnect to the secondary server as well as
requiring the data cache and procedure cache to be repopulated. Replication requires
application changes to reconnect to a subscriber and has some performance impact
because the query cache and part of the data cache would need to be repopulated.

Database mirroring, however, does not have caching issues. In addition to sending
transactions to the mirror, database mirroring also performs periodic metadata trans-
fers. The purpose of these metadata transfers is to cause the mirror to read pages into
data cache. This process maintains the cache on the mirror in a “semi-hot” state. The
cache on the mirror does not reflect the exact contents of the cache on the principal,
but it does contain most of the pages. Thus, when the database mirroring session fails
over, SQL Server does not have to completely rebuild the cache, and applications do
not experience as large a performance impact as they would if you had used the other
availability technologies.

Lesson 4: Understanding Operating Modes 639

C1762271X.fm Page 639 Friday, April 29, 2005 8:02 PM
Transparent Client Redirection
One of the most difficult processes of failing over when using either log shipping or
replication involves application connections. Applications must be redirected to the
secondary server to continue processing. Database mirroring can avoid this necessity
under a very particular configuration.

The new version of MDAC that ships with Microsoft Visual Studio 2005 contains a
database mirroring–related feature within the connection object called Transparent Cli-
ent Redirect. When a connection is made to a principal, the connection object caches
the principal as well as the mirror. This caching is transparent to the application, and
developers do not need to implement any code to implement this functionality.

If a database mirroring session were to fail over while an application were connected,
the connection would be broken, and the connection object would send an error back
to the client. The client would then just need to reconnect, and the connection cache
within MDAC would automatically redirect the connection to the mirror server. The
application would think it was connecting to the same server to which it was origi-
nally connected, when in fact it is connected to a different server.

Quick Check
1. What are the three operating modes for database mirroring?

2. Which mode is not recommended for normal operations?

Quick Check Answers

1. The three operating modes are High Availability operating mode, High
Performance operating mode, and High Protection operating mode.

2. High Protection operating mode is not recommended for normal opera-
tions because its synchronous transfers have high performance impact
without the benefit of automatic failover.

PRACTICE Configuring the Operating Mode
In this exercise, you will practice configuring the AdventureWorks database for High
Availability operating mode.

1. Right-click the AdventureWorks database on the instance that will host the prin-
cipal database, choose Properties, and select the Mirroring page.

640 Chapter 17 Implementing Database Mirroring

C1762271X.fm Page 640 Friday, April 29, 2005 8:02 PM
2. Specify the endpoints for principal, mirror, and witness that you configured in
the previous establishing endpoints practice.

NOTE Retrieving an endpoint address

If you do not remember the endpoint addresses, you can retrieve them using one of two
mechanisms:

❑ You can query sys.database_mirroring_endpoints on each instance to get the endpoint
address for each instance.

❑ You can launch the Configure Database Mirroring Security Wizard by clicking Configure
Security and walking through each step. Because you have already created the end-
points, the wizard automatically retrieves information about them. When the wizard
finalizes, it automatically enters the endpoint addresses into the appropriate fields for
configuring database mirroring.

3. Verify that the Synchronous With Automatic Failover (High Availability) operat-
ing mode is selected.

4. Click Start Mirroring. When mirroring completes, click OK to close the Data-
base Properties – AdventureWorks dialog box.

NOTE Transact-SQL alternatives for configuring operating mode

This process within SSMS is equivalent to connecting to the mirror database and issuing an
ALTER DATABASE SET PARTNER Transact-SQL statement and then connecting to the principal
database and issuing the statement ALTER DATABASE SET PARTNER along with ALTER DATA-
BASE SET WITNESS.

Lesson Summary
■ Operating modes govern the way SQL Server transfers transactions between the

principal and the mirror databases as well as the failover processes that are avail-
able in the database mirroring session.

■ High Availability operating mode synchronously transfers data between princi-
pal and mirror, requires a witness, and automatically fails over only when the
witness is present.

■ High Performance operating mode asynchronously transfers data between prin-
cipal and mirror, does not use a witness, and requires a manual failover.

■ High Protection operating mode synchronously transfers data between principal
and mirror, does not use a mirror, and requires manual failover.

Lesson 4: Understanding Operating Modes 641

C1762271X.fm Page 641 Friday, April 29, 2005 8:02 PM
■ Metadata transactions are periodically sent to the mirror to maintain the cache
on the mirror in a semi-hot state.

■ Transparent Client Redirection allows connections to be transparently
redirected to the mirror upon a failover.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following are characteristics of High Availability operating mode?
(Choose all that apply.)

A. Asynchronous data transfer

B. Synchronous data transfer

C. Automatic failover

D. Manual failover

2. Which of the following are characteristics of High Performance operating mode?
(Choose all that apply.)

A. Asynchronous data transfer

B. Synchronous data transfer

C. Automatic failover

D. Manual failover

3. Which of the following are characteristics of High Protection operating mode?
(Choose all that apply.)

A. Asynchronous data transfer

B. Synchronous data transfer

C. Automatic failover

D. Manual failover

642 Chapter 17 Implementing Database Mirroring

C1762271X.fm Page 642 Friday, April 29, 2005 8:02 PM
Lesson 5: Failing Over a Database Mirror
When you configure a database mirroring session in High Availability operating
mode, a failure of the principal triggers an automatic failover to the mirror in all except
one scenario: when the witness server is unavailable. You must always perform man-
ual failover for the High Performance and High Protection operating modes. For these
reasons, it is important for you to understand how to manually fail over to the mirror
to achieve maximum uptime. This lesson explains the failure scenarios requiring a
manual failover as well as the commands you use to initiate a failover.

After this lesson, you will be able to:

■ Explain which failure scenarios require manual failover.

■ Fail over a database mirroring session.

Estimated lesson time: 10 minutes

Understanding Failure Scenarios
As Lesson 4 explained, a database mirroring session in High Availability operating
mode can automatically fail over to the mirror as long as the witness is online and
available. Automatic failover requires the presence of the witness to prevent both the
principal and the mirror from bringing the database online. However, if the witness is
offline and the principal fails, you must manually fail over the database mirroring ses-
sion at the mirror.

CAUTION If the witness is not visible from the mirror

If the witness server is not visible from the mirror, you must either reconfigure the operating mode
for the database mirroring session or turn off the witness.

Alternatively, you can manually fail over a database mirroring session in High Avail-
ability operating mode by issuing the following command at the principal:

ALTER DATABASE SET PARTNER FAILOVER

BEST PRACTICES Manual failover

In High Availability operating mode, you would normally issue this statement to manually fail over
from the principal to the mirror before taking the principal offline for maintenance.

Lesson 5: Failing Over a Database Mirror 643

C1762271X.fm Page 643 Friday, April 29, 2005 8:02 PM
A failure of the principal in either High Performance or High Protection operating
mode leaves the mirror in a restoring state and inaccessible to transactions. When this
occurs, you must connect to the mirror and initiate a manual failover from there.

How to Initiate a Failover
The most common scenario for initiating a failover in a production environment is to
do so from the mirror. Initiating a failover is a straightforward process. However, you
cannot manually initiate a failover at the mirror from the Database Properties page
within SSMS because the mirror database is in a recovering state. In this state, the
database is inaccessible. Because the only time you can manually initiate a failover
from the graphical user interface (GUI) is when the principal is online, which is not
the typical situation, you should always use the ALTER DATABASE Transact-SQL com-
mand to initiate a failover. The complete ALTER DATABASE command you issue at the
mirror database is as follows:

ALTER DATABASE <mirror_database> SET PARTNER FORCE_SERVICE_ALLOW_DATA_LOSS

IMPORTANT Data loss possible

Manually forcing the failover can cause data loss. With the original principal unavailable, the part-
ners cannot communicate with each other and therefore cannot synchronize their databases. Until
the original principal comes back online and can be used as the new mirror, the database mirroring
session is suspended.

Quick Check
■ What are the requirements to issue the ALTER DATABASE statement at the

mirror to initiate a failover of the database mirroring session?

Quick Check Answer

■ To initiate a failover from the mirror, the witness must be turned off or con-
nected to the mirror, and the principal must be inaccessible.

PRACTICE Failing Over a Database Mirror
In this exercise, you practice the manual failover of the AdventureWorks database from
the principal to the mirror.

644 Chapter 17 Implementing Database Mirroring

C1762271X.fm Page 644 Friday, April 29, 2005 8:02 PM
NOTE Use High Performance or High Protection operating mode

In this exercise, to avoid issues with getting a High Availability operating mode in the proper state
to accomplish a manual failover at the mirror, first configure a database mirroring session in either
High Performance or High Protection operating mode without a witness server.

1. Stop the instance that is hosting the principal database. (Right-click the instance
in Object Explorer, choose Stop, and then click Yes to confirm that you want to
stop the instance.)

2. Connect to the instance that is hosting the mirror database.

3. Execute the ALTER DATABASE command to initiate the failover to the mirror:

ALTER DATABASE AdventureWorks SET PARTNER FORCE_SERVICE_ALLOW_DATA_LOSS

Lesson Summary
■ You can initiate a manual failover at the mirror only when the principal is inac-

cessible and the witness is either off or connected to the mirror.

■ To accomplish the failover of a database mirroring session, you need to issue an
ALTER DATABASE command at the mirror database using the option of
FORCE_SERVICE_ALLOW_DATA_LOSS.

■ You can force a failover from the principal if you need to perform maintenance
on the principal.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which command, when executed from the mirror, will fail over a database mir-
roring session?

A. ALTER DATABASE SET PARTNER OFF

B. ALTER DATABASE SET WITNESS OFF

C. ALTER DATABASE SET PARTNER FAILOVER

D. ALTER DATABASE SET PARTNER FORCE_SERVICE_ALLOW_DATA_LOSS

Lesson 6: Removing Database Mirroring 645

C1762271X.fm Page 645 Friday, April 29, 2005 8:02 PM
Lesson 6: Removing Database Mirroring
After it is configured, you should remove database mirroring only in extreme cases. By
removing database mirroring, you terminate all data transfer between the principal
and the mirror databases. In this lesson, you learn when to remove database mirror-
ing and how to perform this task.

After this lesson, you will be able to:

■ Remove database mirroring.

Estimated lesson time: 10 minutes

Removing Database Mirroring
You should remove database mirroring only under the following circumstances:

■ You no longer want to mirror a database.

■ The principal has been damaged to such an extent that it would be easier to rein-
itialize the entire environment.

You can remove a database mirroring session by clicking Stop Mirroring within the
Database Properties, Mirroring page for the principal database. This step immediately
terminates the database mirroring session. When you click Stop Mirroring, the GUI
issues the following single command to terminate the database mirroring session:

ALTER DATABASE <database name> SET PARTNER OFF

Instead of using the GUI, you can alternatively issue this command at either the prin-
cipal or mirror database to remove database mirroring.

Quick Check
■ How do you terminate a database mirroring session?

Quick Check Answer

■ You can immediately terminate a database mirroring session by clicking
Stop Mirroring on the Database Properties, Mirroring page or issuing a
single ALTER DATABASE command from either the principal or the mirror
database.

646 Chapter 17 Implementing Database Mirroring

C1762271X.fm Page 646 Friday, April 29, 2005 8:02 PM
PRACTICE Removing Database Mirroring
In this exercise, you will practice removing database mirroring.

1. Right-click the AdventureWorks database on the principal instance and choose
Properties.

2. In the Mirroring page, click Stop Mirroring.

NOTE Transact-SQL alternative to remove mirroring

Clicking Stop Mirroring in the GUI is equivalent to issuing the ALTER DATABASE Adventure-
Works SET PARTNER OFF Transact-SQL command from either the principal or the mirror
database.

Lesson Summary
■ Remove a database mirroring session only in an extreme case, such as when the

principal becomes damaged beyond repair, or if you have decided that database
mirroring is no longer needed.

■ To remove database mirroring, you can click Stop Mirroring on the Mirroring
page or issue an ALTER DATABASE command from either the principal or the
mirror.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. To terminate the database mirroring session, you can issue the ALTER
DATABASE command against which partners? (Choose all that apply.)

A. Principal

B. Mirror

C. Witness

D. Distributor

Chapter 17 Review 647

C1762271X.fm Page 647 Friday, April 29, 2005 8:02 PM
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can

■ Review the chapter summary.

■ Review the list of key terms introduced in this chapter.

■ Complete the case scenario. This scenario sets up a real-world situation
involving the topics of this chapter and asks you to create solutions.

■ Complete the suggested practices.

■ Take a practice test.

Chapter Summary
■ Database mirroring provides a major new technology for achieving high availabil-

ity for your databases. Data is securely synchronized between two databases—a
principal database and a mirror database—on separate instances of SQL Server.

■ When configured in High Availability operating mode, database mirroring syn-
chronously transfers transactions between the principal and mirror databases.
This operating mode requires a witness server, which arbitrates the automatic
failover to the mirror when the principal becomes unavailable.

■ When configured in High Performance operating mode, database mirroring
asynchronously transfers transactions between the principal and mirror data-
bases. Because of the asynchronous transfer, application performance is not
affected, but the failover to the mirror requires manual intervention.

■ Perform manual failover at the mirror server by issuing a single ALTER DATA-
BASE statement with the FORCE_SERVICE_ALLOW_DATA_LOSS option.

■ Removing database mirroring is an easy step within the GUI or via the Transact-
SQL ALTER DATABASE statement, but it should be done only in extreme cases
or if you do not want to mirror a database any more.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ database mirroring

■ database mirroring role

648 Chapter 17 Review

C1762271X.fm Page 648 Friday, April 29, 2005 8:02 PM
■ database mirroring session

■ database partners

■ endpoint

■ High Availability operating mode

■ High Performance operating mode

■ High Protection operating mode

■ mirror

■ mirror failover

■ operating mode

■ payload

■ principal

■ Transparent Client Redirection

■ witness (witness server)

Case Scenario: Implementing Database Mirroring
In the following case scenario, you will apply what you’ve learned in this chapter. You
can find answers to these questions in the “Answers section” at the end of this book.

Contoso Limited, a health care company located in Bothell, WA, has a volatile data-
base containing patient claims data. The patient data is protected by privacy laws, and
all access to this data is required to be audited. Audit data is written into a set of audit
tables by the stored procedures that control all data access within the patient claims
database.

Auditors within the company, along with external auditors, require access to audit
data in the patient claims database at specific points in time. Contoso has had periods
during which patient claims data has been unavailable because of administrative
actions on the server or equipment failures. The company needs to implement an
availability solution that does not require changes to its existing ASP.NET 2.0 and C#
.NET 2.0 applications while also providing automatic failover to a secondary server
when the primary goes offline. If Contoso can also use the secondary server to offload
the audit reviews, that would be a bonus.

Chapter 17 Review 649

C1762271X.fm Page 649 Friday, April 29, 2005 8:02 PM
Suggested Practices
To help you successfully master the exam objectives presented in this chapter, com-
plete the following tasks.

Establishing Database Mirroring
To become familiar with database mirroring, practice creating endpoints and config-
uring database mirroring, including configuration of operating modes. Compare
states within the mirroring session as you take various components offline and then
practice failing over automatically and manually.

■ Practice 1 Create database mirroring endpoints for a principal, mirror, and wit-
ness by using two different methods: the Configure Database Mirroring Security
Wizard within the Database Properties, Mirroring page and the CREATE END-
POINT/ALTER ENDPOINT Transact-SQL commands.

■ Practice 2 Configure database mirroring in High Availability operating mode by
using the AdventureWorks database.

■ Practice 3 Take the witness offline and observe the state of the mirror database.
Then take the mirror offline and observe the effect on the principal database.
Bring the mirror and witness back online and observe the various states within
the system.

■ Practice 4 Change the operating mode to High Performance and repeat Practice 3.

■ Practice 5 Change the operating mode to High Protection and repeat Practice 3.

■ Practice 6 Perform an automatic failover in High Availability operating mode by
shutting down the instance hosting the principal while the mirror and witness
are online.

■ Practice 7 Initiate a manual failover in each of the operating modes, using two
different methods: SSMS and Transact-SQL.

Creating a Database Snapshot Against a Database Mirror
For this task, practice creating a database snapshot that you can use for reporting pur-
poses.

■ Practice 1 Create a database snapshot against the mirror database. Either drop
and re-create the database snapshot or create a series of database snapshots to
see how data changes—and how quickly it changes—on the mirror, depending on
the operating mode.

650 Chapter 17 Review

C1762271X.fm Page 650 Friday, April 29, 2005 8:02 PM
Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-431 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the “How to Use the Practice Tests”
section in this book’s Introduction.

C1862271X.fm Page 651 Friday, April 29, 2005 8:03 PM
Chapter 18

Implementing Log Shipping

Log shipping is the automated process of backing up, copying, and restoring the trans-
action log from one database on a primary server to one or more secondary databases
on another server. Using log shipping, you can frequently synchronize the copy of the
database with the original, so you can use the copy to distribute query processing for
improved performance or as a warm standby database for high availability. This chap-
ter will explain log shipping’s components, processes, and requirements. It then will
show you how to configure the primary and secondary databases, the various log
shipping options, and the optional monitor server for optimal operations.

Exam objectives in this chapter:
■ Implement log shipping.

❑ Initialize a secondary database.

❑ Configure log shipping options.

❑ Configure a log shipping mode.

❑ Configure monitoring.

Lessons in this chapter:
■ Lesson 1: Preparing to Log Ship . 653

■ Lesson 2: Configuring Log Shipping Options . 658

■ Lesson 3: Configuring Log Shipping Mode . 676

■ Lesson 4: Configuring Monitoring . 684

Before You Begin
To complete the lessons in this chapter, you must have

■ A computer that meets the hardware and software requirements for Microsoft
SQL Server 2005.

■ SQL Server 2005 Developer, Workgroup, Standard, or Enterprise Edition installed.

■ SQL Server Agent running and configured with a Microsoft Windows service
account.
651

652 Chapter 18 Implementing Log Shipping

C1862271X.fm Page 652 Friday, April 29, 2005 8:03 PM
Real World
Javier Loria

Business users usually like the idea of log shipping because it doesn’t require
expensive hardware. The first time I explained the benefits of log shipping to
one of my customers, she liked the idea so much that she wanted to replace all
her clustered servers with a log shipping implementation. I explained that log
shipping configurations don’t automatically redirect users from one server to
another as clustered servers do and that reconfiguring the secondary system as
your primary system might take some time. After she reviewed the business
objectives of each of her database servers, she chose to use log shipping technol-
ogy for only three servers that do not run mission-critical applications.

Lesson 1: Preparing to Log Ship 653

C1862271X.fm Page 653 Friday, April 29, 2005 8:03 PM
Lesson 1: Preparing to Log Ship
Before you configure log shipping, you need to understand log shipping’s architecture
and requirements. In this lesson, you’ll learn how SQL Server 2005 implements log
shipping and its requirements for log shipping.

After this lesson, you will be able to:

■ Explain how log shipping works.

■ List the server and database requirements for log shipping.

Estimated lesson time: 15 minutes

Understanding Log Shipping
Log shipping synchronizes distributed databases that can reside on different servers
or on the same server but within different instances. A log shipping configuration
doesn’t automatically fail over from the primary server to the secondary server. If you
need to switch from the primary database to a secondary database, you bring the sec-
ondary database online manually.

SQL Server uses SQL Server Agent jobs to automate log shipping operations. Log
shipping defines SQL Server Agent jobs to automate backup, copy, and restore pro-
cesses at scheduled times. SQL Server then stores information about the history of its
execution of jobs in the msdb database.

MORE INFO SQL Server Agent

For more information about SQL Server Agent, see Chapter 14, “Working with SQL Server Agent
Jobs.”

NOTE Log shipping in SQL Server 2005

Unlike in previous versions of SQL Server, log shipping in SQL Server 2005 is not part of the Data-
base Maintenance Plan Wizard.

The recommended log shipping configuration comprises five components: a primary
database, a secondary database, a primary server, a secondary server, and a monitor
server. Although a separate monitor server is optional, this configuration provides the

654 Chapter 18 Implementing Log Shipping

C1862271X.fm Page 654 Friday, April 29, 2005 8:03 PM
best setup for effective administration of your log shipping process. Table 18-1 defines
each component.

Figure 18-1 illustrates these components in a typical log shipping configuration.

Figure 18-1 Typical log shipping configuration

Table 18-1 Log Shipping Terms

Term Definition

Primary database The primary database is the original database that’s distrib-
uted to other servers. The primary database receives the
updates from the application.

Secondary database The secondary database is the distributed copy of the pri-
mary database. The secondary database is frequently
synchronized through transaction log restores.

Primary server The primary server is the SQL Server database engine
instance that owns the primary database.

Secondary server The secondary server is the SQL Server database engine
instance that owns a secondary database. You can config-
ure multiple secondary servers.

Monitor server The monitor server is the SQL Server database engine
instance that keeps track of the log shipping process and
raises alerts when the process fails.

Monitor
Server

Secondary
Server

Primary
Server

Primary
Database

Secondary
Database

Lesson 1: Preparing to Log Ship 655

C1862271X.fm Page 655 Friday, April 29, 2005 8:03 PM
BEST PRACTICES Server configuration

The same server can play different roles within the same log shipping configuration or in different log
shipping configurations. For example, you could use the same server as both the primary server and
the monitor server in the same configuration. However, to create a more fault-tolerant system, you
shouldn’t use the monitor server as the primary or secondary server in the same configuration.

The log shipping process consists of three main operations:

■ Backing up the transaction log of the primary database.

■ Copying the transaction log backup to each secondary server.

■ Restoring the transaction log backup on the secondary database.

Understanding Log Shipping Requirements
Log shipping requires the following infrastructure:

■ You must have at least two SQL Server 2005 database engine servers or two data-
base engine instances in your log shipping implementation. To configure a sep-
arate monitor server, you need three servers or three instances. However, for
testing and learning purposes, you can configure the same server as the primary,
secondary, and monitor server.

■ All servers participating in the log shipping process must have SQL Server 2005
Standard, Workgroup, Enterprise, or Developer Edition installed. SQL Server
2005 Express Edition does not support log shipping.

IMPORTANT SQL Server 2003 log shipping version compatibility

Previous versions of SQL Server cannot participate in a SQL Server 2005 log shipping process.

■ SQL Server Agent services should be running and configured with network cre-
dentials. You can configure log shipping with SQL Server Agent services
stopped, but the process doesn’t run automatically.

■ The primary database must be configured with the Full or Bulk-Logged recovery
model.

■ You must have a shared folder to copy the transaction log backups to. The SQL
Server Agent service account of the primary server should have read/write access
either to the shared folder or to the local NTFS folder. The SQL Server Agent
account of the secondary server should have read access to the shared folder.

■ The user configuring the log shipping process must have sysadmin access to the
participating servers.

656 Chapter 18 Implementing Log Shipping

C1862271X.fm Page 656 Friday, April 29, 2005 8:03 PM
Quick Check
■ Your manager wants to use SQL Server 2005 Express Edition to monitor

the log shipping process. What should you tell him?

Quick Check Answer

■ Log shipping is not supported in SQL Server 2005 Express Edition.

Lesson Summary
■ Log shipping uses SQL Server Agent jobs to automate the process of backing up,

copying, and restoring data from a primary database on one server or instance to
one or more secondary databases on another server or instance.

■ You can use the secondary database either to improve application performance
by allowing distributed queries or to improve availability.

■ You can also configure a monitor server to record the status and historic infor-
mation about log shipping jobs.

■ Among the prerequisites for log shipping is that the primary database must be in
either Full or Bulk-Logged recovery mode.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which SQL Server versions can participate in a SQL Server 2005 log shipping
configuration as a monitor server? (Choose all that apply.)

A. SQL Server 2005 Enterprise Edition

B. SQL Server 2005 Express Edition

C. SQL Server 2000 Standard Edition

D. SQL Server 2005 Workgroup Edition

Lesson 1: Preparing to Log Ship 657

C1862271X.fm Page 657 Friday, April 29, 2005 8:03 PM
2. Which of the following database options can be responsible for preventing a log
shipping configuration from succeeding?

A. ANSI NULL Default: True

B. Compatibility Level: SQL Server 2000 (80)

C. Quoted Identifiers Enable: False

D. Recovery Model: Simple

3. Which permissions are required on the backup shared folder to create a log ship-
ping configuration? (Choose all that apply.)

A. Primary SQL Server Agent service account: full permissions.

B. Primary SQL Server Agent service account: read/write.

C. Secondary SQL Server Agent service account: read.

D. Secondary SQL Server Agent service account: no access.

658 Chapter 18 Implementing Log Shipping

C1862271X.fm Page 658 Friday, April 29, 2005 8:03 PM
Lesson 2: Configuring Log Shipping Options
SQL Server 2005 offers three methods for configuring log shipping. The most
straightforward method is via SQL Server Management Studio (SSMS), the graphical
user interface (GUI) tool that database administrators (DBAs) use to configure,
administer, and maintain SQL Server 2005, including log shipping tasks. Alterna-
tively, you can use Transact-SQL statements or SQL Server Management Objects
(SMO) to configure log shipping. In this lesson, you will learn how to use SSMS to cre-
ate a log shipping configuration. The general steps for setting up a log shipping con-
figuration are as follows:

1. Enable the primary database for log shipping.

2. Set log shipping backup options.

3. Enable secondary servers.

4. Set log shipping restore options.

After this lesson, you will be able to:

■ Enable the primary database for log shipping.

■ Set log shipping backup options.

■ Use SSMS to script the log shipping configuration.

■ Enable secondary servers.

■ Set log shipping restore options.

Estimated lesson time: 40 minutes

How to Enable the Primary Database
You configure log shipping in SSMS from the Database Properties window. Here’s
how to enable the primary database for log shipping:

1. To display the Database Properties windows, open SSMS.

2. Connect to the database engine server that hosts the database and navigate to
the appropriate database.

3. Select the database you want, right-click the database, and then choose
Properties.

Lesson 2: Configuring Log Shipping Options 659

C1862271X.fm Page 659 Friday, April 29, 2005 8:03 PM
4. Below Select A Page, select the Transaction Log Shipping page (see Figure 18-2).
Remember that only users with sysadmin access can create log shipping
configurations.

Figure 18-2 SSMS Database Properties window

5. To configure the database as the primary database in your log shipping imple-
mentation, select the Enable This As A Primary Database In A Log Shipping Con-
figuration check box.

Defining Log Shipping Backup Options
With the primary database enabled, you can now configure backup settings for the
database. When you select the Enable This As A Primary Database In A Log Shipping
Configuration check box on the Transaction Log Shipping page of the Database Prop-
erties window, the Backup Settings button is enabled. To start your backup definition,
click Backup Settings to display the Transaction Log Backup Settings window, shown
in Figure 18-3.

660 Chapter 18 Implementing Log Shipping

C1862271X.fm Page 660 Friday, April 29, 2005 8:03 PM
Figure 18-3 Transaction Log Backup Settings window

In this window, you define the backup options for the log shipping process. The avail-
able options are network path, local path (optional), retention period, threshold alert,
job name, and schedule. The network path is the Universal Naming Convention
(UNC) path in which you want to store the backup files for access by secondary serv-
ers. The local path is optional, and its default is the network path. To use a local folder
to store the backup files, specify it here.

IMPORTANT Security

When you use a local folder to store backup files, the primary SQL Server Agent must have read/
write access to the local folder, and the secondary SQL Server Agents must have read access to the
shared folder. When using a remote shared folder, the primary SQL Server Agent must have read/
write access to the shared folder, and secondary SQL Server Agents must have read access.

You use the retention period to specify how long the backup files will remain in the
shared folder. Log shipping jobs automatically delete the files after the period you
specify. You use the threshold alert to specify how long after the last backup an alert
will be raised if no other backup occurs. Use the job name to specify the name of the
job responsible for the backup task. Click Schedule to display the Job Schedule Prop-
erties window, in which you can set the frequency of the task. After configuring the
options, click OK.

Lesson 2: Configuring Log Shipping Options 661

C1862271X.fm Page 661 Friday, April 29, 2005 8:03 PM
CAUTION Log backups in a log shipping process

When you’re using log shipping, backing up the transaction log independently will disrupt the log
shipping process. If you plan to use transaction log backups as part of your recovery plan, use the
backup folder as the source of backup files for your recovery plan.

Scripting the Log Shipping Configuration
You can also create a script that enables the primary database and sets the backup
options for your log shipping configuration. The advantages of scripting the configu-
ration are that you can use the script to document the configuration and deploy the
same configuration for multiple databases, and you can use it as part of the recovery
plan.

To use SSMS to generate the script, click Script Configuration at the bottom of the
Transaction Log Shipping page in the Database Properties window. Using the options
you select in the resulting window, SQL Server generates a script that you can store in
a file, display as a query in SSMS, or copy to the Clipboard.

The generated script uses four stored procedures to configure the primary database
and the SQL Server Agent backup jobs for log shipping. The core stored procedure,
sp_add_log_shipping_primary_database, is responsible for most of the configuration
except for the schedule definition. The sp_add_schedule and sp_attach_schedule proce-
dures configure the schedule and attach it to the job. The sp_update_job procedure
then enables the job for execution. The following code block shows the primary data-
base configuration script:

Primary Database Configuration Script
-- Execute the following statements at the primary to configure
-- log shipping for the database [DEMOSRV\DEV2005].[AdventureWorks2],
-- Run the script at the primary in the context of the
-- [msdb] database.
--
-- Adding the log shipping configuration
-- ****** Begin: Script to be run at primary: [DEMOSRV\DEV2005] ******
DECLARE @LS_BackupJobId AS uniqueidentifier
DECLARE @LS_PrimaryId AS uniqueidentifier
DECLARE @SP_Add_RetCode As int

EXEC @SP_Add_RetCode = master.dbo.sp_add_log_shipping_primary_database

@database = N'AdventureWorks2'
,@backup_directory = N'C:\LOGSHIP'
,@backup_share = N'\\DEMOSRV\LOGSHIP'
,@backup_job_name = N'LSBackup'

662 Chapter 18 Implementing Log Shipping

C1862271X.fm Page 662 Friday, April 29, 2005 8:03 PM
,@backup_retention_period = 4320
,@backup_threshold = 60
,@threshold_alert_enabled = 1
,@history_retention_period = 5760
,@backup_job_id = @LS_BackupJobId OUTPUT
,@primary_id = @LS_PrimaryId OUTPUT
,@overwrite = 1

IF (@@ERROR = 0 AND @SP_Add_RetCode = 0)
BEGIN

DECLARE @LS_BackUpScheduleUID As uniqueidentifier
DECLARE @LS_BackUpScheduleID AS int

EXEC msdb.dbo.sp_add_schedule
@schedule_name =N'LSBackupSchedule_DEMOSRV\DEV20051'
,@enabled = 1
,@freq_type = 4
,@freq_interval = 1
,@freq_subday_type = 4
,@freq_subday_interval = 15
,@freq_recurrence_factor = 0
,@active_start_date = 20060106
,@active_end_date = 99991231
,@active_start_time = 0
,@active_end_time = 235900
,@schedule_uid = @LS_BackUpScheduleUID OUTPUT
,@schedule_id = @LS_BackUpScheduleID OUTPUT

EXEC msdb.dbo.sp_attach_schedule
@job_id = @LS_BackupJobId
,@schedule_id = @LS_BackUpScheduleID

EXEC msdb.dbo.sp_update_job
@job_id = @LS_BackupJobId
,@enabled = 1
END

EXEC master.dbo.sp_add_log_shipping_alert_job

The sp_add_log_shipping_primary_database stored procedure has the same parame-
ters as the SSMS interface to set up the primary database. You can easily change
parameters such as @database, @backup_directory, @backup_share, and @backup_job
_name to create a large number of log shipping configurations. (In fact, if you want to
use the previous example script, you should change these parameters to reflect the
names of your server, database, backup directory, backup shared folder, and backup
job name.) The @backup_retention_period sets the number of minutes after which the
job will delete backup f iles—in this script, 4320 minutes or 3 days. The
@backup_threshold and @threshold_alert_enabled specify whether an alert will be
raised after a certain period. The @history_retention_period sets the time period in
minutes after which the job will delete history information from the msdb database.

Lesson 2: Configuring Log Shipping Options 663

C1862271X.fm Page 663 Friday, April 29, 2005 8:03 PM
The parameters @backup_job_id and @primary_id are output parameters needed to
configure the schedule.

MORE INFO Log shipping system tables

For complete information about the tables and stored procedures associated with a log shipping
configuration, see the “Log Shipping Tables and Stored Procedures” topic in SQL Server 2005 Books
Online. SQL Server 2005 Books Online is installed as part of SQL Server 2005. Updates for SQL
Server 2005 Books Online are available for download at www.microsoft.com/technet/prodtechnol/sql/
2005/downloads/books.mspx.

How to Configure Secondary Databases
The log shipping configuration doesn’t distribute any data until you configure a sec-
ondary server. If you are using log shipping for distributed query processing across
multiple servers, you will need to configure multiple secondary databases. Here’s how
to configure a secondary database in SSMS:

1. Below Secondary Server Instances And Databases in the Database Properties
window for the primary database, click Add to open the Secondary Database
Settings dialog box, shown in Figure 18-4. This dialog box lets you configure set-
tings in four major categories: connection, initialization, copy files, and restore
options.

Figure 18-4 Secondary Database Settings dialog box

664 Chapter 18 Implementing Log Shipping

C1862271X.fm Page 664 Friday, April 29, 2005 8:03 PM
2. To set up the connection to a secondary database, first select the secondary
server that is the owner of the secondary database by clicking Connect to display
the Connect To Server dialog box. Provide the required credentials and click
Connect. Remember that you need a user with sysadmin access to configure a
secondary database.

3. After you specify the secondary server, select the secondary database to use or
specify the name of a new database. The default secondary database name is the
same as the primary database name.

4. When you specify the connection credentials and database name, SSMS enables
the Initialize Secondary Database options. You can select from the following
options:

❑ Make a full backup of the primary database and restore it in the secondary
server.

❑ Restore an existing primary database backup in the secondary server.

❑ Use an already initialized database.

The Yes, Generate A Full Backup Of The Primary Database option executes a full
backup of the primary database. SQL Server stores this full backup in the same folder
in which it stores the transaction log backups. After the backup processes, SQL Server
uses the file to restore the secondary database to the secondary server. By default, the
restore process uses the same path for database files as the primary database. If you
want to restore the files to a different path, you can click Restore Options and then
specify an alternative path for the data and log files. The full backup option is the
default and is appropriate when you have sufficient network bandwidth between serv-
ers to copy the full backup file across the network.

You use the Yes, Restore An Existing Backup Of The Primary Database option when
you already have a full backup of the primary database, which is often the case when
you have multiple secondary servers or when the bandwidth between servers isn’t
sufficient to copy the file across the network. Some administrators back up the pri-
mary database and deliver the backup file to the secondary server using alternate
physical media (CD, DVD, or tape). If you choose this option, you must specify the
path to the backup file. SQL Server must restore the backup file before the retention
period you specified in the primary database configuration expires. With this option,
you can also specify alternative paths for data files and log files in the restore process
by clicking Restore Options.

You use an already initialized database when the DBA has already created the second-
ary database and is ready to initiate the log shipping process. This option might be

Lesson 2: Configuring Log Shipping Options 665

C1862271X.fm Page 665 Friday, April 29, 2005 8:03 PM
necessary for large databases that might need a customized restore process because
they have multiple data files or when creating a new configuration for an already ini-
tialized secondary database.

Configuring the Copy Files Task
After initializing the secondary database, your next step is to configure the Copy Files
options. The Copy Files task is responsible for copying files from the primary server to
the secondary server. The task provides three configuration options and a schedule,
as Figure 18-5 shows. (You access these options by clicking the Copy Files tab.)

Figure 18-5 Secondary Database Settings—Copy Files tab

The first option you should configure is the destination folder to which the job will
copy the transaction log backups. This folder is usually a local directory on the sec-
ondary server, but you can also use a shared folder. SQL Server Agent requires read/
write access to this folder. Another option you can configure as part of the Copy Files
task is the retention period, which is the amount of time that the backup files will
remain in this folder. The job responsible for the Copy Files task will delete files older
than the time specified in the retention period option. Last, you configure the job
name and the schedule for the job responsible for the Copy Files task.

Configuring Log Shipping Restore Options
The last step of configuring the secondary server is specifying the settings for the
restore task. You specify these settings on the Restore Transaction Log tab of the Sec-
ondary Database Settings dialog box (see Figure 18-6).

666 Chapter 18 Implementing Log Shipping

C1862271X.fm Page 666 Friday, April 29, 2005 8:03 PM
Figure 18-6 Secondary Database Setting—Restore Transaction Log tab

The recovery mode is the most important restore setting, specifying the state of the
database after the restoration process. In the next lesson, we will cover the recovery
mode in detail.

Other restore settings you can configure are the delay interval, alert threshold, job
name, and job schedule. You use the delay interval to set a time gap for executing the
restoration process. Use the alert threshold to set how long after the last restore an
alert will be raised if no other backup occurs during that interval. You then specify the
job name and the schedule of the job responsible for the restoration process.

Quick Check
■ You want to implement a log shipping configuration in a wide area network

(WAN) environment, and you estimate that the initial full backup/restore
process will take several hours. Which option should you choose to initial-
ize the secondary database to speed up the process?

Quick Check Answer

■ Create the primary database configuration, back up the database, use phys-
ical media (CD, DVD, or tape) to deliver the backup file to the secondary
server, and configure the secondary database using the Restore An Existing
Primary Database Backup In The Secondary Server option.

Lesson 2: Configuring Log Shipping Options 667

C1862271X.fm Page 667 Friday, April 29, 2005 8:03 PM
Real World
Javier Loria

Designing a fault-tolerant environment for the database does not necessarily
guarantee that you have a fault-tolerant system. After carefully designing, imple-
menting, and testing a log shipping configuration, I was sure that the main line-
of-business application of one of my customers was fault-tolerant. When the pri-
mary database server failed, however, we found that the application had the
server name hard-coded in it, which prevented failing over to the secondary
server we had set up. Fortunately, we managed to rename the server, and the
application was online 45 minutes after the crash.

Scripting the Secondary Database Configuration
If you want to create a script to configure the secondary database, click Script Config-
uration at the bottom of the Database Properties window. Note two important aspects
of the generated script:

■ The script does not have the required code to initialize the secondary database.
The DBA must back up the primary database and use that file to restore the sec-
ondary database to the secondary server.

■ The script must be divided into two separate files. You must run the first part of
the code when you’re connected to the secondary server, and you must run the
second part of the code while connected to the primary server.

The first part of the script uses the following two main stored procedures to create the
log shipping configuration:

■ sp_add_log_shipping_secondary_primary Creates the copy and restore jobs
on the secondary server and the primary configuration.

■ sp_add_log_shipping_secondary_database Finishes the configuration pro-
cess and sets up the secondary database for log shipping.

The following code shows the first part of the secondary database configuration
script:

Secondary Database Configuration Script Part 1
-- Execute the following statements at the Secondary to configure Log
-- Shipping for the database [DEMOSRV\INSTANCE2].[AdventureWorks2];
-- the script needs to be run at the Secondary in the context of the
-- [msdb] database.
--

668 Chapter 18 Implementing Log Shipping

C1862271X.fm Page 668 Friday, April 29, 2005 8:03 PM
-- Adding the Log Shipping configuration
-- ****** Begin: Script to be run at Secondary: [DEMOSRV\INSTANCE2] ******
DECLARE @LS_Secondary__CopyJobI d AS uniqueidentifier
DECLARE @LS_Secondary__RestoreJobId AS uniqueidentifier
DECLARE @LS_Secondary__SecondaryId AS uniqueidentifier
DECLARE @LS_Add_RetCode As int

EXEC @LS_Add_RetCode = master.dbo.sp_add_log_shipping_secondary_primary

@primary_server = N'DEMOSRV\DEV2005'
,@primary_database = N'AdventureWorks2'
,@backup_source_directory = N'\\DEMOSRV\LOGSHIP'
,@backup_destination_directory = N'c:\LogShip2'
,@copy_job_name = N'LSCopy'
,@restore_job_name = N'LSRestore'
,@file_retention_period = 4320
,@overwrite = 1
,@copy_job_id = @LS_Secondary__CopyJobId OUTPUT
,@restore_job_id = @LS_Secondary__RestoreJobId OUTPUT
,@secondary_id = @LS_Secondary__SecondaryId OUTPUT

IF (@@ERROR = 0 AND @LS_Add_RetCode = 0)
BEGIN

DECLARE @LS_SecondaryCopyJobScheduleUID As uniqueidentifier
DECLARE @LS_SecondaryCopyJobScheduleID AS int
EXEC msdb.dbo.sp_add_schedule

@schedule_name =N'DefaultCopyJobSchedule'
,@enabled = 1
,@freq_type = 4
,@freq_interval = 1
,@freq_subday_type = 4
,@freq_subday_interval = 15
,@freq_recurrence_factor = 0
,@active_start_date = 20060106
,@active_end_date = 99991231
,@active_start_time = 0
,@active_end_time = 235900
,@schedule_uid = @LS_SecondaryCopyJobScheduleUID OUTPUT
,@schedule_id = @LS_SecondaryCopyJobScheduleID OUTPUT

EXEC msdb.dbo.sp_attach_schedule
@job_id = @LS_Secondary__CopyJobId
,@schedule_id = @LS_SecondaryCopyJobScheduleID

DECLARE @LS_SecondaryRestoreJobScheduleUID As uniqueidentifier
DECLARE @LS_SecondaryRestoreJobScheduleID AS int
EXEC msdb.dbo.sp_add_schedule

@schedule_name =N'DefaultRestoreJobSchedule'
,@enabled = 1
,@freq_type = 4
,@freq_interval = 1
,@freq_subday_type = 4
,@freq_subday_interval = 15
,@freq_recurrence_factor = 0
,@active_start_date = 20060106

Lesson 2: Configuring Log Shipping Options 669

C1862271X.fm Page 669 Friday, April 29, 2005 8:03 PM
,@active_end_date = 99991231
,@active_start_time = 0
,@active_end_time = 235900
,@schedule_uid = @LS_SecondaryRestoreJobScheduleUID OUTPUT
,@schedule_id = @LS_SecondaryRestoreJobScheduleID OUTPUT

EXEC msdb.dbo.sp_attach_schedule

@job_id = @LS_Secondary__RestoreJobId
,@schedule_id = @LS_SecondaryRestoreJobScheduleID

END

DECLARE @LS_Add_RetCode2 As int

IF (@@ERROR = 0 AND @LS_Add_RetCode = 0)
BEGIN
EXEC @LS_Add_RetCode2 = master.dbo.sp_add_log_shipping_secondary_database

@secondary_database = N'AdventureWorks2'
,@primary_server = N'DEMOSRV\DEV2005'
,@primary_database = N'AdventureWorks2'
,@restore_delay = 0
,@restore_mode = 0
,@disconnect_users= 0
,@restore_threshold = 45
,@threshold_alert_enabled = 1
,@history_retention_period = 5760
,@overwrite = 1

END

IF (@@error = 0 AND @LS_Add_RetCode = 0)

BEGIN
EXEC msdb.dbo.sp_update_job

@job_id = @LS_Secondary__CopyJobId
,@enabled = 1

EXEC msdb.dbo.sp_update_job
@job_id = @LS_Secondary__RestoreJobId
,@enabled = 1

END

In this script, sp_add_log_shipping_secondary_primary uses the parameters
@primary_server, @primary_database, @backup_source_directory, @backup_destination_
directory, @copy_job_name, and @restore_job_name in the same manner as SSMS.
@file_retention_period sets the number of minutes that the job waits before deleting
a file.

sp_add_log_shipping_secondary_database finishes the configuration process and con-
figures the secondary database. The first three parameters (@secondary_database,
@primary_server, and @primary_database) associate the secondary database with the
primary database. @restore_delay sets the number of minutes the job will wait before
restoring a log backup, and @restore_threshold and @threshold_alert_enabled specify

670 Chapter 18 Implementing Log Shipping

C1862271X.fm Page 670 Friday, April 29, 2005 8:03 PM
whether an alert will be raised if after a given time period no restores finish sucess-
fully. @history_retention_period sets the time period that elapses before the job deletes
history information from the msdb database. @restore_mode and @disconnect_users
will be explained in the next lesson.

A DBA who needs to configure multiple secondary servers can execute (without any
modification) this script on each secondary server and later execute the second part
of the script on the primary server multiple times, changing the secondary name to
finish the configuration.

As noted earlier, you must run the second part of the script, which is used only to
keep a record of secondary databases that have a reference to the primary database,
on the primary server. This is important for monitoring purposes. To perform this
task, the second part of the script uses the sp_add_log_shipping_primary_secondary
stored procedure, as the following code shows.

Secondary Database Configuration Script Part 2
-- ****** Begin: Script to be run at Primary: [DEMOSRV\DEV2005] ******
EXEC master.dbo.sp_add_log_shipping_primary_secondary

@primary_database = N'AdventureWorks2'
,@secondary_server = N'DEMOSRV\INSTANCE2'
,@secondary_database = N'AdventureWorks2'
,@overwrite = 1

-- ****** End: Script to be run at Primary: [DEMOSRV\DEV2005] ******

Failing Over to a Secondary Database
If a primary server fails and you need to bring a secondary database online, you
must perform the failover manually by following these general steps:

1. Synchronize the primary and secondary databases. You begin by synchro-
nizing the secondary database with the primary database, copying any
uncopied backup files from the backup share to the copy destination folder
of each secondary server. You need to apply any unapplied transaction log
backups in sequence to each secondary database; if the primary database is
accessible, back up the active transaction log with NORECOVERY, and
apply the backup to the secondary databases.

2. Recover the secondary database. Recovering puts the secondary database
into a consistent state and brings it online.

Lesson 2: Configuring Log Shipping Options 671

C1862271X.fm Page 671 Friday, April 29, 2005 8:03 PM
3. Change the role of the secondary database to primary. After you recover the
secondary database, you configure the recovered secondary database to act
as a primary database and change the role of the primary database to be the
secondary database. Disable the log shipping backup job on the original
primary server and the copy and restore jobs on the original secondary
server. Configure the secondary database as the primary database by using
SSMS.

PRACTICE Creating a Log Shipping Configuration
In these practice exercises, you will create a log shipping configuration that uses a sin-
gle server for testing purposes.

� Practice 1: Prepare the Environment for Log Shipping

In this practice, you will create the file directories and shared folders required for the
log shipping configuration. One of the folders will hold the secondary database files,
another will store the log shipping backup files, and the last one will hold the second-
ary copy of the files. You will also create a copy of the AdventureWorks database for
testing purposes. This database will be in Full recovery mode.

1. Using Windows Explorer, locate the root folder of the C drive and create a folder
named LogShip Practice. You will use this folder to hold the subfolders for log
shipping practices.

2. In the LogShipPractice folder, create three subfolders: Database, LSBackup, and
Copy. You will use the Database subfolder to store the secondary server data-
base and log files, the LSBackup folder to store log backups, and the Copy sub-
folder to store copies of the logs in the secondary server.

3. Right-click the LSBackup subfolder and choose Sharing And Security.

4. Select Share This Folder and click OK. Sharing the folder allows secondary serv-
ers to use the UNC path to access the log backups.

IMPORTANT Security

The default right, Everyone read access, is secure enough for testing purposes. In a working
environment, you should remove the Everyone group from the shared folder’s access control
list and add the SQL Service Windows account instead.

672 Chapter 18 Implementing Log Shipping

C1862271X.fm Page 672 Friday, April 29, 2005 8:03 PM
5. Open SSMS and connect to the default instance of the database engine.

6. Expand the Databases folder.

7. Right-click the AdventureWorks database and choose Tasks, Back Up. You are
going to back up the AdventureWorks database and then use this backup to cre-
ate a database to use for log shipping.

8. If there are any destination files or backup devices in the destination list box,
remove them by selecting each one and then clicking Remove.

9. Click Add to add a destination file. Name the file AdventureWorks.bak in the
default path and click OK.

10. Click OK to back up the database. Wait for the backup process to complete, and
then click OK.

11. Right-click the AdventureWorks database and choose Tasks, Restore, Database.

12. In the To Database text box, type LSTesting to name the database. You are going
to use the LSTesting database as the primary database for log shipping.

13. Select From Device, click the browse button (…), and then click Add to select the
source file.

14. Select the AdventureWorks.bck file in the default backup path and click OK.
Click OK to close the Specify Backup dialog box.

15. Select the AdventureWorks-Full Database Backup check box in the list of
backup sets.

16. Select the Options page.

17. In the Restore As column, change the file names of the AdventureWorks_Data
and AdventureWorks_Log files to LSTesting.mdf and LSTesting.ldf, respec-
tively, in the default data directory (C:\Program Files\Microsoft SQL Server\
MSSQL.1\MSSQL\Data). Renaming the files is important to avoid conflicts
with the AdventureWorks database.

18. Click OK to initiate the restoration process. Then click OK to close the confirma-
tion message displayed when the restore completes.

19. Right-click the LSTesting database and choose Properties. (If you do not see the
LSTesting database displayed in the Databases folder, right-click Databases and
choose Refresh.)

20. Select the Options page.

Lesson 2: Configuring Log Shipping Options 673

C1862271X.fm Page 673 Friday, April 29, 2005 8:03 PM
21. Change the Recovery Model to Full. Databases in Simple mode cannot partici-
pate in log shipping configurations.

22. Click OK to close the Database Properties window.

� Practice 2: Configure the Primary Database

In this practice, you will configure the LSTesting database as the primary database and
create the backup job for the log shipping configuration.

1. In SSMS, select the LSTesting database.

2. Right-click the LSTesting database and choose Properties.

3. Select the Transaction Log Shipping page.

4. Select the Enable This As A Primary Database In A Log Shipping Configuration
check box.

5. Click Backup Settings.

6. Specify the UNC path for the backup files in the Network Path To Backup Folder
text box. For the path, use your computer name and the LSBackup shared
folder—for example: \\ComputerName\LSBackup.

7. Specify the local directory path for the backup file in the If The Backup Folder Is
Located On The Primary Server, Type A Local Path To The Folder text box. Use
the path C:\LogShipPractice\LSBackup.

8. Click OK to close the Transaction Log Backup Settings dialog box. By default,
SQL Server deletes all transaction log backups older than 72 hours, notifies you
if a backup does not occur within one hour, and backs up the transaction log
every 15 minutes.

9. Click OK to configure the primary database. Wait for the Save Log Shipping
Configuration message to appear, and then click Close.

� Practice 3: Configure the Secondary Database

In this practice, you will configure a secondary database that will be a copy of the
LSTesting database.

1. In SSMS, select the LSTesting database.

2. Right-click the LSTesting database and choose Properties.

3. Select the Transaction Log Shipping page.

4. Below Secondary Databases, click Add.

674 Chapter 18 Implementing Log Shipping

C1862271X.fm Page 674 Friday, April 29, 2005 8:03 PM
5. Click Connect. Use the appropriate credentials to connect to the secondary
server. If you are using the same instance as your secondary server, connect to
the default server.

6. In the Secondary Database text box, type LSTesting2 as the database name.

7. Select Yes, Generate A Full Backup Of The Primary Database And Restore It Into
The Secondary Database (And Create The Secondary Database If It Doesn’t
Exist).

8. Click Restore Options and specify a new directory in which you want to restore
the database files. Use the C:\LogShipPractice\Database path for both the
database and log folders. Click OK.

9. Click the Copy Files tab.

10. Type the path C:\LogShipPractice\Copy in the Destination Folder For Copied
Files text box.

11. Click OK to close the Secondary Database Settings dialog box and confirm your
settings.

12. Click OK to close the Database Properties window and implement the new
configuration.

13. Wait for the Save Log Shipping Configuration message and finish the configura-
tion process by clicking Close. You should now see the LSTesting2 database dis-
played in your Databases folder with a message that states that SQL Server is
restoring the database.

Lesson Summary
■ SSMS lets DBAs create a log shipping configuration interactively in the Database

Properties window.

■ You configure the primary database first, setting backup options for the log ship-
ping configuration, and then configure the secondary database and restore
options.

■ Through SSMS, you can also script your log shipping configuration to document
the configuration, deploy the same configuration for multiple databases, and aid
in the recovery plan.

■ Failing over to the secondary database in case of a primary database failure is a
manual process that requires you to synchronize the primary and secondary
databases, recover the secondary database, and then configure the secondary
database as the primary database.

Lesson 2: Configuring Log Shipping Options 675

C1862271X.fm Page 675 Friday, April 29, 2005 8:03 PM
Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. When creating a log shipping configuration, what is the default path of the data
files of the secondary database?

A. C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data.

B. The default path of the secondary database files is the same path as that for
the primary database files.

C. There is no default path; the DBA must specify a file path for each of the
data files in the secondary database.

D. The path of the secondary database is configured at the server level by
using the Database Default Location option.

2. Which methods can you use to create a log shipping configuration? (Choose all
that apply.)

A. System stored procedures

B. Maintenance Plan Wizard

C. SQL Server Surface Area Configuration tool

D. SSMS

676 Chapter 18 Implementing Log Shipping

C1862271X.fm Page 676 Friday, April 29, 2005 8:03 PM
Lesson 3: Configuring Log Shipping Mode
You can use log shipping to increase either the availability or the scalability of your
applications. The log shipping mode you select determines which operational
requirement you want to use the technology for. If you choose No Recovery Mode, you
will use the log shipping configuration for availability reasons only, and the second-
ary database won’t be available for users to query. If you select Standby Mode, you
allow users read-only access to the secondary database. This configuration increases
the scalability of your application by letting you distribute queries across multiple
servers and reduces the primary server’s workload. In this lesson, you will learn how
to configure log shipping’s recovery mode.

After this lesson, you will be able to:

■ Explain how log shipping’s No Recovery mode works.

■ Explain how log shipping’s Standby mode works.

■ Configure the No Recovery and Standby modes.

Estimated lesson time: 30 minutes

How to Configure No Recovery Mode
As you saw in the previous lesson, log shipping uses transaction log backups, copies,
and restores to keep the primary and secondary databases synchronized. Seeing how
the restoration process handles incomplete transactions will help you understand the
purpose of the log shipping mode.

The default behavior of the RESTORE command is to read the transaction log backup,
apply all the transactions in the log to the database, and roll back all incomplete trans-
actions when the restore finishes reading the log. However, log shipping configura-
tions cannot use this behavior of the RESTORE command. If the transactions are
rolled back, the database changes will be lost, and at this point, you would not know
whether the next transaction log restore would commit or roll back the changes. This
RESTORE command option is called Recovery Mode, and log shipping doesn’t use it.

Instead, log shipping uses the No Recovery Mode of the RESTORE command as its
default setting. This mode does not roll back incomplete transactions. Incomplete
transactions are neither rolled back nor rolled forward; they remain incomplete

Lesson 3: Configuring Log Shipping Mode 677

C1862271X.fm Page 677 Friday, April 29, 2005 8:03 PM
transactions. One side effect of this option is that the database is not available for user
queries.

Here’s how to use SSMS to set the No Recovery mode of a log shipping configuration:

1. In SMSS, right-click the primary database and choose Properties. Select the
Transaction Log Shipping page.

2. Below Secondary Server Instances And Databases, select the secondary database
you want to configure and click the browse button (…). (Or click Add if you want
to add a new configuration.)

3. In the Secondary Database Settings dialog box, click the Restore Transaction
Log tab. Below Database State When Restoring Backups, select No Recovery
Mode, as shown in Figure 18-7.

Figure 18-7 Selecting No Recovery Mode

4. Click OK to save your changes and close the Secondary Database Settings dialog
box.

5. Click OK to close the Database Properties dialog box for the primary database.

BEST PRACTICES Availability

When using log shipping for availability reasons only, use No Recovery mode.

678 Chapter 18 Implementing Log Shipping

C1862271X.fm Page 678 Friday, April 29, 2005 8:03 PM
Quick Check
1. What is the default recovery mode setting for log shipping?

2. When do you use this recovery mode setting?

Quick Check Answers

1. The default setting is No Recovery mode.

2. You use No Recovery mode when you are using log shipping for availability
reasons; this mode doesn’t allow user access.

How to Configure Standby Mode
Standby mode is the RESTORE command option you use to configure standby serv-
ers. In this mode, the secondary database is available for read-only access by users
and applications, which enables you to use the secondary database to reduce the
workload of the primary database. You cannot use a secondary database in Standby
mode to update database information.

A log shipping configuration in Standby mode reads the transaction log backup,
applies all transactions in the log to the database, and rolls back all incomplete trans-
actions when the restore process finishes reading the log. The difference between
Recovery mode and Standby mode is that Standby mode saves all incomplete trans-
actions in a separate Transaction Undo File (TUF). The restore process uses this file to
maintain transactional integrity; when the next restore process occurs, it restores all
the committed transactions.

Here’s how to use SSMS to configure Standby mode:

1. In the primary database’s Properties window, select the Transaction Log Ship-
ping page.

2. Below Secondary Server Instances And Databases, select the secondary database
you want to configure and click the browse button (…). (Or click Add if you want
to add a new configuration.)

3. In the Secondary Database Settings dialog box, click the Restore Transaction
Log tab.

4. Below Database State When Restoring Backups, select Standby Mode, as
Figure 18-8 shows.

Lesson 3: Configuring Log Shipping Mode 679

C1862271X.fm Page 679 Friday, April 29, 2005 8:03 PM
Figure 18-8 Selecting Standby Mode

5. When you select Standby Mode, the Disconnect Users In The Database When
Restoring Backup option becomes available. The RESTORE command requires
exclusive access to the database, so this option is necessary to specify how you
want to handle connected users when the restore process begins. The default is
to leave users connected to the database, which will cause the restore job to fail.
If you select the Disconnect Users In The Database When Restoring Backups
check box, the restore will force users off the database after a small delay.

6. Click OK to save your changes and close the Secondary Database Settings dialog
box.

7. Click OK to close the Database Properties dialog box for the primary database.

BEST PRACTICES Scalability

Use Standby mode when you are using log shipping for scalability reasons.

Quick Check
1. True or false: Standby mode allows users and applications to access and

modify the secondary database.

2. True or false: The default setting for Standby mode is to leave users con-
nected to the database when the restore backup operation begins.

680 Chapter 18 Implementing Log Shipping

C1862271X.fm Page 680 Friday, April 29, 2005 8:03 PM
Quick Check Answers

1. False. Standby mode puts the secondary database in read-only access
mode. No database updates are allowed.

2. True. This default setting leaves user connected to the database, which will
cause the restore job to fail.

PRACTICE Configuring Standby Mode
In these practice exercises, you will review the mode of the previous log shipping con-
figuration and create a new standby configuration.

� Practice 1: Review the Secondary Database Configuration

In this practice, you will review the log shipping mode of the LSTesting2 database.

1. In SSMS, select the LSTesting database.

2. Right-click the LSTesting database and choose Properties.

3. Select the Transaction Log Shipping page.

4. In the Secondary Databases section of the log shipping configuration, click the
browse button (…) next to the LSTesting2 database.

5. Click the Restore Transaction Log tab.

6. Verify that the No Recovery Mode option is selected.

7. Click Cancel to close the Secondary Database Settings dialog box, and then click
Cancel to close the Database Properties window.

8. Select the LSTesting2 database in Object Explorer.

9. Verify that the database LSTesting2 status is (Restoring …).

10. Click New Query on the toolbar.

11. In the New Query window, type the following query:

SELECT * FROM LSTesting2.HumanResources.Department

12. Click Execute on the toolbar.

13. Verify that the server returns the following error message:

Msg 927, Level 14, State 2, Line 1
Database 'LSTesting2' cannot be opened. It is in the middle of a restore.

14. Close the New Query window.

15. Click No to discard the changes in the New Query window.

Lesson 3: Configuring Log Shipping Mode 681

C1862271X.fm Page 681 Friday, April 29, 2005 8:03 PM
� Practice 2: Delete the Secondary Database Configuration

In this practice, you will delete the log shipping configuration of the LSTesting2 data-
base.

1. In SSMS, select the LSTesting database.

2. Right-click the LSTesting database and choose Properties.

3. Select the Transaction Log Shipping page.

4. In the Secondary Server Instances And Databases section, select the secondary
database and click Remove.

5. In the confirmation message, click Yes to confirm that you want to remove the
secondary database.

6. Click OK to close the Database Properties window and save the configuration.

7. In the Save Log Shipping Configuration window, click Close.

8. Select the LSTesting2 database in Object Explorer.

9. Right-click the LSTesting2 database and choose Delete.

10. In the Delete Object window, click OK to confirm the deletion.

� Practice 3: Create a Standby Log Shipping Configuration

In this practice, you will create a new standby log shipping configuration.

1. In SSMS, select the LSTesting database.

2. Right-click the LSTesting database and choose Properties.

3. Select the Transaction Log Shipping page.

4. Click Add below Secondary Server Instances And Databases.

5. Click Connect; then use the appropriate credentials to connect to the secondary
server. If you are using the same instance as the one that contains your primary
database, connect to the default server. Click Connect to establish the connection.

6. In the Secondary Database text box, name the database LSTesting2.

7. Select Yes, Generate A Full Backup Of The Primary Database And Restore It Into
The Secondary Database.

8. Click Restore Options, and type the C:\LogShipPractice\Database path for both
the database and log folders. Click OK.

9. Click the Copy Files tab.

682 Chapter 18 Implementing Log Shipping

C1862271X.fm Page 682 Friday, April 29, 2005 8:03 PM
10. Type the path C:\LogShipPractice\Copy in the Destination Folder For Copied
Files text box.

11. Click the Restore Transaction Log tab.

12. Select Standby Mode.

13. Click OK to confirm your settings.

14. Click OK in the Database Properties window to implement the new configuration.

15. Wait for the Save Log Shipping Configuration message to appear, and then click
Close.

16. Select the LSTesting2 database in Object Explorer.

17. Verify that the status of the LSTesting2 database is (Standby/Read Only).

18. Click New Query on the toolbar.

19. In the New Query window, type the following query:

SELECT *
FROM LSTesting2.HumanResources.Department

20. Click Execute on the toolbar.

21. Verify that the query runs without any error and returns valid data.

22. In the New Query window, replace the previous query with the following
command:

UPDATE LSTesting2.HumanResources.Department
SET Name='Testing'

WHERE DepartmentID=1

23. Click Execute on the toolbar.

24. Verify that the server returns the following error message:

Msg 3906, Level 16, State 1, Line 1
Failed to update database "LSTesting2" because the database is read-only.

25. Close the New Query window.

26. Click No to discard the changes in the New Query window.

Lesson Summary
■ One of the most important settings in a log shipping configuration is the recov-

ery mode, which you set on the Restore Transaction Log page of the Secondary
Database Settings window.

Lesson 3: Configuring Log Shipping Mode 683

C1862271X.fm Page 683 Friday, April 29, 2005 8:03 PM
■ No Recovery mode doesn’t allow users to access the database, so you use it only
when you are implementing log shipping for availability reasons.

■ Standby mode allows users read-only access to the secondary database. If you
are implementing log shipping to improve the scalability and performance of
your database, you should select Standby mode.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following statements about log shipping No Recovery mode are
correct? (Choose all that apply.)

A. The secondary database is available for users to query.

B. The secondary database is not available for users to query.

C. You can use this mode to increase the scalability/performance of an appli-
cation.

D. You can use this mode to increase the availability of an application.

2. Users are complaining about sometimes being disconnected when using the sec-
ondary database of a log shipping configuration. How would you explain this
behavior?

A. The secondary server is having performance issues and is losing user con-
nections; you need to increase the secondary server’s hardware resources.

B. This is the default behavior for the No Recovery mode; you need to change
the secondary database configuration to Standby mode.

C. This is the default behavior for the Standby mode. Using SSMS, clear the
Disconnect Users In The Database When Restoring Backups check box of
the log shipping configuration.

D. The primary server is having performance issues and is losing user connec-
tions; you need to increase the primary server’s hardware resources.

684 Chapter 18 Implementing Log Shipping

C1862271X.fm Page 684 Friday, April 29, 2005 8:03 PM
Lesson 4: Configuring Monitoring
Log shipping enables you to configure a separate monitor server to capture the his-
tory and status of different log shipping operations. The optional monitor server
tracks all the log shipping details, including when the transaction log on the primary
database was last backed up and when the secondary servers copied and restored the
backup files. To make sure that monitoring continues and you have access to this sta-
tus information if the primary or secondary server is unavailable, you should config-
ure the monitor on a separate server. One monitor server can monitor multiple log
shipping configurations. And via SSMS, you can see the current status of any instance
involved in the log shipping configuration by accessing the Transaction Log Shipping
Status report for that instance.

After this lesson, you will be able to:

■ Configure a log shipping monitor server.

■ Review log shipping reports.

Estimated lesson time: 20 minutes

Understanding the Role of a Monitor Server
Because the log shipping configuration uses SQL Server Agent jobs to execute
backup, copy, and restore tasks, the log shipping jobs always save the status and his-
tory of the shipping operations locally. SQL Server Agent stores status and historic
information about jobs in the sysjobactivity and sysjobhistory tables in the msdb data-
base. The sysjobactivity table records the current activity of SQL Server jobs, and sys-
jobhistory keeps track of the historic execution of jobs. Because backup jobs are
executed on the primary server, and copy and restore jobs are executed on the sec-
ondary server, the backup history information is stored on the primary server, and
copy and restore history information is stored on the secondary server.

MORE INFO SQL Server agent tables

For more information about job information stored in the msdb database, see the SQL Server 2005
Books Online section titled “SQL Server Language Reference-Transact-SQL Reference-System
Tables-SQL Server Agent Tables.”

Besides these standard SQL Server Agent job records, log shipping records specific
log shipping information in the log_shipping_monitor_error_detail and

Lesson 4: Configuring Monitoring 685

C1862271X.fm Page 685 Friday, April 29, 2005 8:03 PM
log_shipping_monitor_history_detail tables. The log_shipping_monitor_error_detail
table keeps track of error details, and the log_shipping_monitor_history_detail table
stores information about the history details of log shipping jobs.

One limitation of this job-recording process is that all the monitoring information is
stored locally on the same server that executes the job. In case of a server failure, you
might lose the database as well as all the recorded information about which jobs exe-
cuted successfully and which jobs didn’t execute—or failed. In such a case, the DBA
might not know the status of the secondary database when the primary server fails.
Storing historic information about log shipping job execution on a different server
helps in the recovery process by providing important status information and helps
the DBA to execute the appropriate remaining tasks. This is why log shipping uses a
monitor server.

By configuring a monitor server, you force the backup, copy, and restore jobs to write
information for the log_shipping_monitor_error_detail and log_shipping_monitor_
history_detail tables on both the local server and the monitor server.

How to Configure a Monitor Server
Here’s how to configure a monitor server by using SSMS:

1. In the Database Properties window for the primary database, select Use A Mon-
itor Server Instance and click Settings, which displays the Log Shipping Monitor
Settings dialog box.

2. In the Log Shipping Monitor Settings dialog box, click Connect to select the
monitor server instance and the authentication credentials you want to use.

NOTE Security

The account connecting to the monitor server must have sysadmin access to the monitor
server.

3. Because log shipping jobs (backup, copy, and restore) will store information in
the monitor server instance, you must choose how these jobs will authenticate in
the monitor server. The default option is to impersonate the proxy account of the
job, which means using the SQL Server Agent service account for authentication
(see Figure 18-9). You should use this option when both servers are using Win-
dows accounts in the same Active Directory. If you want to provide a SQL Server
account, however, select Using The Following SQL Server Login and then spec-
ify the login name and password.

686 Chapter 18 Implementing Log Shipping

C1862271X.fm Page 686 Friday, April 29, 2005 8:03 PM
Figure 18-9 Selecting how monitor jobs connect and authenticate

4. Other Log Shipping Monitor Settings options include history retention, which
determines how long the log shipping configuration will retain history informa-
tion about the task, and the name and schedule for the alert job that raises an
alert if there are problems in any log shipping jobs. You should use the same
schedule as the schedule for the log shipping backup task.

