

Contents

Overview 1

Introduction to Transactions and Locks 2

Managing Transactions 4

SQL Server Locking 12

Managing Locks 18

Recommended Practices 29

Lab A: Managing Transactions and Locks 30

Review 41

Module 15: Managing
Transactions and Locks

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BackOffice, MS-DOS, PowerPoint, Visual Basic, Visual C++, Visual Studio,
Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Project Lead: Rich Rose
Instructional Designers: Rich Rose, Cheryl Hoople, Marilyn McGill
Instructional Software Design Engineers: Karl Dehmer, Carl Raebler,
Rick Byham
Technical Lead: Karl Dehmer
Subject Matter Experts: Karl Dehmer, Carl Raebler, Rick Byham
Graphic Artist: Kirsten Larson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Copy Editor: Edward McKillop (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Support: Lori Walker (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: TestingTesting123
Classroom Automation: Lorrin Smith-Bates
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager, Data Base: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 15: Managing Transactions and Locks iii

Instructor Notes
This module provides students with information about how transactions and
locks are used to ensure transaction integrity while allowing for concurrent use.
The module continues with a discussion of how transactions are executed and
rolled back. A short animation helps to convey how transaction processing
works.

The module next describes how Microsoft® SQL Server� 2000 locks maintain
data consistency and concurrency. Resources that can be locked, the different
types of locks, and lock compatibility are introduced. The final section
describes some locking options, discusses deadlocks, and explains how to
display information on active locks.

In this lab, students define a transaction and observe the impact of BEGIN
TRAN, COMMIT TRAN, and ROLLBACK TRAN statements. They then
observe the effect of applying different locking options to a transaction.

After completing this module, the students will be able to:

! Describe transaction processing.
! Execute, cancel, or roll back a transaction.
! Identify locking concurrency issues.
! Identify resource items that can be locked and the types of locks.
! Describe lock compatibility.
! Describe how SQL Server uses dynamic locking.
! Set locking options and display locking information.

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

! Microsoft PowerPoint® file 2073a__15.ppt
! The C:\Moc\2073A\Demo\D15_Ex.sql example file, which contains all of

the example scripts from the module, unless otherwise noted in the module.

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials for this module.
! Complete the lab.
! Practice the presentation, including the animated slide.
! Review any relevant white papers located on the Trainer Materials

compact disc.

Presentation:
45 Minutes

Lab:
60 Minutes

iv Module 15: Managing Transactions and Locks

Multimedia Presentation
This section provides multimedia presentation procedures that do not fit in the
margin notes and are not appropriate for the student notes.

SQL Server Transactions
! To prepare for the multimedia presentation
• Click the button in the slide to start the multimedia presentation.

This multimedia presentation introduces SQL Server transaction processing.
It starts with the definition of a transaction and explains the two types of
transactions, implicit and explicit. Then it explains how it is possible to
cancel or roll back a transaction.
The presentation continues with a description of the transaction log that
maintains database consistency, explains how modifications are recorded in
the log on disk before they are written to the database, and describes how
checkpoints in the log indicate which transactions have been applied to the
database. The presentation concludes with a description of the automatic
recovery process.

Other Activities
This section provides procedures for implementing interactive activities to
present or review information, such as games or role playing exercises.

Displaying the Animated PowerPoint Slide
The animated slide is identified with an icon of links on the lower left corner of
the slide.

! To display the Transaction Recovery and Checkpoints slide
This slide shows how SQL Server can easily recover transactions in the event
of a system failure.
1. Display the topic slide where the actions required for transaction recovery

appear.
2. Advance to the first animation where the Transaction 1 arrow ends before

the checkpoint. No action is required because the transaction is reflected in
the database.

3. Advance to the next animation where the Transaction 2 arrow begins before
the checkpoint and completes after it. The transaction must be rolled
forward because part of the transaction occurred after the checkpoint.

4. Advance to the next animation where the Transaction 3 arrow begins before
the checkpoint and does not complete before system failure. It must be
rolled back.

5. Advance to the next animation where the Transaction 4 arrow commits after
the checkpoint. It must be reconstructed from the log (rolled forward).

6. Advance to the final animation where the Transaction 5 arrow starts after
the checkpoint but does not complete before system failure. It must be rolled
back.

 Module 15: Managing Transactions and Locks v

Module Strategy
Use the following strategy to present this module:

! Introduction to Transactions and Locks
Introduce the terms and concepts that are used in the module. Be sure that
students understand the interrelationship of the concepts.

! Managing Transactions
Play the multimedia presentation. Describe how to define a transaction,
restrictions on transactions, how SQL Server processes transactions,
transaction recovery, and checkpoints. Make sure that students understand
transactions and how a transaction is used in automatic recovery.

! SQL Server Locking
Describe locking concurrency issues, lockable resources, types of locks, and
lock compatibility. Emphasize the problems that can arise due to lack of
locking and that SQL Server automatically handles these situations. Caution
students that changing locking options in their transactions can negatively
impact performance.

! Managing Locks
Describe session-level and table-level locking options, explain deadlocks,
and describe how to display information on locks. Emphasize that students
should design transactions to minimize deadlocks. They should also test to
determine whether a deadlock is occurring in a transaction.

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing Microsoft
Official Curriculum (MOC) courseware.

The lab in this module is dependent on the classroom configuration
that is specified in the Customization Information section at the end of the
Classroom Setup Guide for course 2073A, Programming a Microsoft
SQL Server 2000 Database.

Lab Setup
There are no lab setup requirements that affect replication or customization.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Important

 Module 15: Managing Transactions and Locks 1

Overview

! Introduction to Transactions and Locks

! Managing Transactions

! SQL Server Locking

! Managing Locks

Objectives
After completing this module, you will be able to:

! Describe transaction processing.
! Execute, cancel, or roll back a transaction.
! Identify locking concurrency issues.
! Identify resource items that can be locked and the types of locks.
! Describe lock compatibility.
! Describe how Microsoft® SQL Server� 2000 uses dynamic locking.
! Set locking options and display locking information.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, we�ll cover...

