
 

 

 
 

Contents 

Overview 1 

Introduction to the Query Optimizer 2 

Obtaining Execution Plan Information 13 

Using an Index to Cover a Query 25 

Indexing Strategies 35 

Overriding the Query Optimizer 42 

Recommended Practices 48 

Lab A: Optimizing Query Performance 50 

Review 65 

 

Module 13: Optimizing 
Query Performance 

 



 

Information in this document is subject to change without notice.  The names of companies, 
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended 
to represent any real individual, company, product, or event, unless otherwise noted.  Complying 
with all applicable copyright laws is the responsibility of the user.  No part of this document may 
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any 
purpose, without the express written permission of Microsoft Corporation.  If, however, your only 
means of access is electronic, permission to print one copy is hereby granted. 
 
Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual 
property rights covering subject matter in this document.  Except as expressly provided in any 
written license agreement from Microsoft, the furnishing of this document does not give you any 
license to these patents, trademarks, copyrights, or other intellectual property. 
 
 2000 Microsoft Corporation.  All rights reserved. 
 
Microsoft, ActiveX, BackOffice, MS-DOS, PowerPoint, Visual Basic, Visual C++, Visual Studio, 
Windows, and Windows NT are either registered trademarks or trademarks of Microsoft 
Corporation in the U.S.A. and/or other countries. 
 
Other product and company names mentioned herein may be the trademarks of their respective 
owners. 
 
Project Lead: Rich Rose 
Instructional Designers: Rich Rose, Cheryl Hoople, Marilyn McGill 
Instructional Software Design Engineers: Karl Dehmer, Carl Raebler, 
Rick Byham 
Technical Lead: Karl Dehmer 
Subject Matter Experts: Karl Dehmer, Carl Raebler, Rick Byham 
Graphic Artist: Kirsten Larson (Independent Contractor) 
Editing Manager: Lynette Skinner 
Editor: Wendy Cleary 
Copy Editor: Edward McKillop (S&T Consulting) 
Production Manager: Miracle Davis 
Production Coordinator: Jenny Boe 
Production Support: Lori Walker (S&T Consulting) 
Test Manager: Sid Benavente 
Courseware Testing: TestingTesting123 
Classroom Automation: Lorrin Smith-Bates 
Creative Director, Media/Sim Services: David Mahlmann 
Web Development Lead: Lisa Pease 
CD Build Specialist: Julie Challenger 
Online Support: David Myka (S&T Consulting)  
Localization Manager: Rick Terek 
Operations Coordinator: John Williams 
Manufacturing Support: Laura King; Kathy Hershey 
Lead Product Manager, Release Management: Bo Galford 
Lead Product Manager, Data Base: Margo Crandall 
Group Manager, Courseware Infrastructure: David Bramble 
Group Product Manager, Content Development: Dean Murray 
General Manager: Robert Stewart 
 
 



 Module 13: Optimizing Query Performance  iii 
 

 

Instructor Notes 
This module provides students with in-depth knowledge of how the query 
optimizer works to optimize queries and how to obtain execution plan 
information. It describes how to create indexes that cover a query, what index 
strategies to implement to reduce input/output (I/O), and whether to override 
the query optimizer. 

In the lab, students will use the graphical execution plan, gather query 
information and view query optimizer output. They will also view index 
information and use that information to observe how the query optimizer 
optimizes queries and applies optimizer hints. 

After completing this module, students will be able to: 

! Explain the role of the query optimizer and how it works to ensure that 
queries are optimized. 

! Use various methods for obtaining execution plan information so that they 
can determine how the query optimizer processed a query and validate that 
the most efficient execution plan was generated. 

! Create indexes that cover queries. 
! Identify indexing strategies that reduce page reads. 
! Evaluate when to override the query optimizer. 

 

Materials and Preparation 
This section provides the materials and preparation tasks that you need to teach 
this module. 

Required Materials 
To teach this module, you need the following materials: 

! Microsoft® PowerPoint® file 2073A_13.ppt 
! The C:\Moc\2073A\Demo\D13_Ex.sql example file, which contains all of 

the example scripts from the module, unless otherwise noted in the module. 
 

Preparation Tasks 
To prepare for this module, you should: 

! Read all of the materials for this module. 
! Complete the lab. 

 

Presentation: 
90 Minutes 
 
Lab: 
45 Minutes 



iv  Module 13: Optimizing Query Performance 
 

 

Module Strategy 
Use the following strategy to present this module: 

! Introduction to the Query Optimizer 
Introduce the query optimizer and explain how the query optimizer takes the 
available information to determine the best execution plan. Then focus on 
the phases and details of query optimization and how execution plans are 
cached. 
Conclude this section by briefly introducing the query governor and explain 
how it can be configured to prevent long-running queries from executing 
and from consuming system resources. 

! Obtaining Execution Plan Information 
Discuss the different ways to view the execution plan that the query 
optimizer generates, but primarily focus on graphically viewing the 
execution plan. 

! Using an Index to Cover a QueryIntroduce the concept of how indexes can 
cover a query. Present the examples showing how the index pages can be 
navigated for an index that covers a query. Then, discuss the situations 
when the query optimizer can use an index to cover a query and how to 
determine whether the optimizer used an index to cover a query. Finally, 
provide guidelines for creating indexes that can cover queries. 

! Indexing Strategies 
Discuss specific indexing strategies for queries that retrieve ranges of data 
and for prioritizing multiple queries. Conclude by pointing out guidelines 
for creating useful indexes. 

! Overriding the Query Optimizer 
Emphasize the importance of considering other alternatives before deciding 
to override the query optimizer. Briefly introduce the optimizer hints and 
point out that optimizer hints should be tested and reevaluated periodically. 

 



 Module 13: Optimizing Query Performance  v 
 

 

Customization Information 
This section identifies the lab setup requirements for a module and the 
configuration changes that occur on student computers during the labs. This 
information is provided to assist you in replicating or customizing Microsoft 
Official Curriculum (MOC) courseware. 
 

The lab in this module is dependent on the classroom configuration 
that is specified in the Customization Information section at the end of the 
Classroom Setup Guide for course 2073A, Programming a Microsoft 
SQL Server 2000 Database. 
 

Lab Setup 
The following section describes the setup requirement for the lab in this 
module. 

Setup Requirement 
The lab in this module requires the ClassNorthwind database to be in a state 
required for this lab. To prepare student computers to meet this requirement, 
perform one of the following actions: 

! Complete the prior lab 
! Execute the C:\Moc\2073A\Batches\Restore13.cmd batch file. 

 
The lab also requires that students create the index_cleanup stored procedure 
by running the index_cleanup.sql script from C:\Moc\2073A\Labfiles\L13. 
 

If this course has been customized, students must execute the 
C:\Moc\2073A\Batches\Restore13.cmd batch file to ensure that the lab will 
function properly. 
 

Lab Results 
There are no configuration changes on student computers that affect replication 
or customization. 

Important 

Warning 





 Module 13: Optimizing Query Performance  1 
 

 

Overview 

! Introduction to the Query Optimizer

! Obtaining Execution Plan Information

! Using an Index to Cover a Query

! Indexing Strategies

! Overriding the Query Optimizer

 
 

This module describes how the query optimizer uses indexes and other 
information to determine the most efficient method of accessing data. 

After completing this module, you will be able to: 

! Explain the role of the query optimizer and how it works to ensure that 
queries are optimized. 

! Use various methods for obtaining execution plan information so that you 
can determine how the query optimizer processed a query and validate the 
most efficient execution plan was generated. 

! Create indexes that cover queries. 
! Identify indexing strategies that reduce page reads. 
! Evaluate when to override the query optimizer. 

 

Topic Objective 
To provide an overview of 
the module topics and 
objectives. 

Lead-in 
In this module, you will learn 
how the query optimizer 
uses indexes and other 
information to determine the 
most efficient method of 
accessing data. 



2  Module 13: Optimizing Query Performance 
 

 

#### Introduction to the Query Optimizer 

! Function of the Query Optimizer

! How the Query Optimizer Uses Cost-Based Optimization

! How the Query Optimizer Works

! Query Optimization Phases

! Caching the Execution Plan

! Setting a Cost Limit

 
 

Knowledge of the role of the query optimizer in optimizing queries prepares 
you for creating useful indexes, writing efficient queries, and tuning poorly 
performing queries. 