NOTE Log shipping reports

For the primary, secondary, and monitor servers involved in log shipping, SSMS provides a
current log shipping activity report. You can view the Transaction Log Shipping Status report
for each server from SSMS. Begin by selecting the server instance you want in Object
Explorer. In the Summary (right) pane, from the Report drop-down list, select the Transaction
Log Shipping Status report. Viewing the report from the monitor server will give you the
most comprehensive information about your log shipping configuration—including the name
and status of all primary and secondary servers that are using the monitor server to monitor
log shipping operations.

PRACTICE Creating a Log Shipping Configuration
In these practice exercises, you will delete the previous log shipping configuration
and create a new configuration that uses a monitor server.

Lesson 4: Configuring Monitoring 687

C1862271X.fm Page 687 Friday, April 29, 2005 8:03 PM
� Practice 1: Delete the Log Shipping Configuration

In this practice, you will delete all the previous log shipping configurations so that
you can create a new configuration that includes a monitor server.

1. In SSMS, select the LSTesting database.

2. Right-click the LSTesting database and choose Properties.

3. Select the Transaction Log Shipping page.

4. Clear the Enable This As A Primary Database In A Log Shipping Configuration
check box to disable the configuration and remove all log shipping jobs.

5. Click Yes to confirm that you want to disable the log shipping configuration.

6. Click OK to close the Database Properties window and remove all log shipping
configurations. Click Close to close the Save Log Shipping Configuration
window.

7. Select the LSTesting2 database in Object Explorer.

8. Right-click the LSTesting2 database, choose Delete, and then click OK to delete
the database.

9. Using Windows Explorer, navigate to the C:\LogShipPractice\Copy Folder and
delete all files.

10. Using Windows Explorer, navigate to the C:\LogShipPractice\LSBackup Folder
and delete all files.

� Practice 2: Create a Log Shipping Configuration with a Monitor Server

In this practice, you will create a new log shipping configuration that uses a monitor
server.

1. In SSMS, select the LSTesting database.

2. Right-click the LSTesting database and choose Properties.

3. Select the Transaction Log Shipping page.

4. Select the Enable This As A Primary Database In A Log Shipping Configuration
check box.

5. Click Backup Settings.

6. Specify the UNC path for the backup files in the Network Path To Backup Folder
text box. Use your computer name and the LSBackup shared folder—for example,
\\ComputerName\LSBackup.

688 Chapter 18 Implementing Log Shipping

C1862271X.fm Page 688 Friday, April 29, 2005 8:03 PM
7. Specify the local directory path for the backup file in the If The Backup Folder Is
Located On The Primary Server, Type A Path To The Folder text box. Use the
path C:\LogShipPractice\LSBackup.

8. Click OK to close the Transaction Log Backup Settings dialog box.

9. Below Secondary Databases, click Add.

10. Click Connect. Use the appropriate credentials to connect to the secondary
server. If you are using the same instance for the secondary database, connect to
the default server.

11. In the Secondary Database text box, name the database LSTesting2.

12. Select Yes, Generate A Full Backup Of The Primary Database And Restore It Into
The Secondary Database.

13. Click Restore Options so that you can specify the directory in which you want
SQL Server to restore the database files. Use the C:\LogShipPractice\Database
path for both the database and log folders. Click OK.

14. Click the Copy Files tab.

15. Type the path C:\LogShipPractice\Copy in the Destination Folder For Copied
Files text box.

16. Click OK to confirm your secondary database settings.

17. Select the Use A Monitor Server Instance check box.

18. Click Settings.

19. In the Log Shipping Monitor Server Settings dialog box, click Connect. Use the
appropriate credentials to connect to the monitor server. If you are using the
same instance as the monitor server, connect to the default server.

20. Click OK to close the Log Shipping Monitor Settings dialog box.

21. Click OK to save the log shipping configuration.

22. SQL Server now backs up the primary database, restores it to the secondary
database, and configures monitoring. When this process completes, click Close
to close the Save Log Shipping Configuration message box.

� Practice 3: View a Log Shipping Report

In this practice, you will view the log shipping report included in SSMS.

1. In SSMS, select the database engine instance (server) for which you want to
monitor log shipping in Object Explorer.

Lesson 4: Configuring Monitoring 689

C1862271X.fm Page 689 Friday, April 29, 2005 8:03 PM
2. If necessary, select the Summary window or press F7 to display the Summary
window in the right pane.

3. On the Summary window toolbar, on the Report drop-down list, select the
Transaction Log Shipping Status report.

Lesson Summary
■ You can configure a separate monitor server to capture log shipping information

and maintain execution records even when the primary or secondary server
fails.

■ In SSMS, you use the Log Shipping Monitor Settings window to configure a
monitor server.

■ In SSMS, you can view the Transaction Log Shipping Status report for every
server involved in the log shipping configuration.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following is the main reason to configure a separate monitor server
in a log shipping configuration?

A. To provide an automatic failover configuration

B. To keep track of the results of all tasks in an independent server

C. To reduce the workload of the primary server

D. To reduce the workload of the secondary server

2. Which of the following options are available when configuring a monitor server?
(Choose all that apply.)

A. Monitor Database

B. Operator Name

C. History Retention

D. Monitor Instance

690 Chapter 18 Review

C1862271X.fm Page 690 Friday, April 29, 2005 8:03 PM
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can

■ Review the chapter summary.

■ Review the list of key terms introduced in this chapter.

■ Complete the case scenarios. These scenarios set up a real-world situation
involving the topics of this chapter and ask you to create a solution.

■ Complete the suggested practices.

■ Take a practice test.

Chapter Summary
■ Log shipping uses the SQL Server Agent to automatically synchronize a primary

database and one or more secondary databases through a series of jobs that
back up the transaction log on the primary database and then copy and restore
the log on the secondary databases. However, failing over from the primary data-
base to a secondary database is a manual process.

■ In SSMS, you configure the primary database and log shipping backup options.
You then configure the secondary databases and log shipping restore options.

■ During the configuration process, you select No Recovery mode to create a
warm server that doesn’t allow user access but instead makes the secondary
database part of your availability and disaster recovery implementation.

■ You select Standby mode for a secondary database if you want to provide an
alternate server for queries and increase the scalability of your solution.

■ A resilient log shipping configuration includes a monitor server on a separate
system from your primary and secondary servers to monitor and report on the
status of the log shipping process.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ Copy Files task

■ log shipping

Chapter 18 Review 691

C1862271X.fm Page 691 Friday, April 29, 2005 8:03 PM
■ log_shipping_monitor_error_detail table

■ log_shipping_monitor_history_detail table

■ monitor server

■ No Recovery Mode

■ primary database

■ primary server

■ secondary database

■ secondary server

■ Standby Mode

■ sysjobactivity

■ sysjobhistory

■ Transaction Undo File (TUF)

Case Scenarios
In the following case scenarios, you will apply what you’ve learned about log shipping
configuration. You can find answers to these questions in the “Answers” section at the
end of this book.

Case Scenario 1: Providing Reporting Scalability
You are working as the DBA of Tailspin Toys, which introduced a line of popular stunt
kites three years ago, and business has flourished. To meet customer demand, the
company tripled its sales force and customer service staff. Now that the company has
grown, the perfomance of the database server has decreased, and some employees fre-
quently complain about how long it takes to perform their daily tasks. A closer look
at the system reveals that most of the database server work comes from reporting and
Microsoft Office Excel PivotTable queries. To help improve database performance,
management has authorized the use of two additional servers with similar hardware
configurations as the main database server.

1. How would you configure the new servers to increase the performance of the
reporting application and PivotTable queries?

2. Which log shipping mode would you use in this scenario?

3. What database options should you revise before implementing the log shipping
process?

692 Chapter 18 Review

C1862271X.fm Page 692 Friday, April 29, 2005 8:03 PM
Case Scenario 2: Providing Fault Tolerance for Multiple Servers
Fabrikam, Inc., a leading manufacturer of digital cameras, recently acquired a new
video products division to expand its product line, increase revenue, and grow overall
market share of the company. The new video products division operates in a remote
site and should remain as independent as possible. The video products division has
four SQL Server 2005 database applications running on four servers. As the DBA of
Fabrikam, Inc., you need to increase the availability of these applications under a very
tight budget.

1. What technology could you use to increase the availability of the new video
products division?

2. Which log shipping recovery mode would you use in this scenario?

3. What database rights must you grant to configure the log shipping process?

Suggested Practices
To help you successfully master the exam objectives presented in this chapter, com-
plete the following tasks.

Create a Log Shipping Configuration
For this task, you should complete at least Practice 1. If you want a more well-rounded
understanding of log shipping options and implementation approaches, you should
also complete Practices 2 and 3.

■ Practice 1 Create a log shipping configuration that uses a single database
engine instance. Familiarize yourself with the different log shipping options
available by using SSMS to create this configuration.

■ Practice 2 Create a log shipping configuration that uses three separate database
engine instances, one for each of the log shipping roles. Notice the SQL Server
Agent jobs that are created in each instance to perform the different log shipping
tasks.

■ Practice 3 Create various complex log shipping configurations by using sepa-
rate database engine instances. Implement log shipping using an already initial-
ized secondary database, using different SQL Agent service accounts, and using
stored procedures instead of SSMS.

Chapter 18 Review 693

C1862271X.fm Page 693 Friday, April 29, 2005 8:03 PM
Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-431 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the “How to Use the Practice Tests”
section in this book’s Introduction.

C1862271X.fm Page 694 Friday, April 29, 2005 8:03 PM

C1962271X.fm Page 695 Friday, April 29, 2005 8:04 PM
Chapter 19

Managing Replication

SQL Server database replication is a set of technologies for copying and distributing
data and database objects from one database to one or more other databases and
keeping the databases synchronized. Using replication technologies, you can increase
the availability of your software solutions by geographically distributing your data,
making applications more resilient to communication failures. You can also use repli-
cation to distribute the data-access workload across multiple servers or to support
remote clients.

This chapter gives you a start into replication by exploring the technology’s specific
terminology and elements as well as which type of replication is appropriate for dif-
ferent business situations. You will learn how to set up a secure replication config-
uration by using SQL Server Management Studio (SSMS) and how to script the
configuration for efficiency and documentation purposes. And you will see how to
resolve conflicts that can arise in merge replication setups. Finally, this chapter will
give you tips for monitoring and improving the performance of your replication
topology.

Exam objectives in this chapter:
■ Manage replication

❑ Distinguish between replication types.

❑ Configure a Publisher, a Distributor, and a Subscriber.

❑ Configure replication security.

❑ Configure conflict resolution settings for merge replication.

❑ Monitor replication.

❑ Improve replication performance.

❑ Plan for, stop, and restart recovery procedures.
695

696 Chapter 19 Managing Replication

C1962271X.fm Page 696 Friday, April 29, 2005 8:04 PM
Lessons in this chapter:
■ Lesson 1: Understanding Replication Types . 698

■ Lesson 2: Setting Up Replication . 706

■ Lesson 3: Configuring Replication Security . 731

■ Lesson 4: Configuring Conflict Resolution for Merge Replication 747

■ Lesson 5: Monitoring Replication. 761

Before You Begin
To complete the lessons in this chapter, you must have:

■ A computer that meets the hardware and software requirements for Microsoft
SQL Server 2005.

■ SQL Server 2005 Developer, Workgroup, Standard, or Enterprise Edition installed.

■ SQL Server Agent running and configured with a Microsoft Windows service
account.

NOTE Configuring a SQL Server Agent Windows service account

The SQL Server services (SQL Server, SQL Server Agent, Analysis Services, Report Server, and SQL
Server Browser), use accounts to authenticate to the local computer and to the network. These
accounts are configured when you install SQL Server, but you can use SQL Server Configuration
Manager (SSCM) to change the configuration afterwards.

To configure a SQL Server service account using SSCM:

1. Create a Windows user account. Use Local Users And Groups to create the account in the
local server’s user database, or use Active Directory Users And Computers if the server is a
member of an Active Directory domain.

2. Open SSCM. In the console tree, click SQL Server 2005 Services. In the details pane, double-
click the service you want to configure.

3. On the Log On tab, select This Account. In the Account Name text box, type the name of the
Windows account (or click Browse to browse for and select the user account you just cre-
ated). Type the user’s password in the Password and Confirm Password text boxes. Click OK
to save your changes.

4. When prompted, click Yes to restart the service. The service now logs on using the user
account and password you specified.

NOTE If you use SSCM to change the SQL Server Agent service account, it is automatically
assigned to the SQLServer2005SQLAgentUser$SERVERNAME$INSTANCENAME local group
to grant the minimum required rights to operate the service.

Before You Begin 697

C1962271X.fm Page 697 Friday, April 29, 2005 8:04 PM
Real World
Javier Loria

Distributing data geographically is not an easy task when you don’t have the
right set of tools. I frequently find customers using complex proprietary solu-
tions to distribute data to multiple sites. Most of these solutions do not provide
the manageability that replication does. When that is the case, my message to the
customer frequently is “Don’t reinvent the wheel!”

SQL Server 2005 provides three replication types and a variety of options within
those types so that you can create a customized data-distribution solution for
your business needs. SQL Server 2005 also gives you the tools you need to effi-
ciently create, manage, and monitor replication, including SSMS, SQL Server
Replication Monitor (SSRM), and Transact-SQL replication stored procedures
and Replication Management Objects (RMOs).

And the best part is that this powerful functionality and these management tools
come free as integral parts of SQL Server 2005.

698 Chapter 19 Managing Replication

C1962271X.fm Page 698 Friday, April 29, 2005 8:04 PM
Lesson 1: Understanding Replication Types
SQL Server 2005 provides three main types of replication: snapshot, transactional, and
merge. These three central types of replication, combined with a variety of options,
offer a wide selection of alternatives that you can use to satisfy multiple business
needs for distributed computing and high availability. In this lesson, you will learn the
key terms and concepts underlying SQL Server 2005 replication and review the three
types of replication available.

After this lesson, you will be able to:

■ Understand replication terminology.

■ Explain the three replication types and their advantages and disadvantages.

■ Understand the roles of the different replication agents.

Estimated lesson time: 20 minutes

Understanding Replication Terminology
SQL Server replication uses a metaphor from the publishing industry to name com-
ponents in its architecture. The metaphor of a magazine and its components helps
communicate to database architects, administrators, and developers a clear image of
the role each component plays in a replication solution.

Publications and Articles
SQL Server replication begins with two elements: an article and a publication. An arti-
cle, the most basic unit of replication, represents the database object that is replicated.
SQL Server 2005 replication allows the following articles:

■ Tables

■ Views

■ Filtered tables or views, by column or row

■ Indexed views

■ Definitions of stored procedures

■ Execution of stored procedures

SQL Server groups articles from the same database in a unit called a publication. The
publication element serves two purposes: It simplifies the configuration and manage-
ment of the replication process, and it provides a unit to assure the logical relationship

Lesson 1: Understanding Replication Types 699

C1962271X.fm Page 699 Friday, April 29, 2005 8:04 PM
and consistency of the data. A publication simplifies management by providing a sin-
gle point for subscribing to a group of articles, making the replication easier to con-
figure. At the same time, a publication preserves the integrity of the information SQL
Server replicates by grouping data that must be kept together. For example, the Order-
Detail and OrderHeader tables are probably better published as a single unit to assure
the consistency of the related information.

Server Roles
The publishing metaphor extends to the roles a server can play in the replication
topology. You can configure a server as Publisher, Distributor, and/or Subscriber. The
relationship between these three servers is shown in Figure 19-1. The Publisher is the
original owner of the information that is published. In some scenarios, a Publisher is
the only place where data can be modified. However, some replication types allow the
propagation of changes from other servers.

Figure 19-1 Server roles in replication

You also need to configure a server in the role of Distributor. The Distributor is
responsible for managing the distribution database, which stores replication status
data, metadata, and, in some replication scenarios, the actual data that SQL Server
replicates. A single database server instance can act as both the Publisher and the Dis-
tributor, in which case the Distributor is called a local Distributor. When you config-
ure the Publisher and the Distributor on separate database server instances, the
Distributor is called a remote Distributor.

The server that then receives copies of the publication and provides the data to end
users and applications is called the Subscriber. In some configurations, Subscribers

Data

Data

Publisher

Subscriber Subscriber Subscriber

Distributor

700 Chapter 19 Managing Replication

C1962271X.fm Page 700 Friday, April 29, 2005 8:04 PM
have a read-only copy of the database; in other configurations, you can update infor-
mation in the Subscribers and replicate those changes back to the Publisher.

Push and Pull Subscriptions
In replication terminology, you find two types of subscriptions, or ways for Subscrib-
ers to get the publication: push subscriptions and pull subscriptions (shown in Figures
19-2 and 19-3). With a push subscription, the Distributor copies the data to the Sub-
scriber database. With a pull subscription, the Subscriber retrieves the data from the
Distributor.

Figure 19-2 Push subscription

Figure 19-3 Pull subscription

When your communication infrastructure has stable and permanent connections
among replication servers, a push subscription offers the advantage of providing
a central management point to all replication agents that manage the replication
process. This results in less administrative overhead and easier troubleshooting
procedures.

However, when the replication configuration includes many Subscribers, the distribu-
tion process for push subscriptions can tax the hardware resources of a Distributor.
Furthermore, servers or clients that connect on demand are better configured as pull
subscriptions.

Data

Agent

Distributor Subscriber

Data

Agent

Distributor Subscriber

Lesson 1: Understanding Replication Types 701

C1962271X.fm Page 701 Friday, April 29, 2005 8:04 PM
Replication Types
With this terminology foundation laid, let’s look at each of the three types of replica-
tion that SQL Server 2005 provides. These types are illustrated in Figure 19-4. Snap-
shot replication is the easiest replication type to understand because it is conceptually
similar to a full backup and restore. With snapshot replication, the server copies an
entire set of data to the Subscribers at scheduled times, rewriting the data at the Sub-
scribers with each copy operation. However, snapshot replication does not operate on
the complete database as backup and restore does; snapshot replication copies only
the specified articles from the Publisher to the Subscribers. Keep in mind that because
snapshot replication copies the entire data set every time it runs, you should use this
replication type only when the amount of data is small and rather static.

Figure 19-4 Snapshot replication

For more volatile scenarios, transactional replication (illustrated in Figure 19-5) pro-
vides a better solution because it makes an initial complete copy of the data, and then
all subsequent copies transfer modified data only. Transactional replication uses the
transaction log to apply to the destination data the same transactions performed on
the source data. Because the same modifications are applied at both ends, the infor-
mation is identical at the Publisher and the Subscriber. This replication type is fre-
quently used for transactional tables, such as an Order Details table in a retail
database.

Data

Data

Publisher

Subscriber Subscriber Subscriber

Distributor

702 Chapter 19 Managing Replication

C1962271X.fm Page 702 Friday, April 29, 2005 8:04 PM
Figure 19-5 Transactional replication

MORE INFO New in SQL Server 2005: peer-to-peer replication

Peer-to-peer replication is a new kind of transactional replication that lets multiple servers subscribe
to the same schema and data, permitting simultaneous changes in multiple servers. For information
about peer-to-peer replication, see the SQL Server 2005 Books Online topic “Peer-to-Peer Transac-
tional Replication.” SQL Server 2005 Books Online is installed as part of SQL Server 2005. Updates
for SQL Server 2005 Books Online are available for download at www.microsoft.com/technet/
prodtechnol/sql/2005/downloads/books.mspx.

Transactional replication offers a valuable alternative to snapshot replication when
your data is volatile, but it has an important limitation: Transactional replication limits
the changes that data can undergo at the destination, and only through a separate
communication mechanism can the information updates at the Subscriber database
reach the Publisher database.

When your environment requires the ability to support simultaneous data modifica-
tions in the Publisher and Subscriber databases, merge replication (illustrated in Figure
19-6) offers a solution. With merge replication, the process begins with an initial full
copy of the data from the Publisher to the Subscribers. As data changes occur in any
server, the replication process takes these changes, resolves any conflicts that might
have occurred due to the changes, and applies the changes to all the servers. Unlike
transactional replication, merge replication does not rely on the serialization of the
database (the transaction log) to synchronize the Publisher and Subscribers. In merge
replication, each server modifies the replicated data, and the merge replication pro-
cess uses a combination of unique identifier columns, triggers, and tables to capture
changes in the database. Note that merge replication is the most invasive replication
solution because it requires important schema changes in the database.

Log Reader
Agent

Publisher
Distribution
Database

Distribution
Agent

Transaction
Log

Data

Subscriber

Lesson 1: Understanding Replication Types 703

C1962271X.fm Page 703 Friday, April 29, 2005 8:04 PM
Figure 19-6 Merge replication

Replication Agents
SQL Server uses a group of programs called replication agents to execute the replica-
tion process. Replication agents, by default, are implemented through SQL Server
Agent jobs. SSMS replication wizards automate the creation of these jobs. You can also
run replication agents from the command line or from applications that use RMO.
You manage replication agents from SSRM (covered in Lesson 5) and SSMS.

SQL Server 2005 replication includes the following key agents:

■ Snapshot Agent (snapshot.exe) This agent prepares the schemas and the initial
copy of the data files. All replication types use the Snapshot Agent as the starting
point for the synchronization process. Generally, the Snapshot Agent is run on a
regular basis to keep the data files updated. These files are required if the repli-
cation synchronization process finds anomalies in the data that cannot be fixed.
The Snapshot Agent runs in the Distributor server.

■ Log Reader Agent (logread.exe) This agent monitors the database’s transaction
log and copies each transaction that affects the publication to the distribution
database, in which the transactions are stored until applied to the Subscribers. It
is important to note that multiple publications of the same database share the
same Log Reader Agent. Log Reader Agents are used only in transactional repli-
cation configurations and run in the Publisher server.

■ Distribution Agent (distrib.exe) This agent performs two tasks: it delivers the ini-
tial snapshot to Subscribers and applies transactions stored in the distribution
database to Subscribers. The Distribution Agent is used in snapshot and trans-
actional replication. The Distribution Agent runs in the Distributor when you
configure the publication as a push subscription and in the Subscriber when you
configure the publication as a pull subscription.

Merge
Agent

Data

Data

Subscriber

Publisher

Conflict
Resolution

704 Chapter 19 Managing Replication

C1962271X.fm Page 704 Friday, April 29, 2005 8:04 PM
■ Merge Agent (replmerg.exe) This agent delivers the initial snapshot from the Dis-
tributor to the Subscribers. It also merges data changes that occur in the Publisher
to the Subscribers, and vice versa. When two servers modify the same information
at the same time, a conflict occurs; the Merge Agent reconciles the conflict by using
a set of rules that you define during replication configuration. The Merge Agent
runs in the Distributor when you configure the publication as a push subscription
and in the Subscriber when you configure the publication as a pull subscription.

■ Queue Reader Agent (replmerg.exe) This agent reads messages stored in queues
(SQL Server queues or Microsoft Message Queues) and applies transactions sent
to the queue to the Publisher database. The Queue Reader Agent is used only
when snapshot or transactional replication is set with the option for queued
updating subscriptions.

MORE INFO Queued updating subscriptions

When you use queued updating subscriptions, SQL Server stores the changes in a queue and then
applies the queued transactions asynchronously at the Publisher whenever network connectivity is
available. Lesson 2 covers the parameter for setting up updatable subscriptions, but full coverage
of queued updating is beyond the scope of this chapter. For complete information, see the “Updat-
able Subscriptions for Transactional Replication” topic in SQL Server 2005 Books Online.

SQL Server 2005 also includes agents responsible for replication maintenance jobs,
including:

■ Agent History Clean Up: Distribution

■ Distribution Clean Up: Distribution

■ Expired Subscription Clean Up

■ Reinitialize Subscriptions Having Data Validation Failures

■ Replication Agents Checkup

■ Replication Monitoring Refresher For Distribution

Quick Check
■ Which agent is responsible for delivering the snapshot files to the Sub-

scriber in transactional replication?

Quick Check Answer

■ The Distribution Agent (distrib.exe) delivers the snapshot files to Subscribers
in a transactional replication architecture.

Lesson 1: Understanding Replication Types 705

C1962271X.fm Page 705 Friday, April 29, 2005 8:04 PM
Lesson Summary
■ SQL Server 2005 includes three main replication types: snapshot, transactional,

and merge.

■ SQL Server uses a magazine publishing metaphor to describe the elements of a
replication topology, including articles, publications, Publishers, Distributors,
and Subscribers.

■ Replication involves one of two types of subscriptions: push subscriptions,
which run at the Distributor and send the publication to the Subscribers; and
pull subscriptions, which run at the Subscribers and retrieve the publication
from the Distributor.

■ Replication uses executables called agents to manage the replication process.
The main replication agents are the Snapshot Agent, the Log Reader Agent, the
Distribution Agent, the Merge Agent, and the Queue Reader Agent.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which replication types rely on the transaction log to monitor changes in the
publishing database? (Choose all that apply.)

A. Snapshot replication

B. Transactional replication

C. Merge replication

D. Peer-to-peer replication

2. Which of the following agents is responsible for monitoring the transaction log
in transactional replication?

A. Snapshot Agent

B. Distribution Agent

C. Merge Agent

D. Log Reader Agent

706 Chapter 19 Managing Replication

C1962271X.fm Page 706 Friday, April 29, 2005 8:04 PM
Lesson 2: Setting Up Replication
The most straightforward method to configure replication is via SSMS. But you can
also use Transact-SQL statements or SQL Server RMOs to configure replication. The
general steps for configuring replication are as follows:

1. Set up a Distributor for the Publisher to use.

2. Create a publication to replicate that includes the articles you want to copy.

3. Configure the Subscriber and a subscription.

In this lesson, you see how to use SSMS to perform these steps to configure a replica-
tion topology. You also see how to generate the equivalent Transact-SQL configura-
tion scripts.

After this lesson, you will be able to:

■ Create the distribution database.

■ Enable a database for replication.

■ Create a publication.

■ Subscribe to a publication.

Estimated lesson time: 40 minutes

How to Set Up the Distributor
The first step in setting up replication is configuring the Distributor. You can assign
each Publisher to only one Distributor instance, but multiple Publishers can share a
Distributor. As noted earlier, you can configure the Distributor server to act as the dis-
tributor of its own data (local Distributor), which is the default, or as a distributor of
data for remote servers (remote Distributor).

BEST PRACTICES Remote Distributor

You might decide to use a remote Distributor if you want to offload the Distributor processing from
the Publisher computer to another computer or if you want to configure a centralized Distributor
for multiple Publishers.

Note that the server you choose as the Distributor should have adequate disk space
and processor power to support replication and the other activities that need to run
on that server.

Lesson 2: Setting Up Replication 707

C1962271X.fm Page 707 Friday, April 29, 2005 8:04 PM
Here is how to configure the Distributor as a local Distributor:

1. Open SSMS.

2. Connect to the database engine instance you want to configure as Publisher and
Distributor.

3. Right-click the Replication folder and choose Configure Distribution.

4. On the Configure Distribution Wizard page, click Next.

5. On the Distributor page, select server_name Will Act As Its Own Distributor and
click Next.

6. On the Snapshot Folder page, type the path to a local folder or the Universal
Naming Convention (UNC) name for a shared folder in which you want to store
the files that will hold the publication’s schema and data. Click Next.

NOTE Snapshot folder choices

Consider three important factors as you make your Snapshot folder choice. First, if your sub-
scription topology uses pull subscriptions, use a UNC network path. Second, plan how much
space the snapshot files will occupy. And finally, secure the folder and grant permission to
only the Snapshot Agent (write) and to the Merge or Distribution Agent (read). Lesson 3 in
this chapter provides more details about how to secure replication.

7. On the Distribution Database page, type the name of the database and the path
of its data and log files, as Figure 19-7 shows. By default, SQL Server names this
database distribution and places it in the \Program Files\Microsoft SQL Server\
MSSQL.x\MSSQL\Data folder, where x is the number assigned to the instance
on which you are configuring replication. Click Next.

BEST PRACTICES Configuring the distribution database

Transactional replication demands more from the distribution database than any other repli-
cation type. If you plan to use transactional replication in large and volatile databases, con-
sider placing the log and data files of the distribution database in different disk channels,
using RAID 1 or RAID 10 for the data files and RAID 1 for the log files.

8. On the Publishers page, add other publishers you want to authorize as Publish-
ers to this Distributor, and click Next. By default, SSMS also configures the Dis-
tributor as a Publisher.

9. On the Wizard Actions page, you can use the available check boxes to indicate
whether you want SSMS to execute the commands now, script them, or both. By
default, the Configure Distribution check box is selected. Click Next.

708 Chapter 19 Managing Replication

C1962271X.fm Page 708 Friday, April 29, 2005 8:04 PM
Figure 19-7 Configuring the distribution database

10. If you chose to script the commands, you now see the Script File Properties page.
You use this page to configure the name, path, and format of the script. By
default, SQL Server creates this script file in your My Documents folder. You can
also specify whether you want SQL Server to overwrite an existing script file
with the same name or to append this script to it. Click Next.

BEST PRACTICES Scripting the configuration

Scripting the Distributor configuration is a good idea for documentation purposes; plus, you
can use the script in a recovery plan. Additionally, you can use scripts to create more com-
plex database file configurations.

11. On the Complete The Wizard page, review the summary of choices you made
and then click Finish.

12. Wait for the Configure Distribution Wizard to complete the configuration. After
it finishes, click Close.

The following code block shows the Distributor configuration script:

Distributor Configuration Script
/*** Scripting replication configuration for server COMPUTERNAME. ***/
/*** Please Note: For security reasons, all password parameters

were scripted with either NULL or an empty string. ***/
/*** Installing the server COMPUTERNAME as a Distributor. ***/

Lesson 2: Setting Up Replication 709

C1962271X.fm Page 709 Friday, April 29, 2005 8:04 PM
use master
exec sp_adddistributor @distributor = N'COMPUTERNAME', @password = N''
GO
exec sp_adddistributiondb @database = N'distribution'

, @data_folder = N'C:\MSSQL\Data'
, @data_file_size = 4
, @log_folder = N'C:\MSSQL\Data'
, @log_file_size = 2
, @min_distretention = 0, @max_distretention = 72
, @history_retention = 48, @security_mode = 1

GO
use [distribution]
if (not exists (select * from sysobjects

where name = 'UIProperties' and type = 'U '))
create table UIProperties(id int)

if (exists (select * from ::fn_listextendedproperty('SnapshotFolder'
, 'user', 'dbo', 'table', 'UIProperties', null, null)))

EXEC sp_updateextendedproperty N'SnapshotFolder'
, N'C:\MSSQL\ReplData', 'user', dbo, 'table'
, 'UIProperties'

else
EXEC sp_addextendedproperty N'SnapshotFolder'

, 'C:\MSSQL\ReplData'
, 'user', dbo, 'table', 'UIProperties'

GO
exec sp_adddistpublisher @publisher = N'COMPUTERNAME'

, @distribution_db = N'distribution'
, @security_mode = 1, @working_directory = N'C:\MSSQL\ReplData'
, @trusted = N'false', @thirdparty_flag = 0
, @publisher_type = N'MSSQLSERVER'

GO

Be aware that the @distributor, @data_folder, @log_folder, SnapshotFolder, @working_
directory, and @publisher parameters you see in this script are all specific to your envi-
ronment. The Distributor configuration script that the wizard generates uses three
main stored procedures. The first procedure, sp_adddistributor, defines the Distribu-
tor when the server acts as Publisher. To configure the server as its own Distributor,
set the @distributor parameter to its own server name; to use a remote server, use the
remote server name.

The second stored procedure, sp_adddistributiondb, creates the distribution database
with the specified parameters. If you want to use a distribution database with multiple
data files or filegroups, first create the database by using a CREATE DATABASE state-
ment and set the name in the @database parameter. In addition, sp_adddistributiondb
uses retention parameters to control how many hours SQL Server stores transactions
in the database before it erases them (this affects only transactional replication). If the
Distribution Agent fails to copy the transactions within the maximum specified

710 Chapter 19 Managing Replication

C1962271X.fm Page 710 Friday, April 29, 2005 8:04 PM
period, SQL Server marks the subscription as inactive, and the Snapshot Agent reini-
tializes the database. Increasing this value increases the space required to hold the
transactions, but it can help you avoid making full copies of the publication again,
thus losing the advantage of using transactional replication.

The third procedure in the script is sp_adddistpublisher. This procedure, executed at
the Distributor, configures a Publisher to use the distribution database. The script also
uses the sp_addextendedproperty or the sp_updateextendedproperty stored procedure to
store the Snapshot folder path as an extended property.

NOTE Disabling publishing

If you want to disable the publishing on a server, right-click the Publication folder and choose
Disable Publishing And Distribution.

Quick Check
■ Which type of replication is more demanding of the distribution database?

Quick Check Answer

■ Transactional replication is more demanding on the Distributor and the
distribution database, which stores the data captured from the transaction
log for use by transactional replication processes.

How to Create a Publication
After you have configured the Publisher to use a specific Distributor, the next step in
setting up replication is to create the publication you want to publish. Here are the
steps for creating a publication:

1. Open SSMS.

2. Connect to the database engine instance in which you want to create the publi-
cation.

3. Expand the Replication, Local Publications folder.

4. Right-click the Local Publications folder and choose New Publication.

5. On the New Publication Wizard page, click Next.

6. On the Publication Database page, select the database in which you want to cre-
ate the publication. Click Next.

Lesson 2: Setting Up Replication 711

C1962271X.fm Page 711 Friday, April 29, 2005 8:04 PM
7. On the Publication Type page, (shown in Figure 19-8), select the type of publi-
cation you want to use (Snapshot Publication, Transactional Publication, Trans-
actional Publication With Updatable Subscriptions, or Merge Publication). Click
Next.

Figure 19-8 Configuring publication type

8. On the Articles page, select the check boxes for the database objects you want to
publish. Keep in mind that if you choose objects such as a stored procedure,
view, indexed view, or user-defined function (UDF), you must also publish the
objects on which those objects depend. For example, if you choose a stored pro-
cedure that references two tables, you must include those two tables in the pub-
lication. Click Next.

9. On the Filter Table Rows page, you can create a row filter to filter the table you
publish. To configure a row filter, click Add. Use the Add Filter dialog box to
define the filter, click OK, and click Next.

NOTE Setting up filters

The Publication Wizard offers two pages that let you set up filters. If you want to filter col-
umns, use the Articles page. If you want to filter by rows, use the Filter Table Rows page.

712 Chapter 19 Managing Replication

C1962271X.fm Page 712 Friday, April 29, 2005 8:04 PM
10. On the Snapshot Agent page, select the Create A Snapshot Immediately And
Keep The Snapshot Available To Initialize Subscriptions check box to create a
snapshot now. Select the Schedule The Snapshot Agent To Run At The Following
Times check box. By default, the New Publication Wizard configures the Snap-
shot Agent to run on an hourly basis. If you want to change this schedule, click
Change to define a new schedule. Click OK to save your new schedule and then
click Next to continue.

BEST PRACTICES Executing the Snapshot Agent

Creating a snapshot can be a demanding process. You should configure the Snapshot Agent
to run only at off-peak times.

11. On the Agent Security page, click Security Settings to open the Snapshot Agent
Security dialog box. Use the options in this dialog box to assign the account by
which you want to run the Snapshot Agent process and connect to the Publisher.
Click OK to close the Snapshot Agent Security dialog box and then click Next.

MORE INFO Security

You can configure the Snapshot Agent to run under the SQL Server Agent service account.
However, this setup is not recommended because it does not follow the principle of least
privilege. For details about how to provide a secure environment for replication, see Lesson 3
of this chapter.

12. On the Wizard Actions page, you can use the available check boxes to indicate
whether you want SSMS to execute the commands now, script them, or both. By
default, the Create The Publication check box is selected. Click Next.

13. If you chose to script the commands, you now see the Script File Properties page.
You use this page to configure the name, path, and format of the script. By
default, SQL Server creates this script file in your My Documents folder. Click
Next.

14. On the Complete The Wizard page, type a name for your publication in the Pub-
lication Name text box. Review the summary of your choices, and click Finish to
create the publication.

15. Wait for the New Publication Wizard to create the publication. After it com-
pletes, click Close.

Lesson 2: Setting Up Replication 713

C1962271X.fm Page 713 Friday, April 29, 2005 8:04 PM
The following code block shows the publication configuration script that the New
Publication Wizard generates:

Publication Configuration Script
use [AdventureWorksRepl]
exec sp_replicationdboption @dbname = N'AdventureWorksRepl'

, @optname = N'publish'
, @value = N'true'

GO
-- Adding the snapshot publication
use [AdventureWorksRepl]
exec sp_addpublication @publication = N'MSPressRepl'

, @description = N'Snapshot publication of database ''AdventureWorksRepl'' from Publisher
''COMPUTERNAME''.'

, @sync_method = N'native'
, @retention = 0
, @allow_push = N'true'
, @allow_pull = N'true'
, @allow_anonymous = N'true'
, @enabled_for_internet = N'false'
, @snapshot_in_defaultfolder = N'true'
, @compress_snapshot = N'false'
, @ftp_port = 21
, @allow_subscription_copy = N'false'
, @add_to_active_directory = N'false'
, @repl_freq = N'snapshot'
, @status = N'active'
, @independent_agent = N'true'
, @immediate_sync = N'true'
, @allow_sync_tran = N'false'
, @allow_queued_tran = N'false'
, @allow_dts = N'false'
, @replicate_ddl = 1

GO
exec sp_addpublication_snapshot @publication = N'MSPressRepl'

, @frequency_type = 4
, @frequency_interval = 1
, @frequency_relative_interval = 1
, @frequency_recurrence_factor = 0
, @frequency_subday = 1
, @frequency_subday_interval = 1
, @active_start_time_of_day = 0
, @active_end_time_of_day = 235959
, @active_start_date = 0
, @active_end_date = 0
, @job_login = null
, @job_password = null
, @publisher_security_mode = 1

use [AdventureWorksRepl]
exec sp_addarticle @publication = N'MSPressRepl'

, @article = N'SalesOrderDetail'
, @source_owner = N'Sales'

714 Chapter 19 Managing Replication

C1962271X.fm Page 714 Friday, April 29, 2005 8:04 PM
, @source_object = N'SalesOrderDetail'
, @type = N'logbased', @description = null
, @creation_script = null
, @pre_creation_cmd = N'drop'
, @schema_option = 0x000000000803509D
, @identityrangemanagementoption = N'manual'
, @destination_table = N'SalesOrderDetail'
, @destination_owner = N'Sales'
, @vertical_partition = N'false'

GO
use [AdventureWorksRepl]
exec sp_addarticle @publication = N'MSPressRepl'

, @article = N'SalesOrderHeader'
, @source_owner = N'Sales'
, @source_object = N'SalesOrderHeader'
, @type = N'logbased'
, @description = null
, @creation_script = null
, @pre_creation_cmd = N'drop'
, @schema_option = 0x000000000803509D
, @identityrangemanagementoption = N'manual'
, @destination_table = N'SalesOrderHeader'
, @destination_owner = N'Sales'
, @vertical_partition = N'false'

GO

As with the previous script for creating the Distributor, this script contains parameters
that are specific to your environment. The script that the New Publication Wizard gen-
erates uses four stored procedures to create the publication configuration. The first
procedure, sp_replicationdboption, enables replication in a database. The parameter
@optname supports the following values: merge publish for merge replication, publish
for snapshot and transactional replication, subscribe for subscription, and sync with
backup for a special type of transactional replication that forces backups of the trans-
action log before sending transactions to the distribution database.

The sp_addpublication stored procedure creates the publication when the publication
type is snapshot or transactional. The @sync_method parameter specifies the format
the bulk copy files use. Use native format when the replication includes only SQL
Server subscriptions, and use character format when other platforms (such as
Microsoft Office Access, Oracle, or IBM DB2) subscribe to the publication.

You use the parameters @enabled_for_internet , @ftp_port , @ftp_address ,
@ftp_subdirectory, @ftp_login, and @ftp_password when subscribers use the Internet to
connect for replicating the database. The @enabled_for_internet parameter enables the
configuration, and the rest of the parameters set the configuration of the Snapshot
folder.

Lesson 2: Setting Up Replication 715

C1962271X.fm Page 715 Friday, April 29, 2005 8:04 PM
The sp_addpublication_snapshot stored procedure configures the job that runs the
Snapshot Agent. You configure the job schedule by using the following parameters:
@frequency_type, @frequency_interval, @frequency_relative_interval, @frequency_recurrence_
factor, @frequency_subday, @frequency_subday_interval, @active_start_time_of_day, @active_
end_time_of_day, @active_start_date, and @active_end_date. In the sample script, the Snap-
shot Agent job is set to run once a day every day.

MORE INFO Schedules

If you want a better understanding of the schedule parameters that the Snapshot Agent job uses,
review the documentation about sp_add_schedule in SQL Server 2005 Books Online. To gain a good
understanding of the parameter semantics, you can create a job with multiple schedules and generate
a script to review the resulting parameter settings.

The last three parameters of sp_addpublication_snapshot—@job_login, @job_password,
and @publisher_security_mode—set the security context of the job. You will find more
information about replication security in the next lesson.

Finally, the sp_addarticle stored procedure is executed multiple times, once per article
in the publication, to configure the database objects that will be published. You con-
figure the publication, article name, and object to publish by using the parameters
@publication, @article, @source_owner, and @source_object. When you want to create a
script that configures a large number of articles with the same options, copy and paste
this procedure, replacing the parameter values with the appropriate object names.

The sp_addarticle @type parameter sets what will be published: the schema, the data,
or the execution. For example, to publish table or view data, use the logbased value; to
copy the schema of a stored procedure or view, use proc schema only or view schema
only, respectively; and to replicate the execution of the stored procedure, use proc exec.

NOTE Article types

Some Subscribers support only certain article types. For example, non-SQL Server Subscribers do
not support schema-only or stored procedure replication. So take your environment into consider-
ation before specifying article types.

How to Subscribe to the Publication
The final step in the replication configuration process is configuring the Subscriber to
receive the publication. To configure a subscription for a Subscriber, follow these steps:

1. Open SSMS.

2. Connect to the Publisher database engine instance.

716 Chapter 19 Managing Replication

C1962271X.fm Page 716 Friday, April 29, 2005 8:04 PM
3. Expand the Replication, Local Publications folder.

4. Right-click the publication to which you want the Subscriber server to subscribe,
and select New Subscriptions to start the New Subscription Wizard.

5. On the New Subscription Wizard page, click Next.

6. On the Publication page, you see that the Publisher and publication are automat-
ically selected for you. This occurs because you right-clicked the publication to
subscribe to it, so SQL Server knows which publisher and publication to use.
Click Next.

NOTE New Subscription Wizard

You can start the New Subscription Wizard at the Subscriber instead of at the Publisher. If
you do so, the wizard includes the option to connect to the Publisher server and select the
appropriate publication.

7. On the Distribution Agent Location page, select the type of subscription you
want: push or pull. If you select Run All Agents At The Distributor (Push Sub-
scriptions), the Distribution agent runs on the Distributor; if you select Run
Each Agent At Its Subscriber (Pull Subscriptions), the Distribution Agent runs
on the Subscriber. Click Next.

8. On the Subscribers page, select the check box for the server or instance you want
to subscribe to this publication. From the Subscription Database drop-down list,
select the database in which you want to store this publication. (Click New Data-
base if you want to create a new database for the subscription.) By clicking Add
Subscriber, you can add SQL Server as well as non-SQL Server (Oracle and IBM
DB2) Subscribers. Click Next.

NOTE Non-SQL Server Subscribers

The Subscription Wizard in SSMS provides support only for SQL Server, Oracle, and IBM DB2
Subscriber databases. If you want to use other non-SQL Server Subscribers, use stored pro-
cedures to configure the subscription.

9. On the Distribution Agent Security page, configure the security context that the
agent will use. Click Next.

10. On the Synchronization Schedule page, select the schedule you want the Distri-
bution Agent to use. For snapshot and merge replication, use Run On Demand
Only or set a schedule. For transactional replication, use Run Continuously or
set a schedule. Click Next.

Lesson 2: Setting Up Replication 717

C1962271X.fm Page 717 Friday, April 29, 2005 8:04 PM
11. On the Initialize Subscription page, configure the initialization to occur immedi-
ately or at first synchronization. Remember that the initial snapshot creates the
schema and generates bulk copy files that contain all the publication data and
can demand a lot of resources. Click Next.

12. On the Wizard Actions page, you can use the available check boxes to indicate
whether you want SSMS to execute the commands now, script them, or both.
Make your selection and then click Next.

13. If you chose to script the commands, you now see the Script File Properties page.
You can configure the name, path, and format of the script and whether you
want SQL Server to overwrite an existing file with the same name or append this
script to it. Click Next.

14. On the Complete The Wizard page, review the summary of choices you made
and click Finish.

15. Wait for the New Subscription Wizard to create the subscription. After it com-
pletes, click Close.

The script that the Subscription Wizard generates uses different stored procedures
depending on the publication and subscription type you chose. For a snapshot or
transactional publication and a push subscription, the script uses two stored proce-
dures. The sp_addsubscription procedure adds the subscription, and the
sp_addpushsubscription_agent procedure creates a job to run the Distribution Agent,
including similar job schedule parameters as sp_addpublication_snapshot. The follow-
ing code example shows a Subscriber configuration script:

Subscriber Configuration Script
--- BEGIN: Script to be run at Publisher 'COMPUTERNAME' ---
use [ReplTesting]
exec sp_addsubscription @publication = N'Products'

, @subscriber = N'COMPUTERNAME'
, @destination_db = N'SubsTesting'
, @subscription_type = N'Push'
, @sync_type = N'automatic'
, @article = N'all'
, @update_mode = N'read only'
, @subscriber_type = 0

exec sp_addpushsubscription_agent @publication = N'Products'
, @subscriber = N'COMPUTERNAME'
, @subscriber_db = N'SubsTesting'
, @job_login = null
, @job_password = null
, @subscriber_security_mode = 1
, @frequency_type = 8
, @frequency_interval = 1

718 Chapter 19 Managing Replication

C1962271X.fm Page 718 Friday, April 29, 2005 8:04 PM
, @frequency_relative_interval = 1
, @frequency_recurrence_factor = 1
, @frequency_subday = 1
, @frequency_subday_interval = 0
, @active_start_time_of_day = 0
, @active_end_time_of_day = 235959
, @active_start_date = 20060226
, @active_end_date = 99991231
, @enabled_for_syncmgr = N'False'
, @dts_package_location = N'Distributor'

GO
---- END: Script to be run at Publisher 'COMPUTERNAME' ---

As with the other replication scripts, this script contains parameters that are specific
to your environment. The first procedure in the script, sp_addsubscription, creates the
subscription and should be run at the Publisher using the publishing database. The
parameters @publication, @subscriber, and @destination_db define the subscription,
given that a server and subscribing database can subscribe to a publication only once.
The @subscription_type parameter can be either push or pull, depending on where
you want the Distribution Agent to run.

The @sync_type parameter indicates the initial status of the Subscriber database. The
value automatic means that the replication process will use the Snapshot Agent to
transfer the data and schema to the Subscriber. This value can be used when the con-
nection between servers is good enough to move the snapshot through the network.

The Initialize With Backup option initializes the schema and initial data from a
backup of the publication database. The @backupdevicetype and @backupdevicename
parameters set the name or path of the file to restore. These options let administrators
back up the publishing database and deliver the backup file to the Subscriber server,
using alternative physical media (CD, DVD, or tape).

CAUTION Initialize With Backup option

The Initialize With Backup option restores in the Subscriber the complete publishing database—not
just the articles included in the publication. All information stored in the subscribing database will
be lost.

The Replication Support Only option assumes that the Subscriber already has the
schema and the initial data. Thus, the replication process will add only objects
required to support the replication.

The next section on updatable subscriptions explores the @sync_type parameter in
greater detail.

Lesson 2: Setting Up Replication 719

C1962271X.fm Page 719 Friday, April 29, 2005 8:04 PM
NOT FOR REPLICATION Option
Triggers, foreign keys, and the identity property have a special NOT FOR REPLICA-
TION option that you can apply to prevent replication in certain situations. The
NOT FOR REPLICATION option applies only when you are distributing changes
by using the replication engine. Three key examples of where you should consider
creating objects with the NOT FOR REPLICATION option are triggers, foreign key
constraints, and columns for which you’ve enabled the identity property.

Triggers

Triggers fire based on the actions for which they are configured, as Lesson 3 in
Chapter 9, “Creating Functions, Stored Procedures, and Triggers,” explains. The
NOT FOR REPLICATION option applies only to AFTER triggers created on tables.
When user transactions are being issued against a table, the triggers fire as nor-
mal. However, when the replication engine is applying a change to a table, the
NOT FOR REPLICATION option prevents the trigger from firing.

Applying the NOT FOR REPLICATION option to triggers is intended to prevent a
trigger from firing when the replication engine is processing changes so that the
trigger does not end up performing duplicate processing. You should set this
option for any triggers that perform operations that will be replicated. However,
you should not apply it to triggers that perform operations that will not be rep-
licated or that should be executed regardless of whether a change was made by
a user or the replication engine.

Foreign Key Constraints

Any INSERT, UPDATE, or DELETE operations cause SQL Server to check foreign
key constraints. INSERT and UPDATE operations cause SQL Server to check the
parent table to ensure that a reference value for the foreign key exists. DELETE
operations cause SQL Server to check all child tables to make sure that you are
not attempting to remove a referenced value from the table. If the replication
engine applies the change, it is not necessary to perform these checks because
SQL Server would have already validated the foreign key when the user issued
the transaction. By adding the NOT FOR REPLICATION option to foreign key
constraints, you direct SQL Server to bypass the foreign key checks when the
replication engine is performing INSERT, UPDATE, and DELETE operations.

You use the NOT FOR REPLICATION option for foreign keys to prevent duplicate
processing. You should always apply this option for all foreign keys on tables
that are participating in replication.

720 Chapter 19 Managing Replication

C1962271X.fm Page 720 Friday, April 29, 2005 8:04 PM
Identity Columns

Columns with an identity property are affected only when an INSERT operation
occurs. SQL Server uses the seed and increment values to determine the next
number in the sequence to be generated for the new row. You can directly
INSERT a row into a table and specify a value for the identity column by using
the SET IDENTITY INSERT ON statement. When you use this statement, SQL
Server will INSERT the row as long as it does not violate uniqueness. This oper-
ation also causes the identity column to be reseeded.

The replication engine must directly insert rows into tables that have identity
columns and includes the SET IDENTITY INSERT ON clause in any of the repli-
cation stored procedures that perform inserts. However, the reseeding of an
identity column is problematic for replication configurations that allow inserts
to occur at multiple locations. To ensure that these inserts at multiple locations
do not violate primary key constraints, each database in which you are inserting
rows has its own range of identity values. You can configure these identity values
either manually or by using the auto-identity-range management features within
replication. If SQL Server permitted the identity column to be reseeded during
each explicit INSERT operation, errors would cascade throughout the architec-
ture because of duplicate primary keys.

The NOT FOR REPLICATION option applied to an identity column prevents this
reseeding operation when the replication engine is performing the insertions.
You should always use the NOT FOR REPLICATION option for identity columns
within tables that are participating in replication.

Updatable Subscriptions
The most interesting parameter of the sp_addsubscription procedure is @sync_type.
This parameter configures the updatability of the Subscriber, setting how transactions
that occur in the subscription database will be propagated to the Publisher. SQL Server
uses five different combinations of two communication mechanisms—the two-phase
commit and queues—to set how it propagates changes. Using the @update_mode
parameter, you can set the following options:

Option Two-Phase Commit Queued

Read Only - -

Sync Tran First -

Lesson 2: Setting Up Replication 721

C1962271X.fm Page 721 Friday, April 29, 2005 8:04 PM
The Read Only mode does not propagate changes to the Publisher; all changes in the
Subscriber are lost the next time the Publisher replicates the information. From the
application perspective, consider the data in the Publisher to be read-only.

The Sync Tran option uses a distributed transaction that updates both servers at the
same time. If the communication between Publisher and Subscriber fails, the transac-
tions in the Subscriber fail, and the data cannot be read until the communication is
reestablished. Only then will updates be allowed. Sync Tran relies on the two-phase
commit protocol to update the publisher database.

The Queue Tran option uses queues to store the transactions and asynchronously
apply the transactions in the Publisher. Therefore, if the communication between
Publisher and Subscriber fails, the transactions in the Subscriber continue to commit
properly. And when the Publisher is online again, transactions in the queue will be
applied to the published database. However, Queue Tran opens the possibility of
updates occurring at both servers simultaneously, and conflicts can occur when
applying these changes. Thus, you must configure a conflict-resolution policy when
creating the publication.

CAUTION Schema changes when using the Queue Tran option

When you use Queue Tran mode, the replication process adds a uniqueidentifier column to all
tables or underlying tables in the publication. This column is used to control row versions. Some
applications might fail because of the additional column.

The Failover option enables the subscription for immediate updating with queued
updating as a failover. Data modifications can be made at the Subscriber and propa-
gated to the Publisher immediately. If the Publisher and Subscriber are not connected,
you can change the updating mode so that data modifications made at the Subscriber
are stored in a queue until the Subscriber and Publisher are reconnected.

The Queue Failover option enables the subscription as a queued updating subscrip-
tion with the capability to change to immediate updating mode. Data modifications
can be made at the Subscriber and stored in a queue until a connection is established
between the Subscriber and Publisher.

Queue Tran - First

Failover First Second

Queue Failover Second First

Option Two-Phase Commit Queued

722 Chapter 19 Managing Replication

C1962271X.fm Page 722 Friday, April 29, 2005 8:04 PM
Replication Backup and Restore
It is important for you to regularly back up your replication databases and test to
make sure you can restore those backups. You need to regularly back up the fol-
lowing replication databases: the publication database, the distribution database,
subscription databases, and the msdb and master databases at the Publisher, Dis-
tributor, and all Subscribers. If you perform regular log backups, any replication-
related changes should be captured in the log backups. If you do not perform log
backups, make sure to perform a backup whenever you change a replication-
related setting.

You can restore replicated databases to the same server and database on which
you created the backup. If you want to restore a backup of a replicated database
to another server or database, note that replication settings will not be pre-
served. In this case, you must re-create all publications and subscriptions after
you restore the backups.

MORE INFO Backing up and restoring replicated databases

Replicated databases have special backup and restore considerations depending on the type
of replication you are performing. Covering all these considerations and steps is beyond the
scope of this chapter, but for detailed information, see the SQL Server 2005 Books Online
topic “Backing Up and Restoring Replicated Databases.”

PRACTICE Configuring Snapshot Replication
In the following practices, you create a snapshot replication configuration that uses a
single server for testing purposes.

� Practice 1: Prepare the Environment for Replication

In this practice, you create the file directories required to configure snapshot replication.
One of the folders will hold the Snapshot folders, and another will hold the scripts. You
also create a copy of the AdventureWorks database that will be used as a publishing data-
base. Finally, you create an empty database that subscribes to the publication.

1. In the root folder of the C drive, create a folder named ReplicationPractice. This
folder will hold the subfolders for the replication practices.

2. In the ReplicationPractice folder, create two subfolders: ReplData and Scripts.
The ReplData folder will store the snapshots of publications; the Scripts folder
will store replication configuration scripts.

Lesson 2: Setting Up Replication 723

C1962271X.fm Page 723 Friday, April 29, 2005 8:04 PM
3. Open SSMS and connect to the default instance of the database engine by using
your Windows account.

4. Expand the Databases folder.

5. Right-click the AdventureWorks database, and select Tasks, Back Up. You will
back up the AdventureWorks database and use this backup to create a database
for testing purposes.

6. If there are any destination files or backup devices in the destination list box,
remove them by clicking Remove.

7. Click Add to add a destination file. Name the file AdventureWorks.bak in the
default backup path, and click OK.

8. Click OK to back up the database. Wait for the backup process to complete, and
then click OK.

9. Right-click the AdventureWorks database and choose Tasks, Restore, Database.
You will use the recently created backup to create a testing database.

10. In the To Database text box, type ReplTesting to name the database. You will use
the ReplTesting database to create publications.

11. Click OK to initiate the restoration process and then click OK to close the con-
firmation message displayed when the restore completes.

12. Right-click the Databases folder and choose New Database. You will create an
empty database that will subscribe to the publication.

13. In the Database text box, type SubsTesting to name the database. Click OK to
create the database.

� Practice 2: Configure Publishing and Distribution

In this practice, you will use the Configure Distribution Wizard to configure your
server as a Publisher and Distributor. You will also generate the scripts to document
the configuration.

1. If necessary, open SSMS and connect to your server by using Windows authen-
tication.

2. Right-click the Replication folder and choose Configure Distribution. The Con-
figure Distribution Wizard starts.

3. On the Configure Distribution Wizard page, click Next.

4. On the Distributor page, leave the default option (COMPUTERNAME Will Act As
Its Own Distributor; SQL Server Will Create A Distribution Database And Log)

724 Chapter 19 Managing Replication

C1962271X.fm Page 724 Friday, April 29, 2005 8:04 PM
and then click Next. This option provides steps to create the distribution data-
base. If you want to use a remote server, there is no need to create the distribution
database.

IMPORTANT Additional steps if SQL Server Agent stops

By default, replication uses SQL Server Agent jobs to execute replication agents. If SQL
Server Agent is stopped or configured for manual startup mode, the Configure Distribution
Wizard will have to perform additional steps to start SQL Server Agent and to change its
configuration to automatic.

5. On the Snapshot folder page (see Figure 19-9), set the path to C:\Replication-
Practice\ReplData and click Next.

Figure 19-9 Configuring the Snapshot folder

MORE INFO Snapshot folder path

Specifying a local path for the Snapshot folder limits the replication process to push subscrip-
tions only. In the next lesson, you will use a UNC network path to configure the Snapshot
folder, which allows both push and pull subscriptions.

6. Review the distribution database default settings and click Next. The distribution
database will store data and log files in the default folder.

Lesson 2: Setting Up Replication 725

C1962271X.fm Page 725 Friday, April 29, 2005 8:04 PM
7. On the Enable Publishers page, review the authorized publishers. Confirm that
the local server is selected and click Next.

8. On the Wizard Actions page, select both check boxes. You will create the distri-
bution database, configure the server, and create the script to document the con-
figuration. Click Next.

9. On the Script File Properties page, use the path and file name C:\Replication-
Practice\Scripts\ConfigureDistribution.sql and select Overwrite The Existing
File. (You will use this script in other practices.) Click Next.

10. On the Complete The Wizard page, review the configured options and then click
Finish.

11. Wait for the configuration of the Distributor and Publisher to complete and then
click Close.

� Practice 3: Configure a Snapshot Publication

In this practice, you will create a snapshot publication with four articles: three tables
and one stored procedure. The tables—Product, BillOfMaterials, and UnitMeasure—will
have the schema and data published. You will also publish the schema of the uspGet-
BillOfMaterials stored procedure.

1. If necessary, using SSMS, connect to the server by using Windows authentica-
tion.

2. Expand the Replication folder and right-click the Local Publications folder.
Choose New Publication. The New Publication Wizard starts.

3. On the New Publication Wizard page, click Next.

4. On the Publication Database page, select the database ReplTesting and click
Next. This step will configure the publishing database.

5. On the Publication Type page, verify that Snapshot Publication is selected. Click
Next.

6. On the Articles page, shown in Figure 19-10, expand Tables and select the
BillOfMaterials, Product, and UnitMeasure check boxes. Expand Stored Proce-
dures and select the uspGetBillOfMaterials check box. The publication will copy
the schema and data of the tables and the schema of the stored procedure. Click
Next.

726 Chapter 19 Managing Replication

C1962271X.fm Page 726 Friday, April 29, 2005 8:04 PM
Figure 19-10 Selecting different object types to publish

7. Read the Article Issues warning and then click Next. The warning informs users
that the stored procedure depends on other objects that might not be published;
it might not behave as expected if objects it depends on do not exist in the Sub-
scriber database. In this case, you are publishing all the required objects.

8. On the Filter Table Rows page, click Next.

9. On the Snapshot Agent page, select both check boxes. You want the Snapshot
Agent to run immediately and to create a scheduled job. Click Change to config-
ure the schedule.

10. In the Frequency section of the Job Schedule Properties dialog box, select
Weekly from the Occurs drop-down list. Verify that the Sunday check box is
selected. In the Daily Frequency section, select Occurs Once At to configure the
job to run at midnight. Click OK to confirm the schedule, which schedules the
agent to run once a week, every Sunday, at midnight. The Snapshot Agent will
generate schema and bulk copy (BCP) files once a week. Click Next to continue.

11. On the Agent Security page, click Security Settings.

12. Select Run Under The SQL Server Agent Service Account and leave the default
option, By Impersonating The Process Account, in the Connect To Publisher
section. Click OK to confirm the security configuration and click Next to
continue.

Lesson 2: Setting Up Replication 727

C1962271X.fm Page 727 Friday, April 29, 2005 8:04 PM
CAUTION Setting Snapshot Agent security

In this practice, you are configuring the snapshot replication process to run under the SQL
Server Agent security context. In a real-world scenario, this is not a recommended practice.
The next lesson will discuss security options to configure replication agents.

13. On the Wizard Actions page, select both check boxes. You want SSMS to create
the publication and a script as a reference to the publication’s configuration.
Click Next to continue.

14. On the Script File Properties page, set the file name to C:\ReplicationPractice\
Scripts\CreateProductsPublication.sql. Select Overwrite The Existing File and
click Next.

15. Name the new publication Products and review the configuration. Click Finish
to create the publication, the job to run the Snapshot Agent, and the script.

16. After the creation of the publication completes, click Close.

� Practice 4: Configure a Subscription

In this practice, you create a subscription to the Products publication. The subscribing
database will receive copies of the three tables, including data and schema, and will
receive a copy of the stored procedure code.

1. If necessary, using SSMS, connect to your server by using Windows authentication.

2. Expand the Replication, Local Publications folder.

3. Right-click the Products publication you just created and choose New Subscrip-
tions. The New Subscription Wizard starts. Click Next.

4. On the Publication page, verify that the Products publication is selected. Click Next.

5. On the Distribution Agent Location page, verify that Run All Agents At The Dis-
tributor (Push Subscriptions) is selected. Click Next. This process will configure
a push agent to distribute the publication.

6. On the Subscribers page, select the check box for your own server. From the
Database drop-down list, select the SubsTesting database, which configures Sub-
sTesting as the Subscriber database. Click Next.

7. On the Distribution Agent Security page, click the (…) button to configure the
agent security context. Use the following options:

❑ Select Run Under The SQL Server Agent Service Account.

728 Chapter 19 Managing Replication

C1962271X.fm Page 728 Friday, April 29, 2005 8:04 PM
❑ In the Connect To The Distributor section, verify that By Impersonating
The Process Account is selected.

❑ In the Connect To The Subscriber section, verify that By Impersonating The
Process Account is selected.

CAUTION Setting Snapshot Agent security

In this practice, you are configuring snapshot configuration to run under the SQL Server
Agent security context. In a real-world scenario, this is not a recommended practice. The next
lesson discusses security options for configuring replication agents.

8. Click OK to configure agent security and then click Next.

9. On the Synchronization Schedule page, from the Agent Schedule drop-down list,
select Define Schedule.

10. The New Job Schedule dialog box appears, as shown in Figure 19-11. In the Fre-
quency section, select Weekly from the Occurs drop-down list. Verify that
Recurs Every is set to 1 week and select the Sunday check box.

Figure 19-11 Setting the Distribution Agent schedule

11. In the Daily Frequency section, verify that Occurs Once At is selected and set the
time to 00:30, or 12:30 AM.

12. Click OK. These settings configure the Distribution Agent to run once a week on
Sunday at half past midnight. The Distribution Agent will take the schema and

Lesson 2: Setting Up Replication 729

C1962271X.fm Page 729 Friday, April 29, 2005 8:04 PM
BCP files created by the Snapshot Agent and bulk copy them into the publishing
database. Click Next.

13. On the Initialize Subscriptions page, leave the Initialize Immediately check box
selected. Click Next.

14. On the Wizard Actions page, select both check boxes. You want SSMS to create
the publication and you also want it to create the script to have as a reference in
the documentation. Click Next.

15. On the Script File Properties page, set the file name to C:\ReplicationPractice\
Scripts\CreateProductsSubscription.sql. Select Overwrite The Existing File
and click Next.

16. Click Finish to create the subscription and the job to run the Distribution Agent.

17. After the creation of the subscription completes, click Close.

� Practice 5: Test the Replication Configuration

In this practice, you will corroborate that the snapshot publication has been delivered
and that the tables and the stored procedure are stored in the SubsTesting database.

1. If necessary, using SSMS, connect to the server by using Windows
authentication.

2. Expand the Databases, SubsTesting database.

3. Expand the Tables folder and verify that the three tables (BillOfMaterials, Product,
and UnitMeasure) exist.

4. Expand the Programmability, Stored Procedures folder.

5. Right-click the uspGetBillOfMaterials stored procedure and choose Execute Stored
Procedure.

6. In the Value column for @StartProductID, type 800.

7. In the Value column for @CheckDate, type 2006-01-01.

8. Click OK.

9. Check that the procedure runs successfully and returns 88 rows.

Lesson Summary
■ You can use the SSMS Configure Distribution Wizard to configure SQL Server as

a replication Publisher and/or Distributor. The wizard also generates scripts for
later deployment or documentation purposes.

730 Chapter 19 Managing Replication

C1962271X.fm Page 730 Friday, April 29, 2005 8:04 PM
■ Using the SSMS New Publication Wizard or the stored procedure
sp_replicationdboption, you can enable a database for publication. The New Pub-
lication Wizard performs the following tasks:

❑ Creates the publication.

❑ Adds the articles to the publication.

❑ Configures the jobs to run the required replication agents.

❑ Creates the schedules to execute the jobs.

❑ Generates a script with the commands required to create the replication
configuration.

■ The SSMS New Subscription Wizard simplifies the process of subscribing to the
publication, creating the required jobs to execute the subscription agents.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. You are configuring the Snapshot folder of a Distributor. When is a shared folder
compulsory?

A. When using merge replication

B. When using transactional replication

C. When using pull subscriptions

D. When using push subscriptions

2. Which of the following stored procedures enables databases for publication?

A. sp_adddistpublisher

B. sp_adddistributor

C. sp_adddistributiondb

D. sp_replicationdboption

Lesson 3: Configuring Replication Security 731

C1962271X.fm Page 731 Friday, April 29, 2005 8:04 PM
Lesson 3: Configuring Replication Security
Security is a must-have requirement for all database technologies you implement,
including replication. SQL Server 2005 has expanded the roles that can participate in
configuring replication and gives you to the tools you need to ensure that no one has
more permissions than necessary in the replication environment. In this lesson, you’ll
learn how to configure replication in a secure environment as well as how to configure
replication agents to use the fewest privileges possible.

After this lesson, you will be able to:

■ Explain the replication security model.

■ Explain replication agents’ security requirements.

■ Configure replication by using the principle of least privilege.

Estimated lesson time: 20 minutes

Setting Up Replication in a Secure Environment
Creating a secure replication environment begins with the setup process. In previous
versions of SQL Server, only sysadmin roles had the rights required to configure rep-
lication. With SQL Server 2005, however, roles with lower security levels can config-
ure replication. Expanding the roles that can configure replication is useful for
Internet service providers (ISPs), for example, where the database administrator
(DBA) can enable replication at the server level, and database owners can create the
rest of the configuration. But you need to make sure that you appropriately restrict the
permissions of the various roles involved in the replication setup process.

Table 19-1 summarizes the membership levels required to configure replication.