2 Module 15: Managing Transactions and Locks

Introduction to Transactions and Locks

! Transactions Ensure That Multiple Data Modifications
Are Processed Together

! Locks Prevent Update Conflicts

Transactions are serializable

Locking is automatic

Locks allow concurrent use of data

! Concurrency Control

Transactions use locking to prevent other users from changing or reading
data in a transaction that has not completed. Locking is required in online
transaction processing (OLTP) for multiuser systems. SQL Server uses the
transaction log to ensure that updates are complete and recoverable.

Transactions
Transactions ensure that multiple data modifications are processed as a unit;
this is known as atomicity. For example, a banking transaction might credit one
account and debit another. Both steps must be completed together. SQL Server
supports transaction processing to manage multiple transactions.

Locks
Locks prevent update conflicts. Users cannot read or modify data that other
users are in the process of changing. For example, if you want to compute an
aggregate and ensure that another transaction does not modify the set of data
that is used to compute the aggregate, you can request that the system hold
locks on the data. Consider the following facts about locks:

! Locks make possible the serialization of transactions so that only one person
at a time can change a data element. For example, locks in an airline
reservation system ensure that only one person is assigned a particular seat.

! SQL Server dynamically sets and adjusts the appropriate level of locking
during a transaction. It also is possible to manually control how some of the
locks are used.

! Locks are necessary for concurrent transactions to allow users to access and
update data at the same time. High concurrency means that there are a
number of users who are experiencing good response time with little
conflict. From the system administrator�s perspective, the primary concerns
are the number of users, the number of transactions, and the throughput.
From the user�s perspective, the overriding concern is response time.

Topic Objective
To provide an introduction to
this topic.

Lead-in
Transactions and locks
ensure transaction integrity.

Delivery Tip
This module focuses on
online transaction
processing rather than
query-intensive applications,
such as data warehousing
and decision support.

 Module 15: Managing Transactions and Locks 3

Concurrency Control
Concurrency control ensures that modifications that one person makes do not
adversely affect modifications that others make. There are two types.

! Pessimistic concurrency control locks data when data is read in preparation
for an update. Other users cannot then perform actions that would alter the
underlying data until the user who applied the lock is done with the data.
Use pessimistic concurrency where high contention for data exists and the
cost of protecting the data with locks is less than the cost of rolling back
transactions if concurrency conflicts occur.

! Optimistic concurrency control does not lock data when data is initially
read. Rather, when an update is performed, SQL Server checks to determine
whether the underlying data was changed since it initially read it. If so, the
user receives an error, the transaction rolls back, and the user must start
over. Use optimistic concurrency when low contention for data exists and
the cost of occasionally rolling back a transaction is less than the cost of
locking data when it is read.

SQL Server supports a wide range of optimistic and pessimistic concurrency
control mechanisms. Users specify the type of concurrency control by
specifying the transaction isolation level for a connection.

4 Module 15: Managing Transactions and Locks

$$$$ Managing Transactions

! Multimedia Presentation: SQL Server Transactions

! Transaction Recovery and Checkpoints

! Considerations for Using Transactions

! Setting the Implicit Transactions Option

! Restrictions on User-defined Transactions

This section describes how to define transactions, what to consider when you
use them, how to set an implicit transaction option, and the restrictions on
using transactions. It also discusses transaction processing and recovery.

Topic Objective
To provide an overview of
this topic.

Lead-in
In this section, we'll cover�

 Module 15: Managing Transactions and Locks 5

Multimedia Presentation: SQL Server Transactions

There are two kinds of transactions in SQL Server:

! In an implicit transaction, each Transact-SQL statement, such as INSERT,
UPDATE, or DELETE, executes as a transaction.

! In an explicit or user-defined transaction, the statements of the transaction
are grouped between a BEGIN TRANSACTION and a COMMIT
TRANSACTION clause.

A user can set a savepoint, or marker, within a transaction. A savepoint defines
a location to which a transaction can return if part of a transaction is
conditionally cancelled. The transaction must then proceed to completion or be
rolled back entirely.

SQL Server transactions employ the following syntax.

BEGIN TRAN[SACTION] [transaction_name | @tran_name_variable [WITH
MARK [�description�]]]

The transaction_name option specifies a user-defined transaction name. The
tran_name_variable is the name of a user-defined variable containing a valid
transaction name. WITH MARK specifies that the transaction is marked in the
transaction log. Description is a string that describes the mark that WITH
MARK allows for restoring a transaction log to a named mark.

SAVE TRAN[SACTION] {savepoint_name | @savepoint_variable}

BEGIN DISTRIBUTED TRAN[SACTION]
[transaction_name | @tran_name_variable]

COMMIT [TRAN[SACTION] [transaction_name | @tran_name_variable]]

Topic Objective
To view an example of
transaction processing.

Lead-in
In this presentation, you will
see how transactions are
processed and how the
transaction log works.

Key Point
A committed transaction
cannot be undone or rolled
back.

Syntax

Syntax

Syntax

Syntax

6 Module 15: Managing Transactions and Locks

ROLLBACK [TRAN[SACTION] [transaction_name | @tran_name_variable |
savepoint_name | @savepoint_variable]]

This example defines a transaction to transfer funds between the checking and
savings accounts of one customer.

BEGIN TRAN fund_transfer
 EXEC debit_checking 100, 'account1'
 EXEC credit_savings 100, 'account1'
COMMIT TRAN fund_transfer

Describing the Transaction Log
Every transaction is recorded in a transaction log to maintain database
consistency and to aid in recovery. The log is a storage area that automatically
tracks all changes to a database, with the exception of non-logged operations.
Modifications are recorded in the log on disk as they are executed, before they
are written in the database.

Syntax

Example

This example cannot be
executed because the
stored procedures do not
exist.

 Module 15: Managing Transactions and Locks 7

Transaction Recovery and Checkpoints

Transaction Recovery Action Required

None

Checkpoint System Failure

11

22

33

44

55

Roll forward

Roll back

Roll forward

Roll back

Because the transaction log records all transactions, SQL Server can recover
data automatically in the event of a power loss, system software failure, client
problem, or a transaction cancellation request.

SQL Server automatically guarantees that all committed transactions are
reflected in the database in the event of a failure. It uses the transaction log to
roll forward all committed transactions and to roll back any uncommitted
transactions. In the slide example:

! Transaction 1 is committed before the checkpoint, so it is reflected in the
database.