Topic Objective 
To point out the topics in 
this section. 

Lead-in 
In this section, we will 
discuss the query optimizer 
and how it optimizes 
queries. 



 Module 13: Optimizing Query Performance  3 
 

 

Function of the Query Optimizer 

! Determines the Most Efficient Execution Plan
$ Determining whether indexes exist and evaluating their 

usefulness
$ Determining which indexes or columns can be used
$ Determining how to process joins
$ Using cost-based evaluation of alternatives
$ Creating column statistics 

! Uses Additional Information
! Produces an Execution Plan

 
 

The query optimizer is the component responsible for generating the optimum 
execution plan for a query. 

Determines the Most Efficient Execution Plan 
The query optimizer evaluates each Transact-SQL statement and determines the 
most efficient execution plan. 

The query optimizer estimates the input/output (I/O) required to process a query 
by: 

! Determining whether indexes exist and evaluating their usefulness for a 
query. 

! Determining which indexes or columns can be used to reduce the number of 
rows examined by the query. By reducing the number of rows examined, the 
amount of I/O is reduced, which is the goal of query performance. 

! Determining the most effective strategy for processing join operations, such 
as in which order to join tables and which join strategy to use. 

! Using cost-based evaluation of alternatives to select the most efficient plan 
for a given query. 

! Creating column statistics to improve the performance of the query. 
 

Topic Objective 
To introduce the query 
optimizer. 

Lead-in 
The query optimizer is the 
component responsible for 
generating the optimum 
execution plan for a query. 



4  Module 13: Optimizing Query Performance 
 

 

Uses Additional Information 
The query optimizer uses additional information about the underlying data and 
storage structures, file size, and file structure types. The query optimizer also 
uses an assortment from its own internal operations, such as creating temporary 
indexes or tables in memory, to improve the performance of queries. 

Produces an Execution Plan 
The query optimizer produces an execution plan that outlines the sequence of 
steps required to perform a query. The query optimizer optimizes the process of 
finding, joining, grouping, and ordering rows. 



 Module 13: Optimizing Query Performance  5 
 

 

How the Query Optimizer Uses Cost-Based Optimization 

! Limits the Number of Optimization Plans 

$ Cost is estimated in terms of I/O and CPU cost

! Determines Query Processing Time 

$ Use of physical operators and sequence of operations

$ Use of parallel and serial processing

 
 

The query optimizer is a cost-based optimizer, which means that it evaluates 
each execution plan by estimating its execution cost. 
 

The cost estimates can be only as accurate as the available statistical data 
about the columns, indexes, and tables. 
 

Limits the Number of Optimization Plans 
To execute in a reasonable amount of time, the query optimizer limits the 
number of optimization plans that it considers. By evaluating sequences of the 
relational operations required to produce the result set, the query optimizer 
arrives at an execution plan that has the lowest estimated cost in terms of I/O 
and CPU resource loss. 

Determines Query Processing Time 
Query performance is determined by which physical operators the query 
optimizer uses and the sequence in which the operations are processed. The 
goal is to reduce: 

! The number of rows returned. 
! The number of pages read. 
! The overall processing time by minimizing I/O and CPU resources used for 

an execution plan. 
 

Topic Objective 
To discuss cost-based 
optimization. 

Lead-in 
The query optimizer is a 
cost-based optimizer, which 
means that it evaluates 
each execution plan by 
estimating its execution 
cost. 

Note 



6  Module 13: Optimizing Query Performance 
 

 

When the query optimizer optimizes queries, it does not initiate the execution 
plan with the lowest resource loss; it chooses the execution plan that returns 
results in the quickest manner to the user, with a reasonable reduction of 
resources. 
 

If Microsoft® SQL Server� 2000 has more than one processor available, 
the query optimizer may divide the query among them. Long-running queries 
usually benefit from parallel execution plans, but a parallel query can use more 
resources overall than processing a query serially. 
 

Note



 Module 13: Optimizing Query Performance  7 
 

 

How the Query Optimizer Works 

Parsing ProcessParsing Process

Standardization ProcessStandardization Process

Query OptimizationQuery Optimization

CompilationCompilation

Database Access RoutinesDatabase Access Routines

Transact-SQLTransact-SQL

Results
Set

Results
Set

 
 

After a query is submitted, several steps occur that transform the original query 
into a format that the query optimizer can interpret. 

Parsing Process 
The parsing process checks the incoming query for correct syntax and breaks 
down the syntax into component parts that the relational database engine can 
respond to. The output of this step is a parsed query tree. 

Standardization Process 
The standardization process transforms a query into a useful format for 
optimization. Any redundant syntax clauses that are detected are removed. 
Subqueries are standardized if possible. The output of this step is a standardized 
query tree. 

Query Optimization 
The process of selecting one execution plan from several possible plans is 
called optimization. Numerous steps are involved in this phase. However, the 
following steps have the most significant effect on the cost of the execution 
plan: query analysis, index selection, and join selection. 

Compilation 
The query is compiled into executable code. 

Database Access Routines 
The query optimizer determines the best method to access data, by performing a 
table scan, or by using an available index. The better method is then applied. 

Topic Objective 
To present how the query 
optimizer processes a query 
after a query is submitted to 
SQL Server. 

Lead-in 
After a query is submitted, 
several steps occur that 
transform the original query 
into a format that the query 
optimizer can interpret. 

Delivery Tip 
Explain how each step 
contributes to the process of 
transforming the original 
query into a format that the 
query optimizer can 
interpret. 



8  Module 13: Optimizing Query Performance 
 

 

Query Optimization Phases 

! Query Analysis

$ Identifies the search and join criteria of the query

! Index Selection

$ Determines whether an index or indexes exist

$ Assesses the usefulness of the index or indexes 

! Join Selection

$ Evaluates which join strategy to use

 
 

The query optimization process consists of three phases. These phases are not 
discrete processing steps and are only used to conceptually represent the 
internal activity of the query optimizer. 

Query Analysis 
The first phase of query optimization is called query analysis. In this phase, the 
query optimizer identifies the search and join criteria of the query. By limiting 
the search, the query optimizer minimizes the number of rows that are 
processed. Reducing the number of rows processed reduces the number of 
index and data pages read. 

Index Selection 
Index selection is the second phase of query optimization. During this phase, 
the query optimizer detects whether an index exists for the identified clauses. 
Then, there is an assessment of the usefulness of the index or indexes. 
Usefulness of an index is determined by how many rows will be returned. This 
information is gathered from the index statistics or column statistics. An 
estimate of the cost of various access methods occurs by means of estimating 
the logical and physical page reads required to find the qualifying rows. 

Join Selection 
Join selection is the third phase of query optimization. If there is a multiple-
table query or self-join, there is an evaluation of which join strategy to use. The 
determination of which join strategy to use consists of a consideration of a 
number of factors: selectivity, density, and memory required to process the 
query. 

Topic Objective 
To introduce the phases that 
occur during query 
optimization. 

Lead-in 
The query optimization 
process consists of three 
phases. 



 Module 13: Optimizing Query Performance  9 
 

 

Caching the Execution Plan 

! Storing a Execution Plan in Memory 
$ One copy for all serial executions
$ Another copy for all parallel executions

! Using an Execution Context
$ An existing execution plan is reused, if one exists
$ A new execution plan is generated, if one does not exist

! Recompiling Execution Plans
$ Changes in database cause execution plan to be 

inefficient or invalid

 
 

SQL Server has a pool of memory that is used to store execution plans and data 
buffers. The percentage of the pool allocated to either execution plans or data 
buffers fluctuates dynamically, depending on the state of the system. The part 
of the memory pool used to store execution plans is called the procedure cache. 

Storing a Execution Plan in Memory 
The bulk of the execution plan is a reusable, read-only data structure that can be 
used by any number of users. No user context is stored in the execution plan. 
There are never more than two copies of the execution plan in memory: 

! One copy for all serial executions. 
! Another copy for all parallel executions. 

The parallel copy covers all parallel executions, regardless of their degree of 
parallelism. 