Table 19-1 Member Levels Required to Set Up Replication

Membership

Level Task Publisher Subscriber

Server Configure the Publisher and
Distributor

sysadmin -

Database Enable publishing sysadmin -

732 Chapter 19 Managing Replication

C1962271X.fm Page 732 Friday, April 29, 2005 8:04 PM
Using this set of rights, different users can participate in the publishing process as
follows:

■ A DBA, as part of the sysadmin role, is responsible for configuring the distribu-
tion database and setting up the Publisher-Distributor configuration at the server
level. The DBA is also responsible for enabling the database for publication.

■ A Publisher account, at the database owner access level, is responsible for creat-
ing the publication.

■ Finally, a Subscriber account, with rights to the Publisher and Subscriber, is
responsible for subscribing to the publication.

Securing Publications
To secure publications, SQL Server 2005 offers a new mechanism: the publication
access list (PAL). The PAL is equivalent to the Windows access control list (ACL).
NTFS, printing, and shares all use ACLs to control user access.

The PAL is automatically created with the publication, and you use it to assign a list of
logins and groups that have access to the publication. Every time an agent connects to
the Publisher or Distributor and requests the publication, the server uses the PAL to
verify that the agent account is included in the list.

To access a PAL through SSMS, follow these steps:

1. Open SSMS.

2. Connect to the Publisher database engine instance.

3. Expand the Replication, Local Publications folder.

4. Right-click the Publication and choose Properties.

5. Select the Publication Access List page, as Figure 19-12 shows.

Database Create publications db_owner -

Database Subscribe to a publication db_owner db_owner

Table 19-1 Member Levels Required to Set Up Replication

Membership

Level Task Publisher Subscriber

Lesson 3: Configuring Replication Security 733

C1962271X.fm Page 733 Friday, April 29, 2005 8:04 PM
Figure 19-12 Selecting Publication Access List

To access and manage the list by using stored procedures, use the following
procedures:

■ sp_help_publication_access Returns the list of logins in the PAL

■ sp_grant_publication_access Adds a login to the PAL

■ sp_revoke_publication_access Removes the login from the PAL

Permissions Required by Agents
The principle of least privilege, or least account, is a key concept in security. The idea
is to grant the minimum possible rights or account privileges to permit a legitimate
action. This principle gives you greater data and functionality protection from mali-
cious users or hackers. Limiting the level of access that replication agents have is an
important task in the process of securing the replication process. Because agents are
executables that run under the context of a Windows account, they affect not only the
database but also the operating system.

Table 19-2 summarizes the minimum permissions required by each replication agent.

734 Chapter 19 Managing Replication

C1962271X.fm Page 734 Friday, April 29, 2005 8:04 PM
Quick Check
■ You want to secure a transactional pull replication configuration. What

rights should you grant the Windows user account that runs the Distribu-
tion Agent?

Quick Check Answer

The Windows account should

■ Be assigned to the distribution database as dbo_owner.

■ Be assigned to the subscription database as dbo_owner.

■ Have read access to the Snapshot folder.

■ Be added to the PAL.

PRACTICE Creating a Secure Transactional Replication Configuration
In this practice, you create and configure a new publication, using a secure environ-
ment. As a system administrator, you will delete the previous publication, create the
accounts and configure the operating system permissions, and finally configure

Table 19-2 Replication Agent Permissions

Agent Publication
Database

Distribution
Database

Subscription
Database

Snapshot
Share

PPAL

Snapshot dbo_owner dbo_owner - Write

Log Reader dbo_owner dbo_owner -

Distribution
(Pull)

dbo_owner dbo_owner Read Yes

Distribution
(Push)

dbo_owner Read Yes

Merge
(Push)

Public dbo_owner dbo_owner Read Yes

Merge
(Pull)

Public Public dbo_owner Read Yes

Queue
Reader

dbo_owner dbo_owner dbo_owner

Lesson 3: Configuring Replication Security 735

C1962271X.fm Page 735 Friday, April 29, 2005 8:04 PM
replication at the server level. You will log in as a Publisher user to create the publica-
tion and then log in as a Subscriber user to subscribe to the publication.

� Practice 1: Delete the Unsecure Replication

In this practice, you delete the previously defined replication configuration so that
you can create a new configuration that uses security best practices.

1. Open SSMS.

2. Expand the Replication, Local Publications folder.

3. Right-click the Product publication and choose Delete.

4. Click Yes to confirm the removal of the publication and the subscription. SQL
Server automatically deletes the snapshot and distribution jobs, along with the
publication and subscription information.

5. Navigate to the Databases folder.

6. Right-click the SubsTesting database and choose Delete.

7. In the Delete Object dialog box, click OK to confirm the removal of the SubsTesting
database.

8. Right-click the Databases folder and choose New Database. You will create an
empty database that will subscribe to your new secure publication.

9. In the Database text box, type SubsTesting to name the database. Click OK to
create the database.

10. On the toolbar, click New Query.

11. Type the following command:

exec sp_replicationdboption @dbname = N'ReplTesting'
, @optname = N'publish'
, @value = N'false'

12. This command disables the ReplTesting database for publishing. Execute the
command and then verify that the server returns the following message:

The replication option 'publish' of database 'ReplTesting' has been set to false.

13. Right-click the Replication folder and choose Disable Publishing And Distribu-
tion. This process deletes the distribution database and removes the Publisher
configuration.

14. On the Disable Publishing And Distribution Wizard page, click Next.

15. Select Yes, Disable Publishing On This Server.

16. Click Next.

736 Chapter 19 Managing Replication

C1962271X.fm Page 736 Friday, April 29, 2005 8:04 PM
17. On the Wizard Actions page, verify that the default option Disable Publishing
And Distribution is selected and click Next.

18. On the Complete The Wizard page, click Finish.

19. After disabling publishing and distribution completes, click Close. SQL Server
has now removed the previous configuration.

� Practice 2: Prepare a Secure Environment

In this practice, you create Windows accounts and define the minimum required
rights to configure and run the replication process. These rights include shared folder
rights and NTFS rights.

1. Right-click My Computer and select Manage. You will create the Windows local
accounts you will assign to user roles and replication agents.

NOTE Working in a domain environment

If you are working in a domain environment, use the Active Directory Users And Computers
console to create the Windows accounts.

2. Expand System Tools, Local Users And Groups, Users.

3. Right-click Users and choose New User.

4. In the New User dialog box (see Figure 19-13), specify the user name and pass-
word and confirm the password. For the user name, type ReplSnapAgent, and
for password, type P@ssw0rd. This account will be used for the Snapshot Agent.

Figure 19-13 Configuring the ReplSnapAgent account

Lesson 3: Configuring Replication Security 737

C1962271X.fm Page 737 Friday, April 29, 2005 8:04 PM
5. Clear the User Must Change Password At Next Logon check box. Select the User
Cannot Change Password and Password Never Expires check boxes. These
options are frequently used in service accounts. Click Create.

6. Repeat the user-creation process for the following accounts: ReplDistAgent, Pub-
lisherUser, and SubscriberUser. ReplDistAgent will be assigned to the distribu-
tion agent, and PublisherUser and SubscriberUser represent user accounts that
will perform the publishing tasks.

7. Close Computer Management.

8. In the root folder of the C drive, navigate to the ReplicationPractice folder. This
folder holds the subfolders for replication practices.

9. Right-click the ReplData folder and select Sharing And Security.

10. Select Share This Folder. Using a shared folder for snapshots enables both push
and pull subscriptions.

11. Click Permissions to edit the folder’s share permissions.

12. Remove the Everyone group.

13. Click Add.

14. In the Enter The Object Names To Select text box, type Administrators;
ReplDistAgent; ReplSnapAgent; PublisherUser; SubscriberUser.

15. Click Check Names.

16. Verify that all the names are expanded and click OK.

17. Assign the following permissions:

Note that you are granting permissions to the user accounts Administrator, Pub-
lisherUser, and SubscriberUser only for troubleshooting purposes.

18. Click OK to assign the permissions.

User Access Level

Administrators Allow-Full Control

PublisherUser Allow-Read

SubscriberUser Allow-Read

ReplSnapAgent Allow-Change

ReplDistAgent Allow-Read

738 Chapter 19 Managing Replication

C1962271X.fm Page 738 Friday, April 29, 2005 8:04 PM
19. Click the Security tab. (The next steps assume that you are working in an NTFS
file system partition; if not, skip the following steps.)

BEST PRACTICES Setting NTFS security

To provide a secure environment for database replication, configure the Snapshot folder on
an NTFS partition.

20. Click Add to configure NTFS permissions.

21. In the Enter The Object Names To Select text box, type ReplDistAgent; Repl-
SnapAgent; PublisherUser; SubscriberUser.

22. Click Check Names.

23. Verify that all the names are expanded and click OK.

24. Assign the following permissions:

25. Click OK.

� Practice 3: Use Scripts to Configure Publishing and Distribution

In this practice, you configure your server as a Publisher and Distributor by using the
scripts generated in the previous lesson. You will change the scripts to use a shared
folder to hold the snapshots. You can alternatively use the Configure Replication Wiz-
ard and supply the appropriate parameters.

1. Open SSMS.

2. From the main menu, select File, Open, File.

3. Select the C:\ReplicationPractice\Scripts\ConfigureDistribution.sql file and
click Open. This script has the configuration from the previous practice. When
prompted, click Connect to connect to your server.

4. Press Ctrl+H to display the Quick Replace dialog box.

User Allow

PublisherUser Read & Execute, List Folder Contents, and Read

SubscriberUser Read & Execute, List Folder Contents, and Read

ReplSnapAgent Modify, Read & Execute, List Folder Contents, Read,
and Write

ReplDistAgent Read & Execute, List Folder Contents, and Read

Lesson 3: Configuring Replication Security 739

C1962271X.fm Page 739 Friday, April 29, 2005 8:04 PM
5. In the Find What text box, type C:\ReplicationPractice\ReplData.

6. In the Replace With text box, type \\COMPUTERNAME\ReplData. (Replace
COMPUTERNAME with the name of your server.) You will configure a Network
Shared Folder and replace the local path configuration.

7. Click Replace All. Click OK to close the message box that states that three occur-
rences were replaced.

8. Close the Find And Replace dialog box.

9. Execute the script to configure the server. When the script completes, close it.
Do not save the script; you will need the original configuration in later practices.

10. Click New Query.

11. Type the following command:

exec sp_replicationdboption @dbname = N'ReplTesting'
, @optname = N'publish'
, @value = N'true'

This command is the only additional step the DBA has to take to configure
replication.

12. Execute the command and verify that the server returns the following message:

Command(s) completed successfully.

13. Close SSMS.

� Practice 4: Finish the Secure Environment

In this exercise, you will complete the secured configuration of the replication pro-
cess. These rights include shared folder rights, NTFS rights, and SQL database roles.

1. If necessary, open SSMS and connect to your server by using Windows
authentication.

2. In Object Explorer, expand the Security folder. You will grant SQL Server access
to the recently created accounts.

3. Right-click the Logins folder and choose New Login.

4. Click Search.

5. In the Enter The Object Names To Select text box, type ReplDistAgent.

6. Click Check Names and click OK to select the account.

740 Chapter 19 Managing Replication

C1962271X.fm Page 740 Friday, April 29, 2005 8:04 PM
7. Select the User Mapping page. Create the following user-login mappings and
assign the appropriate role membership:

This step creates database user accounts mapped to the login and assigns the
account to the database owner role.

8. Click OK to create the login.

9. Repeat the login-creation process for the account ReplSnapAgent:

10. Repeat the login-creation process for the account PublisherUser:

11. Repeat the login-creation process for the account SubscriberUser:

12. Close SSMS.

� Practice 5: Configure a Snapshot Publication

In this practice, you create a snapshot publication in a secure environment. You use a
limited access account with no special rights at the server level and no rights at the
Subscriber database, and you create a subscription in a database with db_owner rights.

ReplDistAgent User Mapping

Database Role

Distribution db_owner

SubsTesting db_owner

ReplSnapAgent User Mapping

Database Role

Distribution db_owner

ReplTesting db_owner

PublisherUser User Mapping

Database Role

ReplTesting db_owner

SubscriberUser User Mapping

Database Role

SubsTesting db_owner

ReplTesting db_owner

Lesson 3: Configuring Replication Security 741

C1962271X.fm Page 741 Friday, April 29, 2005 8:04 PM
You assign a Windows user account to the Snapshot Agent. Finally, you assign the
accounts to PAL to allow the Subscriber account to work.

1. Navigate to Start, All Programs, Microsoft SQL Server 2005.

2. Right-click Microsoft SQL Server Management Studio and choose Run As.

3. In the Run As dialog box, select The Following User. In the User Name text box,
type PublisherUser and type the password P@ssw0rd. You will use an account
with limited access to configure the publication. Click OK.

4. Connect to the default database engine by using Windows authentication.

5. Expand the Replication folder and right-click the Local Publications folder.
Choose New Publication. The New Publication Wizard starts.

6. On the New Publication Wizard page, click Next.

7. On the Publication Database page, verify that the database ReplTesting is selected
and click Next. You will publish the ReplTesting database.

8. On the Publication Type page, verify that Snapshot Publication is selected. Click
Next.

9. On the Articles page, expand Tables and select the BillOfMaterials, Product, and
UnitMeasure check boxes. Expand the Stored Procedures folder and select the
uspGetBillOfMaterials check box. The publication will copy the schema and
data of the tables and the schema of the stored procedure. Click Next.

10. Read the Article Issues warning and click Next. The warning informs users that
if you publish a stored procedure that depends on other objects, the stored pro-
cedure might not work as expected if objects it depends on do not exist in the
Subscriber database. In this practice, you are publishing all required objects.

11. On the Filter Table Rows page, click Next.

12. In the Snapshot Agent page, select both check boxes. You want the Snapshot
Agent to run immediately and to create a scheduled job. Click Change to config-
ure the schedule.

13. In the Frequency section of the Job Schedule Properties dialog box, select
Weekly from the Occurs drop-down list. Verify that the Sunday check box is
selected. In the Daily Frequency section, select Occurs Once At to configure the
job to run at midnight. Click OK to confirm the schedule, which schedules the
agent to run once a week, every Sunday, at midnight. The Snapshot Agent will
generate schema and BCP files once per week. Click Next to continue.

14. On the Agent Security page, click Security Settings. You will assign a Windows
user account to execute the Snapshot Agent.

742 Chapter 19 Managing Replication

C1962271X.fm Page 742 Friday, April 29, 2005 8:04 PM
15. In the Process Account text box, type COMPUTERNAME\ReplSnapAgent,
where COMPUTERNAME is your server name.

16. In the Password and Confirm Password text boxes, type P@ssw0rd.

17. Below Connect To The Publisher, verify that By Impersonating The Process
Account is selected.

18. Click OK and then click Next.

19. On the Wizard Actions page, select both check boxes. You want SSMS to create
the publication as well as the script to have as a reference in the documentation.
Click Next.

20. On the Script File Properties page, set the file name to C:\ReplicationPractice\
Scripts\CreateProductsPublicationSecure.sql. Select Overwrite The Existing
File and click Next.

21. Name the publication Products and review the configuration. Click Finish to
create the publication, the job to run the Snapshot Agent, and the script.

22. Wait until the publication is created and then click Close.

23. Right-click the recently created Products publication and choose Properties.

24. Select the Publication Access List page.

25. Click Add, select the ReplSnapAgent login, and click OK.

26. Click Add again, select the SubscriberUser, and click OK twice.

27. Close SSMS where you are logged on with the PublisherUser account.

� Practice 6: Configure a Subscription

In this practice, you create a snapshot publication in a secured environment. You use
a limited access account with no special rights at the server level and rights at the Sub-
scriber database and subscription databases. You assign a Windows user account to the
distribution agent.

1. Navigate to Start, All Programs, Microsoft SQL Server 2005.

2. Right-click Microsoft SSMS and choose Run As.

3. In the Run As dialog box, select The Following User. In the User Name text box,
type SubscriberUser and type the password P@ssw0rd. You will not use a
sysadmin account to create the publication; instead, you will use an account
with dbo_owner access to the publishing database and no access to the Subscriber
database. Click OK.

4. Connect to the default database engine by using Windows authentication.

Lesson 3: Configuring Replication Security 743

C1962271X.fm Page 743 Friday, April 29, 2005 8:04 PM
5. Expand the Replication, Local Publications folder.

6. Right-click the recently created Products publication and choose New Subscrip-
tions. The New Subscription Wizard starts. On the New Subscription Wizard
page, click Next.

7. On the Select Publication page, verify that the Products publication is selected.
Click Next.

8. On the Distribution Agent Location page, verify that Run All Agents At The Dis-
tributor (Push Subscriptions) is selected. Click Next. This process configures
push agents to distribute the publication.

9. On the Subscribers page, select the check box for your server, and from the Data-
base drop-down list, select the SubsTesting database. This process will configure
SubsTesting as the Subscriber database. Click Next.

10. On the Distribution Agent Security page, click the (…) button to configure the
agent security context. As Figure 19-14 shows, you will assign a Windows user
account to the Distribution Agent. Use the following options:

Figure 19-14 Configuring Distribution Agent security settings

❑ Process Account: COMPUTERNAME\ReplDistAgent (replace COMPUTER-
NAME with your server name).

❑ Password: P@ssw0rd.

744 Chapter 19 Managing Replication

C1962271X.fm Page 744 Friday, April 29, 2005 8:04 PM
❑ Confirm Password: P@ssw0rd.

❑ In the Connect To The Distributor section, verify that By Impersonating
The Process Account is selected.

❑ In the Connect to the Subscriber section, verify that By Impersonating The
Process Account is selected.

11. Click OK to configure the distribution agent’s security and then click Next.

12. On the Synchronization Schedule page, from the Agent Schedule drop-down list,
select Define Schedule.

13. In the New Job Schedule dialog box, in the Frequency section, verify that Weekly
is selected from the Occurs drop-down list. Verify that Recurs Every is set to 1
and then select the Sunday check box.

14. In the Daily Frequency section, verify that Occurs Once At is selected and set the
time to 12:30 AM.

15. Click OK. This process will configure the Distribution Agent to run once a week
on Sunday at half past midnight. Click Next.

16. On the Initialize Subscriptions page, verify that Immediately is selected. Click
Next.

17. On the Wizard Actions page, select both check boxes. You want SSMS to create
the publication as well as the script to have as a reference in the documentation.
Click Next.

18. On the Script File Properties page, set the file name to C:\ReplicationPractice\
Scripts\CreateProductsSubscriptionSecure.sql. Select Overwrite The Existing
File and click Next.

19. Click Finish to create the subscription and the job to run the Distribution Agent.

20. Wait for the subscription creation to complete and then click Close.

21. Close SSMS.

� Practice 7: Test the Replication Configuration

In this practice, you corroborate that the snapshot publication has been delivered and
that the tables and the stored procedure are stored in the SubsTesting database.

1. Using SSMS, connect to the server by using Windows authentication. (Use your
standard Windows account.)

2. Expand the Databases, SubsTesting database.

Lesson 3: Configuring Replication Security 745

C1962271X.fm Page 745 Friday, April 29, 2005 8:04 PM
3. Expand the Tables folder and check that the three tables exist.

4. Expand the Programmability, Stored Procedures folder.

5. Right-click the uspGetBillOfMaterials stored procedure and choose Execute Store
Procedure.

6. In the @StartProductID Value column, type 800.

7. In the @CheckDate Value column, type 2006-01-01.

8. Click OK.

9. Check that the procedure successfully runs and returns 88 rows.

Lesson Summary
■ SQL Server 2005 includes a new security model that allows the configuration of

the replication process by using different accounts that might have limited
access to SQL Server.

■ Replication agents should be configured with limited access to follow the prin-
ciple of least privilege. This principle protects data and functionality from mali-
cious users and ill-behaved applications.

■ Using SSMS New Publication and New Subscription wizards, you can assign the
Windows user accounts to run the agents, protecting your data and your server.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. What is the purpose of the PAL?

A. Increase publication performance.

B. Secure the publication.

C. Provide a fault-tolerance mechanism.

D. Increase subscription performance.

746 Chapter 19 Managing Replication

C1962271X.fm Page 746 Friday, April 29, 2005 8:04 PM
2. Which role membership level is the minimum necessary to subscribe to a pub-
lication? (Choose all that apply.)

A. db_datareader at the publishing database

B. db_owner at the publishing database

C. db_datawriter at the Subscriber database

D. db_owner at the Subscriber database

Lesson 4: Configuring Conflict Resolution for Merge Replication 747

C1962271X.fm Page 747 Friday, April 29, 2005 8:04 PM
Lesson 4: Configuring Conflict Resolution for Merge
Replication

Merge replication enables each server in the replication configuration to modify the
data, later sending the changes to the distribution database. Therefore, in merge repli-
cation, conflicts might occur if two servers update the same data simultaneously.
When you configure merge replication, you need to define the rules for how the
Merge Agent should resolve any conflicts to maintain data validity and consistency. In
this lesson, you will learn how to configure conflict resolution for merge replication
and how to use the COM-based resolvers that come with SQL Server 2005 to resolve
conflicts.

After this lesson, you will be able to:

■ Explain the need for conflict resolution in merge replication.

■ Configure conflict resolution for merge replication.

■ Use the COM-based resolvers supplied with SQL Server 2005.

Estimated lesson time: 40 minutes

Conflict Resolution Basics
Unlike transactional replication, merge replication does not rely on the transaction
log to synchronize the Publisher and Subscribers. In merge replication, each server
modifies the replicated data, and the replication process uses uniqueidentifier col-
umns and triggers to capture database activity on each server. When the Merge Agent
runs, changes to the data are synchronized between Publisher and Subscribers. If data
has also changed in the Publisher or has changed in another Subscriber and is already
applied to the Publisher, a conflict occurs.

MORE INFO How merge replication works

If you are interested in understanding the internal workings of merge replication, read the “How
Merge Replication Tracks and Enumerates Changes” section in SQL Server 2005 Books Online.
Using this information, you can review the triggers code and table schema of merge replication
tables and go inside the process.

Conflict Resolution Resolvers
When the Merge Agent is running, and the Publisher and Subscribers are connected,
the agent detects any conflict that has occurred since the last synchronization

748 Chapter 19 Managing Replication

C1962271X.fm Page 748 Friday, April 29, 2005 8:04 PM
process. If the agent encounters a conflict, it uses a conflict resolver to determine the
data that will be propagated to all participants.

A conflict resolver is either a Microsoft .NET Framework business component that
uses the business logic handler framework included in the namespace
Microsoft.SqlServer.Replication.BusinessLogicSupport or a COM-based object that imple-
ments the ICustomResolver COM interface. These components are used to resolve
merge replication conflicts. SQL Server 2005 provides 12 COM-based resolvers,
which Table 19-3 describes.

Table 19-3 SQL Server 2005 Conflict Resolvers

Name Description

Additive Winner determined from the priority value. Specified column set
to the sum of the source and the destination column values.

Averaging Winner is determined from the priority value. Specified column
set to the average of the source and the destination column
values.

DATETIME
(Earlier Wins)

Column with the earlier datetime value determines the winner.

DATETIME
(Later Wins)

Column with the later datetime value determines the winner.

Maximum Column with the larger numeric value determines the winner.

Minimum Column with the smaller numeric value determines the winner.

Merge Text Conflict winner is determined from the priority value. The text
columns in conflict are set to the merged value, consisting of the
common prefix followed by the unique part from the Publisher,
then by the delimiter, and finally by the unique part from the
Subscriber.

Subscriber
Always Wins

Subscriber, regardless of whether it is the source or destination,
is the winner.

Priority
Column

Column with the larger numeric value determines the conflict
winner.

Lesson 4: Configuring Conflict Resolution for Merge Replication 749

C1962271X.fm Page 749 Friday, April 29, 2005 8:04 PM
MORE INFO Microsoft COM-based resolvers

For more information about Microsoft COM-based resolvers, see the section “Microsoft COM-
Based Resolvers” in SQL Server 2005 Books Online. The previous table is a summary of the more
detailed one you can find in Books Online.

In some cases, the resolver determines the winner by using a column; in other cases,
the winner is determined by the priority, and only the column value will be affected
by the resolver.

MORE INFO Stored procedure conflict resolvers

As an alternative to using a SQL Server 2005 predefined conflict resolver, you can write your own
custom conflict resolver as a Transact-SQL stored procedure at each Publisher. During synchroniza-
tion, this stored procedure is invoked when conflicts are encountered in an article to which the
resolver was registered, and information on the conflict row is passed by the Merge Agent to the
required parameters of the procedure. Stored procedure resolvers are invoked only to handle row
change–based conflicts. They cannot be used to handle other types of conflicts such as insert fail-
ures due to PRIMARY KEY violations or unique index constraint violations. For information about
using a stored procedure conflict resolver, see the SQL Server 2005 Books Online article “How to:
Implement a Stored Procedure–Based Custom Conflict Resolver for a Merge Article (Replication
Transact-SQL Programming).”

To configure a resolver, use the New Publication Wizard. In the Articles Definition
page, select the table for which you want to configure a resolver. From the Articles
Properties drop-down list, select Set Properties Of Highlighted Table Article (see Fig-
ure 19-15). Note that you can configure the resolver properties for all tables by select-
ing Set Properties Of All Table Articles instead.

Upload Only Changes uploaded to the Publisher are accepted; changes are not
downloaded to the Subscriber.

Download
Only

Changes uploaded to the Publisher are rejected; changes are
downloaded to the Subscriber.

Stored
Procedure

Conflict resolution depends on the logic in the stored procedure
you specify.

Table 19-3 SQL Server 2005 Conflict Resolvers

Name Description

750 Chapter 19 Managing Replication

C1962271X.fm Page 750 Friday, April 29, 2005 8:04 PM
Figure 19-15 New Publication Wizard: Articles page

When you are defining merge replication, the wizard adds a tab to the Article Properties
dialog box that you can use to configure the conflict resolver, as shown in Figure 19-16.

Figure 19-16 Configuring a conflict resolver

Lesson 4: Configuring Conflict Resolution for Merge Replication 751

C1962271X.fm Page 751 Friday, April 29, 2005 8:04 PM
You can also use the @article_resolver parameter of the sp_addmergearticle stored pro-
cedure to configure a merge replication resolver by using Transact-SQL code.

Quick Check
■ You want to configure a custom resolver. Which options do you have?

Quick Check Answer

■ You can use one of the following options:

❑ Create a .NET Framework business component.

❑ Create a COM-based object.

❑ Create a custom Transact-SQL stored procedure to use as a conflict
resolver.

PRACTICE Configuring Merge Replication
In this practice, you create and configure a new merge publication. You first delete the
previously created secure publication, and then you configure an unsecure merge rep-
lication publication with different conflict resolvers. Finally, you test the resolvers and
review conflict winners and losers.

� Practice 1: Delete the Previous Replication Setup

In this practice, you delete the previously defined replication configuration. You won’t
disable publishing and distribution, but you will grant SQL Server Agent account
access to the snapshot shared folder.

1. Open SSMS.

2. Expand the Replication, Local Publications folder.

3. Right-click the Product publication and choose Delete.

4. Click Yes to confirm the removal of the publication and the subscription.

5. Navigate to the Databases folder.

6. Right-click the SubsTesting database and select Delete.

7. In the Delete Object dialog box, click OK to confirm the removal of the SubsTesting
database.

8. Right-click the Databases folder and choose New Database. You will create an
empty database that will subscribe to the publication.

752 Chapter 19 Managing Replication

C1962271X.fm Page 752 Friday, April 29, 2005 8:04 PM
9. In the Database text box, type SubsTesting as the database name. Click OK to
create the database.

� Practice 2: Configure a Merge Publication

In this practice, you create a merge publication. As part of the configuration process,
you assign two different conflict resolvers.

1. If necessary, using SSMS, connect to the server by using Windows authentication.

2. Expand the Replication folder and right-click the Local Publications folder.
Choose New Publication, which starts the New Publication Wizard.

3. On the New Publication Wizard page, click Next.

4. On the Publication Database page, select the ReplTesting database and click
Next.

5. On the Publication Type page, select Merge Publication. You will create a merge
publication to configure conflict resolvers. Click Next.

6. On the Subscriber Types page, verify that the SQL Server 2005 check box is
selected and click Next.

7. On the Articles page, expand Tables and select Location, Product, and Product-
Inventory. The publication will copy the schema and data of these tables.

8. On the Articles page, select the Show Only Checked Objects In The List check
box. This action filters the list and shows only the Location, Product, and Product-
Inventory tables. You will configure the Product table to use the standard conflict
resolver and the Location and ProductInventory tables to use COM-based
resolvers.

9. In the Objects To Publish list, select the Location table, and from the Article Prop-
erties drop-down list, select Set Properties Of Highlighted Table Article.

10. Click the Resolver tab and select Use A Custom Resolver (Registered At The
Distributor).

11. Select the Microsoft SQL Server DATETIME (Later Wins) Conflict Resolver.

12. In the Enter The Information Needed By The Resolver text box, type Modified-
Date.

13. Click OK. The row modified most recently is set as the conflict winner.

14. Select the ProductInventory table, and from the Article Properties drop-down list,
select Set Properties Of Highlighted Table Article.

Lesson 4: Configuring Conflict Resolution for Merge Replication 753

C1962271X.fm Page 753 Friday, April 29, 2005 8:04 PM
15. Click the Resolver tab and select Use A Custom Resolver (Registered At The
Distributor).

16. Select the Microsoft SQL Server Minimum Conflict Resolver.

17. In the Enter The Information Needed By The Resolver text box, type Quantity.

18. Click OK. The winning row will always be the Publisher row, but the quantity
will always be the minimum of the row.

19. Click Next.

20. Read the Article Issues warning, and click Next. The warning informs users that
all merge replication articles must have a uniqueidentifier column, and if they
don’t have it, the first snapshot adds a column. Some applications might not
handle the schema change appropriately and will stop working as expected.

21. On the Filter Table Rows page, click Next.

22. On the Snapshot Agent page, select both check boxes. You want the Snapshot
Agent to run immediately and to create a scheduled job. Click Change to config-
ure the schedule. Schedule the Snapshot Agent to run once a week on Sundays
at midnight. Click OK to save your changes and then click Next.

23. On the Agent Security page, click Security Settings.

24. Select Run Under The SQL Server Agent Service Account. In the Connect To
Publisher section, verify that By Impersonating The Process Account is selected.
Click OK and then click Next.

CAUTION Setting Snapshot Agent security

In this practice, you are configuring the Snapshot Agent to run under the SQL Server Agent
security context. In a real-world scenario, this is not a recommended practice; in the previous
lesson, you learned how to configure security in a real-world scenario. This practice focuses
on merge replication conflict resolvers.

25. On the Wizard Actions page, select both check boxes. You want SSMS to create
the publication and the script to have as a reference in the documentation. Click
Next.

26. On the Script File Properties page, set the file name to C:\ReplicationPractice\
Scripts\CreateInventoryPublication.sql. Select Overwrite The Existing File
and click Next.

27. Name the publication Inventory and review the configuration. Click Finish to
create the publication, create the job to run the Snapshot Agent, and create the
script.

754 Chapter 19 Managing Replication

C1962271X.fm Page 754 Friday, April 29, 2005 8:04 PM
28. After the publication has been created, click Close.

29. Right-click the Inventory Publication and choose Properties. You will configure
the Snapshot folder to the local directory instead of the shared folder because
the SQL Server Agent service account does not have access to the shared folder.

30. Select the snapshot page.

31. In the Location Of The Snapshot Files section, clear the Put Files In The Default
Folder check box and select the Put Files In The Following Folder check box.

32. Set the folder path to: C:\ReplicationPractice\ReplData. Click OK to confirm
the new settings.

� Practice 3: Subscribe to the Merge Publication

In this practice, you create a subscription to the merge publication.

1. If necessary, using SSMS, connect to the server by using Windows authentication.

2. Expand the Replication, Local Publications folder.

3. Right-click the recently created Inventory publication and choose New Subscrip-
tions, which will start the New Subscription Wizard. Click Next.

4. On the Publication page, verify that the Inventory publication is selected. Click
Next.

5. On the Distribution Agent Location page, verify that Run All Agents At The Dis-
tributor (Push Subscriptions) is selected. Click Next to configure push agents to
distribute the publication.

6. On the Subscribers page, select the check box for your own server, and from the
Subscription Database drop-down list, select the SubsTesting database. This will
configure SubsTesting as the Subscriber database. Click Next.

7. On the Distribution Agent Security page, click the (…) button to configure the
agent security context.

8. Use the following options:

❑ Run Under The SQL Server Agent Service Account.

❑ In the Connect To The Distributor section, verify that By Impersonating
The Process Account is selected.

❑ In the Connect to the Subscriber section, verify that By Impersonating The
Process Account is selected.

Lesson 4: Configuring Conflict Resolution for Merge Replication 755

C1962271X.fm Page 755 Friday, April 29, 2005 8:04 PM
CAUTION Setting the Snapshot Agent security

In this practice, you are configuring the Snapshot Agent to run under the SQL Server Agent
security context. In a real-world scenario, this is not a recommended practice.

9. Click OK to configure the merge agent’s security and then click Next.

10. On the Synchronization Schedule page, from the Agent Schedule drop-down list,
select Define Schedule. Configure the merge agent to run once a week on Sun-
days at 00:30, or 12:30 AM.

11. Click OK. This configures the merge agent to run once a week on Sunday at half
past midnight. Click Next.

12. On the Initialize Subscriptions page, leave the default option Initialize Immedi-
ately. Click Next.

13. Review the default subscription type priority for conflict resolution and click
Next. This option sets the subscription priority to 75.00, so changed rows at the
subscriber and publisher have the same priority.

14. On the Wizard Actions page, select both check boxes to create the publication
and a script to document the configuration. Click Next.

15. On the Script File Properties page, set the file name to C:\ReplicationPractice\
Scripts\CreateProductsSubscription.sql. Select the Overwrite The Existing
File option and click Next.

16. Click Finish to create the subscription and the job to run the Distribution Agent.

17. Wait for the subscription to be created, and then click Close.

� Practice 4: Verify Merge Conflict Resolution

In this practice, you verify that the conflict resolution you configured works as
expected.

1. Using SSMS, connect to the server by using Windows authentication.

2. Navigate to the Replication, Local Publications, [ReplTesting]: Inventory
publication.

3. Right-click the COMPUTERNAME.SubsTesting subscription and choose View
Synchronization Status.

4. Click Start to initiate the Distribution Agent and synchronize the Publisher and
the Subscriber.

5. Wait for the agent to replicate and then click Close.

756 Chapter 19 Managing Replication

C1962271X.fm Page 756 Friday, April 29, 2005 8:04 PM
6. In the toolbar, click New Query.

7. In the Query Editor, type the following update queries:

USE ReplTesting
UPDATE Production.Product

SET Name=Name+'Updated at Publisher'
WHERE ProductID=1

USE SubsTesting
UPDATE Production.Product

SET Name=Name+'Updated at Subscriber'
WHERE ProductID=1

8. Execute the queries and verify that they return the following:

(1 row(s) affected)

(1 row(s) affected)

9. Navigate to the Replication, Local Publications, [ReplTesting]: Inventory
publication.

10. Right-click the COMPUTERNAME.SubsTesting subscription and choose View
Synchronization Status.

11. Click Start to initiate the Distribution Agent and synchronize the Publisher and
the Subscriber.

12. Wait for the agent to replicate and then click Close.

13. Right-click the [ReplTesting]: Inventory publication and choose View Conflicts.

14. Double-click the Product(1) table.

15. In the Microsoft Replication Conflict Viewer dialog box, review the conflict win-
ner and loser.

16. Do not submit the winner or loser. Close the Microsoft Replication Conflict
Viewer dialog box.

17. Navigate to the Databases, ReplTesting, Tables, Production.Product table.

18. Right-click the table and choose Open Table.

19. Verify that the Name column for the row with a ProductID of 1 is the one
updated at the Publisher.

20. Close the Table window.

21. Navigate to the Databases, SubsTesting, Tables, Production.Product table.

22. Right-click the table and choose Open Table.

Lesson 4: Configuring Conflict Resolution for Merge Replication 757

C1962271X.fm Page 757 Friday, April 29, 2005 8:04 PM
23. Verify that the Name column for the row with a ProductID of 1 is also the one
updated at the Publisher and that both databases have the same value. The
merge default conflict resolver chose a winner, and data is consistent in both
databases. The conflict winner is always the publisher database.

24. In the toolbar, click New Query.

25. In the Query Editor, type the following queries:

USE ReplTesting
UPDATE Production.Location

SET Name=Name+'Updated at Publisher'
WHERE LocationID=1

WAITFOR DELAY '00:00:15'

USE SubsTesting
UPDATE Production.Location

SET Name=Name+'Updated at Subscriber'
WHERE LocationID=1

SELECT *
FROM ReplTesting.Production.Location
WHERE LocationID=1
SELECT *
FROM SubsTesting.Production.Location
WHERE LocationID=1

26. Execute the queries and verify that the SELECT statements return two rows, and
that the ModifiedDate column has a 15-second difference.

27. Navigate to the Replication, Local Publications, [ReplTesting]: Inventory
publication.

28. Right-click the COMPUTERNAME.SubsTesting subscription and choose View
Synchronization Status.

29. Click Start to initiate the Distribution Agent and synchronize the Publisher and
the Subscriber.

30. Wait for the agent to replicate and then click Close.

31. Right-click the [ReplTesting]: Inventory publication and choose View Conflicts.

32. Double-click the Location(1) table.

33. In the Microsoft Replication Conflict Viewer, review the conflict winner and
loser. The winner this time is the row updated at the Subscriber because it was
the last one you updated.

34. Do not submit the winner or loser. Close the Microsoft Replication Conflict
Viewer.

758 Chapter 19 Managing Replication

C1962271X.fm Page 758 Friday, April 29, 2005 8:04 PM
35. Navigate to the Databases, ReplTesting, Tables, Production.Location table.

36. Right-click the table and choose Open Table.

37. Verify that the Name column for the row with a LocationID of 1 is the one
updated at the Subscriber.

38. Close the table window.

39. Navigate to the Databases, SubsTesting, Tables, Production.Location table.

40. Right-click the table and choose Open Table.

41. Verify that the Name column is also the one updated at the Subscriber and that
both databases have the same value.

42. In the toolbar, click New Query.

43. In the Query Editor, type the following queries:

USE ReplTesting
UPDATE Production.ProductInventory

SET Quantity=Quantity-20
WHERE ProductID=1 AND LocationID=1

WAITFOR DELAY '00:00:15'

USE SubsTesting
UPDATE Production.ProductInventory

SET Quantity=Quantity-50
WHERE ProductID=1 AND LocationID=1

SELECT *
FROM ReplTesting.Production.ProductInventory
WHERE ProductID=1 AND LocationID=1
SELECT *
FROM SubsTesting.Production.ProductInventory
WHERE ProductID=1 AND LocationID=1

44. Execute the queries and verify that the SELECT statements return two rows, that
the Quantity column displays different values in each database (the Subscriber
is lesser), and that the ModifiedDate column has a 15-second difference.

45. Navigate to the Replication, Local Publications, [ReplTesting]: Inventory
publication.

46. Right-click the COMPUTERNAME.SubsTesting subscription and choose View
Synchronization Status.

47. Click Start to initiate the Distribution Agent and synchronize the Publisher and
the Subscriber.

Lesson 4: Configuring Conflict Resolution for Merge Replication 759

C1962271X.fm Page 759 Friday, April 29, 2005 8:04 PM
48. Wait for the agent to replicate and then click Close.

49. Right-click the [ReplTesting]: Inventory publication and choose View Conflicts.

50. Double-click the ProductInventory(1) table.

51. In the Microsoft Replication Conflict Viewer, review the conflict winner and
loser. The winner this time is the row updated at the Publisher, but the Quantity
column is the lesser value of both columns and is the value updated at the Sub-
scriber.

52. Do not submit the winner or loser. Close the Microsoft Replication Conflict
Viewer.

53. Navigate to the Databases, ReplTesting, Tables, Production.ProductInventory
table.

54. Right-click the table and choose Open Table.

55. Verify that the Quantity column displays the value updated at the Subscriber.

56. Close the table.

57. Navigate to the Databases, SubTesting, Tables, Production.ProductInventory table.

58. Right-click the table and choose Open Table.

59. Verify that the Quantity column displays the value updated at the Subscriber
and that both databases have the same value.

Lesson Summary
■ Merge replication allows simultaneous updates in multiple databases, which

might cause data conflicts. To resolve these conflicts, SQL Server lets you create
components that define business logic to determine the winning row.

■ To configure conflict resolution in merge replication, use the Article Properties
page of the New Publishing Wizard in SSMS or the @article_resolver parameter of
the sp_addmergearticle stored procedure.

■ SQL Server 2005 provides a set of COM-based conflict resolvers that implement
common business rules, but you can also create custom components.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

760 Chapter 19 Managing Replication

C1962271X.fm Page 760 Friday, April 29, 2005 8:04 PM
NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. What types of conflict resolvers does SQL Server support? (Choose all that
apply.)

A. .NET Framework business object components

B. COM-based resolvers

C. UDF-based resolvers

D. Trigger-based resolvers

2. At what level is conflict resolution configured?

A. Publisher level

B. Database level

C. Subscription level

D. Article level

Lesson 5: Monitoring Replication 761

C1962271X.fm Page 761 Friday, April 29, 2005 8:04 PM
Lesson 5: Monitoring Replication
Monitoring is an important part of a DBA’s job. And because replication is a distributed
activity involving multiple computers, you need to take special care in monitoring replica-
tion processes. In SQL Server 2005, the main tool for monitoring replication is the SSRM,
although you can also monitor parts of the replication configuration via SSMS. You can
also use Transact-SQL and RMO to monitor replication. In addition, you can set up alerts
for replication agent events and use System Monitor to monitor replication processes. This
lesson focuses on setting up SSRM to monitor replication processes, setting up alerts for
replication agent events, and using System Monitor’s replication counters and objects.

After this lesson, you will be able to:

■ Use SSRM to manage replication.

■ Configure replication alerts.

■ Use Performance Monitor to monitor replication.

Estimated lesson time: 30 minutes

Using SQL Server Replication Monitor
SSRM is the new graphical tool that SQL Server 2005 provides to help you monitor rep-
lication agents and the replication process. Although you can use SSMS to monitor parts
of the replication process or use Transact-SQL or RMO, SSRM is the most important tool
for monitoring replication, presenting a Publisher-focused view of all replication activity.

You can start SSRM by right-clicking the replication folder in SSMS and choosing Launch
Replication Monitor. Figure 19-17 shows the SSRM. Alternatively, you can run SSRM from
its default path: C:\Program Files\Microsoft SQL Server\90\Tools\Binn\sqlmonitor.exe.

Figure 19-17 SQL Server Replication Monitor

762 Chapter 19 Managing Replication

C1962271X.fm Page 762 Friday, April 29, 2005 8:04 PM
Configuring Non-sysadmin Access to Replication Monitoring
By default, only members of the sysadmin fixed server role can monitor replication,
but a system administrator can give non-sysadmin users permission to monitor repli-
cation by assigning them to the replmonitor role. The replmonitor role is a fixed data-
base role in the distribution database. Here is how to grant users permission to
monitor replication processes:

1. Open SSMS and connect to the Distributor server.

2. Navigate to the Security, Logins folder.

3. Right-click the login of the user you want to be able to monitor replication and
choose Properties.

4. Select the User Mapping page.

5. Select the distribution database in the Users Mapped To This Login Table grid.

6. Select the Map check box for the distribution database.

7. In the Database Role Membership For: Distribution section, select the replmon-
itor check box, as Figure 19-18 shows. Click OK.

Figure 19-18 Granting replication monitoring rights

Lesson 5: Monitoring Replication 763

C1962271X.fm Page 763 Friday, April 29, 2005 8:04 PM
NOTE Security

Being a member of the replmonitor database role does not grant the user any other administration
rights besides monitoring. Members of this role can monitor replication, but unless additional rights
are granted, they cannot change the configuration.

Quick Check
■ How would you grant a user permission to monitor replication?

Quick Check Answer

■ In the Distributor server, make the user a member of the replmonitor role
in the distribution database.

Using SSRM to View Replication Status
SSRM lets DBAs monitor replication from a central administration point. Here is how
to use SSRM to monitor a Publisher:

1. Open SSRM.

2. In the console tree, select Replication Monitor.

3. Click the Add Publisher hyperlink.

4. In the Add Publisher dialog box, from the Add drop-down list, select Add SQL
Server Publisher.

5. Provide the authentication parameters and click Connect.

You can also add all Publishers that use the same Distributor by selecting Specify A
Distributor And Add Its Publishers from the Add drop-down list.

After you add the distributor, you can navigate to the server and all its publications.
SSRM helps you monitor the replication status and history of replication agents. And
if you have the appropriate rights, you can change the configuration of publications
and subscriptions. To add new publications or subscriptions, however, use SSMS.

To review the history of the Snapshot Agent, for example, take the following steps:

1. Open SSRM.

2. Expand Replication Monitor, My Publishers, Publisher Name.

3. Select the publication you want.

764 Chapter 19 Managing Replication

C1962271X.fm Page 764 Friday, April 29, 2005 8:04 PM
4. In the details pane, click the Warnings And Agents tab.

5. In the Agents And Jobs Related To This Publication grid, double-click the Snap-
shot Agent.

To review the history of the Distribution or Merge agent, in step 4 click the All Sub-
scriptions tab instead of the Warnings And Agents tab, and then double-click the sub-
scription you want to monitor.

Configuring Alerts with SSRM
SSRM also helps administrators manage replication in a more proactive manner by
simplifying the configuration of replication alerts. Alerts are automated responses to
SQL events—in this case, replication issues. SQL Server Agent monitors the Windows
application log for events that have alerts defined for them. If such an event occurs,
SQL Server Agent responds by executing a task that you have defined or by sending
an e-mail or a pager message to a specified operator. Replication provides a number of
predefined alerts for replication agent events, and you can create additional alerts if
necessary.

SSRM lets you enable the following alerts:

■ Replication: Agent custom shutdown

■ Replication: Agent failure

■ Replication: Agent retry

■ Replication: Agent success

■ Replication: Expired subscription dropped

■ Replication: Subscriber has failed data validation

■ Replication: Subscriber has passed data validation

■ Replication: Subscription reinitialized after validation failure

All these alerts are created at the Distributor and disabled by default.

SSRM simplifies the process of enabling the alert and configuring a response. Here is
how to use SSRM to configure an alert:

1. Open SSRM.

2. In the console tree, expand Replication Monitor, My Publishers, Publisher Name.

3. Select the publication for which you want to configure the alert.

Lesson 5: Monitoring Replication 765

C1962271X.fm Page 765 Friday, April 29, 2005 8:04 PM
4. Select the Warnings And Agents tab.

5. Click Configure Alerts.

You can also configure alerts by using SSMS and navigating to the SQL Server Agent,
Alerts folder.

NOTE Configure warnings

In addition to creating replication alerts, you can configure a set of warnings to monitor perfor-
mance and agent status. When you use SSRM to enable a warning, you specify a threshold. When
that threshold is met or exceeded, a warning is displayed. You can enable warnings for the follow-
ing conditions:

■ Imminent subscription expiration

■ Exceeding the specified latency

■ Exceeding the specified synchronization time

■ Falling short of processing the specified number of rows in a given amount of time

Monitoring Replication with System Monitor
You can use System Monitor’s performance objects and counters to set a replication
baseline and monitor replication processes. A replication baseline captures a set of
measures that you can later compare to measures from the new or modified replica-
tion configuration.

SQL Server 2005 adds 5 performance objects and 12 counters to System Monitor, as
Table 19-4 shows.

Table 19-4 SQL Server 2005 Performance Objects and Counters

SQL Server:
Replication Counter Description

Agents Running The number of replication agents
currently running

Snapshot Snapshot: Delivered
Cmds/sec

The number of commands per second
delivered to the Distributor

Snapshot: Delivered
Trans/sec

The number of transactions per second
delivered to the Distributor

766 Chapter 19 Managing Replication

C1962271X.fm Page 766 Friday, April 29, 2005 8:04 PM
MORE INFO Performance counters and objects

The previous table is a summary of the one you can find in the “Monitoring Replication with System
Monitor” section in SQL Server 2005 Books Online.

Logreader Logreader: Delivered
Cmds/sec

The number of commands per second
delivered to the Distributor

Logreader: Delivered
Trans/sec

The number of transactions per second
delivered to the Distributor

Logreader: Delivery
Latency

The current amount of time, in millisec-
onds, elapsed from when transactions
are applied at the Publisher to when
they are delivered to the Distributor

Dist. Dist: Delivered Cmds/
sec

The number of commands per second
delivered to the Subscriber

Dist: Delivered Trans/
sec

The number of transactions per second
delivered to the Subscriber

Dist: Delivery Latency The current amount of time, in millisec-
onds, elapsed from when transactions
are delivered to the Distributor to when
they are applied at the Subscriber

Merge Conflicts/sec The number of conflicts per second
occurring during the merge process

Downloaded Changes/
sec

The number of rows per second
replicated from the Publisher to the
Subscriber

Uploaded Changes/sec The number of rows per second repli-
cated from the Subscriber to the
Publisher

Table 19-4 SQL Server 2005 Performance Objects and Counters

SQL Server:
Replication Counter Description

Lesson 5: Monitoring Replication 767

C1962271X.fm Page 767 Friday, April 29, 2005 8:04 PM
DBAs usually add the SQL Server Replication Agents: Running counter to the general
performance baseline to gain more information about what is happening in the sys-
tem. You can also create a specific baseline for each of the agents that runs in the sys-
tem; this baseline would combine Agent counters with general resource counters to
measure processor, memory, network, and input/output (I/O) consumption.

Improving Replication Performance
After you configure replication, take the time to develop a performance baseline
so that you can determine how replication behaves with a typical workload in
your environment. With such a baseline, you can determine when your environ-
ment’s performance changes and take appropriate action to maintain an efficient
system.

You can use SSRM and System Monitor to determine baseline values for the fol-
lowing key factors in replication performance:

■ Latency The amount of time it takes for a data change to be propagated
between nodes in a replication topology.

■ Throughput The amount of replication activity (measured in commands
delivered over a period of time) a system can sustain over time.

■ Concurrency The number of replication processes that can operate on a sys-
tem simultaneously.

■ Duration of synchronization How long it takes a given synchronization to
complete.

■ Resource consumption Hardware and network resources used in replication
processing.

After you have established baseline numbers, set thresholds in SSRM so that you
know when these baselines have been exceeded. You can then take appropriate
action.

MORE INFO Improving the performance of your replication system

For best practices and tips on how to improve the performance of your replication system,
see the SQL Server 2005 Books Online topic “Enhancing Replication Performance.”

768 Chapter 19 Managing Replication

C1962271X.fm Page 768 Friday, April 29, 2005 8:04 PM
PRACTICE Using SSRM to Review Agent Status History
In these practices, you configure a non-sysadmin account to access SSRM and then
use SSRM to review replication agent status history.

� Practice 1: Grant Monitor Rights

In this practice, you grant the PublisherUser account rights to monitor the replication
process.

1. Open SSMS and authenticate by using your Windows account.

2. Navigate to the Security, Logins folder.

3. Right-click the PublisherUser login and choose Properties.

4. Select the User Mapping page.

5. Select the Map check box for the distribution database in the Users Mapped To
This Login grid. This creates a new user in the distribution database mapped
to the PublisherUser login.

6. Select the replmonitor role check box in the Database Role Membership For
Distribution grid, which adds the user to the role and grants the required rights
to monitor replication. Click OK.

7. Close SSMS.

� Practice 2: Monitor Replication with SSRM

In this practice, you, as the PublisherUser, use SSRM to review agent history.

1. Navigate to Start, All Programs, Microsoft SQL Server 2005.

2. Right-click Microsoft SQL Server Management Studio and choose Run As.

3. In the Run As window, select The Following User. In the User Name text box,
type PublisherUser and in the Password text box type P@ssw0rd. You will use
an account with limited access to monitor the replication process. Click OK.

4. Connect to the default database engine by using Windows authentication.

5. Right-click the Replication folder and select Launch Replication Monitor.

6. Navigate to the [ReplTesting]: Inventory publication.

7. Right-click the publication and choose Generate Snapshot to try to execute the
Snapshot Agent.

8. You should get an error message: EXECUTE Permission Denied On Object
‘sp_start_job’. You were granted monitor rights, but you don’t have sysadmin
rights. Click OK to close the error message box.

Lesson 5: Monitoring Replication 769

C1962271X.fm Page 769 Friday, April 29, 2005 8:04 PM
9. Double-click the only subscription in the Subscription grid. The Subscription
Synchronization History dialog box opens.

10. Review the status and article details of the last synchronizations and then close
the dialog box.

11. In SSRM, select the Warnings And Agents tab.

12. Double-click the Snapshot Agent in the Agents And Jobs Related To This Publi-
cation grid. The Snapshot Agent Synchronization History dialog box opens.

13. Review the status and article details of the last synchronizations and then close
the dialog box.

14. Close SSRM and SSMS.

Lesson Summary
■ From SSMS, DBAs and user members of the replmonitor database role can

launch SSRM to monitor the replication process.

■ You can use SSRM to create replication alerts that automatically respond to rep-
lication events.

■ Replication adds a set of performance objects and counters to System Monitor
that you can use to create a baseline to monitor replication agents.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which tool is the most appropriate to monitor replication?

A. SQL Server Management Studio (SSMS)

B. SQL Server Replication Monitor (SSRM)

C. SQL Server Configuration Manager (SSCM)

D. SQL Server Error and Usage Reporting (SSEUR)

770 Chapter 19 Managing Replication

C1962271X.fm Page 770 Friday, April 29, 2005 8:04 PM
2. Which tool should a DBA use to create a baseline to monitor replication?

A. SQL Server Management Studio (SSMS)

B. SQL Server Replication Monitor (SSRM)

C. System Monitor

D. Event Viewer

Chapter 19 Review 771

C1962271X.fm Page 771 Friday, April 29, 2005 8:04 PM
Chapter Summary
■ Replication is a set of technologies for copying and distributing data and data-

base objects from one database to another and then synchronizing between
databases to maintain consistency.

■ SQL Server 2005 offers three major replication types: snapshot, transactional,
and merge. Snapshot replication copies the whole set of data every time, trans-
actional replication uses the transaction log to replicate changes only, and merge
replication uses triggers and additional tables to allow multiple distributed
updates of the same data and then uses conflict resolvers to define conflict win-
ners and losers if there are data conflicts.

■ SQL Server uses replication agents to implement replication. Replication agents
should run with the fewest possible rights and account privileges to follow the
important security concept called the principle of least privilege.

■ Merge replication requires you to configure conflict resolvers, which are special-
ized components (.NET or COM) that can implement business logic to resolve
data conflicts when replication servers simultaneously modify the same data.

■ SSRM is the new monitoring tool that lets administrators supervise corporate-
wide replication processes from a single administration point.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ conflict resolver

■ merge replication

■ peer-to-peer replication

■ pull subscription

■ push subscription

■ replication agent

■ snapshot replication

■ transactional replication

772 Chapter 19 Review

C1962271X.fm Page 772 Friday, April 29, 2005 8:04 PM
Case Scenarios
In the following case scenarios, you will apply what you’ve learned about how to con-
figure, secure, and monitor replication in SQL Server 2005. You can find answers to
these questions in the “Answers” section at the end of this book.

Case Scenario 1: Providing Local Access to Reports
Fabrikam, Inc., a leading manufacturer of digital cameras, recently acquired a new
Video Products division to expand its product line, increase revenue, and grow overall
market share of the company. The new Video Products division operates at a remote
site and should remain as independent as possible. The marketing department
requires weekly reports from the division based on a sales summary view.

1. What type of replication would you use to copy the sales summary data from the
Video Products division server to the marketing server?

2. You want to use a pull subscription for the replication configuration. What addi-
tional consideration must you take when configuring the replication?

3. You want a member of the Marketing department to be able to monitor the rep-
lication processes. How would you grant monitoring access without giving
excessive rights to the marketing representative?

Case Scenario 2: Providing Fault Tolerance for Multiple Servers
You are working as the DBA for a large university with seven schools that offer grad-
uate and undergraduate programs. The university’s enrollment is growing rapidly,
and funds have been approved for seven new servers running SQL Server 2005—one
server for each school. The servers will support the enrollment application, developed
by in-house developers.

Even when communication within the university network is very good, IT has agreed
that each site should remain as independent as possible, and the enrollment applica-
tion should be available when communication fails. As a rule, students enroll in the
school they attend, although sometimes this is not the case.

1. What type of replication would you use to distribute the enrollment database?

2. Before implementing replication, what application considerations do the DBAs
need to take into account?

3. In case of a conflict—a very rare case of a student enrolling in two schools at the
same time—what alternatives could you give to programmers?

Chapter 19 Review 773

C1962271X.fm Page 773 Friday, April 29, 2005 8:04 PM
Suggested Practices
To help you successfully master the exam objectives presented in this chapter, com-
plete the following tasks.

Creating Replication Setups
For this task, you should complete at least Practices 1 and 3. If you want a more well-
rounded understanding of replication and implementation approaches, you should
also complete Practice 2.

■ Practice 1 Create a merge replication configuration that uses a single database
engine instance. Become familiar with merge replication options, particularly fil-
tering options at the article and publication levels.

■ Practice 2 Create a merge replication configuration that uses two servers. Con-
figure one as Publisher-Distributor and the other one as Subscriber. Analyze the
differences between push and pull subscriptions. Disrupt the process by unplug-
ging the network cable of one of the servers, and then use SSRM to review alerts.

■ Practice 3 Create a transactional replication configuration that uses a single
database engine instance. Become familiar with transactional replication
options. Configure different objects (tables, views, and stored procedures) and
review article options.

Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-431 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the “How to Use the Practice Tests”
section in this book’s Introduction.

C1962271X.fm Page 774 Friday, April 29, 2005 8:04 PM

C2062271X.fm Page 775 Friday, April 29, 2005 8:06 PM
Chapter 20

Working with Service Broker

Microsoft SQL Server 2005 introduces Service Broker—a secure, reliable, robust, and
highly scalable message-queuing system for distributed applications. By providing the
core architectural components for ensuring that messages are received and can be per-
sisted, even through system failure, Service Broker enables the next generation of
highly scalable applications.

Developers create most applications by using sequential, synchronous processing. In
this model, a transaction is started, data is locked to prevent anyone else from access-
ing it, the change is made, and the locks are released. This approach works reasonably
well for some applications. However, many applications need consistent processing
for a business transaction that can span multiple databases, platforms, and even com-
pany boundaries. Many more applications simply need to send a request for some
processing to be done and do not need an immediate response as long as they can be
sure that the request will be processed as soon as possible.

You might think that asynchronous processing would lead to data integrity issues.
However, asynchronous processing can actually allow applications to process many
more requests than would otherwise be possible because you don’t have to expend
resources either waiting for a process to complete or periodically checking for status.
Obviously, some applications need to ensure that a process completes before continu-
ing, and Service Broker provides a prepackaged capability to manage the entire infra-
structure required to create asynchronous distributed systems.

This chapter explains the Service Broker objects—the message types, contracts,
queues, and services—that are involved in processing messages. It then looks at the
Service Broker mechanisms—conversations, dialogs, and routing—that manage the
message traffic and ensure reliability.

MORE INFO Building Service Broker applications

This chapter provides an overview of Service Broker applications. But for a much more detailed discus-
sion of Service Broker and building robust distributed Service Broker applications, we recommend The
Rational Guide to SQL Server 2005 Service Broker Beta Preview by Roger Wolter (Rational Press, 2005).
Although written against the beta version of SQL Server 2005, this book provides a comprehensive
review of Service Broker functionality, complete with lots of code samples and practices.
775

776 Chapter 20 Working with Service Broker

C2062271X.fm Page 776 Friday, April 29, 2005 8:06 PM
Exam objectives in this chapter:
■ Implement Service Broker components.

❑ Create services.

❑ Create queues.

❑ Create contracts.

❑ Create conversations.

❑ Create message types.

❑ Send messages to a service.

❑ Route a message to a service.

❑ Receive messages from a service.

Lessons in this chapter:
■ Lesson 1: Exploring the Service Broker Architecture . 778

■ Lesson 2: Creating Message Types and Contracts . 784

■ Lesson 3: Creating Queues and Services . 790

■ Lesson 4: Creating Conversations . 798

■ Lesson 5: Sending and Receiving Messages . 803

Before You Begin
To complete the lessons in this chapter, you must have

■ SQL Server 2005 installed.

■ A copy of the AdventureWorks sample database installed in the instance.

Real World
Michael Hotek

Recently, I worked on one of the most amazing SQL Server systems that I have ever
seen. There was nothing really unique about the technical implementation—the
table structures, the code within the application, or how transactions were pro-
cessed. What was unique was the sheer scale of processing that was occurring.

This database application was literally the largest in existence on a SQL Server
platform and possibly on any database platform. Some people might want to
argue this point. But when you use numbers with 11 zeros to start measuring the

Before You Begin 777

C2062271X.fm Page 777 Friday, April 29, 2005 8:06 PM
database transactions you are processing daily, you might begin to be in the ball-
park of this application.

Performance wasn’t the problem with this application. The company was
expanding its environment into additional markets, with the first market target-
ing an expected growth of almost double the database application’s current load.
All users had to have access to all data as well. So the company needed a mecha-
nism to cache data close to the users while also maintaining a centralized data-
base with at least half of the initial writes coming from a few thousand miles away.

The organization could not use distributed data techniques such as log shipping
because the databases were never offline, and developers would have to write a sig-
nificant amount of code to extract just the incremental changes. Although replica-
tion can move incremental changes at a rapid enough rate to handle virtually any
load, it simply did not have the capacity to move the volume of data necessary.

Because the data would be cached locally, and users would generally find every-
thing they needed in the local cache, it was not critical to have writes committed
to the central database in a synchronous manner. So the developers began archi-
tecting a reasonably straightforward mechanism to queue changes locally and
then send them back to the corporate data center in an asynchronous manner.
However, they then realized other issues they had to overcome: issues of dura-
bility, backups, synchronization, ensuring that a change is sent only once, and
hundreds of other issues that any queue with multiple readers would have.

This scenario was a perfect fit for Service Broker. Although the volume of
changes was staggering, the developers could create as many queues and bro-
kers as they needed. Multiple brokers could then read from a single queue, and
the volume of changes could be spread across multiple queues. The Service Bro-
ker architecture would guarantee that a change was sent once and only once
while providing all the other infrastructure elements necessary to manage the
changes. SQL Server would provide the means to ensure that the changes were
durable and could survive even the complete loss of the queue due to disaster.

With Service Broker providing all the architecture they needed, not only could
the developers avoid months of architecting, coding, and testing, but the com-
pany could also take advantage of having a robust, distributed, high-perfor-
mance message queue at no extra cost because it is included with SQL Server
2005. I can’t wait to see this Service Broker application go into production pro-
cessing several billion messages per day.

778 Chapter 20 Working with Service Broker

C2062271X.fm Page 778 Friday, April 29, 2005 8:06 PM
Lesson 1: Exploring the Service Broker Architecture
Service Broker provides a new architectural service for building asynchronous, highly
scalable applications. The first step in building Service Broker applications is to
understand how all the components fit together to create a solution. In this lesson,
you will explore the components of a Service Broker solution, get an overview of how
applications interact with Service Broker, and see how to enable Service Broker’s ser-
vices in SQL Server 2005.

After this lesson, you will be able to:

■ Identify the components of a Service Broker solution.

■ Understand how Service Broker interacts with an application.

■ Enable Service Broker.

Estimated lesson time: 15 minutes

Messaging Overview
Much of the documentation related to Service Broker revolves around messages and
how to process them. Unfortunately, most database developers and administrators
stop as soon as they see the word message. After all, we are talking about database
applications, so transactions have to be used to submit, modify, and retrieve data in a
reliable manner. Messages belong in an e-mail system, not in a database, right?

This perspective could not be further from the truth. It is simply an unfortunate mis-
understanding of what a message really is.

Every computer system ever built deals with messages. It is unavoidable. Data has to
be input. Code has to be executed to process the data. And the results have to be
returned to something. These are all messages, meaning directives to do something.

In the computing world, this concept can be a bit amorphous. An application sending
a message that contains a CustomerID is pretty esoteric. What does it mean? Is the
application asking for the name of the customer? Is the application asking for all
orders that have been placed by the customer? Is the application asking for the
address of the customer? The answer to these questions and many more like them is
yes, no, and all of the above. We simply do not know. However, the application send-
ing the message containing the CustomerID doesn’t simply broadcast it to the net-
work, it sends the CustomerID to a particular application. And a developer has coded
the application that receives the CustomerID to perform a specific action.

Lesson 1: Exploring the Service Broker Architecture 779

C2062271X.fm Page 779 Friday, April 29, 2005 8:06 PM
So a message without a means to process it is of no value. And an application without
any capability to accept input is equally worthless. These two components rely on
each other to create value.

What does any of this philosophy of messaging have to do with Service Broker or your
business needs? Service Broker provides the mechanisms to process messages, going
several steps beyond just accepting any message that someone wants to send and
then passing it on to something that processes the data. Service Broker provides the
objects and infrastructure to ensure that messages are formatted correctly so that
applications can understand them, and it ensures that the only messages that are
accepted are those associated with applications that understand how to process the
messages.

Service Broker Components
To understand all the pieces required to create a Service Broker application that
enables communication to be controlled, reliable, robust, and scalable, let’s look at
the elements from the outside in.

First, communication must occur between a source and a target. In Service Broker,
they are called endpoints. The physical implementation of an endpoint is a database.
This means that Service Broker sends and receives data between databases. The end-
point that starts the communication process is known as the initiator, and the end-
point that receives the initial request is known as the target. Once established,
communication can flow in both directions. The initiator and target endpoints can be
in the same database, in different databases on the same instance, or in databases on
different instances or servers.

The end result of a Service Broker application is to manage conversations—exchanges of
data—between endpoints. Conversations in Service Broker, just like conversations
between people, can be of two different types:

■ monolog A conversation that occurs from one endpoint to any number of tar-
get endpoints. This conversation type is not currently available in SQL Server
2005.

■ dialog A conversation that occurs between exactly two endpoints.

Conversations manage the flow of messages between initiator and target. You would
need only this mechanism if resources were always available, always had the capacity
to process every message as soon as it arrived, and never failed. But because this is not
possible, your applications require a structure to store messages that are submitted so

780 Chapter 20 Working with Service Broker

C2062271X.fm Page 780 Friday, April 29, 2005 8:06 PM
that the applications can continue with other tasks, knowing that the submitted mes-
sages will be processed as soon as possible.

This storage mechanism is called a queue, which is simply a table. When an applica-
tion submits a message, it is appended to the bottom of the table. And other applica-
tions read messages off the top of the table. After an application retrieves a message,
that message is removed from the queue.

You can move queues between databases and between servers because they are, after
all, just tables. Larger applications might also need multiple copies of a queue spread
across many machines to handle the volume of messages being sent. So Service Bro-
ker provides an abstraction layer to isolate applications from the physical storage that
contains the messages that need to be processed. This abstraction layer is called a
service.

Services in a Service Broker application provide a little more than a simple abstraction
layer. A service is attached to a single queue to abstract the physical storage. And the
service also serves as a constraint on the conversations that are allowed, providing a
well-defined interface for applications that describes the processing that the service
can perform.

A service constrains the types of conversations that are allowed by specifying the
objects, or contracts, that can be used. The purpose of a contract is to define the list of
messages that can be sent or received.

Service Broker messages are further constrained by a formatting mechanism called a
message type. The message type ensures that only messages that contain proper for-
matting are accepted. For example, you can use the message type to ensure that an
endpoint that understands only English receives only English messages.

Messaging-Application Interaction
With Service Broker’s infrastructure defined, the question of how to use it with your
applications still remains. The interface for an application is straightforward.