! Transactions 2 and 4 were committed after the checkpoint, so they must be
reconstructed from the log (rolled forward).

! Transactions 3 and 5 were not committed, so SQL Server rolls them back.

Initially, pages are the same in the data cache and on the disk. The following
process then occurs:

! Changes appear in the data cache as transactions are committed.
! As the cache becomes full, the changed pages are written to disk.
! When a checkpoint occurs, the cache is written to disk. The disk is once

again the same as the cache.

Use a write-caching disk controller with SQL Server only if it was
designed for use with a database server. Failure to do so compromises the
ability of SQL Server to manage transactions. A write-caching disk controller
can make it appear that write-ahead logging is complete, even when it has not.

Topic Objective
To explain the recovery
process.

Lead-in
Because the transaction log
records all modifications,
data can be easily
recovered in the event of
system failure.

Delivery Tip
Use the slide as a
discussion point. Ask
students why each action is
required.

Important

8 Module 15: Managing Transactions and Locks

Considerations for Using Transactions

! Transaction Guidelines

Keep transactions as short as possible

Use caution with certain Transact-SQL statements

Avoid transactions that require user interaction

! Issues in Nesting Transactions

Allowed, but not recommended

Use @@trancount to determine nesting level

It is usually a good idea to keep transactions short and to avoid nesting
transactions.

Transaction Guidelines
Transactions should be as short as possible. Longer transactions increase the
likelihood that users will not be able to access locked data. Some methods to
keep transactions short include the following:

! To minimize transaction time, use caution when you use certain Transact-
SQL statements, such as a WHILE statement or Data Definition Language
(DDL) statements.

! Do not require input from users during a transaction. Address issues that
require user interaction before you start the transaction. For example, if you
are updating a customer record, obtain the necessary information from the
user before you begin the transaction.

! INSERT, UPDATE, and DELETE should be the primary statements in a
transaction, and they should be written to affect the fewest number of rows.
A transaction should never be smaller than a logical unit of work.

! Do not open a transaction while browsing through data, if at all possible.
Transactions should not start until all preliminary data analysis has been
completed.

! Access the least amount of data possible while in a transaction. This
decreases the number of locked rows and reduces contention.

Topic Objective
To identify issues in using
transactions.

Lead-in
In general, keep
transactions as short as
possible.

 Module 15: Managing Transactions and Locks 9

Issues in Nesting Transactions
Consider the following issues regarding nesting transactions:

! It is possible to nest transactions, but nesting does not affect how
SQL Server processes the transaction. You should use nesting carefully, if at
all, because the failure to commit or roll back a transaction leaves locks in
place indefinitely.
Only the outermost BEGIN�COMMIT statement pair applies. Usually,
transaction nesting occurs when stored procedures with BEGIN...COMMIT
statement pairs or triggers invoke one another.

! You can use the @@trancount global variable to determine whether any
open transactions exist and how deeply they are nested:

• @@trancount equals zero when no open transactions exist.

• A BEGIN TRAN statement increments @@trancount by one, and a
ROLLBACK TRAN statement sets @@trancount to zero.

You also can use the DBCC OPENTRAN statement within your current
session to retrieve information on active transactions.

Note

10 Module 15: Managing Transactions and Locks

Setting the Implicit Transactions Option

! Automatically Starts a Transaction When You Execute
Certain Statements

! Nested Transactions Are Not Allowed

! Transaction Must Be Explicitly Completed with
COMMIT or ROLLBACK TRANSACTION

! By Default, Setting Is Off

SET IMPLICIT_TRANSACTIONS ONSET IMPLICIT_TRANSACTIONS ON

In most cases, it is best to define transactions explicitly with the BEGIN
TRANSACTION statement. However, for applications that were originally
developed on systems other than SQL Server, the SET
IMPLICIT_TRANSACTIONS option can be useful. It sets the implicit
transaction mode for a connection.

SET IMPLICIT_TRANSACTIONS {ON OFF}

Consider the following facts when you set implicit transactions:

! When the implicit transaction mode for a connection is on, executing any of
the following statements triggers the start of a transaction:

ALTER TABLE INSERT

CREATE OPEN

DELETE REVOKE

DROP SELECT

FETCH TRUNCATE TABLE

GRANT UPDATE

! Nested transactions are not allowed. If the connection is already in an open
transaction, the statements do not start a new transaction.

! When the setting is on, the user must commit or roll back the transaction
explicitly at the end of the transaction. Otherwise, the transaction and all
data changes that it contains are rolled back when the user disconnects.

! The setting is off by default.

Topic Objective
To discuss how to set
implicit transactions.

Lead-in
Setting implicit transactions
can be useful when you
migrate applications to
SQL Server.

Syntax

 Module 15: Managing Transactions and Locks 11

Restrictions on User-defined Transactions

ALTER DATABASE

BACKUP LOG

CREATE DATABASE

DROP DATABASE

RECONFIGURE

RESTORE DATABASE

RESTORE LOG

UPDATE STATISTICS

! Certain Statements May Not Be Included

Some restrictions exist on user-defined transactions:

! Certain statements may not be included inside an explicit transaction. For
example, some are long-running operations that you are not likely to use
within the context of a transaction. Restricted statements include the
following statements:

• ALTER DATABASE

• BACKUP LOG

• CREATE DATABASE

• DROP DATABASE

• RECONFIGURE

• RESTORE DATABASE

• RESTORE LOG

• UPDATE STATISTICS

Topic Objective
To indicate the items that
cannot be used in user-
defined transactions.

Lead-in
There are some restrictions
on user-defined
transactions.

12 Module 15: Managing Transactions and Locks

$$$$ SQL Server Locking

! Concurrency Problems Prevented by Locks

! Lockable Resources

! Types of Locks

! Lock Compatibility

This section describes concurrency issues, the resource items that can be
locked, the types of locks that can be placed on those resources, and how locks
can be combined.

Topic Objective
To provide an overview of
this topic.

Lead-in
In this section, we'll cover�

 Module 15: Managing Transactions and Locks 13

Concurrency Problems Prevented by Locks

! Lost Update

! Uncommitted Dependency (Dirty Read)

! Inconsistent Analysis (Nonrepeatable Read)

! Phantoms Reads

Locks can prevent the following situations that compromise transaction
integrity:

An update can get lost when a transaction overwrites the changes
from another transaction. For example, two users can update the same
information, but only the last change saved is reflected in the database.