 

Using an Execution Context 
Each user executing a query has a data structure that holds the data specific to 
an execution, such as parameter values. This data structure is called the 
execution context. When a Transact-SQL statement is executed, SQL Server 
scans the procedure cache for determination of whether an execution plan exists 
for the same Transact-SQL statement. 

! If any existing execution plan exists, SQL Server reuses the execution plan. 
This saves the overhead of recompiling the Transact-SQL statement. 

! If no execution plan exists, SQL Server generates a new execution plan for 
the query. 

 

Topic Objective 
To discuss how execution 
plans are managed in cache 
and how reducing plan 
recompilations can improve 
performance. 

Lead-in 
SQL Server has a pool of 
memory that is used to store 
execution plans and data 
buffers. 



10  Module 13: Optimizing Query Performance 
 

 

Recompiling Execution Plans 
Certain changes in a database can cause an execution plan to be either 
inefficient or no longer accurate. When SQL Server detects changes that 
invalidate an execution plan, it marks the execution plan as invalid. A new 
execution plan is compiled for the next connection that executes the query. 
 

Performance can be improved by reducing the number of times that 
a plan is recompiled. 
 

Conditions that invalidate an execution plan include: 

! Any structural changes made to a table or view referenced by the query 
(ALTER TABLE and ALTER VIEW statements). 

! New distribution statistics being generated either explicitly from a statement 
such as UPDATE STATISTICS, or automatically. 

! Dropping an index used by the execution plan. 
! An explicit call to the sp_recompile system stored procedure. 
! Large numbers of changes to keys, or INSERT or DELETE statements for a 

table referenced by the query. 
! For tables with triggers, if the number of rows in the inserted or deleted 

tables grows significantly. 
 

 

SQL Server uses an aging algorithm to efficiently manage execution 
plans in cache. It evaluates cost and use of the execution plan. 
 

Important 

Note



 Module 13: Optimizing Query Performance  11 
 

 

Setting a Cost Limit 

! Specifying an Upper Limit

$ Use the query governor to prevent long-running queries 
from executing and consuming system resources

! Specifying Connection Limits

$ Use the sp_configure stored procedure

$ Execute the SET QUERY_GOVERNOR_COST_LIMIT 
statement 

$ Specify 0 to turn off the query governor

 
 

You may want to control the cost of executing a query by setting a cost limit. 
The term query cost refers to the estimated elapsed time, in seconds, required to 
execute a query on a specific hardware configuration. 

Specifying an Upper Limit 
You can use the query governor cost limit option to prevent long-running 
queries from executing and consuming system resources. By default, queries 
are allowed to execute, no matter how long they take. The query governor uses 
an estimated cost to prevent queries with a high cost from executing at all. 

Although the configuration value is specified in seconds, it does not truly 
correlate to time, but to the actual estimated cost of the query. You can specify 
an upper limit of the cost of the query to be executed. 

Because the query governor is based on estimated query cost, rather than actual 
elapsed time, it does not have any run-time overhead. If the estimated cost of a 
query is greater than the specified cost limit, the query governor statement 
prevents the query from executing. This is more efficient than letting a query 
run until some predefined limit is reached, and then stopping the query. 

Topic Objective 
To introduce the query 
governor. 

Lead-in 
You may want to control the 
cost of executing a query by 
setting a cost limit. 



12  Module 13: Optimizing Query Performance 
 

 

Specifying Connection Limits 
You can specify limits for all connections or just the queries for a specific 
connection. To apply query governor cost limits, you can: 

! Use the sp_configure stored procedure to apply limits for all connections. 
You can change the query governor cost limit only when show advanced 
options is set to 1. The setting takes effect immediately. You do not have to 
stop and restart the server. 

! Execute the SET QUERY_GOVERNOR_COST_LIMIT statement to apply 
limits for a specific connection. 

! Specify 0 (the default) to turn off the query governor. In this case, all 
queries are executed with no limits. 

 



 Module 13: Optimizing Query Performance  13 
 

 

#### Obtaining Execution Plan Information 

! Viewing STATISTICS Statements Output

! Viewing SHOWPLAN_ALL and SHOWPLAN_TEXT 
Output

! Graphically Viewing the Execution Plan

 
 

The query optimizer responds to the information that it has available during the 
determination of the best execution plan. You can obtain information about the 
execution plan by querying the sysindexes table. You can also obtain 
information by using the STATISTICS statements, the SHOWPLAN 
statements, and graphically viewing the execution plan. 

Topic Objective 
To point out the topics in 
this section. 

Lead-in 
You can obtain information 
about the execution plan by 
using these methods. 



14  Module 13: Optimizing Query Performance 
 

 

Viewing STATISTICS Statements Output 

StatementStatementStatement Output SampleOutput SampleOutput Sample

STATISTICS
TIME

STATISTICS
TIME

STATISTICS
PROFILE

STATISTICS
PROFILE

STATISTICS IOSTATISTICS IO

SQL Server Execution Times:
CPU time = 0 ms, elapsed time = 2 ms.

SQL Server Execution Times:
CPU time = 0 ms, elapsed time = 2 ms.

Rows Executes StmtText  StmtId�
-----------------------------------------------
47   1        SELECT * FROM [charge]    16

WHERE (([charge_amt]>=@1)
.
.
.

Rows Executes StmtText  StmtId�
-----------------------------------------------
47   1        SELECT * FROM [charge]    16

WHERE (([charge_amt]>=@1)
.
.
.

Table 'member'. Scan count 1,
logical reads 23, physical reads 0, 
read-ahead reads 0.

Table 'member'. Scan count 1,
logical reads 23, physical reads 0, 
read-ahead reads 0.

 
 

You can use the STATISTICS IO, STATISTICS TIME, and STATISTICS 
PROFILE statements to get information that can help you diagnose long-
running queries. The output from STATISTICS statements provides 
information about the actual execution plan. 

STATISTICS TIME obtains information about the number of milliseconds 
required to parse, compile, and execute each statement. 

STATISTICS PROFILE displays the profile information for a statement. When 
you execute a query, the output from the SHOWPLAN_ALL statement and two 
additional columns are included in the result set. The following table shows the 
additional columns. 

Column Description 
 
Rows Actual number of rows produced by each operator  

Reuse Actual number of times this operator was told to reuse its data 
 

Topic Objective 
To discuss viewing the 
statistical output by using 
the STATISTICS 
statements. 

Lead-in 
You can use the 
STATISTICS IO, 
STATISTICS TIME, and 
STATISTICS PROFILE 
statements to get 
information that can help 
you diagnose long-running 
queries. 



 Module 13: Optimizing Query Performance  15 
 

 

STATISTICS IO obtains information about the amount of page reads generated 
by queries. The output from STATISTICS IO includes the values in the 
following table. 

Value Description Additional information 
 
Logical reads Number of pages read from data 

cache 
All pages are accessed in the data cache. If a page is not 
available in cache, it must be physically read from disk. 

Physical reads Number of pages read from disk  This value is always less than or equal to the value of 
logical reads. 

The following is the method for calculating the value of 
the Cache Hit Ratio: 

 

Read-ahead 
reads 

Number of pages placed into cache A high number for this value means that the value for 
physical reads is lower, and the cache hit ratio is higher 
than if read-ahead was not enabled. 

Scan count Number of times the table was 
accessed 

The outer tables of a left join should always have a scan 
count of 1. For inner tables, the number of logical reads 
is determined by the scan count multiplied by the 
number of pages accessed on each scan. 

 
 

The SET statements stay in effect for the session until you specify the 
OFF option, or until you end the session. 
 

Note 

readsLogical
readsPhysicalreadsLogicalratiohitCache −

=



16  Module 13: Optimizing Query Performance 
 

 

Viewing SHOWPLAN_ALL and SHOWPLAN_TEXT Output 

! Structure of the SHOWPLAN Statement Output 
$ Returns information as a set of rows
$ Forms a hierarchical tree
$ Represents steps taken by the query optimizer
$ Shows estimated values of how a query was optimized, 

not the actual execution plan
! Details of the Execution Steps 
! Difference Between SHOWPLAN_TEXT and 

SHOWPLAN_ALL Output 

 
 

You can use the SET SHOWPLAN_TEXT and SET SHOWPLAN_ALL 
statements to obtain detailed information about how queries are executed and 
how many resources are required to process the query. 