Instead of inserting a row of data into a table, Service Broker applications push mes-
sages onto a queue, and the messages are picked up at a later time and processed. To
accomplish this, an application starts a conversation, sends the message to a service,
and then closes the conversation. Because the service is linked to a queue, this action

Lesson 1: Exploring the Service Broker Architecture 781

C2062271X.fm Page 781 Friday, April 29, 2005 8:06 PM
places a message onto the queue, and the message can then be processed later with-
out requiring the application to wait for a response.

Figure 20-1 illustrates a basic Service Broker application.

Figure 20-1 Defining the relationship between Service Broker objects

Enabling Service Broker
Like all SQL Server 2005 services that are not required to run the core engine, Service
Broker is disabled by default. To use the Service Broker infrastructure, you must
enable it. You first need to create a database master key that will be used as the session
key for all conversations.

To enable Service Broker, execute the following command:

ALTER DATABASE <database_name> SET ENABLE_BROKER

CAUTION Case-sensitive naming conventions

All identifiers in Service Broker use a binary collation and are, therefore, case sensitive, regardless
of the collation settings in a particular database or instance.

Quick Check
■ What are the components involved in a Service Broker application, and

what function does each provide?

Quick Check Answer

■ A message type provides a name for a message that is allowed to be sent to an
endpoint.

Contract Contract

ServiceService

Contract

Message Type Message Type Message Type Message Type Message Type

Service Service

Queue Queue

782 Chapter 20 Working with Service Broker

C2062271X.fm Page 782 Friday, April 29, 2005 8:06 PM
■ A contract provides a list of message types that are allowed to be used.

■ A queue is the storage structure used to store messages that need to be
processed.

■ A service provides an abstraction layer for an application; it is tied to a queue
and restricts the types of messages that are allowed based on contracts it is
defined to use.

■ A conversation is the means by which messages are sent to a queue for
processing.

PRACTICE Enable Service Broker
In this practice, you will enable Service Broker and create a database master key to be
used as a session key for the Service Broker conversations.

1. Launch SQL Server Management Studio (SSMS), connect to your instance, and
open a new query window.

2. Execute the following batch to enable Service Broker and create the master key:

ALTER DATABASE AdventureWorks SET ENABLE_BROKER
GO
USE AdventureWorks
GO
CREATE MASTER KEY
ENCRYPTION BY PASSWORD = 'fgU6*%japTwS^3L!#n'
GO

NOTE Creating a database master key

If you already created a master key for the AdventureWorks database in a previous exercise,
you can skip these steps because a database is allowed to have only one master key.

MORE INFO Master keys

For information about creating database master keys, see Chapter 2, “Configuring SQL
Server 2005.”

Lesson Summary
■ Service Broker provides the infrastructure needed to build reliable, secure, and

scalable messaging applications.

Lesson 1: Exploring the Service Broker Architecture 783

C2062271X.fm Page 783 Friday, April 29, 2005 8:06 PM
■ Service Broker conversations enable applications to interact with Service Broker
services, which are attached to each message queue.

■ Services validate messages that are sent to the queue by enforcing contracts and
message types.

■ After a message has passed this validation, the service places the message on a
queue, where it can be processed by a background task.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following are valid Service Broker objects? (Choose all that apply.)

A. dialog

B. conversation

C. queue

D. message

784 Chapter 20 Working with Service Broker

C2062271X.fm Page 784 Friday, April 29, 2005 8:06 PM
Lesson 2: Creating Message Types and Contracts
For any communication to succeed, both parties must agree on the acceptable format
of the information being exchanged. People accomplish this task without conscious
thought. If a question is asked in Spanish, the response that provides the information
requested is also in Spanish. If that same question were asked in English, the response
would be returned in English. However, if the person asking the question were speak-
ing French and the person being asked understood only German, communication
would fail.

In Service Broker, message types ensure reliable communication by enforcing an
agreed-upon format for message content that is transmitted between two endpoints.
Contracts, in turn, control the message types that are allowed within a conversation,
defining both the acceptable input and the acceptable output that will be returned. In
this lesson, you will see how to create message types and contracts to define appropri-
ate communication between application components.

After this lesson, you will be able to:

■ Create message types.

■ Create a contract.

Estimated lesson time: 15 minutes

Creating Message Types
A message type is composed of two key components: name and validation. The generic
form of the command to create a message type is as follows:

CREATE MESSAGE TYPE message_type_name
[AUTHORIZATION owner_name]
[VALIDATION = { NONE

| EMPTY
| WELL_FORMED_XML
| VALID_XML WITH SCHEMA COLLECTION

schema_collection_name
}]

The message_type_name clause can be any name that is valid for an identifier. However,
you will want to carefully consider each name that you create. Service Broker applica-
tions communicate between two databases that are usually on different instances. You
will want to ensure that each message type name is globally unique, so developers
usually name them by using a URL.

The AUTHORIZATION clause specifies the owner of the message type.

Lesson 2: Creating Message Types and Contracts 785

C2062271X.fm Page 785 Friday, April 29, 2005 8:06 PM
The VALIDATION clause specifies whether messages are validated or not when they
are submitted. All Service Broker messages have a data type of VARBINARY(MAX).
However, messages can be composed of up to 2 gigabytes of data that doesn’t have to
meet any specific requirements. Table 20-1 describes the validation options that are
available for a message type.

When you specify a validation method of either WELL_FORMED_XML or
VALID_XML WITH SCHEMA COLLECTION, the message is loaded into an XML
parser and validated when it arrives at either endpoint. This parser validation can add
overhead in the processing. If your Service Broker application accepts messages from
external sources that you cannot control, you usually specify one of these options.
However, if you control all the applications that are creating messages, or your appli-
cation includes code to handle various messages, you will want to specify NONE to
eliminate the parser overhead.

Here is an example message type statement specifying a URL name for the message
type and the validation option VALID_XML WITH SCHEMA COLLECTION:

CREATE MESSAGE TYPE [http://broker. SolidQualityLearning.com/test/CheckClasses]
VALIDATION = VALID_XML WITH SCHEMA COLLECTION
[http://broker.SolidQualityLearning.com/test/CourseSchemas]

IMPORTANT Object naming

All names in a Service Broker application are case sensitive. All messages are transmitted with a
binary collation to ensure that different collation sequences between endpoints do not cause data
loss due to character set compatibility issues.

Table 20-1 Validation Options for Message Type

Option Description

EMPTY Forces the message body to contain no data.

NONE The message body can contain any data in any
format.

WELL_FORMED_XML The message body is allowed to be only a well-
formed XML document.

VALID_XML WITH SCHEMA
COLLECTION

The message body must be a well-formed XML
document, and the document must conform
to one of the schemas in the specified schema
collection.

786 Chapter 20 Working with Service Broker

C2062271X.fm Page 786 Friday, April 29, 2005 8:06 PM
Quick Check
■ What validation options are available for message types?

Quick Check Answers

■ EMPTY specifies that no data is contained in the message.

■ NONE specifies that the message can contain any data and is not validated.

■ WELL_FORMED_XML uses an XML parser to guarantee that a valid XML
document is within the message body.

■ VALID_XML WITH SCHEMA COLLECTION loads an XML parser and
validates the message body against the schemas in the specified schema
collection.

Creating a Contract
A contract contains a list of message types and the services that are allowed to send
them. The generic form of the statement to create a contract is as follows:

CREATE CONTRACT contract_name
[AUTHORIZATION owner_name]

({ { message_type_name | [DEFAULT] }
SENT BY { INITIATOR | TARGET | ANY }

} [,...n])

The contract_name clause provides a convenient way to refer to a group of message
types. The name must conform to the rules for identifiers and, like all other names in
Service Broker components, is case sensitive.

The AUTHORIZATION clause sets the owner of the contract.

The body of a contract specifies the message types that are allowed as well as which
service is allowed to send a given message type. If the SENT BY clause specifies INITI-
ATOR, only the service that started the conversation can use that message type. If the
SENT BY clause specifies TARGET, only the service that is processing messages on the
queue can send that message type. If the SENT BY clause specifies ANY, either service
can send a message of that type.

Let’s look at an example of defining a contract for several message types.

Let’s say you are developing an application that lets a user select a product from a list.
The product ID that the user selects will be sent by the application to the database,
and the database will return a result set that includes the Bill Of Materials associated

Lesson 2: Creating Message Types and Contracts 787

C2062271X.fm Page 787 Friday, April 29, 2005 8:06 PM
with the specified product ID. After the Bill Of Materials is received, additional pro-
cessing will occur. The sending of the product ID and the returning of the associated
Bill Of Materials might take awhile, so you also need to define a mechanism to allow
either side to find out the status of their request.

Here is how you can use Service Broker message types and a contract to accomplish
this processing. First, you would create a message type of RequestBillOfMaterials,
which is used to send the product ID to the database; a message type of ReturnBillOf-
Materials, which is used to return the result set to the application; and a message type
of StatusRequest. Because all three message types define a logical process, you can
combine them into a contract. The process is initiated with a message type of Request-
BillOfMaterials, so the contract would specify this message type with a SENT BY INI-
TIATOR clause because the destination for the message would not have the capability
to generate a message that contained the product ID. The database that accepts the
product ID input and returns the result set will use the ReturnBillOfMaterials message
type with a SENT BY TARGET clause because the source of the product ID would not
have the capability to generate a result set. The StatusRequest message type can be used
by either one, so you will define it with the SENT BY ANY clause because either par-
ticipant in the conversation can request the status at any time.

Because contracts define the type of messages allowed as well as which side of the
conversation can use a particular message type, there is one more requirement for
defining a contract. Messages cannot be sent spontaneously. Therefore, every contract
must contain at least one message type that can be used by the service that initiates a
conversation, meaning that at least one message type must have the SENT BY clause
specifying either INITIATOR or ANY.

PRACTICE Creating Message Types and Contracts
In these two practices, you will create the basic message structures required for a Ser-
vice Broker application.

� Practice 1: Create a Message Type

In this practice, you create a message type that will be used to request a bill of materi-
als from the AdventureWorks database. You also create a message type for the result set
that will be returned in response to the request.

NOTE Practice assumptions

All exercises in this chapter assume that the Service Broker application is entirely internal to your
environment, which enables us to drop the URL naming convention, leaving you with less typing
to do.

788 Chapter 20 Working with Service Broker

C2062271X.fm Page 788 Friday, April 29, 2005 8:06 PM
1. Launch SSMS, connect to SQL Server, and open a new query window.

2. To create the following two message types

❑ The requesting message type named SubmitBOMProduct with the valida-
tion option WELL_FORMED_XML

❑ The message type to return results, named ReceiveBillOfMaterials, which
also uses the validation option WELL_FORMED_XML

type the following batch:

CREATE MESSAGE TYPE SubmitBOMProduct
VALIDATION = WELL_FORMED_XML
CREATE MESSAGE TYPE ReceiveBillOfMaterials
VALIDATION = WELL_FORMED_XML

� Practice 2: Create a Contract

In this practice, you create a contract for the message types that you defined in
Practice 1.

1. If necessary, launch SSMS, connect to SQL Server, and open a new query
window.

2. Type the following batch to create the BillOfMaterialsContract contract for the
message types SubmitBOMProduct and ReceiveBillOfMaterials:

CREATE CONTRACT BillOfMaterialsContract
(SubmitBOMProduct SENT BY INITIATOR,
ReceiveBillOfMaterials SENT BY TARGET)

Lesson Summary
■ Message types enforce an agreed-upon format for messages that are transmitted

between two endpoints, defining the information that is acceptable in a message
body.

■ When creating a message type, you have the option of specifying a value for the
VALIDATION clause, which specifies whether messages are validated when they
are submitted.

■ Contracts restrict the types of messages that can be used in a particular conver-
sation, providing an interface in which the inputs and outputs are completely
defined.

■ When you define a contract, you must specify which service is allowed to send a
given message type: the initiator, the target, or any.

Lesson 2: Creating Message Types and Contracts 789

C2062271X.fm Page 789 Friday, April 29, 2005 8:06 PM
Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following are validation options for a message type? (Choose all
that apply.)

A. NULL

B. ANY

C. WELL_FORMED_XML

D. NONE

2. What do contracts define?

A. Valid XML for a message

B. Where messages are going to be stored

C. Which messages are valid for a conversation

D. The services that are valid for a conversation

790 Chapter 20 Working with Service Broker

C2062271X.fm Page 790 Friday, April 29, 2005 8:06 PM
Lesson 3: Creating Queues and Services
Service Broker queues contain all the information that needs to be processed. Put sim-
ply, queues are tables that contain one or more messages. Although you could spend
a significant amount of time defining message types and contracts, without queues—
and more particularly, something on a queue—a Service Broker application would be
worthless. A Service Broker service, in turn, defines a queue for a conversation to use
and restricts the types of conversations that are allowed on that queue. This lesson
will show you how to define queues and services for your Service Broker infrastruc-
ture, highlighting the key options you need to specify.

After this lesson, you will be able to:

■ Create queues.

■ Create services.

Estimated lesson time: 25 minutes

Creating a Message Queue
Service Broker is designed to facilitate reliable asynchronous processing. An application
submits a processing request in the form of a message and then continues on with
other work. That process accomplishes the asynchronous piece of the processing
equation. However, the message has to be stored somewhere so that it is retained for
another process to work on. You could store the message by writing the data into a
memory structure and then providing a reference to that structure. But any power loss
or reboot will cause messages to be lost. Instead, you need a mechanism to safely store
the valuable business data that is contained within a message and protect it against
failures, including the loss of the server in which the message was originally stored.

A queue is the mechanism that stores all messages within a Service Broker applica-
tion. SQL Server 2005 implements queues by using a new feature called hidden tables.
This feature prevents a queue from being directly accessed by an application via
INSERT, UPDATE, DELETE, or SELECT statements while still allowing the storage
engine to treat it as any other table. Because queues are recognized by the storage
engine, you can use most of the SQL Server high-availability techniques, including
clustering, log shipping, database mirroring, and backup/restore, to ensure that data
is not lost from a queue.

Lesson 3: Creating Queues and Services 791

C2062271X.fm Page 791 Friday, April 29, 2005 8:06 PM
The general format of the command to create a queue is as follows:

CREATE QUEUE <object>
[WITH

[STATUS = { ON | OFF } [,]]
[RETENTION = { ON | OFF } [,]]
[ACTIVATION (

[STATUS = { ON | OFF } ,]
PROCEDURE_NAME = <procedure> ,
MAX_QUEUE_READERS = max_readers ,
EXECUTE AS { SELF | 'user_name' | OWNER }
)]

]
[ON { filegroup | [DEFAULT] }]

An example of the simplest form of this command is the following:

CREATE QUEUE BOMProductIDQueue

Quick Check
■ What is the purpose of a queue within a Service Broker application?

Quick Check Answer

■ Queues store the messages that need to be processed by a Service Broker
application.

The first thing that you should note with this command is the lack of syntax used to
define a table. Although a queue is a physical table in the storage engine that con-
sumes disk space, the structure is fixed, and you cannot change it. Because the struc-
ture of a queue is fixed, syntax does not need to exist to define the structure.

The ON clause of the CREATE QUEUE statement functions the same as any other
object that stores data. This clause lets you specify the filegroup on which a queue
should be created.

BEST PRACTICES Queue storage

For most Service Broker applications, you should create a dedicated filegroup or set of filegroups
for any queues, which facilitates recovery operations and enables you to target backups. Because
you can back up and restore filegroups independently, you can maintain availability of data while
recovering a queue or recover a queue independently of the remainder of the database. For appli-
cations that are processing a high volume of messages, you should isolate the storage to minimize
any disk bottlenecks.

792 Chapter 20 Working with Service Broker

C2062271X.fm Page 792 Friday, April 29, 2005 8:06 PM
MORE INFO Filegroup backup and restore

For more details about filegroup backup and restore, see Chapter 11, “Backing Up, Restoring, and
Moving a Database.”

The STATUS clause determines whether the queue is enabled. When a queue is set to
STATUS = OFF, it does not allow any messages to be added to or removed from the
queue.

The RETENTION clause determines whether messages are automatically removed
from the queue after they are processed. When RETENTION = ON, all messages in the
queue are retained. After the conversation that processed the messages has been
explicitly closed, the messages that were processed by the conversation are removed
from the queue. So the RETENTION value is used to allow a conversation that per-
forms multiple operations to detect errors and perform compensating actions.

The most interesting capability of a queue resides in the ACTIVATION clause. Service
Broker is used to enable asynchronous applications. And because of the nature of an
asynchronous application, an application does not have any direct way to know when
new work has arrived and needs to be processed. Without Service Broker’s ACTIVA-
TION option, you would need to create a process that causes the application to peri-
odically poll for new work. Such a process would result in an enormous amount of
wasted time and resources spent just finding out whether work needs to be done.

However, when you define a queue with an ACTIVATION clause, a stored procedure
is automatically executed when a message is placed on the queue. This functionality
eliminates any polling that you would have to create in other message-based
applications.

The STATUS option for the ACTIVATION clause specifies whether a procedure will
automatically be executed when a new message arrives. If STATUS = ON, the stored
procedure specified in the PROCEDURE_NAME option automatically launches to
begin processing messages. This procedure executes under the security context you
specify in the EXECUTE AS option.

When a message arrives in the queue, the stored procedure specified in the ACTIVA-
TION clause is automatically launched only if there isn’t already a stored procedure
running to process the messages. This piece of the activation algorithm ensures that
resources are not wasted polling for work or launching many copies of a stored pro-
cedure. The procedure would then begin processing messages in the queue until the
queue is empty; then it would exit.

Lesson 3: Creating Queues and Services 793

C2062271X.fm Page 793 Friday, April 29, 2005 8:06 PM
A second piece of the activation algorithm helps balance the resources available for
processing. If a stored procedure is already running to process messages in the queue,
the rate at which messages are dequeued is compared to the rate at which they are
enqueued. If Service Broker determines that messages are arriving faster than they can
be processed by the existing procedures already running, another copy of the stored
procedure is launched, up to the maximum number conf igured in the
MAX_QUEUE_READERS option.

Activation is not a requirement for coding Service Broker applications because many
methods for processing messages are equally valid. However, queue activation makes
it much easier to write automatic processing algorithms.

Real World
Michael Hotek

In mid-2005, I was working with a customer to define the company’s adoption
path for SQL Server 2005. The firm performed many tuning iterations on its
application and was still barely getting by. And the IT staff hoped that SQL
Server 2005 would be able to help them increase the capacity of their application
because they could switch to a code base written natively in 64-bit code running
on new 64-bit dual-core machines.

We started by looking at the types of queries the application was running and
the execution statistics for those queries. What we encountered was a relatively
interesting distribution of queries in the environment. It turned out that a single
stored procedure was responsible for more than 95 percent of the total query
volume executed against the core server. This procedure normally ran in a few
milliseconds, but the purpose of the procedure was to check for new work to
perform. The application managed an automated testing platform. Test adminis-
trators would define new tests and then dispatch them. An infrastructure com-
ponent would then assign the test to a machine, the machine would execute the
test, and the results would be returned to the central test dispatcher. We origi-
nally thought that tests were pushed out to the target machine, which was an
incorrect assumption on our part.

The set of tests to execute were added to a processing queue. Each machine in
the architecture would then periodically poll for new work to perform. When
tests were found in the queue that had not yet been assigned, the dispatcher
would assign the test to a machine so that other machines would not also

794 Chapter 20 Working with Service Broker

C2062271X.fm Page 794 Friday, April 29, 2005 8:06 PM
execute the test. All the metadata related to the test to execute would then be
downloaded to the machines. After they received the downloaded metadata, the
machines would perform all the tasks necessary to complete the tests and then
upload the results back to the dispatcher.

The story doesn’t end there, though. Machines could crash, lock up, become
unresponsive, and otherwise fail. After all, the company was testing applications
to find bugs, and some of those bugs could cause problems on the machines. So
after a test was dispatched, another component would periodically poll the
machines to ensure that they were still alive and the test was still executing. This
polling accounted for another 4 percent of the queries within the architecture.

In summary, a large amount of effort was expended in building a highly scalable
and robust system to dispatch tests and receive results. The system had to han-
dle thousands of test machines with hundreds of test administrators, and it
would need to be extended into tens of thousands of test machines in the future.
The existing system simply could not cope with the volume.

This is where Service Broker—in particular, queue activation—could play an
extremely important role. Instead of having to constantly poll for new work, the
system could implement queue activation to dispatch work when new messages
reach the queue. Because Service Broker ensures that a message is processed
only once, the infrastructure was already in place to ensure that two machines
wouldn’t receive the same test. The semantics available within a Service Broker
conversation let a test be aborted when the test machine hasn’t responded
within a specified period of time while also enabling the infrastructure to send
periodic status updates. Because of the transactional nature that you can impose
in Service Broker, if a test machine were to crash, the message that initiated the
test would be placed back in the queue and could be immediately dispatched to
another machine for processing.

This customer’s conversion from its previous architecture into a new Service Bro-
ker–based architecture is still ongoing. But we will be able to eliminate almost 98
percent of the queries that are currently being executed and replace them with
queue activation. The Service Broker infrastructure will also replace all the cus-
tom code that needed to be written to manage the custom queue infrastructure.
Service Broker will allow the existing platform to scale much further and will
provide new features that can drive the testing process even more reliably than
before.

Lesson 3: Creating Queues and Services 795

C2062271X.fm Page 795 Friday, April 29, 2005 8:06 PM
Creating a Service
A service defines the endpoint, or queue, that a conversation will use as well as the
types of conversations, or contracts, that are allowed on a queue. The general format
of the command to create a new service is as follows:

CREATE SERVICE service_name
[AUTHORIZATION owner_name]
ON QUEUE [schema_name.]queue_name
[(contract_name | [DEFAULT] [,...n])]

As with all Service Broker objects previously discussed, the AUTHORIZATION clause
defines the owner of the service.

You specify a single queue name in the ON QUEUE clause. So for effective communi-
cation to occur, you need to create two services: one for the initiator and one for the
target. In the body of the CREATE SERVICE command, you then specify one or more
contracts for the specified queue.

Service Abstraction
You might be wondering why you can’t have an application reference a queue
directly instead of having to create yet another object that essentially provides a
pointer to the queue.

Service Broker applications are designed to be distributed as well as to provide
load-balancing capability. A particular service could reference multiple queues
on multiple machines to provide scalability and load balancing. It is also possi-
ble to back up a queue and move it to another machine in case of a disaster or
when you need to increase processing capacity.

If applications directly accessed queues, any infrastructure changes would
require you to rewrite the applications. The service provides an interface abstrac-
tion for applications. An administrator can then manage the infrastructure as
needed to provide the capacity and recoverability required without affecting the
application.

A basic example of a statement to create a service is as follows:

CREATE SERVICE BOMRequestService
ON QUEUE BOMProductIDQueue
(BillOfMaterialsContract)

796 Chapter 20 Working with Service Broker

C2062271X.fm Page 796 Friday, April 29, 2005 8:06 PM
Quick Check
■ What capability does a service enable for a Service Broker application?

Quick Check Answer

■ A service defines the endpoint (queue) that is used for requests and the
types of conversations (contracts) that are allowed on the queue, providing
an abstraction layer for applications to interact with Service Broker so that
changes in infrastructure do not require changes to an application.

PRACTICE Creating Queues and Services
In these practices, you create the message storage system as well as the abstraction
interface for a Service Broker application.

� Practice 1: Create a Queue

In this practice, you create two basic queues to work with the message types and con-
tracts you created in Lesson 2. Because the processing you use these for is manual in
nature, you do not need to specify any activation.

1. If necessary, launch SSMS, connect to your SQL Server instance, and open a new
query window.

2. Execute the following batch to create two queues named BOMProductIDQueue
and BOMResultQueue:

CREATE QUEUE BOMProductIDQueue
CREATE QUEUE BOMResultQueue

� Practice 2: Create a Service

In this practice, you create the two services that will be used in our ongoing example
to enable a product ID to be sent to a database and have a Bill of Materials returned.

1. If necessary, launch SSMS, connect to your instance, and open a new query
window.

2. Type in and execute the following batch to create two services—BOMRequest-
Service and BOMResponseService—on the queues you just created and to allow the
contract called BillOfMaterialsContract.

CREATE SERVICE BOMRequestService
ON QUEUE BOMProductIDQueue
(BillOfMaterialsContract)
CREATE SERVICE BOMResponseService
ON QUEUE BOMResultQueue
(BillOfMaterialsContract)

Lesson 3: Creating Queues and Services 797

C2062271X.fm Page 797 Friday, April 29, 2005 8:06 PM
Lesson Summary
■ Queues store messages until they can be processed.

■ Because queues are hidden tables within the storage engine, they can be backed
up and even restored to another server in the event of failure, ensuring the reli-
ability of messages that are sent for processing.

■ By using the activation capability of queues, you can create automated systems
that begin processing messages as soon as they arrive on the queue.

■ A Service Broker service defines the main communication path for a conversa-
tion, including the endpoint (queue) to use and the types of conversations (con-
tracts) that are allowed on the queue.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which queue feature controls how many applications are available to process
messages placed on a queue?

A. retention

B. activation

C. Maximum Number Of Queue Readers

D. Stored Procedure To Execute

2. Which Service Broker objects are defined by a service? (Choose all that apply.)

A. message type

B. dialog

C. queue

D. contract

798 Chapter 20 Working with Service Broker

C2062271X.fm Page 798 Friday, April 29, 2005 8:06 PM
Lesson 4: Creating Conversations
Conversations provide a mechanism for reliable and ordered processing of messages
across transactions, server restarts, and even disasters without requiring you to write
large volumes of custom code. In this lesson, you will see how to start a conversation
for sending messages and then how to define routes for messages that a service sends
across a conversation.

After this lesson, you will be able to:

■ Create conversations.

■ Understand routing of messages on conversations.

Estimated lesson time: 15 minutes

Create a Conversation
One of the more difficult issues to solve with asynchronous applications is ensuring
that messages are processed in order. Message order is a bit more flexible than in a
strict database transaction. Message ordering ensures that multiple related messages
are processed in sequence instead of in random order.

As an example, consider an order entry application. Messages are placed on the queue
for each order that is submitted. Individual messages appear for the order header and
for each order line item. When the messages are processed by an application, the
application must ensure that the order header is processed first, followed by each line
item. If a line item were to be processed before the order header, errors would occur.
Although the order header and associated line items must be processed in a particular
sequence, multiple orders can be processed simultaneously.

To ensure that messages are received and processed in the same order as they are sent,
each message has a sequence number. Because this sequence number is persistent,
message order is guaranteed, even through a restart of the instance.

Because some messages could be received while communications errors might cause
others to not reach the endpoint, Service Broker has a mechanism to retry messages
until they are successfully received, guaranteeing that no gaps exist in the message
sequence. With other messaging systems, you would have to create your own
sequence numbers as well as code the retry logic to ensure that all messages have
been received. But again, this capability is built into Service Broker. Applications
simply place messages on a queue and take them off a queue for processing. Service

Lesson 4: Creating Conversations 799

C2062271X.fm Page 799 Friday, April 29, 2005 8:06 PM
Broker ensures that the messages are delivered to the endpoint and processed in the
correct order.

A Service Broker conversation implements this reliable ordered process for delivering
messages via services. To start a conversation, you would issue a BEGIN DIALOG
CONVERSATION command, as the following general syntax shows:

BEGIN DIALOG [CONVERSATION] @dialog_handle
FROM SERVICE initiator_service_name
TO SERVICE 'target_service_name'

[, { 'service_broker_guid' | 'CURRENT DATABASE' }]
[ON CONTRACT contract_name]
[WITH
[{ RELATED_CONVERSATION = related_conversation_handle

| RELATED_CONVERSATION_GROUP = related_conversation_group_id }]
[[,] LIFETIME = dialog_lifetime]
[[,] ENCRYPTION = { ON | OFF }]]

When a conversation is started, it returns a unique identifier that is used to reference
the dialog that has been created. The return value is placed into the @dialog_handle
variable.

The first two clauses specify the service that is used to initiate the conversation and
the service that is the target. After the services are specified, a contract is also required.
The ON CONTRACT clause specifies which contract defined for the target service will
be used for this conversation.

You can also group multiple conversations together to form a logical process. To
group conversations, you can use either the RELATED_CONVERSATION or
RELATED_CONVERSATION_GROUP options.

The LIFETIME option specifies the maximum number of seconds the conversation is
allowed to exist. If the dialog is not explicitly ended at both the initiator and target
before this time expires, an error is returned, and any open processing is rolled back.
The ENCRYPTION option specifies whether messages that are sent and received are to
be encrypted.

NOTE Encryption

Messages are encrypted only if they are exchanged between SQL Server instances. If messages are
sent and received within the same instance of SQL Server, they are never encrypted.

800 Chapter 20 Working with Service Broker

C2062271X.fm Page 800 Friday, April 29, 2005 8:06 PM
Quick Check
■ What are the elements required to create a conversation?

Quick Check Answer

■ A conversation requires you to specify two services and a contract. One ser-
vice defines the initiator of the dialog; the other service defines the target of
the dialog. The specified contract has to be accepted by the target service.

Routing Messages to a Service
When a service sends a message over a conversation, Service Broker uses routes to
locate the service to receive the message. When that service responds, Service Broker
then uses routes to locate the initiator service.

To determine the route for a conversation, SQL Server matches the service name and
the broker instance identifier that you specified in the BEGIN DIALOG CONVERSA-
TION statement against the service name and broker instance identifier that are spec-
ified in the route. If a route does not provide a service name or broker instance
identifier, any service name or broker instance identifier can be a match. For services
that do not have a route defined, each database has a default route called AutoCreat-
edLocal that ensures that messages are delivered within the current SQL Server
instance.

MORE INFO Selecting a route

When more than one route matches a conversation, SQL Server uses a complex process to select
a route. For information about this process, see the SQL Server 2005 Books Online topic “Service
Broker Routing.” SQL Server 2005 Books Online is installed as part of SQL Server 2005. Updates for
SQL Server 2005 Books Online are available for download at www.microsoft.com/technet/prodtechnol/
sql/2005/downloads/books.mspx.

When the initiator receives an acknowledgment message from the target, the initiator
uses the broker instance identifier in the acknowledgment message to route subse-
quent messages to the same target.

For each database that contains a service, you can specify a route for the external ser-
vices that the service communicates with. You use the CREATE ROUTE statement to
add a new route to the routing table for the current database. You should specify three
key components for the CREATE ROUTE statement: the name of the service for the

Lesson 4: Creating Conversations 801

C2062271X.fm Page 801 Friday, April 29, 2005 8:06 PM
route, the broker instance identifier of the database to send the messages to, and the
network address of the broker that hosts the service.

For messages on conversations within the local instance, Service Broker determines
routing by checking the routing table, sys.routes, in the local database. For messages
on conversations that originate in another instance, Service Broker checks the routes
in msdb.sys.routes.

PRACTICE Create a Conversation
In this practice, you create a conversation that will use your previously created ser-
vices and contracts.

1. If necessary, launch SSMS, connect to your instance, and open a new query
window.

2. Execute the following batch to begin a conversation between the BOMRequest-
Service and the BOMResponseService:

DECLARE @dialoghandle uniqueidentifier

BEGIN DIALOG CONVERSATION @dialoghandle
FROM SERVICE BOMRequestService
TO SERVICE 'BOMResponseService'
ON CONTRACT BillOfMaterialsContract

SELECT @dialoghandle

NOTE Using the conversation

Please leave the query window open for the next exercise, which uses the conversation you just
created.

Lesson Summary
■ Conversations provide a mechanism for reliable and ordered processing of mes-

sages, even across transactions, server restarts, or disasters.

■ Conversations define that all messages are exchanged between an initiator ser-
vice and a target service that is constrained by a particular contract.

802 Chapter 20 Working with Service Broker

C2062271X.fm Page 802 Friday, April 29, 2005 8:06 PM
Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. How does a conversation ensure a message order?

A. Message ID

B. Sequence number

C. Conversation ID

D. Contract ID

Lesson 5: Sending and Receiving Messages 803

C2062271X.fm Page 803 Friday, April 29, 2005 8:06 PM
Lesson 5: Sending and Receiving Messages
After building the infrastructure of a Service Broker application, you need a way to
place messages onto a queue and take messages off the queue for processing. In this
lesson, you will first see how to use the SEND command to place messages on a queue
for processing. And then you will see how to use the RECEIVE command to remove
one or more messages from the queue as a result set that is then passed to the calling
application for further processing.

After this lesson, you will be able to:

■ Send messages.

■ Receive messages.

Estimated lesson time: 15 minutes

Sending Messages
The message-queuing process begins with a process that places on a queue messages
that need to be processed. After the messages are written to the queue, this process is
complete and can continue on with other tasks. The syntax for placing messages on
a queue, a process called enqueuing, is as follows:

SEND
ON CONVERSATION conversation_handle
[MESSAGE TYPE message_type_name]
[(message_body_expression)];

CAUTION Command terminator

If the SEND command is not the first statement in a batch, the previous statement must be termi-
nated with a semicolon.

The SEND command takes the handle of a conversation that was started. You can also
specify a MESSAGE TYPE, but this is usually left off to push the type checking down
to the contract that is in use for the conversation. The main piece of information is the
message body.

The SEND command places the contents of the message body onto the queue that is
active for the conversation. You can then retrieve the contents of a queue by using a
SELECT statement, as follows:

SELECT <column list> FROM <queue name>

804 Chapter 20 Working with Service Broker

C2062271X.fm Page 804 Friday, April 29, 2005 8:06 PM
For example, to retrieve the message body contents from the BOMResultQueue queue,
you would use the following query:

SELECT * FROM BOMResultQueue

Receive Messages
After messages have been placed on a queue, they must be processed. The syntax to
take messages off the queue, a process called dequeuing, is as follows:

RECEIVE [TOP (n)]
<column_specifier> [,...n]
FROM <queue>
[INTO table_variable]
[WHERE { conversation_handle = conversation_handle

| conversation_group_id = conversation_group_id }];

CAUTION Command terminator

If the RECEIVE command is not the first statement in a batch, the previous statement must be
terminated with a semicolon.

The RECEIVE command returns the requested messages as a result set that is then
passed to the calling application for further processing. Although the result set that is
returned can be manipulated directly, it is generally written to a table variable and
then processed from there.

Because a queue can contain messages from multiple conversations, you can restrict
the messages that are retrieved to a particular conversation or conversation group. This
restriction is useful when a receiving process needs to operate on multiple messages
in sequence.

Unless RETENTION is specified for a queue, each message that is returned by the
RECEIVE command is removed from the queue.

MORE INFO Receive operational details

For more detailed information on the RECEIVE command, see the SQL Server 2005 Books Online
topic “RECEIVE (Transact-SQL).”

Lesson 5: Sending and Receiving Messages 805

C2062271X.fm Page 805 Friday, April 29, 2005 8:06 PM
Quick Check
■ How are messages processed for a Service Broker application?

Quick Check Answer

■ The SEND command places messages that need to be processed on a
queue. The RECEIVE command removes one or more messages from the
queue as a result set that is then passed to the calling application for further
processing.

PRACTICE Send and Receive Messages
In this practice, you will send messages to a queue and receive messages from a queue.
This practice performs multiple steps to let you view the contents of the queues at
each step. All activity for a conversation is specified by using a conversation handle.
This exercise uses a generic placeholder of <conversation handle> within the syntax.
You must replace this placeholder with the actual conversation handle you are using.
(Be sure to enclose the conversation handle in quotes.) If you are not sure what the
conversation handle is, you can retrieve it from sys.conversation_endpoints.

1. In the Query window within SSMS, view the contents of both queues you cre-
ated by executing the following batch:

SELECT * FROM BOMProductIDQueue
SELECT * FROM BOMResultQueue;

2. Observe that both queues are empty.

3. Using the conversation handle generated in the previous exercise, execute the
following command to send a message of type SubmitBOMProduct:

SEND ON CONVERSATION 'conversation handle'
MESSAGE TYPE SubmitBOMProduct
(N'<ProductID>6</ProductID>');

4. Again, view the contents of both queues by executing the following batch:

SELECT * FROM BOMProductIDQueue
SELECT * FROM BOMResultQueue;

5. Observe that the initiator queue is empty and that the target queue has a row of
data. By casting the message_body column to an XML data type, you can view the
contents in a human-readable format.

806 Chapter 20 Working with Service Broker

C2062271X.fm Page 806 Friday, April 29, 2005 8:06 PM
6. Using the conversation handle generated in the previous exercise, execute the
following command:

RECEIVE TOP (1) *
FROM BOMResultQueue

7. Observe that you received a result set as output from this command.

8. View the contents of both queues by executing the following batch:

SELECT * FROM BOMProductIDQueue
SELECT * FROM BOMResultQueue;

9. Observe that both queues are empty again.

Lesson Summary
■ The infrastructure of a Service Broker application would not be useful without a

way to place messages on a queue and then pull those messages off the queue for
further processing.

■ The SEND command places messages on a queue.

■ The RECEIVE command pulls off one or more messages for processing.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following are required for the SEND command? (Choose all that
apply.)

A. First statement in batch

B. Conversation handle

C. Message type

D. Queue

Lesson 5: Sending and Receiving Messages 807

C2062271X.fm Page 807 Friday, April 29, 2005 8:06 PM
2. Which of the following are required for the RECEIVE command? (Choose all
that apply.)

A. Contract

B. Message Type

C. First statement in batch

D. Queue

808 Chapter 20 Review

C2062271X.fm Page 808 Friday, April 29, 2005 8:06 PM
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can

■ Review the chapter summary.

■ Review the list of key terms introduced in this chapter.

■ Complete the case scenario. This scenario sets up a real-world situation involv-
ing the topics of this chapter and asks you to create a solution.

■ Complete the suggested practices.

■ Take a practice test.

Chapter Summary
■ Service Broker provides a robust, scalable, distributed, reliable platform for

building asynchronous messaging applications.

■ Message types and contracts are used to constrain and validate the formats for
messages that applications can deliver.

■ A service provides an abstraction layer over a queue that enables you to develop
applications without being concerned about the physical implementation.

■ Conversations provide a way to place messages on a queue in an ordered and
reliable manner.

■ The SEND and RECEIVE commands provide the infrastructure for reliably and
predictably sending messages to a service and receiving them from a service, let-
ting developers focus on building the logic of their systems instead.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ activation

■ asynchronous processing

■ contract

■ conversation

■ conversation group

Chapter 20 Review 809

C2062271X.fm Page 809 Friday, April 29, 2005 8:06 PM
■ dequeue

■ dialog

■ endpoint

■ enqueue

■ hidden tables

■ message

■ message type

■ monolog

■ queue

■ queue reader

■ receive

■ retention

■ schema collection

■ send

■ service

■ transmission queue

■ validation

Case Scenario: Building a Service Broker Application
In the following case scenario, you will apply what you’ve learned in this chapter. You
can find answers to these questions in the “Answers” section at the end of this book.

Wide World Importers is an import business that stocks a wide array of products
from various countries around the world. The company maintains inventory for more
than 80,000 products, which are routinely ordered by wholesale customers through
the company’s business-to-business Web portal. Customers can directly enter
requests in a form or use a Web service to submit their orders via a standard applica-
tion programming interface (API).

Wide World Importers also enables customers to request several billion additional
products from more than 100,000 different suppliers through its brokerage services,
which take care of ordering, shipping, customs clearance, and direct delivery to the

810 Chapter 20 Review

C2062271X.fm Page 810 Friday, April 29, 2005 8:06 PM
customer’s warehouse. Because of the nature of the business, inventory is never
checked before requests are submitted.

After a customer request is submitted, it needs to be validated to determine whether
it contains products that are stocked or that need to be brokered. If it contains prod-
ucts that are stocked, further processing is required to determine whether sufficent
inventory is available to meet the order and, if so, to allocate the inventory. The allo-
cation process generates an order that contains all the line items that can be immedi-
ately processed. This allocation process needs to trigger a restocking notice if
inventory levels fall below a predefined threshold.

Orders with available inventory get processed through the normal fulfillment chan-
nels that include automatic credit checks, order acceptance notifications, physical
pull of inventory, packaging, shipment, delivery, and acceptance by the customer as
well as status notifications for the order. Requests for items that are stocked but for
which there is insufficient inventory cause a new order to be generated containing the
out-of-stock items.

Requests with items that need to be brokered are routed into a separate queue, which
requires manual intervention by a user to source the product. After products are
sourced with a supplier and a purchase contract is entered, the request is turned into
an order tied to the purchase contract and follows a special fulfillment process that
tracks the shipment, customs clearance, and delivery to Wide World Importers—and
then into the normal fulfillment channel.

Wide World Importers needs to increase efficiency and speed up the release of new
services, many of which can’t be launched because of lack of resources in the IT
department. The IT department employs 35 developers and administrators to moni-
tor and troubleshoot the millions of lines of custom code that were created to manage
the business. You are charged with figuring out a way to reduce the number of people
working on all this custom code so that they can be allocated to new products that
will improve the business. Given the features you have learned about in this chapter,
what would you do?

Suggested Practices
To help you successfully master the exam objectives presented in this chapter, com-
plete the following practice tasks.

Chapter 20 Review 811

C2062271X.fm Page 811 Friday, April 29, 2005 8:06 PM
Configuring a Service Broker Solution
■ Practice 1 Create an application that lets a user request a particular report to

execute. Place the request on a queue and then use the Service Broker infrastruc-
ture to process the report in a background task and return the results to the user.

■ Practice 2 Create a vacation-request application. The application enables
employees to request time off. Place each request on a queue for background
processing. Design a Service Broker infrastructure that can manage the various
processes that need to be performed and that eventually results in an e-mail
being sent back to the employee with approval or rejection.

Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-431 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the “How to Use the Practice Tests” sec-
tion in this book’s Introduction.

C2062271X.fm Page 812 Friday, April 29, 2005 8:06 PM

C2162271X.fm Page 813 Friday, April 29, 2005 8:07 PM
Chapter 21

Creating Full-Text Catalogs

SQL Server, like all database platforms, is built to store and retrieve large amounts of
data. The system enables efficient data management by imposing a structure on the
data it stores in its tables. However, not all data has a well-defined structure, and not
all queries conform to basic true/false rules for retrieving data. To manage this type of
data and its associated queries, other platforms rely on third-party tools. But SQL
Server’s Full-Text Search component provides a powerful and flexible feature called
full-text indexing to manage queries issued against unstructured data. This chapter
provides an overview of full-text search elements and terminology, explains how to
create full-text catalogs and indexes, and shows how to populate the indexes and
keep them up to date. Then the chapter shows you how to execute full-text queries to
search full-text indexed columns for matching words.

Exam objectives in this chapter:
■ Implement a full-text search.

❑ Create a catalog.

❑ Create an index.

❑ Specify a full-text population method.

Lessons in this chapter:
■ Lesson 1: Creating a Full-Text Catalog. 817

■ Lesson 2: Creating a Full-Text Index . 820

■ Lesson 3: Populating a Full-Text Index . 825

■ Lesson 4: Querying Data by Using a Full-Text Index . 828

Before You Begin
To complete the lessons in this chapter, you must have

■ SQL Server 2005 installed.

■ Full-text indexing installed.

■ A copy of the AdventureWorks sample database installed in the instance.
813

814 Chapter 21 Creating Full-Text Catalogs

C2162271X.fm Page 814 Friday, April 29, 2005 8:07 PM
NOTE Full-text search

SQL Server 2005 provides Full-Text Search as a separately installable component. You can find the
option to install full-text functionality under the Database Engine node within the SQL Server 2005
Setup Wizard. If you specify default settings for installing the Database Engine, Full-Text Search is
selected and installed. Full-text indexing has its own service, called Microsoft Full-Text Engine for
SQL Server (MSFTESQL), for populating and managing full-text catalogs. One instance of full-text
indexing is installed for each SQL Server instance, with each instance having its own MSFTESQL
service and service account.

MORE INFO Installing full-text search

For complete information about installing full-text search, see the SQL Server 2005 Books Online
article “Installing and Upgrading Full-Text Search.” SQL Server 2005 Books Online is installed as part
of SQL Server 2005. Updates for SQL Server 2005 Books Online are available for download at
www.microsoft.com/technet/prodtechnol/sql/2005/downloads/books.mspx.

Real World
Michael Hotek

One of the largest recruiting agencies in the world spent years developing a pro-
prietary application that allowed recruiters to quickly and flexibly search the
agency’s database for resumes that matched desired criteria. On any given day,
agency employees ran thousands of queries against several hundred thousand
resumes to fill thousands of openings spanning every industry and job function.
To its competitors, this company was the model of success. However, this suc-
cess came at the cost of hundreds of hard-working research assistants who spent
35–40 hours a week parsing resumes into a massive keyword index because the
programming team couldn’t keep pace with the industry’s rate of change.

Every week, the recruiting agency had to deal with hundreds of new job titles,
technology changes, and terminology shifts. The IT team loaded all these
changes into the automated parsing routines on which the search system was
based. Then the team executed hundreds of tests to ensure accurate results
before releasing the new code base. After the new search code was released, the
IT team had to reparse the entire database of resumes, compare it with the pre-
vious parsing, and then rebuild the keyword index. When the system was origi-
nally deployed, this process took two to three days. Two years later, it was taking
four to five weeks and growing longer all the time. The company had to find a
solution.

Before You Begin 815

C2162271X.fm Page 815 Friday, April 29, 2005 8:07 PM
I was called in to help, and after spending about three hours gaining an under-
standing of the company’s environment, I asked the IT staff if we could run a
simple set of tests on a prototype solution. The staff was hesitant because all pre-
vious “tests” they had performed with a variety of vendors required days or
weeks of effort and yielded mixed results. But after assuring them that the initial
tests should be completed by the end of the day, I was able to proceed.

We installed SQL Server 2000’s Full-Text Search component, built a full-text cat-
alog, and added two indexes. The entire process took about an hour on the sub-
set of test data we were using. We then executed hundreds of the IT team’s test
queries and compared the results with previous results. The results weren’t
encouraging. Less than 10 percent of the results from the full-text queries
matched the results from the proprietary search algorithms. We then looked at
the results more closely. It turns out that our full-text queries were picking up
thousands of resumes that the proprietary algorithms missed due to misspell-
ings, synonyms, and other factors. The full-text results were also more accurate
when dealing with the series of keywords on which recruiters normally
searched.

Our simple test turned into a full-blown pilot program. In less than a day, the
developers could switch over the application’s querying capability to use the
full-text index. Three days later, the application was in production with spectac-
ular results. The day the new application went into production, the company
shattered all previous records for matching potential candidates to job openings.
Over the next two months, the company hit a record for placements, only to
break it the following week. The agency no longer needed the position of
research assistant, so it moved its research assistants into other roles, with most
of them receiving promotions to junior recruiter.

Implementing the full-text feature also let the company eliminate the entire scan-
ning and optical character recognition (OCR) process it previously used.
Resumes submitted in plain-text format were loaded into one column. Resumes
that were submitted in any other format were converted to Microsoft Word or
PDF format and loaded directly into the database. The IT team then used the
full-text engine with add-in filters that could break the resumes down into words
and index them in native document format without requiring any of the previ-
ous time-consuming text conversions.

816 Chapter 21 Creating Full-Text Catalogs

C2162271X.fm Page 816 Friday, April 29, 2005 8:07 PM
In one case, one of the agency’s sales representatives was visiting a potential new
customer, hoping to sign a contract to manage the customer’s recruiting efforts.
The customer decided to give the agency a test on the spot and handed the rep-
resentative a profile for a new job title that it was creating based on changes in its
industry that had occurred just two weeks earlier. The sales rep did not know
the customer was considering four other recruiting agencies. After getting a net-
work connection, the sales rep immediately found 15 potential candidates for
the new position. She walked out of the meeting with a contract in hand because
none of the competitors could even find a reference to the skill set the customer
was asking for.

Over the next two years, this company expanded operations to span the globe,
recording a corresponding 50× increase in number of placements. All this success
came with very little investment in IT because full-text indexing could adapt
itself to any language needed. As we write this book, the recruiting agency is fin-
ishing its pilot program for upgrading to SQL Server 2005 and is expecting to
reap significant performance improvements.

NOTE Chapter conventions

As with many technologies within SQL Server 2005, you can use SQL Server Management Studio
(SSMS) to administer full-text indexing by pointing and clicking your way through administration
screens. And you might choose to use SSMS to manage full-text functionality in your organization.
However, walking through the screens in the SSMS graphical user interface (GUI) doesn’t explain
very much about the functionality you can leverage. Because the SSMS screens and wizards submit
Transact-SQL commands to SQL Server to perform the specified tasks, this chapter uses this code
to explain what you can do to take advantage of full-text indexing in a variety of situations.

Lesson 1: Creating a Full-Text Catalog 817

C2162271X.fm Page 817 Friday, April 29, 2005 8:07 PM
Lesson 1: Creating a Full-Text Catalog
Full-Text Search is based on the technology of full-text indexes. Although you create full-
text indexes on columns within tables in SQL Server databases, the full-text indexes are
maintained in a structure outside of SQL Server called a full-text catalog. A full-text cata-
log stores one or more full-text indexes. In this lesson, you will see how to use the Trans-
act-SQL CREATE FULLTEXT CATALOG command to create a full-text catalog.

After this lesson, you will be able to:

■ Create a full-text catalog.

Estimated lesson time: 20 minutes

How to Create a Full-Text Catalog
The first step in creating full-text indexing is to create a full-text catalog to hold the
indexes. You create a catalog by using the CREATE FULLTEXT CATALOG Transact-
SQL command, as the following general syntax shows:

CREATE FULLTEXT CATALOG catalog_name
[ON FILEGROUP filegroup]
[IN PATH 'rootpath']
[WITH <catalog_option>]
[AS DEFAULT]
[AUTHORIZATION owner_name]

<catalog_option>::=
ACCENT_SENSITIVITY = {ON|OFF}

After giving the catalog a name, you specify a filegroup for the catalog, which needs to
be part of the database for which the catalog will contain indexes. Although you can
put the catalog on the default filegroup, it is a good practice to put a catalog on a sec-
ondary filegroup and to use this filegroup only for full-text catalogs. This configura-
tion lets you use filegroup backup and restore to back up and restore a full-text
catalog independently of the rest of the database.

You use the command’s IN PATH clause to specify the root directory in which the full-
text catalog will be stored. For full-text catalogs, the filegroup specification simply
associates a full-text catalog to a filegroup for use with backup and restore operations.
However, the actual catalog is stored within a physical directory structure outside a
database. When you create a catalog, a directory with the same name as your catalog
is created in this root directory. If a directory that uses the same name as your catalog
already exists, a suffix is appended to the name to create a unique directory structure.

818 Chapter 21 Creating Full-Text Catalogs

C2162271X.fm Page 818 Friday, April 29, 2005 8:07 PM
Within this directory structure, as indexes are added to the catalog, subdirectories are
created to contain them.

You use the command’s WITH clause to specify accent sensitivity. If you don’t specify
an option for this clause, the full-text catalog uses the setting from the database’s col-
lation. Otherwise, you can explicitly specify whether the catalog should be sensitive
to accents. If you change this option later, you must rebuild all full-text indexes within
the catalog.

The next clause, AS DEFAULT, serves a similar purpose as setting a default filegroup.
When you create full-text indexes without explicitly specifying a catalog, SQL Server
creates the indexes within the default catalog.

The command’s AUTHORIZATION clause simply specifies the user or role that owns
the catalog.

Quick Check
1. What is the purpose of a full-text catalog?

2. Where is a full-text catalog stored?

Quick Check Answers

1. A full-text catalog provides the basic storage container for one or more full-
text indexes.

2. Full-text catalogs, along with their associated indexes, are stored in a direc-
tory structure that is external to SQL Server.

PRACTICE Create a Full-Text Catalog
In this practice, you create a full-text catalog to use with the AdventureWorks database.

1. Create a directory on the operating system named C:\test.

2. Launch SSMS, connect to your instance, and open a new query window.

3. Add a new filegroup to the AdventureWorks database that you will use for the full-
text catalog by executing the following batch:

USE master
GO
ALTER DATABASE AdventureWorks ADD FILEGROUP FTFG1
GO
ALTER DATABASE AdventureWorks ADD FILE (NAME = N'AdventureWorksFT_data',

Lesson 1: Creating a Full-Text Catalog 819

C2162271X.fm Page 819 Friday, April 29, 2005 8:07 PM
FILENAME = N'C:\TEST\AdventureWorksFT_data.ndf' , SIZE = 2048KB , FILEGROWTH =
1024KB) TO FILEGROUP [FTFG1]

GO

NOTE Filegroup must have primary file

Although full-text catalogs and indexes are stored in a directory structure external to SQL
Server, the filegroup on which a full-text catalog is placed must have at least one active file.
This file cannot be marked READ ONLY or taken OFFLINE.

4. Create a full-text catalog on the FTFG1 filegroup by executing the following
command:

USE AdventureWorks;
GO
CREATE FULLTEXT CATALOG AWCatalog ON FILEGROUP FTFG1 IN PATH 'C:\TEST' AS DEFAULT;
GO

Lesson Summary
■ The first step in setting up full-text indexing is to define a catalog to store one or

more full-text indexes that are used to process queries.

■ You use the CREATE FULLTEXT CATALOG Transact-SQL command to create a
full-text catalog.

■ Although you must associate a full-text catalog with a filegroup for backup and
restore purposes, full-text catalogs are stored in a directory structure external to
the database.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Where does the full-text catalog physically exist?

A. Within the database in which it is associated

B. In the msdb database

C. In an external directory structure

D. In a filegroup for the database

820 Chapter 21 Creating Full-Text Catalogs

C2162271X.fm Page 820 Friday, April 29, 2005 8:07 PM
Lesson 2: Creating a Full-Text Index
After you have created a full-text catalog, you need to create one or more full-text
indexes before you can execute full-text queries. In this lesson, you will review the
powerful architecture of full-text indexing and then see how to create an index by
using the CREATE FULLTEXT INDEX Transact-SQL command.

After this lesson, you will be able to:

■ Explain the terminology associated with full-text indexing.

■ Create a full-text index.

Estimated lesson time: 20 minutes

Full-Text Index Architecture
You can build full-text indexes on textual data stored in char, nchar, varchar, nvarchar,
varchar(max), text, ntext, image, varbinary, varbinary(max), and xml columns. How-
ever, the image, varbinary, and varbinary(max) columns require special handling if
you want to use them for full-text processing.

You use multiple helper services to build a compact and efficient full-text index. These
services include word breakers and stemmers, language files, noise word files, filters,
and protocol handlers.

Word breakers are routines that find the breaks between words and generate a basic
word list for each row within the column or columns that you are indexing. Stemmers
conjugate verbs. Word breakers and stemmers work with language files to understand
the words that are in the input stream. Language files, in conjunction with word
breakers and stemmers, allow full-text indexing to handle multiple languages without
requiring translation routines or specialized processing.

Commonly used words in a language are referred to as noise words. Noise words are
contained in language-specific noise files, which contain basic structural elements
that are not useful for search routines. Examples of noise words for the English lan-
guage are “the,” “a,” and “an.” When the word-breaker routine encounters a noise
word for the particular language being processed, it ignores the word. Thus, a full-text
index does not include all possible words in a column, but only those that are inter-
esting for queries.

Lesson 2: Creating a Full-Text Index 821

C2162271X.fm Page 821 Friday, April 29, 2005 8:07 PM
NOTE Configuring noise words

SQL Server ships with a default set of noise word files for each language. These files are stored in
$SQL_Server_Install_Path\Microsoft SQL Server\MSSQL.1\MSSQL\FTDATA\. The files are simple text
files that you can edit to include noise words specific to your application that you want to exclude.
If a word exists in this file, it is not indexed and is excluded from any full-text queries.

At this point, you might be thinking that you can create full-text indexes only on text-
based columns. This is not true. You use protocol handlers and filters when you want to
create a full-text index on a varbinary, varbinary(max), or image column. These ser-
vices let you extract text from Word, Excel, and PowerPoint files as well as PDF and
other files that are stored in a native format inside SQL Server. For the filters to work,
you need to add a column to the table to contain a value that indicates the type of doc-
ument stored in the column. The filter then loads up the binary stream stored in the
column, strips all the formatting information, and returns the text within the docu-
ment to the word-breaker routine.

BEST PRACTICES Filters

By taking advantage of filters, you no longer have to convert files to a text-based format before
being able to use full-text indexing on them. You can store files in their native format inside SQL
Server while still allowing full-search capability.

After the word-breaker routine has a list of valid words for a row within a column, the
full-text engine calculates tokens to represent the words. A token is simply a com-
pressed form of the original word that saves space and ensures that full-text indexes
can be created in as compact a form as possible.

The full-text functionality then builds all the tokens in a column into an inverted,
stacked, compressed structure within a file that is used for search operations. This
unique structure allows ranking and scoring algorithms to efficiently satisfy possible
queries.

How to Create a Full-Text Index
To create a full-text index, you use the CREATE FULLTEXT INDEX Transact-SQL com-
mand, as the following generic syntax shows:

CREATE FULLTEXT INDEX ON table_name
[(column_name [TYPE COLUMN type_column_name]

[LANGUAGE language_term] [,...n])]

822 Chapter 21 Creating Full-Text Catalogs

C2162271X.fm Page 822 Friday, April 29, 2005 8:07 PM
KEY INDEX index_name
[ON fulltext_catalog_name]

[WITH
{CHANGE_TRACKING {MANUAL | AUTO | OFF [, NO POPULATION]}}

]

The first part of this command specifies the table on which you want to create the full-
text index. Although you can index multiple columns in a table, only one full-text
index per table is allowed.

You then specify the column or columns you want to index. If you specify a column
of type varbinary, varbinary(max), or image for indexing, you must also specify the
TYPE COLUMN clause. This clause refers to the column discussed earlier that you
need to add to the table to designate the format of the column’s data.

NOTE Type columns

A type column is a character column that contains an abbreviation that corresponds to the con-
tents of a column being indexed. For example, a value of .doc indicates a Word document. This
value is entered on a row-by-row basis, so multiple different document types can be stored in a
single column. This column is used to load the correct filter for the word-breaker routine when the
index is built on a varbinary, varbinary(max), or image column.

As you are specifying the column and column type for the index, you can also specify
an explicit language for the column. You might need to specify this clause when you
are indexing a table that contains multiple columns in which each column contains
different languages, such as a column that is translated into multiple languages.

The command’s KEY INDEX clause specifies the table’s unique column. This column
uniquely identifies each row in the table so that the full-text index can be correlated
to rows in the table. The key must be a single column in the table; compound keys are
not allowed.

The next clause, ON, enables you to specify the full-text catalog on which the index is
created.

And the final clause specifies whether changes to the indexed data are tracked. With reg-
ular indexes, SQL Server always maintains the index in sync with the underlying data by
causing changes in the index at the same time as changes to the referenced data are
made. Full-text indexes, however, are separated from normal database transaction pro-
cesses so that changes to data in columns that are full-text indexed are propagated into
the index via a background process that does not immediately reflect the data changes.

When the change-tracking value is set to MANUAL, changes to the data in the col-
umns need to be propagated into the index either manually or by scheduling a job in

Lesson 2: Creating a Full-Text Index 823

C2162271X.fm Page 823 Friday, April 29, 2005 8:07 PM
SQL Server Agent to propagate the changes. The default value of AUTO causes a
change to be propagated into the index by using a background process that occurs
outside of the transaction making the change. And when this value is set to OFF, SQL
Server does not track any changes, which causes the index to become further and fur-
ther out of date until it is rebuilt either manually or via a SQL Server Agent job. The
OFF option also includes a NO POPULATION clause that you can specify to cause a
full-text index to be created without populating the index.

BEST PRACTICES Initial catalog population

Populating a full-text index is a very resource- and input/output (I/O)-intensive operation. The ini-
tial creation of a full-text index should usually be performed when activity in the database is very
low, so most database administrators (DBAs) create full-text indexes by using the OFF and NO
POPULATION clauses, and then they create a job to populate all full-text indexes when minimal
database activity is occurring. After the index is populated, if the column on which the index is
created does not change frequently, you can then normally set change tracking to AUTO to keep
the index up to date.

Quick Check
■ What are the requirements for creating a full-text index?

Quick Check Answer

■ Only one full-text index can be created on a table. The columns in a full-text
index can be character (all types), varbinary, and image data types. A single-
column unique key must exist on the table.

PRACTICE Create a Full-Text Index
In this practice, you create two full-text indexes. The first index is on a character-based
column. The second index takes advantage of the filters that ship with SQL Server to
index a column containing Word documents stored in a varbinary(max) column.

1. If necessary, launch SSMS, connect to your instance, and open a new query
window.

2. Create a full-text index on the ProductionDescription column in the Produc-
tion.ProductDescription table in the AdventureWorks database by executing the
following command:

CREATE FULLTEXT INDEX ON Production.ProductDescription (Description) KEY INDEX
PK_ProductDescription_ProductDescriptionID ON AWCatalog WITH CHANGE_TRACKING AUTO;

824 Chapter 21 Creating Full-Text Catalogs

C2162271X.fm Page 824 Friday, April 29, 2005 8:07 PM
3. Create a full-text index on the Document column of the Production.Document
table by executing the following command:

CREATE FULLTEXT INDEX ON Production.Document (Document TYPE COLUMN FileExtension) KEY
INDEX PK_Document_DocumentID ON AWCatalog WITH CHANGE_TRACKING AUTO;

4. Observe the changes on the file system after the indexes are created.

5. View the full-text catalog and associated indexes inside SSMS.

Lesson Summary
■ To create a full-text index, you use the CREATE FULLTEXT INDEX Transact-SQL

command.

■ You can create full-text indexes on a variety of columns, including text-based,
binary, and image columns.

■ Varbinary and image columns let you store files in their native format within
SQL Server while still making these files available for full-text indexing and
searching.

■ To build a compact and efficient full-text index, you use multiple helper services,
including word-breaker routines, language files, noise word files, filters, and pro-
tocol handlers.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following are requirements for creating a full-text index? (Choose
all that apply.)

A. Primary key

B. Single-column unique index

C. Image column

D. Text-based column

Lesson 3: Populating a Full-Text Index 825

C2162271X.fm Page 825 Friday, April 29, 2005 8:07 PM
Lesson 3: Populating a Full-Text Index
As Lesson 2 noted, because of the external structure for storing full-text indexes,
changes to underlying data columns are not immediately reflected in the full-text
index. Instead, a background process enlists the word breakers, filters, and noise
word files to build the tokens for each column, which are then merged back into the
main index either automatically or manually. This update process is called population
or a crawl. To keep your full-text indexes up to date, you must periodically populate
them. This lesson shows you how to perform a full or partial population of a full-text
index.

After this lesson, you will be able to:

■ Specify an index-population method.

Estimated lesson time: 20 minutes

Specifying an Index-Population Method
You can choose from three modes for full-text index population:

■ Full

■ Incremental

■ Update

A full population causes the full-text engine to read and process all rows from the
table for the indexed columns. Because full population is very resource-intensive, you
typically use full population for the initial population of the full-text index and then
use either an incremental or update population to keep the index up to date.

Incremental population automatically populates the index for rows that were modi-
fied since the last population. Incremental population requires a timestamp column
on the table, which the full-text engine uses to determine which rows have changed.
If any metadata for the index has changed since the last population, the incremental
population is performed as a full population.

Update population uses the changes that SQL Server tracks to process any inserts,
updates, and deletes since the last time a change-tracked index was populated. With
this population mode, you can specify how you want to propagate the changes to
the index. Specifying AUTO for change tracking enables automatic processing; with
MANUAL you can implement a manual method for processing changes.

826 Chapter 21 Creating Full-Text Catalogs

C2162271X.fm Page 826 Friday, April 29, 2005 8:07 PM
You use the ALTER FULLTEXT INDEX Transact-SQL command to populate a full-text
index, as the following general syntax shows:

ALTER FULLTEXT INDEX ON table_name
{ SET CHANGE_TRACKING { MANUAL | AUTO | OFF }
| START { FULL | INCREMENTAL | UPDATE } POPULATION
| STOP POPULATION
}

Populating a Full-Text Catalog
In addition to periodically populating your full-text indexes, you might also need to
rebuild or reorganize a full-text catalog to update all the indexes in the catalog. The
following syntax shows the ALTER FULLTEXT CATALOG Transact-SQL command
that enables you to operate on all indexes in a full-text catalog at the same time:

ALTER FULLTEXT CATALOG catalog_name
{ REBUILD [WITH ACCENT_SENSITIVITY = { ON | OFF }]
| REORGANIZE
| AS DEFAULT
}

When you use the REBUILD option for this command, the full-text catalog is deleted
from the file system and rebuilt. You generally use this option only when you need to
change the ACCENT_SENSITIVITY setting for the catalog.

Specifying the REORGANIZE option causes all indexes in the catalog to have all
changes merged. This operation frees up disk and memory resources, and you should
run the ALTER FULLTEXT CATALOG command with this option periodically to
achieve maximum full-text performance.

Quick Check
■ Why do you need to periodically perform index populations?

Quick Check Answer

■ Full-text indexes are an external structure, so they are not updated at the
same time as changes are made to the underlying data columns. A back-
ground process enlists the word breakers, filters, and noise word files to
build the tokens for each column, which are then merged back into the
main index either automatically or manually.

Lesson 3: Populating a Full-Text Index 827

C2162271X.fm Page 827 Friday, April 29, 2005 8:07 PM
PRACTICE Populate a Full-Text Index
In this practice, you perform a full repopulation of the two indexes you created earlier.

1. If necessary, launch SSMS, connect to your instance, and open a new query
window.

2. Execute a full population of the full-text indexes on the ProductDescription and
Document columns by executing the following batch:

ALTER FULLTEXT INDEX ON Production.ProductDescription START FULL POPULATION;
ALTER FULLTEXT INDEX ON Production.Document START FULL POPULATION;

3. Explain why the output of these commands was a warning that the commands
will be ignored.

Lesson Summary
■ To keep full-text indexes in sync with the columns they are built on and to per-

form maintenance on the indexes, you must periodically populate the indexes.

■ You can completely rebuild or incrementally populate an individual index by
using the ALTER FULLTEXT INDEX Transact-SQL command.

■ On a periodic basis, you can also reorganize a full-text catalog to free up disk and
memory for all full-text indexes in the catalog by using the ALTER FULLTEXT
CATALOG command.

Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following is a valid population option for a full-text index?

A. REORGANIZE

B. INCREMENTAL

C. REBUILD

D. COMPLETE

828 Chapter 21 Creating Full-Text Catalogs

C2162271X.fm Page 828 Friday, April 29, 2005 8:07 PM
Lesson 4: Querying Data by Using a Full-Text Index
Full-text indexes are useful only if they are used to satisfy requests. However, regular
Transact-SQL statements will not cause the query optimizer to automatically select a
full-text index. You gain full-text query capability by using the CONTAINS, CONTAIN-
STABLE, FREETEXT, and FREETEXTTABLE full-text query keywords. Full-text query
keywords are available in two types: predicate functions and rowset functions. The
CONTAINS and FREETEXT functions are query predicates that return a simple True
or False result to limit the result set. The CONTAINSTABLE and FREETEXTTABLE
functions return a rowset that must be joined to another table based on a key value;
you can use these functions to extend the capabilities of your queries. This lesson
looks at each of these full-text keywords and describes which are appropriate for dif-
ferent needs, showing you the query syntax you need to use as well as query examples
to help you understand the different results you can achieve.

After this lesson, you will be able to:

■ Explain the differences between the full-text query keywords.

■ Submit full-text queries.

Estimated lesson time: 20 minutes

Query Execution
When you execute queries that use full-text functions, SQL Server first parses and
compiles them and then hands them to the query optimizer. The optimizer recog-
nizes the full-text functions and routes them to the full-text search engine. The full-
text search engine takes the search terms passed and routes them through the
dedicated query processor for full-text queries. Before the query processor can
search for the keywords in the index, the keywords must be transformed into
matching tokens. For this transformation, the full-text query processor launches
the word breakers, stemmers, and noise word files discussed previously in this
chapter. It also interrogates a thesaurus, which returns a list of synonyms that are
also searched.

