

Contents

Overview 1

Queries That Use the AND Operator 2

Queries That Use the OR Operator 4

Lab A: Analyzing Queries That Use
the AND and OR Operators 5

Queries That Use Join Operations 32

Lab B: Analyzing Queries That Use
Different Join Strategies 45

Recommended Practices 54

Review 55

Module 14:
Analyzing Queries

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BackOffice, MS-DOS, PowerPoint, Visual Basic, Visual C++, Visual Studio,
Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Project Lead: Rich Rose
Instructional Designers: Rich Rose, Cheryl Hoople, Marilyn McGill
Instructional Software Design Engineers: Karl Dehmer, Carl Raebler,
Rick Byham
Technical Lead: Karl Dehmer
Subject Matter Experts: Karl Dehmer, Carl Raebler, Rick Byham
Graphic Artist: Kirsten Larson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Copy Editor: Edward McKillop (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Support: Lori Walker (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: TestingTesting123
Classroom Automation: Lorrin Smith-Bates
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager, Data Base: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 14: Analyzing Queries iii

Instructor Notes
This module provides students with in-depth knowledge of how the query
optimizer in Microsoft® SQL Server� 2000 evaluates and processes queries that
contain the AND and OR operators and join operations, and whether students
should override the query optimizer.

In the labs, students will execute various queries and analyze how the query
optimizer processes queries that contain the AND and OR logical operators.
Students will also analyze how nested loop, merge, and hash joins are
processed.

After completing this module, the students will be able to:

! Analyze the performance gain of writing efficient queries while creating
useful indexes for queries that contain the AND logical operator.

! Analyze the performance gain of writing efficient queries while creating
useful indexes for queries that contain the OR logical operator.

! Evaluate how the query optimizer uses different join strategies for query
optimization.

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

! Microsoft PowerPoint® file 2073a_14.ppt
! The C:\Moc\2073A\Demo\D14_Ex.sql example file, which contains all of

the example scripts from the module, unless otherwise noted in the module.

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials for this module.
! Complete the labs.
! Practice the presentation, including the animated slides.
! Review any relevant white papers located on the Trainer Materials

compact disc.

Presentation:
60 Minutes

Lab:
90 Minutes

iv Module 14: Analyzing Queries

Multimedia Presentation
This section provides multimedia presentation procedures that do not fit in the
margin notes or are not appropriate for the student notes.

You must play the multimedia presentation in class because the content is not
presented anywhere else in the module. This multimedia presentation
introduces how the query optimizer processes a merge join.

How Merge Joins Are Processed
! To prepare for and start the multimedia presentation
• Click the button in the slide to start the multimedia presentation.

Script for Multimedia Presentation
When the query optimizer processes a query that contains a join operation, it
may choose to optimize the query by using a merge join algorithm.

1. In this example, the member table and payment table are joined on the
member_no columns. The columns used to join the tables are converted to
two lists of ordered input values by the merge join operation.
Notice that the input values in m.member_no are unique values, whereas
the input values in p.member_no are not unique. These tables represent a
one-to-many relationship: For one member, there are many payments.

2. The query optimizer compares the first value from Input A to the first value
in Input B.

• If the values are equal, the matching rows will be returned.

• If the value from Input A is less than the value from Input B, then the
query optimizer gets the next input value from Input A.

• If the value from Input B is less than the value from Input A, then the
query optimizer gets the next input value from Input B.

Because 1 is the lower value, 1 is discarded and the next value in Input A is
used for the next comparison.

3. The query optimizer evaluates that 2 is equal to 2. When input values are
equal, matching rows are returned.

 Module 14: Analyzing Queries v

4. The next input value (3) in Input A is compared with the input value 2 in
Input B. Because 2 is the lower value, 2 is discarded and the next value in
Input B is used for the next comparison.

5. Again, because 2 is the lower value, 2 is discarded and the next value in
Input B is used for the next comparison.

6. The query optimizer continues with the evaluation process. It compares the
next input value in Input B, which is also 2. Input value 2 is discarded
because it is the lower value, and the next input value in Input B is used for
the next comparison.

7. The next input value in Input B is 4. The query optimizer compares the two
values. Because 3 are fewer than 4, 3 is discarded and the next value in
Input A is used for the next comparison.

8. The query optimizer evaluates that 4 is equal to 4 and returns all matching
rows.

9. The next input value (5) in Input A is compared with input value 4 in Input
B. Because 4 is the lower value, 4 is discarded and the next value in Input B
is used for the next comparison.

10. Again, because 4 is the lower value, 4 is discarded and the next value in
Input B is used for the next comparison.

11. The next input value in Input B is 8. The query optimizer compares the two
values. Because 5 are fewer than 8, 5 is discarded and the next value in
Input A is used for the next comparison.

12. The query optimizer continues with the evaluation process. It compares the
next input value in Input A, which is 6. It discards that input value, and uses
the next input value in Input A for the next comparison.

13. As you can see, the query optimizer continues down Input A, comparing the
next key value to input value 8 and discarding the lower value. The query
optimizer continues with this process until it finds input values that match.

14. Because 8 is equal to 8, the query optimizer returns the rows.
15. The next input value in Input A is 9. Because 8 is the lower value, the query

optimizer discards that input value, and uses the next input value in Input B
for the next comparison.

16. The query optimizer compares the input value in Input B, which is also 8. It
discards that input value.

17. Because all rows from Input B have been processed, the query optimizer
stops evaluating the remaining values in Input A.

18. The results from the merge join operation can then be used by the next step
in the execution plan, such as a Bookmark Lookup or another join
operation.

vi Module 14: Analyzing Queries

Module Strategy
Use the following strategy to present this module:

! Queries That Use the AND Operator
Describe how the query optimizer processes the AND operator. Explain that
query optimization depends on whether indexes exist on some or all
columns referenced in the WHERE clause.

! Queries That Use the OR Operator
Describe how the query optimizer processes the OR operator. Explain that
query optimization depends on whether indexes exist on some or all
columns referenced in the WHERE clause.

! Queries That Use Join Operations
Explain the selectivity and density of a JOIN clause. Describe how the
query optimizer uses different join strategies to process queries that use
joins.

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing Microsoft
Official Curriculum (MOC) courseware.

The labs in this module are also dependent on the classroom
configuration that is specified in the Customization Information section at the
end of the Classroom Setup Guide for course 2073A, Programming a Microsoft
SQL Server 2000 Database.

Lab Setup
The following section describes the setup requirement for the labs in this
module.

Setup Requirement
The lab in this module requires the credit database to be in a state required for
this lab. To prepare student computers to meet this requirement, perform one of
the following actions:

! Complete the prior lab
! Execute the C:\Moc\2073A\Batches\Restore14A.cmd batch file.

Important

 Module 14: Analyzing Queries vii

Setup Requirement
The lab in this module requires the credit database to be in a state required for
this lab. To prepare student computers to meet this requirement, perform one of
the following actions:

! Complete the prior lab
! Execute the C:\Moc\2073A\Batches\Restore14B.cmd batch file.

If this course has been customized, students must execute the
C:\Moc\2073A\Batches\Restore14A.cmd batch file to ensure that the first lab
will function properly.
If this course has been customized, students must execute the
C:\Moc\2073A\Batches\Restore14B.cmd batch file to ensure that the second lab
will function properly.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Warning

 Module 14: Analyzing Queries 1

Overview

! Queries That Use the AND Operator

! Queries That Use the OR Operator

! Queries That Use Join Operations

After completing this module, you will be able to:

! Analyze the performance gain of writing efficient queries and creating
useful indexes for queries that contain the AND logical operator.

! Analyze the performance gain of writing efficient queries and creating
useful indexes for queries that contain the OR logical operator.

! Evaluate how the query optimizer uses different join strategies for query
optimization.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
about how the query
optimizer processes the
AND and OR logical
operators, and how the
query optimizer uses
different join strategies.

2 Module 14: Analyzing Queries

Queries That Use the AND Operator

! Processing the AND Operator
Returns rows that meet all conditions for every criterion

specified in the WHERE clause
Progressively limits the number of rows returned with

each additional search condition
Can use an index for each search condition of the

WHERE clause
! Indexing Guidelines and Performance Considerations
Define an index on one highly selective search criterion
Evaluate performance between creating multiple, single-

column indexes and creating a composite index

How query optimizer processes the AND operator depends on whether indexes
exist on some, or all columns referenced in the WHERE clause.

Processing the AND Operator
When a query contains the AND operator, the query optimizer:

! Returns rows that meet all conditions for every criterion specified in the
WHERE clause.

! Progressively limits the number of rows returned with each additional
search condition.

! Can use an index for each search condition of the WHERE clause.
! Always uses an index if the index is useful.

If indexes are not useful for any of the columns in the WHERE clause, the
query optimizer performs a table scan or clustered index scan.

! May use multiple indexes if they are useful.
If multiple indexes exist and some indexes are useful for any of the columns
in the WHERE clause, the query optimizer determines which combination
of indexes to use.
The execution plan may show that one or most of the indexes were used to
process the query. The combination of indexes is determined by the:

• Selectivity of the search.

• Type of indexes that exist, such as clustered or nonclustered.

• Ability to cover the index.

• Existence of an indexed view.

Topic Objective
To describe how a query
containing the AND operator
is optimized.

Lead-in
How the query optimizer
processes the AND operator
depends on whether
indexes exist on some or all
columns referenced in the
WHERE clause.