Structure of the SHOWPLAN Statement Output 
The SHOWPLAN statement output: 

! Returns information as a set of rows. 
! Forms a hierarchical tree. 
! Represents steps taken by the query optimizer to execute each statement. 
! Shows estimated values of how a query was optimized, not the actual 

execution plan. The estimated values are based on existing statistics. 
 

Details of the Execution Steps 
Each statement reflected in the output contains a single row with the text of the 
statement, followed by several rows with the details of the execution steps. 
Details of the execution steps include: 

! Which indexes are used with which tables. 
! The join order of the tables. 
! The chosen update mode. 
! Worktables and other strategies. 

 

Topic Objective 
To discuss the use of the 
SHOWPLAN statements. 

Lead-in 
You can obtain detailed 
information about how 
queries are executed and 
how many resources are 
required to process the 
query by using the SET 
SHOWPLAN_TEXT and 
SET SHOWPLAN_ALL 
statements. 



 Module 13: Optimizing Query Performance  17 
 

 

Difference Between SHOWPLAN_TEXT and SHOWPLAN_ALL Output 
The difference between SHOWPLAN_TEXT and SHOWPLAN_ALL output is 
that the SHOWPLAN_ALL output returns additional information, such as the 
estimated rows, I/O, CPU, and average row size of the query. 
 

The SET statements stay in effect for the session until you specify the 
OFF option, or until you end the session. 
 

Note 



18  Module 13: Optimizing Query Performance 
 

 

#### Graphically Viewing the Execution Plan 

! Elements of the Graphical Execution Plan

! Reading the Graphical Execution Plan Output

! Using the Bookmark Lookup Operation

 
 

You can use SQL Query Analyzer to graphically view a color-coded  
execution plan. 

Topic Objective 
To point out the topics in 
this subsection. 

Lead-in 
You can use SQL Query 
Analyzer to graphically view 
a color-coded execution 
plan. 



 Module 13: Optimizing Query Performance  19 
 

 

Elements of the Graphical Execution Plan 

! Steps Are Units of Work to Process a Query 

! Sequence of Steps Is the Order in Which the Steps Are 
Processed 

! Logical Operators Describe Relational Algebraic 
Operation Used to Process a Statement

! Physical Operators Describe Physical Implementation 
Algorithm Used to Process a Statement 

 
 

The graphical execution plan, which contains the following elements, uses 
icons to represent the execution of specific parts of statements and queries: 

Steps are units of work used to process a query. 

Sequence of steps is the order in which the steps are processed. 

Logical operators describe the relational algebraic operation used to process a 
statement; for example, performing an aggregation. The logical operator 
typically matches the physical operator. Not all steps used to process a query or 
update operations involve logical operations. 

Physical operators describe the physical implementation algorithm used to 
process a statement; for example, scanning a clustered index. Each step in the 
execution of a query or update operation involves a physical operator. 

Topic Objective 
To introduce elements of the 
graphical execution plan. 

Lead-in 
The graphical execution 
plan, which contains the 
following elements, uses 
icons to represent the 
execution of specific parts of 
statements and queries. 

Delivery Tip 
Briefly review the icon, 
physical operator, and 
description that the query 
optimizer uses. A list of 
physical operators follows. 



20  Module 13: Optimizing Query Performance 
 

 

The following table is a partial list of physical operators used to represent the 
algorithms that the query optimizer uses. 

Icon Physical operator Operator description 
 

 
Bookmark Lookup Uses a bookmark (row ID or clustering key) to look up the corresponding row in 

the table or clustered index 

 
Filter Scans the input, returning only those rows that satisfy the filter expression that 

appears in the argument column 

 
Hash Match Builds a hash table by computing a hash value for each row from its build input 

 
Index Scan Retrieves all rows from the nonclustered index specified in the  

argument column 

 
Index Seek Uses the seeking ability of indexes to retrieve rows from a  

nonclustered index 

 
Merge Join Performs all types of joins (except self-join and cross join), including UNION 

operations 

 
Nested Loops Searches the inner table for each row of the outer table, typically by using an index 

 
Sort Sorts all incoming rows 

 
Table Scan Retrieves all rows from the table specified in the argument column 

 
 

For the complete listing of icons and more information, search on 
�graphically displaying the execution plan using SQL Query Analyzer� in 
SQL Server Books Online. 
 

Note



 Module 13: Optimizing Query Performance  21 
 

 

Reading Graphical Execution Plan Output 

Query Plan

SELECT
Cost: 0%

Bookmark Lookup
Cost: 8%

Hash Match Root…
Cost 28%

Member.corp_no
Cost 9%

Member.fname
Cost: 10%

Filter
Cost: 0%

Sequence of StepsSequence of StepsSequence of Steps

Index Seek
Scanning a particular range of rows from a 
non-clustered index.

Physical operation:
Logical operation:
Row count:
Estimated row sizes:
I/O cost:
CPU cost:
Number of executes:
Cost:
Subtree cost:

Index  Seek
Index  Seek 

414
24

0.00706
0.000605

1.0
0.007675(6%)

0.00767

Argument:
OBJECT: ([credit].[dbo].[member].[fname]), 
SEEK: ([member],[firstname] >=�Rb� AND 
[member],[firstname] <�T�) ORDERED  

 

The graphical execution plan output is read from right to left and from top to 
bottom. Each query in the batch that is analyzed is displayed, including the cost 
of each query as a percentage of the total cost of the batch. 

Each step can have one or many nodes to process. The term node refers to an 
operation that the query optimizer uses, which is represented by an icon. 

The execution plan may have multiple nodes for a particular step. 

! Each node is related to a parent node. 
! All nodes with the same parent are drawn in the same column. 
! Arrowheads connect each node to its parent. 
! Recursive operations are shown with an iteration symbol. 
! Operators are shown as symbols related to a specific parent. 
! When the batch contains multiple statements, multiple execution plans are 

drawn. 
 

Topic Objective 
To discuss how to read the 
execution plan output. 

Lead-in 
The graphical execution 
plan output is read from 
right to left and from top to 
bottom. Each query in the 
batch that is analyzed is 
displayed; this includes the 
cost of each query as a 
percentage of the total cost 
of the batch. 

Delivery Tip 
Using SQL Query Analyzer, 
turn on Show Execution 
Plan, and then execute a 
query. 
 
In the Execution Plan 
output, place the pointer on 
an icon to display the 
additional information about 
that particular operation. 



22  Module 13: Optimizing Query Performance 
 

 

Viewing Additional Information 
When you place the pointer on each node (represented by an icon), you can 
view detailed information about the physical and logical operators, in addition 
to the information in the following table. 

Measures Description 
 
Row count The number of rows returned by the operator. 

Estimated row size The estimated size of the row returned by the operator. 

I/O cost The estimated cost of all I/O activity for the operation. This 
value should be as low as possible. 

CPU cost The estimated cost for all CPU activity for the operation. 

Number of executes The number of times that the operation was executed during the 
query. 

Cost The cost to the query optimizer when executing the operation, 
including cost of this operation as a percentage of the total cost 
of the query. 

Subtree cost The total cost to the query optimizer when executing this 
operation and all operations preceding it in the same subtree. 

Argument The predicates and parameters used by the query. 
 

Delivery Tip 
Briefly describe the types of 
detailed information that you 
can view. 



 Module 13: Optimizing Query Performance  23 
 

 

Using the Bookmark Lookup Operation 

! Analyzing the Query Plan

$ Typically used after all steps have been processed

! Retrieving Rows

$ Row identifiers

$ Clustering Keys

! Observing the Details

$ A bookmark label used to find the row

! Determining When the Bookmark Lookup Operator is Used

$ Queries containing the IN clause or the OR operator

 
 

Bookmark Lookup is an internal operator frequently used by the query 
optimizer. When the query optimizer identifies records that are possible 
candidates for the intended result set, it notes the information identifying the 
row locations (a bookmark) and continues operations that refine the search. 

If a row is included in the search, SQL Server uses the row location from the 
bookmark to find the row by analyzing the query plan, retrieving rows, 
observing the details, and determining when the Bookmark Lookup operator is 
used. 

Analyzing the Query Plan 
In the query plan, the query optimizer typically uses the Bookmark Lookup 
operator after all other steps have been processed. 