It is this extended capability for matching on derivatives as well as synonyms that
makes full-text searches so powerful and flexible—capable of even handling common
word misspellings. Let’s look at each of the full-text query keywords in turn.

Lesson 4: Querying Data by Using a Full-Text Index 829

C2162271X.fm Page 829 Friday, April 29, 2005 8:07 PM
FREETEXT
The FREETEXT function accepts one or more columns to search and a search argu-
ment. This function performs a fuzzy search in that it automatically searches for inflec-
tional forms (stemming) as well as related words that the thesaurus identifies. The
general syntax of the FREETEXT function is as follows:

FREETEXT ({ column_name | (column_list) | * }
, 'freetext_string' [, LANGUAGE language_term])

This function does not provide the customization or precision that you typically want
in production applications. For example, searching for the keyword “bike” by using
the FREETEXT function would return “bike”, “biker”, “bike riding”, “bike-riding”, and
various synonyms as well as any word that contains the word “bike”.

Let’s say you execute the following query against the Production.ProductDescription
table using first the FREETEXT function and then the CONTAINS function:

SELECT ProductDescriptionID, Description FROM Production.ProductDescription
WHERE FREETEXT(Description, N'bike');

SELECT ProductDescriptionID, Description FROM Production.ProductDescription
WHERE CONTAINS(Description, N'bike');

The FREETEXT query returns 16 rows of data as opposed to the 14 rows that the
CONTAINS query returns.

Search Argument Data Types for Full-Text Functions
When the SQL Server query optimizer decides how to efficiently satisfy a query,
it uses an inspection algorithm that looks at value-distribution statistics to deter-
mine whether an index should be used for the query. The full-text engine also
maintains a set of distribution statistics.

The optimization process includes an algorithm generically referred to as
“parameter sniffing,” which can handle explicit values as well as values con-
tained within variables. The algorithm gives each potential path a basic score
that indicates how selective a given path is for a query. These numbers are then
used to determine whether an index seek, index scan, nested loop, or other
method is used to satisfy a segment of a query.

What does parameter sniffing have to do with full-text queries? When the full-text
optimizer cannot use parameter sniffing for one reason or another, it essentially

830 Chapter 21 Creating Full-Text Catalogs

C2162271X.fm Page 830 Friday, April 29, 2005 8:07 PM
makes a guess. This educated guess assigns a value based on the number of rows
in the table up to a maximum value. In SQL Server 2000, the maximum value for
a full-text function was 1,000. In SQL Server 2005, this value has been increased
to 10,000. Obviously, guessing in the context of such a large maximum value has
a significant potential to generate an inefficient query plan.

You can inspect these estimated values by looking in the TotalSubtreeCost col-
umn after using the SET STATISTICS PROFILE ON command.

Many people unknowingly prevent the optimizer from using parameter sniffing
by the search arguments they use with the full-text functions. The full-text func-
tions expect a Unicode data type for the search argument. Failure to pass in a
Unicode argument prevents the optimizer from using parameter sniffing to eval-
uate distribution statistics. On large tables, this problem is magnified, forcing
the optimizer to make an educated guess that can result in a suboptimal query
plan.

FREETEXTTABLE
The FREETEXTTABLE function works exactly like the FREETEXT function except that
it returns a rowset that contains a rank column. The RANK column provides a
numeric value between 1 and 1,000 that is a relative number indicating how well the
row matches the search criteria. The KEY column returns the unique key that is used
to identify the row. The general syntax of this function is as follows:

FREETEXTTABLE (table , { column_name | (column_list) | * }

, 'freetext_string'

[,LANGUAGE language_term]

[,top_n_by_rank])

The FREETEXTTABLE version of the previous FREETEXT query would look like this:

SELECT PD.ProductDescriptionID, PD.Description, KEYTBL.[KEY], KEYTBL.RANK
from Production.ProductDescription AS PD

INNER JOIN FREETEXTTABLE(Production.ProductDescription,Description,N'bike')
AS KEYTBL ON PD.ProductDescriptionID = KEYTBL.[KEY];

Note that the column named KEY in the result set must be enclosed in brackets
because it is a Transact-SQL keyword. A higher value for RANK indicates a less-precise

Lesson 4: Querying Data by Using a Full-Text Index 831

C2162271X.fm Page 831 Friday, April 29, 2005 8:07 PM
match to the search terms. The results of this sample query provide additional insight
into why the FREETEXT and CONTAINS queries return different results. Keys 1187
and 1188 provide close but not exact matches by returning rows that have words with
a substring of the search term.

CONTAINS
The CONTAINS function lets you use precise as well as fuzzy matching algorithms to
satisfy full-text queries. As you can see from the following general syntax for the func-
tion, it accepts a variety of parameters to let you specify exact behaviors:

CONTAINS
({ column_name | (column_list) | * }

, '< contains_search_condition >'
[, LANGUAGE language_term]

)
< contains_search_condition > ::=

{ < simple_term >
| < prefix_term >
| < generation_term >
| < proximity_term >
| < weighted_term >
}
| { (< contains_search_condition >)
[{ < AND > | < AND NOT > | < OR > }]
< contains_search_condition > [...n]
}

< simple_term > ::=
word | " phrase "

< prefix term > ::=
{ "word * " | "phrase *" }

< generation_term > ::=
FORMSOF ({ INFLECTIONAL | THESAURUS } , < simple_term > [,...n])

< proximity_term > ::=
{ < simple_term > | < prefix_term > }
{ { NEAR | ~ }
{ < simple_term > | < prefix_term > }
} [...n]

< weighted_term > ::=
ISABOUT

({ {
< simple_term >
| < prefix_term >
| < generation_term >
| < proximity_term >
}
[WEIGHT (weight_value)]
} [,...n]

)

832 Chapter 21 Creating Full-Text Catalogs

C2162271X.fm Page 832 Friday, April 29, 2005 8:07 PM
< AND > ::=
{ AND | & }

< AND NOT > ::=
{ AND NOT | & !}

< OR > ::=
{ OR | | }

You can specify search arguments as exact matches or as prefixes. The following
query, for example, finds all rows that have an exact match for the word “bike”:

SELECT ProductDescriptionID, Description FROM Production.ProductDescription
WHERE CONTAINS(Description, N'');

The next query returns rows that have an exact match for the word “bike” and rows
that contain any words that start with “bike”. You specify “bike” as a prefix by using
an asterisk (*) after the term and enclosing the search term in double quotation
marks:

SELECT ProductDescriptionID, Description FROM Production.ProductDescription
WHERE CONTAINS(Description, N'"bike*"');

The keywords FORMSOF, INFLECTIONAL, and THESAURUS allow matches on vari-
ants of a search term. INFLECTIONAL causes the search to consider word stems in a
search. For example, searching for the word “drive” will also produce matches on
“drove”, “driven”, “driving”, and so on. By specifying the use of a THESAURUS, the
query processor also returns synonyms as matches for the search term. For example,
“metal” also returns results for “gold”, “aluminum”, “steel”, and so on.

Examples of each of these queries are as follows:

SELECT ProductDescriptionID, Description FROM Production.ProductDescription
WHERE CONTAINS(Description, N' FORMSOF (INFLECTIONAL, drive) ');

SELECT ProductDescriptionID, Description FROM Production.ProductDescription
WHERE CONTAINS(Description, N' FORMSOF (THESAURUS, metal) ');

NOTE Thesaurus files

All thesaurus files are shipped empty. For thesaurus matches to work, these files must be popu-
lated. All thesaurus files are XML documents; you can find them in the $SQL_Server_Install_Path\
Microsoft SQL Server\MSSQL.1\MSSQL\FTDATA\ directory. For information about populating
thesaurus files, see the SQL Server 2005 Books Online article “Configuring Thesaurus Files.”

Word proximity is a common way of searching documents for multiple keywords
or phrases. This type of query uses the NEAR (~) keyword. The closer words are to

Lesson 4: Querying Data by Using a Full-Text Index 833

C2162271X.fm Page 833 Friday, April 29, 2005 8:07 PM
each other, the better the match for these types of queries. The proximity is used as
part of the RANK calculation for rows matching the search criteria. This keyword
is rarely used with the CONTAINS predicate because the rank of matched results
cannot be evaluated directly. The following two queries are equivalent to each
other:

SELECT ProductDescriptionID, Description FROM Production.ProductDescription
WHERE CONTAINS(Description, N'mountain NEAR bike');

SELECT ProductDescriptionID, Description FROM Production.ProductDescription
WHERE CONTAINS(Description, N'mountain ~ bike');

As if all these options were not enough, you can also assign relative weights to par-
ticular search terms. This weighting affects the ranking score that the full-text opti-
mizer returns by causing a particular term to be considered more or less significant.
The WEIGHT clause, a value between 0.0 and 1.0, has no effect on queries that use
CONTAINS, but it does affect the RANK value returned with CONTAINSTABLE.
Because the AdventureWorks sample database deals with bikes, the following query
uses weighting to place more emphasis on the word “mountain” than the word
“bike”:

SELECT Description FROM Production.ProductDescription
WHERE CONTAINS(Description,'ISABOUT (mountain weight (.8), bike weight (.2))');

Also note that you can use multiple keywords in a search. To specify multiple key-
words, you separate the terms by the keywords AND, AND NOT, or OR to include or
exclude rows.

CONTAINSTABLE
The CONTAINSTABLE function has the same capabilities as the CONTAINS function.
However, like the FREETEXTTABLE function, it returns a rowset that contains a
RANK and a KEY column that can be used to return the best matches to a search. The
general syntax for this function is the following:

CONTAINSTABLE (table , { column_name | (column_list) | * } , '
< contains_search_condition > '

[, LANGUAGE language_term]
[,top_n_by_rank]

)

834 Chapter 21 Creating Full-Text Catalogs

C2162271X.fm Page 834 Friday, April 29, 2005 8:07 PM
Quick Check
■ What is the difference between the CONTAINS and FREETEXT functions?

Quick Check Answer

■ FREETEXT is a less-precise way of querying full-text data because it auto-
matically searches for all forms and synonyms of a word or words. CON-
TAINS allows a precise specification for a query, including the capability to
search by word proximity, weighting, and complex pattern matching.

PRACTICE Query a Full-Text Index
In this practice, you execute a query by using the full-text indexes that you previously
created.

1. If necessary, launch SSMS, connect to your instance, and open a new query
window.

2. Execute the following batch:

SELECT ProductDescriptionID, Description FROM Production.ProductDescription
WHERE CONTAINS(Description, 'alloy');

SELECT ProductDescriptionID, Description FROM Production.ProductDescription
WHERE CONTAINS(Description, 'same');

3. Why does the first query return results, whereas the second query does not?

Lesson Summary
■ SQL Server passes full-text queries to the full-text search engine, which routes

search terms through the dedicated query processor for full-text queries.

■ The full-text query processor provides extended capability for matching on
derivatives as well as synonyms, making full-text searches powerful, flexible, and
even capable of handling common word misspellings.

■ You can use the FREETEXT and FREETEXTTABLE full-text functions to provide
a general sampling of rows that might match the search argument.

■ You use the CONTAINS and CONTAINSTABLE functions in production applica-
tions to allow for very precise criteria to target search results.

Lesson 4: Querying Data by Using a Full-Text Index 835

C2162271X.fm Page 835 Friday, April 29, 2005 8:07 PM
Lesson Review
The following questions are intended to reinforce key information presented in this
lesson. The questions are also available on the companion CD if you prefer to review
them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is right or wrong are
located in the “Answers” section at the end of the book.

1. Which of the following is a valid option for a FREETEXT or FREETEXTTABLE
query?

A. THESAURUS

B. NEAR

C. WEIGHT

D. LANGUAGE

836 Chapter 21 Review

C2162271X.fm Page 836 Friday, April 29, 2005 8:07 PM
Chapter Review
To further practice and reinforce the skills you learned in this chapter, you can

■ Review the chapter summary.

■ Review the list of key terms introduced in this chapter.

■ Complete the case scenario. This scenario sets up a real-world situation involv-
ing the topics of this chapter and asks you to create a solution.

■ Complete the suggested practices.

■ Take a practice test.

Chapter Summary
■ SQL Server’s Full-Text Search component, based on full-text indexes, lets you

efficiently query unstructured data stored within SQL Server.

■ To implement full-text indexing, you need to take the following steps:

❑ Create a full-text catalog to contain the full-text indexes.

❑ Create one or more full-text indexes within a full-text catalog.

❑ Specify a method to populate the full-text indexes to keep them up to date
with underlying data.

■ After you create the full-text indexes, you can execute full-text queries by using
the CONTAINS, CONTAINSTABLE, FREETEXT, and FREETEXTTABLE functions.

Key Terms
Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

■ catalog population

■ crawl

■ filter

■ full-text catalog

■ full-text index

■ helper service

■ index population

Chapter 21 Review 837

C2162271X.fm Page 837 Friday, April 29, 2005 8:07 PM
■ language file

■ noise words

■ protocol handler

■ token

■ word breaker

Case Scenario: Building Full-Text Indexes
In the following case scenario, you apply what you’ve learned in this chapter. You can
find answers to these questions in the “Answers” section at the end of this book.

Contoso Limited, a health care company located in Bothell, WA, maintains a large
database of patient claims records. Each patient claim contains documents for the ini-
tial claim, documentation to justify the claim, and supporting documents such as doc-
tor evaluations and records, as well as documents that describe treatments. Contoso
has captured and stored all this data within a SQL Server 2005 database. Data exists
in the database in a variety of formats: as discrete data in varchar columns, as Word
documents, as PDFs, and as scanned images (OCR to text) in image columns.

Now Contoso wants to add several new features within the existing application to
enhance the company’s analysis capabilities. The company needs to implement a
fraud-detection system to find out whether particular doctors are involved in numer-
ous claims, far beyond normal. After doctors in this group are identified, an analyst
needs to be able to cross-reference diagnoses and claims by using flexible criteria.

Contoso also needs to be able to check a claim against prior records for the same
patient to determine whether this is a recurring injury and whether previous claims
were accepted or rejected. The company also wants to analyze claim volumes by com-
pany as well as break down the claim amounts by specific type of injury.

How would you implement these features into the application by using the least
amount of time and effort?

Suggested Practices
To help you successfully master the exam objectives presented in this chapter, com-
plete the following practice tasks.

838 Chapter 21 Review

C2162271X.fm Page 838 Friday, April 29, 2005 8:07 PM
Creating Full-Text Indexes
■ Practice 1 Build a full-text index on the resumes submitted by job candidates

within the AdventureWorks database.

Querying Full-Text Indexes
■ Practice 1 Query the resumes within the AdventureWorks database for a variety

of keywords. Perform each keyword search using the CONTAINS, CONTAINSTA-
BLE, FREETEXT, and FREETEXTTABLE keywords; then compare the results.

■ Practice 2 Expand the list of words searched on by the queries in the Lesson 4,
“Query Data by Using a Full-Text Index,” practice. Perform each keyword search
using the CONTAINS, CONTAINSTABLE, FREETEXT, and FREETEXTTABLE key-
words; then compare the results.

■ Practice 3 Using the queries from Practice 2, expand or contract the scope of
the search by using inflections of words or synonyms.

Take a Practice Test
The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-431 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the “How to Use the Practice Tests” sec-
tion in this book’s Introduction.

Chapter 1: Lesson Review Answers 839

Z01A62271X.fm Page 839 Friday, April 29, 2005 8:08 PM
Answers

Chapter 1: Lesson Review Answers

Lesson 1
1. Correct Answer: D

A. Incorrect: Express Edition can use only one CPU.

B. Incorrect: Workgroup Edition can use only two CPUs.

C. Incorrect: Although Developer Edition can use more than four CPUs, it is
not licensed for production use.

D. Correct: Standard Edition of SQL Server 2005 can use up to four CPUs.

2. Correct Answer: C

A. Incorrect: Express Edition does not allow data partitioning.

B. Incorrect: Workgroup Edition does not allow data partitioning.

C. Correct: Enterprise Edition supports data partitioning.

D. Incorrect: Standard Edition does not allow data partitioning.

3. Correct Answer: A

A. Correct: Express Edition is free to distribute and does not require users to
purchase a SQL Server license.

B. Incorrect: Workgroup Edition requires users to purchase a SQL Server
license.

C. Incorrect: Developer Edition is not licensed for production use.

D. Incorrect: Standard Edition requires users to purchase a SQL Server
license.

840 Chapter 1: Lesson Review Answers

Z01A62271X.fm Page 840 Friday, April 29, 2005 8:08 PM
Lesson 2
1. Correct Answer: D

A. Incorrect: If you’re using Windows 2000 Server, your SQL Server 2005
installation requires Windows 2000 Server SP4.

B. Incorrect: If you’re using Windows 2000 Server, your SQL Server 2005
installation requires Windows 2000 Server SP4.

C. Incorrect: If you’re using Windows 2000 Server, your SQL Server 2005
installation requires Windows 2000 Server SP4.

D. Correct: If you’re using Windows 2000 Server, your SQL Server 2005
installation requires Windows 2000 Server SP4.

2. Correct Answer: A

A. Correct: The minimum service pack level required by SQL Server 2005 for
Windows Server 2003 is SP1.

B. Incorrect: The minimum service pack level required by SQL Server 2005
for Windows Server 2003 is SP1.

C. Incorrect: The minimum service pack level required by SQL Server 2005
for Windows Server 2003 is SP1.

D. Incorrect: The minimum service pack level required by SQL Server 2005
for Windows Server 2003 is SP1.

3. Correct Answer: A

A. Correct: Express Edition requires only 192 MB of memory.

B. Incorrect: Workgroup Edition requires a minimum of 512 MB of memory.

C. Incorrect: Developer Edition requires a minimum of 512 MB of memory.

D. Incorrect: Standard Edition requires a minimum of 512 MB of memory.

Lesson 3
1. Correct Answer: C

A. Incorrect: You install service packs at an instance level, and this solution
does not let each client operate with a different service pack.

B. Incorrect: You can support multiple instances on a single server, with each
instance using a different service pack.

Chapter 1: Lesson Review Answers 841

Z01A62271X.fm Page 841 Friday, April 29, 2005 8:08 PM
C. Correct: This solution represents the best solution because each client has
its own instance, which lets each of them operate with different service
packs. Multiple instances can be placed on one or more servers.

D. Incorrect: Although this solution meets the first goal of permitting clients
to use SQL Server with different service packs, it requires you to install sep-
arate SQL Server servers for each client. In addition, this solution requires
you to move a client to a different server if he requires a change in service
pack.

2. Correct Answer: A

A. Correct: There can be only one default instance on a single server.

B. Incorrect: There can be only one default instance on a single server.

C. Incorrect: There can be only one default instance on a single server.

D. Incorrect: There can be only one default instance on a single server.

Lesson 4
1. Correct Answers: A and C

A. Correct: You need to install the SQL Server Agent service to use an account.

B. Incorrect: This agent for transactional replication operates under the secu-
rity account of the SQL Server Agent.

C. Correct: You need to install the SQL Server service to use an account.

D. Incorrect: Although there are replication agents, these agents operate
under the security account of the SQL Server Agent.

2. Correct Answer: C

A. Incorrect: This type of authentication does not allow the use of only SQL
Server logins.

B. Incorrect: This type of authentication allows the use of only Windows log-
ins.

C. Correct: This type of authentication allows the use of both Windows logins
and SQL Server logins.

D. Incorrect: This is a type of account, not an authentication mode.

842 Chapter 1: Lesson Review Answers

Z01A62271X.fm Page 842 Friday, April 29, 2005 8:08 PM
Lesson 5
1. Correct Answer: A

A. Correct: An in-place upgrade is installing SQL Server 2005 on top of the
current installation.

B. Incorrect: SQL Server does not allow the sharing of databases between an
older version and a newer version of SQL Server.

C. Incorrect: This is a side-by-side installation.

D. Incorrect: This is a side-by-side installation.

2. Correct Answer: B

A. Incorrect: This type of data movement does not require the source data-
base to be clear of users.

B. Correct: This type of data movement requires the source database to be
clear of users.

C. Incorrect: This type of data movement does not require the source data-
base to be clear of users.

D. Incorrect: This type of data movement does not require the source data-
base to be clear of users.

3. Correct Answer: D

A. Incorrect: Successful upgrades often depend heavily on checklists that
remind you of all the tasks that must be performed before, during, and after
the upgrade.

B. Incorrect: You need to plan for the additional disk space required for cop-
ies of your database files, the files you will upgrade, and the final files
needed by the upgraded databases. This often means that you need two to
four times the amount of disk space during the upgrade as you will need
after the upgrade is finished.

C. Incorrect: The upgrade process will stop and start the SQL Server service
several times during the upgrade process, and you do not want the startup
stored procedures firing multiple times during the upgrade.

D. Correct: You should allow the system databases to autogrow during the
upgrade process and make sure they have enough space for this growth.

Chapter 1: Case Scenario Answers 843

Z01A62271X.fm Page 843 Friday, April 29, 2005 8:08 PM
Chapter 1: Case Scenario Answers

Case Scenario 1: Installing SQL Server 2005
1. You should use Mixed Mode authentication because the current application

requires SQL Server logins.

2. Because each store’s databases must be separate from the others, you should cre-
ate multiple named instances of SQL Server. By using all named instances, you
have standardized the installation process.

3. For this particular installation, you must use Enterprise Edition because it is the
only production-licensed edition that supports eight CPUs.

Case Scenario 2: Upgrading an Instance of SQL Server
1. There are several methods to use when moving databases from one server to

another during a side-by-side upgrade. Given that we cannot stop the current
installations to detach the databases and move them, we can use the backup/
restore, Copy Database Wizard, or manual scripting methods to move the data-
bases to their new locations.

2. As part of the upgrade plan, I have created a rollback process that will let me stop
the upgrade at any point during the process and bring the old databases and
installations back online until we can solve any problem encountered during the
upgrade.

3. Another part of the upgrade plan is an exhaustive testing plan that lets us test all
parts of our applications against the new database installation before we make
the final switch. Testing will be done not only by the database team but will also
include the quality assurance (QA) team, the application-development team,
and the business units using the database in the testing scenarios. All teams
must approve the validity of the new installation before we turn off the old
instance and make the switch.

844 Chapter 2: Lesson Review Answers

Z01A62271X.fm Page 844 Friday, April 29, 2005 8:08 PM
Chapter 2: Lesson Review Answers

Lesson 1
1. Correct Answer: C

A. Incorrect: The ADD FILE clause allows you to create a database file.

B. Incorrect: The MODIFY FILEGROUP clause allows you modify properties
for an existing filegroup.

C. Correct: You can add a filegroup by executing the ALTER DATABASE state-
ment with the ADD FILEGROUP modifier. Also, you can create a filegroup
directly from the CREATE DATABASE statement.

D. Incorrect: The REMOVE FILEGROUP clause allows you remove a filegroup
from a database.

2. Correct Answer: C

A. Incorrect: You can gain better performance by separating data files from
log files rather than separating the operating system from SQL Server exe-
cutable files.

B. Incorrect: Storing SQL Server executable files and the transaction log in
the same disk does not avoid disk contention.

C. Correct: You have log files in a RAID 5 system and data files in another
RAID 5 system. This configuration generally gives you good performance
by enabling the database engine to access transaction log and data files
simultaneously.

D. Incorrect: RAID 1 provides good read performance, but the transaction log
is a write-consuming file.

3. Correct Answers: A, C, and D

A. Correct: You can mark a filegroup as read-only so that you cannot modify
any database object inside the filegroup.

B. Incorrect: Write-only is not a valid filegroup type.

C. Correct: Each database has a default filegroup that stores database objects
that you do not explicitly assign to other filegroups.

D. Correct: The primary filegroup is the filegroup that stores the primary
database file.

Chapter 2: Lesson Review Answers 845

Z01A62271X.fm Page 845 Friday, April 29, 2005 8:08 PM
Lesson 2
1. Correct Answer: A

A. Correct: Database Mail uses Service Broker activation to start the external
mail program when there are e-mail messages waiting to be processed.

B. Incorrect: Database mirroring is a high-availability technology that Data-
base Mail does not need.

C. Incorrect: Database Mail does not need any Extended MAPI profile on the
server. It uses the standard SMTP protocol.

D. Incorrect: Database Mail can use mail accounts from any SMTP mail
server.

2. Correct Answer: A

A. Correct: Database Mail accesses the SMTP server by using the database
engine service account credentials by default.

B. Incorrect: The credentials used to access the SMTP server when Windows
authentication is configured are the database engine service credentials.

C. Incorrect: Database Mail does not use SQL Server Browser to perform its
actions.

D. Incorrect: Active Directory Helper service does not access the SMTP server
for Database Mail.

3. Correct Answer: D

A. Incorrect: A Database Mail profile is a collection of accounts.

B. Incorrect: You can create public or private profiles and control which users
can access each profile, but there is no mapping between database users
and profiles.

C. Incorrect: A profile is a collection of Database Mail accounts, not user
accounts.

D. Correct: Each Database Mail profile can use several Database Mail
accounts.

846 Chapter 2: Lesson Review Answers

Z01A62271X.fm Page 846 Friday, April 29, 2005 8:08 PM
Lesson 3
1. Correct Answer: A

A. Correct: When a database is in the Simple recovery model, the database
engine minimally logs most operations.

B. Incorrect: In a Full recovery model, all transactions are logged.

C. Incorrect: In a Bulk-Logged recovery model, only bulk operations are min-
imally logged.

D. Incorrect: The Simple recovery model logs transactions only minimally.

2. Correct Answers: B and C

A. Incorrect: The recovery model is a database-level configuration, so you
cannot change the recovery model by using sp_configure.

B. Correct: You can change the database recovery model graphically in SSMS.

C. Correct: ALTER DATABASE is the Transact-SQL statement that lets you
change the recovery model.

D. Incorrect: You cannot specify the recovery model in the CREATE DATA-
BASE statement. When you create a database with the CREATE DATABASE
statement, SQL Server creates it with the recovery model from the model
database.

3. Correct Answers: A and D

A. Correct: Because the transaction log is truncated in the Simple recovery
model, you cannot restore the database to a given point in time.

B. Incorrect: You can restore differential backups because they are database
backups and you do not need transaction log information.

C. Incorrect: You can restore full backups because you do not need transac-
tion log information to perform that action.

D. Correct: You cannot restore a data page in the Simple recovery model. A
page restore requires an unbroken chain of log backups up to the current
log file.

Lesson 4
1. Correct Answers: B, C, and D

A. Incorrect: Database users are database-level objects, not server-level prin-
cipals.

Chapter 2: Lesson Review Answers 847

Z01A62271X.fm Page 847 Friday, April 29, 2005 8:08 PM
B. Correct: Fixed server roles are server principals that let you assign admin-
istrative rights to logins.

C. Correct: Windows logins are server principals that let you give access to
Windows users and groups.

D. Correct: SQL Server logins are server principals created, stored, and man-
aged in SQL Server.

2. Correct Answers: A and C

A. Correct: By using Windows authentication, SQL Server relies on operating
system authentication. You can gain access to all the operating system secu-
rity features and can implement enterprise-wide policies.

B. Incorrect: SQL Server 2005 lets you apply the local Windows Password
Policy to SQL Server logins.

C. Correct: Windows authentication is the default authentication mode.

D. Incorrect: The default authentication mode is Windows authentication.

3. Correct Answers: B and C

A. Incorrect: The FROM clause is for Windows logins only.

B. Correct: CREATE LOGIN is the recommended syntax for creating SQL
Server logins in SQL Server 2005.

C. Correct: Although you can create SQL Server logins by using the
sp_addlogin stored procedure, this procedure is only for backward compat-
ibility. You should use the CREATE LOGIN syntax.

D. Incorrect: The sp_grantlogin stored procedure grants access to an operating
system user.

Lesson 5
1. Correct Answer: B

A. Incorrect: The database catalog is defined in the database system tables.

B. Correct: Schemas group database objects and let you perform some
administrative tasks, such as grant permissions, together.

C. Incorrect: Schemas do not group databases.

D. Incorrect: Schemas do not define the table catalog.

848 Chapter 2: Lesson Review Answers

Z01A62271X.fm Page 848 Friday, April 29, 2005 8:08 PM
2. Correct Answers: B and D

A. Incorrect: Although you can use the FROM clause to create database user
Peter mapped to login Peter, you must specify the LOGIN clause as well.

B. Correct: You can use FOR LOGIN or FROM to specify the mapped login.

C. Incorrect: This capability does not exist in the SQL_LOGIN clause.

D. Correct: You can create the database user without specifying the login
name; the database engine will look for a login with the same name as the
database user.

3. Correct Answers: A and C

A. Correct. You can nest database roles inside other database roles.

B. Incorrect: You can add user-defined database roles and grant permissions
to them.

C. Correct: All SQL Server databases have predefined database roles, but you
can add new database roles to group users and grant permissions.

D. Incorrect: The map between logins and users is a one-to-one relationship.
You cannot map fixed server roles to database roles.

Lesson 6
1. Correct Answer: C

A. Incorrect: The database engine automatically creates the service master key.

B. Incorrect: The service master key can be opened by the service user
account.

C. Correct: The service master key is generated automatically for each instal-
lation and can be opened only by the SQL Server service account.

D. Incorrect: The service master key is generated automatically.

2. Correct Answer: A

A. Correct: This is the correct syntax to create a certificate secured with the
database master key.

B. Incorrect: Although the statement is the correct one, the syntax is not valid.

C. Incorrect: The correct statement to use is CREATE CERTIFICATE, not
CREATE CERT.

D. Incorrect: The correct statement to use is CREATE CERTIFICATE, not
CREATE CERT.

Chapter 2: Lesson Review Answers 849

Z01A62271X.fm Page 849 Friday, April 29, 2005 8:08 PM
3. Correct Answers: A and D

A. Correct: The database master key is optional. You can create it if you want
to use it to protect certificates and keys.

B. Incorrect: The database master key is not mandatory.

C. Incorrect: The database master key is created manually.

D. Correct: You should create the database master key manually by using the
CREATE MASTER KEY statement.

Lesson 7
1. Correct Answer: B

A. Incorrect: You can access objects of other databases in the same instance
without creating an external data source.

B. Correct: You need to create an external data source when you need to
access a different instance.

C. Incorrect: You can access objects of different schemas without creating an
external data source.

D. Incorrect: You can access objects of other owners without creating an
external data source.

2. Correct Answers: A and D

A. Correct: You need to define the OLE DB data source to connect to.

B. Incorrect: You need an OLE DB data source so that you can configure a
linked server to an external data source.

C. Incorrect: You need an OLE DB Provider to configure a linked server to an
external data source.

D. Correct: You need an OLE DB provider that lets you connect to the exter-
nal data source.

3. Correct Answers: B and D

A. Incorrect: You can define the security mode for each linked server.

B. Correct: The database engine creates a self-mapping security context when
you create a linked server. You can change this behavior by configuring a
security mapping.

C. Incorrect: The default configuration is self-mapping.

D. Correct: You can choose a different security mode for each linked server.

850 Chapter 2: Case Scenario Answers

Z01A62271X.fm Page 850 Friday, April 29, 2005 8:08 PM
Chapter 2: Case Scenario Answers

Case Scenario 1: Configuring Security
1. Because you need to provide access to Macintosh clients, you need to configure

Mixed Mode authentication. You can use Windows logins for the Windows XP
users.

2. You should create two database roles: one for Sales users and another one for
Marketing users. With this configuration, you need to manage permissions for
only these two roles.

3. To configure the encryption architecture, you need to do the following:

A. Create a database master key for the CRM database.

B. Create a certificate in the CRM database and protect the certificate with the
database master key.

C. Create a symmetric key that is protected with the certificate, and use the
key to encrypt the data.

Case Scenario 2: Configuring a Heterogeneous Environment
1. You need to create a linked server to provide access from the SQL Server data-

base to the Oracle server. You can then execute distributed queries on the Oracle
server and return results to SQL Server data consumers.

2. Because the external data source is a non-SQL Server and does not support Win-
dows authentication, the most secure solution for your connection is to map
SQL Server logins to remote Oracle users.

3. To send e-mail to branch offices from your SQL Server application, you need to
configure SQL Server Database Mail. Because Database Mail is a standard SMTP
client, you do not need to change your infrastructure. You need only a valid
SMTP account on the UNIX mail server to create a profile in Database Mail that
lets you send e-mail using that SMTP account.

Chapter 3: Lesson Review Answers 851

Z01A62271X.fm Page 851 Friday, April 29, 2005 8:08 PM
Chapter 3: Lesson Review Answers

Lesson 1
1. Correct Answer: C

A. Incorrect: A text data type can store up to 2 GB of data but does not allow
direct comparison of columns.

B. Incorrect: A varbinary data type stores binary data.

C. Correct: A varchar(max) column can store up to 2 GB of data while still
enabling you to use all functions and comparison operators.

D. Incorrect: A regular varchar column cannot store 2 GB of data.

Lesson 2
1. Correct Answers: A and C

A. Correct: You can use system functions that return a scalar value in a check
constraint.

B. Incorrect: Stored procedures cannot be called within a check constraint.

C. Correct: UDFs that return a scalar value can be referenced in a check con-
straint.

D. Incorrect: Views cannot be referenced in check constraints.

Lesson 3
1. Correct Answers: B and D

A. Incorrect: You cannot enable the CLR on a database-by-database basis.

B. Correct: You must enable the CLR by using the Surface Area Configuration
utility.

C. Incorrect: You must compile and load into SQL Server a class that con-
forms to the UDT specification. However, class creation is not limited
exclusively to .NET languages.

D. Correct: You can use any CLR-compatible language, including C#, Visual
Basic, and Cobol.NET to create a class for a CLR user-defined type.

852 Chapter 3: Case Scenario Answers

Z01A62271X.fm Page 852 Friday, April 29, 2005 8:08 PM
Chapter 3: Case Scenario Answers

Case Scenario: Designing a Database
1. There are some core tables that are necessary for this database: Customer, Cus-

tomerAddress, CustomerContact, Patient, PatientAddress, Doctor, DoctorAd-
dress, and Claims.

2. You need to create each of these core tables with primary keys to ensure that
each row can be uniquely identified.

3. You need to link each table together by using appropriate foreign key constraints
to enforce rules such as the following: a claim cannot be entered that is not asso-
ciated with a company, and a patient’s address cannot be created without having
the patient in the database first.

4. You should implement additional supporting tables to enforce such things as
valid lists of states.

5. You need to define check constraints to enforce specific formatting for data such
as Social Security numbers, phone numbers, and e-mail addresses.

6. You need to carefully analyze the claims table to determine whether to store doc-
uments in native format such as Word or PDF, or to transform them into a stan-
dard exchange format and store them in a schema-enforced XML column.

7. All these choices require you to spend time defining all pieces of data that need
to be stored and any business rules that need to be enforced.

Chapter 4: Lesson Review Answers

Lesson 1
1. Correct Answers: B and C

A. Incorrect: An index has a single page at the root level that is called the root
page.

B. Correct: An intermediate level can contain zero or more pages, and an
index can have multiple intermediate levels.

C. Correct: The leaf level can contain one or more pages; there is only a single
leaf level, which is at the bottom of the index.

D. Incorrect: B-tree is the name for the structure of the index, not a level in the
structure.

Chapter 4: Lesson Review Answers 853

Z01A62271X.fm Page 853 Friday, April 29, 2005 8:08 PM
Lesson 2
1. Correct Answer: B

A. Incorrect: A unique index requires that the data value in each row for the
index is not duplicated, but it does not affect the physical ordering of the
table.

B. Correct: A clustered index causes the rows in the table to be physically
ordered based on the index definition.

C. Incorrect: A nonclustered index does not enforce a physical structure.

D. Incorrect: A foreign key enforces referential integrity between two tables.

2. Correct Answer: B

A. Incorrect: PAD_INDEX leaves empty space on intermediate-level pages in
the index.

B. Correct: FILLFACTOR leaves empty space on the leaf level of an index.

C. Incorrect: MAXDOP specifies the maximum degree of parallelism used
during index creation.

D. Incorrect: IGNORE_DUP_KEY causes duplicates to be ignored for unique
indexes.

Lesson 3
1. Correct Answer: A

A. Correct: PAD_INDEX leaves empty space on intermediate-level pages in
the index.

B. Incorrect: FILLFACTOR leaves empty space on the leaf level of an index.

C. Incorrect: MAXDOP specifies the maximum degree of parallelism used
during index creation.

D. Incorrect: IGNORE_DUP_KEY causes duplicates to be ignored for unique
indexes.

854 Chapter 4: Case Scenario Answers

Z01A62271X.fm Page 854 Friday, April 29, 2005 8:08 PM
Chapter 4: Case Scenario Answers

Case Scenario: Indexing a Database
1. The first step is to verify that each table in the database has a primary key to

ensure that rows can be uniquely identified. You implement the primary keys as
indexes, and they should be sufficient to satisfy the requirements of data entry.

2. After verifying that primary keys exist on all the tables, you ensure that each
table has a clustered index. To simplify things at this point, until you have much
more knowledge about the data-access patterns and the volume and pattern of
changes, you decide to alter all the primary keys so that they are clustered
indexes as well.

3. You then create additional nonclustered indexes that SQL Server can use to
quickly satisfy the search criteria that employees are using to locate claims data.
The initial stage of this process is to simply get nonclustered indexes in place for
use with the most common queries.

4. In a secondary indexing round, you will take a closer look at the nonclustered
indexes to determine whether columns can be included to make the indexes
covering indexes for the most common queries.

Chapter 5: Lesson Review Answers

Lesson 1
1. Correct Answers: A, C, and D

A. Correct: A full outer join returns nonmatching data from both the left and
right tables.

B. Incorrect: An inner join returns only matching data.

C. Correct: A right outer join returns nonmatching data from the right table.

D. Correct: A left outer join returns nonmatching data from the left table.

2. Correct Answer: D

A. Incorrect: AVG returns the average value of the rows.

B. Incorrect: COUNT_BIG returns the count of rows as a big integer.

C. Incorrect: STDEV returns the standard deviation of the rows.

D. Correct: COUNT returns the count of rows as an integer.

Chapter 5: Lesson Review Answers 855

Z01A62271X.fm Page 855 Friday, April 29, 2005 8:08 PM
3. Correct Answer: D

A. Incorrect: This syntax would return only matches for “Book”.

B. Incorrect: This syntax would return matches for “Book*” (exact string).

C. Incorrect: This syntax would return only matches for “Book”.

D. Correct: This syntax would return all words starting with “Book”.

Lesson 2
1. Correct Answers: A, C, and D

A. Correct: STR converts numbers into strings.

B. Incorrect: STUFF inserts strings inside other strings.

C. Correct: CAST converts between data types.

D. Correct: CONVERT converts between data types.

2. Correct Answer: C

A. Incorrect: This method does not exist by default.

B. Incorrect: This method does not exist by default.

C. Correct: ToString returns the string representation of the UDT.

D. Incorrect: This method does not exist by default.

3. Correct Answer: B

A. Incorrect: STR is a system function.

B. Correct: The AS keyword is used to create a column alias.

C. Incorrect: The FROM keyword is used to query a table.

D. Incorrect: The COLUMN keyword is used when defining a table.

Lesson 3
1. Correct Answers: A, C, and D

A. Correct: Static cursors do not detect any changes to underlying data.

B. Incorrect: A so-called firehose cursor is a name for a type of forward-only
cursor supported by some clients; it is not a SQL Server feature.

C. Correct: Dynamic cursors detect all changes to the underlying data.

D. Correct: Keyset cursors detect some changes to the underlying data.

856 Chapter 5: Lesson Review Answers

Z01A62271X.fm Page 856 Friday, April 29, 2005 8:08 PM
2. Correct Answer: B

A. Incorrect: Prefixing the table name with # creates a local temporary table.

B. Correct: Prefixing the table name with ## creates a global temporary table.

C. Incorrect: Declaring a table using DECLARE and prefixing with @ creates
a local table variable.

D. Incorrect: Using SELECT INTO and specifying a table name prefixed with
creates a local temporary table.

3. Correct Answers: A, B, and D

A. Correct: SELECT INTO can be used to create local temporary tables.

B. Correct: SELECT INTO can be used to create permanent tables.

C. Incorrect: SELECT INTO cannot be used to insert data into an existing
table.

D. Correct: SELECT INTO can be used to create global temporary tables.

Lesson 4
1. Correct Answer: B

A. Incorrect: DELETE FROM TRANSACTION deletes all rows from a table
called TRANSACTION.

B. Correct: COMMIT TRANSACTION is used to save the data from a transac-
tion.

C. Incorrect: UPDATE TRANSACTION returns an error because it is updating
no columns in a table called TRANSACTION.

D. Incorrect: SELECT TRANSACTION returns a single row with an unnamed
column with the value “TRANSACTION”.

2. Correct Answer: D

A. Incorrect: The ERROR_STATE function returns the state of the error.

B. Incorrect: The ERROR_MESSAGE function returns the message associated
with the error.

C. Incorrect: The ERROR_SEVERITY function returns the severity of the error.

D. Correct: The ERROR_NUMBER function returns the number for the error
that occurred.

Chapter 5: Case Scenario Answers 857

Z01A62271X.fm Page 857 Friday, April 29, 2005 8:08 PM
Chapter 5: Case Scenario Answers

Case Scenario 1: Database-Backed Authoring Application
1. Because the data-validation stored procedures throw exceptions if there are

errors in the data, this is a natural case for the TRY/CATCH error handling syn-
tax. Proseware developers should start a transaction, perform all data modifica-
tions in a TRY block, and then execute the data-validation procedures. If there
are any errors, they will be caught in the CATCH block, and the data modifica-
tion can be rolled back.

2. Proseware developers can use the COUNT aggregate function to determine how
many submissions each author had. The query can select from the Submission
table, using the author ID column as the nonaggregated grouping column.

3. The report should use the PIVOT operator to generate a weekly summary. First,
developers need to create a derived table that includes the author ID and the
week of submission date. They can then pivot this derived table, using the
COUNT aggregate function, for each week of submission that exists in the quar-
ter.

Case Scenario 2: Banking Corporation
1. Northwind Partners should make sure that all funds-transfer logic participates

in transactions. Starting a transaction will ensure that if an error occurs after
money is withdrawn from one account, but before it is deposited into another
account, the withdrawal can be rolled back, thereby restoring the data to its orig-
inal state.

2. All data-modification code should be put in TRY blocks. Logging code can be
placed into the associated CATCH blocks.

3. The search should use the FREETEXT predicate, which will match a search term
even if it’s not typed exactly as it appears in the data.

858 Chapter 6: Lesson Review Answers

Z01A62271X.fm Page 858 Friday, April 29, 2005 8:08 PM
Chapter 6: Lesson Review Answers

Lesson 1
1. Correct Answer: A

A. Correct: A partition function defines the boundary points used to partition
a table, index, or indexed view.

B. Incorrect: A partition scheme defines the physical storage that partitions
will be stored on.

C. Incorrect: There isn’t a function that returns the values in a partition. To
return values in a partition, you would use a SELECT statement in combi-
nation with the $PARTITION function.

D. Incorrect: The function that returns the number of the partition contain-
ing a specified value is $PARTITION.

Lesson 2
1. Correct Answer: B

A. Incorrect: A partition function defines the boundary points used to parti-
tion a table, index, or indexed view.

B. Correct: A partition scheme defines the physical storage on which the par-
titions are stored.

C. Incorrect: There isn’t a function that returns the values in a partition. To
return the values in a partition, you would use a SELECT statement in com-
bination with the $PARTITION function.

D. Incorrect: The function that returns the number of the partition contain-
ing a specified value is $PARTITION.

Lesson 3
1. Correct Answers: A and B

A. Correct: You can partition tables, indexes, and indexed views.

B. Correct: You can partition tables, indexes, and indexed views.

C. Incorrect: Regular views do not contain any data, so they cannot be
partitioned.

D. Incorrect: Partitioning is internal to a database, so you cannot partition an
entire database.

Chapter 6: Case Scenario Answers 859

Z01A62271X.fm Page 859 Friday, April 29, 2005 8:08 PM
Lesson 4
1. Correct Answer: D

A. Incorrect: A partition function defines the boundary points used to parti-
tion a table, index, or indexed view.

B. Incorrect: A partition scheme defines the physical storage that partitions
will be stored on.

C. Incorrect: There isn’t a function that returns the values in a partition. To
retrieve the values in a partition, you use a SELECT statement in combina-
tion with the $PARTITION function.

D. Correct: The function that returns the number of the partition containing
a specified value is $PARTITION.

Lesson 5
1. Correct Answer: A

A. Correct: SWITCH exchanges a full partition and an empty partition
between tables.

B. Incorrect: MERGE removes a boundary point in a partition function.

C. Incorrect: SPLIT introduces a new boundary point into a partition func-
tion.

D. Incorrect: INTERSECT is a new Transact-SQL operator that is not used to
manage partitions.

Chapter 6: Case Scenario Answers

Case Scenario: Archiving Data
1. You first partition the Claims table by using a datetime column that divides the

data based on month.

2. At the beginning of each month, you create a new table that exactly matches the
structure of the Claims table. Create the new table by using the same partition
function and partition scheme as the Claims table.

3. Use the SWITCH operator to move the oldest partition from the Claims table to
the newly created, empty table.

860 Chapter 7: Lesson Review Answers

Z01A62271X.fm Page 860 Friday, April 29, 2005 8:08 PM
4. Execute a MERGE operation to remove the boundary point for the month that
was just removed.

5. Alter the partition scheme to set the NEXT USED filegroup to the one that held
the data just removed from the table.

6. Execute a SPLIT operation to introduce a new boundary point for the new
month.

7. Use SQL Server Integration Services (SSIS) to load the data into a staging table
in the Research database. The staging table has the same structure as the Claims
table within this database and uses the same partition function and partition
scheme, but the staging table does not have any additional indexes created yet.

8. After you load the data into the staging table, you create the rest of the indexes
so that the staging table matches the structure of the Claims table. You then trun-
cate the table in the claims database.

9. Execute a SPLIT operation against the Claims table to create a new empty parti-
tion that corresponds to the data in the staging table.

10. Execute a SWITCH operation to add the data from the staging table into the
Claims table.

11. Finally, truncate the staging table.

Chapter 7: Lesson Review Answers

Lesson 1
1. Correct Answer: B

A. Incorrect: The CHECK OPTION parameter forces queries that modify data
using the view to conform to any filter criteria specified in the view defini-
tion.

B. Correct: SCHEMABINDING prevents a table from being dropped without
first dropping views that depend on the table.

C. Incorrect: UNION is an operator that can be used in a query.

D. Incorrect: QUOTED_IDENTIFIER is a setting that must be set to ON to cre-
ate an indexed view.

Chapter 7: Case Scenario Answers 861

Z01A62271X.fm Page 861 Friday, April 29, 2005 8:08 PM
Lesson 2
1. Correct Answer: B

A. Incorrect: SCHEMABINDING prevents a base table from being dropped if
a view is created over it.

B. Correct: CHECK OPTION ensures that changes made through the view
conform to the selection criteria of the view.

C. Incorrect: The ANSI_NULLS setting does not limit the modifications that
can be performed through a view.

D. Incorrect: The QUOTED_IDENTIFIER setting does not limit the modifica-
tions that can be performed through a view.

Lesson 3
1. Correct Answers: A and C

A. Correct: QUOTED_IDENTIFIER has to be set to ON when the view and any
base tables referenced in the view are created.

B. Incorrect: Two-part names are required for all tables referenced in the view.

C. Correct: The view must have been created with SCHEMABINDING.

D. Incorrect: ANSI_NULLS has to be turned ON when the view and base
tables referenced in the view are created.

Chapter 7: Case Scenario Answers

Case Scenario: Creating Views
1. The development group should implement views that return data based on var-

ious functions that the applications require. The developers can then replace the
application code that currently executes the queries with the new views, ensur-
ing that all applications are using the same query.

2. As long as all the requirements are met, the developers could turn the poorly
performing queries into views and then add a clustered index to each view to
make it an indexed view. Using indexed views would incur a slight overhead
when data is written but could improve performance on read operations.

862 Chapter 8: Lesson Review Answers

Z01A62271X.fm Page 862 Friday, April 29, 2005 8:08 PM
Chapter 8: Lesson Review Answers

Lesson 1
1. Correct Answers: A and C

A. Correct: Document order and structure are preserved because the XML
data is stored as text. SQL Server does not modify its contents.

B. Incorrect: When storing XML data in a text column, SQL Server does not
allow mixing the XML data with relational data as a result of a query. The
only way to do this is to extract the XML data from the text column and
assign it to a variable of type XML.

C. Correct: This is the most efficient scenario. In cases in which the XML data
will not be filtered or modified at the node level, storing it as a text column
allows for fast retrieval of the complete XML document.

D. Incorrect: SQL Server 2005 does not offer any indexing for text columns.

2. Correct Answers: B and C

A. Incorrect: You can create indexes on XML data type columns, but this is
not a function of an XML schema.

B. Correct: An XML schema validates an XML instance whenever a typed
XML instance is assigned to or modified.

C. Correct: An XML schema provides information about the types of
attributes and elements in the XML data type instance. For example, deci-
mal arithmetic operations can be performed on a decimal value but not on
a string value.

D. Incorrect: The XML data type includes methods for manipulating XML
data and structure; this is not a function of an XML schema.

Chapter 8: Lesson Review Answers 863

Z01A62271X.fm Page 863 Friday, April 29, 2005 8:08 PM
Lesson 2
1. Correct Answer: C

A. Incorrect: The requested XML structure is made of two levels, so a nested
query is required. The formatting indications to create elements and
attributes do not match the requested structure.

B. Incorrect: Even though a nested query is used, the inner FOR XML query
does not use the TYPE instruction to indicate that the result of the inner
query should be of the XML data type, so it will be interpreted as text. The
formatting indications to create elements and attributes do not match the
requested structure.

C. Correct: A nested query is used to generate a two-level XML structure. The
outer query uses an aggregate function to calculate the total number of con-
tacts stored for each company. The inner query retrieves each of the con-
tacts for that company. The inner query composes the columns into
attribute-centric XML nested under a <Contacts> element. The outer query
composes the columns into element-centric XML nested under a <Con-
tactList> element.

D. Incorrect: The inner query composes the columns into element-centric
XML nested under a <Contacts> element. The outer query composes the
columns into attribute-centric XML nested under a <ContactList> element.
The formatting indications to create elements and attributes do not match
the requested structure.

2. Correct Answers: A and D

A. Correct: The exist() method can execute the XQUERY expression. It will
return 1 if there are any nodes returned from the expression or 0 if there is
nothing returned from the expression.

B. Incorrect: The modify() method accepts a different type of expression that
includes specific commands for XML data manipulation.

C. Incorrect: The value() method accepts XQUERY expressions, but it must
validate that the expression returns a single scalar value. This is not the
case in this example, so the expression would generate a compilation error.

D. Correct: The query() method would execute the XQUERY expression and
return an XML fragment as output.

864 Chapter 8: Lesson Review Answers

Z01A62271X.fm Page 864 Friday, April 29, 2005 8:08 PM
Lesson 3
1. Correct Answer: C

A. Incorrect: The exist() method of the XML data type provides the ability to
execute an XPATH or XQUERY expression to check for the existence of
nodes.

B. Incorrect: An XML schema collection is used to type the parameters, vari-
ables, and columns of the XML data type.

C. Correct: An annotated XML schema uses special annotation keywords to
map an XML schema to a relational schema.

D. Incorrect: A relational schema is the term for data in a relational-tabular
format; this schema does not map an XML schema to the database schema.

2. Correct Answers: B and C

A. Incorrect: An XML schema validates your XML document: if an XML doc-
ument conforms to what is declared inside an XML schema, the XML doc-
ument is said to be valid. An invalid XML document does not conform to
what is declared inside an XML schema.

B. Correct: XML views and annotation XML schemas are easy to maintain
because they are stored as files on the file system; any changes you make to
them do not require recompiling the application.

C. Correct: You can offload the XML rendering from your database system by
deploying the XML views and annotated XML schemas on a different
machine than the database server.

D. Incorrect: An updategram is the mechanism that compares the original
and current views of the XML data to create the Transact-SQL commands
that synchronize the changes from the XML data into relational data.

Chapter 8: Lesson Review Answers 865

Z01A62271X.fm Page 865 Friday, April 29, 2005 8:08 PM
Lesson 4
1. Correct Answer: C

A. Incorrect: SQLXML-annotated XSD schemas just declare a mapping
between an XML schema and a relational schemSQLXML-annotated XSD
schemas by themselves do not support updating the XML data; they must
be used in conjunction with SQLXML updategrams.

B. Incorrect: SQLXML updategrams allow modification of XML values but
do not support modifying the XML structure. SQLXML updategrams take
the XML structure as declared on an annotated XSD schema.

C. Correct: XML DML enables you to modify XML values as well as the XML
structure. By using XQUERY constructor functions such as attribute and
element, XML DML supports adding a new dynamic structure to the XML
document.

D. Incorrect: You use OPENXML to transform an XML instance into a tabular
format. It does not support modifying XML data.

2. Correct Answer: B

A. Incorrect: The result of executing the XQUERY expression is a collection
of nodes. XQUERY is supported by the insert XML DML keyword.

B. Correct: The insert instruction is composed of two expressions and one
operator. The first expression, the XQUERY expression, extracts all the
Employee nodes in this location: /Departments/Department[@id=1]/
Employees/Employee. The second expression indicates that the extracted
nodes should be copied into the same location (/Departments/Depart-
ment[@id=1]/Employees/Employee), therefore duplicating the nodes.

C. Incorrect: The [1] axis applies to the entire path because it is scoped with
the parenthesis. The contents of /Departments/Department[@id=1]/
Employees/Employee will be copied into exactly the same location.

D. Incorrect: XML DML is an extension to the XQUERY language, so it sup-
ports the FLWOR expression.

866 Chapter 8: Lesson Review Answers

Z01A62271X.fm Page 866 Friday, April 29, 2005 8:08 PM
Lesson 5
1. Correct Answers: A, B, and C

A. Correct: By processing all documents at once, just a single DOM structure
is created in memory.

B. Correct: This is the most important performance practice when using
OPENXML. The sp_xml_removedocument stored procedure will unload the
XML structure and free memory resources.

C. Correct: Using smaller XML tag names could provide a slight improve-
ment in performance, especially if the XML tag names used are very large.

D. Incorrect: Splitting the XML data into multiple files is usually not a good
idea because you will need to process each of them independently. This
process translates into loading multiple DOM structures in memory
instead of just one.

2. Correct Answers: A, B, and C

A. Correct: When calling the sp_xml_preparedocument stored procedure to
use OPENXML, the procedure accepts the following data types: char, nchar,
varchar, nvarchar, text, ntext, or xml. But if the data is stored already as XML,
using the nodes() method would be easier and provide better performance.

B. Correct: OPENXML enables you to extract XML data out of a single
source—a single XML document loaded into memory. By using the nodes()
method, you can merge multiple XML documents coming from different
sources into a single result set.

C. Correct: The XPATH implementation in OPENXML and in the XML data
type differs slightly, and it is possible that an XPATH function that works in
OPENXML won’t work in the XML data type—or the other way around.

D. Incorrect: The syntax for writing OPENXML has not changed from previ-
ous versions of SQL Server. Therefore, you don’t need to migrate code
involving XML manipulation via OPENXML unless any of the previously
explained reasons apply.

Lesson 6
1. Correct Answer: C

A. Incorrect: A PATH secondary index will not help much in this type of
query because the expression is not searching for a specific path, and the
path is not even fully specified.

Chapter 8: Case Scenario Answers 867

Z01A62271X.fm Page 867 Friday, April 29, 2005 8:08 PM
B. Incorrect: A PROPERTY secondary index will not help much in this type of
query because the expression is not filtering on the table’s primary key and
extracting values by using the value() method.

C. Correct: A VALUE secondary index will improve the query performance
because the query engine will execute a lookup on the secondary index
and serve the query without having to access the XML BLOB.

D. Incorrect: SQL Server 2005 does not support creating a clustered index on
an XML-typed column.

2. Correct Answer: D

A. Incorrect: Creating new indexes will not help because the application is
inserting more information than it is reading.

B. Incorrect: Dropping the secondary indexes would bring a slight improve-
ment in performance, but it is not the best answer.

C. Incorrect: Creating new indexes would not help because the application is
inserting more information than it is reading.

D. Correct: Dropping all the indexes on the XML columns would improve
performance because SQL Server would not have to maintain them. You
could re-create them later, after the heavy insert activity is finished.

Chapter 8: Case Scenario Answers

Case Scenario 1: Troubleshooting XML Performance by Choosing the
Correct Indexing Strategy

1. You should use an XML VALUE index if your queries are value-based, meaning
that you will filter by the contents of the nodes first and maybe not by the struc-
ture of the XML data. Also, you should use an XML VALUE index when the path
is not fully specified or if it includes a wildcard. When such conditions exist, an
XML VALUE index is optimal because the key columns of the VALUE index are
the node value and path of the primary XML index. In our case scenario, even
though we are interested in searching on the values (we must search for feeds
that contain specific keywords) and not in the structure, the XQUERY written in
the fn_FindKeyword function filters first by the node structure and then by the
values. Therefore, the VALUE index doesn’t provide the best performance.

868 Chapter 9: Lesson Review Answers

Z01A62271X.fm Page 868 Friday, April 29, 2005 8:08 PM
2. The for $item in /rss/channel/item, $title in $item/title, $desc in $item/desc decla-
ration in the FLWOR expression will filter first by path to find those nodes that
must be processed. In this case, an XML PATH index would be much more valu-
able because the key columns are the path and then the node value.

3. Another possible alternative in this specific scenario is to use the SQL Server
2005 Full Text Search service to query the text provided inside the XML feeds.

Case Scenario 2: Handling Data as XML or as Relational
Representation

Among the many reasons you could give your manager for your recommended solu-
tion, here are some important benefits your company could gain from using XML
Web services for this application:

■ The type of information you must store requires order preservation. The order in
which questions are formulated depends on previous answers. Preserving order
is an XML strength.

■ The different schemes for answer types would be hard to represent in a relational
structure. XML easily handles semistructured data, in which some structure in
the data is constant, and others might be optional or dependent on other parts
of the structure.

■ Because this questionnaire must be given in more than 150 countries, it likely
will be easier and more scalable and maintainable to distribute the questions as
XML Web services. And if the data will be consumed in XML format, why spend
the time and effort to transform it into a different format just for storage?

■ Management will want to run different types of reports against this data (for
example, which employees are performing above expectations, which are having
morale problems, and so on). And you can use XQUERY to create complex que-
ries that span different answer choices and answer formats.

Chapter 9: Lesson Review Answers

Lesson 1
1. Correct Answers: B and D

A. Incorrect: Modifying data is not allowed within a function.

B. Correct: A function can return the result of a SELECT statement.

C. Incorrect: Stored procedures cannot be executed within a function.

D. Correct: Inserts, updates, and deletes are allowed with local table variables.

Chapter 9: Case Scenario Answers 869

Z01A62271X.fm Page 869 Friday, April 29, 2005 8:08 PM
Lesson 2
1. Correct Answer: B

A. Incorrect: The ENCRYPTION option causes SQL Server to encrypt the con-
tents of the stored procedure before storing it.

B. Correct: The RECOMPILE option causes SQL Server to compile the stored
procedure each time it is executed, generating a new query plan for each
execution.

C. Incorrect: VARYING is a keyword related to the output parameter of the
procedure.

D. Incorrect: The EXECUTE AS clause specifies the security context for the
stored procedure.

Lesson 3
1. Correct Answer: C

A. Incorrect: Indexes cannot be created within a trigger.

B. Incorrect: Backup and restore operations are not allowed within a trigger.

C. Correct: Triggers can be used to insert data into tables.

D. Incorrect: The structure of a database cannot be changed in a trigger.

Chapter 9: Case Scenario Answers

Case Scenario: Creating Triggers, Functions, and Stored Procedures
1. Because all changes need to be audited, Contoso should implement DML trig-

gers behind each table that log all changes in a set of audit tables. The company
should also implement DDL triggers that prevent any changes to objects (CRE-
ATE/ALTER/DROP) within the database so that structural changes can be con-
trolled and audited.

2. Because the patient risk score is a common calculation that should not be left up
to each developer to implement, this calculation should be encapsulated in a
function.

3. The company should implement stored procedures that SELECT, INSERT,
UPDATE, and DELETE data so that users do not need permissions directly to the
base tables within the database.

870 Chapter 10: Lesson Review Answers

Z01A62271X.fm Page 870 Friday, April 29, 2005 8:08 PM
Chapter 10: Lesson Review Answers

Lesson 1
1. Correct Answers: A and C

A. Correct: When the database recovery model is changed from Full to Bulk-
Logged, point-in-time recovery capability is lost and is not reestablished
until the recovery model is set back to Full and a log backup is performed.

B. Incorrect: Minimal logging does NOT require that a table have a clustered
index. In fact, if a table has a clustered index and the table is not empty,
minimal logging cannot occur. Also, the database does not have to be in
single-user mode for clustered indexes to be created.

C. Correct: A table lock can prevent users from accessing the data in the table
during the bulk load.

D. Incorrect: bcp can be run at any time.

Lesson 2
1. Correct Answers: B and D

A. Incorrect: The -T argument specifies that the connection to SQL Server is a
trusted connection. Although you need to establish a connection with the
SQL Server, it does not necessarily have to be a trusted connection.

B. Correct: The -t argument specifies the field terminator or delimiter, and
because the default is a tab, not a comma, you must specify this argument.

C. Incorrect: The -r argument specifies the row delimiter, which defaults to
newline if not specified. Therefore, you do not need to specify this argu-
ment.

D. Correct: The -F argument specifies which row is the first row bcp should
read for import; it defaults to the first row. The data file contains a header
row as its first row, so bcp must start the import at the second row.

Chapter 10: Lesson Review Answers 871

Z01A62271X.fm Page 871 Friday, April 29, 2005 8:08 PM
Lesson 3
1. Correct Answer: B

A. Incorrect: The SQL Server service user account cannot be used to verify
permissions because the SQL Server 2005 instance is not running in Mixed
Mode.

B. Correct: File access is verified by using the account of the user who exe-
cuted the BULK INSERT command.

C. Incorrect: The only time permissions would be verified by using the SQL
Server Agent service account is if the command is executed by SQL Server
Agent as part of a job that did not override the credentials.

D. Incorrect: File permissions are always checked because all processes run
within a security context.

Lesson 4
1. Correct Answers: A and D

A. Correct: You can use the OPENROWSET function in place of a table in the
FROM clause of a query.

B. Incorrect: You cannot use the OPENROWSET function as a direct source
for import using bcp.

C. Incorrect: You cannot use the OPENROWSET function as a direct source
for import using BULK INSERT.

D. Correct: If the data provider supports it, you can use the OPENROWSET
function as a target of an INSERT, UPDATE, or DELETE query.

Lesson 5
1. Correct Answer: D

A. Incorrect: The wizard has the same GUI no matter where you start it from.

B. Incorrect: There are no additional options added to the wizard by starting
it from within BIDS; in fact, the Run Immediately option is removed.

C. Incorrect: You can start the wizard from the command prompt by execut-
ing DTSWizard.exe from the proper folder.

D. Correct: When you start the wizard from within BIDS, the package created
by the wizard is saved as part of the currently open SSIS project, and no
Run Immediately option is available from within the wizard.

872 Chapter 10: Case Scenario Answers

Z01A62271X.fm Page 872 Friday, April 29, 2005 8:08 PM
Chapter 10: Case Scenario Answers

Case Scenario: Fixing a Bloated Transaction Log
1. First, you verify that the Logging table is not involved in replication.

2. Because the beginning and ending identity value for each week’s load is stored in
another table, you modify the delete script to use the identity in its WHERE
clause by performing a lookup from the other table.

3. You verify that the user that the script executes as has adequate permissions to
change the recovery model and drop and re-create the indexes.

4. You modify the scripts so that just before the delete query is run, you remove all
the nonclustered indexes from the table, perform the delete query, and then
remove the clustered index from the table.

5. You modify the BULK INSERT statements so that they are using the TABLOCK
hint.

6. You modify the scripts so that they re-create all the indexes, starting with the
clustered index, after all the loads are done.

7. After you complete the previous items, the log no longer bloats during the bulk
loads, so you modify the backup strategy so that a log backup is done after the
loads are done and the database is put back into the Full recovery model.

Chapter 11: Lesson Review Answers

Lesson 1
1. Correct Answer: C

A. Incorrect: Adding the user to the db_accessadmin role enables the user to
alter user permissions or schemas but does not enable backing up the data-
base.

B. Incorrect: A member of the db_owner role is granted full authority to per-
form any operation against a database. Adding the user to this role would
grant elevated security permissions.

Chapter 11: Lesson Review Answers 873

Z01A62271X.fm Page 873 Friday, April 29, 2005 8:08 PM
C. Correct: A member of the db_backupoperator role is allowed only to back
up the database, log, or checkpoint in the database. No other access is
allowed.

D. Incorrect: A member of the sysadmin role can perform any operation on the
entire SQL Server instance. Adding the user to this role would grant ele-
vated permissions.

2. Correct Answer: B

A. Incorrect: The differential change bitmap page(s) contain one bit for each
extent that has been changed. The differential backup will contain all pages
in an extent that have changed regardless of whether only a single page in
that extent has been written to or all pages have been written to.

B. Correct: The differential backup will contain all the extents that have had
a change. It does not matter if the change was to a single page, multiple
pages, or all pages in an extent. The entire extent is still backed up.

C. Incorrect: A differential backup contains all changes that have occurred
since the last full backup (at midnight), not since the last differential
backup.

D. Incorrect: A differential backup contains all changes that have occurred
since the last full backup (at midnight), not since the last differential
backup.

3. Correct Answer: B

A. Incorrect: A transaction log backup does not capture uncommitted trans-
actions.

B. Correct: A transaction log backup captures all committed transaction in
the log, starting with the last LSN that was backed up at 09:10 and continu-
ing forward in the log until it reaches the oldest open transaction.

C. Incorrect: A transaction log backup does not capture data pages.

D. Incorrect: A transaction log backup does not capture extents.

874 Chapter 11: Lesson Review Answers

Z01A62271X.fm Page 874 Friday, April 29, 2005 8:08 PM
Lesson 2
1. Correct Answers: A, C, and D

A. Correct: Each backup places an entry into the SQL Server error log that
contains the database name, file name, and first/last LSN for the backup.

B. Incorrect: This is a table in SQL Server 2000 that contains the history of all
backups on the instance. This table no longer exists in SQL Server 2005.

C. Correct: The msdb.dbo.backupset table is used to track each backup that is
generated. It used with the msdb.dbo.backupfile table to identify each file
that was created during a backup operation.

D. Correct: The same backup information that is written to the SQL Server
error log is also written to the Application Event Log.

2. Correct Answers: B and C

A. Incorrect: The inactive claims are in FG5, so a filegroup backup of the
active claims (FG4) does not do any good.

B. Correct: The last full backup of the database needs to be restored.

C. Correct: After restoring the last full backup, the most recent differential
backup should be restored, followed by every subsequent transaction log
backup.

D. Incorrect: Because the filegroup differential backup is executed against
FG4, it cannot be used to recover FG5.

Lesson 3
1. Correct Answers: C and D

A. Incorrect: A data pump task in SSIS only moves data from one location to
another. It does not transfer all other objects in a database nor does it trans-
fer users, schemas, or permissions.

B. Incorrect: When a database is detached, it is no longer accessible. There-
fore, users would not be able to run reports.

C. Correct: You could use backup and restore to move the database, which
would leave the original database on Server1 for reporting while enabling
you to create a copy of the database on Server2.