 Module 14: Analyzing Queries 3

! May use only one index even though multiple useful indexes exist.
If the query optimizer finds one index that is highly selective, it uses that
index. Then, it uses the filter operation to process the remaining search
conditions against the qualifying rows.

Indexing Guidelines and Performance Considerations
The best way to index for queries that contain the AND operator is to have at
least one highly selective search criterion and define an index on that column.

You may want to compare the difference in performance when creating
multiple, single-column indexes and a composite index. You do not necessarily
improve query performance by indexing every column that is part of the AND
operator. However, you can benefit from having multiple indexes if the
columns referenced by the AND operator are of lower selectivity.

4 Module 14: Analyzing Queries

Queries That Use the OR Operator

! Returns Rows That Meet Any of the Conditions for
Every Criterion Specified in the WHERE Clause

! Progressively Increases the Number of Rows Returned
with Each Additional Search Condition

! Can Use One Index or Different Indexes for Each Part of
the OR Operator

! Always Performs a Table Scan or Clustered Index Scan
If One Column Referenced in the OR Operator Does Not
Have an Index or If the Index Is Not Useful

! Can Use Multiple Indexes

How the query optimizer processes the OR operator also depends on whether
indexes exist on some or all columns referenced in the WHERE clause.

When a query contains the OR operator, the query optimizer:

! Returns rows that meet any of the conditions for every criterion specified in
the WHERE clause.

! Progressively increases the number of rows returned with each additional
search condition.

! Can use one index that satisfies all parts of the OR operator, or uses
different indexes for each part of the OR operator.

! Always performs a table scan or clustered index scan if one column
referenced in the OR operator does not have an index, or if the index is not
useful.

! If multiple indexes exist and all indexes are useful, the query optimizer:

• Searches a table by using an index for each column.

• Sorts the qualifying values for each column.

• Combines the results.

• Retrieves the qualifying rows by using the Bookmark Lookup operation.

The query optimizer converts the IN clause to the OR operator.

Topic Objective
To describe how a query
containing the OR operator
is optimized.

Lead-in
How the query optimizer
processes the OR operator
also depends on whether
indexes exist on some or all
columns referenced in the
WHERE clause.

Note

 Module 14: Analyzing Queries 5

Lab A: Analyzing Queries That Use the AND and OR
Operators

Objectives
After completing this lab, you will be able to:

! Interpret statistical information on a query that uses the AND operator and
determine why the query optimizer did or did not use specific indexes.

! Interpret why the query optimizer processes queries that contain a small list
of values differently from queries that contain a large list of values.

! Account for the amount of input/output (I/O) used to process a query that
contains nested SELECT statements, and explain why the query optimizer
selected a specific execution plan.

Prerequisites
Before working on this lab, you must have:

! The credit database in Microsoft® SQL Server� 2000.
! Script files, for this lab, which are located in C:\Moc\2073A\Labfiles\L14.

Lab Setup
To complete this lab, you must have either:

! Completed the prior lab, or
! Executed the C:\Moc\2073A\Batches\Restore14A.cmd batch file.

This command file restores the credit database to a state required for
this lab.

For More Information
If you require help with executing files, search SQL Query Analyzer Help for
�Execute a query�.

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will observe
the execution plan and
evaluate how the query
optimizer optimized a query
that uses the AND and OR
operators.

Explain the lab objectives.

6 Module 14: Analyzing Queries

Other resources that you can use include:

! The credit database schema.
! SQL Server Books Online.

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 60 minutes

 Module 14: Analyzing Queries 7

Exercise 1
Evaluating Queries That Use Some Indexes

In this exercise, you will create three indexes on the member table. You will
execute a query that contains three search conditions by using the AND
operator and thereby explain why the query optimizer created the type of plan
that it did. You will also account for the I/O used to process the query.

You can open, review, and execute sections of the EvalQuery.sql script file in
C:\Moc\2073A\Labfiles\L14, or type and execute the provided Transact-SQL
statements.

! To create indexes
In this procedure, you will drop any indexes on the member table and create
three nonclustered indexes on the firstname, corp_no, and member_no
columns.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password password

2. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Microsoft Windows® Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Microsoft
Windows 2000 local group, Administrators. All members of this group are
automatically mapped to the SQL Server sysadmin role.

3. With SQL Query Analyzer, type and execute this statement to drop existing
indexes on the member table:
USE credit
EXEC index_cleanup member

4. Type and execute this statement to create three indexes on the member
table:
USE Credit
CREATE NONCLUSTERED INDEX fname ON member(firstname)
CREATE NONCLUSTERED INDEX corp_no ON member(corp_no)
CREATE NONCLUSTERED INDEX mem_no ON member(member_no)
GO

The member table contains 10,000 unique members (rows).

Note

8 Module 14: Analyzing Queries

! To execute a query that uses some indexes
In this procedure, you will set the statistics option to ON, execute a query that
contains three search conditions in the WHERE clause (where each column
referenced in the WHERE clause has an index created for it), record the
statistical information, and observe the results of the execution plan.
1. Type and execute this statement to set the statistics option to ON:

SET STATISTICS IO ON

2. In the Query window, on the Query menu, click Show Execution Plan.
3. Type and execute this SELECT statement to retrieve data for members

whose first names begin with the letter Q, whose corporate numbers are
greater than 450, and whose member numbers are greater than 6000:
USE credit
SELECT * FROM member WHERE firstname LIKE 'Q%'
 AND corp_no > 450
 AND member_no > 6000

This query is referred to as the original query throughout this
exercise.

4. Record the statistical information in the following table.

Information Result

Number of rows affected 5

Scan count 2

Number of logical reads 15

Number and name of indexes used to process
the query

2 (fname and corp_no)

Note

 Module 14: Analyzing Queries 9

5. Click the Execution Plan tab to display the execution plan graphically.
6. Examine the execution plan. It will look similar to the illustration that

follows.
Notice the operations used in the execution plan. You will analyze this
execution plan throughout this exercise to account for the number of I/O
used and the reasons why this execution plan was selected.

Bookmark Lookup
Cost: 66%

Hash Match/Inne�
Cost: 22%

Filter
Cost: 8%

member.fname
Cost: 7%

Filter
Cost: 0%

member.corp_no
Cost: 6%

Select
Cost: 0%

! To account for the I/O used to process the original query
In this procedure, you will rewrite the original query as three SELECT
statements to understand and account for the 15 I/O of the original query. Each
statement represents one search condition of the WHERE clause that limits the
search. For each statement, you will record statistical information and account
for the number of I/O used to process the query.
1. Type and execute this SELECT statement, which includes only the first

search condition of the WHERE clause in the original query:
USE credit
SELECT firstname FROM member WHERE firstname LIKE 'Q%'

2. Record the statistical information in the following table.

Information Result

Number of rows affected 375

Scan count 1

Number of logical reads 3

Number and name of indexes used to process
the query

1 (fname)

Is the query covered by an index? Yes

10 Module 14: Analyzing Queries

3. Type and execute this SELECT statement, which includes only the second
search condition of the WHERE clause in the original query:
USE credit
SELECT corp_no FROM member WHERE corp_no > 450

4. Record the statistical information in the following table.

Information Result

Number of rows affected 316

Scan count 1

Number of logical reads 3

Number and name of indexes used to process
the query

1 (corp_no)

Is the query covered by an index? Yes

5. Type and execute this SELECT statement, which includes only the third
search condition of the WHERE clause in the original query:
USE credit
SELECT member_no FROM member WHERE member_no > 6000

6. Record the statistical information in the following table.

Information Result

Number of rows affected 4000

Scan count 1

Number of logical reads 9

Number and name of indexes used to process
the query

1 (mem_no)

Is the query covered by an index? Yes

7. Compare the statistical information for the original query with the
breakdown of each search condition of that query.
USE credit
SELECT *FROM member WHERE firstname LIKE 'Q%'
 AND corp_no > 450
 AND member_no > 6000

Information

Result of
original query

Result of query
containing first
search condition

Result of query
containing second
search condition

Result of query
containing third
search condition

Number of rows affected 5 375 316 4000

Scan count 2 1 1 1

Number of logical reads 15 3 3 9

Number and name of
indexes used to process
the query

2 (fname and
corp_no)

1 (fname) 1 (corp_no) 1 (mem_no)

Your statistical information may vary from that presented in the table.

Original Query

Note

 Module 14: Analyzing Queries 11

Why did each of the three individual queries use so little I/O?
The I/O was reduced because each query was able to cover the index.
Reading only the leaf-level pages of the index, and not the data pages,
will reduce I/O.
__

__

__

In the original query, why did the query optimizer not use the index on the
member_no column?
Because the WHERE member_no > 6000 search condition has low
selectivity. The query returns 4,000 rows out of 10,000. This WHERE
clause does not limit the search, compared with other search conditions
in the WHERE clause.
__

__

__

__

! To understand the execution plan by combining search conditions
In this procedure, you will rewrite the original query by combining the search
conditions of the WHERE clause that the query optimizer used in the execution
plan. You will record the statistical information, and evaluate the execution plan
to account for the number of I/O.
1. Type and execute this SELECT statement, which includes the first and

second search conditions of the WHERE clause in the original query:
USE credit
SELECT firstname FROM member
WHERE firstname LIKE 'Q%' AND corp_no > 450

2. Record the statistical information in the following table.

Information Result

Number of rows affected 9

Scan count 2

Number of logical reads 6

Number and name of indexes used to process
the query

2 (fname and corp_no)

Is the query covered by an index? Yes

Notice that when you execute the query, the query optimizer uses an index
for each search condition.