Retrieving Rows 
The Bookmark Lookup operator retrieves all the qualifying rows by using: 

! A row identifier (RID) to find the corresponding row in a heap. 
! The clustering key to find the corresponding row in a clustered index. 

 

Observing the Details 
In the query plan, details of the Bookmark Lookup operator contain: 

! A bookmark label used to find the row in the table or clustered index. 
! The table name or clustered index name from which the row is found. 
! The WITH PREFETCH clause, if the query optimizer determines that read-

ahead is the best way to find bookmarks in the table or clustered index. 
 

Topic Objective 
To describe how the query 
optimizer uses the 
Bookmark Lookup 
operation. 

Lead-in 
Bookmark Lookup is an 
internal operator used by 
the query optimizer. 



24  Module 13: Optimizing Query Performance 
 

 

Determining When the Bookmark Lookup Operator Is Used 
The query optimizer typically uses the Bookmark Lookup operator to process 
queries containing the IN clause and OR operators in the WHERE clause. 

In this example, the member table has a nonclustered index on the member_no 
column. The query optimizer uses a Bookmark Lookup operator to retrieve the 
qualifying rows. 

USE credit 
SELECT * 
FROM member 
WHERE member_no 
IN (4567,8765,4321) 

Example 



 Module 13: Optimizing Query Performance  25 
 

 

#### Using an Index to Cover a Query 

! Introduction to Indexes That Cover a Query

! Locating Data by Using Indexes That Cover a Query

! Identifying Whether an Index Can Be Used to Cover a 
Query

! Determining Whether an Index Is Used to Cover a Query

! Guidelines for Creating Indexes That Cover a Query

 
 

You can create indexes that resolve the query without having to access the data 
pages. This is a strategy that can improve query performance. 

Topic Objective 
To point out the topics in 
this section. 

Lead-in 
You can create indexes that 
satisfy the query without 
having to access the data 
pages. 



26  Module 13: Optimizing Query Performance 
 

 

Introduction to Indexes That Cover a Query 

! Only Nonclustered Indexes Cover Queries

! Indexes Must Contain All Columns Referenced in the 
Query 

! No Data Page Access Is Required

! Indexed Views Can Pre-Aggregate Data

! Indexes That Cover Queries Retrieve Data Quickly

 
 

When creating indexes, you may want to create an index that covers the most 
common queries in order to reduce the amount of I/O. 

Only Nonclustered Indexes Cover Queries 
Indexes that cover queries contain all of the required data of a query in the leaf 
level of a nonclustered index. 

Indexes Must Contain All Columns Referenced in the Query 
An index that covers a query must contain all columns that are referenced in the 
SELECT statement. If a clustered index exists, the fields in the clustering key 
are in the leaf level of the nonclustered index and contribute to covering the 
query. 

No Data Page Access Is Required 
When a query is covered by an index, the query optimizer does not access the 
data pages, because all of the required data is contained in the index. The 
amount of I/O is significantly reduced. 

Indexed Views Can Pre-Aggregate Data 
If an indexed view sums, counts, or averages columns, then the query optimizer 
can use this view to provide stored values when resolving a query. Indexed 
views that pre-aggregate data can increase performance dramatically. 

Topic Objective 
To introduce the concept of 
indexes covering a query. 

Lead-in 
When creating indexes, you 
may want to create an index 
that covers the most 
common queries in order to 
reduce the amount of I/O. 



 Module 13: Optimizing Query Performance  27 
 

 

Indexes That Cover Queries Retrieve Data Quickly 
Creating indexes that cover queries is one of the fastest ways to access to data, 
especially for a low-selectivity query. When you compare the leaf levels of the 
clustered and nonclustered indexes, the advantage of having indexes that cover 
queries are evident. 

Index type Contents of leaf level 
 
Clustered Entire row (actual data pages) 

Nonclustered Key value 
 

Because key values are typically smaller in size than the actual rows, an index 
page can store more key values than complete rows. Storing key values requires 
fewer pages, which reduces the amount of I/O. 



28  Module 13: Optimizing Query Performance 
 

 

#### Locating Data by Using Indexes That Cover a Query 

! Example of Single Page Navigation

! Example of Partial Scan Navigation

! Example of Full Scan Navigation

 
 

The query optimizer navigates the leaf level in different ways when an index 
can be used to cover a query. Covering a query can consist of reading a single 
page, a range of pages, or all of the pages of the leaf level. The data pages are 
never accessed. 

Topic Objective 
To discuss the topics in this 
subsection. 

Lead-in 
The query optimizer 
navigates the leaf level in 
different ways when an 
index can be used to cover 
a query. 



 Module 13: Optimizing Query Performance  29 
 

 

Example of Single Page Navigation 

Index Pages
Non-Leaf

Level

Leaf Level
(Key Value)

SELECT lastname, firstname
FROM member
WHERE lastname = 'Hall' 

SELECT lastname, firstname
FROM member
WHERE lastname = 'Hall' 

AkhtarAkhtar
BarrBarr
BarrBarr
BormBorm
BuhlBuhl

SarahSarah
��
��
��
��

GanioGanio
HallHall
HartHart
JonesJones
JonesJones

JonJon
DonDon
SherriSherri
AmyAmy
BeverlyBeverly

Hall Don
LangLang
MartinMartin
MartinMartin
MartinMartin
MorisMoris

EricEric
��
��
��
��

�

Data Pages

� �

AkhtarAkhtar
LangLang
��
��

SarahSarah
EricEric
��
��

AkhtarAkhtar
��
GanioGanio
��

SarahSarah
��
JonJon
��

LangLang
��
��
��

EricEric
��
��
��

 
 

Single page navigation occurs when only one page of the leaf-level pages is 
read from the non-leaf-level. Reading one page is similar a point query, where 
the information�a single row or multiple rows�is found on a single page. 
 

Single page navigation does not mean that the query can return only one 
row. A point query can return one row or all of the rows on one page. Either 
way, all of the data is found on one page. 
 

In this example, a composite, nonclustered index on the lastname, firstname 
columns covers the query. 

SELECT lastname, firstname 
FROM member 
WHERE lastname = 'Hall' 

 
SQL Server goes through the following steps to retrieve the information: 

1. Traverses the index tree comparing the last name Hall to the key values. 
2. Continues to traverse the index until it reaches the first page of the leaf level 

containing the key value Hall. 
3. Returns the qualifying rows without accessing the data pages, because the 

lastname and firstname key values are contained in the leaf level. 
 

Topic Objective 
To illustrate single page 
navigation of an index. 

Lead-in 
In this example, a query that 
is covered by an index 
requires reading a single 
leaf-level page. 

Note 

Example 

For More Information 
For simplicity, the pointer 
from the leaf level of the 
nonclustered index to the 
data pages (heap or 
clustered index) is not 
shown on the slide. 



30  Module 13: Optimizing Query Performance 
 

 

Example of Partial Scan Navigation 

Index Pages
Non-Leaf

Level

Leaf Level
(Key Value)
Leaf Level

(Key Value)
AkhtarAkhtar
BarrBarr
BarrBarr
BormBorm
BuhlBuhl

��
��
��
��
��

GanioGanio
HallHall
HartHart

JonesJones
JonesJones

��
��
��
��
��

MorganMorgan
NashNash
NayNay
OtaOta

RuddRudd

��
��
��
��
��

ChaiChai
ConCon
ConCon
CoxCox
DaleDale

��
��
��
��
��

DunnDunn
DunnDunn
FineFine
FortFort
FunkFunk

��
��
��
��
��

JordanJordan
KimKim
KimKim

KochKoch
KochKoch

��
��
��
��
��

LangLang
MartinMartin
MartinMartin
MartinMartin
MorisMoris

��
��
��
��
��

SmithSmith
SmithSmith
SmithSmith
SmithSmith
SmithSmith

��
��
��
��
��

Data Pages

USE credit
SELECT lastname, firstname 
FROM member
WHERE lastname BETWEEN 'Funk' AND 'Lang'

USE credit
SELECT lastname, firstname 
FROM member
WHERE lastname BETWEEN 'Funk' AND 'Lang'

AkhtarAkhtar
ChaiChai
DunnDunn
GanioGanio

��
��
��
��

JordanJordan
LangLang
MorganMorgan
SmithSmith

��
��
��
��

AkhtarAkhtar
JordanJordan
��

��
��
��

 
 

A partial scan occurs when a range of pages is read from the leaf level. 