D. Correct: You can use SMO to extract all the elements of the database on
Server1 and re-create them on Server2.

Chapter 11: Case Scenario Answers 875

Z01A62271X.fm Page 875 Friday, April 29, 2005 8:08 PM
Chapter 11: Case Scenario Answers

Case Scenario: Designing a Backup Strategy
1. You need to implement backups of some type immediately, which will mean

explaining to management, usually many times, all the ways that a SAN can actu-
ally be taken offline or become unavailable. All the rest of the planning and test-
ing can wait for a later time.

2. As an immediate solution, you should implement a strategy of full, differential,
and transaction log backups. On a 500-GB+ database, it is unlikely that you will
meet the 30-minute downtime threshold, but being able to at least restore the
database to either a point in time or up to the point of failure is a major step for-
ward. To meet the five minutes or less of data loss will require transaction log
backups. Providing for a margin of error, create transaction log backups that run
every two minutes. To minimize the number of transaction log backups that
need to be applied, implement differential backups that run every four hours.
For now, a full backup every day should be sufficient as long as adequate storage
space is available.

3. Thinking longer term, you need to break down the entire database as well as
access patterns on the data. Because of the amount of data in the database,
restore operations will prove time-consuming, and the situation will only get
worse. In many operational systems, data eventually reaches a point at which it
is no longer modified. As data continues to age, it is rarely read and then finally
reaches a point when it is never again accessed. However, you cannot simply
throw it away. You need to determine the aging pattern so that you can imple-
ment archival routines that will reduce the volume of data needing to be backed
up on a daily basis. You should also change the storage structure within the data-
base through distinct placement of tables on specific filegroups as well as using
partitioning. You can switch to filegroup backups that can target a subset of the
database and enable your backups to consume less space as well as provide
more granular and efficient restores. You need to perform all these tasks within
the context of figuring out how to restore all or a portion of the database within
business requirements and then designing the backup strategy required to meet
those needs.

876 Chapter 12: Lesson Review Answers

Z01A62271X.fm Page 876 Friday, April 29, 2005 8:08 PM
Chapter 12: Lesson Review Answers

Lesson 1
1. Correct Answer: D

A. Incorrect: This view is used to return current low-level I/O, locking, latch-
ing, and access method activity for each partition of a table or index in the
database.

B. Incorrect: This view is used to return counts of different types of index
operations and the time each type of operation was last performed.

C. Incorrect: This view is used to determine information about missing
indexes.

D. Correct: This view is used to determine index fragmentation levels.

2. Correct Answer: C

A. Incorrect: The avg_fragment_size_in_pages column displays information
about the average number of pages in one fragment in the leaf level of an
IN_ROW_DATA allocation unit, not external fragmentation levels.

B. Incorrect: The avg_page_space_used_in_percent column displays infor-
mation about internal fragmentation levels.

C. Correct: The avg_fragmentation_in_percent column displays information
about external fragmentation levels.

D. Incorrect: The avg_record_size_in_bytes column displays information
about the average record size in bytes, not external fragmentation levels.

3. Correct Answer: A

A. Correct: You should use the ALTER INDEX…REBUILD statement to correct
index external fragmentation levels of greater than 15 percent.

B. Incorrect: You should use the ALTER INDEX…REORGANIZE statement
only when external fragmentation levels are between 10 percent and 15
percent.

C. Incorrect: You use the ALTER INDEX...DISABLE statement to disable
indexes, not to correct index fragmentation.

D. Incorrect: You use the ALTER INDEX SET STATISTICS_NORECOMPUTE =
ON statement to determine whether distribution statistics are automati-
cally recomputed.

Chapter 12: Lesson Review Answers 877

Z01A62271X.fm Page 877 Friday, April 29, 2005 8:08 PM
Lesson 2
1. Correct Answer: D

A. Incorrect: The sys.stats_columns catalog view displays a row for each col-
umn that is part of sys.stats statistics and does not show when the statistics
were last updated.

B. Incorrect: DBCC SHOWCONTIG displays index fragmentation information.

C. Incorrect: DBCC SHOW_STATISTICS shows statistics information, but
does not show the date the statistics were last updated.

D. Correct: The STATS_DATE function shows the date statistics were last
updated.

2. Correct Answer: A

A. Correct: The sp_autostats system stored procedure displays or changes the
automatic UPDATE STATISTICS setting for a specific index and statistics or
for all indexes and statistics for a specified table or indexed view in the cur-
rent database.

B. Incorrect: The sys.stats catalog view displays a row for each statistic of a tab-
ular object of the type U, V, or TF.

C. Incorrect: The UPDATE STATISTICS statement is used to manually update
statistics.

D. Incorrect: The CREATE STATISTICS statement is used to manually create
statistics.

Lesson 3
1. Correct Answer: C

A. Incorrect: The DBCC SHRINKDATABASE statement will not set a database
to shrink automatically; it is a manual shrink statement.

B. Incorrect: The DBCC SHRINKFILE statement will not set a database to
shrink automatically; it is a manual shrink statement.

C. Correct: Setting each database to shrink automatically by using the ALTER
DATABASE statement will allow the database engine to periodically shrink
the databases.

D. Incorrect: You can use the ALTER DATABASE statement to allow the data-
base engine to automatically shrink a database.

878 Chapter 12: Lesson Review Answers

Z01A62271X.fm Page 878 Friday, April 29, 2005 8:08 PM
2. Correct Answer: A

A. Correct: By creating a job and scheduling the job to run at night, you can
execute the DBCC SHRINKFILE statement against individual database files
during the night, when your end users are not using the database.

B. Incorrect: The ALTER DATABASE statement, which automatically shrinks a
database, cannot be scheduled.

C. Incorrect: The DBCC SHRINKDATABASE statement does not let you
schedule the operation unless you create a job to execute the statement.

D. Incorrect: The ALTER DATABASE statement, which automatically shrinks a
database, cannot be scheduled.

Lesson 4
1. Correct Answer: A

A. Correct: The DBCC CHECKDB statement issues the DBCC CHECKCATA-
LOG statement during its execution.

B. Incorrect: The DBCC CHECKDB statement does not issue the DBCC
CHECKIDENT statement during its execution.

C. Incorrect: The DBCC CHECKDB statement does not issue the DBCC
NEWALLOC statement during its execution because this statement has
been discontinued in SQL Server 2005.

D. Incorrect: The DBCC CHECKDB statement does not issue the DBCC TEXT-
ALLOC statement during its execution; this statement has been discontin-
ued in SQL Server 2005.

2. Correct Answer: C

A. Incorrect: Although you can use this option against large databases, the
PHYSICAL_ONLY option is recommended for frequent integrity checks
against large databases because of its small overhead.

B. Incorrect: Although this option can be used against large databases, the
PHYSICAL_ONLY option is recommended for frequent integrity checks
against large databases because of its small overhead.

Chapter 12: Case Scenario Answers 879

Z01A62271X.fm Page 879 Friday, April 29, 2005 8:08 PM
C. Correct: The PHYSICAL_ONLY option is recommended for frequent checks
against large databases because of its small overhead. This option checks the
physical consistency of the database and can detect torn pages, checksum
failures, and common hardware failures that can compromise a user’s data.

D. Incorrect: Although this option can be used against large databases, the
PHYSICAL_ONLY option is recommended for frequent checks against large
databases because of its small overhead.

Chapter 12: Case Scenario Answers

Case Scenario 1: Defragmenting an Index
1. SQL Server 2005 exposes index fragmentation levels through the

sys.dm_db_index_physical-stats DMF. Your job should call this DMF to check for
index fragmentation and determine whether it needs to perform any operations
to defragment indexes.

2. Your job should check for external fragmentation by looking for values over 10
percent in the avg_fragmentation_in_percent column returned by the
sys.dm_db_index_physical-stats DMF.

3. Your job should check for internal fragmentation by looking for values under 75
percent in the avg_page_space_used_in_percent column returned by the
sys.dm_db_index_physical-stats DMF.

Case Scenario 2: Maintaining Database Integrity
1. When issuing the DBCC CHECKDB statement against large databases, your job

will use the PHYSICAL_ONLY option to lessen the amount of time it takes for the
DBCC CHECKDB statement to complete.

2. As part of your integrity-check job, you plan to periodically execute the DBCC
CHECKDB statement with no options to limit the check.

3. Your plan for correcting errors found during the execution of the DBCC
CHECKDB statement is to first restore the database. If you cannot restore the
database for any reason, you plan to execute the DBCC CHECKDB statement
with one of the repair options to correct the integrity error.

880 Chapter 13: Lesson Review Answers

Z01A62271X.fm Page 880 Friday, April 29, 2005 8:08 PM
Chapter 13: Lesson Review Answers

Lesson 1
1. Correct Answers: A and B

A. Correct: An HTTP endpoint allows only one type of payload: SOAP.

B. Correct: An HTTP endpoint supports either HTTP traffic (specified by the
CLEAR option) or HTTPS traffic (specified by the SSL option).

C. Incorrect: An HTTP endpoint allows only the SOAP payload. A TCP end-
point supports the TSQL payload.

D. Incorrect: An HTTP endpoint supports Windows authentication or certifi-
cation-based authentication.

2. Correct Answers: B and D

A. Incorrect: Mixed Mode allows both Windows accounts and SQL Server
logins to be used. SQL Server logins do not require authentication to the
domain.

B. Correct: The Windows login option forces all logins to be Windows logins.

C. Incorrect: This option communicates over HTTP and does not encrypt the
data.

D. Correct: This option will create encrypted communications between the
client and the endpoint by using HTTPS.

Lesson 2
1. Correct Answer: C

A. Incorrect: By specifying CLEAR for the PORTS parameter, communication
occurs on port 80 in an unencrypted format.

B. Incorrect: By specifying a SCHEMA option of STANDARD in the WEB-
METHOD clause, an XSD schema is not sent back in the SOAP response
because this overrides the SCHEMA setting for the endpoint. To load
results into a DataSet object, an XSD is required.

C. Correct: To ensure encrypted communications, you must specify SSL for
the PORTS parameter. To load the result set into a DataSet, an XSD must be
returned in the SOAP response.

D. Incorrect: Although this endpoint is created with all of the appropriate
options, it is disabled and does not respond to any requests.

Chapter 13: Case Scenario Answers 881

Z01A62271X.fm Page 881 Friday, April 29, 2005 8:08 PM
Chapter 13: Case Scenario Answers

Case Scenario: Creating HTTP Endpoints
1. You need to create two stored procedures in the patient claims database. One

stored procedure will retrieve only the subset of data the service provider is
allowed to see. The other stored procedure will write into the database any data
sent from the service provider.

2. To secure the access, you need to expose these stored procedures as Web meth-
ods on an HTTP endpoint. The endpoint needs to specify PORTS(SSL) to ensure
that all traffic is encrypted on the network. The service provider will need to use
a LOGIN_TYPE of MIXED because it is not allowed any direct access to the Con-
toso network. You will then need to grant this login permission to execute the
stored procedures as well as the CONNECT permission on the HTTP endpoint.

Chapter 14: Lesson Review Answers

Lesson 1
1. Correct Answers: B and D

A. Incorrect: A job category is used to categorize a job.

B. Correct: Transact-SQL job steps use the job owner to determine access to
database objects. For other types of job steps, the owner is used to determine
access authority for proxy accounts that SQL Server Agent impersonates.

C. Incorrect: SQL Server Agent executes jobs.

D. Correct: Only the job owner or a member of the sysadmin role can modify
or delete a job.

2. Correct Answers: A and C

A. Correct: You can specify a job to run on a monthly, weekly, or daily basis.

B. Incorrect: You can create an alert for a performance condition that can exe-
cute a job when the condition is met. However, performance conditions are
not scheduling options.

C. Correct: Jobs can be specified to execute when SQL Server Agent starts.

D. Incorrect: The smallest scheduling interval that you can specify is once per
minute.

882 Chapter 14: Lesson Review Answers

Z01A62271X.fm Page 882 Friday, April 29, 2005 8:08 PM
Lesson 2
1. Correct Answers: B and C

A. Incorrect: A maintenance plan can execute a SQL Server Agent job, and
that job can create a database. But database creation is not a task type for a
maintenance plan.

B. Correct: You can perform full, differential, or transaction log backups as
well as backup history cleanup within a maintenance plan.

C. Correct: You can update statistics, reorganize an index, and rebuild an
index.

D. Incorrect: A maintenance plan can execute a SQL Server Agent job, and
that job can execute an SSIS package. But package execution is not a task
type for a maintenance plan.

Lesson 3
1. Correct Answers: A, B, and C

A. Correct: Although a cell phone is not a notification type, it responds to a
phone number just like a pager and can receive text messages.

B. Correct: A pager can be specified to receive a text message.

C. Correct: In addition to text message notification, an operator can be con-
figured to receive notifications via e-mail and net send.

D. Incorrect: The notification infrastructure does not currently support
instant messaging.

Lesson 4
1. Correct Answers: B and D

A. Incorrect: Although you can specify alerts based on performance counters,
these counters are limited to SQL Server counters.

B. Correct: SQL Server counters can be used to define a performance condi-
tion alert.

C. Incorrect: Changing security permissions cannot be monitored by alerts.

D. Correct: An alert can be created based on an error code, an error severity
level, and an error containing a particular string.

Chapter 14: Case Scenario Answers 883

Z01A62271X.fm Page 883 Friday, April 29, 2005 8:08 PM
Chapter 14: Case Scenario Answers

Case Scenario: Scheduling Administrative Actions
1. The Contoso DBAs should create a job to execute a full database backup every

day at 23:00. Alternatively, they could create a maintenance plan to perform a
full database backup every day at 23:00.

2. Because Contoso shuts down the servers every day at 04:00, the company can-
not count on a job schedule that executes a full backup at a specific time.
Instead, the DBAs should add a second job schedule to the full backup job that
executes when SQL Server Agent starts. This approach ensures that as soon as
SQL Server Agent starts, a full backup is performed.

3. Contoso requirements dictate that the recovery strategy cannot allow more than
10 minutes of data loss. The company also requires a maximum of eight restore
operations to recover the database. Contoso already performs full backups at
23:00 and when SQL Server Agent starts. To meet the recovery requirements, the
company also needs to configure jobs for differential and transaction log back-
ups. DBAs should create a job to execute a differential backup once an hour and
a second job to execute a transaction log backup every 10 minutes. To recover to
any point in time, the DBAs need to apply the following backups in this order:

A. The most recent full backup

B. The most recent differential backup

C. Up to six transaction log backups (one of these being a backup of the tail
of the log)

Chapter 15: Lesson Review Answers

Lesson 1
1. Correct Answers: B and D

A. Incorrect: CPU utilization is a hardware counter that System Monitor can
log. Profiler can trace only SQL Server events.

B. Correct: By specifying the SP: StmtStarting or SP: StmtCompleted event, you
can capture any statement executing within a stored procedure.

C. Incorrect: You use System Monitor to capture network I/O statistics, which
Profiler cannot capture.

D. Correct: The SP:Recompile event logs any recompiles of a stored procedure.

884 Chapter 15: Lesson Review Answers

Z01A62271X.fm Page 884 Friday, April 29, 2005 8:08 PM
2. Correct Answers: A and C

A. Correct: You can save a trace to a file. The format cannot be specified; the
content is saved in binary format.

B. Incorrect: A trace is saved in binary format.

C. Correct: You can save a trace into a table.

D. Incorrect: The file format cannot be specified; SQL Server saves a trace in
a binary format.

3. Correct Answers: B and D

A. Incorrect: You can specify a predefined trace template, which is a collec-
tion of events, columns, and filters. But traces do not have categories.

B. Correct: File rollover can be specified when you specify that you want to
save the trace to a file. This parameter is used in conjunction with the max-
imum file size parameter.

C. Incorrect: You cannot limit the resources that a trace uses, such as mem-
ory, processor, or network I/O. A trace will consume as many resources as
necessary to capture events. However, if the server becomes too busy, some
events may be skipped.

D. Correct: You can filter events by defining filter criteria that an event must
meet for it to be logged. You use filters to focus a trace on a particular prob-
lem.

Lesson 2
1. Correct Answers: B and D

A. Incorrect: System Monitor captures only numerical data and cannot be
used to capture the applications being launched in Windows.

B. Correct: Windows ships with hundreds of counters related to hardware
and Windows performance.

C. Incorrect: You use Profiler to capture the queries being executed in SQL
Server.

D. Correct: You can create custom counters for your application that System
Monitor can use. If you were to create a counter for the number of orders
being placed per second, System Monitor could capture that information.

Chapter 15: Lesson Review Answers 885

Z01A62271X.fm Page 885 Friday, April 29, 2005 8:08 PM
Lesson 3
1. Correct Answers: B and C

A. Incorrect: A deadlock trace does not contain the necessary data for DTA
analysis.

B. Correct: You can load a file containing Transact-SQL into DTA as the
source for analysis.

C. Correct: By using the Tuning template that ships with SQL Server Profiler, you
can generate trace data and save it to a table to be used as a workload source.

D. Incorrect: A counter log is created within System Monitor and cannot be
consumed by DTA.

2. Correct Answers: C and D

A. Incorrect: DTA can recommend the creation of indexed views, but it will
not specify the creation of a regular view.

B. Incorrect: DTA can be used to recommend indexes that can be dropped,
but it is not an explicit configuration option.

C. Correct: You can specify online indexes only by using the Advanced
Options button.

D. Correct: You can restrict tuning to creation of nonclustered indexes only.

Lesson 4
1. Correct Answer: D

A. Incorrect: The sys.dm_os_performance_counters DMV returns all the SQL
Server performance counters as a result set, but it does not contain any
information about blocked processes.

B. Incorrect: Although sys.dm_os_wait_stats can indicate whether processes
have to wait an excessive amount of time for a resource to be allocated, it
does not allow identification of blocking nor can it correlate to specific
users.

C. Incorrect: The sys.dm_db_index_physical_stats DMV will display detailed
statistics for specified indexes within a database, but it does not contain
information about blocked processes.

D. Correct: The sys.dm_exec_requests DMV contains one row for each execut-
able thread in SQL Server. One of the columns in this view is called
blocking_session_id. A nonzero value in this column indicates the SPID that
is blocking the execution of this request.

886 Chapter 15: Lesson Review Answers

Z01A62271X.fm Page 886 Friday, April 29, 2005 8:08 PM
Lesson 5
1. Correct Answer: D

A. Incorrect: The text data column in Profiler displays the query that was exe-
cuted, but cannot be correlated to the statistical information in a System
Monitor counter log.

B. Incorrect: Although a System Monitor counter log maintains a time dimen-
sion internally, it does not correlate to the End Time column in a trace.

C. Incorrect: The SPID in SQL Server does not have any context outside of
SQL Server, so it cannot be understood by a System Monitor counter log.

D. Correct: The Start Time column is used to synchronize events between a
System Monitor counter log and a Profiler trace.

Lesson 6
1. Correct Answers: C and D

A. Incorrect: SQL Server does not lock individual columns in a table.

B. Incorrect: SQL Server does not lock individual columns in a table.

C. Correct: Shared locks can be acquired at the row, page, and table levels.

D. Correct: Exclusive locks can be acquired at the row, page, and table levels.

Lesson 7
1. Correct Answer: D

A. Incorrect: Neither the DTA nor the command-line version, dta.exe, are
allowed to connect to the DAC.

B. Incorrect: osql was the command-line utility in SQL Server 2000 and can-
not connect to the DAC.

C. Incorrect: The object browser in SSMS requires multiple threads, which is
not allowed with the DAC.

D. Correct: The DAC can be accessed only from the SQLCMD command-line
utility or a query window inside SSMS.

Chapter 15: Case Scenario Answers 887

Z01A62271X.fm Page 887 Friday, April 29, 2005 8:08 PM
Chapter 15: Case Scenario Answers

Case Scenario: Diagnosing Performance Problems

NOTE Summary of main activities

The following answers do not represent a complete solution. They are intended to highlight some
of the activities necessary.

1. To find the deadlocks, you first need to use SQL Server Profiler to create a dead-
lock trace. Use the Tuning template to create the trace and specify that output be
sent to a file.

2. After the trace is completed and the trace data is saved to files, load the saved
trace files into a table to be used as a workload source for the DTA.

3. Execute a DTA analysis to look for indexes and indexed views that should be cre-
ated to improve performance.

4. Use the sys.dm_db_missing_index* views and functions to find indexes that SQL
Server has identified as useful for the queries and use this information to deter-
mine new indexes to add.

5. Use the sys.dm_exec* views and functions to identify blocking within the system
and quickly target the code that needs to be fixed.

6. Run various queries against the trace files that you loaded into a table to identify
the top 15 most expensive queries in descending order, which enables you to tar-
get your tuning activity to those queries with the most impact.

7. After you have addressed these immediate performance issues, use SQL Server
Agent to create automated solutions to regularly capture traces, load them into
tables, and then analyze them to identify queries that the IT staff needs to look
at for performance issues.

8. Create automated processes to identify indexes that are not being used so that
the IT team can consider dropping them to improve performance of write
activity.

888 Chapter 16: Lesson Review Answers

Z01A62271X.fm Page 888 Friday, April 29, 2005 8:08 PM
Chapter 16: Lesson Review Answers

Lesson 1
1. Correct Answer: C

A. Incorrect: You cannot execute a BACKUP, RESTORE, or DETACH operation
against a Database Snapshot.

B. Incorrect: Changes are not allowed to any objects or structural elements in
a Database Snapshot.

C. Correct: You can execute any type of SELECT statement against a Database
Snapshot with the exception of full-text queries.

D. Incorrect: A Database Snapshot is read-only and does not allow changes to
data.

2. Correct Answers: A and D

A. Correct: Any user database can be the source of a Database Snapshot.

B. Incorrect: Database Snapshots are not allowed to be created against system
databases.

C. Incorrect: Database Snapshots cannot be created against another Database
Snapshot.

D. Correct: A Database Snapshot can be created against the mirror database
within a Database Mirroring session.

3. Correct Answers: B and C

A. Incorrect: Only pages that have changed since the creation of the Database
Snapshot are copied.

B. Correct: The copy-on-write process writes the original image of the data
page from the source database when it is first changed following the cre-
ation of a Database Snapshot.

C. Correct: The copy-on-write process updates the catalog of changed pages
within the Database Snapshot. The catalog of changed pages is used to
determine where to obtain data to satisfy a query.

D. Incorrect: A Database Snapshot does not generally contain metadata of its
own. Instead, it exposes the metadata from the source database.

Chapter 16: Case Scenario Answers 889

Z01A62271X.fm Page 889 Friday, April 29, 2005 8:08 PM
Lesson 2
1. Correct Answers: B and D

A. Incorrect: You do not need to drop full text catalogs before reverting the
database. The full text catalogs are automatically dropped during the revert
operation and must be rebuilt.

B. Correct: The revert of the database places both the source database and
Database Snapshot into a restoring mode, so no users are allowed to be
connected to the database when the restore operation is initiated.

C. Incorrect: Log shipping does not need to be stopped, but because the
revert process will rebuild the transaction log and break the log backup
chain, log shipping will need to be reinitialized.

D. Correct: Only one Database Snapshot can exist against a source database
when a database is reverted from a Database Snapshot.

Chapter 16: Case Scenario Answers

Case Scenario: Implementing Database Snapshots for Administrative
Actions

1. The job that creates the full backup prior to the import routines can be replaced
with the creation of a Database Snapshot. This eliminates the time required to
back up the database while still giving DBAs the option to return the database to
the state it was in before the import routines were executed.

2. A job can be created in SQL Server Agent that creates Database Snapshots
against the patient claims database at auditor-specified intervals, such as once
per hour. Auditors can then choose the version of the data they want to view.
Database Snapshots require much less administrative time and effort than any
implementation of any other process such as backup/restore, log shipping, or
replication while also minimizing the amount of disk space that is potentially
used.

890 Chapter 17: Lesson Review Answers

Z01A62271X.fm Page 890 Friday, April 29, 2005 8:08 PM
Chapter 17: Lesson Review Answers

Lesson 1
1. Correct Answer: B

A. Incorrect: A publisher is a role for a database participating in replication.

B. Correct: The principal is one of the roles for database mirroring and spec-
ifies the database that is accepting connections and processing transac-
tions.

C. Incorrect: A primary server is a generic role in a High Availability
architecture.

D. Incorrect: The monitor server participates in log shipping.

2. Correct Answers: B and D

A. Incorrect: The High Protection operating mode does not use a witness.

B. Correct: The High Availability operating mode has a witness that is used to
arbitrate automatic failover.

C. Incorrect: The witness cannot serve the database.

D. Correct: A single witness server can service multiple database mirroring
sessions.

Lesson 2
1. Correct Answers: B and D

A. Incorrect: Distribution is configured when you are implementing replica-
tion.

B. Correct: A backup of the primary database is restored to the mirror.

C. Incorrect: If the database is recovered, it cannot participate in the database
mirroring session.

D. Correct: The database must be unrecovered to participate in database
mirroring.

2. Correct Answer: A

A. Correct: The database must be in Full recovery model.

B. Incorrect: Database mirroring requires that you configure the database
with the default SQL Server 2005 (90) compatibility level because the data-
base mirroring feature does not exist in previous versions of SQL Server.

Chapter 17: Lesson Review Answers 891

Z01A62271X.fm Page 891 Friday, April 29, 2005 8:08 PM
C. Incorrect: If the primary database is in a read-only state, transactions can-
not be issued against it, so it is incompatible with database mirroring.

D. Incorrect: The database cannot be placed in Bulk-Logged recovery model
while participating in database mirroring.

Lesson 3
1. Correct Answers: A and C

A. Correct: You can create a TCP endpoint to service TSQL requests, which is
how the default communications on Port 1433 are implemented in SQL
Server 2005.

B. Incorrect: Database mirroring is not supported on the HTTP endpoint type.

C. Correct: You must create all endpoints servicing database mirroring with a
type of TCP and a payload of DATABASE_MIRRORING.

D. Incorrect: HTTP endpoints service SOAP requests, not TSQL requests.

2. Correct Answers: B and D

A. Incorrect: The default state is STOPPED, which does not allow connections
to be created.

B. Correct: You must specify a port number for communications.

C. Incorrect: This option is available only for HTTP endpoints with a SOAP
payload.

D. Correct: To exchange transactions between the principal and mirror data-
base, the endpoint created on the instance hosting these databases must be
created with a role of either PARTNER or ALL.

Lesson 4
1. Correct Answers: B and C

A. Incorrect: High Performance operating mode has asynchronous data transfer.

B. Correct: High Availability and High Protection operating modes have syn-
chronous transfer.

C. Correct: Automatic failover is available only with High Availability operat-
ing mode and only when the witness server is online.

D. Incorrect: High Protection and High Performance operating modes require
manual failover.

892 Chapter 17: Lesson Review Answers

Z01A62271X.fm Page 892 Friday, April 29, 2005 8:08 PM
2. Correct Answers: A and D

A. Correct: High Performance operating mode has asynchronous data trans-
fer.

B. Incorrect: High Availability and High Protection operating modes have
synchronous transfer.

C. Incorrect: Automatic failover is available only with High Availability oper-
ating mode when a witness is present.

D. Correct: High Protection and High Performance operating modes require
manual failover.

3. Correct Answers: B and D

A. Incorrect: High Performance operating mode has asynchronous data
transfer.

B. Correct: High Availability and High Protection operating modes have syn-
chronous transfer.

C. Incorrect: Automatic failover is available only with High Availability oper-
ating mode when a witness is present.

D. Correct: High Protection and High Performance operating modes require
manual failover.

Lesson 5
1. Correct Answer: D

A. Incorrect: Setting PARTNER OFF will remove the database mirroring ses-
sion instead of failing it over.

B. Incorrect: Setting the witness to OFF will remove the witness from the
database mirroring session but will not cause a failover.

C. Incorrect: The FAILOVER option can be executed only from the principal.

D. Correct: The FORCE_SERVICE_ALLOW_DATA_LOSS option can be exe-
cuted from the mirror when the witness is either off or connected to the
mirror and the principal is not visible to the mirror.

Chapter 17: Case Scenario Answers 893

Z01A62271X.fm Page 893 Friday, April 29, 2005 8:08 PM
Lesson 6
1. Correct Answers: A and B

A. Correct: You can issue this command against either the principal or the
mirror.

B. Correct: You can issue this command against either the principal or the
mirror.

C. Incorrect: The only role of the witness server is to monitor the database
mirroring session. You cannot terminate the database mirroring session
from the witness.

D. Incorrect: A distributor is a role in replication and does not participate in
database mirroring.

Chapter 17: Case Scenario Answers

Case Scenario: Implementing Database Mirroring
1. Contoso can configure database mirroring in High Availability operating mode

to achieve its availability goals. This mode allows the database to automatically
fail over if the principal becomes unavailable. Although this configuration alone
does not meet the requirement that the failover be transparent to the applica-
tion, if a minor change is made to the application’s connection logic, Contoso
can take advantage of the transparent client redirect capability. To achieve seam-
less redirection in the event of a failover, Contoso developers would have to trap
an error caused by a disconnect and simply reconnect to the server.

2. Contoso DBAs can offload audit reporting to the mirror by creating a database
snapshot of the mirror.

894 Chapter 18: Lesson Review Answers

Z01A62271X.fm Page 894 Friday, April 29, 2005 8:08 PM
Chapter 18: Lesson Review Answers

Lesson 1
1. Correct Answers: A and D

A. Correct: SQL Server 2005 Enterprise Edition supports log shipping.

B. Incorrect: SQL Server 2005 Express Edition does not support SQL Server
Agent; therefore, the log shipping process is not supported in this edition.

C. Incorrect: SQL Server 2000 cannot participate in a SQL Server 2005 log
shipping configuration because log shipping does not support interversion
operations.

D. Correct: SQL Server 2005 Workgroup Edition supports log shipping.

2. Correct Answer: D

A. Incorrect: The ANSI NULL Default option does not affect the log shipping
configuration.

B. Incorrect: Log shipping can be configured in databases with any compati-
bility level.

C. Incorrect: The Quoted Identifiers Enable option does not affect the log
shipping configuration.

D. Correct: Log shipping requires the primary database to be in either Full or
Bulk-Logged recovery model.

3. Correct Answers: B and C

A. Incorrect: The primary server’s SQL Server Agent service account does not
require full access to the shared folder for backups; only read/write access
is required.

B. Correct: Log shipping requires the primary server to write the backup files
to the backup shared folder.

C. Correct: Log shipping requires the secondary server to read the backup
files in the backup shared folder.

D. Incorrect: Log shipping requires the secondary server to access the backup
shared folder.

Chapter 18: Lesson Review Answers 895

Z01A62271X.fm Page 895 Friday, April 29, 2005 8:08 PM
Lesson 2
1. Correct Answer: B

A. Incorrect: The restore process, by default, preserves the path of the pri-
mary database files.

B. Correct: By default, the restore process maintains the database file paths
between the primary and secondary databases.

C. Incorrect: The restore process, by default, preserves the path of the pri-
mary database files.

D. Incorrect: The Database Default Location applies only to new databases,
not to restored databases.

2. Correct Answers: A and D

A. Correct: You can use the sp_add_log_shipping_secondary_primary and
sp_add_log_shipping_secondary_database system stored procedures to cre-
ate a log shipping configuration.

B. Incorrect: You use the Maintenance Plan Wizard in SQL Server 2000 data-
bases to create log shipping configurations, but not in SQL Server 2005
databases.

C. Incorrect: You don’t use the SQL Server Surface Area Configuration tool to
configure log shipping.

D. Correct: In SSMS, you use the Database Properties window to configure a
log shipping process.

Lesson 3
1. Correct Answers: B and D

A. Incorrect: When the secondary database is in No Recovery mode, users
cannot query it.

B. Correct: When the log shipping configuration is in No Recovery mode, the
secondary database is not available for users to query.

C. Incorrect: Because the secondary database is not available for user queries,
you can’t use the secondary server to increase the scalability/performance
of your application.

D. Correct: Because the secondary database is not available for user que-
ries, you can use it as a standby server to increase the availability of your
application.

896 Chapter 18: Lesson Review Answers

Z01A62271X.fm Page 896 Friday, April 29, 2005 8:08 PM
2. Correct Answer: C

A. Incorrect: Disconnecting users from the secondary database is one of the
options for Standby mode.

B. Incorrect: When log shipping is in No Recovery mode, users cannot query
the secondary database.

C. Correct: The DBA must decide whether users will be disconnected from
the secondary database during the restore log task or whether to leave
users connected.

D. Incorrect: Disconnecting users from the secondary database is one of the
options of Standby mode.

Lesson 4
1. Correct Answer: B

A. Incorrect: Log shipping does not provide an automatic failover configura-
tion.

B. Correct: A monitor server provides a central location to store combined
detail and historic records of log shipping tasks on the primary and sec-
ondary servers.

C. Incorrect: The monitor server does not reduce the workload of the primary
server; it only keeps a record of log shipping tasks.

D. Incorrect: The monitor server does not reduce the workload of the second-
ary server; it only keeps a record of log shipping tasks.

2. Correct Answers: C and D

A. Incorrect: The log shipping configuration is always stored in the msdb
database.

B. Incorrect: The monitor server configuration does not include any operator
configuration.

C. Correct: The History Retention option determines how long the results of
log shipping tasks will be stored.

D. Correct: The Monitor Instance option sets the name of the database engine
instance responsible for tracking the log shipping process.

Chapter 18: Case Scenario Answers 897

Z01A62271X.fm Page 897 Friday, April 29, 2005 8:08 PM
Chapter 18: Case Scenario Answers

Case Scenario 1: Providing Reporting Scalability
1. Use a log shipping configuration consisting of one primary server and two sec-

ondary servers.

2. Use Standby mode and then redirect reports and PivotTable queries to the sec-
ondary servers.

3. You need to make sure that the recovery model of the primary database is set to
either Full or Bulk-Logged; log shipping is not supported in the Simple recovery
model.

Case Scenario 2: Providing Fault Tolerance for Multiple Servers
1. Use four log shipping configurations to copy databases from each of the primary

servers onto a single secondary server that you will use as a standby server for
high availability. This strategy minimizes cost while still providing Fabrikam,
Inc. with increased reliability for its database applications.

2. Use No Recovery mode to increase the availability of the applications.

3. The secondary server must have access to the network backup shared folder of
each configuration. Each primary server must have read and write access to its
shared folder.

Chapter 19: Lesson Review Answers

Lesson 1
1. Correct Answers: B and D

A. Incorrect: Snapshot replication publishes all data every time; it does not
require monitoring changes in the publishing database.

B. Correct: Transactional replication uses the Log Reader Agent to monitor
the transactional log and capture data changes.

C. Incorrect: Merge replication uses a combination of uniqueidentifier col-
umns, triggers, and tables to capture changes in the database.

D. Correct: Peer-to-peer replication is a special implementation of transac-
tional replication; therefore, it uses the transaction log to monitor changes
in the publishing database.

898 Chapter 19: Lesson Review Answers

Z01A62271X.fm Page 898 Friday, April 29, 2005 8:08 PM
2. Correct Answer: D

A. Incorrect: The Snapshot Agent is responsible for creating the snapshot.

B. Incorrect: In transactional replication, the Distribution Agent delivers the
snapshot and applies changes to the publishing database.

C. Incorrect: The Merge Agent delivers snapshots only in merge replication.

D. Correct: The Log Reader Agent monitors the transaction log and captures
the changes in published articles.

Lesson 2
1. Correct Answer: C

A. Incorrect: A shared folder is not required in merge replication.

B. Incorrect: A shared folder is not required in transactional replication.

C. Correct: A pull subscription configures the Merge or Distribution Agent to
run at the Subscriber. So you must use a shared folder to access snapshot
information.

D. Incorrect: A push subscription configures the Merge or Distribution Agent
to run at the Distributor, so you can use a local folder to access snapshot
information.

2. Correct Answer: D

A. Incorrect: The sp_adddistpublisher stored procedure configures a Publisher
to use a specified distribution database.

B. Incorrect: The sp_adddistributor stored procedure registers a remote or
local server as the Distributor of this Publisher.

C. Incorrect: The sp_adddistributiondb stored procedure creates the distribu-
tion database by using the parameters you specify.

D. Correct: The sp_replicationdboption stored procedure sets replication data-
base options, including enabling publishing.

Chapter 19: Lesson Review Answers 899

Z01A62271X.fm Page 899 Friday, April 29, 2005 8:08 PM
Lesson 3
1. Correct Answer: B

A. Incorrect: PAL provides security to the publication.

B. Correct: PAL is equivalent to the Windows ACL, except that it secures pub-
lications.

C. Incorrect: PAL provides security to the publication.

D. Incorrect: PAL provides security to the publication.

2. Correct Answers: B and D

A. Incorrect: Subscribing to a publication requires db_owner membership at
the publishing database. The db_datareader access level is not enough.

B. Correct: Subscribing to a publication requires db_owner membership at
the publishing database.

C. Incorrect: Subscribing to a publication requires db_owner membership at
the Subscriber database. The db_datawriter access level is not enough.

D. Correct: Subscribing to a publication requires db_owner membership at
the Subscriber database.

Lesson 4
1. Correct Answers: A and B

A. Correct: NET Framework business object components are written in man-
aged code to resolve replication conflicts.

B. Correct: COM components are written in unmanaged code (for example,
C and C++) to resolve replication conflicts.

C. Incorrect: SQL Server does not support conflict resolution through user-
defined functions (UDFs).

D. Incorrect: SQL Server does not support trigger-based conflict resolution.

2. Correct Answer: D

A. Incorrect: Conflict resolvers are configured at the article level.

B. Incorrect: Conflict resolvers are configured at the article level.

C. Incorrect: Conflict resolvers are configured at the article level.

D. Correct: Conflict resolvers are configured at the article level in each
publication.

900 Chapter 19: Case Scenario Answers

Z01A62271X.fm Page 900 Friday, April 29, 2005 8:08 PM
Lesson 5
1. Correct Answer: B

A. Incorrect: SSMS can be used to configure and monitor replication, but
SSRM simplifies replication monitoring even further.

B. Correct: SSRM is designed to simplify the DBA’s replication monitoring
tasks.

C. Incorrect: SSCM is the services configuration tool; it does not help the DBA
monitor replication.

D. Incorrect: SSEUR is a tool that lets SQL Server users authorize Microsoft to
collect information about features usage and serious errors.

2. Correct Answer: C

A. Incorrect: SSMS does not help DBAs create a replication baseline.

B. Incorrect: SSRM does not help DBAs create a replication baseline.

C. Correct: System Monitor lets DBAs capture performance counters to create
a replication baseline, which you can later use to compare the performance
of the modified replication process against.

D. Incorrect: Event Viewer is an important tool in the monitoring activity, but
it does not help DBAs create a replication baseline.

Chapter 19: Case Scenario Answers

Case Scenario 1: Providing Local Access to Reports
1. Because you need to replicate a summary table, which is small in size and con-

tains relatively static information, you can use snapshot replication.

2. If you use pull subscription, the Snapshot folder must be a shared folder. And in
this case, you do not need to grant any rights to the distribution database.

3. Make the user’s login a member of the replmonitor database role in the distribu-
tion database.

Chapter 20: Lesson Review Answers 901

Z01A62271X.fm Page 901 Friday, April 29, 2005 8:08 PM
Case Scenario 2: Providing Fault Tolerance for Multiple Servers
1. Merge replication is the best alternative because it offers great site independence

and the possibility of changes at every site.

2. Merge replication changes the schema of tables by adding a uniqueidentifier col-
umn, if none exists, to all tables or underlying tables. Some applications will not
handle the schema change and might fail or behave unexpectedly.

3. Programmers can use Microsoft COM-based conflict revolvers, create a .NET
business component, or create a COM-based conflict revolver to resolve data
conflicts if the same data is modified at the same time. They can also use the
Stored Procedure Microsoft COM-based conflict resolver and create the required
logic in Transact-SQL.

Chapter 20: Lesson Review Answers

Lesson 1
1. Correct Answers: B and C

A. Incorrect: A dialog is a type of conversation.

B. Correct: A conversation provides the means for placing messages on a
queue.

C. Correct: A queue stores messages until they are processed.

D. Incorrect: A message is data that is sent, but it is not a Service Broker object
that you can define.

Lesson 2
1. Correct Answers: C and D

A. Incorrect: A validation option of EMPTY specifies that the message body
should be NULL. But NULL is not a valid option.

B. Incorrect: ANY is an option for the CREATE CONTRACT statement.

C. Correct: Specifying this validation option causes a parser to be loaded to
ensure that a valid XML document is in the message body.

D. Correct: When a value of NONE is specified, the message body can contain
any data in any format. It is up to the application to understand the format
of the message body.

902 Chapter 20: Lesson Review Answers

Z01A62271X.fm Page 902 Friday, April 29, 2005 8:08 PM
2. Correct Answer: C

A. Incorrect: Valid XML for a message is determined by the definition of a
message type.

B. Incorrect: Messages are stored on queues, and the CREATE QUEUE com-
mand defines where they are stored.

C. Correct: A contract specifies a list of allowed message types that will be
valid for a conversation that uses the contract.

D. Incorrect: When a conversation is started, it defines specifies the services
that it will be using along with the contract the services will be bound by.
But a contract defines only which service can use a particular message type,
not the actual services involved.

Lesson 3
1. Correct Answer: B

A. Incorrect: The retention parameter specifies whether to keep messages
until the conversation that processed them has been explicitly closed or
whether to discard the messages as soon as they are processed.

B. Correct: Activation causes a stored procedure to be launched when a new
messages arrives on a queue, as long as a stored procedure is not already
running. This feature will launch additional procedures up to a configured
maximum if the rate of inbound messages exceeds the rate at which they
are being processed.

C. Incorrect: The MAX_QUEUE_READERS option limits the number of pro-
cedures that are activated but does not activate them to process messages.

D. Incorrect: The stored procedure that is specified for activation processes
messages on the queue and does not launch new instances of itself.

2. Correct Answers: C and D

A. Incorrect: A contract defines the message types that are allowed.

B. Incorrect: A dialog is a type of conversation that specifies the services to
use along with the contracts to use that are defined for those services.

C. Correct: A queue is defined for each service, specifying the endpoint for a
conversation.

D. Correct: One or more contracts are defined for the service to restrict the
types of conversations in which the service can participate.

Chapter 20: Lesson Review Answers 903

Z01A62271X.fm Page 903 Friday, April 29, 2005 8:08 PM
Lesson 4
1. Correct Answer: B

A. Incorrect: The message ID uniquely identifies the message but does not
provide an order to messages.

B. Correct: Each message is tagged with a sequence number that is used to
ensure that messages are processed in order.

C. Incorrect: A conversation can contain many messages; therefore, the con-
versation ID cannot provide a way to order messages.

D. Incorrect: The contract ID uniquely identifies the contract being enforced
for the conversation but does not have any capability to order messages.

Lesson 5
1. Correct Answers: A and B

A. Correct: The SEND command must be the first statement in a batch. If it is
not the first statement in a batch, the previous command must be explicitly
terminated with a semicolon.

B. Correct: To place a message on a queue, the conversation has to be speci-
fied in the SEND command by using the conversation handle.

C. Incorrect: The message type is an optional parameter. To build implemen-
tation-independent applications, the message-type checking should be left
up to the contract and message type elements.

D. Incorrect: The queue is not specified for the SEND command because the
conversation provides the necessary infrastructure to determine the cor-
rect queue to use.

904 Chapter 20: Case Scenario Answers

Z01A62271X.fm Page 904 Friday, April 29, 2005 8:08 PM
2. Correct Answer: C and D

A. Incorrect: The RECEIVE command does not perform any type checking via
the contract because that capability is handled when a message is placed on
the queue.

B. Incorrect: The RECEIVE command does not perform any type checking via
the message type because that capability is handled when a message is
placed on the queue.

C. Correct: The RECEIVE command must be the first statement in a batch. If
it is not the first statement in a batch, the previous command must be
explicitly terminated with a semicolon.

D. Correct: The RECEIVE command is built to generically process messages on a
queue. However, it needs to know which queue to process to retrieve messages.

Chapter 20: Case Scenario Answers

Case Scenario: Building a Service Broker Application
1. Although the business has rather complex processes and routing requirements,

from an IT perspective, it is actually quite straightforward. The entire side of the
business that deals with customer orders and inventory is simply a very large mes-
sage queue. You would convert all the custom code into a Service Broker applica-
tion. Converting all the code, however, shouldn’t be a single-step operation. You
should accomplish the conversion in stages to minimize the impact on operations.

2. The first piece to convert is customer requests. Instead of the requests being sub-
mitted via the existing code, requests should be submitted to a Service Broker
queue. Messages in this queue would then be forwarded to the custom code han-
dling the next part of the process.

3. The second piece to be converted is the logic required to process a request. This
logic evaluates the request and generates one or more orders, along with possi-
bly forwarding all or part of a request to a user. The advantage in this step is that
Service Broker can be used to manage the process that generates the orders pro-
cessed by the existing code and to drop the restocking notices on a queue for later
processing. Within the same conversation, Service Broker can also be used to
send messages to Notification Services with order status updates, restock notices,
and brokerage requests. This integration produces a more proactive process that
alerts applications and people to processing that needs to be done instead of
requiring them to poll for new work.

Chapter 21: Lesson Review Answers 905

Z01A62271X.fm Page 905 Friday, April 29, 2005 8:08 PM
4. You would then continue replacing custom code with Service Broker functional-
ity for each additional business process down the chain. You could also layer in
Notification Services to handle all the customer and internal notifications so that
all the custom code for this could be eliminated, freeing up developers even
more. Service Broker would provide the messaging infrastructure, with SQL
Server providing the security and availability aspects of the solution. And even-
tually, you would eliminate all the custom code with a request being managed
from submission to customer delivery using Service Broker. This implementa-
tion would free up significant resources to focus on other projects.

Chapter 21: Lesson Review Answers

Lesson 1
1. Correct Answer: C

A. Incorrect: A full-text catalog is a storage structure that is external to a data-
base.

B. Incorrect: The msdb database does not contain full-text catalogs.

C. Correct: A full-text catalog is an external storage structure that is created in
a specified directory on disk.

D. Incorrect: The specification of a filegroup links a full-text catalog to a data-
base, but the catalog is stored in an external directory structure.

Lesson 2
1. Correct Answers: B and D

A. Incorrect: You can use a primary key column, but the requirements for a
full-text index are much stricter. Not only does the column have to be
unique, but the index can contain only a single column.

B. Correct: A single-column, nonnullable, unique index is required for a full-
text index.

C. Incorrect: Although you can use an image column, doing so requires you
to add to your table a character column to identify the type of file stored in
the column.

D. Correct: You can create a full-text index on any column of a text-based data
type.

906 Chapter 21: Lesson Review Answers

Z01A62271X.fm Page 906 Friday, April 29, 2005 8:08 PM
Lesson 3
1. Correct Answer: B

A. Incorrect: REORGANIZE is an option for a full-text catalog, not an individ-
ual full-text index.

B. Correct: Full-text indexes can specify FULL, INCREMENTAL, or UPDATE
as the population mode.

C. Incorrect: REBUILD is an option for a full-text catalog, not an individual
full-text index.

D. Incorrect: A FULL population does a complete rebuild, but there is no
option setting called COMPLETE.

Lesson 4
1. Correct Answer: D

A. Incorrect: THESAURUS is an option for CONTAINS and CONTAINSTABLE
queries.

B. Incorrect: NEAR is an option for CONTAINS and CONTAINSTABLE que-
ries.

C. Incorrect: WEIGHT is an option for CONTAINS and CONTAINSTABLE que-
ries.

D. Correct: The LANGUAGE option specifies which noise word and language
files the word breaker should use for the search arguments in the query.

Chapter 21: Case Scenario Answers 907

Z01A62271X.fm Page 907 Friday, April 29, 2005 8:08 PM
Chapter 21: Case Scenario Answers

Case Scenario: Building Full-Text Indexes
1. Because of Contoso’s large volume of text-based data and documents, this sce-

nario is a perfect application for SQL Server 2005 Full-Text Search. The claims
database might have discrete columns for items such as doctor name, company
name, and injury, but these columns are likely incomplete. This situation isn’t
due to lack of input on the part of Contoso employees, but instead because mul-
tiple doctors or even multiple companies might be involved in a single claim,
with that data being contained in the supporting documentation.

2. By building full-text indexes over the various columns that contain textual data
and documents, analysts can execute accurate queries that do not depend on a
user extracting data from potentially large volumes of data. In addition, the sup-
porting documents can simply be added to the database, and the full-text index-
ing process will take care of indexing all the data as well as synonyms and
derivatives of words.

Z01A62271X.fm Page 908 Friday, April 29, 2005 8:08 PM

Z02G62271X.fm Page 909 Friday, April 29, 2005 8:09 PM
Glossary

activation The process by which stored proce-
dures are automatically launched when mes-
sages are placed into the queue. This process
also controls whether a single stored proce-
dure is launched or multiple procedures are
necessary to keep up with the load.

active log The portion of a transaction log
that contains committed transactions that
have not yet been backed up. It also contains
any open transactions.

aggregate function A function that operates
on sets of rows instead of on individual val-
ues.

alert A system state that triggers a response,
such as notifying an operator or executing a
job.

alignment Occurs when all the indexes for a
table as well as the table itself are partitioned
by using the same partition function.

asymmetric key Combines a private key and
its corresponding public key. An asymmetric
key is stronger than a symmetric key, but it is
also more resource-intensive. (See also certif-
icate; symmetric key.)

asynchronous processing An operation that is
started and left to run while other work is
performed. The initiator of the operation
does not control the timing or execution of
the operation.

authentication The process of validating that
the user attempting to connect to SQL Server
is authorized to do so.

backup A copy of a database, filegroup, file, or
transaction log that can be used to restore
data, typically after a serious database error
or a system failure. Backups can be used
alone or as part of a sequence.

backup device A predefined pointer to a
backup location. Instead of dynamically
specifying a tape or disk location within the
backup command, a backup device assigns a
name to the physical location, and this name
can then be reused.

backup file A file that stores a full or partial
database, transaction log, or file and file-
group backup.

backup strategy The combination of backups
that are used for a given database to ensure
that it can be restored to meet business
requirements. (See also restore strategy.)

bcp The bulk copy program command-line
utility. An external program that runs out-
side of the SQL Server process to bulk copy
data either into or out of SQL Server.

best-effort restore The general term for
enabling the CONTINUE_AFTER_ERROR
option of the restore command. This process
enables a restore to continue even if errors in
the backup media are found.

blocking A multiuser access control mecha-
nism. SQL Server uses locking mechanisms
to control the integrity of data when it can be
accessed by multiple users. A block occurs
when a process requests data while that data
is exclusively locked by another process.

boundary points The values used to deter-
mine where the data in a table or index is
divided into partitions.

broken ownership chain A permission con-
flict between dependent objects that pre-
vents an object from being used.

B-tree A balanced tree structure on which
indexes are built. Because a B-tree is symmet-
ric, any query requires the same amount of
resources to locate a given value.
909

910 Glossary

Z02G62271X.fm Page 910 Friday, April 29, 2005 8:09 PM
BULK INSERT A Transact-SQL command to
insert data into a SQL Server table or view.

Bulk-Logged recovery model A process in
which the database engine minimally logs
bulk operations such as SELECT INTO and
BULK INSERT. In this recovery model, if a
log backup contains any bulk operation, the
database can be restored to the end of the
log backup, not to a point in time. The Bulk-
Logged recovery model is intended to be
used temporarily during large bulk opera-
tions. (See also Full recovery model; Simple
recovery model.)

case expression A Transact-SQL construct
that lets developers express complex switch
logic anywhere in Transact-SQL in which a
valid expression can be used.

catalog of changed pages A list of the pages
that have changed in a source database since
a Database Snapshot was created. This cata-
log is used to determine which page to
retrieve data from: the page in the source
database or the page in the Database Snap-
shot.

catalog population A background process
that loads word breakers, noise word files,
language files, and (optionally) filters and
protocol handlers to parse text and image
columns to extract a list of unique words
contained in one or more columns, tokenize
them, and build them into an index. (See also
index population.)

certificate A public key certificate is a digitally
signed statement that maps the value of a
public key to the identity of the person,
device, or service that holds the correspond-
ing private key. A certificate is the strongest
encryption mechanism offered by SQL
Server. SQL Server 2005 can create self-signed
certificates that follow the X.509 standard.
(See also asymmetric key; symmetric key.)

clustered index An index that causes the rows
on data pages as well as data pages them-
selves to be sorted according to the cluster-
ing key. A table can have only one clustered
index.

clustering key The column(s) used to define a
clustered index.

code page For character and Unicode data, a
definition of the bit patterns that represent
specific letters, numbers, or symbols (such
as 0x20 representing a blank space and 0x74
representing the character “t”). Some data
types use 1 byte per character; each byte can
have 1 of 256 different bit patterns.

collation A set of rules that determines how
data is compared, ordered, and presented.
Character data is sorted using collation
information, including locale, sort order,
and case sensitivity.

composition The process of transforming a
set of relational tables into XML data.

conflict resolver A .NET Framework (man-
aged code) or COM (unmanaged code) com-
ponent that is designed to resolve conflicts
that might occur in merge replication.

constraint A means for enforcing specific busi-
ness rules, such as boundary points on data
values or uniqueness.

contract A component within a Service Broker
application that defines the message types
allowed for a conversation as well as the end-
point that is allowed to use a message type.

conversation A one-way or two-way ordered
exchange of messages between endpoints in
a Service Broker application.

conversation group A logical organization of
conversations. It can contain a single conver-
sation or multiple conversations that are
related to each other based on application
logic.

cooperative multiprocessing The process
that SQL Server uses internally to schedule
threads for execution on a processor. This
process causes a single thread at a time to
execute on a processor and manages the
flow of threads to ensure that threads wait-
ing on resources to be allocated do not
monopolize a processor.

Glossary 911

Z02G62271X.fm Page 911 Friday, April 29, 2005 8:09 PM
Copy Files task The option responsible for
copying files from a primary server to a sec-
ondary server during a log shipping process.

copy-on-write The technology used to copy
the before image of a data page into a Data-
base Snapshot to maintain the point-in-time
state of the data.

corrupt page quarantine The process that
marks a page as corrupted, which enables
subsequent actions against the table that do
not need to interact with the given page to
succeed instead of the entire table or data-
base being taken offline.

covering index An index used to satisfy a
query in its entirety.

crawl The process that performs a full or par-
tial population of a full-text index.

cross-tabulation A common business report
format in which rows are made into columns.

DAC See Dedicated administrator connection.

data definition language (DDL) trigger Trig-
ger that fires in response to DDL operations
such as CREATE, ALTER, and DROP.

data file A file that contains data and objects
such as tables and indexes. (See also log file.)

data manipulation language (DML)
trigger Trigger that fires in response to

INSERT, UPDATE, and DELETE opera-
tions.

Database Engine Tuning Advisor (DTA) A tun-
ing tool that ships with SQL Server 2005. It
takes a SQL Server Profiler trace as an input
and analyzes it against a live database to
determine whether structural changes such
as indexes, statistics, or partitioning can
improve query performance.

Database Mail The new solution for sending
messages from the SQL Server 2005 data-
base engine.

Database Mail account Contains the informa-
tion that SQL Server uses to send e-mail
messages to the Simple Mail Transfer Pro-
tocol (SMTP) server, such as the SMTP
server name, the authentication type, and
the e-mail address.

Database Mail profile A collection of Data-
base Mail accounts. Database Mail profiles
can be private or public. For a private profile,
Database Mail maintains a list of users that
can use the profile. For a public profile,
members of the msdb database role Data-
baseMailUserRole can use the profile.

database master key An optional symmetric
key that you can create at the database level
to encrypt certificates and keys in a data-
base.

database mirroring A SQL Server 2005 high
availability technology configured between a
principal and mirror database and an
optional witness server. It maintains close
synchronization of data and the database
schema and offers the option of automatic
failover.

database mirroring role Defines the operat-
ing state of each participant in a database
mirroring session. There are three possible
roles: principal, mirror, and witness.

database mirroring session A principal data-
base, mirror database, and optional witness
server configured to exchange data by using
one of three operating modes: High Availabil-
ity, High Performance, or High Protection.

database partners The term for a pair of prin-
cipal and mirror databases participating in a
database mirroring session.

database restore A multiphase process that
copies all the data and log pages from a spec-
ified backup to a specified database (the
data-copy phase) and rolls forward all the
transactions that are logged in the backup
(the redo phase). At this point, by default, a
restore rolls back any incomplete transac-
tions (the undo phase), which completes the
recovery of the database and makes it avail-
able to users.

database role A set of built-in database roles
provided by each user database. You can use
it to group database users for improved man-
agement. You can also create your own data-
base roles to group database users and
assign permissions on a per-group basis.

912 Glossary

Z02G62271X.fm Page 912 Friday, April 29, 2005 8:09 PM
Database Snapshot A point-in-time, read-only
version of a source database. Data returned
from a Database Snapshot is fixed to the
instant in time when you created the Data-
base Snapshot.

DDL trigger See data definition language
(DDL) trigger.

deadlock A situation that occurs when two
processes acquire competing locks on data
in a way that does not allow either process to
complete the transaction.

deadlock detection The algorithm that SQL
Server uses to select the deadlock victim to
resolve a deadlock.

deadlock trace A special trace captured via
SQL Trace that identifies the processes and
transactions that created a deadlock.

deadlock victim The process that is chosen to
be terminated to resolve a deadlock.

Dedicated administrator connection (DAC) A
connection created as a special TCP end-
point that can be accessed via SQLCMD.
Using a DAC, a database administrator can
always connect to a SQL Server even when
the server is too busy to allow other connec-
tions.

default filegroup When you create a database
object and do not specify a filegroup, the
object will be allocated to the default file-
group.

dequeue The process of removing messages
from a queue.

derived table A special kind of subquery that
can be selected from and joined to like a
table.

destination See target or destination.

deterministic function A function that
always returns the same value when
called. The SQL Server built-in function
COS, which returns the trigonometric
cosine of a specified angle, is an example
of a deterministic function. (See also non-
deterministic function.)

dialog A conversation that occurs between
two endpoints.

differential backup A process that backs up
all data pages that have changed since the
last full backup.

differential restore A restore operation that
uses a differential backup.

DMFs See Dynamic Management Functions
(DMFs).

DML trigger See data manipulation language
(DML) trigger.

DMVs See Dynamic Management Views
(DMVs).

Document Object Model (DOM) A World
Wide Web Consortium (W3C) specification
for the way an application programming
interface (API) traverses XML documents.

domain In Windows Server 2003 security, a
collection of computers that are grouped for
viewing and administrative purposes and
that share a common Active Directory direc-
tory services database.

DTA See Database Engine Tuning Advisor.

Dynamic Management Functions (DMFs) A
set of functions that works with the SQL
Server instrumentation to display additional
data such as query plans.

Dynamic Management Views (DMVs) A set of
views that is dynamically populated with a
variety of SQL Server instrumentation.
These views provide a granular view across
many internal operations.

Edge Table A construct that represents the
structure for an XML tree in tabular format.
Each row identifies the properties for each of
the nodes that form the XML structure.

Glossary 913

Z02G62271X.fm Page 913 Friday, April 29, 2005 8:09 PM
endpoint A connection mechanism that is
used by any process that needs to access the
SQL Server engine to process transactions. A
conversation endpoint defines the two data-
base instances participating in a conversa-
tion. A Service Broker endpoint is a payload
type for a more general SQL Server endpoint
that allows Service Broker applications to
send and receive messages across SQL
Server instances. For database mirroring,
you create TCP endpoints on every instance
involved in the database mirroring session.

enqueue The process of placing messages on
a queue.

external fragmentation The degree to which
index pages are out of order physically.

extraction, transformation, and loading
(ETL) A general term for tools that are used to

perform extraction, transformation, and
loading functions and more. Examples of
ETL tools include SQL Server 2000 Data
Transformation Services (DTS) and SQL
Server 2005 Integration Services (SSIS).

filegroup A logical structure that lets database
administrators group data files and manage
them as a logical unit.

filegroup backup A process that backs up the
individual filegroups within a database.

filegroup restore A process that restores one
or more filegroups to a database.

filter A service that loads during a full-text
index population operation that needs to
parse varbinary and/or image columns. Fil-
ters are available for specific file types such
as Word, PowerPoint, and Excel.

fixed server role A role such as sysadmin or
securityadmin that enables you to assign
administrative privileges to logins.

flat file A file that is not hierarchical in nature
or a file that contains data meant for a single
table in a database.

FLWOR expression The most important
XQUERY expression, which enables devel-
opers to write complex querying logic that
iterates through a set of nodes that match a
specified filter. For each matching node, dif-
ferent data-manipulation functions, extrac-
tion methods, and constructors can be
applied.

foreign key The structure used to enforce ref-
erential integrity by ensuring that values can-
not be entered into a column unless they
already exist in a related table.

full database backup A process that backs up
all data pages in a database that have been
allocated to store data.

full database restore A process that recovers
an entire backup, replacing anything that
existed previously.

Full recovery model A recovery model in
which all operations are logged in the trans-
action log and the database engine never
truncates the log. You should perform trans-
action log backups to truncate the transac-
tion log. The Full recovery model lets you
restore a database to the point of failure (or
to an earlier point in time in SQL Server
2005 Enterprise Edition). (See also Bulk-
Logged recovery model; Simple recovery
model.)

full-text catalog An external storage structure
that contains one or more full-text indexes.

full-text index An external structure con-
tained within a full-text catalog. A full-text
index is an inverted, compressed stack of
tokens that represents a set of words found
in one or more columns specified for index-
ing for a table.

function A programmatic object that can
return either a table variable or a scalar value
but is not allowed to execute any command
that changes the state of a database.

914 Glossary

Z02G62271X.fm Page 914 Friday, April 29, 2005 8:09 PM
helper service A group of services enlisted for
populating full-text indexes and performing
full-text queries. These services include word
breakers, noise word files, and language
files.

hidden tables Tables that exist within SQL
Server and that are fully recognized by the
storage engine. You cannot issue INSERT,
UPDATE, DELETE, or SELECT statements
directly against them. They also cannot be
indexed, have their structure altered, or have
triggers created against them. Hidden tables
are exposed by a view.

High Availability operating mode A database
mirroring operating mode that requires a
principal, mirror, and witness; synchro-
nously transfers data from the principal to
the mirror; and allows automatic failure
detection and automatic failover as long as
the witness server is accessible when the fail-
ure occurs.

High Performance operating mode A data-
base mirroring operating mode that requires
only a principal and mirror, asynchronously
transfers data from the principal to the mir-
ror, and allows only a manual failover.

High Protection operating mode A database
mirroring operating mode that requires only
a principal and mirror, synchronously trans-
fers data from the principal to the mirror,
and allows only a manual failover.

histogram Specifies how many rows exactly
match each interval value, how many rows
fall within an interval, and a calculation of
the density of values or the incidence of
duplicate values within an interval.

HTTP endpoint An endpoint type that
enables developers to expose the stored pro-
cedures and functions within a SQL Server
2005 database as Web methods that can be
called from any application using the SOAP
protocol.

index fragmentation The degree to which
index pages are out of order physically or the
degree in which index pages are partially
filled.

index population A build process that is per-
formed for a single full-text index. (See also
catalog population.)

index rebuild The process of rebuilding an
index to remove fragmentation by dropping
and re-creating the index.

index reorganization The process of defrag-
menting the leaf level of clustered and non-
clustered indexes on tables and views. The
reorganization physically reorders the leaf-
level pages to match the logical, left-to-right
order of the leaf nodes while compacting the
index pages.

indexed view A view with a clustered index
created on it so that returned data is materi-
alized on disk for faster performance.

inner join When working with multiple tables
in a query, a type of join that returns match-
ing rows from both tables involved. (See also
outer join.)

input parameter A variable that is passed to a
stored procedure or function.

intermediate level One or more levels within
a B-tree created to ensure that a single page
resides at the root of the index.

internal fragmentation The degree to which
index pages are partially filled.

isolation levels ANSI standard locking behav-
iors that guarantee data and query integrity.

job One or more tasks to execute. You can
optionally configure a job to execute on a
scheduled basis or in response to a user
action or condition in the system.

job schedule Provides the execution parame-
ters required to automatically execute a job
based on a date- or time-based trigger.

job step A block of code to execute. Each job
step usually executes a single discrete busi-
ness operation.

language file A file used to designate lan-
guage-specific attributes for a full-text index
or full-text query.

leaf level The bottom level within an index.

Glossary 915

Z02G62271X.fm Page 915 Friday, April 29, 2005 8:09 PM
linked server A server that lets you access
external data sources—such as a remote SQL
Server; another instance in your server; or an
Access, Oracle, or other database—from your
local Transact-SQL code.

local system account A Windows OS account
that has full administrator rights on the local
computer but has no network access rights.
This account could be used for development
or testing servers that do not need to be inte-
grated with other server applications or
interact with any network resources. But
because of the privileges granted to this
account, it is not recommended that this
account be used for the SQL Server service
or the SQL Server Agent service.

lock escalation The process by which SQL
Server dynamically switches from a fine-
grained lock to a coarser-grained lock, such
as changing from a page-level lock to a table-
level lock.

locking level The level of lock that is acquired
on a resource, which can be either row, page,
or table.

locking promotion A process that occurs with
an update lock. This type of lock starts as a
shared lock and then is changed to an exclu-
sive lock just before the data is modified.

log file A file that contains a transaction log.
(See also data file.)

log pointer A reference used by the lazywriter
process to keep track of the location in a
transaction log where the next write should
occur. This is an internal structure that has
no visibility and cannot be manipulated.

log shipping The automated process of back-
ing up, copying, and restoring a transaction
log from one database on a primary server to
one or more secondary databases on
another server.

log_shipping_monitor_error_detail table A log
shipping table that keeps track of error
details.

log_shipping_monitor_history_detail table A
log shipping table that stores historic infor-
mation about log shipping jobs.

maintenance job A job created within SQL
Server Agent as the output of the Mainte-
nance Plan Wizard.

maintenance plan An SQL Server Integration
Services (SSIS) package consisting of one or
more tasks related to maintenance on a data-
base, such as backups or reindexing.

media set A list of files and/or tapes on which
a backup is stored.

MERGE An operation that removes a bound-
ary point from a partition function.

merge replication A type of replication that
allows multiple servers to modify replicated
data and uses uniqueidentifier columns, trig-
gers, and tables to monitor data changes in
multiple servers.

message The fundamental unit of data within
a Service Broker application. It contains all
the information that needs to be processed.

message type The name for a particular
implementation of a message. It defines the
possible formats allowed within a message
body.

mirror The database within a database mirror-
ing session that is in a recovering state, does
not allow any connections, and is receiving
changes from the principal.

mirror failover The process whereby a mirror
database is promoted to principal and recov-
ered. This process also automatically
demotes the principal to become the mirror
within the database mirroring session.

mirrored backup A process that enables SQL
Server to back up data once but create multi-
ple copies of a database that occur in a single
backup operation.

916 Glossary

Z02G62271X.fm Page 916 Friday, April 29, 2005 8:09 PM
Mixed Mode authentication One of two
mechanisms for validating attempts to con-
nect to instances of SQL Server. Users must
specify a SQL Server login ID and password
when they connect. The SQL Server instance
ensures that the login ID and password com-
bination are valid before allowing the con-
nection to succeed. You can create SQL
Server logins that are not mapped to an oper-
ating system user. You use Mixed Mode
authentication when you need to provide
access to non-Windows users. (See also Win-
dows authentication.)

monitor server A SQL Server database engine
instance that keeps track of a log shipping
process and raises alerts when the process
fails.

monolog A conversation that occurs between
a single endpoint and any number of target
endpoints. This conversation type is not cur-
rently available in SQL Server 2005.

named instance An installation of SQL Server
that has been given a name to differentiate it
from other named instances and from the
default instance on the same computer. A
named instance is identified by the com-
puter name and instance name.

nested trigger A trigger that executes code
that causes another trigger to fire.