An uncommitted dependency occurs
when a transaction reads uncommitted data from another transaction. The
transaction can potentially make changes based on data that is either inaccurate
or nonexistent.

An inconsistent analysis occurs
when a transaction reads the same row more than one time and when, between
the two (or more) readings, another transaction modifies that row. Because the
row was modified between readings within the same transaction, each reading
produces different values, which introduces inconsistency.

For example, an editor reads the same document twice, but between each
reading, the writer rewrites the document. When the editor reads the document
for the second time, it has completely changed. The original reading is not
repeatable, leading to confusion. It would be better if the editor only starts
reading the document after the writer has completely finished writing it.

Phantom reads can occur when transactions are not isolated
from one another. For example, you could perform an update on all records in a
region at the same time that another transaction inserts a new record for the
region. The next time that the transaction reads the data, an additional record is
present.

Topic Objective
To describe common
locking concurrency issues.

Lead-in
Locks are useful to ensure
transaction integrity in these
situations�

Lost Update

Uncommitted Dependency (Dirty Read)

Inconsistent Analysis (Nonrepeatable Read)

Phantom Reads

14 Module 15: Managing Transactions and Locks

Lockable Resources

ItemItem DescriptionDescription

RID Row identifier

Key Row lock within an index

Page

Extent

Table

Data page or index page

Group of pages

Entire table

Database Entire database

For optimal performance, the number of locks that SQL Server maintains must
be balanced with the amount of data that each lock holds. To minimize the cost
of locking, SQL Server automatically locks resources at a level that is
appropriate to the task. SQL Server can lock the following types of items.

Item Description

RID A row identifier�used to lock a single row within a table

Key A row lock within an index�used to protect key ranges in serializable
transactions

Page An 8-KB data page or index page

Extent A contiguous group of data pages or index pages�used during space
allocation

Table An entire table, including all data and indexes

Database An entire database�used during the restoration of a database

Topic Objective
To list the resource items
that SQL Server can lock.

Lead-in
The number of locks must
be balanced with the
amount of data that each
lock holds.

 Module 15: Managing Transactions and Locks 15

Types of Locks

! Basic Locks

Shared

Exclusive

! Special Situation Locks

Intent

Update

Schema

Bulk update

SQL Server has two main types of locks: basic locks and locks for special
situations.

Basic Locks
In general, read operations acquire shared locks, and write operations acquire
exclusive locks.

Shared Locks
SQL Server typically uses shared (read) locks for operations that neither change
nor update data. If SQL Server has applied a shared lock to a resource, a second
transaction also can acquire a shared lock, even though the first transaction has
not completed.

Consider the following facts about shared locks:

! They are used for read-only operations; data cannot be modified.
! SQL Server releases shared locks on a record as soon as the next record

is read.
! A shared lock will exist until all rows that satisfy the query have been

returned to the client.

Exclusive Locks
SQL Server uses exclusive (write) locks for the INSERT, UPDATE, and
DELETE data modification statements.

Consider the following facts about exclusive locks:

! Only one transaction can acquire an exclusive lock on a resource.
! A transaction cannot acquire a shared lock on a resource that has an

exclusive lock.
! A transaction cannot acquire an exclusive lock on a resource until all shared

locks are released.

Topic Objective
To list the types of locks.

Lead-in
SQL Server has two main
types of locks: basic locks
and locks for special
situations.

16 Module 15: Managing Transactions and Locks

Special Situation Locks
Depending on the situation, SQL Server may use other types of locks:

Intent Locks
SQL Server uses intent locks internally to minimize locking conflicts. Intent
locks establish a locking hierarchy so that other transactions cannot acquire
locks at more inclusive levels. For example, if a transaction has an exclusive
row-level lock on a specific customer record, the intent lock prevents another
transaction from acquiring an exclusive lock at the table-level.

Intent locks include intent share (IS), intent exclusive (IX), and shared with
intent exclusive (SIX).

Update Locks
SQL Server uses update locks when it will modify a page at a later point.
Before it modifies the page, SQL Server promotes the update page lock to an
exclusive page lock to prevent locking conflicts.

Consider the following facts about update locks. Update locks are:

! Acquired during the initial portion of an update operation when the pages
are first being read.

! Compatible with shared locks.

Schema Locks
Schema locks ensure that a table or index is not dropped, or its schema
modified, when it is referenced by another session.

SQL Server provides two types of schema locks:

! Schema stability (Sch-S), which ensures that a resource is not dropped.
! Schema modification (Sch-M), which ensures that other sessions do not

reference a resource that is under modification.

Bulk Update Locks
Bulk update locks allow processes to bulk copy data concurrently into the same
table while preventing other processes, that are not bulk-copying data, from
accessing the table.

SQL Server uses bulk update locks when either of the following options is
specified: the TABLOCK hint or the table lock on bulk load option, which is
set using the sp_tableoption system stored procedure.

 Module 15: Managing Transactions and Locks 17

Lock Compatibility

! Locks May or May Not Be Compatible with Other Locks

! Examples

Shared locks are compatible with all locks except
exclusive

Exclusive locks are not compatible with any other locks

Update locks are compatible only with shared locks

Locks may or may not be compatible with other locks. Locks have a
compatibility matrix that shows which locks are compatible with other locks
that are obtained on the same resource. The locks in the following table are
listed in order from the least restrictive (shared) to the most restrictive
(exclusive).

 Existing granted lock

Requested lock IS S U IX SIX X
Intent shared (IS) Yes Yes Yes Yes Yes No

Shared (S) Yes Yes Yes No No No

Update (U) Yes Yes No No No No

Intent exclusive (IX) Yes No No Yes No No

Shared with intent
exclusive (SIX)

Yes No No No No No

Exclusive (X) No No No No No No

An IX lock is compatible with other IX locks because IX means the
intention to update only some of the rows, rather than all of them.

In addition, compatibility for schema locks is as follows:

! The schema modification lock (Sch-M) is incompatible with all locks.
! The schema stability lock (Sch-S) is compatible with all locks except the

schema modification lock (Sch-M).