In this example, a composite, nonclustered index on the lastname, firstname 
columns covers the query by doing a partial scan of the leaf-level pages. 

USE credit 
SELECT lastname, firstname 
FROM member 
WHERE lastname BETWEEN 'Funk' AND 'Lang' 

 
SQL Server goes through the following steps to retrieve the information: 

1. Traverses the index tree. 
2. Starts reading leaf-level pages at the page that contains the first occurrence 

of the last name Funk. 
Data in the leaf level is sorted in ascending order. 

3. Reads the range of leaf-level pages through to the last name of Lang. 
At this time, the partial scan is completed. 

4. Returns the qualifying rows without accessing the data pages, because the 
leaf level is scanned for last names between Funk and Lang. 

 

Topic Objective 
To illustrate partial scan 
navigation of an index. 

Lead-in 
In this example, a query that 
is covered by an index 
requires reading a number 
of leaf-level pages. 

Example 

For Your Information 
The firstname column is 
omitted to simplify the slide. 
Refer to the previous slide if 
this slide is unclear. 



 Module 13: Optimizing Query Performance  31 
 

 

Example of Full Scan Navigation 

Index Pages
Non-Leaf

Level

Leaf Level
(Key Value)

AkhtarAkhtar
BarrBarr
BarrBarr
BormBorm
BuhlBuhl

��
��
��
��
��

GanioGanio
HallHall
HartHart

JonesJones
JonesJones

��
��
��
��
��

MorganMorgan
NashNash
NayNay
OtaOta

RuddRudd

��
��
��
��
��

MartinMartin
SmithSmith

��

AkhtarAkhtar
GanioGanio

��

AkhtarAkhtar
��

MartinMartin

ChaiChai
ConCon
ConCon
CoxCox
DaleDale

��
��
��
��
��

DunnDunn
DunnDunn
FineFine
FortFort
FunkFunk

��
��
��
��
��

JordanJordan
KimKim
KimKim

KochKoch
KochKoch

��
��
��
��
��

LangLang
MartinMartin
MartinMartin
MartinMartin
MorisMoris

��
��
��
��
��

SmithSmith
SmithSmith
SmithSmith
SmithSmith
SmithSmith

��
��
��
��
��

�

Data Pages

USE credit
SELECT lastname, firstname
FROM member 

USE credit
SELECT lastname, firstname
FROM member 

 
 

A full scan occurs when all of the pages of the leaf level are read. Similar to a 
table scan, a full scan occurs when a query does not include a WHERE clause, 
or when the WHERE clause is not selective. 

In this example, a composite, nonclustered index on the lastname, firstname 
columns covers the query by doing a full scan of the leaf-level pages. 

USE credit 
SELECT lastname, firstname 
FROM member 

 
To retrieve the information, SQL Server: 

1. Traverses the index tree. 
2. Reads the leaf-level pages, starting with the first page, and scans through all 

of the leaf-level pages until it reaches the last page in the leaf-level. 
3. Returns the qualifying rows without accessing the data pages because the 

leaf-level is scanned. 
 

 

Scanning the leaf level of an index also is a parallel data scan. 
SQL Server uses read-ahead processing to further improve the performance of 
the query. 
 

Topic Objective 
To illustrate full scan 
navigation of an index. 

Lead-in 
In this example, a query that 
is covered by an index 
requires reading all of the 
leaf-level pages. 

Example 

For Your Information 
This slide illustrates a scan 
for data ordered by 
lastname. If data is 
requested, unordered or 
ordered by firstname, then 
SQL Server may use the 
allocation pages to identify 
and scan all index pages, 
and then throw out the non-
leaf pages. The firstname 
column is omitted to simplify 
the slide. 

Note 



32  Module 13: Optimizing Query Performance 
 

 

Identifying Whether an Index Can Be Used to Cover a Query 

! All Necessary Data Must Be in the Index

! A Composite Index Is Useful Even if the First Column Is 
Not Referenced

! A WHERE Is Not Necessary

! A Nonclustered Index Can Be Used if It Requires Less 
I/O Than a Clustered Index Containing a Column 
Referenced in the WHERE Clause

! Indexes Can Be Joined to Cover a Query

 
 

These factors affect the ability of an index to cover a query: 

! All necessary data must be in the index. This data includes all referenced 
columns, whether they are returned in the result set, used for sorting or 
aggregation, or supplied in the WHERE clause. 

! A column in an index can contribute to covering a query even when it is not 
the first column referenced in a composite index. 
For example, a composite index on SalesRep, Region, Amount (in that 
order) could cover a query that referenced only Region and SUM(Amount). 

! A WHERE clause is not necessary. The query optimizer scans the entire leaf 
level. 

! A nonclustered index can be used to cover a query if it requires less I/O than 
a clustered index containing a column referenced in the WHERE clause. 

! Indexes can be joined to cover a query. If some or all tables referenced in a 
join operation have an index that covers a query, the results are joined 
together by a special join operation, and the rows are then returned. 

 

Topic Objective 
To point out when the query 
optimizer can use an index 
to cover a query. 

Lead-in 
These factors affect the 
ability of an index to cover a 
query. 



 Module 13: Optimizing Query Performance  33 
 

 

Determining Whether an Index Is Used to Cover a Query 

! Observing the Execution Plan Output
$ Displays the phrase �Scanning a non-clustered index 

entirely or only a range�
! Comparing I/O
$ Nonclustered index

Total number of levels in the non�leaf level
Total number of pages that make up the leaf level
Total number of rows per leaf-level page
Total number of rows per data page

$ Total number of pages that make up the table

 
 

Queries that are covered by an index are not explicitly apparent to users. You 
can observe the graphical execution plan or compare I/O to determine whether 
the query optimizer used an index to cover a query. 

Observing the Execution Plan Output 
You can view the execution plan graphically. If an execution plan output 
displays the phrase �Scanning a non-clustered index entirely or only a range,� 
the query optimizer was able to cover the query by using an index. 

Comparing I/O 
You can also view the STATISTICS IO output. When evaluating the cost of an 
index that covers a query, remember that the query optimizer always attempts to 
cover the query when evaluating an execution plan. 

To help you determine whether the query is covered, you should know the 
following information about the nonclustered index and table: 

! Nonclustered index 

• Total number of levels in the non-leaf level 

• Total number of pages that make up the leaf level 

• Total number of rows per leaf-level page 

• Total number of rows per data page 
! Total number of pages that make up the table 

 
 

If you prefer, you can also calculate the size of the leaf level of a 
nonclustered index rather than using the STATISTICS IO statement. 
Alternately, you can query sysindexes and review the dpages column, which 
will display the size of the leaf level. 
 

Topic Objective 
To point out how to 
determine whether a query 
is covered by an index. 

Lead-in 
Queries that are covered by 
an index are not explicitly 
apparent to users. You can 
observe the graphical 
execution plan or compare 
I/O to determine whether the 
query optimizer used an 
index to cover a query. 

Note 



34  Module 13: Optimizing Query Performance 
 

 

Guidelines for Creating Indexes That Cover a Query 

! Add Columns to Indexes 

! Minimize Index Key Size

! Maintain Row-to-Key Size Ratio

 
 

When creating indexes that cover a query, consider the following guidelines: 

! Add columns to indexes. You may want to add columns to some indexes 
that: 

• Cover more than one query. 

• Contribute toward covering some of your more common queries. 

• Are referenced frequently. 

• Do not significantly add to the key size. 
! Minimize index key size. When defining the index key (key values), avoid 

specifying key values that are too wide. Wide rows increase row size, the 
number of index levels, and the total number of pages. Any performance 
benefits gained from creating an index that covers queries would be 
reduced. 

! Maintain row-to-key size ratio. If the size of the index key increases relative 
to the row size, query performance may be affected. An extreme example is 
if you created a nonclustered index on all of the columns in a table. By 
doing this, a virtual copy of the table is produced and stored in the leaf level 
of the nonclustered index in sorted order. 

 

Topic Objective 
To discuss some guidelines 
when creating indexes that 
can cover queries. 

Lead-in 
When creating indexes that 
cover queries, consider 
these guidelines. 