12 Module 14: Analyzing Queries

3. Compare the statistical information for the original query with the query that
contains the first and second search conditions.
USE credit
SELECT * FROM member WHERE firstname LIKE 'Q%'
 AND corp_no > 450
 AND member_no > 6000

Information

Result of
original query

Result of query containing first
and second search conditions

Number of rows
affected

5 9

Scan count 2 2

Number of logical
reads

15 6

Number and name of
indexes used to
process the query

2 (fname and
corp_no)

2 (fname and corp_no)

Your statistical information may vary from that presented in the table.

4. Click the Execution Plan tab to display the execution plan graphically.
5. Examine the execution plan.

Why do both queries have a scan count of two?
Both queries use two indexes. The query optimizer uses one index at a
time. In its first pass, the query optimizer uses the index on the
firstname column of the member table and automatically does a
covered query. The query is covered because the key values (one scan
count and three I/O) is the only information required.
In its second pass (scan count 2), the query optimizer uses the index on
the corp_no column of the member table and automatically covers the
query. The query optimizer only requires three I/O for searching on
each index. Searching on the two indexes makes a total of six I/O.
__

__

__

__

__

__

Original Query

Note

 Module 14: Analyzing Queries 13

Exercise 2
Evaluating Queries That Use All Indexes

In this exercise, you will execute queries containing the AND operator against
the member table and record statistical information. The query used in this
exercise is identical to the query used in Exercise 1, except that one search
condition has changed from member_no > 6500 to member_no > 9500. The
same three nonclustered indexes exist on the member table, which are defined
on the firstname, corp_no, and member_no columns.

You will also change the indexing strategy to illustrate how different indexes
can reduce your I/O in a query.

You can open, review, and execute the EvalQueryIndex.sql script file in
C:\Moc\2073A\Labfiles\L14, or type and execute your own Transact-SQL
statements.

! To execute a query that uses all indexes
In this procedure, you will set the statistics option to ON, execute a query,
record the statistical information, and observe the results of the execution plan.
1. Type and execute this SELECT statement to retrieve data for members

whose first names begin with the letter Q, whose corporate numbers are
greater than 450, and whose member numbers are greater than 9500:
USE credit
SELECT * FROM member WHERE firstname LIKE 'Q%'
 AND corp_no > 450
 AND member_no > 9500

This query is referred to as the original query throughout this
exercise.

2. Record the statistical information in the following table.

Information Result

Number of rows affected 1

Scan count 3

Number of logical reads 10

Number and name of indexes used to process
the query

3 (fname, corp_no, and
mem_no)

3. Click the Execution Plan tab to display the execution plan graphically.

Note

14 Module 14: Analyzing Queries

4. Examine the execution plan. It will look similar to the illustration that
follows.
Notice the operations used in the execution plan. You will be analyzing this
execution plan throughout this exercise to account for the number of I/O
used and the reasons why this execution plan was selected.

Bookmark Lookup
Cost: 8%

Hash Match Team�
Cost: 33%

Filter
Cost: 8%

member.fname
Cost: 10%

member.corp_no
Cost: 9%

Select
Cost: 0%

Hash Match Root�
Cost: 28%

member.mem_no
Cost: 10%

Does the query optimizer use the index on the member_no column? Why?
Yes. The search condition member_no > 9500 is highly selective.
__

__

5. Compare the original query in this exercise with the original query in
exercise 1.
USE credit
SELECT * FROM member WHERE firstname LIKE 'Q%'
 AND corp_no > 450
 AND member_no > 9500

USE credit
SELECT * FROM member WHERE firstname LIKE 'Q%'
 AND corp_no > 450
 AND member_no > 6000

Why does the original query in this exercise use the index defined on the
member_no column, whereas the original query in Exercise 1 does not?
The search condition member_no > 6000 is of low selectivity. The query
returns 4,000 rows out of 10,000 rows. The search condition
member_no > 9500 is of higher selectivity and returns 500 rows out of
10,000 rows.
__

__

Original Query

Original Query
(exercise 1)

 Module 14: Analyzing Queries 15

! To account for the I/O used to process the original query
In this procedure, you will rewrite the original query as three SELECT
statements. Each statement will represent one search condition of the WHERE
clause that limits the search. For each statement, you will record statistical
information. You then will use this information to explain why the query
optimizer selects a specific execution plan and to account for the number of I/O.
1. Type and execute this SELECT statement, which includes only the first

search condition of the WHERE clause in the original query:
USE credit
SELECT firstname FROM member WHERE firstname LIKE 'Q%'

2. Record the statistical information in the following table.

Information Result

Number of rows affected 375

Scan count 1

Number of logical reads 3

Number and name of indexes used to process
the query

1 (fname)

Is the query covered by an index? Yes

3. Type and execute this SELECT statement, which includes only the second
search condition of the WHERE clause in the original query:
USE credit
SELECT corp_no FROM member WHERE corp_no > 450

4. Record the statistical information in the following table.

Information Result

Number of rows affected 316

Scan count 1

Number of logical reads 3

Number and name of indexes used to process
the query

1 (corp_no)

Is the query covered by an index? Yes

5. Type and execute this SELECT statement, which includes only the third
search condition of the WHERE clause in the original query:
USE credit
SELECT member_no FROM member WHERE member_no > 9500

16 Module 14: Analyzing Queries

6. Record the statistical information in the following table.

Information Result

Number of rows affected 500

Scan count 1

Number of logical reads 3

Number and name of indexes used to process
the query

1 (mem_no)

Is the query covered by an index? Yes

7. Compare the statistical information for the original query with the
breakdown of each search condition of that query.
USE credit
SELECT * FROM member WHERE firstname LIKE 'Q%'
 AND corp_no > 450
 AND member_no > 9500

Information

Result of
original query

Result of query
containing first
search condition

Result of query
containing second
search condition

Result of query
containing third
search condition

Number of rows affected 1 375 316 500

Scan count 3 1 1 1

Number of logical reads 10 3 3 3

Number and name of indexes
used to process
the query

3 (fname,
corp_no, and
mem_no)

1 (fname) 1 (corp_no) 1 (mem_no)

Your statistical information may vary from that presented in the table.

8. Click the Execution Plan tab to display the execution plan graphically.
9. Examine the execution plan for the original query.

In the original query, how do you account for the 10 I/O?
The query optimizer uses three indexes. Each index used requires three
I/O. Three I/O multiplied by three I/O equals nine I/O. The one
remaining I/O is used for the Bookmark Lookup operator, bringing the
total to 10 I/O.
__

__

__

__

Original Query

Note

 Module 14: Analyzing Queries 17

! To execute a query against a table with a clustered index
In this procedure, you will drop the nonclustered index on the
member.member_no column and create a clustered index on the
member.member_no column. After you create the index, you will execute the
original query and observe the changes in the execution plan and the page I/O.
1. Type and execute this statement to drop the nonclustered index on the

member.member_no column and create a clustered index:
USE credit
DROP INDEX member.mem_no
GO
CREATE CLUSTERED INDEX mem_no_CL ON member(member_no)
GO

Two nonclustered indexes exist: One is defined on the corp_no
column, and the other is defined on the firstname column.

2. Type and execute the original query against the member table with a
clustered index on the member_no column:
USE credit
SELECT * FROM member WHERE firstname LIKE 'Q%'
 AND corp_no > 450
 AND member_no > 9500

3. Record the statistical information in the following table.

Information Result

Number of rows affected 1

Scan count 1

Number of logical reads 9

Number and name of indexes used to process
the query

1 (mem_no)

Is the query covered by an index? No

4. Compare the statistical information of the query against a table that has a
clustered index on the member_no column with the table that has a
nonclustered index on the member_no column.

Information

Result of query
(clustered index on
member_no)

Result of query
(nonclustered index on
member_no)

Number of rows affected 1 1

Scan count 1 3

Number of logical reads 9 10

Number and name of
indexes used to process
the query

1 (mem_no) 3
(fname, corp_no, and
mem_no)

Your statistical information may vary from that presented in the table.

Note

Note

18 Module 14: Analyzing Queries

5. Click the Execution Plan tab to display the execution plan graphically.
6. Examine the execution plan.

Has query performance improved with a clustered index on the member_no
column? Why?
Yes. The query with the clustered index on the member_no column only
requires nine I/O, one scan count, and fewer steps in the execution plan.
__

__

Why does the query optimizer use the clustered index on the member_no
column?
The query optimizer typically selects a clustered index if the query is
not covered by an index. The query optimizer uses a clustered index
because the rows are sorted and it is more efficient when processing
queries that specify ranges of data. By using the clustered index on
member_no, SQL Server reads all 500 rows, which requires 9 I/O.
Rows that do not meet the search conditions are eliminated as the range
of member numbers are read.
__

__

__

__

 Module 14: Analyzing Queries 19

Exercise 3
Evaluating Queries That Use the IN Keyword

In this exercise, you will create an index on the member table, observe the
performance of queries containing the IN keyword, and observe how the
execution plan changes as the list of values grows in size. The larger the list, the
less efficient the query becomes.

You can open, review, and execute sections of the EvalQueryIN.sql script file
in C:\Moc\2073A\Labfiles\L14, or type and execute the provided Transact-SQL
statements.