Topic Objective
To explain which locks are
compatible.

Lead-in
Locks may or may not be
compatible with other locks.

Delivery Tip
Address lock matrix by
using the slide examples.

Note

18 Module 15: Managing Transactions and Locks

$$$$ Managing Locks

! Session-Level Locking Options

! Dynamic Locking Architecture

! Table-Level Locking Options

! Deadlocks

! Displaying Locking Information

This section describes locking options that you can specify at the session and
table levels. It also describes how SQL Server handles deadlocks and how you
can view information about locks.

Topic Objective
To provide an overview of
this topic.

Lead-in
In this section, we�ll cover�

 Module 15: Managing Transactions and Locks 19

Session-Level Locking Options

! Transaction Isolation Level
READ COMMITTED (DEFAULT)
READ UNCOMMITTED
REPEATABLE READ
SERIALIZABLE

! Locking Timeout
Limits time waiting for a locked resource
Use SET LOCK_TIMEOUT

SQL Server allows you to control locking options at the session level by setting
the transaction isolation level.

Transaction Isolation Level
An isolation level protects a specified transaction from other transactions. Use
the transaction isolation level to set the isolation level for all transactions during
a session. When you set the isolation level, you specify the default locking
behavior for all statements in your session.

Setting transaction isolation levels allows programmers to accept increased risk
of integrity problems in exchange for greater concurrent access to data. The
higher the isolation level, the longer locks are held and the more restrictive
these locks are.

You can override a session-level isolation level in individual statements by
using lock specification. You also can use the DBCC USEROPTIONS
statement to specify transaction isolation for a statement.

Topic Objective
To introduce the transaction
isolation level.

Lead-in
SQL Server allows you to
control locking options at the
session level.

20 Module 15: Managing Transactions and Locks

SET TRANSACTION ISOLATION LEVEL {READ COMMITTED | READ
UNCOMMITTED | REPEATABLE READ | SERIALIZABLE}

The following table describes the locking isolation level options.

Option Description

READ COMMITTED Directs SQL Server to use shared locks while reading. At

this level, you cannot experience dirty reads.

 Directs SQL Server to not issue shared locks and does not
honor exclusive locks. You can experience dirty reads.

REPEATABLE READ Indicates that dirty reads and nonrepeatable reads cannot
occur. Read locks are held until the end of the transaction.

SERIALIZABLE Prevents other users from updating or inserting new rows
that match the criteria in the WHERE clause of the
transaction. Phantoms cannot occur.

The following example sets the isolation level for the current session to READ
UNCOMMITTED and then checks DBCC USEROPTIONS to verify that
SQL Server has made the change.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
DBCC USEROPTIONS

set option value
textsize 64512
language us_english
dateformat mdy
datefirst 7
.
.
.
isolation level

read uncommitted

(13 row(s) affected)

DBCC always prints the following message when it is executed:
DBCC execution completed. If DBCC printed error messages, see
your System Administrator.

Syntax

Example

Result

Note

 Module 15: Managing Transactions and Locks 21

Locking Timeout
With the SET LOCK_TIMEOUT option, it is possible to set the maximum
amount of time that SQL Server allows a transaction to wait for the release of a
blocked resource.

SET LOCK_TIMEOUT timeout_period

timeout_period is the number of milliseconds that pass before SQL Server
returns a locking error. A value of -1 (the default) indicates no timeout period.
After you change it, the new setting is in effect for the remainder of the session.

This example sets the lock timeout period to 180,000 milliseconds.

SET LOCK_TIMEOUT 180000

To determine the current session value, query the @@lock_timeout
global variable.

This example displays the current @@lock_timeout setting.

SELECT @@lock_timeout

180000

(1 row(s) affected)

Delivery Tip
Demonstrate locking
timeouts by using multiple
query windows.

Syntax

Example

Example

Result

22 Module 15: Managing Transactions and Locks

Dynamic Locking Architecture

Dynamic
Locking

TablePageRow

Cost

GranularityLocking Cost
Concurrency Cost

SQL Server uses a dynamic locking architecture to determine the most cost-
effective locks. It automatically determines what locks are most appropriate
when a query is executed, based on the characteristics of the schema and query.

SQL Server dynamically increases and decreases the granularity and types of
locks. The query optimizer usually chooses the correct lock granularity at the
time that the execution plan is compiled, thus minimizing the need to
escalate locks.

For example, if an update acquires a large number of row-level locks and has
locked a significant percentage of a table, the row-level locks are escalated to a
table lock. Then the transaction holds the row-level locks, thereby reducing lock
overhead.

Dynamic locking has the following advantages:

! Simplified database administration, because database administrators no
longer have to be concerned with adjusting lock escalation thresholds

! Increased performance, because SQL Server minimizes system overhead by
using locks appropriate to the task

Topic Objective
To show how the most cost
effective locks are found.

Lead-in
Dynamic locking
architecture helps determine
the most cost effective
locks.

 Module 15: Managing Transactions and Locks 23

Table-Level Locking Options

! Use with Caution

! Can Specify One or More Locking Options for a Table

! Use optimizer_hints Portion of FROM Clause in
SELECT or UPDATE Statement

! Overrides Session-Level Locking Options

Although SQL Server uses dynamic locking architecture to select the best lock
for your client, it is possible to specify table-level locking options. A table hint
can specify a locking method for the query optimizer to use with a specific table
and for a statement.

Use table-level locking options only after you thoroughly understand
how your application works and have determined that the lock that you request
will continue, over time, to be better than that which SQL Server would use.

The following characteristics apply to table-level locking options:

! You can specify one or more locking options for a table.
! Use the optimizer_hints portion of the FROM clause in a SELECT or

UPDATE statement.
! These locking options override corresponding session-level (transaction

isolation level) options that were previously specified with the SET
statement.

Topic Objective
To introduce table locking
options.

Lead-in
In usual practice, you should
not specify a table-level
locking option.

Note

24 Module 15: Managing Transactions and Locks

The following table describes the table-level locking options.