Delivery Tip 
Mention that columns that 
may be too large in one 
instance might be 
acceptable in another. 
 
Ask students how many 
characters are too many for 
a table that they want to 
optimize. 



 Module 13: Optimizing Query Performance  35 
 

 

#### Indexing Strategies 

! Evaluating I/O for Queries That Access a Range of Data

! Indexing for Multiple Queries

! Guidelines for Creating Indexes

 
 

You can implement indexing strategies to improve query performance. 

Topic Objective 
To point out the topics in 
this section. 

Lead-in 
You can implement indexing 
strategies to improve query 
performance. 



36  Module 13: Optimizing Query Performance 
 

 

Evaluating I/O for Queries That Access a Range of Data 

Access methodAccess methodAccess method

Table scanTable scan

Clustered index on the charge_amt columnClustered index on the charge_amt column

Nonclustered index on the charge_amt columnNonclustered index on the charge_amt column

Composite index on charge_amt, charge_no
columns

Composite index on charge_amt, charge_no
columns

Page I/OPage I/OPage I/O

10,41710,417

10421042

100,273100,273

273273

SELECT charge_no
FROM charge
WHERE charge_amt BETWEEN 20 AND 30

SELECT charge_no
FROM charge
WHERE charge_amt BETWEEN 20 AND 30

 
 

The query optimizer automatically considers multiple execution plans and 
estimates the needed I/O for each execution plan. It then initiates an execution 
plan with the least amount of I/O in addition to other considerations. Compare 
the page I/O among the different access methods that the query optimizer can 
use. 

For example, consider the following query that retrieves a range of data, and 
then compare the I/O of this query against different methods of accessing data. 

SELECT charge_no 
FROM charge 
WHERE charge_amt BETWEEN 20 AND 30 

 
Assume the following when comparing the different methods: 

! There are 1 million rows, and 96 rows per page. 
! The total number of pages is 10,147. 
! There is no clustered index. 
! 100,000 rows fall within the $20.00 to $30.00 range. 
! 367 index rows fit on a nonclustered index leaf page. 

 

Table Scan 
Performing a table scan is advantageous for queries where the result set 
includes a high percentage of a table (low selectivity). Table scans are 
appropriate when the total page I/O of a query would exceed the number of 
pages in the table. 

When you execute the query that does a table scan, the page I/O is 10,417. 
Compare the page I/O on a table scan to a nonclustered index on the 
charge_amt column. Performing a table scan is more efficient. 

Topic Objective 
To illustrate the differences 
across page I/O by using 
different access methods. 

Lead-in 
The query optimizer 
automatically considers 
multiple execution plans and 
estimates the needed I/O for 
each execution plan. 

Delivery Tip 
The example cannot be 
executed against the credit 
database. 
 
Refer to the assumptions in 
the workbook when 
comparing page I/O for the 
different indexes. 

Delivery Tip 
Point out that the access 
methods illustrated on the 
slide use this information. 



 Module 13: Optimizing Query Performance  37 
 

 

Clustered Index on the charge_amt Column 
SQL Server performs the following steps to retrieve the information: 

1. Searches clustered index for the minimum value, in this case $20.00. 
2. Reads rows starting at $20.00 and stops the search at $30.00. 

 
Because the charge_amt column is clustered, the physical order of the data is 
arranged according to charge amount. All of the data that falls within that range 
is in sequential order on subsequent pages, making it easy to retrieve data. The 
page I/O is 1,042 (100,000/96 rows per page). 

Nonclustered Index on the charge_amt Column 
SQL Server goes through the following steps to retrieve the information: 

1. Searches for the range of values in the leaf level of the nonclustered index 
and retrieves the RID for each row. In this case, 273 leaf-level pages are 
accessed (100,000/367). 

2. Data is retrieved from each page by using the Bookmark Lookup for each 
qualifying row. 

 
The page I/O is approximately 100,273. To retrieve data by using a 
nonclustered index on the charge_amt column is the least effective method, 
because SQL Server must read one page for every row�plus the leaf level of 
the index is read to retrieve the RID values. Each data page is read multiple 
times in cache. 

Composite Index on the charge_amt, charge_no Columns 
The page I/O is 273 (100,000/367 rows per page). The number of index rows 
per leaf level averages 367. Because the charge_amt and charge_no columns 
are in the index, SQL Server does not search the data pages, which reduces the 
amount of I/O. 



38  Module 13: Optimizing Query Performance 
 

 

Indexing for Multiple Queries 

USE credit
SELECT charge_no, charge_dt, charge_amt
FROM charge
WHERE statement_no = 19000 AND member_no = 3852

USE credit
SELECT charge_no, charge_dt, charge_amt
FROM charge
WHERE statement_no = 19000 AND member_no = 3852

USE credit
SELECT member_no, charge_no, charge_amt
FROM charge
WHERE charge_dt between '07/30/1999'
AND '07/31/1999' AND member_no = 9331

USE credit
SELECT member_no, charge_no, charge_amt
FROM charge
WHERE charge_dt between '07/30/1999'
AND '07/31/1999' AND member_no = 9331

Example 1Example 1

Example 2Example 2

 
 

To choose the most appropriate index to create, based on an individual query is 
easier than creating an index for multiple-priority queries. To create indexes to 
support multiple-priority queries is more complex because the best index for 
one query may not be the best index for another. The goal is to attain acceptable 
performance for all of the highest-priority queries by evaluating I/O. 

Example Business Scenario 
For the following examples, assume that the most common queries requested by 
users are finding customer charges for a specific statement (Example 1) and 
finding customer charges for a specific day (Example 2). The first example 
query is 15 percent of the table. The other query is highly selective, accessing 
only a few rows. 

USE credit 
SELECT charge_no, charge_dt, charge_amt 
FROM charge 
WHERE statement_no = 19000 AND member_no = 3852 

 
USE credit 
SELECT member_no, charge_no, charge_amt 
FROM charge 
WHERE charge_dt between '07/30/1999' AND '07/31/1999' 
 AND member_no = 9331 

 

Topic Objective 
To illustrate the challenge of 
creating indexes to support 
the most important queries. 

Lead-in 
Choosing the most 
appropriate index to create 
based on an individual 
query is easier than creating 
an index for multiple-priority 
queries. 

Delivery Tip 
Use the examples on the 
slide and refer to the table in 
the student workbook when 
comparing query 
performance for both 
queries against different 
indexing strategies. 

Example 1 

Example 2 



 Module 13: Optimizing Query Performance  39 
 

 

The following table compares the query performance of Examples 1 and 2, 
based on the possible indexing strategy that you may implement. A clustered 
index on the member_no column is the best strategy. 

Type of index Column Example 1 query Example 2 query 

Clustered 

Nonclustered 

member_no 

charge_no 

Very fast. 

Uses the clustered index. 

Very fast. 

Uses the clustered index. 

Clustered 

Nonclustered 

charge_no 

member_no 

Slower than if a clustered index 
were created on the member_no 
column. 

Slow. The nonclustered index on 
member_no is not efficient with 
ranges of data. 

Clustered 

Nonclustered, 
composite 

member_no 

statement_no, 
member_no 

Very fast. 

Uses the clustered index. 

Very fast. 

Uses the clustered index. 

Clustered 

Nonclustered, 
composite 

charge_no 

member_no, 
charge_dt 

Slower than if a clustered index 
were created on the member_no 
column. 

Fast. 

A composite index significantly 
increases performance of the 
nonclustered index. 

 



40  Module 13: Optimizing Query Performance 
 

 

Guidelines for Creating Indexes 

! Determine the Priorities of All of the Queries

! Determine the Selectivity for Each Portion of the 
WHERE Clause of Each Query

! Determine Whether to Create an Index

! Identify the Columns That Should Be Indexed

! Determine the Best Column Order of Composite Indexes

! Determine What Other Indexes Are Necessary

! Test the Performance of the Queries

 
 

Your decision on how many indexes, the type of indexes, and the columns on 
which to create indexes should be based on a thorough understanding of the 
data and the needs of users. 

To ensure that the indexes that you create are useful to the query optimizer, 
consider the following guidelines: 

! Determine the priorities of all of the queries. 

• Gain a thorough understanding of the data and how it will be used. 