! To execute a query that contains an IN keyword
In this procedure, you will drop any existing indexes on the member table,
create an index, execute a query, record the statistical information, and examine
the execution plan.
1. Type and execute this statement to drop existing indexes on the member

table:
USE credit
EXEC index_cleanup member

2. Type and execute this statement to create a unique, nonclustered index on

the member_no column of the member table:
USE credit
CREATE UNIQUE nonclustered INDEX mbr_mem_no
 ON member(member_no)
GO

3. Type and execute this statement to set the statistics option to ON:

SET STATISTICS IO ON

4. Type and execute this SELECT statement to retrieve all data for specific
member numbers:
USE credit
SELECT * FROM member WHERE member_no
 IN (100,101,102,103,104,105,106,107,108,109,200,201,
 202,203,204,205,206,207,208,209,210,211,212,213,
 214,215,216,217,218,219,220,221,222,223,224,225,
 226,227,228,229,230,231,232)

5. Record the statistical information in the following table:

Information Result

Number of rows affected 43

Scan count 43

Number of logical reads 129

Number and name of indexes used to process
the query

1 (mbr_mem_no)

Is the query covered by an index? Yes

20 Module 14: Analyzing Queries

6. Click the Execution Plan tab to graphically view the execution plan.
7. Examine the execution plan. It will look similar to the illustration that

follows.
Notice the operations used in the execution plan. You will be analyzing this
execution plan throughout this exercise to account for the number of I/O
used and the reasons why this execution plan was selected.

Bookmark Lookup
Cost: 91%

member.mbr_mem...
Cost: 0%

SELECT
Cost: 9%

Knowing that the Bookmark Lookup accounts for 43 of the 129 I/O, how do
you account for the remaining 86 I/O?

STATISTICS I/O shows a scan count of 43.

The remaining 86 I/O are from reading (scan count) the table once for
each value in the list of values of the query. The list of values in the
query contains 43 values. The query optimizer uses the nonclustered
index to search for each value. To get the necessary value, it reads the
root page and then one leaf-level page to get the row identifier (RID)
(covers the index). Forty-three rows, requiring two I/O each, equal 86
I/O. Using a RID to retrieve rows requires exactly one I/O for each row.
Twelve rows equal 43 I/O; 43 + 86 = 129 I/O.
__

__

__

__

__

If the query were modified to use an index that covers the query, what step
would be eliminated in the execution plan? Why?
The Bookmark Lookup step would be eliminated, because the query
would only need to process the first step of the execution plan and select
only the member_no column data.
__

__

__

__

Tip

 Module 14: Analyzing Queries 21

What would be the total page I/O for this query, which is covered by an
index?
43 page I/O. Eliminating the Bookmark Lookup eliminates 43 I/O.
129 - 43 = 86 I/O.
__

__

! To show when a query containing a list of values becomes inefficient
In this procedure, you will execute a query, record the statistical information,
and compare the execution plan with that of the preceding query. The query
used in this procedure is similar to the previous query, except that the IN list
includes one additional value. The additional value in the query causes the
query optimizer to process the query in a different way.
1. Type and execute this SELECT statement to retrieve specific member

numbers. Notice that this query differs from the original query. There are
now 44 values in the IN list:
USE credit
SELECT * FROM member WHERE member_no
IN (100,101,102,103,104,105,106,107,108,109,200,201,202,
 203,204,205,206,207,208,209,210,211,212,213,214,215,
 216,217,218,219,220,221,222,223,224,225,226,227,228,
 229,230,231,232,233)

2. Record the statistical information in the following table.

Information Result

Number of rows affected 44

Scan count 1

Number of logical reads 145

Number and name of indexes used to process
the query

none

Is the query covered by an index? No

3. Compare the statistical information for this query with the statistical
information in the previous query.
USE credit
SELECT * FROM member WHERE member_no
 IN (100,101,102,103,104,105,106,107,108,109,200,201,
 202,203,204,205,206,207,208,209,210,211,212,213,
 214,215,216,217,218,219,220,221,222,223,224,225,
 226,227,228,229,230,231,232)

Previous Query

22 Module 14: Analyzing Queries

USE credit
SELECT * FROM member WHERE member_no
IN (100,101,102,103,104,105,106,107,108,109,200,201,202,
 203,204,205,206,207,208,209,210,211,212,213,214,215,
 216,217,218,219,220,221,222,223,224,225,226,227,228,
 229,230,231,232,233)

Information

Result of
previous query

Result of query containing
additional value

Number of rows affected 43 44

Scan count 43 1

Number of logical reads 129 145

Number and name of indexes
used to process the query

Yes (mem_no) None

4. Click the Execution Plan tab to display the execution plan graphically.
5. Examine the execution plan.

Why did the query optimizer use a different execution plan for the query
with the additional value (233) in the list of values?
As the list of values becomes larger, the query optimizer processes the
query in a different way. A new execution plan is used to process a
larger set of values more efficiently.
__

__

__

__

Describe the execution plan for the query containing the additional value
(233)?
The execution plan first creates an internal table to store the list of
values, which are sorted (Constant Scan). The internal table is then
joined using a Hash join with the list of key values retrieved by using a
table scan. This execution plan requires more I/O to process the join
between the internal table and the member table.
__

__

__

__

Query Containing
Additional Value

 Module 14: Analyzing Queries 23

Exercise 4
Evaluating Queries That Contain Nested SELECT Statements

In this exercise, you will observe the performance of queries containing nested
SELECT statements. You will examine the execution plan of a query that
returns a list of values, account for the number of I/O, and explain why the
query optimizer selected the specific execution plan.

You can open, review, and execute sections of the EvalQueryNested.sql script
file in C:\Moc\2073A\Labfiles\L14, or type and execute the provided
Transact-SQL statements.

! To execute a query containing a nested SELECT statement
In this procedure, you will execute a query that contains a nested SELECT
statement that returns a list of values and record the statistical information.
1. Type and execute this SELECT statement to retrieve member data for

members whose member numbers are between 100 and 111:
USE credit
SELECT * FROM member WHERE member_no
IN (SELECT member_no FROM member WHERE member_no
BETWEEN 100 AND 111)

This query is referred to as the original query throughout this
exercise.

2. Record the statistical information in the following table.

Information Result

Number of rows affected 12

Scan count 13

Number of logical reads 44

Number and name of indexes used to process
the query

1 (mbr_mem_no)

! To account for the I/O used to process the original query
In this procedure, you will rewrite the original query as two SELECT
statements. Each statement represents a step in the execution plan. For each
statement, you will record statistical information, explain why the query
optimizer selected a specific execution plan, and you then account for the
number of I/O.
1. Type and execute this SELECT statement to retrieve member numbers

between 100 and 111:
USE credit
SELECT member_no FROM member WHERE member_no
 BETWEEN 100 AND 111

In the original query, this SELECT statement is the first step of the
execution plan.

Note

Note

24 Module 14: Analyzing Queries

2. Record the statistical information in the following table.

Information Result

Number of rows affected 12

Scan count 1

Number of logical reads 2

Is an index used to process the query? Is this query covered by an index?
Why?
Yes (member_no). Yes, this query is covered by an index, because all of
the data can be found in the index.
__

__

3. Type and execute this SELECT statement to retrieve specific member
numbers:
USE credit
SELECT member_no FROM member WHERE member_no
IN (100,101,102,103,104,105,106,107,108,109,110,111)

In the original query, this SELECT statement is the second step of the
execution plan.

4. Record the statistical information in the following table.

Information Result

Number of rows affected 12

Scan count 12

Number of logical reads 24

Is an index used to process the query? Is this query covered by an index?
Yes (member_no). Yes, this query is covered by an index, because all of
the data can be found in the index.
__

__

Note

 Module 14: Analyzing Queries 25

5. Compare the statistical information for the original query with the
breakdown of each step of the execution plan.
USE credit
SELECT * FROM member WHERE member_no IN
 (SELECT member_no FROM member WHERE member_no
 BETWEEN 100 AND 111)

USE credit
SELECT member_no FROM member WHERE member_no
 BETWEEN 100 AND 111

USE credit
SELECT member_no FROM member WHERE member_no IN
 (100,101,102,103,104,105,106,107,108,109,110,111)

Information

Result of
original query

Result of query
(first step of execution plan)

Result of query
(second step of execution plan)

Number of rows affected 12 12 12

Scan count 13 1 12

Number of logical reads 44 2 24

Your statistical information may vary from that presented in the table.

6. Click the Execution Plan tab to graphically view the execution plan.

Original Query

First Step Query

Second Step Query

Note

26 Module 14: Analyzing Queries

7. Execute the original query and examine the execution plan.
In the original query, explain why the query optimizer created this plan, and
specify how much I/O was used by each step in the execution plan.
The query optimizer first processes the nested select by reading the
range of values from the leaf level of the nonclustered index (an index
covers this query). This requires only two I/O and returns 12 values
(not the row). This generates one scan count.
It then processes each of the 12 values one at a time. Each value
requires two I/O�one to read the root page, and the other to read the
leaf level page�which brings the total to 24 I/O. This step uses an index
that covers the query. This generates 12 scan counts, which result in a
total scan count of 13 (1+ 12 = 13).
The join operation joins these results, producing 12 rows. The final step
executes a Bookmark Lookup where each of the 12 values requires one
I/O.
The total I/O that this execution plan uses is 2 + 24 + 12 = 38. The six
I/O used by the join operation bring the total to 44 I/O.
__

__

__

__

__

__

__

__

 Module 14: Analyzing Queries 27

Exercise 5
Evaluating Queries That Contain the OR Operator

In this exercise, you will execute several queries containing the OR operator
against the member table, which has a nonclustered index on the member_no
column. You will record the statistical information, compare I/O, and examine
the execution plan. You will drop existing indexes, create two indexes, re-
execute a query, and compare the execution plan used for the same query
executed against a table with partial indexing.