Option Description

HOLDLOCK
SERIALIZABLE
REPEATABLEREAD
READCOMMITTED
READUNCOMMITTED
NOLOCK

Control locking behavior for a table and override the locks
that would be used to enforce the isolation level of the
current transaction

ROWLOCK
PAGLOCK
TABLOCK
TABLOCKX

Specify the size and type of the locks to be used for a table

READPAST Skip locked rows

UPDLOCK Use update locks instead of shared locks

 Module 15: Managing Transactions and Locks 25

Deadlocks

! How SQL Server Ends A Deadlock

! How to Minimize Deadlocks

! How to Customize the Lock Time-Out Setting

A deadlock occurs when two transactions have locks on separate objects and
each transaction requests a lock on the other transaction�s object. Each
transaction must wait for the other to release the lock.

A deadlock can occur when several long-running transactions execute
concurrently in the same database. A deadlock also can occur as a result of the
order in which the optimizer processes a complex query, such as a join, in
which you cannot necessarily control the order of processing.

How SQL Server Ends a Deadlock
SQL Server ends a deadlock by automatically terminating one of the
transactions. The process SQL Server uses is in the following list.

1. Rolls back the transaction of the deadlock victim.
In a deadlock, SQL Server gives priority to the transaction that has been
processing the longest; that transaction prevails. SQL Server rolls back the
transaction with the least amount of time invested.

2. Notifies the deadlock victim�s application (with message number 1205).
3. Cancels the deadlock victim�s current request.
4. Allows the other transaction to continue.

In a multiuser environment, each client should check regularly for
message number 1205, which indicates that the transaction was rolled back. If
message 1205 is found, the application should attempt the transaction again.

Topic Objective
To illustrate why and how a
deadlock occurs.

Lead-in
A deadlock occurs when two
transactions have locks on
separate objects and each
transaction requests a lock
on the other transaction�s
object.

Delivery Tip
Be sure to emphasis the
difference between
deadlocks and blocking
locks.

Important

26 Module 15: Managing Transactions and Locks

How to Minimize Deadlocks
While it is not always possible to eliminate deadlocks, you can reduce the risk
of a deadlock by observing the following guidelines:

! Use resources in the same sequence in all transactions. For example, if
possible, reference tables in the same order in all transactions that reference
more than one table.

! Shorten transactions by minimizing the number of steps.
! Shorten transaction times by avoiding queries that affect many rows.

How to Customize the Lock Time-Out Setting
If a transaction becomes locked while waiting for a resource and a deadlock
results, SQL Server will terminate one of the participating transactions with no
time-out.

If no deadlock occurs, SQL Server blocks the transaction requesting the lock
until the other transaction releases the lock. By default, there is no mandatory
time-out period that SQL Server observes. The only way to test whether a
resource that you want to lock is already locked is to attempt to access the data,
which could result in getting locked indefinitely.

The LOCK_TIMEOUT setting allows an application to set a maximum time
that a statement waits on a blocked resource before the blocked statement is
automatically cancelled. The cancellation does not roll back or cancel the
transaction. The application must trap the error to handle the time-out situation
and take remedial action, such as resubmitting the transaction or rolling it back.

The KILL command terminates a user process based on the server process
ID (spid).

 Module 15: Managing Transactions and Locks 27

Displaying Locking Information

! Current Activity Window
! sp_lock System Stored Procedure
! SQL Profiler
! Windows 2000 System Monitor
! Additional Information

Typically, you use SQL Server Enterprise Manager or the sp_lock system
stored procedure to display a report of active locks. You can use SQL Profiler
to get information on a specific set of transactions. You can also use Microsoft
Windows® 2000 System Monitor to display SQL Server locking histories.

Current Activity Window
Use the Current Activity window in SQL Server Enterprise Manager to display
information on current locking activity. You can view server activity by user,
detail activity by connection, and locking information by object.

sp_lock System Stored Procedure
The sp_lock system stored procedure returns information about active locks in
SQL Server.

EXECUTE sp_lock

A typical result set resembles the following.

spid dbid ObjId IndId Type Resource Mode Status
12 5 0 0 DB S GRANT
12 5 0 0 DB S GRANT
12 2 0 0 EXT 1:280 X GRANT
12 5 0 0 PAG 1:528 IX GRANT
12 5 981578535 0 RID 1:528:0 X GRANT
12 1 5575058 0 TAB IS GRANT
12 5 981578535 0 TAB IX GRANT
13 1 0 0 DB S GRANT

The first four columns refer to various IDs: server process ID (spid), database
ID (dbid), object ID (ObjId), and the index identification number ID (IndId).

Topic Objective
To show the different
information that you can find
on active locks.

Lead-in
To display a report of active
locks, execute the sp_lock
system stored procedure.

Delivery Tip
Demonstrate the Current
Activity window in
SQL Server Enterprise
Manager and SQL Profiler.

Syntax

Result

28 Module 15: Managing Transactions and Locks

The Type column shows the type of resource that is currently locked. Resource
types can include: DB (database), EXT (extent), TAB (table), KEY (key), PAG
(page), or RID (row identifier).

The Resource column has information on the resource type that is being
locked. A resource description of 1:528:0 indicates that row number 0, on page
number 528, on file 1 has a lock applied to it.

The Mode column describes the type of lock that is being applied to the
resource. Types of locks can include: shared (S), exclusive (X), intent (I),
update (U), or schema (Sch).

The Status column shows whether the lock has been obtained (GRANT), is
blocking on another process (WAIT), or is in the process of being converted
(CNVRT).

SQL Profiler
SQL Profiler is a tool that monitors server activities. You can collect
information about a variety of events by creating traces, which provide a
detailed profile of server events. You can use this profile to analyze and resolve
server resource issues, monitor login attempts and connections, and correct
deadlock problems.

Windows 2000 System Monitor
You can view SQL Server locking information with System Monitor. Use the
SQL Server: lock manager and SQL Server: locks objects.

Additional Information
To find information about locks and current server activity, you can query the
syslockinfo, sysprocesses, sysobjects, systables, and syslogins system tables
or you can execute the sp_who system stored procedure.

 Module 15: Managing Transactions and Locks 29

Recommended Practices

Design Transactions to Minimize DeadlocksDesign Transactions to Minimize Deadlocks

Use SQL Server Defaults for LockingUse SQL Server Defaults for Locking

Keep Transactions ShortKeep Transactions Short

Be Careful When You Use Locking OptionsBe Careful When You Use Locking Options

You should consider adopting the following recommended practices when you
manage transactions and locks:

! Keep transactions as short as possible, as this reduces the possibility of
locking conflicts with other transactions. A transaction should never be
smaller than a logical unit of work.