Network Service account A special built-in
system account that is similar to authenti-
cated user accounts. This account has the
same level of access to system resources and
objects as members of the Users group. Ser-
vices that run under this account access net-
work resources using the credentials of the
computer account. It is not recommended
that this account be used for the SQL Server
service or SQL Server Agent service account.

No Recovery mode A mode that you use
when you are using a log shipping configura-
tion for availability reasons only. No Recov-
ery mode makes the secondary database
unavailable for users to query.

noise words Commonly used words in a
given language—such as “the,” “a,” and “an”—
that are ignored by index population as well
as full-text queries.

nonclustered index A type of index that does
not cause data pages within a table to be
sorted. You can create up to 249 nonclus-
tered indexes per table.

nondeterministic function Function that can
return a different value each time the func-
tion is called. The SQL Server built-in func-
tion GETDATE() , which returns the current
system date and time, is an example of a
nondeterministic function. (See also deter-
ministic function.)

online index creation A process that uses
row-versioning technology to enable you to
build an index while read and write opera-
tions are occurring in the underlying table.
This feature is available only in SQL Server
2005 Enterprise Edition.

operating mode A configuration that governs
how a database mirroring session synchro-
nizes transactions and which failover
options are available. You can choose from
three operating modes: High Availability,
High Performance, or High Protection.

operator Defines the notification mecha-
nisms and parameters required to send a
message to a person or group of people.

outer join When working with multiple
tables in a query, a type of join that returns
all rows from one or both tables and non-
matching rows from the other table. (See also
inner join.)

output parameter A scalar value that is
returned from a stored procedure.

ownership chain A cascading set of permis-
sions that goes from a parent object to one or
more dependent objects.

Glossary 917

Z02G62271X.fm Page 917 Friday, April 29, 2005 8:09 PM
page split The process that occurs when a
page is filled with data and another row
needs to be written to that page to maintain
the data order. SQL Server then allocates a
new page to the index or table and moves
half the data on the full page to the new page.

parse To analyze and traverse an XML struc-
ture.

partial backup The process of backing up
only a portion of a database.

partial restore The process of restoring only a
portion of a database.

$PARTITION A function that returns the parti-
tion number of a value for a particular parti-
tion function.

partition function A stand-alone object that
defines the boundary points for dividing
data into partitions.

partition scheme Maps a partition function to
physical storage.

payload Restricts the allowed operations for
an endpoint, which can have a specified type
of either TCP or HTTP.

peer-to-peer replication A new kind of trans-
actional replication that allows multiple serv-
ers to subscribe to the same schema and
data, permitting simultaneous changes in
multiple servers.

PerfMon See System Monitor.

point-in-time recovery The capability of a
database using the Full recovery model to
use transaction log backups to recover a
database to a specific time that does not have
to coincide with when the backup was
taken. If a full database backup is done at
midnight and a log backup is done at 04:00,
the database can be recovered to any specific
time between midnight and 04:00, such as
03:41 or 02:22.

primary data file A mandatory data file that
contains information for a database catalog
and points to the other files. The recom-
mended extension for the primary data file
is .mdf. (See also secondary data file.)

primary database The original database that
is distributed to other servers with log ship-
ping. The primary database receives the
updates from the application. (See also sec-
ondary database.)

primary filegroup The filegroup that contains
the primary data file. All system tables are
allocated to the primary filegroup.

primary key A type of constraint that
uniquely identifies each row in a table,
which is important for accurately retrieving
and modifying data.

primary server The SQL Server database
engine instance that owns the primary data-
base. (See also secondary server.)

principal The database within a database mir-
roring session that is recovered and online
and that allows transactions to be processed
against it.

protocol handler A process that uses one or
more filters to extract text data from varbi-
nary and image columns for a word breaker.

pull subscription A subscription in which the
Distribution Agent or Merge Agent runs at
the Subscriber and pulls the subscription
from the Distributor to the Subscriber.

push subscription A subscription in which
the Distribution Agent or Merge Agent runs
at the Distributor and pushes the subscrip-
tion from the Distributor to the Subscriber.

queue A hidden table within SQL Server that
contains all the messages being sent or
received.

queue reader An object that receives mes-
sages from a queue. This object can be a
stored procedure or another application.

RAID 0 Also known as disk striping because it
creates a disk file system called a stripe set.
RAID 0 improves performance for read and
write operations because it spreads these
operations across all the disks in the set.
RAID 0 does not provide fault tolerance.

918 Glossary

Z02G62271X.fm Page 918 Friday, April 29, 2005 8:09 PM
RAID 1 Also known as disk mirroring, it pro-
vides a redundant copy of the selected disk.
RAID 1 improves read performance but can
degrade the performance of write operations.

RAID 5 The most popular RAID level, which
stripes data across the disks of the RAID set
as does RAID 0, but RAID 5 also adds parity
information to provide fault tolerance. Parity
information is distributed among all the
disks. RAID 5 provides better performance
than RAID 1. However, when a disk fails,
read performance is decreased.

read-only filegroup A filegroup configured to
hold database objects that should not be
modified, such as historical tables. All file-
groups can be configured as read-only
except the primary filegroup.

receive To dequeue a message.

recovery model A database option that con-
trols how transactions are logged, whether to
back up the transaction log, and what
restore options are available. Also, the model
under which a database is operating for
recovery purposes.

recursive trigger A trigger that causes itself to
be called either directly or indirectly.

replay trace A special type of trace that is cre-
ated to replay a workload against a test sys-
tem.

replication agent A program that executes the
replication process. The most important rep-
lication agents are Snapshot, Log Reader,
Distribution, Merge, and Queue Reader.

restore strategy The process that is designed
to ensure that a database can be recovered
while meeting business requirements for the
allowed amount of downtime and maximum
data loss. Without a restore strategy, backing
up a database has virtually no purpose.

retention Forces a queue to preserve all mes-
sages related to a conversation until the con-
versation is explicitly closed.

reverting a database The process of recover-
ing the source database from a Database
Snapshot.

root node The single page that resides at the
top of a B-tree.

SAX See Simple API for XML (SAX).

scalar function A function that returns a sin-
gle value.

schema A collection of database objects that
form a single namespace. The main benefit
of schemas is the separation of schemas and
users.

schema collection One or more XML sche-
mas that are bound together through a
name. Used to validate the body of a mes-
sage in a Service Broker application.

secondary data file Optional files that con-
tain objects and data. A database can contain
a maximum of 32,766 secondary files. The
recommended extension for secondary data
files is .ndf. (See also primary data file.)

secondary database The distributed copy of a
primary database that results from log ship-
ping. SQL Server frequently synchronizes
the secondary database through transaction
log restores. (See also primary database.)

secondary server The SQL Server database
engine instance that owns a secondary data-
base. You can configure multiple secondary
servers. (See also primary server.)

semistructured data XML data that can
change from instance to instance and that
defines optional elements. The schema is
heterogeneous and might not be easily repre-
sented using a relational structure. (See also
structured data; unstructured data.)

send To enqueue a message.

service The name assigned to one or more
tasks used to process Service Broker mes-
sages.

Glossary 919

Z02G62271X.fm Page 919 Friday, April 29, 2005 8:09 PM
service master key A symmetric key gener-
ated automatically when you install a SQL
Server 2005 instance. The database engine
uses the service master key to encrypt linked
server passwords, connection strings,
account credentials, and all database master
keys.

showplan A graphical or text-based graph of a
query plan generated by the query opti-
mizer.

shredding The process of transforming XML
data into a format suitable for storage in rela-
tional tables.

Simple API for XML (SAX) An application pro-
gramming interface (API) used to traverse an
XML structure. Instead of loading the whole
XML structure in memory and re-creating a
graph, SAX navigates the tree on a node-by-
node basis and raises an event for each pars-
ing event of a navigated node, such as the
start of a node or the end of a node.

Simple recovery model A recovery model in
which the database engine minimally logs
most operations and truncates the transac-
tion log after each checkpoint. In a Simple
recovery model, you cannot back up or
restore the transaction log. Furthermore,
you cannot restore individual data pages.
(See also Bulk-Logged recovery model; Full
recovery model.)

SMO See SQL Server Management Object
(SMO)

snapshot replication A type of replication that
copies all the data every time it runs to syn-
chronize the Subscriber and the Publisher.

SOAP A platform-independent data-access
protocol that uses XML as an encoding
scheme for request and response parameters
and uses HTTP as a transport mechanism.

source When loading a database, the place
from which the data is coming. For loading a
database table from a flat file, the flat file is
the source. (See also target or destination.)

source database The database against which a
Database Snapshot is created.

sparse file A file that contains at least one
region of unallocated space within its struc-
ture. The allocation table lists the file with
the size specified at creation, but the size on
disk is much lower because of the unallo-
cated regions within the file.

SPID See system process ID (SPID).

SPLIT An operation that adds a new boundary
point to a partition function.

SQL Server Agent proxy A security structure
that you configure to enable a job step to
access various subsystems within SQL
Server, such as the SQL Server Integration
Services (SSIS) execution engine or the repli-
cation engine.

SQL Server Management Object (SMO) A
class library designed to be used with devel-
opment environments such as Microsoft
Visual Studio 2005. It provides a program-
matic interface to objects within SQL Server.

SQL Server Profiler A performance monitor-
ing tool that ships with SQL Server and pro-
vides a graphical user interface (GUI) for
SQL Trace.

SQL Trace The event application program-
ming interface (API) in SQL Server that
enables you to gather data on virtually every
processing subsystem within SQL Server.

Standby mode A mode used to give users
read-only access to a secondary database.
This configuration increases the scalability
of your application by letting you distribute
queries across multiple servers, thereby
reducing the primary server’s workload.

statistics Statistical information created by
SQL Server 2005 regarding the distribution
of values in a column.

stored procedure The name for a batch of
Transact-SQL or CLR code that is stored
within SQL Server and can be called directly
by applications or within other program-
ming constructs.

920 Glossary

Z02G62271X.fm Page 920 Friday, April 29, 2005 8:09 PM
string summary Additional information that
is collected in statistics created on char, var-
char, varchar(max), nchar, nvarchar, nvar-
char(max), text, and ntext columns.

structured data XML data that conforms to a
strict. It is easily represented using a rela-
tional structure. (See also semistructured
data; unstructured data.)

subquery A query that can be used as part of a
larger query to return data from another
table or source.

SWITCH An infinitely scalable operation that
exchanges two partitions between tables.

symmetric key A key used to encrypt and
decrypt data. It is the fastest encryption
mechanism and is suitable for encrypting
frequently accessed data. (See also asymmet-
ric key; certificate.)

sysjobactivity A table in the msdb database
that SQL Server Agent uses to record the cur-
rent activity of SQL Server jobs.

sysjobhistory A table in the msdb database
that SQL Server Agent uses to keep track of
the historic execution of jobs.

System Monitor A Windows-supplied perfor-
mance-monitoring tool used to capture per-
formance counters for hardware, Windows
subsystems, and any other applications that
expose statistical counters. System Monitor
is commonly known as PerfMon.

system process ID (SPID) A number that
uniquely identifies each connection to a SQL
Server server.

table The basic storage structure within a
database that holds all the data stored by
applications.

table-valued function A Function that
returns a table variable.

tail of the log The portion of a transaction log
that contains committed transactions that
have not yet been backed up.

target or destination When loading a data-
base, the place to which the data is going.
For loading a database table from a flat file,
the database table is the target or destina-
tion. (See also source.)

temporary table A table that can be defined
temporarily, making it easier to build com-
plex queries.

token A specialized compressed representa-
tion of a word within a full-text index.

trace The events and data columns that are
output when a specific SQL Trace is exe-
cuted.

trace events Actions that are executed within
SQL Server, such as stored procedures exe-
cuting, database files or logs growing or
shrinking, or query plans being generated.

transaction log backup A backup of the active
portion of a transaction log. This backup
contains only committed transactions and
removes the portion of the log that has been
backed up so that the space can be reused.

transaction log restore A restore operation
that uses one or more transaction log back-
ups.

Transaction Undo File (TUF) The file in which
Standby Mode saves all incomplete transac-
tions. The restore process uses this file to
maintain transactional integrity. When the
next restore process occurs, it restores all the
committed transactions.

transactional replication A type of replication
that uses the transaction log to log changes
in the published articles and then applies
the changes to the Subscribers.

transmission queue A temporary queue that
contains messages that are in the process of
being sent. This queue also holds messages
for retry in the event of unavailability of an
endpoint.

Glossary 921

Z02G62271X.fm Page 921 Friday, April 29, 2005 8:09 PM
Transparent Client Redirection Process that
describes the functionality built into the new
MDAC connection library that ships with
Visual Studio 2005 and that allows principal
and mirror connections to be cached in the
connection object. Failure of the principal
uses this code to redirect a client connection
to the mirror without developer intervention
or custom coding.

trigger Special case of a stored procedure that
does not accept any input parameters. The
code is automatically executed in response
to the data definition language (DDL) or
data manipulation language (DML) opera-
tion that is specified.

TUF See Transaction Undo File (TUF).

typed XML data An XML document or frag-
ment that is structured based on the declara-
tions in an XML schema file.

UMS See User Mode Scheduler (UMS).

unstructured data XML data that does not
conform to any specific structure. Every
instance can follow a completely different
structure, so it is not easily searchable and it
is impossible to represent in a relational
structure. (See also semistructured data;
structured data.)

untyped XML data An XML document or
fragment that does not conform to the decla-
rations in any XML schema file, so its struc-
ture cannot be validated.

updateable view A view that allows data mod-
ifications to a single underlying table. You
use the WITH CHECK OPTION clause on the
CREATE VIEW command to constrain the
changes to only the set of rows that match
the view’s WHERE clause.

updategram An XML structure used to for-
mulate Transact-SQL operations based on
the appearances of XML elements. The oper-
ations are defined by comparing an original
image of the XML with a current image of
the XML. Ddepending on the changes
detected, specific operations are executed.

User Mode Scheduler (UMS) A subsystem
internal to SQL Server that manages alloca-
tion of processor resources. Instead of dele-
gating the allocation to Windows, SQL
Server handles all thread scheduling on pro-
cessors internally. One UMS is created for
each physical or logical processor on a
machine.

user-defined filegroup A type of filegroup is
created by the database administrator to
group secondary files. A database can con-
tain up to 32,766 user-defined filegroups.

validation The mechanism that is applied to a
message body to ensure that it meets format-
ting requirements.

view A named SELECT statement stored in
SQL Server.

wait type A symbolic value that indicates the
type of resource a process is waiting on to
complete execution.

Web service A piece of code that receives
requests and sends responses by using the
platform-independent SOAP protocol.

Web Services Description Language
(WSDL) See www.w3.org/TR/wsdl20/ for the

detailed specification.

Windows authentication The default and rec-
ommended authentication mode for SQL
Server 2005. Only authenticated Windows
users can gain access to the SQL Server
instance. You need to add a Windows login
for each Windows user or group that needs
access to a SQL Server instance. (See also
Mixed Mode authentication.)

Windows collation A set of rules that deter-
mines how SQL Server sorts character data.
It is specified by name in the Windows Con-
trol Panel and in SQL Server 2005 during
setup.

witness (witness server) The arbiter within
the High Availability operating mode. The
purpose of the witness is to guarantee that
the database cannot be served on more than
one instance at the same time.

922 Glossary

Z02G62271X.fm Page 922 Friday, April 29, 2005 8:09 PM
word breaker A routine that extracts valid
words from within a column that is full-text
indexed. This routine is used during index
population and full-text querying.

workload file The SQL Server Profiler trace
that is used as an input to the Database
Engine Tuning Advisor (DTA).

WSDL (Web Services Description Lan-
guage) See www.w3.org/TR/wsdl20/ for the

detailed specification.

XML validation The process of determining
whether an XML instance conforms to the
definitions defined by an XML schema file.

XPATH A World Wide Web Consortium
(W3C) specification that defines a mecha-
nism for searching for specific nodes within
an XML instance, validating both the XML
structure and the XML content.

XPATH axes Represent a step in an XPATH
expression that defines the set of nodes that
the expression should return.

XPATH predicates Represent a conditional fil-
ter applied to the collection of nodes defined
by the axes in an XPATH expression. Only
matching nodes will be returned by the
XPATH expression.

XQUERY A World Wide Web Consortium
(W3C) specification that defines a declara-
tive programming language used to query
XML data.

923

Index

Symbols
1205 errors, 586
32-bit editions, infrastructure requirements for

installation, 10–13
64-bit editions, infrastructure requirements for

installation, 13–15

A
abstraction, services, 795
access control list (ACL), 732
accessing hardware counters, 573
AccountingMgr database role, 84
ACL (access control list), 732
ACTIVATION clause (CREATE QUEUE command), 792
active logs, 419
ad hoc SQL, enabling, 487
Add Publisher dialog box, 763
administrative tasks

implementation of Database Snapshots, 613
scheduling, 525–526

Advanced page (New Job Step window), 499
AdventureWorks database, restoring, 435
AFTER triggers, 367
Agent History Clean Up, Distribution Agent, 704
agents

permissions, 733–734
replication, 703–704

aggregate functions, querying data with Transact-SQL,
177–178

alerts, configuration
monitoring replication, 764–765
SQL Server Agent jobs, 519–523

alias names, tables, 172
ALL option (ALTER INDEX...REBUILD statement), 453
ALTER DATABASE AUTO_SHRINK option, 463
ALTER DATABASE statement, 465

modifying data and log file configuration, 55
syntax, 57

ALTER ENDPOINT statement, 485
ALTER FULLTEXT INDEX command, 826
ALTER INDEX Transact-SQL statement, disabling

indexes, 158
ALTER INDEX...REBUILD

ALL option, 453
index fragmentation management, 452–453
ONLINE option, 453

ALTER INDEX...REORGANIZE, index fragmentation
management, 452

ALTER PARTITION FUNCTION command, SPLIT and
MERGE operators, 226–227

ALTER SCHEMA statement, 85
ALTER SERVICE MASTER KEY statement, 89
ALTER TABLE command, SWITCH operators, 227
ALTER TABLE statement, 131
ALTER USER statement, modifying user properties, 81
American National Standards Institute. See ANSI
annotated keywords, XSD schemas, 299
ANSI (American National Standards Institute), 112
API (application programming interface), 532
applications, Service Broker, 775–811

architecture, 778–783
case scenarios, 809–810
contracts, 784, 787, 788
conversations, 798–802
key terms, 808–809
message types, 784–785, 787–788
practice tasks, 810–811
queues, 790–794, 796
Real World scenarios, 776–777
receiving messages, 803, 804, 805–806
sending messages, 803–804, 805–806
services, 790, 795, 796

approximate numeric data types, 110–111
architecture

Database Mail configuration, 64
full-text indexes, 820–821
Service Broker, 778–783

contracts, 780
conversations, 779–780
enabling Service Broker, 781–782
endpoints, 779
initiator, 779
message types, 780
messaging-application interaction, 780–781
messaging overview, 778–779
queues, 780
services, 780
targets, 779

archiving data, case scenario, 234
articles (replication), 698–699
AS clause (CREATE VIEW command), 241
AS DEFAULT clause (CREATE FULLTEXT CATALOG

command), 818
AS modifier, 189
AS SNAPSHOT OF clause (CREATE DATABASE

command), 605
ASC keyword, 155
assigning permissions to a role, stored procedures,

363–364
asymmetric keys, encryption (SQL Server 2005

configuration), 89–90

Z03I62271X.fm Page 923 Monday, May 1, 2006 12:45 PM

924

asynchronous applications, Service Broker
architecture, 778–783
case scenarios, 809–810
contracts, 786–787, 788
conversations, 798–802
key terms, 808–809
message types, 784–785, 787–788
practice tasks, 810–811
queues, 790–794, 796
Real World scenarios, 776–777
receiving messages, 804, 805–806
sending messages, 803–804, 805–806
services, 795, 796

asynchronous processing, 790
Attach method, upgrading to SQL Server 2005

installation, 37, 42–43
attach operations, moving databases, 437, 440
auditing components, Database Mail architecture, 64
authentication

database mirroring, 628
HTTP endpoint security, 480
modes

configuration, server security principals, 74–75, 78
installation, new instances, 23

AUTHORIZATION clause
CREATE CONTRACT command, 786
CREATE FULLTEXT CATALOG command, 818
CREATE MESSAGE TYPE command, 784

AutoCreatedLocal default route, 800
AUTO_CREATE_STATISTICS database option, 457–458
automatic generation, statistics, Transact-SQL database

management, 457–458
AUTO_SHRINK option (ALTER DATABASE), 463
AVG aggregate function, 177

B
B-trees (Balanced trees), index structure, 149–151
backing up databases, 416–426

differential backups, 418–419
filegroup backups, 420–421
full backups, 417–418
locations, 422
mirrored backups, 421–422
partial backups, 422–423
permissions, 416
practice tasks, 445

differential backups, 423
filegroup backups, 424–425
full backups, 423
transaction log backups, 423, 424–425

transaction log backups, 419–420
backup and restore process, database mirroring, 623
BACKUP command, 421

FORMAT clause, 422
READ_WRITE_FILEGROUPS clause, 422

BACKUP DATABASE command, 418

backup devices, 417
backup files, 38

placement, 503
BACKUP LOG command, 431
BACKUP LOG...WITH TRUNCATE_ONLY command,

430
Backup method, upgrading to SQL Server 2005

installation, 38, 43–44
backup options

log shipping configuration, 659–660
setting up replication, 722

backup plans, maintenance tasks, 507
BACKUP SERVICE MASTER KEY statement, 88
backup striping, 421
backward compatibility, login management, 77
balance of index maintenance, nonclustered indexes,

162–163
Balanced trees. See B-Trees
baseline trace configuration, SQL Server Profiler,

545–546
bcp utility, 387–392

command-line syntax, 388
defined, 387
hint parameter, 389
importing data, 390–392
limitations, 387
parameters, 388, 389
permissions, 389

BEGIN DIALOG CONVERSATION command, 799
BEGIN TRANSACTION command, 198
best-effort restore, 434
BIDS (Business Intelligence Development Studio), SSIS

Import/Export wizard, 402
binary data types, 115
binding rules, constraints, 129
blocking issues, 582–592

isolation levels, 583–584
locking, 582–583
termination, 585

broken ownership chains, 242–243
built-in aggregate functions, querying data with

Transact-SQL, 177
built-in functions, formatting result sets with

Transact-SQL, 186–187
built-in system accounts, SQL Server and SQL Server

Agent services, 22
BULK INSERT command, 393–397

bcp vs., 393–395
importing data, 396–397
parameters, 394–395
permissions, 395

bulk loading XML files, 330–332
Bulk-Logged recovery models, 70

database mirroring, 622
Business Intelligence Development Studio. See BIDS

asynchronous applications

Z03I62271X.fm Page 924 Monday, May 1, 2006 12:45 PM

925

C
caching, operating modes, 638
case expressions

output paths, 177
querying data with Transact-SQL, 176
syntax, 176

case scenarios
database design, 143–144
database management, 474–475
Database mirroring, 648
Database Snapshots, 613
databases, 444
flat files, 410
Full-Text Search, 837
HTTP endpoints, 491–492
indexes, 167
log shipping, 691–692
partitions, 234
performance monitoring, 598
programmable objects, 376
replication management, 772
Service Broker, 809–810
SQL Server 2005 configuration, 101–102
SQL Server 2005 installation, 47–48
SQL Server Agent jobs, 525–526
Transact-SQL, 203–204
views, 253
XML data management, 342–344

CAST function, 177
catalog of changed pages, 604
certificates, encryption, 90
char data types, 114
character data types, 112–115
check constraints, 127–128

foreign key constraints vs., 132
CHECK_EXPIRATION option (CREATE LOGIN

statement), 75
checklists, upgrading SQL Server 2005 installation, 40
CHECK_POLICY option (CREATE LOGIN statement),

75
Choose a Destination page (SSIS Import/Export wizard),

404–405
clean up, tables, 122
closure, XQUERY querying language, 286
CLR (Common Language Runtime), 186
CLR UDTs, 138–139

formatting result sets with Transact-SQL, 188
clustered indexes, 154–160, 449

creating, 159
disabling, 158
implementation, 154–158
physical ordering, 154
relational index options, 156–158
selection, 155

clustering keys, 154
code efficiency, stored procedures, 365

code pages, 24
code testing, transactions, 199
collation setting, new instances, 24
column-level check constraints, 127
columns

aliases, 189
decryption, 91–92
encryption, 91–92
output, 189–190
statistics, 458–459

COM-based resolvers, 749
commands. See also statements

ALTER FULLTEXT INDEX, 826
ALTER PARTITION FUNCTION, 226–227
ALTER TABLE, 227
BACKUP, 421
BACKUP DATABASE, 418
BACKUP LOG, 431
BACKUP LOG...WITH TRUNCATE_ONLY, 430
bcp, 388
BEGIN DIALOG CONVERSATION, 799
BEGIN TRANSACTION, 198
BULK INSERT, 393–397

bcp vs., 393–395
importing data, 396–397
parameters, 394–395
permissions, 395

COMMIT TRANSACTION, 198
CREATE CONTRACT, 786
CREATE DATABASE, 605
CREATE FULLTEXT CATALOG, 817–818
CREATE FULLTEXT INDEX, 821–823
CREATE INDEX, 154, 218, 249
CREATE MESSAGE TYPE, 784
CREATE PARTITION FUNCTION, 210–212
CREATE PARTITION SCHEME, 215
CREATE QUEUE, 791
CREATE SERVICE, 795
CREATE TABLE, 119, 194, 218
CREATE TYPE, 137
CREATE VIEW, 240–243
DBCC CHECKDB, 469–472
RECEIVE, 804
RESTORE, 428
RESTORE DATABASE, 610
RESTORE VERIFYONLY (previous versions), 434
ROLLBACK TRANSACTION, 198
SEE STATISTICS PROFILE ON, 830
SELECT INTO, 194
SEND, 803–804
terminator, 803

COMMIT TRANSACTION command, 198
Common Language Runtime. See CLR
Common Language Runtime UDTs. See CLR UDTs
companion CD, xxxiv
Complete the Wizard screen (SSIS Import/Export

wizard), 406–407

Complete the Wizard screen

Z03I62271X.fm Page 925 Monday, May 1, 2006 12:45 PM

926

compositionality, XQUERY querying language, 286
COMPUTE BY clause (CREATE VIEW command), 241
COMPUTE clause (CREATE VIEW command), 241
computed columns, tables, 118
concurrency

handling database issues, 316
replication performance, 767

configuration
alerts

monitoring replication, 764–765
SQL Server Agent jobs, 519–523

baseline trace, SQL Server Profiler, 545–546
Database Mail architecture, 64
database mirroring, 630
distribution database, 707
Distributor, 706–710
log shipping monitor server, 685–686
log shipping options, 658–675

backup options, 659–660
Copy Files task, 665
preparing environment, 671–673
primary database, 658–659, 673
restore options, 665–666
scripting, 661–663
secondary database, 663–665, 673–674

noise words (full-text indexes), 821
operating modes, database mirroring, 639–640
operators, SQL Server Agent jobs, 515–518
publications, 710–715
replication security, 731–746

agent permissions, 733–734
environment, 731–732
publications, 732–733
transactional replication, 734–745

snapshot replication, 722–729
configuring publishing and distribution, 723–725
configuring subscription, 727–729
preparation of environment, 722–723
snapshot publication, 725–727
testing replication configuration, 729

SQL Server 2005, 51–102
case scenarios, 101–102
Database Mail, 63–69
database securables, 81–87
encryption, 88–93
key terms, 100
linked servers, 94–98
log and data files, 53–62
practice tasks, 102
Real World scenarios, 52
recovery models, 70–73
server security principals, 74–80

Subscriber, 715–718
System Monitor counter logs, 552–553

Configure Database Mirroring Security wizard, 631
Configure Destination Database page (Copy Database

Wizard), 438

Configure Distribution wizard, 707
Configure System Parameters page (Database Mail

Configuration Wizard), 66
conflict resolution, configuring for merge replication,

747–760
basics, 747
deleting previous setup, 751–752
merge publications, 752–754
resolvers, 747–751
subscribing to publication, 754–755
verification, 755–759

conflict resolvers, 747–751
Minimum, 753
stored procedures, 749

CONNECT authority, endpoints, 629
CONNECT permission (HTTP endpoints), 481
Connect to Server dialog box, 664
consolidated performance view, correlation of data,

580–581
constraints, 127–136

check constraints, 127–128
default constraints, 129
foreign key constraints, 130–131
pattern matching, 128
practice, 133–135
primary key constraints, 130
rules, 128–129
unique constraints, 129–130

CONTAINS function
full-text index data queries, 831–833
full-text searches, 179–180

CONTAINSTABLE function
full-text index data queries, 833
full-text searches, 180

context, databases, 503
contract_name clause (CREATE CONTRACT

command), 786
contracts, Service Broker, 780, 784, 786–787, 788
CONTROL permission, 89
conversations, Service Broker, 798–802

architecture, 779–780
creating, 798–799, 801
routing messages to a service, 800–801

CONVERT function, 177
cooperative multiprocessing model, 575
Copy Database Wizard

moving databases, 438–439
upgrading to SQL Server 2005 installation, 38

Copy Files task, log shipping configuration, 665
copy-on-write technology, Database Snapshots, 603–604
copy system objects, database mirroring, 623–624
correlation of data, performance and monitoring data,

575–581
consolidated performance view, 580–581
DMVs/DMFs and System Monitor, 579
DMVs/DMFs with traces, 578

compositionality

Z03I62271X.fm Page 926 Monday, May 1, 2006 12:45 PM

927

multiple DMVs/DMFs, 579–580
query processing architecture, 575–577
System Monitor and Profiler, 577

corrupt pages, restoring databases, 432–433
counter logs, System Monitor, 550–553
counters, 765–766
covering indexes, nonclustered indexes, 162
crawl, 825
CREATE ASYMMETRIC KEY statement, 90
CREATE CERTIFICATE statement, 90
CREATE CONTRACT command, 786
CREATE DATABASE command, 264, 605, 709–710

configuring data and log files, 55
syntax, 57

CREATE ENDPOINT statement, 484–485
CREATE FULLTEXT CATALOG command, 817–818
CREATE FULLTEXT INDEX command, 821–823
CREATE FUNCTION statement, 352, 353
CREATE INDEX command, 154, 218, 249
CREATE LOGIN statement, 75
CREATE MASTER KEY statement, 89
CREATE MESSAGE TYPE command, 784
CREATE PARTITION FUNCTION command, 210–212
CREATE PARTITION SCHEME command, 215
CREATE QUEUE command, 791
CREATE ROUTE statement, 800–801
CREATE SERVICE command, 795
CREATE STATISTICS statement, 458, 459
CREATE SYMMETRIC KEY statement, 89
CREATE TABLE command, 119, 194, 218, 265
CREATE TABLE permission, 119
CREATE TYPE command, 137
CREATE VIEW command, 240–243
creating

Database Snapshots, 603–608
copy-on-write technology, 603–604
retrieving data from, 606
structure, 603

DDL triggers, 373–374
DML triggers, 372–373
full-text catalogs, 817–819
full-text indexes, 820–824, 821–824
functions, 357–358
HTTP endpoints, 484–487

namespaces, 486
practice, 488
schemas, 486
SOAP payload parameters, 486–487
Web methods, 485
WSDL support, 486

indexes, 147–168
case scenarios, 167
clustered indexes, 154–160
key terms, 166–167
nonclustered indexes, 161–164
practice tasks, 167–168
Real World scenarios, 148
structure, 149–153

linked servers, SQL Server 2005 configuration, 94–96
partitions, 207–235

case scenarios, 234
indexes, 218–222
key terms, 233–234
management, 226–231
partition functions, 210–214
partition schemes, 215–217
practice tasks, 234–235
querying, 223–225
Real World scenarios, 208
tables, 218–222

Service Broker conversations, 798–799, 801
SQL Server Agent jobs, 495–503

job schedules, 500–501
job steps, 495–496, 497–500
practice, 502–503
specifying job owners, 497

statistics, Transact-SQL database management,
459–460

stored procedures, 360–362, 360–366, 364–365
System Monitor counter logs, 550–553
tables, 107–126

computed columns, 118
data types, 107–117
identity, 118
nulls, 117–118
permanent tables, 119–121
permissions, 123–125
practice, 125–126
space utilization, 110
temporary tables, 121–122
variables, 122–123

views, 240–244
CREATE VIEW command, 240–243
ownership chains, 242–243
practice, 243–244

XML indexes, 334–340
primary indexes, 335–336
secondary indexes, 336–338

XML schemas, 263–267
CROSS APPLY operator, 326–327, 572
cross-reference tables, 135
cursors, data modification with Transact-SQL, 192–193

D
DAC (dedicated administrator connection), error

handling, 593–595, 594–595
data

correlation of, performance and monitoring, 575–581
destination, flat files, 381–382
files, configuration, 53, 55–57, 58
import/export

bcp utility, 390–392
BULK INSERT command, 396–397
upgrading to SQL Server 2005 installation, 39

data

Z03I62271X.fm Page 927 Monday, May 1, 2006 12:45 PM

928

data definition language (DDL) triggers. See DDL (data
definition language) triggers

data-formatting functions, 186–187
data() function, 289
data manipulation language (DML) triggers. See DML

(data manipulation language) triggers
data modification

Transact-SQL, 192–197
cursors, 192–193
SELECT INTO command, 194
temporary tables, 193–194, 195–196

views, 245–247
data pages, 449, 450
data queries

full-text indexes, 828–835
CONTAINS function, 831–833
CONTAINSTABLE function, 833
FREETEXT function, 829–830
FREETEXTTABLE function, 830–831

Transact-SQL, 171–185
Data Transformation Services. See DTS
data types, 107–117

approximate numeric, 110–111
binary, 115
character, 112–115
date and time, 112
defining new data types, 138–139
definitions, 108
exact numeric, 109–110
instances, XML indexes, 334
mismatches, 134
monetary, 111–112
specialized, 115–116

database administrators. See DBAs
Database Engine Tuning Advisor. See DTA
database-level roles, 620
Database Mail

accounts, 64
configuration

architecture, 64
Database Mail Configuration Wizard, 64–66
practice, 67
prerequisites, 63

profiles, 64
SQL Server 2005 configuration, 63–69
stored procedures, 66

Database Mail Configuration Wizard, 64–66
database management systems. See DBMSs
database master keys, 782
database mirroring, 419, 615–650

case scenarios, 648
configuration, 630
enabling with trace flag 1400, 616
endpoints, 627–633

establishing, 630–632
port numbers, 628
security, 628–629
TCP vs. HTTP, 627

failover, 642–644
initiation, 643
scenarios, 642–643

initialization mechanism, 623
key terms, 647–648
manual failover, 642
operating modes, 634–641

caching, 638
configuration, 639–640
High Availability operating mode, 635–637
High Performance operating mode, 637
High Protection operating mode, 638
Real World scenarios, 634–635
Transparent Client Redirection, 639

practice tasks, 649–650
preparation of databases, 622–626

backup and restore process, 623
copy system objects, 623–624
recovery model, 622

Real World scenarios, 616–617
removing, 645–646
roles, 618–621

mirror role, 619
principal role, 619
witness server, 619–620

sessions, 605, 619
Database Properties - Adventure Works dialog box, 632
database securables, SQL Server 2005 configuration,

81–87
database roles, 82–84
management of database users, 81–82
schema management, 84–85

Database Snapshots, 601–614
case scenarios, 613
copy-on-write technology, 603–604
creating, 603–608
key terms, 612
practice tasks, 613–614
Real World scenarios, 602
restrictions, 605
retrieving data from, 606
reverting a database from, 609–611
structure, 603

DATABASE_MIRRORING (endpoint payload), 480
databases, 413–446

backing up, 416–426
differential backups, 418–419
filegroup backups, 420–421
full backups, 417–418
in-place upgrades, 35
locations, 422
mirrored backups, 421–422
partial backups, 422–423
permissions, 416
transaction log backups, 419–420

case scenarios, 444
configuration, 57–60, 58–60

data definition language

Z03I62271X.fm Page 928 Monday, May 1, 2006 12:45 PM

929

consistency, upgrading SQL Server 2005 installation,
40

context, 503
errors, 593–595

DAC, 593–595, 594–595
review of error logs, 594

indexing case scenario, 167
key terms, 443
management of roles, 82–84
moving, 437–441

Copy Database Wizard, 438–439
Detach/Attach, 437, 440

overwriting, 428
practice tasks, 445–446

backing up, 445
moving, 446
restoring, 445

restoring, 38, 427–436
AdventureWorks database, 435
backup validation, 434
corrupt pages, 432–433
differential backups, 429
filegroup differential backups, 429
full backups, 427–428
media errors, 433–434
partial restores, 432
transaction log backups, 430–431

shrinking files, 465–466
statistics, DMVs and DMFs, 568–569
structure, 414–416
tables, 107–126, 134

alias names, 172
clean up, 122
computed columns, 118
cross-reference tables, 135
data types, 107–117
deleting, 121
design, 119
identity, 118
implementation, 104
log_shipping_monitor_error_detail, 684–685
log_shipping_monitor_history_detail, 684–685
naming conventions, 119
normalization, 119
nulls, 117–118
partitions, 218–222
permanent tables, 119–121
permissions, 123–125
querying data with Transact-SQL, 171–172
referencing, 132
space utilization, 110
temporary tables, 121–122
variables, 122–123

Transact-SQL management, 447–476
DBCC CHECKDB command, 469–472
index fragmentation, 449–456
Real World scenarios, 448

shrinking files, 463–468
statistics, 457–462

users
management, 81–82
removing, 82

date and time data types, 112
datetime data types, 112
DBAs (database administrators), 602
DBCC CHECKDB command, 469–472

execution of statement, 470–471
integrity issues, 469
practice tasks, 476

DBCC SHOW_STATISTICS statement, 459
DBCC SHRINKDATABASE statement, 464
DBCC SHRINKFILE statement, 464
DBMSs (database management systems), 138–80
dbo schema, creating tables, 120
db_owner rights, 740–741
DDL (data definition language) triggers, 367, 371–372

creating, 373–374
event groups, 372

deadlock detection, 586
deadlock traces, 586
deadlock victim, 586
deadlocking issues, 582–592, 585–591

isolation levels, 583–584
locking, 582–583

decimal data types, 109, 110
DecryptByAsmKey function, 90
DecryptByCert function, 90
DecryptBYKey function, 89
decryption, columns, 91–92
dedicated administrator connection. See DAC
default constraints, 129
default filegroups, 54
default instances, SQL Server 2005 installation, 17–18
delegation security mode, linked servers, 97
delete keyword, XML DML, 311
Delete Object dialog box, 735
DELETE operations, 450
DELETED tables, triggers, 368–369
deleting tables, 121
dequeuing, 804
derived tables, subqueries, 178
DESC keyword, 155
design

filegroups, 55
tables, 119

Detach method, upgrading to SQL Server 2005
installation, 37, 42–43

detach operations, moving databases, 437, 440
detection of 1205 errors, 586
deterministic functions, 356–357
Developer Edition, 4

32-bit editions, infrastructure requirements, 12
64-bit editions, OS requirements, 14

Developer Edition

Z03I62271X.fm Page 929 Monday, May 1, 2006 12:45 PM

930

dialog boxes
Add Publisher, 763
Connect to Server, 664
Database Properties - Adventure Works, 632
Delete Object, 735
Find and Replace, 739
Log Shipping Monitor Settings, 685
Maintenance Cleanup Task, 513
Manage Connections, 513
Microsoft Replication Conflict Viewer, 756
New Database Mail Account, 65
New Job Schedule, 500–501, 744
New User, 736
Quick Replace, 738
Run As, 741
Secondary Database Settings, 663
Snapshot Agent Synchronization History, 769
Subscription Synchronization History, 769
Trace Definition, 532

dialog conversations, Service Broker, 779
@dialog_handle variable, 799
differential database backups, 418–419

practice, 423
restoring databases, 429

Disable Publishing and Distribution Wizard, 735
DISABLED (endpoint state), 480
disabling

clustered indexes, 158
publishing, 710

disk space, upgrading SQL Server 2005 installation, 40
distributed queries, execution, 94
Distribution Agent, 703
Distribution Clean Up, Distribution Agent, 704
distribution database, 699, 707
Distributor, configuration, 706–710
Distributor server role, (replication), 699
DLL (dynamic-link library), 139–80
DMFs (Dynamic Management Functions), 451, 566–574

correlation of data with traces, 578
database statistics, 568–569
hardware statistics, 572–573
I/O statistics, 572
prefixes, 567–573
query statistics, 570–572
Real World scenarios, 566–567
sys.dm_db_index_operational_stats, 568
sys.dm_db_index_physical_stats, 568, 569
sys.dm_exec_query_plans, 571
sys.dm_exec_sql_text, 571
sys.dm_io_pending_io_requests, 572
sys.dm_io_virtual_file_stats, 572

DML (data manipulation language) triggers, 367,
367–371

AFTER, 367
creating, 372–373
INSTEAD OF, 367–368

DMVs (Dynamic Management Views), 566–574
correlation of data with traces, 578
database statistics, 568–569
hardware statistics, 572–573
I/O statistics, 572
prefixes, 567–573
query statistics, 570–572
Real World scenarios, 566–567
sys.dm_db_index_usage_stats, 568
sys.dm_exec_cached_plans, 571
sys.dm_exec_requests, 570
sys.dm_exec_sessions, 570
sys.dm_os_performance_counters, 573
sys.dm_os_wait_stats, 573

Document Object Model (DOM), 309
DOM (Document Object Model), 309
domain user accounts

local system accounts vs., 28
SQL Server and SQL Server Agent services, 22

DROP LOGIN statement, 76
DROP SCHEMA statement, 85
DROP STATISTICS statement, 458
DROP USER statement, 81
DTA (Database Engine Tuning Advisor), 554–565

performance impact, 558
performance recommendations, 560
Real World scenarios, 554–555
saving recommendations, 562
workload analysis, 556–562, 563–564
workload files, 556

DTS (Data Transformation Services), 39, 402
DTSWizard.exe command prompt, starting SSIS Import/

Export wizard, 403
duration of synchronization, replication performance,

767
dynamic cursors, data modification with Transact-SQL,

192
dynamic-link library. See DLL
Dynamic Management Functions. See DMFs
Dynamic Management Views. See DMVs

E
e-mail, sending to operators, 517
Edge Table, 324
editions (SQL Server 2005), 3–9
effect of transactions, 200
employee pay rates, querying data with Transact-SQL,

182–184
enabling

ad hoc SQL, 487
Service Broker, 781–782

EncryptByAsmKey function, 90
EncryptByCert function, 90
EncryptBYKey function, 89

dialog boxes

Z03I62271X.fm Page 930 Monday, May 1, 2006 12:45 PM

931

encryption
database mirroring, 629
HTTP endpoint security, 481
SQL Server 2005 configuration, 88–93

certificates, 90
columns, 91–92
hierarchy, 88–89
symmetric and asymmetric keys, 89–90

endpoints. See also HTTP endpoints
database mirroring, 627–633

establishing, 630–632
port numbers, 628
security, 628–629
TCP vs. HTTP, 627

Express Edition, 629
HTTP endpoint security

payload, 480
permissions, 481
state, 477–480
type, 479

retrieving an address, 640
retrieving information, 631
Service Broker architecture, 779
specifying name, 631

enqueuing, 803
Enterprise Edition, 3

32-bit editions, infrastructure requirements, 11
64-bit editions, OS requirements, 13, 14

error handling
database errors, 593–595

DAC, 593–594, 594–595
review of error logs, 594

transactions, 199
error messages, HTTP endpoints, 488
ERROR_LINE function, 199
ErrorLog table, 362
ERROR_MESSAGE function, 199
ERROR_NUMBER function, 199
ERROR_SEVERITY function, 199
ERROR_STATE function, 199
ETL (extraction, transformation, and loading) tool, 402
evaluation edition, support, xxxvii
evaluation software CD, xxxiv
even data distribution, partitions, 225
event groups, DDL triggers, 372
events

Locks\Deadlock Graph, 586
Locks\Lock

Deadlock, 589
Deadlock Chain, 589

SP
StmtCompleted, 535
StmtStarting, 535

exact numeric data types, 109–110
exceptions, triggers, 368
exclusive locks, 583
executables, Database Mail architecture, 64
execution plans, 571

exist() method, executing XQUERY and XPATH
expressions, 290–292

Expired Subscription Clean Up Agent, 704
explicit mapping, OPENXML, 323–324
Express Edition, 4

32-bit editions, infrastructure requirements, 12
64-bit editions, OS requirements, 14
endpoints, 629

extensions, log files, 54
external API (application programming interface), 532
external fragmentation, 450–451, 452
extraction, transformation, and loading (ETL) tool, 402

F
failover, database mirroring, 642–644

initiation, 643
scenarios, 642–643

features, editions (SQL Server 2005), 4–7
FIELDTERMINATOR parameter (BULK INSERT

command), 395
filegroup database backups, 420–421

practice, 424–425
recovering from, 420

filegroup differential backups, 429
filegroups, 54–55

configuration, 58–60
design, 55
properties, 54
restoring, 429

filters, 536
full-text indexes, 821

Find and Replace dialog box, 739
FIRSTROW parameter (BULK INSERT command), 395
fixed server roles

properties, 78
server security principals, 77–78

flat files, 379–411
bcp utility, 387–392

command-line syntax, 388
defined, 387
hint parameter, 389
importing data, 390–392
limitations, 387
parameters, 388, 389
permissions, 389

best-case scenario, 382–384
BULK INSERT command, 393–397

bcp vs., 393–395
importing data, 396–397
parameters, 394–395
permissions, 395

case scenarios, 410
data destination, 381–382
import mechanism, 381
importing bulk XML data, 398–401

OPENROWSET function, 398–401
key terms, 409–410

flat files

Z03I62271X.fm Page 931 Monday, May 1, 2006 12:45 PM

932

flat files, continued
minimal logging, 382–383
practice tasks, 410–411
Real World scenarios, 380
recovery models, 384–385
source file location, 381
SSIS Import/Export wizard, 402–408

Choose a Destination page, 404–405
Complete the Wizard screen, 406–407
Save and Execute Package page, 405–406
Select Source Tables and Views page, 405
selecting a data source, 403
starting the wizard, 402–403

float data types, 110
FLWOR expression, 286–289
fn_tracegettable(), 562
fn_trace_gettable function, 540
folder choices, snapshot replication, 707
FOR clause (FLWOR expression), 286
FOR XML construct

AUTO mode, 271–274
EXPLICIT mode, 281–284

formatting, 284
result set requirements, 281–282

PATH mode, 274–277
RAW mode, 270–271
retrieving XML data, 269–285

foreign key constraints, 130–131
check constraints vs., 132

FOREIGN KEY keyword, 131
foreign key restraints, NOT FOR REPLICATION option, 719
FORMAT clause (BACKUP command), 422
formatting

Transact-SQL result sets, 186–191
CLR user-defined types, 188
column aliases, 189
column output, 189–190
system functions, 186–187
user-defined functions, 187

FOR XML EXPLICIT mode, 284
FOR XML RAW mode, 271

FREETEXT function
full-text indexes, 829–830
full-text searches, 180

FREETEXTTABLE function
full-text indexes, 830–831
full-text searches, 180

full database backups, 417–418
practice, 423
restoring databases, 427–428
steps, 417–418

full outer joins, 172, 173
Full recovery models, 70

database mirroring, 622
full-text catalogs, 817–819
full-text indexes, 180, 820–824

architecture, 820–821
creating, 821–824

data queries, 828–835
CONTAINS function, 831–833
CONTAINSTABLE function, 833
FREETEXT function, 829–830
FREETEXTTABLE function, 830–831

populating, 825–827
Full-Text Search, 813–838

case scenarios, 837
data queries, 179–180
full-text catalogs, 817–819
full-text indexes, 820–824, 825–827, 828–835

architecture, 820–821
creating, 821–824

installation, 814
key terms, 836–837
practice tasks, 837–838
Real World scenarios, 814–816

functions, 352–359
CONTAINS, 831–833
CONTAINSTABLE, 833
creating, 357–358
DecryptByAsmKey, 90
DecryptByCert, 90
DecryptBYKey, 89
deterministic vs. nondeterministic, 356–357
EncryptByAsmKey, 90
EncryptByCert, 90
EncryptBYKey, 89
fn_trace_gettable, 540
FREETEXT, 829–830
FREETEXTTABLE, 830–831
OPENQUERY, 94
OPENROWSET, 94

importing bulk XML data, 398–401
$PARTITION, 223–224
partitions, 210–214
scalar functions, 352–354
sql

column, 290
variable, 290

table-valued functions, 354

G
global temporary tables, 193–194
granting monitor rights, 768
graphical user interface (GUI), 413
GROUP BY clause, 178
GUI (graphical user interface), 413

H
handling errors

database errors
DAC, 594–595
review of error logs, 594

transactions, 199

float data types

Z03I62271X.fm Page 932 Monday, May 1, 2006 12:45 PM

933

hard disk space requirements
32-bit editions of SQL Server 2005, 12
64-bit editions of SQL Server 2005, 14

hardware counters, accessing, 573
hardware requirements, xxxii–xxxiii
hardware statistics, DMVs and DMFs, 572–573
header section, SQLXML updategrams, 314
helper services (full-text indexes), 820
heterogeneous environments, SQL Server 2005

configuration, 102
hidden tables, 790
hierarchy

encryption, 88–89
FOR XML AUTO mode, 273

High Availability operating mode
configuring witness server, 619–620
database mirroring, 635–637

High Performance operating mode, database mirroring,
637

High Protection operating mode, database mirroring,
638

hint parameter, bcp utility, 389
histograms, 457
HTTP endpoints, 477–492

case scenarios, 491–492
creating, 484–487

namespaces, 486
practice, 488
schemas, 486
SOAP payload parameters, 486–487
Web methods, 485
WSDL support, 486

database mirroring, 627
error messages, 488
key terms, 491
practice tasks, 492
protocol-specific arguments, 484
Real World scenarios, 478
security, 479–483

I
I/O (input/output) operations, 450
I/O statistics, DMVs and DMFs, 572
identification, index fragmentation, 451–452
identity columns, NOT FOR REPLICATION option, 720
identity, tables, 118
image data types, 115
implementation

clustered indexes, 154–158
constraints, 127–136

check constraints, 127–128
default constraints, 129
foreign key constraints, 130–131
practice, 133–135
primary key constraints, 130
rules, 128–129
unique constraints, 129–130

database mirroring, 615–650
case scenarios, 648
endpoints, 627–633
failover, 642–644
key terms, 647–648
operating modes, 634–641
practice tasks, 649–650
preparation of databases, 622–626
removing, 645–646
roles, 618–621

Database Snapshots for administrative actions, 613
functions, 352–359

creating, 357–358
deterministic vs. nondeterministic, 356–357
scalar functions, 352–354
table-valued functions, 354

log shipping, 651–693
configuration components, 653–654
configuration options, 658–675
mode selection, 676–683
monitor server, 684–689
operations, 655
Real World scenarios, 652
requirements, 655
version compatibility, 655

nonclustered indexes, 161
tables, 104
Transact-SQL UDTs, 140
triggers, 367–374
views, 237–253

case scenarios, 253
creating, 240–244
data modification, 245–247
indexed views, 248–251
key terms, 252
practice tasks, 253
Real World scenarios, 238–239

implicit mapping, OPENXML, 322–323
import mechanism, flat files, 381
importing data

bcp utility, 390–392
BULK INSERT command, 396–397
bulk XML data, flat files, 398–401

IN PATH clause (CREATE FULLTEXT CATALOG
command), 817–818

In-Place upgrades, 35
included columns

nonclustered indexes, 163
partitions, 219–220

index fragmentation, 449–456
database management, 474
identification, 451–452
management, 452–453

ALTER INDEX...REBUILD, 452–453
ALTER INDEX...REORGANIZE, 452
statements to execute, 453

index fragmentation

Z03I62271X.fm Page 933 Monday, May 1, 2006 12:45 PM

934

index pages, 449
maximum size, 450

index population, 825–827
index rebuild, 453
indexed views, 248–251

creating, 248, 250
partitions, 218–219
prerequisites, 248–249
query substitution, 249

indexes, 147–168
case scenarios, 167
clustered indexes, 154–160

creating, 159
disabling, 158
implementation, 154–158
physical ordering, 154
relational index options, 156–158
selection, 155

key terms, 166–167
nonclustered indexes, 161–164

balance of index maintenance, 162–163
covering indexes, 162
creating, 164
implementation, 161
included columns, 163

partitions, 218–222
practice tasks, 167–168
Real World scenarios, 148
structure, 149–153

B-trees, 149–151
levels, 151–152

sys.dm_db_missing_index_*track, 569
XML indexes, 334–340

infrastructure requirements, SQL Server 2005
installation, 10–16

32-bit editions, 10–13
64-bit editions, 13–15

INIT parameter (WITH clause), BACKUP DATABASE
command, 418

initialization mechanism, database mirroring, 623
initiator, Service Broker architecture, 779
inner joins, 172
input/output (I/O) operations, 450
input parameters (procedures), 361
INSERT command, Database Snapshots, 609
insert keyword, XML DML, 310–311
INSERT operations, 450
INSERTED tables, triggers, 368–369
installation

Full-Text Search, 814
SQL Server 2005, 1–50

case scenarios, 47–48
infrastructure requirements, 10–16
instances, 17–20, 21–33
key terms, 47
practice tasks, 49–50
upgrading, 34–45
version selection, 3–9

instances, SQL Server 2005 installation, 17–20, 21–33
default and named instances, 17–18, 25–32
multiple instances, 18
new instances, 21–33

INSTEAD OF trigger, 246, 367–368
int data types, 110
integration, XQUERY querying language, 286
integrity issues

case scenario, 475
DBCC CHECKDB statement, 469
execution of DBCC CHECKDB command, 471

intermediate levels (B-Trees), 149
internal fragmentation, 450, 452
Internet requirements

32-bit editions of SQL Server 2005, 12–13
64-bit editions of SQL Server 2005, 14–15

INTO keyword (CREATE VIEW command), 241
invalid XML documents, 262
isolation levels, 583–584
issue correction, execution of DBCC CHECKDB

command, 471

J
Job Activity Monitor, 516
job owners, creating SQL Server Agent jobs, 497
job scheduling, SQL Server Agent, 493–527

case scenarios, 525–526
configuration of alerts, 519–523
configuration of operators, 515–518
creating jobs, 495–503
key terms, 524–525
maintenance plans, 504–514
practice tasks, 526–527
Real World scenarios, 494

job steps
creating SQL Server Agent jobs, 495–496, 497–500
logging options, 500
Transact-SQL, 498

join types, querying data with Transact-SQL, 172–173

K
KEY INDEX clause (CREATE FULLTEXT INDEX

command), 822
key terms

constraints, 143
database management, 474
Database mirroring, 647–648
database operations, 443
Database Snapshots, 612
flat files, 409–410
Full-Text Search, 836–837
HTTP endpoints, 491
indexes, 166–167
log shipping, 690–691
partitions, 233–234
performance monitoring, 597–598
programmable objects, 375–376

index pages

Z03I62271X.fm Page 934 Monday, May 1, 2006 12:45 PM

935

replication management, 771
Service Broker, 808–809
SQL Server 2005 configuration, 100
SQL Server 2005 installation, 47
SQL Server Agent jobs, 524–525
tables, 143
Transact-SQL, 203
UDTs, 143
views, 252
XML data management, 341–342

keyset cursors, data modification, 192
keywords

XML DML, 310–311
XML view files, 303
XSD schemas, 299

KILL spid, 585

L
language files, 820
latency, replication performance, 767
leaf levels (B-Trees), 149
left outer joins, 172
LET clause (FLWOR expression), 287
levels

index structure, 151–152
RAID systems, 58

leveraging trace tables, 562
limitations

bcp utility, 387
ping test, 636
XML data storage, 259, 261
XML view files, 303–304

linked servers, SQL Server 2005 configuration, 94–98
creating linked servers, 94–96
Microsoft Access linked servers, 97
security model, 97

loading XML data, OPENXML, 330
loading XML schemas, 263
local system accounts, 22, 28
local temporary tables, data modification, 193–194
lock escalation, 583
locking, 582–583

exclusive locks, 583
isolation levels, 583–584
shared locks, 583
update locks, 583

locks, 193
Locks\Deadlock Graph event, 586
Locks\Lock

Deadlock Chain event, 589
Deadlock event, 589

log files
configuration, 54, 55–57, 58
extension, 54

Log Reader Agent, 703
Log Sequence Number. See LSN
log shipping, 651–693

case scenarios, 691–692
configuration options, 658–675

backup options, 659–660
components, 653–654
Copy Files task, 665
preparing environment, 671–673
primary database, 658–659, 673
restore options, 665–666
scripting, 661–663
secondary database, 663–665, 673–674

key terms, 690–691
mode selection, 676–683

No Recovery Mode, 676–678
Standby Mode, 678–680, 680–682

monitor server, 684–689
configuration, 685–686
creating a log shipping configuration, 686–689
role of, 684–685

operations, 655
practice tasks, 692–693
Real World scenarios, 652
reports, 686
requirements, 655
version compatibility, 655

Log Shipping Monitor Settings dialog box, 685
logging

Database Mail architecture, 64
job steps, 500

logins
password policies, 76
removing, 76
server security principals, 75–77, 78
upgrading SQL Server 2005 installation, 41

LOGIN_TYPE parameter, HTTP endpoint security, 481
log_shipping_monitor_error_detail table, 684–685
log_shipping_monitor_history_detail table, 684–685
LSN (Log Sequence Number), 419

M
Maintenance Cleanup Task dialog box, 513
Maintenance Plan Tasks toolbox, 513
maintenance plans, SQL Server Agent jobs, 504–514

creating, 504–513
maintenance tasks, 506–508

maintenance tasks, SQL Server Agent job backup plans,
507

Manage Connections dialog box, 513
management

database
roles, 82–84
Transact-SQL, 447–476
users, 81–82

management

Z03I62271X.fm Page 935 Monday, May 1, 2006 12:45 PM

936

management, continued
Database Snapshots, 601–614

case scenarios, 613
copy-on-write technology, 603–604
creating, 603–608
key terms, 612
practice tasks, 613–614
Real World scenarios, 602
restrictions, 605
retrieving data from, 606
reverting database from, 609–611
structure, 603

index fragmentation, 452–453
ALTER INDEX...REBUILD, 452–453
ALTER INDEX...REORGANIZE, 452
statements to execute, 453

partitions, 226–231
practice, 229–231
SPLIT and MERGE operators, 226–227
SWITCH operators, 227–228

replication, 695–773
agents, 703–704
case scenarios, 772
configuring security, 731–746
conflict resolution, 747–760
key terms, 771
merge replication, 702–703
monitoring replication, 761–770
peer-to-peer, 702
practice tasks, 773
Real World scenarios, 697
setting up replication, 706–730
snapshot replication, 701
terminology, 698–700
transactional replication, 701–702

schemas, 84–85
SQL Server Agent jobs, 516
XML data, 255–348

case scenarios, 342–344
converting from relational data, 320–333
creating new databases, 263–267
creating XML schemas, 263–267
indexes, 334–340
key terms, 341–342
modifications, 309–319
practice tasks, 344–348
Real World scenarios, 256
retrieving data using middle-tier technologies,

298–308
retrieving data using server-side technologies,

269–297
schemas, 262
storage options, 257–258

manual failover, database mirroring, 642
manual generation, statistics, 458, 459–461
manual schema rebuild, upgrading to SQL Server 2005

installation, 39

mapping keywords, 300
master keys, 782
maximum sizes, index and data pages, 450
mechanisms, Service Broker conversations, 798–802
media errors, restoring databases, 433–434
media sets, 421
membership levels, setting up replication, 731–732
memory requirements

32-bit editions of SQL Server 2005, 12
64-bit editions of SQL Server 2005, 14
OPENXML, 321

Merge Agent, 704
MERGE operator, partition management, 226–227
merge replication, 702–703

conflict resolution, 751–759
deleting previous setup, 751–752
merge publications, 752–754
subscribing to publication, 754–755
verification, 755–759

messages, Service Broker
receiving, 803, 804, 805–806
sending, 803–804, 805–806
types, 780, 784–785, 785, 787–788

messaging-application interactions, Service Broker
architecture, 780–781

messaging components, Database Mail architecture, 64
Messenger Service, 516
Microsoft Access linked servers, SQL Server 2005

configuration, 97
Microsoft COM-based resolvers, 749
Microsoft Knowledge Base, xxxvii
Microsoft Press Web site, xxxvii
Microsoft Replication Conflict Viewer dialog box, 756
Microsoft SQL Server Replay Lab, 544–545
middle-tier technologies, retrieving XML data, 298–308

annotated XML schemas and views, 304–305
SQLXML-annotated XSD schemas, 299–304

minimal logging, flat files, 382–383
Minimum conflict resolver, 753
mirror roles, database mirroring, 619
MIRROR TO clause (BACKUP command), 421
mirrored backups, 422
mirroring databases, 419, 615–650

backups, 421–422
case scenarios, 648
configuration, 630
Database Mirroring sessions, 605
enabling with trace flag 1400, 616
endpoints, 627–633

establishing, 630–632
port numbers, 628
security, 628–629
TCP vs. HTTP, 627

failover, 642–644
initiation, 643
scenarios, 642–643

manual failover

Z03I62271X.fm Page 936 Monday, May 1, 2006 12:45 PM

937

initialization mechanism, 623
key terms, 647–648
manual failover, 642
operating modes, 634–641

caching, 638
configuration, 639–640
High Availability operating mode, 635–637
High Performance operating mode, 637
High Protection operating mode, 638
Real World scenarios, 634–635
Transparent Client Redirection, 639

practice tasks, 649–650
preparation of databases, 622–626

backup and restore process, 623
copy system objects, 623–624
recovery model, 622

Real World scenarios, 616–617
removing, 645–646
roles, 618–621

mirror role, 619
principal role, 619
witness server, 619–620

sessions, 605, 619
mismatches, data types, 134
Mixed Mode authentication, 23, 74
mode selections, log shipping, 676–683

No Recovery Mode, 676–678
Standby Mode, 678–680, 680–682

modifications
Transact-SQL data, 192–197
XML data, 309–319

SQLXML updategrams, 313–316
XML values and structures, 310–313

modify() method, XML data modification, 310
monetary data types, 111–112
monitor server, log shipping, 684–689

configuration, 654, 685–686
creating log shipping configuration, 686–689
role of, 684–685

monitoring performance, 529–600
blocking and deadlocking issues, 582–592

blocking, 584–585
deadlocking, 585–591
isolation levels, 583–584
locking, 582–583
termination, 585

case scenarios, 598
correlation of data, 575–581

consolidated performance view, 580–581
DMVs/DMFs with System Monitor data, 579
DMVs/DMFs with traces, 578
multiple DMVs/DMFs, 579–580
query processing architecture, 575–577
System Monitor and Profiler, 577

database errors, 593–595
DAC, 593–594, 594–595
review of error logs, 594

DMVs and DMFs, 566–574
database statistics, 568–569
hardware statistics, 572–573
I/O statistics, 572
prefixes, 567–573
query statistics, 570–572
Real World scenarios, 566–567

DTA (Database Engine Tuning Advisor), 554–565
Real World scenarios, 554–555
saving recommendations, 562
workload analysis, 556–562, 563–564
workload files, 556

key terms, 597–598
practice tasks, 599–600
Real World scenarios, 531
SQL Server Profiler, 532–547

configuring baseline trace, 545–546
defining traces, 532–538
pausing traces, 538
replay traces, 543–544
saving trace data, 539–540
showplan data, 540–542
starting traces, 538
stopping traces, 538

System Monitor, 548–553
configuring counter logs, 552–553
counter logs, 550–552
Real World scenarios, 548–550

monitoring replication, 761–770
configuring alerts, 764–765
performance improvement, 767
review of agent status history, 768–769
SSRM, 761–764

non-sysadmin access, 762
viewing replication status, 763–764

System Monitor, 765–767
monolog conversations, Service Broker, 779
moving databases, 437–441

Copy Database Wizard, 438–439
Detach/Attach, 437, 440
practice tasks, 446

multiple DMVs/DMFs, correlation of data, 579–580
multiple instances, SQL Server 2005 installation, 18
MUST CHANGE option (CREATE LOGIN statement),

75

N
name (message types), 784
named instances, SQL Server 2005 installation, 17–18,

25–32
namespaces

creating HTTP endpoints, 486
declaration, SQLXML updategrams, 314

naming conventions, 502
Service Broker, 781
tables, 119

naming conventions

Z03I62271X.fm Page 937 Monday, May 1, 2006 12:45 PM

938

nested queries, modification of XML structures, 279–281
nested triggers, 370–371
Network Service account, 22
networking requirements

32-bit editions of SQL Server 2005, 12–13
64-bit editions of SQL Server 2005, 14–15

New Database Mail Account dialog box, 65
new instances, SQL Server 2005 installation, 21–33

authentication mode, 23
collation setting, 24
service accounts, 21–23

New Job General page (New Job window), 497
New Job Schedule dialog box, 500–501, 744
New Job Step window, 499
New Job window, 496
New Publication wizard, 710, 741, 749
New Subscription wizard, 716, 743
New User dialog box, 736
No Recovery Mode, log shipping, 676–678
nodes() method

OPENXML, 326
shredding XML, 325–327

noise words (full-text indexes), 820–821
non-SQL Server subscribers, 716
non-sysadmin access, monitoring replication with SSRM,

762
nonclustered indexes, 161–164, 449

balance of index maintenance, 162–163
covering indexes, 162
creating, 164
implementation, 161
included columns, 163

noncorrelated subqueries, querying data with
Transact-SQL, 175

nondeterministic functions, 356–357
NORECOVERY option (RESTORE command), 623
normalization, tables, 119
NOT FOR REPLICATION option, 719–721

foreign key restraints, 719
identity columns, 720
triggers, 719
updateable subscriptions, 720–721

ntext data types, 114
NTFS security, 738
NULL values, adding support for in XML, 278
nulls, tables, 117–118
numeric data types, 109
nvarchar (max) data types, 114–115

O
objects, Service Broker

contracts, 784, 786–787, 788
message types, 784–785, 787–788
queues, 790–794, 796
services, 790, 795, 796

OLTP (online transaction processing), 163, 579
ON clause (CREATE FULLTEXT INDEX command),

822
online operations, restrictions, 559
ONLINE option

ALTER INDEX...REBUILD statement, 453
relational index options, 157–158

online transaction processing (OLTP), 163, 579
OPENQUERY function, 94
OPENROWSET function, 94, 398–401
OPENXML

explicit mapping, 323–324
implicit mapping, 322–323
loading XML data, 330
memory requirements, 321
nodes() method performance, 326
shredding XML, 320–324

operating modes, database mirroring, 634–641
caching, 638
configuration, 639–640
High Availability operating mode, 635–637
High Performance operating mode, 637
High Protection operating mode, 638
Real World scenarios, 634–635
Transparent Client Redirection, 639

operators
CROSS APPLY, 326–327, 572
OUTER APPLY, 326–327
partition management

SPLIT and MERGE, 226–227
SWITCH, 227–228

sending e-mail to, 517
SQL Server Agent job configuration, 515–518

OPTION clause (CREATE VIEW command), 241
ORDER BY clause

CREATE VIEW command, 241
FLWOR expression, 287

ORDER hint parameter, bcp utility, 389
orphaned users, 82
OS requirements

32-bit editions of SQL Server 2005, 11
64-bit editions of SQL Server 2005, 13

OUTER APPLY operator, 326–327
outer joins, 172, 172–173
output parameters (procedures), 361
output paths, case expressions, 177
overwriting databases, 428
ownership chains, creating views, 242–243