You can open, review, and execute sections of the EvalQueryOR.sql script file
in C:\Moc\2073A\Labfiles\L14, or type and execute the provided Transact-SQL
statements.

! To execute a query against a table with partial indexing
In this procedure, you will execute three queries and record and evaluate their
statistical information.
1. Drop all indexes on the member table in the credit database.

USE credit
EXEC index_cleanup member

2. Create a unique nonclustered index on the member_no column of the

member table.
CREATE UNIQUE nonclustered INDEX mbr_mem_no ON
member(member_no)

3. Set statistics I/O to ON.

SET STATISTICS IO ON

4. Type and execute this SELECT statement to retrieve a member where
member number equals 1234, or region number equals 5:
USE credit
SELECT * FROM member WHERE member_no=1234 OR region_no=5

A nonclustered index on the member_no column of the member
table exists.

5. Record the statistical information in the following table.

Information Result

Number of rows affected 1,100

Scan count 1

Number of logical reads 145

Number and name of indexes used to process
the query

None (table scan)

Query 1

Note

28 Module 14: Analyzing Queries

6. Type and execute this SELECT statement to retrieve a member where
member number equals 1,234, or corporate number equals 410:
USE credit
SELECT * FROM member WHERE member_no=1234 OR corp_no=410

7. Record the statistical information in the following table.

Information Result

Number of rows affected 7

Scan count 1

Number of logical reads 145

Number and name of indexes used to process
the query

None (table scan)

8. Click the Execution Plan tab to graphically view the execution plan.
9. Examine the execution plan. It will look similar to the illustration that

follows.

SELECT
Cost: 1%

Table Scan
Cost: 99%

Notice the operations used in the execution plan. You will use this execution
plan to compare to another execution plan later in the exercise.

10. Type and execute this SELECT statement to retrieve a member where
region number equals 5, or corporate number equals 410:
USE credit
SELECT * FROM member WHERE region_no = 5 OR corp_no = 410

11. Record the statistical information in the following table.

Information Result

Number of rows affected 1105

Scan count 1

Number of logical reads 145

Number and name of indexes used to process
the query

None (table scan)

12. Compare the statistical information for all three queries.
USE credit
SELECT * FROM member WHERE member_no=1234 OR region_no=5

USE credit
SELECT * FROM member WHERE member_no=1234 OR corp_no=410

Query 2

Query 3

Query 1

Query 2

 Module 14: Analyzing Queries 29

USE credit
SELECT * FROM member WHERE region_no=5 OR corp_no=410

Information Result of query 1 Result of query 2 Result of query 3

Number of rows affected 1,100 7 1,105

Scan count 1 1 1

Number of logical reads 145 145 145

Number and name of indexes
used to process the query

None (table scan) None (table scan) None (table scan)

Your statistical information may vary from that presented in the table.

Do these three execution plans differ? Why?
No. The execution plans do not differ because they all require a table
scan. At least one of the columns that the OR operator references does
not have an index. If one column does not have an index, then the query
optimizer performs a table scan. Because of the way that the logic of the
OR operator works, all columns referencing an OR operator are
processed separately.
__

__

__

__

! To drop existing indexes and create indexes
In this procedure, you will drop any existing indexes and create two indexes on
the member table.
1. Type and execute this statement to set the statistics option to OFF:

SET STATISTICS IO OFF

2. Type and execute this statement to drop existing indexes on the member
table:
USE credit
EXEC index_cleanup member

3. Type and execute this statement to create two indexes on the member table:

USE credit
CREATE UNIQUE nonclustered INDEX mbr_mem_no
 ON member(member_no)
CREATE clustered INDEX mbr_corp_no_CL
 ON member(corp_no)

Query 3

Note

30 Module 14: Analyzing Queries

! To execute a query against a table with complete indexing
In this procedure, you will set the statistics option to ON, re-execute query 2 of
this exercise, and record and evaluate the statistical information.
1. Type and execute this statement to set the statistics option to ON:

SET STATISTICS IO ON

2. Re-execute query 2, which retrieves member number 1,234, or corporate
number 410.
USE credit
SELECT * FROM member WHERE member_no=1234 OR corp_no=410

3. Record the statistical information in the following table.

Information Result

Number of rows affected 7

Scan count 2

Number of logical reads 18

Number and name of indexes used to process
the query

2 (mbr_mem_no and
mbr_corp_no_CL)

4. Compare the statistical information of query 2 against a table with partial
indexing with complete indexing.
USE credit
SELECT * FROM member WHERE member_no=1234 OR corp_no=410

Information

Result of query 2
(partial indexing)

Result of query 2
(complete indexing)

Number of rows affected 7 7

Scan count 1 2

Number of logical reads 145 18

Number and name of indexes
used to process the query

None (table scan) Yes (mbr_mem_no and
mbr_corp_no_CL)

5. Click the Execution Plan tab to graphically view the execution plan.
6. Examine the execution plan and compare it with the execution plan for the

same query executed against a table with partial indexing.
Why is the execution plan for a table, with complete indexing different from
the execution plan, used for the same query executed against a table with
partial indexing?
The execution plan for a table with complete indexing is different
because an index exists and is useful for each column referenced by the
OR operator. The query optimizer uses one index to search on the
corp_no column and a different index to search on the member_no
column.
__

__

__

Query 2

Query 2

 Module 14: Analyzing Queries 31

What is the execution plan, and how many I/O does it use?
Step 1a requires two I/O to retrieve one row on the member_no column,
which has a nonclustered index that covers the query. This operation
does not contribute to the value of the scan count, because it covers the
index. The operation does not access the table.
Step 1b requires two I/O to retrieve six rows on the corp_no column,
which has a clustered index. This operation accounts for one of the scan
counts.
Step 2 and 3 concatenate and sort the results. These operations require
seven I/O.
Step 3 is a Bookmark Lookup operation. The query optimizer reads
each of the seven rows individually by using the RID or clustering key.
One I/O for each row equals seven I/O and accounts for the second scan
count.
Total I/O: 2 + 2 + 7 + 7 = 18 I/O.
__

__

__

__

32 Module 14: Analyzing Queries

$$$$ Queries That Use Join Operations

! Selectivity and Density of a JOIN Clause

! How Joins Are Processed

! How Nested Loop Joins Are Processed

! Multimedia: How Joins Are Processed

! Considerations When Merge Joins Are Used

! How Hash Joins Are Processed

In this section, we will discuss how the query optimizer optimizes queries that
use join operations.

Topic Objective
To point out the topics in
this section.

Lead-in
In this section, we will
discuss query optimizations
that use join operations.

 Module 14: Analyzing Queries 33

Selectivity and Density of a JOIN Clause

! Selectivity of a JOIN Clause
Based on index density, if

statistics are available
Based on a number of

considerations, if
statistics are unavailable

! Density of a JOIN Clause
An index with large

number of duplicates has
high join density

A unique index has low
join density

SelectivityPe
rc

en
ta

ge
 o

f R
ow

s
R

et
ur

ne
d

The order in which the query optimizer processes joins is determined by the
existence of indexes and a WHERE clause, in addition to the selectivity and
density of the data.

Selectivity of a JOIN Clause
The selectivity of a JOIN clause is the percentage of rows from one table that
are joined to a single row from another. Selectivity is derived from the number
of rows that are estimated to be returned, as seen with the WHERE clause.

A low selectivity returns many rows, and a high selectivity returns few rows.
The base is the multiple of the rows in both tables after local predicates
(WHERE clause) on joined tables and aggregations are applied. This algorithm
is different from determining how many rows match a search condition.

How Selectivity of a JOIN Clause Is Determined
You can calculate the selectivity of a JOIN clause by using the density of the
data. The query optimizer determines selectivity of a JOIN clause based on the
following parameters:

! If statistics are available, join selectivity is based on the density of the index
for all of the columns.

! If statistics are unavailable because indexes do not exist, existing indexes
are not useful, or if a WHERE clause is not included in the query, the query
optimizer processes the query more efficiently by:

• Applying an appropriate join strategy.

• Using other physical operators.

• Building column statistics dynamically.

• The number of rows in each table of the join.

Topic Objective
To discuss the selectivity
and density of a JOIN
clause.

Lead-in
The order in which the query
optimizer processes joins is
determined by the existence
of indexes and a WHERE
clause, in addition to the
selectivity and density of the
data.

Delivery Tip
Use the slide illustration to
reiterate that a low
selectivity returns many
rows, and a high selectivity
returns few rows.

Delivery Tip
Point out the considerations
that the query optimizer
estimates to determine the
selectivity of a JOIN clause
when statistics are
unavailable.

34 Module 14: Analyzing Queries

Density of a JOIN Clause
The density of a JOIN clause is the average percentage of duplicates between
the inner and outer tables. The query optimizer uses the density of a JOIN
clause to determine which table is processed as the inner table, and which table
is processed as the outer table.