! Design transactions to minimize deadlocks so that transactions do not have
to be resubmitted.

! Use SQL Server defaults for locking because the optimizer generally uses
the best locks based on the particular transaction and other activity in the
database.

! Be careful when you use locking options, and test your transactions to
ensure that your locking choices are better than the SQL Server defaults.

Topic Objective
To list the recommended
practices for managing
transactions and locks.

Lead-in
Use the following
recommended practices
when you manage
transactions and locks.

30 Module 15: Managing Transactions and Locks

Lab A: Managing Transactions and Locks

Objectives
After completing this lab, you will be able to:

! Define transactions with the BEGIN TRANSACTION and COMMIT
TRANSACTION statements.

! Determine the number of active transactions by querying the @@trancount
global variable.

! Use the sp_lock system stored procedure and SQL Server Enterprise
Manager to view locking information.

! Use the SET TRANSACTION ISOLATION LEVEL statement to control
session-level locking behavior.

! Use table-level locking options to control locking behavior for
specific tables.

! Use the SET LOCK_TIMEOUT statement to control the maximum amount
of time that a statement will wait for a lock to be released.

Prerequisites
Before working on this lab, you must have:

• Script files for this lab, which are located in C:\Moc\2073A\Labfiles\L15.

Lab Setup
To complete this lab, you must have either:

! Completed the prior lab, or
! Executed the C:\Moc\2073A\Batches\Restore15.cmd batch file.

This command file restores the ClassNorthwind database to a state required
for this lab.

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will execute
transactions, set locking
options, and view locking
results.

Explain the lab objectives.

 Module 15: Managing Transactions and Locks 31

For More Information
If you require help with executing files, search SQL Query Analyzer Help for
�Execute a query�.

Other resources that you can use include:

! The Northwind database schema.
! SQL Server Books Online.

32 Module 15: Managing Transactions and Locks

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 60 minutes

 Module 15: Managing Transactions and Locks 33

Exercise 1
Creating and Executing a Transaction

In this exercise, you will use the BEGIN TRANSACTION and COMMIT
TRANSACTION statements to understand the impact of the statements on the
way that data is modified. You also will see how SQL Server uses the
@@trancount global variable to determine whether a transaction is active.

! To create and execute a transaction
In this procedure, you will use the BEGIN TRANSACTION and COMMIT
TRANSACTION statements to control how an UPDATE statement is
processed on the Customers table.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password password

2. Open SQL Query Analyzer and, if prompted, log in to the (local) server
with Microsoft Windows® Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Windows 2000 local
group, Administrators. All members of this group are automatically mapped
to the SQL Server sysadmin role.

3. In the DB list, click ClassNorthwind.
4. Open C:\Moc\2073A\Labfiles\L15\Tran1.sql and review its contents.

Notice that the BEGIN TRAN statement is followed by an UPDATE
statement, but no corresponding COMMIT TRAN or ROLLBACK TRAN
statement is present. The SELECT and PRINT statements and the
@@trancount global variable are used in the script to show the progress of
the transaction.

34 Module 15: Managing Transactions and Locks

5. Execute the script and review the results.
At this point, are the changes that were made with the UPDATE statement
committed in this transaction? How can you determine this?
No, the transaction must be completed with a COMMIT TRAN
statement. The transaction is still active, and it still holds any locks that
it acquired. The @@trancount global variable value is 1, indicating that
one BEGIN TRAN statement has been issued on this session.
__

__

Would other transactions be able to query or update the changed data?
Other transactions would not be able to query or modify the changed
data until the transaction has been committed (or rolled back).
__

__

6. Enter a COMMIT TRANSACTION statement in the query window, and
then highlight and execute it to complete the transaction and make the
change permanent.

7. Highlight and execute one of the SELECT statements for the Customers
table to verify that the change has now been completed.

 Module 15: Managing Transactions and Locks 35

Exercise 2
Rolling Back a Transaction

In this exercise, you will use the ROLLBACK TRANSACTION statement to
understand the impact of the way that data is modified within a transaction.

! To use the ROLLBACK TRANSACTION statement
In this procedure, you will use the BEGIN TRANSACTION and ROLLBACK
TRANSACTION statements to control how an UPDATE statement is
processed on the member table.
1. Open C:\Moc\2073A\Labfiles\L15\Tran2.sql and review its contents.

Notice that this script is similar to Tran1.sql, but the contact name is
different, and a ROLLBACK TRAN statement has been added.

2. Execute the script and review the results.
Is the change made by the UPDATE statement stored permanently in
the database?
No. The transaction was rolled back, so any changes that were made
during the transaction are undone.
__

__

Is the transaction complete?
Yes. The ROLLBACK TRAN statement completes the transaction and
releases any locks that the transaction has acquired. Querying the
@@trancount global variable returns zero.
__

__

36 Module 15: Managing Transactions and Locks

Exercise 3
Viewing Locking Information

In this exercise, you will execute multiple transactions simultaneously to
determine the impact that such activity has on locking. You will be asked to
open multiple connections with SQL Query Analyzer to simulate multiple users
sending transactions to SQL Server.

Notice that the scripts used for this exercise do not always include COMMIT
TRAN or ROLLBACK TRAN statements. The absence of these statements
keeps the transactions open and the associated locks active so that you can view
locking information.

! To view locking information
In this procedure, you will use the BEGIN TRANSACTION and ROLLBACK
TRANSACTION statements to control how an UPDATE statement is
processed on the Customers table.
1. Start SQL Query Analyzer (connection 1), click Clear Query Window.
2. Execute the sp_lock system stored procedure and review the output.
3. Start SQL Server Enterprise Manager.
4. In SQL Server Enterprise Manager, in the console tree, expand your server,

expand Management, and then expand Current Activity. Review the
information that is displayed in Process Info, Locks / Process ID and
Locks / Object.