P
page splits, 163, 450
PAGE_VERIFY CHECKSUM option (RESTORE

command), 432
paging, 450
PAL (publication access list), 732

nested queries

Z03I62271X.fm Page 938 Monday, May 1, 2006 12:45 PM

939

parameters
bcp utility, 388, 389
BULK INSERT command, 394–395
sniffing, 829–830
sp_addsubscription stored procedure, 718

partial database backups, 422–423
partial restores, restoring databases, 432
PARTITION clause (CREATE PARTITION SCHEME

command), 215
$PARTITION function, 223–224
partitions, 207–235

case scenarios, 234
creating schemes, 215–216
even data distribution, 225
existing tables/indexes, 220
functions, 210–214

CREATE PARTITION FUNCTION command,
210–212

creating, 212–213
included columns, 219–220
indexed views, creating, 218–219
indexes, 218–222
key terms, 233–234
management, 226–231

practice, 229–231
SPLIT and MERGE operators, 226–227
SWITCH operators, 227–228

practice tasks, 234–235
querying, 223–225
Real World scenarios, 208
schemes, 215–217
tables, 218–222

password policies, SQL Server logins, 76
pattern matching, constraints, 128
pausing traces, SQL Server Profiler, 538
payload parameters, SOAP, creating HTTP endpoints,

486–487
PDSs (physical design structures), 558
peer-to-peer replication, 702
PerfMon (Performance Monitor). See System Monitor
performance

encryption mechanisms, 91
monitoring and troubleshooting, 529–600

blocking and deadlocking issues, 582–592
case scenarios, 598
correlating data, 575–581
database errors, 593–595
DMVs and DMFs, 566–574
DTA (Database Engine Tuning Advisor), 554–565
key terms, 597–598
practice tasks, 599–600
Real World scenarios, 531
SQL Server Profiler, 532–547
Web resources, 529

monitoring replication, 767
objects, 765–766

Performance Tools menu, File, New Trace command, 532
permanent tables, creating, 119–121
permissions

assigning to a role for stored procedure, 363–364
backing up databases, 416
bcp utility, 389
BULK INSERT command, 395
HTTP endpoint security, 481
replication agents, 733–734
security, 123
tables, 123–125

PERSISTED keyword, 118
physical design structures (PDSs), 558
physical ordering, clustered indexes, 154
PHYSICAL_ONLY option (DBCC CHECKDB

statement), 470
ping test limitation, 636
PIVOT operations, querying data with Transact-SQL,

178–179
placement, backup files, 503
populating full-text indexes, 825–827
port numbers, endpoints, 628
practice tasks

creating constraints, 144
creating tables, 144
database management with Transact-SQL, 475–476
Database mirroring, 649–650
Database Snapshots, 613–614
databases, 445–446

backing up, 445
moving, 446
restoring, 445

flat files, 410–411
Full-Text Search, 837–838
HTTP endpoints, 492
indexes, 167–168
log shipping, 692–693
partitions, 234–235
performance monitoring and troubleshooting,

599–600
programmable objects, 376–377
replication management, 773
Service Broker, 810–811
SQL Server 2005 configuration, 102
SQL Server 2005 installation, 49–50
SQL Server Agent jobs, 526–527
Transact-SQL, 204–205
views, 253
XML data management, 344–348

practice tests, xxxiv–xxxvi
predefined templates, SQL Server Profiler, 533
prefixes, DMVs and DMFs, 567–573
preparation of databases, database mirroring, 622–626

backup and restore process, 623
copy system objects, 623–624
recovery model, 622

preparation of databases

Z03I62271X.fm Page 939 Monday, May 1, 2006 12:45 PM

940

prerequisites
Database Mail configuration, 63
indexed views, 248–249

previous versions, backup verification, 434
primary data files, 53
primary databases, log shipping configuration, 654,

658–659
primary filegroups, 54
primary indexes, XML indexes, 335–336
primary key constraints, 130
primary servers, log shipping configuration, 654
principal roles, database mirroring, 619
principals, SQL Server 2005 configuration, 74–80
privileges, system accounts, 23
processor requirements

32-bit editions of SQL Server 2005, 10
64-bit editions of SQL Server 2005, 13

Profiler. See SQL Server Profiler
programmable objects, 349–377

case scenarios, 376
functions, 352–359

creating, 357–358
deterministic vs. nondeterministic, 356–357
scalar functions, 352–354
table-valued functions, 354

key terms, 375–376
practice tasks, 376–377
Real World scenarios, 350–351
stored procedures, 360–366

assigning permissions to a role, 363–364
creating, 360–362, 364–365

triggers, 367–374
programmatic trace generation, SQL Server Profiler, 534
programmatically handling errors, Transact-SQL

transactions, 199
properties

filegroups, 54
fixed server roles, 78

protocol handlers (full-text indexes), 821
protocol-specific arguments, HTTP endpoints, 484
proxy accounts (SQL Server Agent), 497
public key certificates, 90
publication access list (PAL), 732
publications (replication), 698–699

configuration, 710–715
security, 732–733

Publisher server role (replication), 699
PublisherUser User Mapping, 740
publishing, disabling, 710
pull subscriptions (replication), 700
push subscriptions (replication), 700

Q
queries

partitions, 223–225
plans, 571

query() method, executing XQUERY and XPATH
expressions, 287–289

query optimizer, 571
query statistics, DMVs and DMFs, 570–572
query substitution, indexed views, 249
querying data

full-text indexes, 828–835
CONTAINS function, 831–833
CONTAINSTABLE function, 833
FREETEXT function, 829–830
FREETEXTTABLE function, 830–831

Transact-SQL, 171–185
aggregate functions, 177–178
case expressions, 176
columns to return, 173–174
employee pay rates, 182–184
full-text searches, 179–180
join types, 172–173
PIVOT and UNPIVOT operations, 178–179
subqueries, 174–176
tables, 171–172
TABLESAMPLE clause, 181

Queue Reader Agent, 704
queues, Service Broker, 780, 790–794, 796
Quick Replace dialog box, 738
quorum, 636

R
RAID 0, 57
RAID 1, 57
RAID 1+0, 58
RAID 10, 58
RAID 5, 57
RAID (redundant array of inexpensive disks), 51, 58
RAID systems, configuring database files, 57–58
RANGE clause (CREATE PARTITION FUNCTION

command), 210
RANGE LEFT clause (CREATE PARTITION FUNCTION

command), 211
RANGE RIGHT clause (CREATE PARTITION

FUNCTION command), 211
read-only filegroups, 54
READ_WRITE_FILEGROUPS clause (BACKUP

command), 422
real data types, 110
Real World scenarios

backup and restore strategies, 415
Database Snapshots, 602
databases

management with Transact-SQL, 448
mirroring, 616–617

DMVs and DMFs, 566–567
DTA, 554–555
flat files, 380
Full-Text Search, 814–816
HTTP endpoints, 478

prerequisites

Z03I62271X.fm Page 940 Monday, May 1, 2006 12:45 PM

941

indexes, 148
log shipping, 652
monitoring performance, 531
operating modes, database mirroring, 634–635
partitions, 208
programmable objects, 350–351
replication management, 697
Service Broker, 776–777
SQL Server 2005 configuration, 52
SQL Server Agent jobs, 494
System Monitor, 548–550
Transact-SQL, 170
XML data management, 256

REBUILD clause (ALTER INDEX statement), 158
REBUILD option (ALTER FULLTEXT INDEX

command), 826
RECEIVE command, 804
receiving messages, Service Broker, 803, 804, 805–806
recommendations, saving DTA, 562
recompilation, stored procedures, 361
recoveries

filegroup database backups, 420
models, 384–385, 417

preparation of databases, 622
SQL Server 2005 configuration, 70–73

plans, upgrading to SQL Server 2005 installation, 40
recovery-oriented planning, 427
recursive triggers, 370–371
redundant array of inexpensive disks (RAID), 51
referencing tables, 132
referential integrity, triggers, 368
Reinitialize Subscriptions Having Data Validation

Failures Agent, 704
relational data

converting between XML data, 320–333
bulk loading XML files, 330–332
nodes() method, 325–327
OPENXML, 320–324
SQLXML, 328–329
XML stored procedures, 320–324

converting to XML, FOR XML construct, 269–284
storing XML data as, 258

relational index options, 156–158
relative identifiers (RIDs), 161
remote credentials security modes, linked servers, 97
remote Distributors, 706
removing

Database mirroring, 645–646
database users, 82
logins, 76

REORGANIZE option (ALTER FULLTEXT INDEX
command), 826

REPAIR_ALLOW_DATA_LOSS option (DBCC
CHECKDB statement), 470

REPAIR_FAST option (DBCC CHECKDB statement),
470

REPAIR_REBUILD option (DBCC CHECKDB
statement), 470

REPLACE function, 190
REPLACE option (RESTORE command), 428
replace value of keyword, XML DML, 311
Replay Lab, 544–545
replay traces

SQL Server Profiler, 543–544
synching with database backups, 543

ReplDistAgent User Mapping, 740
replication, 701
Replication Agents Checkup Agent, 704
replication configuration, 722–729

preparation of environment, 722–723
publishing and distribution, 723–725
snapshot publication, 725–727
subscription, 727–729
testing replication configuration, 729

replication folders, 707
replication management, 695–773

agents, 703–704
case scenarios, 772
configuring security, 731–746

agent permissions, 733–734
environment, 731–732
publications, 732–733
transactional replication, 734–745

conflict resolution, 747–760
basics, 747
configuring for merge replication, 751–759
resolvers, 747–751

key terms, 771
merge replication, 702–703
monitoring replication, 761–770

configuring alerts, 764–765
performance improvement, 767
review of agent status history, 768–769
SSRM, 761–764
System Monitor, 765–767

peer-to-peer, 702
practice tasks, 773
Real World scenarios, 697
setting up replication, 706–730

Distributor configuration, 706–710
membership levels, 731–732
NOT FOR REPLICATION option, 719–721
publication configuration, 710–715
snapshot replication configuration, 722–729
Subscriber configuration, 715–718

snapshot replication, 701
terminology, 698–700
transactional replication, 701–702

replication mirroring, 419
Replication Monitoring Refresher for Distribution Agent,

704
ReplSnapAgent User Mapping, 740

ReplSnapAgent User Mapping

Z03I62271X.fm Page 941 Monday, May 1, 2006 12:45 PM

942

repopulating full-text catalogs, upgrading SQL Server
2005 installation, 41

reports, log shipping, 686
representation types (XML data), 258
requirements

CREATE DATABASE statement, 605
log shipping, 655
SWITCH operators, 228

resolvers, conflict resolution, 747–751
resource consumption, replication performance, 767
RESTORE command, 428, 623
RESTORE DATABASE command (Database Snapshots),

610
Restore method, upgrading to SQL Server 2005

installation, 38, 43–44
restore options

log shipping configuration, 665–666
setting up replication, 722

RESTORE SERVICE MASTER KEY statement, 88
restore strategy, 413
Restore Transaction Log tab (Secondary Database

Settings dialog box), 665–666
RESTORE VERIFYONLY command (previous versions),

434
restoring databases, 427–436

AdventureWorks database, 435
backup validation, 434
corrupt pages, 432–433
differential backups, 429
filegroup differential backups, 429
full backups, 427–428
media errors, 433–434
partial restores, 432
practice tasks, 445
transaction log backups, 430–431

restricted permissions, SQL Server service account, 22
restrictions

creating indexed views, 248
Database Snapshots, 605
online operations, 559

result sets
formatting, Transact-SQL, 186–191
requirements, FOR XML EXPLICIT mode, 281–282

RETENTION clause (CREATE QUEUE command), 792
retrieving

data, Database Snapshots, 606
endpoint information, 631

retrieving XML data
middle-tier technologies, 298–308

annotated XML schemas and views, 304–305
SQLXML-annotated XSD schemas, 299–304

server-side technologies, 269–297
FOR XML construct, 269–285
XML data types, 285–292

RETURN clause (FLWOR expression), 287
RETURNS clause (CREATE FUNCTION statement), 353
reverting a database from Database Snapshots, 609–611

RIDs (relative identifiers), 161
right outer joins, 172–173
roles, database mirroring, 618–621

mirror role, 619
principal role, 619
witness server, 619–620

ROLLBACK TRANSACTION command, 198
rolling back transactions, Transact-SQL, 198
root nodes

adding to FOR XML clause, 277–278
B-Trees, 149

routing messages to service, Service Broker
conversations, 800–801

ROWTERMINATOR parameter (BULK INSERT
command), 395

rules, constraints, 128–129
Run As dialog box, 741
running bcp command, 391–392

S
Save and Execute Package page (SSIS Import/Export

wizard), 405–406
saving

DTA recommendations, 562
trace data, SQL Server Profiler, 539–540

SAX (Simple API for XML), 309
scalar functions, 352–354
scenarios

database design, 143–144
database management, 474–475
Database mirroring, 648
Database Snapshots, 613
databases, 444
flat files, 410
Full-Text Search, 837
HTTP endpoints, 491–492
indexes, 167
log shipping, 691–692
partitions, 234
performance monitoring, 598
programmable objects, 376
Real World

backup and restore strategies, 415
Database Snapshots, 602
databases, 448, 616–617
DMVs and DMFs, 566–567
DTA, 554–555
flat files, 380
Full-Text Search, 814–816
HTTP endpoints, 478
indexes, 148
log shipping, 652
monitoring performance, 531
operating modes, database mirroring, 634–635
partitions, 208
programmable objects, 350–351

repopulating full-text catalogs

Z03I62271X.fm Page 942 Monday, May 1, 2006 12:45 PM

943

replication management, 697
Service Broker, 776–777
SQL Server 2005 configuration, 52
SQL Server Agent jobs, 494
System Monitor, 548–550
Transact-SQL, 170
XML data management, 256

replication management, 772
Service Broker, 809–810
SQL Server 2005 configuration, 101–102
SQL Server 2005 installation, 47–48
SQL Server Agent jobs, 525–526
Transact-SQL, 203–204
views, 253
XML data management, 342–344

schedules, creating SQL Server Agent jobs, 500–501
Schedules page (New Job window), 500
scheduling administrative tasks, 525–526
SCHEMABINDING option (CREATE VIEW command,

WITH clause), 241
schemas

creating HTTP endpoints, 486
management, 84–85

schemes, partitions, 215–217
scripting

Distribution configuration, 708
log shipping configuration

primary database, 661–663
secondary database, 667–670

Publication configuration, 713
Subscriber configuration, 717

searches, Full-Text Search, 813–838
case scenarios, 837
full-text catalogs, 817–819
full-text indexes, 820–824, 825–827, 828–835
installation, 814
key terms, 836–837
practice tasks, 837–838
Real World scenarios, 814–816

secondary data files, 53
secondary database, log shipping configuration, 654,

663–665
failover, 670–671
scripting, 667–670

Secondary Database Settings dialog box, 663, 665–666
secondary indexes, XML indexes, 336–338
secondary servers, log shipping configuration, 654
security

database mirroring endpoints, 628–629
encryption mechanisms, 91
HTTP endpoints, 479–481, 479–483
permissions, 123
replication, 731–746

agent permissions, 733–734
environment, 731–732
publications, 732–733
transactional replication, 734–745

SQL Server 2005 configuration, case scenario, 101

security models, linked servers, 97
SEE STATISTICS PROFILE ON command, 830
Select Configuration Task page (Database Mail

Configuration Wizard), 65
SELECT/INSERT permissions (bcp utility), 389
SELECT INTO command (data modification with

Transact-SQL), 194
SELECT* queries, 174
Select Source Tables and Views page (SSIS Import/

Export wizard), 405
SELECT statement (Database Snapshots), 606
selections, clustered indexes, 155
self-mapping security mode, linked servers, 97
semistructured data, 258
SEND command, 803–804
sending messages, Service Broker, 803–804, 805–806
SENT BY clause (CREATE CONTRACT command), 786
server-level roles, database-level roles vs., 620
Server Management Objects (SMOs), 484, 532
server roles (replication), 699–700
server securables, SQL Server 2005 configuration, 81–87,

85–76
server security principals, SQL Server 2005

configuration, 74–80
authentication modes, 74–75, 78
fixed server roles, 77–78
logins, 75–77, 78

server-side technologies, retrieving XML data, 269–297
FOR XML construct, 269–285
XML data types, 285–292

service accounts, new instances, 21–23
Service Broker, 63, 775–811

architecture, 778–783
contracts, 780
conversations, 779–780
enabling Service Broker, 781–782
endpoints, 779
initiator, 779
message types, 780
messaging-application interaction, 780–781
messaging overview, 778–779
queues, 780
services, 780
targets, 779

case scenarios, 809–810
contracts, 784, 786–787, 788
conversations, 798–802

creating, 798–799, 801
routing messages to service, 800–801

enabling, 781–782
key terms, 808–809
message types, 784–785, 787–788
naming conventions, 781
practice tasks, 810–811
queues, 790–794, 796
Real World scenarios, 776–777

Service Broker

Z03I62271X.fm Page 943 Monday, May 1, 2006 12:45 PM

944

Service Broker, continued
receiving messages, 803, 804, 805–806
sending messages, 803–804, 805–806
services, 790, 795, 796

service master keys, 88
SERVICE_BROKER (endpoint payload), 480
services, Service Broker, 780, 790, 795, 796
setting up replication, 706–730

Backup and Restore, 722
Distributor configuration, 706–710
membership levels, 731–732
NOT FOR REPLICATION option, 719–721

foreign key restraints, 719
identity columns, 720
triggers, 719
updateable subscriptions, 720–721

publication configuration, 710–715
snapshot replication configuration, 722–729
Subscriber configuration, 715–718

shared locks, 583
showplan data, SQL Server Profiler, 540–542
shredding XML

nodes() method, 325–327
OPENXML, 320–324
SQLXML, 328–329

shrinking files
practice tasks, database management with

Transact-SQL, 476
Transact-SQL database management, 463–468

automatic, 463
databases, 465–466
manual, 464
transaction logs, 464–465

side-by-side migration, upgrading to SQL Server 2005
installation, 35–36

Simple API for XML (SAX), 309
Simple Mail Transfer Protocol. See SMTP
simple recovery models, 70, 622
simplicity, XQUERY querying language, 286
SINGLE_BLOB format (OPENROWSET function), 399
smalldatetime data types, 112
smallmoney data types, 111–112
SMOs (Server Management Objects), 484, 532
SMTP (Simple Mail Transfer Protocol), 63
Snapshot Agent, 703
Snapshot Agent Synchronization History dialog box, 769
snapshot replication, 701

configuration, 722–729
preparation of environment, 722–723
publishing and distribution, 723–725
snapshot publication, 725–727
subscription, 727–729
testing replication configuration, 729

folder choices, 707
SOAP, 477

endpoint payload, 480
payload parameters, creating HTTP endpoints,

486–487

software requirements, xxxiii
source databases, 603
source file locations, flat files, 381
SP

StmtCompleted event, 535
StmtStarting event, 535

space utilization tables, 110
sp_addarticle stored procedure, 715
sp_adddistpublisher stored procedure, 710
sp_adddistributiondb stored procedure, 709–710
sp_adddistributor stored procedure, 709
sp_addextendedproperty stored procedure, 710
sp_addlinkedserver stored procedure, 97
sp_add_log_shipping_primary_database stored

procedure, 661
sp_add_log_shipping_secondary_database stored

procedure, 667
sp_add_log_shipping_secondary_primary stored

procedure, 667
sp_addmergearticle stored procedure, 751
sp_addpublication stored procedure, 714
sp_addpublication_snapshot stored procedure, 715
sp_addpushsubscription_agent stored procedure, 717
sp_add_schedule stored procedure, 661
sp_addsubscription stored procedure, 717, 718
sparse files, 603
sp_attach_schedule stored procedure, 661
sp_autostats system stored procedure, 458
sp_bindrule system stored procedure, 129
sp_createstats system stored procedure, 458
sp_dropsrvrolemember stored procedure, 77
specialized data types, 115–116
sp_grant_publication_access stored procedure, 733
sp_help_publication_access stored procedure, 733
SPID (system process ID), 570
split-brain problem, 636
SPLIT operator, partition management, 226–227
sp_replicationdboption stored procedure, 714
sp_revoke_publication_access stored procedure, 733
sp_updateextendedproperty stored procedure, 710
sp_update_job stored procedure, 661
sp_updatestats system stored procedure, 458
sp_xml_preparedocument stored procedure, 320
sp_xml_removedocument stored procedure, 320
sql

column function, 290
variable function, 290

SQL Server 2005, 21–22
configuration, 51–102

case scenarios, 101–102
Database Mail, 63–69
database securables, 81–87
encryption, 88–93
key terms, 100
linked servers, 94–98
log and data files, 53–62
practice tasks, 102

service master keys

Z03I62271X.fm Page 944 Monday, May 1, 2006 12:45 PM

945

Real World scenarios, 52
recovery models, 70–73
server security principals, 74–80

installation, 1–50
case scenarios, 47–48
infrastructure requirements, 10–16
instances, 17–33
key terms, 47
practice tasks, 49–50
upgrading, 34–45
version selection, 3–9

SQL Server Agent jobs, 493–527
case scenarios, 525–526
configuration

alerts, 519–523
operators, 515–518

creating, 495–503
job schedules, 500–501
job steps, 495–496, 497–500
practice, 502–503
specifying job owners, 497

key terms, 524–525
maintenance plans, 504–514

creating, 504–513
maintenance tasks, 506–508

management, 516
practice tasks, 526–527
Real World scenarios, 494
troubleshooting, 516

SQL Server Agent proxy accounts, 497
SQL Server Configuration Manager. See SSCM
SQL Server Installation Wizard, 25
SQL Server Integration Services (SSIS), 39, 438, 624
SQL Server Maintenance Plan Wizard, 504, 504–506
SQL Server Management Studio. See SSMS
SQL Server Profiler, 532–547

configuring a baseline trace, 545–546
correlation of data with System Monitor, 577
defining traces, 532–538
pausing traces, 538
predefined templates, 533
replay traces, 543–544
saving trace data, 539–540
showplan data, 540–542
starting traces, 538
stopping traces, 538
traces, programmatic generation, 534

SQL Server Replay Lab, 544–545
SQL Standard XML-Related Specifications (SQLXML),

257, 313–316
SQL trace, 532
SqlOleDB provider, 304
sql_variant data types, 116
SQLXML

querying UniversalLog table, 305–307
retrieving XML data, 298–308, 299–304
shredding XML, 328–329

SQLXML-annotated XSD schemas, retrieving XML data,
299–304

SQLXML (SQL Standard XML-Related Specifications),
257, 313–316

SQLXML XML views, 301–304
SSCM (SQL Server Configuration Manager), 696
SSIS Import/Export wizard, 402–408

Choose a Destination page, 404–405
Complete the Wizard screen, 406–407
Save and Execute Package page, 405–406
Select Source Tables and Views page, 405
selecting a data source, 403
starting wizard, 402–403

SSIS (SQL Server Integration Services), 39, 438, 624
SSMS (SQL Server Management Studio), 540, 606

backup and restore facilities, 413
partitioning, 209
starting SSIS Import/Export wizard, 402–403
viewing XML results, 270

SSRM
configuring alerts, 764–765
monitoring replication, 761–764

non-sysadmin access, 762
viewing replication status, 763–764

Standard Edition, 3
32-bit editions, infrastructure requirements, 11
64-bit editions, OS requirements, 14

Standby Mode, log shipping, 678–680, 680–682
STANDBY option (RESTORE command), 428
STARTED (endpoint state), 480
starting SSIS Import/Export wizard, 402–403
starting traces, SQL Server Profiler, 538
statements. See also commands

ALTER DATABASE, 465
modifying data and log file configuration, 55
syntax, 57

ALTER ENDPOINT, 485
ALTER INDEX, disabling indexes, 158
ALTER SCHEMA, 85
ALTER SERVICE MASTER KEY, 89
ALTER TABLE, 131
ALTER USER, modifying user properties, 81
BACKUP SERVICE MASTER KEY, 88
CREATE ASYMMETRIC KEY, 90
CREATE CERTIFICATE, 90
CREATE DATABASE, 264, 605, 709–710

configuring data and log files, 55
CREATE ENDPOINT, 484–485
CREATE FUNCTION, 352
CREATE LOGIN, 75
CREATE MASTER KEY, 89
CREATE ROUTE, 800–801
CREATE STATISTICS, 458, 459
CREATE SYMMETRIC KEY, 89
CREATE TABLE, 265
DBCC SHOW_STATISTICS, 459
DBCC SHRINKDATABASE, 464, 466

statements

Z03I62271X.fm Page 945 Monday, May 1, 2006 12:45 PM

946

statements, continued
DBCC SHRINKFILE, 464
DROP LOGIN, 76
DROP SCHEMA, 85
DROP STATISTICS, 458
DROP USER, removing database users, 81
INSERT, Database Snapshots, 609
RESTORE SERVICE MASTER KEY, 88
SELECT, Database Snapshots, 606
UPDATE, Database Snapshots, 609
UPDATE STATISTICS, 458, 461

static analysis, XQUERY querying language, 286
static cursors, data modification with Transact-SQL, 192
statistics

practice tasks, database management with
Transact-SQL, 475–476

Transact-SQL database management, 457–462
automatic generation, 457–458
manual generation, 458, 459–461
viewing column statistics, 458–459

STATS_DATE function, 459
STATUS clause (CREATE QUEUE command), 792
steps, full database backups, 417–418
STOPAT option (RESTORE command), 430
STOPPED (endpoint state), 480
stopping traces, SQL Server Profiler, 538
storage options, XML data, 257–258

limitations, 259, 261
relational data, 258
text columns, 259
XML data type columns, 260–261

storage queues, 791
stored procedures, 360–366

assigning permissions to a role, 363–364
code efficiency, 365
conflict resolvers, 749
creating, 360–362, 364–365
Database Mail, 66
recompilation, 361
sp_addarticle, 715
sp_adddistpublisher, 710
sp_adddistributiondb, 709–710
sp_adddistributor, 709
sp_addextendedproperty, 710
sp_add_log_shipping_primary_database, 661
sp_add_log_shipping_secondary_database, 667
sp_add_log_shipping_secondary_primary, 667
sp_addmergearticle, 751
sp_addpublication, 714
sp_addpublication_snapshot, 715
sp_addpushsubscription_agent, 717
sp_add_schedule, 661
sp_addsubscription, 717, 718
sp_attach_schedule, 661
sp_grant_publication_access, 733
sp_help_publication_access, 733
sp_replicationdboption, 714

sp_revoke_publication_access, 733
sp_updateextendedproperty, 710
sp_update_job, 661
sp_xml_preparedocument, 320
sp_xml_removedocument, 320
syntax, 360

string summary, 457
structured data, 258
structures

Database Snapshots, 603
databases, 414–416
indexes, 149–153

B-trees, 149–151
levels, 151–152

STUFF function, 190
subqueries

derived tables, 178
querying data with Transact-SQL, 174–176

Subscriber
configuration, 715–718
server role (replication), 699–700

SubscriberUser User Mapping, 740
Subscription Synchronization History dialog box, 769
subscriptions (replication), 700
SUBSTRING function, 190
success criteria, upgrading to SQL Server 2005

installation, 39–40
SWITCH operators

partition management, 227–228
requirements, 228

symmetric keys, encryption, 89–90
sync section, SQLXML updategrams, 314
@sync_type parameter (sp_addsubscription stored

procedure), 720
syntax

ALTER DATABASE, 57
BACKUP DATABASE command, 418
bcp command, 388
case expressions, 176
CREATE DATABASE, 57
stored procedures, 360
table-valued functions, 354

sysadmin roles, job modification, 497
sys.database_mirroring_witnesses catalog view, 619–620
sys.dm_db_index_operational_stats DMF, 568
sys.dm_db_index_physical_stats DMF, 451, 568, 569
sys.dm_db_index_usage_stats DMV, 568
sys.dm_db_missing_index_*track indexes, 569
sys.dm_exec_cached_plans DMV, 571
sys.dm_exec_query_plans DMF, 571
sys.dm_exec_requests DMV, 570
sys.dm_exec_sessions DMV, 570
sys.dm_exec_sql_text DMF, 571
sys.dm_io_pending_io_requests DMF, 572
sys.dm_io_virtual_file_stats DMF, 572
sys.dm_os_performance_counters DMV, 573
sys.dm_os_wait_stats DMV, 573

static analysis

Z03I62271X.fm Page 946 Monday, May 1, 2006 12:45 PM

947

sys.schemas catalog view, 85
sys.server_role_members catalog view, 77
sys.stats catalog view, 458
sys.stats _columns catalog view, 459
system accounts, privileges, 23
System Configuration Checker, 25
system functions, formatting result sets with

Transact-SQL, 186–187
System Monitor (Performance Monitor)

configuring counter logs, 552–553
correlation of data with Profiler, 577
counter logs, 550–552
monitoring replication, 765–767
Real World scenarios, 548–550

system process ID (SPID), 570

T
table-level check constraints, 127
table-valued functions, 354
table variables, 353
tables, 107–126

alias names, 172
clean up, 122
computed columns, 118
cross-reference tables, 135
data types, 107–117
deleting, 121
design, 119
identity, 118
implementation, 104
log_shipping_monitor_error_detail, 684–685
log_shipping_monitor_history_detail, 684–685
naming conventions, 119
normalization, 119
nulls, 117–118
partitions, 218–222
permanent tables, 119–121
permissions, 123–125
querying data with Transact-SQL, 171–172
referencing, 132
space utilization, 110
temporary tables, 121–122
variables, 122–123

TABLESAMPLE clause, querying data with
Transact-SQL, 181

TABLOCK hint parameter, bcp utility, 389
tail of the log (backing up), 431
targets, Service Broker architecture, 779
tasks, maintenance tasks, 506–508
TCP endpoints, 479, 627
technical support, xxxvi, xxxvii
tempdb database, 121
temporary tables

creating, 121–122
data modification with Transact-SQL, 193–194,

195–196

termination processes, blocking, 585
terminator commands, 803
terminology

Database mirroring, 647–648
database operations, 443
Database Snapshots, 612
flat files, 409–410
Full-Text Search, 836–837
HTTP endpoints, 491
indexes, 166–167
log shipping, 690–691
partitions, 233–234
performance monitoring, 597–598
programmable objects, 375–376
replication management, 698–700, 771
Service Broker, 808–809
SQL Server 2005

configuration, 100
installation, 47

Transact-SQL, 203, 474
XML data management, 341–342

testing codes, transactions, 199
testing criteria, upgrading to SQL Server 2005

installation, 39–40
text columns, XML data storage, 259
text data types, 114
thesaurus files, 832
throughput, replication performance, 767
TO clause, BACKUP DATABASE command, 418
tokens (full-text indexes), 821
ToString method, 188
Trace Definition dialog box, 532
trace flag 1400, enabling database mirroring, 616
trace tables, leveraging, 562
traces (SQL Server Profiler)

defining, 532–538
SQL Server Profiler

configuring a baseline trace, 545–546
correlation of data with DMVs/DMFs, 578
pausing, 538
programmatic generation, 534
replay traces, 543–544
saving trace data, 539–540
starting, 538
stopping, 538

Transact-SQL, 169–205
case scenarios, 203–204
data modification, 192–197

cursors, 192–193
SELECT INTO command, 194
temporary tables, 193–194, 195–196

database management, 447–476
DBCC CHECKDB command, 469–472
index fragmentation, 449–456
Real World scenarios, 448
shrinking files, 463–468
statistics, 457–462

Transact-SQL

Z03I62271X.fm Page 947 Monday, May 1, 2006 12:45 PM

948

Transact-SQL, continued
formatting result sets, 186–191

CLR user-defined types, 188
column aliases, 189
column output, 189–190
system functions, 186–187
user-defined functions, 187

job steps, 498
key terms, 203
practice tasks, 204–205
querying data, 171–185

aggregate functions, 177–178
case expressions, 176
columns to return, 173–174
employee pay rates, 182–184
full-text searches, 179–180
join types, 172–173
PIVOT and UNPIVOT operations, 178–179
subqueries, 174–176
tables, 171–172
TABLESAMPLE clause, 181

Real World scenarios, 170
transactions, 198–201

effect of transactions, 200
programmatically handling errors, 199
rolling back transactions, 198

Transact-SQL scripts, as workload files, 556
Transact-SQL UDTs, 137–138, 140
Transaction Log Backup Settings window, 659–660
transaction log database backups, 419–420

practice, 423, 424–425
restoring databases, 430–431

transaction logs, shrinking files, 464–465
Transaction Undo File (TUF), 678
transactional log mirroring, 419
transactional replication, 701–702

secure configuration, 734–745
deleting unsecure replication, 735–736
finishing environment, 739–740
preparing environment, 736–738
scripting publishing configuration, 738–739
snapshot publications, 740–742
subscription configuration, 742–744
testing configuration, 744–745

transactions, Transact-SQL, 198–201
effect of transactions, 200
programmatically handling errors, 199
rolling back transactions, 198

transient operating states, 619
triggers, 367–374

DDL, 367, 371–372
creating, 373–374
event groups, 372

DELETED tables, 368–369
DML, 367, 367–371

AFTER, 367
creating, 372–373
INSTEAD OF, 367–368

exceptions, 368
INSERTED tables, 368–369
nested, 370–371
NOT FOR REPLICATION option, 719
recursive, 370–371
referential integrity, 368
views, 246

troubleshooting
performance, 529–600

blocking and deadlocking issues, 582–592
case scenarios, 598
correlating data, 575–581
database errors, 593–595
DMVs and DMFs, 566–574
DTA (Database Engine Tuning Advisor), 554–565
key terms, 597–598
practice tasks, 599–600
Real World scenarios, 531
SQL Server Profiler, 532–547
System Monitor, 548–553
Web resources, 529

SQL Server Agent jobs, 516
TRY/CATCH format, control-of-flow statements, 199
TSQL (endpoint payload), 480
TUF (Transaction Undo File), 678
TYPE COLUMN clause (CREATE FULLTEXT INDEX

command), 822
typed XML data, 262

U
UDFs (user-defined functions), formatting result sets

with Transact-SQL, 187
UDTs (user-defined types), 137–140

CLR, 138–139
Transact-SQL, 137–138, 140

ufnGetProductListPrice UDF, 187
UMS (User Mode Scheduler), 576
UNC (Universal Naming Convention), 422, 660
Unicode data types, 113
unique constraints, 129–130
UNIQUE keyword, 155
Universal Log table

querying with XQUERY, 293–295
SQLXML queries, 305–307

Universal Naming Convention (UNC), 422, 660
Universal Table, 281–284
UNPIVOT operations, querying data with Transact-SQL,

178–179
unstructured data, 258
untyped XML data, 262
update locks, 583
UPDATE operations, 450
UPDATE statement, Database Snapshots, 609
UPDATE STATISTICS statement, 458, 461
updateable subscriptions, NOT FOR REPLICATION

option, 720–721
updateable views, creating, 245–247

Transact-SQL scripts

Z03I62271X.fm Page 948 Monday, May 1, 2006 12:45 PM

949

@update_mode parameter (sp_addsubscription stored
procedure), 720–721

updating statistics, Transact-SQL database management,
461

upgrading SQL Server 2005 installation, 34–45
Backup/Restore method, 38, 43–44
Copy Database Wizard, 38
data export/import, 39
Detach/Attach method, 37, 42–43
In-Place upgrades, 35
manual schema rebuild, 39
recovery plans, 40
side-by-side migration, 35–36
successful upgrade tips, 40–41
testing and success criteria, 39–40

usage counters, upgrading SQL Server 2005 installation,
41

user-defined filegroups, 54
user-defined functions (UDFs), formatting result sets

with Transact-SQL, 187
user-defined types. See UDTs
user mapping, 740
User Mode Scheduler (UMS), 576

V
valid XML documents, 262
validation

backups, restoring databases, 434
message types, 784

VALIDATION clause (CREATE MESSAGE TYPE
command), 785

value() method, executing XQUERY and XPATH
expressions, 290

VARBINARY(MAX) data type (message types), 785
varchar (max) data types, 114–115
variables, tables, 122–123
viewing column statistics, Transact-SQL database

management, 458–459
VIEW_METADATA option (CREATE VIEW command,

WITH clause), 241
views, 237–253

case scenarios, 253
creating, 240–244

CREATE VIEW command, 240–243
ownership chains, 242–243
practice, 243–244

data modification, 245–247
indexed views, 248–251

creating, 250
prerequisites, 248–249
query substitution, 249

key terms, 252
practice tasks, 253
Real World scenarios, 238–239
triggers, 246

vocabulary. See terminology

W
wait types, 573
Web methods, creating HTTP endpoints, 485
Web resources, monitoring performance, 529
Web services, 477

HTTP endpoints
case scenarios, 491–492
creating, 484–487
key terms, 491
Real World scenarios, 478
security, 479–483

Web Services Description Language (WSDL), 486
Web sites, Microsoft Press, xxxvii
Welcome page (Database Mail Configuration Wizard),

65
well-formed XML, 260
WHERE clause (FLWOR expression), 287
windows

New Job, 496
New Job Step, 499
Transaction Log Backup Settings, 659–660

Windows authentication, 23, 74
Windows Management Instrumentation (WMI) events,

519
WITH CHECK OPTION (CREATE VIEW command),

241
WITH clause

BACKUP DATABASE command, 418
CREATE FULLTEXT CATALOG command, 818
CREATE VIEW command, 241

WITH CONTINUE_AFTER_ERROR option (RESTORE
command), 433

WITH MOVE option (RESTORE command), 428
WITH NORECOVERY clause (RESTORE command),

428
WITH RECOVERY clause (RESTORE command), 428
witness servers, database mirroring, 619–620
wizards

Configure Database Mirroring Security, 631
Configure Distribution, 707
Copy Database, moving databases, 438–439
Copy Database Wizard, upgrading to SQL Server 2005

installation, 38
Database Mail Configuration Wizard, 64–66
Disable Publishing and Distribution, 735
New Publication, 710, 741, 749
New Subscription, 716, 743
SQL Server Installation Wizard, 25
SQL Server Maintenance Plan Wizard, 504, 504–506
SSIS Import/Export, 402–408

Choose a Destination page, 404–405
Complete the Wizard screen, 406–407
Save and Execute Package page, 405–406
Select Source Tables and Views page, 405
selecting a data source, 403
starting wizard, 402–403

wizards

Z03I62271X.fm Page 949 Monday, May 1, 2006 12:45 PM

950

WMI (Windows Management Instrumentation) events,
519

word breakers (full-text indexes), 820
Workgroup Edition, 4, 11
workload analysis, DTA, 556–562, 563–564
workload files

DTA, 556
Transact-SQL script as, 556

WSDL (Web Services Description Language), 486

X
XML data management, 255–348

case scenarios, 342–344
converting from relational data, 320–333

bulk loading XML files, 330–332
nodes() method, 325–327
OPENXML, 320–324
SQLXML, 328–329
XML stored procedures, 320–324

creating
new databases, 263–267
XML schemas, 263–267

importing to flat files, 398–401
key terms, 341–342
modifications, 309–319

SQLXML updategrams, 313–316
XML values and structures, 310–313

nested queries, 279–281
practice tasks, 344–348
Real World scenarios, 256
representation types, 258
retrieving data

middle-tier technologies, 298–308
server-side technologies, 269–297

returning XML as XML data type instance, 279
storage options, 257–258

limitations, 259, 261
relational data, 258
text columns, 259
XML data type columns, 260–261

typed XML data, 262

untyped XML data, 262
XML indexes, 334–340

data type instances, 334
primary indexes, 335–336
secondary indexes, 336–338

XML schemas, 262
XML data manipulation language (XML DML), 309,

310–311
XML data type columns, XML data storage, 260–261
XML data types, retrieving XML data from, 285–295
XML DML (XML data manipulation language), 309,

310–311
XML files, bulk loading, 330–332
XML indexes, 334–340

data type instances, 334
primary indexes, 335–336
secondary indexes, 336–338

XML Schema Definition (XSD), 299, 485
XML schemas, 262

creating, 263–267
loading from a file, 263

XML stored procedures, shredding XML, 320–324
XML view files

keywords, 303
restrictions, 303–304

XPATH querying language, 286–292
exist() method, 290–292
query() method, 287–289
value() method, 290

XQUERY querying language, 286–295
closure, 286
compositionality, 286
exist() method, 290–292
FLWOR expression, 286–289
integration, 286
query() method, 287–289
querying UniversalLog table, 293–295
simplicity, 286
static analysis, 286
value() method, 290

XSD (XML Schema Definition), 299, 485

WMI

Z03I62271X.fm Page 950 Monday, May 1, 2006 12:45 PM

Z04S62271X.fm Page 1 Tuesday, May 2, 2006 1:45 PM
System Requirements

We recommend that you use a computer that is not your primary workstation to do
the practice exercises in this book because you will make changes to the operating sys-
tem and application configuration.

Hardware Requirements
The following hardware is required to complete the practice exercises:

■ Personal computer with a 600 MHz Pentium III–compatible or faster processor;
1 GHz or faster processor recommended

■ 512 MB of RAM or more; 1 GB or more recommended

■ 8 GB of available hard disk space

NOTE Four volumes necessary for some practice exercises

To complete some of the practice exercises in this book, you will need four volumes on your
computer. We recommend that you make the C volume the largest, and then use volume
sizes of 650 MB for the D, E, and F volumes.

■ DVD-ROM drive

■ Super VGA (1,024 x 768) or higher resolution video adapter and monitor

■ Keyboard and Microsoft mouse, or compatible pointing device

Software Requirements
The following software is required to complete the practice exercises:

■ One of the following operating systems:

❑ Microsoft Windows 2000 Server with Service Pack (SP) 4 or later

❑ Windows 2000 Professional with SP 4 or later

❑ Windows XP with SP 2 or later

❑ Windows Server 2003 Standard Edition, Enterprise Edition, or Datacenter
Edition with SP 1 or later
❑ Microsoft Windows Small Business Server 2003 with SP 1 or later

Z04S62271X.fm Page 2 Tuesday, May 2, 2006 1:45 PM
❑ Microsoft Windows Server 2003 Standard x64 Edition, Enterprise x64 Edi-
tion, or Datacenter x64 Edition with SP 1 or later

❑ Windows XP Professional x64 Edition or later running in Windows on
Windows

■ SQL Server 2005 (A 180-day evaluation edition of Microsoft SQL Server 2005
Enterprise Edition is included on DVD with this book)

CAUTION Networked computers

If your computer is part of a larger network, verify with your network administrator that the
SQL Server instances installed will not interfere with network operations. All instances config-
ured for exercises within this book should be set to allow local connections only to ensure
that they will not interact with other resources on your network.

■ Microsoft Internet Explorer 6.0 SP 1 or later

IMPORTANT Evaluation edition is not the full retail product

The 180-day evaluation edition of Microsoft SQL Server 2005 Enterprise Edition provided
with this training kit is not the full retail product and is provided only for the purposes of
training and evaluation. Microsoft and Microsoft Technical Support do not support this eval-
uation edition.

Information about any issues relating to the use of this evaluation edition with this training kit
is posted to the Support section of the Microsoft Press Web site (www.microsoft.com/learn-
ing/support/books/). For information about ordering the full version of any Microsoft soft-
ware, please call Microsoft Sales at (800) 426-9400 or visit www.microsoft.com.

	Cover
	Copyright Page

	Acknowledgments
	About the Authors
	Contents at a Glance
	Table of Contents
	Introduction
	Hardware Requirements
	Software Requirements
	Using the CD and DVD
	How to Install the Practice Tests
	How to Use the Practice Tests
	How to Uninstall the Practice Tests

	Microsoft Certified Professional Program
	Technical Support
	Evaluation Edition Software Support

	Chapter 1: Installing SQL Server 2005
	Before You Begin
	Lesson 1: Selecting the Correct SQL Server 2005 Edition
	Understanding SQL Server 2005 Editions
	Lesson Summary
	Lesson Review

	Lesson 2: Determining Infrastructure Requirements for SQL Server 2005
	Identifying Minimum Hardware, OS, and Network Requirements
	Lesson Summary
	Lesson Review

	Lesson 3: Using Default, Named, and Multiple Instances of SQL Server 2005
	Installing a Default, Named, or Multiple Instances of SQL Server 2005
	Determining When to Use Multiple Instances of SQL Server 2005
	Lesson Summary
	Lesson Review

	Lesson 4: Installing a New Instance of SQL Server 2005
	Determining Service Accounts
	Choosing an Authentication Mode
	Determining Collation Setting
	Lesson Summary
	Lesson Review

	Lesson 5: Upgrading to a SQL Server 2005 Installation
	Determining an Appropriate Upgrade Strategy
	Choosing an Upgrade Method
	Determining Testing and Success Criteria
	Establishing a Recovery Plan
	Tips for a Successful Upgrade
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios
	Case Scenario 1: Installing SQL Server 2005
	Case Scenario 2: Upgrading an Instance of SQL Server

	Suggested Practices
	Selecting an Edition of SQL Server 2005 to Install
	Determining When to Install Default, Named, or Multiple Instances of SQL Server 2005
	Upgrading a SQL Server 2005 Installation

	Take a Practice Test

	Chapter 2: Configuring SQL Server 2005
	Before You Begin
	Lesson 1: Configuring Log and Data Files
	Data Files
	Log Files
	Filegroups
	How to Configure Data Files and Log Files
	Configuring Database Files with RAID Systems
	Best Practices
	Lesson Summary
	Lesson Review

	Lesson 2: Configuring Database Mail
	Identifying Database Mail Prerequisites
	Understanding the Database Mail Architecture
	How to Configure Database Mail
	Lesson Summary
	Lesson Review

	Lesson 3: Specifying a Recovery Model
	Recovery Models Overview
	How to Configure Recovery Models
	Lesson Summary
	Lesson Review

	Lesson 4: Configuring Server Security Principals
	Choosing Between Authentication Modes
	How to Configure SQL Server Logins
	Managing Fixed Server Roles
	Lesson Summary
	Lesson Review

	Lesson 5: Configuring Database Securables
	Managing Database Users
	Managing Database Roles
	Managing Schemas
	Lesson Summary
	Lesson Review

	Lesson 6: Configuring Encryption
	Configuring the Encryption Hierarchy
	Configuring Symmetric and Asymmetric Keys
	Configuring Certificates
	Lesson Summary
	Lesson Review

	Lesson 7: Configuring Linked Servers
	How to Create a Linked Server
	Configuring the Security Model
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios
	Case Scenario 1: Configuring Security
	Case Scenario 2: Configuring a Heterogeneous Environment

	Suggested Practices
	Take a Practice Test

	Chapter 3: Creating Tables, Constraints, and User-Defined Types
	Before You Begin
	Lesson 1: Creating Tables
	Understanding Data Types
	Nullability
	Identity
	Computed Columns
	Creating a Table
	Assigning Permissions
	Lesson Summary
	Lesson Review

	Lesson 2: Implementing Constraints
	Check Constraints
	Rules
	Default Constraints
	Unique Constraints
	Primary Key Constraints
	Foreign Key Constraints
	Lesson Summary
	Lesson Review

	Lesson 3: Creating User-Defined Types
	Transact-SQL UDTs
	CLR UDTs
	Implement a Transact-SQL UDT
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenario: Designing a Database
	Suggested Practices
	Creating Tables
	Creating Constraints

	Take a Practice Test

	Chapter 4: Creating Indexes
	Before You Begin
	Lesson 1: Understanding Index Structure
	Exploring B-Trees
	Inside Index Levels
	Lesson Summary
	Lesson Review

	Lesson 2: Creating Clustered Indexes
	Implementing Clustered Indexes
	Disabling an Index
	Lesson Summary
	Lesson Review

	Lesson 3: Creating Nonclustered Indexes
	Implementing a Nonclustered Index
	Creating a Covering Index
	Balancing Index Maintenance
	Using Included Columns
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenario: Indexing a Database
	Suggested Practices
	Creating Indexes

	Take a Practice Test

	Chapter 5: Working with Transact-SQL
	Before You Begin
	Lesson 1: Querying Data
	Determining Which Tables to Use in the Query
	Determining Which Join Types to Use
	Determining the Columns to Return
	How to Create Subqueries
	Creating Queries That Use Complex Criteria
	Creating Queries That Use Aggregate Functions
	Creating Queries That Format Data by Using PIVOT and UNPIVOT Operators
	Creating Queries That Use Full-Text Search
	Limiting Returned Results by Using the TABLESAMPLE Clause
	Lesson Summary
	Lesson Review

	Lesson 2: Formatting Result Sets
	Using System Functions
	Using User-Defined Functions in Queries
	Querying CLR User-Defined Types
	Creating Column Aliases
	Lesson Summary
	Lesson Review

	Lesson 3: Modifying Data
	Understanding Cursors
	Creating Local and Global Temporary Tables
	Using the SELECT INTO Command
	Lesson Summary
	Lesson Review

	Lesson 4: Working with Transactions
	Beginning and Committing or Rolling Back Transactions
	Programmatically Handle Errors
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios
	Case Scenario 1: Database-Backed Authoring Application
	Case Scenario 2: Banking Corporation

	Suggested Practices
	Writing Queries Against the Sales Schema of the AdventureWorks Database

	Take a Practice Test

	Chapter 6: Creating Partitions
	Before You Begin
	Lesson 1: Creating a Partition Function
	How to Create a Partition Function
	Lesson Summary
	Lesson Review

	Lesson 2: Creating a Partition Scheme
	How to Create a Partition Scheme
	Lesson Summary
	Lesson Review

	Lesson 3: Partitioning Tables and Indexes
	Creating a Partitioned Table, Index, or Indexed View
	Partitioned Indexes and Included Columns
	Partitioning an Existing Table or Index
	Lesson Summary
	Lesson Review

	Lesson 4: Querying Partitions
	How to Query Partitions
	Lesson Summary
	Lesson Review

	Lesson 5: Managing Partitions
	Split and Merge
	SWITCH
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenario: Archiving Data
	Suggested Practice
	Partitioning Tables

	Take a Practice Test

	Chapter 7: Implementing Views
	Before You Begin
	Lesson 1: Creating a View
	How to Create a View
	Understanding Ownership Chains
	Lesson Summary
	Lesson Review

	Lesson 2: Modifying Data Through Views
	Creating Updateable Views
	Lesson Summary
	Lesson Review

	Lesson 3: Creating an Indexed View
	Prerequisites for an Indexed View
	Query Substitution
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenario: Creating Views
	Suggested Practices
	Creating a View
	Creating an Indexed View

	Take a Practice Test

	Chapter 8: Managing XML Data
	Before You Begin
	Lesson 1: Working with XML Structures
	Storage Options for XML data
	Storing XML in Text Columns
	Storing XML in XML Data Type Columns
	Typing and Validating XML Data with XML Schemas
	Lesson Summary
	Lesson Review

	Lesson 2: Retrieving XML Data by Using SQL Server Server-Side Technologies
	Converting Relational Data to XML
	Retrieving XML Data from the XML Data Type
	Lesson Summary
	Lesson Review

	Lesson 3: Retrieving XML Data by Using SQL Server Middle-Tier Technologies
	Using SQLXML-Annotated XSD Schemas
	Querying Annotated XML Schemas and XML Views from .NET
	Lesson Summary
	Lesson Review

	Lesson 4: Modifying XML Data
	Modifying XML Values and XML Structure
	Using SQLXML Updategrams
	Lesson Summary
	Lesson Review

	Lesson 5: Converting Between XML Data and Relational Data
	Shredding XML Using OPENXML and XML Stored Procedures
	Shredding XML by Using the XML Data Type’s nodes() Method
	Shredding XML by Using SQLXML
	Lesson Summary
	Lesson Review

	Lesson 6: Creating XML Indexes
	Indexing an XML Data Type Instance
	Creating an XML Data Type Primary Index
	Creating XML Data Type Secondary Indexes
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios
	Case Scenario 1: Troubleshooting XML Performance by Choosing the Correct Indexing Strategy
	Case Scenario 2: Handling Data as XML or as Relational Representation

	Suggested Practices
	Working with XML Structures
	Retrieving XML Data
	Modifying XML Data
	Converting Between XML Data and Relational Data
	Creating XML Indexes

	Take a Practice Test

	Chapter 9: Creating Functions, Stored Procedures, and Triggers
	Before You Begin
	Lesson 1: Implementing Functions
	Scalar Functions
	Table-Valued Functions
	Deterministic vs. Nondeterministic Functions
	Lesson Summary
	Lesson Review

	Lesson 2: Implementing Stored Procedures
	Creating a Stored Procedure
	Assign Permissions to a Role for a Stored Procedure
	Lesson Summary
	Lesson Review

	Lesson 3: Implementing Triggers
	DML Triggers
	DDL Triggers
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms

	Case Scenario: Creating Triggers, Functions, and Stored Procedures
	Suggested Practices
	Creating Functions
	Creating Stored Procedures
	Creating Triggers

	Take a Practice Test

	Chapter 10: Working with Flat Files
	Before You Begin
	Lesson 1: Preparing to Work with Flat Files
	Source File Location
	Import Mechanism
	Data Destination
	A Best-Case Scenario
	Lesson Summary
	Lesson Review

	Lesson 2: Running the bcp Utility
	What Is bcp?
	bcp Command-Line Syntax
	bcp Hint Parameter
	bcp Permissions
	Lesson Summary
	Lesson Review

	Lesson 3: Performing a BULK INSERT Task
	Differences Between BULK INSERT and bcp
	BULK INSERT Permissions
	Lesson Summary
	Lesson Review

	Lesson 4: Importing Bulk XML Data
	OPENROWSET Function
	Lesson Summary
	Lesson Review

	Lesson 5: Using the SSIS Import/Export Wizard
	How to Start the SSIS Import/Export Wizard
	Walking Through the Import/Export Wizard
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenario: Fixing a Bloated Transaction Log
	Suggested Practices
	Using bcp and BULK INSERT to Load Tables
	Using SSIS to Load Tables

	Take a Practice Test

	Chapter 11: Backing Up, Restoring, and Moving a Database
	Before You Begin
	Lesson 1: Backing Up a Database
	Performing Full Backups
	Performing Differential Backups
	Transaction Log Backups
	Performing Filegroup Backups
	Performing Mirrored Backups
	Partial Backups
	Lesson Summary
	Lesson Review

	Lesson 2: Restoring a Database
	Restoring a Full Backup
	Restoring a Differential Backup
	Restoring a Transaction Log Backup
	Performing a Partial Restore
	Restoring a Corrupt Page
	Restoring with Media Errors
	Validating a Backup
	Lesson Summary
	Lesson Review

	Lesson 3: Moving a Database
	Moving a Database by Using Detach/Attach
	Using the Copy Database Wizard
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenario: Designing a Backup Strategy
	Suggested Practices
	Backing Up a Database
	Restoring a Database
	Moving a Database

	Take a Practice Test

	Chapter 12: Using Transact-SQL to Manage Databases
	Before You Begin
	Lesson 1: Managing Index Fragmentation
	Understanding Index Fragmentation
	Identifying Index Fragmentation
	Managing Index Fragmentation
	Determining Which Statement to Execute
	Lesson Summary
	Lesson Review

	Lesson 2: Managing Statistics
	Understanding Statistics
	Automatic Statistics Generation
	Manual Statistics Generation
	Viewing Column Statistics Information
	Lesson Summary
	Lesson Review

	Lesson 3: Shrinking Files
	Shrinking Database Files Automatically
	Shrinking Database Files Manually
	Shrinking the Transaction Log
	Lesson Summary
	Lesson Review

	Lesson 4: Using DBCC CHECKDB
	DBCC CHECKDB
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios
	Case Scenario 1: Defragmenting an Index
	Case Scenario 2: Maintaining Database Integrity

	Suggested Practices
	Managing Index Fragmentation
	Managing Statistics
	Shrinking Files
	Using DBCC CHECKDB to Perform Database Integrity Checks

	Take a Practice Test

	Chapter 13: Working with HTTP Endpoints
	Before You Begin
	Lesson 1: Understanding HTTP Endpoint Security
	Seven Layers of HTTP Endpoint Security
	Lesson Summary
	Lesson Review

	Lesson 2: Creating a Secure HTTP Endpoint
	Creating an HTTP Endpoint
	Specifying Web Methods
	Specifying WSDL Support, Schemas, and Namespaces
	Additional SOAP Payload Parameters
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenario: Creating HTTP Endpoints
	Suggested Practices
	Creating HTTP Endpoints

	Take a Practice Test

	Chapter 14: Working with SQL Server Agent Jobs
	Before You Begin
	Lesson 1: Creating a SQL Server Agent Job
	How to Create a SQL Server Agent Job
	How to Specify a Job Owner
	How to Create Job Steps
	How to Create Job Schedules
	Lesson Summary
	Lesson Review

	Lesson 2: Creating a Maintenance Plan
	How to Create a Maintenance Plan
	Lesson Summary
	Lesson Review

	Lesson 3: Configuring Operators
	How to Configure an Operator
	Lesson Summary
	Lesson Review

	Lesson 4: Configuring Alerts
	How to Configure Alerts
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms

	Case Scenario: Scheduling Administrative Actions
	Suggested Practices
	Create a SQL Server Agent job
	Create a Maintenance Plan
	Create an Alert

	Take a Practice Test

	Chapter 15: Monitoring and Troubleshooting SQL Server Performance
	Before You Begin
	Lesson 1: Working with SQL Server Profiler
	Defining a Trace
	Starting, Pausing, and Stopping a Trace
	Saving a Trace Log
	Gathering Showplan Data
	Creating a Replay Trace
	Lesson Summary
	Lesson Review

	Lesson 2: Working with System Monitor
	Creating a Counter Log
	Lesson Summary
	Lesson Review

	Lesson 3: Using the Database Engine Tuning Advisor
	Building a Workload File
	Configuring DTA to Analyze a Workload
	Saving Recommendations from DTA
	Lesson Summary
	Lesson Review

	Lesson 4: Using Dynamic Management Views and Functions
	Key Performance and Monitoring DMVs and DMFs
	Lesson Summary
	Lesson Review

	Lesson 5: Correlating Performance and Monitoring Data
	Basic Query Processing Architecture
	Correlating System Monitor Data with SQL Server Profiler Traces
	Correlating DMVs/DMFs with SQL Server Profiler Traces
	Correlating DMVs/DMFs with System Monitor Data
	Correlating Multiple DMVs/DMFs
	Lesson Summary
	Lesson Review

	Lesson 6: Resolving Blocking and Deadlocking Issues
	Understanding Locking
	Understanding Isolation Levels
	Understanding Blocking
	Terminating Processes
	Understanding Deadlocking
	Lesson Summary
	Lesson Review

	Lesson 7: Resolving Database Errors
	Using the DAC
	SQL Server and Windows Error Logs
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenario: Diagnosing Performance Problems
	Suggested Practices
	Working with SQL Server Profiler
	Working with System Monitor
	Using the Database Engine Tuning Advisor
	Using Dynamic Management Views and Functions
	Correlating Performance Data
	Resolving Blocking and Deadlocking Issues
	Using DAC

	Take a Practice Test

	Chapter 16: Managing Database Snapshots
	Before You Begin
	Lesson 1: Creating a Database Snapshot
	Database Snapshot Structure
	Copy-On-Write Technology
	Creating a Database Snapshot
	Retrieving Data from a Database Snapshot
	Lesson Summary
	Lesson Review

	Lesson 2: Reverting a Database from a Database Snapshot
	Reverting a Database
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenario: Implementing Database Snapshots for Administrative Actions
	Suggested Practices
	Take a Practice Test

	Chapter 17: Implementing Database Mirroring
	Before You Begin
	Lesson 1: Understanding Database Mirroring Roles
	Database Mirroring Roles
	Principal Role
	Mirror Role
	Witness Server
	Lesson Summary
	Lesson Review

	Lesson 2: Preparing Databases for Database Mirroring
	Recovery Model
	Backup and Restore
	Copy System Objects
	Lesson Summary
	Lesson Review

	Lesson 3: Establishing Endpoints
	Endpoint Types
	Endpoint Security
	Database Mirroring Endpoints
	Lesson Summary
	Lesson Review

	Lesson 4: Understanding Operating Modes
	High Availability Operating Mode
	High Performance Operating Mode
	High Protection Operating Mode
	Caching
	Transparent Client Redirection
	Lesson Summary
	Lesson Review

	Lesson 5: Failing Over a Database Mirror
	Understanding Failure Scenarios
	How to Initiate a Failover
	Lesson Summary
	Lesson Review

	Lesson 6: Removing Database Mirroring
	Removing Database Mirroring
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenario: Implementing Database Mirroring
	Suggested Practices
	Establishing Database Mirroring
	Creating a Database Snapshot Against a Database Mirror

	Take a Practice Test

	Chapter 18: Implementing Log Shipping
	Before You Begin
	Lesson 1: Preparing to Log Ship
	Understanding Log Shipping
	Understanding Log Shipping Requirements
	Lesson Summary
	Lesson Review

	Lesson 2: Configuring Log Shipping Options
	How to Enable the Primary Database
	Defining Log Shipping Backup Options
	Scripting the Log Shipping Configuration
	How to Configure Secondary Databases
	Configuring the Copy Files Task
	Configuring Log Shipping Restore Options
	Scripting the Secondary Database Configuration
	Lesson Summary
	Lesson Review

	Lesson 3: Configuring Log Shipping Mode
	How to Configure No Recovery Mode
	How to Configure Standby Mode
	Lesson Summary
	Lesson Review

	Lesson 4: Configuring Monitoring
	Understanding the Role of a Monitor Server
	How to Configure a Monitor Server
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios
	Case Scenario 1: Providing Reporting Scalability
	Case Scenario 2: Providing Fault Tolerance for Multiple Servers

	Suggested Practices
	Create a Log Shipping Configuration

	Take a Practice Test

	Chapter 19: Managing Replication
	Before You Begin
	Lesson 1: Understanding Replication Types
	Understanding Replication Terminology
	Replication Types
	Replication Agents
	Lesson Summary
	Lesson Review

	Lesson 2: Setting Up Replication
	How to Set Up the Distributor
	How to Create a Publication
	How to Subscribe to the Publication
	Lesson Summary
	Lesson Review

	Lesson 3: Configuring Replication Security
	Setting Up Replication in a Secure Environment
	Securing Publications
	Permissions Required by Agents
	Lesson Summary
	Lesson Review

	Lesson 4: Configuring Conflict Resolution for Merge Replication
	Conflict Resolution Basics
	Conflict Resolution Resolvers
	Lesson Summary
	Lesson Review

	Lesson 5: Monitoring Replication
	Using SQL Server Replication Monitor
	Configuring Alerts with SSRM
	Monitoring Replication with System Monitor
	Lesson Summary
	Lesson Review

	Chapter Summary
	Key Terms
	Case Scenarios
	Case Scenario 1: Providing Local Access to Reports
	Case Scenario 2: Providing Fault Tolerance for Multiple Servers

	Suggested Practices
	Creating Replication Setups

	Take a Practice Test

	Chapter 20: Working with Service Broker
	Before You Begin
	Lesson 1: Exploring the Service Broker Architecture
	Messaging Overview
	Service Broker Components
	Messaging-Application Interaction
	Enabling Service Broker
	Lesson Summary
	Lesson Review

	Lesson 2: Creating Message Types and Contracts
	Creating Message Types
	Creating a Contract
	Lesson Summary
	Lesson Review

	Lesson 3: Creating Queues and Services
	Creating a Message Queue
	Creating a Service
	Lesson Summary
	Lesson Review

	Lesson 4: Creating Conversations
	Create a Conversation
	Routing Messages to a Service
	Lesson Summary
	Lesson Review

	Lesson 5: Sending and Receiving Messages
	Sending Messages
	Receive Messages
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenario: Building a Service Broker Application
	Suggested Practices
	Configuring a Service Broker Solution

	Take a Practice Test

	Chapter 21: Creating Full-Text Catalogs
	Before You Begin
	Lesson 1: Creating a Full-Text Catalog
	How to Create a Full-Text Catalog
	Lesson Summary
	Lesson Review

	Lesson 2: Creating a Full-Text Index
	Full-Text Index Architecture
	How to Create a Full-Text Index
	Lesson Summary
	Lesson Review

	Lesson 3: Populating a Full-Text Index
	Specifying an Index-Population Method
	Populating a Full-Text Catalog
	Lesson Summary
	Lesson Review

	Lesson 4: Querying Data by Using a Full-Text Index
	Query Execution
	FREETEXT
	FREETEXTTABLE
	CONTAINS
	CONTAINSTABLE
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenario: Building Full-Text Indexes
	Suggested Practices
	Creating Full-Text Indexes
	Querying Full-Text Indexes

	Take a Practice Test

	Answers
	Chapter 1: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4
	Lesson 5

	Chapter 1: Case Scenario Answers
	Case Scenario 1: Installing SQL Server 2005
	Case Scenario 2: Upgrading an Instance of SQL Server

	Chapter 2: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4
	Lesson 5
	Lesson 6
	Lesson 7

	Chapter 2: Case Scenario Answers
	Case Scenario 1: Configuring Security
	Case Scenario 2: Configuring a Heterogeneous Environment

	Chapter 3: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3

	Chapter 3: Case Scenario Answers
	Case Scenario: Designing a Database

	Chapter 4: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3

	Chapter 4: Case Scenario Answers
	Case Scenario: Indexing a Database

	Chapter 5: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4

	Chapter 5: Case Scenario Answers
	Case Scenario 1: Database-Backed Authoring Application
	Case Scenario 2: Banking Corporation

	Chapter 6: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4
	Lesson 5

	Chapter 6: Case Scenario Answers
	Case Scenario: Archiving Data

	Chapter 7: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3

	Chapter 7: Case Scenario Answers
	Case Scenario: Creating Views

	Chapter 8: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4
	Lesson 5
	Lesson 6

	Chapter 8: Case Scenario Answers
	Case Scenario 1: Troubleshooting XML Performance by Choosing the Correct Indexing Strategy
	Case Scenario 2: Handling Data as XML or as Relational Representation

	Chapter 9: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3

	Chapter 9: Case Scenario Answers
	Case Scenario: Creating Triggers, Functions, and Stored Procedures

	Chapter 10: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4
	Lesson 5

	Chapter 10: Case Scenario Answers
	Case Scenario: Fixing a Bloated Transaction Log

	Chapter 11: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3

	Chapter 11: Case Scenario Answers
	Case Scenario: Designing a Backup Strategy

	Chapter 12: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4

	Chapter 12: Case Scenario Answers
	Case Scenario 1: Defragmenting an Index
	Case Scenario 2: Maintaining Database Integrity

	Chapter 13: Lesson Review Answers
	Lesson 1
	Lesson 2

	Chapter 13: Case Scenario Answers
	Case Scenario: Creating HTTP Endpoints

	Chapter 14: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4

	Chapter 14: Case Scenario Answers
	Case Scenario: Scheduling Administrative Actions

	Chapter 15: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4
	Lesson 5
	Lesson 6
	Lesson 7

	Chapter 15: Case Scenario Answers
	Case Scenario: Diagnosing Performance Problems

	Chapter 16: Lesson Review Answers
	Lesson 1
	Lesson 2

	Chapter 16: Case Scenario Answers
	Case Scenario: Implementing Database Snapshots for Administrative Actions

	Chapter 17: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4
	Lesson 5
	Lesson 6

	Chapter 17: Case Scenario Answers
	Case Scenario: Implementing Database Mirroring

	Chapter 18: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4

	Chapter 18: Case Scenario Answers
	Case Scenario 1: Providing Reporting Scalability
	Case Scenario 2: Providing Fault Tolerance for Multiple Servers

	Chapter 19: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4
	Lesson 5

	Chapter 19: Case Scenario Answers
	Case Scenario 1: Providing Local Access to Reports
	Case Scenario 2: Providing Fault Tolerance for Multiple Servers

	Chapter 20: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4
	Lesson 5

	Chapter 20: Case Scenario Answers
	Case Scenario: Building a Service Broker Application

	Chapter 21: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4

	Chapter 21: Case Scenario Answers
	Case Scenario: Building Full-Text Indexes

	Glossary
	Index
	System Requirements
	Hardware Requirements
	Software Requirements