! An index with a large number of duplicates has high join density, which is
not very selective for joins.
For example, the orders_details table contains many orders for one
customer.

! A unique index has a low join density, which is highly selective.
For example, the customer table lists each customer only once. The
customer ID column is unique.

If an index has a low join density, the query optimizer can access data by using
a clustered or nonclustered index. However, only a clustered index is typically
useful for indexes with a high join density.

In this example, use the following assumptions to determine how the query
optimizer produces a execution plan:

! The employee table contains 1,000 rows.
! The department table contains 100 rows (unique departments).
! The data is evenly distributed (10 employees per department).
! No indexes or statistics exist.

USE credit
SELECT *
FROM department AS dept INNER JOIN employee AS empl
ON dept.deptno = empl.deptno

When indexes do not exist on columns that are joined, the query optimizer uses
a join strategy that determines which table is the outer table and which table is
the inner table. It does this by evaluating the row ratio between tables.

If any search conditions exist in the WHERE clause, the query optimizer may
use these conditions first to determine how to join the tables. This
determination is based on selectivity.

Example

 Module 14: Analyzing Queries 35

How Joins Are Processed

membermembermember
member_nomember_no ��
.
.
.
5678
.
.
.

.

.

.
5678
.
.
.

.

.

.
Chen
.
.
.

.

.

.
Chen
.
.
.

Result
Unique
nonclustered index Nonclustered index

chargechargecharge
charge_nocharge_no
.
.
.
15259
.
.
.
16351
.
.
.
17673
.
.
.

.

.

.
15259
.
.
.
16351
.
.
.
17673
.
.
.

member_nomember_no
.
.
.
5678
.
.
.
5678
.
.
.
5678
.
.
.

.

.

.
5678
.
.
.
5678
.
.
.
5678
.
.
.

��
member_nomember_no

5678
5678
5678
5678
5678
5678
5678
5678
5678
5678
5678
5678
5678

5678
5678
5678
5678
5678
5678
5678
5678
5678
5678
5678
5678
5678

charge_nocharge_no

30257
17673
15259
16351
32778
48897
60611
66794
74396
76840
86173
87902
99607

30257
17673
15259
16351
32778
48897
60611
66794
74396
76840
86173
87902
99607

��

(13 row(s) affected

USE credit
SELECT m.member_no, c.charge_no, c.charge_amt, c.statement_no
FROM member AS m INNER JOIN charge AS c
ON m.member_no = c.member_no
WHERE c.member_no = 5678

USE credit
SELECT m.member_no, c.charge_no, c.charge_amt, c.statement_no
FROM member AS m INNER JOIN charge AS c
ON m.member_no = c.member_no
WHERE c.member_no = 5678

An understanding of how the query optimizer processes join operations enables
you to determine what types of indexes are useful to create.

Joins are processed as pairs. Regardless of how many tables you are combining,
joins are always between two tables. The result of these joins is called an
intermediate result. Intermediate results can then be joined to another table by
using any of the join algorithms. For each join, the query optimizer will
determine the appropriate join algorithm to use.

When processing join operations, the query optimizer typically:

! Determines the order in which the tables are processed, based on indexes,
selectivity, and density.
Order is not determined by the order of the table referenced in the SELECT
statement.

! Identifies which table is the optimal outer table.
! Finds all matching rows in inner table for each qualifying row in the outer

table.

Evaluating the Use of Indexes
The selectivity and density of a JOIN clause affects which type of index is most
useful for processing the query.

! An index on the column that is specified in the WHERE clause can
influence which table is used as the outer table and which join strategy is
used. Selectivity determines which table is the inner table.

! The query optimizer automatically considers the use of redundant JOIN
clauses and conditions in the WHERE clause.

Topic Objective
To illustrate how the query
optimizer processes a join.

Lead-in
Let�s take a look at how the
query optimizer processes a
join.

Delivery Tip
Point out that the query
optimizer converts the
search criteria in the
WHERE clause so that the
member table is the outer
table.

Explain that by making this
conversion, the query
optimizer limits the search. It
limits the search because
the member table has only
one qualifying row, whereas
the charge table has many
rows.

36 Module 14: Analyzing Queries

In this example, there is a unique nonclustered index on the member_no
column in the member table, and a nonclustered index on the member_no
column in the charge table. Both indexes are useful for processing the query.

USE credit
SELECT m.member_no, c.charge_no, c.charge_amt, c.statement_no
FROM member AS m INNER JOIN charge AS c
ON m.member_no = c.member_no
WHERE c.member_no = 5678

The query optimizer converts the search criteria in the WHERE clause so that
the query is processed as:

WHERE m.member_no = 5678

By converting the member table to the outer table, the query optimizer limits
the search, because the member table has only one qualifying row, whereas the
charge table has many rows.

Example

 Module 14: Analyzing Queries 37

How Nested Loop Joins Are Processed
USE credit
SELECT m.member_no, c.charge_no, c.charge_amt, s.statement_no
FROM member AS m INNER JOIN charge AS c
ON m.member_no = c.member_no
INNER JOIN statement AS s
ON c.member_no = s.member_no
WHERE m.member_no = 5678

USE credit
SELECT m.member_no, c.charge_no, c.charge_amt, s.statement_no
FROM member AS m INNER JOIN charge AS c
ON m.member_no = c.member_no
INNER JOIN statement AS s
ON c.member_no = s.member_no
WHERE m.member_no = 5678

Joins the results with the
qualifying rows of the charge table

Retrieves qualifying rows
from both tables and joins them

111

222

chargechargecharge
charge_nocharge_no
.
.
.
15259
.
.
.
16351
.
.
.
17673
.
.
.

.

.

.
15259
.
.
.
16351
.
.
.
17673
.
.
.

member_nomember_no
.
.
.
5678
.
.
.
5678
.
.
.
5678
.
.
.

.

.

.
5678
.
.
.
5678
.
.
.
5678
.
.
.

statementstatementstatement
statement_nostatement_no
.
.
.
5678
15678
.
.
.

.

.

.
5678
15678
.
.
.

member_nomember_no
.
.
.
5678
5678
.
.
.

.

.

.
5678
5678
.
.
.

��
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

membermembermember
member_nomember_no ��
.
.
.
5678
.
.
.

.

.

.
5678
.
.
.

.

.

.
Chen
.
.
.

.

.

.
Chen
.
.
.

If there is a JOIN clause in the query, the query optimizer evaluates the number
of tables, indexes, and joins to determine the optimal order, and what join
strategy to use. The query optimizer processes nested loop joins as nested
iterations.

Defining Nested Iteration
A nested iteration is when the query optimizer constructs a set of nested loops,
and the result set grows as it progresses through the rows. The query optimizer
performs the following steps.

1. Finds a row from the first table.
2. Uses that row to scan the next table.
3. Uses the result of the previous table to scan the next table.

Evaluating Join Combinations
The query optimizer automatically evaluates at least four or more possible join
combinations, even if those combinations are not specified in the join predicate.
You do not have to add redundant clauses. The query optimizer balances the
cost and uses statistics to determine the number of join combinations that it
evaluates. Evaluating every possible join combination is inefficient and costly.

Topic Objective
To discuss how nested joins
are processed.

Lead-in
If there is a JOIN clause in
the query, the query
optimizer evaluates the
number of tables, indexes,
and joins to determine the
optimal order, and what join
strategy to use.

38 Module 14: Analyzing Queries

Evaluating Cost of Query Performance
When the query optimizer performs a nested join, you should be aware that
certain costs are incurred. Nested loop joins are far superior to both merge joins
and hash joins when executing small transactions, such as those affecting only a
small set of rows. The query optimizer:

! Uses nested loop joins if the outer input is quite small and the inner input is
indexed and quite large.

! Uses the smaller input as the outer table.
! Requires that a useful index exist on the join predicate for the inner table.
! Always uses a nested loop join strategy if the join operation uses an operator

other than an equality operator.

In this example, the member table (10,000 rows) is joined to the charge table
(100,000 rows), and the charge table is joined to the statement table (20,000
rows). Nonclustered indexes exist on the member_no column in each table.
The query optimizer processes the join as the member table joined to the
statement table, and the result of that join is combined with the charge table.

USE credit
SELECT m.member_no, c.charge_no, c.charge_amt, s.statement_no
FROM member AS m INNER JOIN charge AS c
 ON m.member_no = c.member_no
INNER JOIN statement AS s
 ON c.member_no = s.member_no
WHERE m.member_no = 5678

The query optimizer performs the following steps to process the query:

1. Retrieves the qualifying rows from the member table and the statement
table, and then joins the result by using the nested loop join strategy.

2. Retrieves the qualifying rows from the charge table, and then joins that
result with the results of the first nested loop join by using another nested
loop join strategy.

Example

 Module 14: Analyzing Queries 39

Multimedia: How Merge Joins Are Processed

The columns of the join conditions are used as inputs to process a merge join.
SQL Server performs the following steps when using a merge join strategy:

1. Gets the first input values from each input set.
2. Compares input values.
3. Performs a merge algorithm.

• If the input values are equal, the rows are returned.

• If the input values are not equal, the lower value is discarded, and the
next input value from that input is used for the next comparison.

4. Repeats the process until all of the rows from one of the input sets have
been processed.

5. Evaluates any remaining search conditions in the query and returns only
rows that qualify.

Only one pass per input is done. The merge join operation ends after
all of the input values of one input have been evaluated. The remaining
values from the other input are not processed.