5. Open a second connection with SQL Query Analyzer (connection 2) and in
the DB list, click ClassNorthwind.

6. Open C:\Moc\2073A\Labfiles\L15\Lock1.sql by using connection 2 and
review its contents.
Notice that a transaction is started with the BEGIN TRAN statement but a
corresponding COMMIT TRAN or ROLLBACK TRAN statement to
complete the transaction does not exist.

7. Execute \Lock1.sql by using connection 2 and review the results.
8. Switch to connection 1, execute the sp_lock system stored procedure, and

then review the lock information.
Identify the different lock types and resources locked by the transaction.
Make a note of this information for subsequent use in Exercise 4.
__

__

 Module 15: Managing Transactions and Locks 37

9. Switch to SQL Server Enterprise Manager, right-click Current Activity,
and then click Refresh.

10. Review the information in Current Activity that is displayed in Process
Info, Locks / Process ID and Locks / Object.

11. Switch to connection 2 and cancel the transaction that you started in step 7
by executing a ROLLBACK TRAN statement.

12. Switch to connection 1 and execute the sp_lock system stored procedure.
You will see that the locks acquired by the transaction in step 6 have now
been released.

38 Module 15: Managing Transactions and Locks

Exercise 4
Setting Locking Options

In this exercise, you will use some SQL Server locking options to determine
how they affect the way that transactions are processed. You will use the
connections that you established with SQL Query Analyzer in Exercise 3 to
simulate multiple users sending transactions to SQL Server. You also can use
the Current Activity window in SQL Server Enterprise Manager to view
locking information for this exercise.

! To set the transaction isolation level
In this procedure, you will use the SET TRANSACTION ISOLATION LEVEL
statement to control session-level locking behavior. You will use the
connections that you established with SQL Query Analyzer in Exercise 3.
1. Switch to SQL Query Analyzer (connection 2).
2. Open the C:\Moc\2073A\Labfiles\L15\Lock2.sql script file by using

connection 2, review its contents, and then execute it.
3. Switch to connection 1, execute the sp_lock system stored procedure, and

then review the lock information.
Identify and review the different lock types and resources that are locked by
the transaction.
Did SQL Server use different locks than those that were used in step 8 of
Exercise 3? Why or why not?
SQL Server used an exclusive table lock this time because the SET
TRANSACTION ISOLATION LEVEL statement instructed it to use
the type of lock that is required to achieve the isolation level that is
specified.
__

__

4. Switch to connection 2 and cancel the transaction by executing a
ROLLBACK TRAN statement.

! To use locking options for tables
In this procedure, you will use table-level locking options to control locking
behavior.

1. Switch to SQL Query Analyzer (connection 1).
2. Execute the sp_lock system stored procedure by using connection 1 and

review the output.
3. Switch to SQL Query Analyzer (connection 2).
4. Open the C:\Moc\2073A\Labfiles\L15\Lock3.sql script file by using

connection 2 and review its contents.
Notice that a table locking option has been defined in the FROM clause of
the SELECT statement. Also notice that there is no COMMIT TRAN or
ROLLBACK TRAN statement in the script.

 Module 15: Managing Transactions and Locks 39

5. Execute the Lock3.sql script file in connection 2.
6. Switch to connection 1 and execute the sp_lock system stored procedure.

Make a note of the types of locks that are in use and the resources that are
locked.
__

__

7. Open a third connection with SQL Query Analyzer (connection 3) and in
the DB list, click ClassNorthwind.

8. Open the C:\Moc\2073A\Labfiles\L15\Lock1.sql script file by using
connection 3 and then execute it.

9. Switch to connection 1 and execute the sp_lock system stored procedure.
Is one transaction unable to execute? If so, why?
Yes, the second transaction is attempting to update data that is locked
by the first transaction, so the second transaction must wait for the first
one to complete. You can determine whether a transaction cannot
execute due to a locking conflict by using the sp_lock system stored
procedure and then looking for the word WAIT in the status column. In
this case, the transaction on connection 3 must wait for the transaction
on connection 2 to complete.
__

__

How long will a transaction wait on a locked resource?
A transaction will wait indefinitely on a locked resource as long as it is
not deadlocked. You can set a lock timeout period for the session in
order to control how long SQL Server waits for locked resources.
__

__

10. Switch to connection 3 and on the toolbar, click Cancel Query Execution.
11. Switch to connection 1 and execute the sp_lock system stored procedure to

verify that the waiting transaction has been cancelled.

40 Module 15: Managing Transactions and Locks

! To set the lock timeout period for a transaction
In this procedure, you will set the lock timeout period so that the transaction
will wait to acquire a lock for a specified time.

1. Switch to connection 3 and edit the C:\Moc\2073A\Labfiles\L15\Lock1.sql
script file by adding the following statement immediately before the BEGIN
TRAN statement:
SET lock_timeout 500

2. Execute the edited script by using connection 3.

What happened, and why?
The transaction on connection 3 was waiting for resources that were
locked by the transaction on connection 2. SQL Server cancelled the
transaction in connection 3 because the lock timeout period that you
specified had expired.
__

__

3. Close all windows in SQL Query Analyzer.

 Module 15: Managing Transactions and Locks 41

Review

! Introduction to Transactions and Locks

! Managing Transactions

! SQL Server Locking

! Managing Locks

1. You are developing a new order entry system for your company. You expect
that the system will be very active because 450 operators take orders from
customers 24 hours a day. Should operators process all items that a
customer orders during a single phone call in a single transaction?
It probably is best to treat each product that is ordered as a separate
transaction.

2. Once a month you are required to perform an update to the products table
in your order entry system. The products table contains millions of items.
Each monthly update is expected to affect at least 65 percent of the rows in
the table. You can write a single, complex UPDATE statement to perform
the update, which typically takes at least 30 minutes to execute. Is this the
best way to perform the update?
No, break the statement into a group of smaller transactions, if possible,
to minimize locking contention with other users.

3. You are receiving calls from users. They say that the response time of the
order entry system periodically increases to more than 20 seconds. You
have promised them a three-second response time. You suspect that locking
conflicts may exist within the system. How would you determine the source
of the problem?
Use the sp_lock system stored procedure or the current activity window
in SQL Server Enterprise Manager to identify the problem. Then,
modify the transactions involved.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

Use these questions to
review module topics.

Ask students whether they
have any questions before
continuing.

THIS PAGE INTENTIONALLY LEFT BLANK