Topic Objective
To discuss how merge joins
are processed.

Lead-in
In this presentation, you will
see how merge joins are
processed.

Note

40 Module 14: Analyzing Queries

Considerations When Merge Joins Are Used

! Requires That Joined Columns Are Sorted

! Evaluates Sorted Values

Uses an existing index tree

Leverages sort operations

Performs its own sort operation

! Performance Considerations

USE credit
SELECT m.lastname, p.payment_amt
FROM member AS m INNER JOIN payment AS p
ON m.member_no = p.member_no
WHERE p.payment_amt < 7000 AND m.firstname < 'Jak'

USE credit
SELECT m.lastname, p.payment_amt
FROM member AS m INNER JOIN payment AS p
ON m.member_no = p.member_no
WHERE p.payment_amt < 7000 AND m.firstname < 'Jak'

A merge uses two sorted inputs and then merges them.

Requires That Joined Columns Are Sorted
If you execute a query with join operations, and the joined columns are in
sorted order, the query optimizer processes the query by using a merge join
strategy. A merge join is very efficient because the columns are already sorted,
and it requires less page I/O.

Evaluates Sorted Values
For the query optimizer to use the merge join, the inputs must be sorted. The
query optimizer evaluates sorted values in the following order:

1. Uses an existing index tree (most typical). The query optimizer can use the
index tree from a clustered index or a covered nonclustered index.

2. Leverages sort operations that the GROUP BY, ORDER BY, and CUBE
clauses use. The sorting operation only has to be performed once.

3. Performs its own sort operation in which a SORT operator is displayed
when graphically viewing the execution plan. The query optimizer does this
very rarely.

Topic Objective
To point out the details in
the merge join operation.

Lead-in
A merge join uses two
sorted inputs and then
merges them.

 Module 14: Analyzing Queries 41

In this example, a clustered index exists on the member_no column of the
payment table, and a unique clustered index exists on the member_no column
of the member table. The query optimizer scans the member table and the
payment table by using the clustered index for each table. After scanning the
contents of each table, the query optimizer performs a merge join between both
tables, because both inputs are already sorted from the clustered indexes. This is
a merge join/inner join.

USE credit
SELECT m.lastname, p.payment_amt
 FROM member AS m INNER JOIN payment AS p
 ON m.member_no = p.member_no
 WHERE p.payment_amt < 7000 AND m.firstname < 'Jak'

In this example, a unique clustered index exists on the member_no column of
the member table, and the query explicitly specifies an ORDER BY clause on
the member_no column of the payment table.

USE credit
SELECT m.lastname, m.firstname, p.payment_dt
 FROM member AS m INNER JOIN payment AS p
 ON m.member_no = p.member_no
 ORDER BY p.member_no

Performance Considerations
Consider the following facts about the query optimizer's use of the merge join:

! SQL Server performs a merge join for all types of join operations (except
cross join or full join operations), including UNION operations.

! A merge join operation may be a one-to-one, one-to-many, or many-to-
many operation.
If the merge join is a many-to-many operation, SQL Server uses a
temporary table to store the rows. If duplicate values from each input exist,
one of the inputs rewinds to the start of the duplicates as each duplicate
value from the other input is processed.

! Query performance for a merge join is very fast, but the cost can be high if
the query optimizer must perform its own sort operation.
If the data volume is large and the desired data can be obtained presorted
from existing Balanced-Tree (B-Tree) indexes, merge join is often the
fastest join algorithm.

! A merge join is typically used if the two join inputs have a large amount of
data and are sorted on their join columns (for example, if the join inputs
were obtained by scanning sorted indexes).

! Merge join operations can only be performed with an equality operator in
the join predicate.

Example 1

Example 2

42 Module 14: Analyzing Queries

How Hash Joins Are Processed

Hash keys

xxxxxx
zzzzzz
yyyyyy
nnnnnn

..

..

..

member_nomember_nomember_no

11
..
..
..

98179817
..
..
..

Result member_nomember_nomember_no lastnamelastnamelastname ���
98179817 DeBrouxDeBroux ��

Hash BucketHash BucketHash Bucket

.

.

.

.

.

.

Data RowsData RowsData Rows

yyy

98179817
..
..
..

DeBrouxDeBroux ��

1068610686
..
..
..

ZuvelZuvel ��

83428342
..
..
..

HjellenHjellen ��

xxx

Probe Input Build Input

Hashing is a strategy for dividing data into equal sets of a manageable size
based on a given property or characteristic. The grouped data can then be used
to determine whether a particular data item matches an existing value.

Duplicate data or ranges of data are not useful for hash joins because the
data is not organized together or in order.

When a Hash Is Join Used
The query optimizer uses a hash join option when it estimates that it is more
efficient than processing queries by using a nested loop or merge join. It
typically uses a hash join when an index does not exist or when existing indexes
are not useful.

Assigns a Build and Probe Input
The query optimizer assigns a build and probe input. If the query optimizer
incorrectly assigns the build and probe input (this may occur because of
imprecise density estimates), it reverses them dynamically. The ability to
change input roles dynamically is called role reversal.

Build input consists of the column values from a table with the lowest number
of rows. Build input creates a hash table in memory to store these values.

Hash bucket is a storage place in the hash table in which each row of the build
input is inserted. Rows from one of the join tables are placed into the hash
bucket where the hash key value of the row matches the hash key value of the
bucket. Hash buckets are stored as a linked list and only contain the columns
that are needed for the query.

Topic Objective
To discuss how hash joins
are processed.

Lead-in
The query optimizer uses a
hash join when it estimates
that this option is more
efficient than processing
queries by using a nested
loop or merge join.

Note

 Module 14: Analyzing Queries 43

A hash table contains hash buckets. The hash table is created from the build
input.

Probe input consists of the column values from the table with the most rows.
Probe input is what the build input checks to find a match in the hash buckets.

The query optimizer uses column or index statistics to help determine
which input is the smaller of the two.

Processing a Hash Join
The following list is a simplified description of how the query optimizer
processes a hash join. It is not intended to be comprehensive because the
algorithm is very complex. SQL Server:

1. Reads the probe input. Each probe input is processed one row at a time.
2. Performs the hash algorithm against each probe input and generates a hash

key value.
3. Finds the hash bucket that matches the hash key value.
4. Accesses the hash bucket and looks for the matching row.
5. Returns the row if a match is found.

Performance Considerations
Consider the following facts about the hash joins that the query optimizer uses:

! Similar to merge joins, a hash join is very efficient, because it uses hash
buckets, which are like a dynamic index but with less overhead for
combining rows.

! Hash joins can be performed for all types of join operations (except cross
join operations), including UNION and DIFFERENCE operations.

! A hash operator can remove duplicates and group data, such as SUM
(salary) GROUP BY department. The query optimizer uses only one input
for both the build and probe roles.

! If join inputs are large and are of similar size, the performance of a hash join
operation is similar to a merge join with prior sorting. However, if the size
of the join inputs is significantly different, the performance of a hash join is
often much faster.

! Hash joins can process large, unsorted, non-indexed inputs efficiently. Hash
joins are useful in complex queries because the intermediate results:

• Are not indexed (unless explicitly saved to disk and then indexed).

• Are often not sorted for the next operation in the execution plan.

Note

44 Module 14: Analyzing Queries

! The query optimizer can identify incorrect estimates and make corrections
dynamically to process the query more efficiently.

! A hash join reduces the need for database denormalization. Denormalization
is typically used to achieve better performance by reducing join operations
despite redundancy, such as inconsistent updates. Hash joins give you the
option to vertically partition your data as part of your physical database
design. Vertical partitioning represents groups of columns from a single
table in separate files or indexes.

For additional information on hash joins, search on �understanding hash
joins� in SQL Server Books Online.

Note

 Module 14: Analyzing Queries 45

Lab B: Analyzing Queries That Use Different Join
Strategies

Objectives
After completing this lab, you will be able to evaluate how the query optimizer
processes a query by using nested loop, merge, and hash join strategies.

Prerequisites
Before working on this lab, you must have:

• Script files, which are located in C:\Moc\2073A\Labfiles\L14.

Lab Setup
To complete this lab, you must have either:

! Completed the prior lab, or
! Executed the C:\Moc\2073A\Batches\Restore14B.cmd batch file.

This command file restores the credit database to a state required for this
lab.

For More Information
If you require help in executing files, search SQL Query Analyzer Help for
�Execute a query�.

Other resources that you can use include:

! The credit database schema.
! Microsoft SQL Server Books Online.

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will observe
the execution plan and
evaluate how the query
optimization occurred by
using different join
strategies.

Explain the lab objectives.

46 Module 14: Analyzing Queries

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 30 minutes

 Module 14: Analyzing Queries 47

Exercise 1
Processing Nested Loop Joins

In this exercise, you will create indexes on the member and charge tables and
observe how the query optimizer processes the query by using a nested loop
join strategy.

You can open, review, and execute sections of the NestedLoopJoin.sql script
file in C:\Moc\2073A\Labfiles\L14, or type and execute the provided
Transact-SQL statements.

! To create indexes
In this procedure, you will create indexes on the member and charge tables.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password password

2. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Microsoft Windows Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Microsoft
Windows 2000 local group, Administrators. All members of this group are
automatically mapped to the SQL Server sysadmin role.

3. With SQL Query Analyzer, type and execute this statement to drop existing
indexes on the member and charge tables:
USE credit
EXEC index_cleanup member
EXEC index_cleanup charge

4. Type and execute this statement to create a unique, nonclustered composite

index on the lastname and firstname columns of the member table:
USE credit
CREATE UNIQUE nonclustered INDEX mbr_name
 ON member(lastname, firstname)

5. Type and execute this statement to create a nonclustered index on the

member_no column of the charge table:
USE credit
CREATE nonclustered INDEX chg_mem_no
 ON charge(member_no)

48 Module 14: Analyzing Queries

! To observe how a query is processed by using a nested loop join
strategy

In this procedure, you will set the statistics option to ON, execute a query, and
record the statistical information.
1. Type and execute this statement to set the statistics option to ON:

SET STATISTICS IO ON

2. In the Query window, on the Query menu, click Show Execution Plan.
3. Type and execute this SELECT statement to retrieve member number, last

name, and charge number for members with last name Barr and first name
Bos.
USE credit
SELECT member.member_no, lastname, charge_no
 FROM member JOIN charge
 ON member.member_no = charge.member_no
 WHERE member.lastname = 'BARR'
 AND firstname = 'BOS'

4. Record the statistical information for the member table.

Information Result

Scan count 1

Number of logical reads 3

Number and name of indexes used to process
the query

1 (mbr_name)

5. Record the statistical information for the charge table.

Information Result

Scan count 1

Number of logical reads 26

Number and name of indexes used to process
the query

1 (chg_mem_no)

Why does the member table have three I/O, whereas the charge table
requires 26 I/O?
For one row in the member table, there are multiple rows in the charge
table. This shows that you have a standard one-to-many relationship.
__

__

 Module 14: Analyzing Queries 49

6. Click the Execution Plan tab to display the execution plan graphically.
7. Examine the execution plan.

What strategy did the query optimizer use to find the rows in both tables?
Nested loop/inner join. The query optimizer used the nonclustered
index to find the member name BOS BARR in the member table.
Having found the correct member, it used the member_no column to
look for matching rows in the chg_mem_no index of the charge table.
This is the nested loop/inner join.
__

__

__

__

50 Module 14: Analyzing Queries

Exercise 2
Processing Merge Joins

In this exercise, you will drop all indexes on the member and charge tables,
execute a query, and evaluate the execution plan. Then, you will create indexes
on the member and charge tables, re-execute a query, and compare page I/O.

You can open, review, and execute sections of the MergeJoin.sql script file in
C:\Moc\2073A\Labfiles\L14, or type and execute the provided Transact-SQL
statements.

! To observe how the query optimizer processes a query against a table
with no indexes

In this procedure, you will drop all indexes on the member and charge tables,
execute a query, and record the statistical information.
1. Type and execute these statements to drop existing indexes on the member

and charge tables:
USE credit
EXEC index_cleanup member
EXEC index_cleanup charge

2. With the STATISTICS IO option set to ON, type and execute this SELECT

statement to retrieve member number, last name, and charge number for
members with the last name Hahn:
USE credit
 SELECT member.member_no, lastname, charge_no
 FROM member JOIN charge
 ON member.member_no = charge.member_no
 WHERE member.lastname = 'HAHN'

This query is referred to as the original query throughout this
exercise.

3. Record the statistical information for the member table.

Information Result

Scan count 1

Number of logical reads 142

Number and name of indexes used to process
the query

None (table scan)

4. Record the statistical information for the charge table.

Information Result

Scan count 1

Number of logical reads 582

Number and name of indexes used to process
the query

None (table scan)

Note

 Module 14: Analyzing Queries 51

! To create indexes and evaluate how the query optimizer processes a
query against a table with indexes

In this procedure, you will create indexes on the member and charge tables, re-
execute the original query, and evaluate how the query optimizer processed the
query by using a merge join strategy.
1. Type and execute this statement to create a nonclustered, composite index

on the member_no and lastname columns of the member table:
USE credit
CREATE nonclustered INDEX mbr_name
 ON member(member_no, lastname)

2. Type and execute this statement to create a nonclustered, composite index

on the member_no and charge_no columns of the charge table:
USE credit
CREATE nonclustered INDEX chg_charge_no
 ON charge(member_no, charge_no)

3. Re-execute the original query, which retrieves member number, last name,

and charge number for members with the last name Hahn.
USE credit
SELECT member.member_no, lastname, charge_no
 FROM member JOIN charge
 ON member.member_no = charge.member_no
 WHERE member.lastname = 'HAHN'

4. Record the statistical information for the member table.

Information Result

Scan count 1

Number of logical reads 32

Number and name of indexes used to process
the query

1 (mbr_name)

5. Record the statistical information for the charge table.

Information Result

Scan count 1

Number of logical reads 158

Number and name of indexes used to process
the query

1 (chg_charge_no)

Original Query

52 Module 14: Analyzing Queries

6. Compare the statistical information for a query executed against a table with
no indexes, and the same query executed against a table with useful indexes.
Was I/O reduced by adding indexes?
Yes. By using the indexes, the query optimizer reads only the pages
required to return the results.
__

__

7. Click the Execution Plan tab to display the execution plan graphically.
8. Examine the execution plan.

What join strategy did the query optimizer use to process the join?
Merge join/inner join. The query optimizer scanned portions of the
index on the charge table and portions of the index on the member
table. It was able to join (merge) that information and return the
requested information.
__

__

__

__

Why did the query optimizer select this strategy?
The query optimizer selected this strategy because it was able to cover
the query for each table. Because it covered the query, it only scanned
the leaf-level pages of the nonclustered indexes, which are maintained
in sorted order. This allowed the merge join to take advantage of inputs
from each table, which where already sorted.
__

__

__

__

 Module 14: Analyzing Queries 53

Exercise 3
Processing Hash Joins

In this exercise, you will drop all indexes on the member and charge tables,
execute a query, and observe how the query optimizer processes the query by
using a hash join strategy.

You can open, review, and execute sections of the HashJoin.sql script file in
C:\Moc\2073A\Labfiles\L14, or type and execute the provided Transact-SQL
statements.

! To observe how a query is processed by using a hash join strategy
In this procedure, you will drop all indexes on the member and charge tables,
execute a query, and evaluate how the query optimizer processed the query.
1. Type and execute these statements to drop existing indexes on the member

and charge tables:
USE credit
EXEC index_cleanup member
EXEC index_cleanup charge

2. Type and execute this SELECT statement to retrieve member number, last

name, and charge number for members with the last name Barr and the first
name Bos:
USE credit
SELECT m.member_no, lastname, charge_no
 FROM member m JOIN charge c
 ON m.member_no = c.member_no
 WHERE m.lastname = 'BARR'
 AND firstname = 'BOS'

3. Click the Execution Plan tab to display the execution plan graphically.
4. Examine the execution plan.

What strategy did the query optimizer use to find these rows? Why?
Hash match/inner join. Without indexes, the query optimizer must scan
both tables to find the requested rows. Then, the query optimizer builds
a hash table from qualifying rows of the member table and processes
each row of the charge table, returning matching rows.
__

__

__

__

54 Module 14: Analyzing Queries

Recommended Practices

Define an Index on a Highly Selective ColumnDefine an Index on a Highly Selective Column

Ensure That Useful Indexes Exist for All Columns Referenced
in the OR Operator
Ensure That Useful Indexes Exist for All Columns Referenced
in the OR Operator

Minimize the Use of Hash JoinsMinimize the Use of Hash Joins

When analyzing queries that use the AND and OR operators or join operations,
you should consider the following practices:

! Define an index on a highly selective column. The best way to index for
queries that contain the AND operator is to have at least one highly selective
search criterion, and define an index on that column.

! Ensure that useful indexes exist for all columns referenced in the OR
operator.Minimize the use of hash joins by creating useful indexes and
writing efficient queries.

Topic Objective
To list the recommended
practices when analyzing
queries that use the AND
and OR operators or join
operations.

Lead-in
When analyzing queries that
use the AND and OR
operators or join operations,
you should consider the
following practices.

 Module 14: Analyzing Queries 55

Review

! Queries That Use the AND Operator

! Queries That Use the OR Operator

! Queries That Use Join Operations

1. You are writing queries for an application. You are not sure about the
benefits of using multiple restrictions in the WHERE clause by using the
AND operator. What are some of the advantages of using multiple AND
operators in your queries?
The more AND operators that you use, the more restrictive the query
becomes. Using more AND operators also allows the query to
potentially use many indexes, or it offers a better choice of indexes.

2. A query is performing poorly. The query optimizer currently performs a
table scan even though indexes exist on some of the columns referenced in
the WHERE clause. What could be causing the poor performance of the
following query?
SELECT * FROM member
 WHERE lastname = 'GOHAN'
 OR expr_dt < '12/31/1999'
 OR region_no = 7

When using the OR operator in a query, it is necessary that every
column using the OR operator have an index or a useful index. If just
one column has no index or no useful index, then the query optimizer
performs a table scan.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

56 Module 14: Analyzing Queries

3. One of your queries is performing adequately, but you would like to
determine whether you could improve its performance. Currently, the query
optimizer performs a hash join operation. What can be done to possibly
improve performance?
A hash join is not necessarily bad. To improve performance, verify that
the join columns have indexes or have useful indexes. You can also
verify that the query contains a WHERE clause, verify that the search
condition limits the search, and verify that useful indexes exist on the
columns referenced in the WHERE clause.