• Determine the priority transactions for the database. 
! Determine the selectivity for each portion of the WHERE clause of each 

query. 
! Determine whether to create an index. 

There are situations when you will not want to create an index. These 
include: 

• If the index is never used by the query optimizer. 

• If the column values are low in selectivity. 

• If the column to be indexed is too wide. 
! Identify the columns that should be indexed. 

• Create an index on a column that is used as a join key to improve the 
performance of the join. This allows the query optimizer the option to 
use an index rather than perform a table scan. 

• Evaluate whether the column is searched frequently. 

• Ensure that the columns referenced in the WHERE clauses of the 
highest-priority queries are indexed. 

! Determine the best column order of composite indexes. 

Topic Objective 
To present guidelines for 
creating useful indexes. 

Lead-in 
To ensure that the indexes 
that you create are useful to 
the query optimizer, 
consider the following 
guidelines. 



 Module 13: Optimizing Query Performance  41 
 

 

! Determine what other indexes are necessary. 

• Determine the minimum number of indexes that can be created for each 
table. 

• Balance the performance gain of the index versus the update 
maintenance. 

• If a query is executed infrequently, you may want to consider creating an 
index for the duration of a specific activity (when it can provide a 
significant performance gain) and then dropping it. 

! Test the performance of the queries. 
After the indexes are created, test the performance of the highest-priority 
queries by executing the following statements for each query: 

• SET SHOWPLAN ON 

• SET STATISTICS IO ON 

• SET STATISTICS TIME ON 
 



42  Module 13: Optimizing Query Performance 
 

 

#### Overriding the Query Optimizer 

! Determining When to Override the Query Optimizer

! Using Hints and SET FORCEPLAN Statement

! Confirming Query Performance After Overriding the 
Query Optimizer

 
 

This section discusses ways to override the query optimizer and how to 
determine when to do it. When you do override the query optimizer, it is 
important to test and reconfirm query performance. 

Topic Objective 
To point out the topics in 
this section. 

Lead-in 
This section discusses ways 
to override the query 
optimizer. 



 Module 13: Optimizing Query Performance  43 
 

 

Determining When to Override the Query Optimizer 

! Limit Optimizer Hints

! Explore Other Alternatives Before Overriding the Query 
Optimizer by:

$ Updating statistics

$ Recompiling stored procedures

$ Reviewing the queries or search arguments

$ Evaluating the possibility of building different indexes

 
 

If queries do not perform efficiently, you may choose to override the query 
optimizer by using optimizer hints. Optimizer hints are keywords that you 
include in your query to force a specific optimization operation. 

You should limit the use of optimizer hints because they force optimization to 
become static. Optimizer hints prevent the query optimizer from adjusting to a 
changing environment. After you use optimizer hints, you must constantly 
monitor query performance to verify that the query performs optimally. 

Before you consider overriding the query optimizer, you should explore all 
other alternatives by: 

! Updating statistics. 
! Recompiling stored procedures. 
! Reviewing the queries or search arguments to determine whether you should 

rewrite them. 
! Evaluating the possibility of building different indexes. 

 

Topic Objective 
To point out alternatives to 
overriding the query 
optimizer. 

Lead-in 
It is usually not a good idea 
to override the query 
optimizer. 



44  Module 13: Optimizing Query Performance 
 

 

Using Hints and SET FORCEPLAN Statement 

! Table Hints

! Join Hints

! Query Hints

! SET FORCEPLAN Statement

 
 

You can override the query optimizer by using hints or the SET FORCEPLAN 
statement. You can specify a query optimizer hint within SELECT, INSERT, 
UPDATE, or DELETE statements. There are three types of hints that can be 
used for overriding the query optimizer. 

Table Hints 
A table hint specifies a table scan, one or more indexes to be used by the query 
optimizer, or a locking method to be used by the query optimizer with this table 
and for a statement. When using the table hints, consider the following: 

! Each table hint can be specified only once, although you can have multiple 
table hints 

! The WITH clause must be specified next to the table name 
 

table_name [ [ AS ] table_alias ] [ WITH ( < table_hint > [ ,...n ] ) ] 

WITH ( < table_hint > ) ::=  
 { INDEX ( index_val [ ,...n ] )  
  | FASTFIRSTROW  
  | HOLDLOCK  
  | NOLOCK  
  | PAGLOCK  
  | READCOMMITTED  
  | READPAST  
  | READUNCOMMITTED  
  | REPEATABLEREAD  
  | ROWLOCK  
  | SERIALIZABLE  
  | TABLOCK  
  | TABLOCKX  
  | UPDLOCK  
  | XLOCK  
 } 

Topic Objective 
To discuss overriding the 
query optimizer. 

Lead-in 
You can override the query 
optimizer by using optimizer 
hints or the SET 
FORCEPLAN statement. 

Syntax 



 Module 13: Optimizing Query Performance  45 
 

 

Join Hints 
Join hints enforce a join strategy between two tables. Join hints are specified in 
a query's FROM clause. When a join hint is specified, the query optimizer 
automatically enforces the join order for all joined tables in the query, based on 
the position of the ON keywords. 

< join_hint > ::=  
 { LOOP | HASH | MERGE | REMOTE } 

Query Hints 
Query hints can control a wide variety of actions. You can specify the query 
optimizer to use a particular hint for a query by using the OPTION clause. 
When using the OPTION clause, consider the following facts: 

! Each query hint can be specified only once, although you can have multiple 
query hints. 

! The OPTION clause must be specified with the outermost query of the 
statement. 

! The query hint affects all operators in the statement. 
! If a UNION is involved in the main query, only the last query involving a 

UNION operator can have the OPTION clause. 
 

[ OPTION ( < query_hint > [ ,...n ) ]  
< query_hint > ::=  
 { { HASH | ORDER } GROUP  
 | { CONCAT | HASH | MERGE } UNION  
 | { LOOP | MERGE | HASH } JOIN  
 | FAST number_rows  
 | FORCE ORDER  
 | MAXDOP number  
 | ROBUST PLAN  
 | KEEP PLAN  
 | KEEPFIXED PLAN  
 | EXPAND VIEWS  
 } 

Syntax 

Delivery Tip 
Remind students that the 
UNION operator increases 
the number of rows, 
whereas join operations 
increase the number of 
columns. 

Syntax 



46  Module 13: Optimizing Query Performance 
 

 

SET FORCEPLAN Statement 
By using the FROM clause, you can force the query optimizer to join tables in 
the order in which they are listed. When using the SET FORCEPLAN 
statement, the query optimizer uses nested loop joins only. 

The SET FORCEPLAN statement is a session-level setting. 

SET FORCEPLAN {ON | OFF} 
 

If one or more query hints cause the query optimizer to not generate a 
valid execution plan, SQL Server cancels the execution and issues error 
message 8622. You must resubmit the query without specifying any optimizer 
hints or using the SET FORCEPLAN statement. 
 

Syntax 

Note



 Module 13: Optimizing Query Performance  47 
 

 

Confirming Query Performance After Overriding the Query 
Optimizer 

! Verify That Performance Improves

! Document Reasons for Using Optimizer Hints

! Retest Queries Regularly

 
 

If you determine that overriding the query optimizer is necessary, verify that 
performance has improved, document your reasons for overriding the query 
optimizer, and retest the queries regularly. 

Verify That Performance Improves 
To verify that the query optimizer hints will improve performance, specify the 
ON option for the STATISTICS IO and STATISTICS TIME statements and 
select Show Execution Plan in Query Analyzer. In most cases, overriding the 
query optimizer does not improve performance. 

If you are passing input values in a stored procedure, verify that performance is 
not compromised for any of the inputs. Optimizer hints can improve 
performance for certain input values, but may compromise performance for 
other input values. 

Document Reasons for Using Optimizer Hints 
If overriding the query optimizer improves performance, be sure that you 
document the reasons why. To document your reasons allows you to 
periodically reevaluate the validity of the optimizer hints. If those reasons 
change, the optimizer hints may no longer be necessary and may compromise 
performance. 

Retest Queries Regularly 
The query optimizer is dynamic and is constantly evaluating the best execution 
plan as your data changes. If you use optimizer hints, the execution plan 
becomes static. For this reason, you should consider retesting, on a regular 
basis, any queries for which you override the query optimizer. 

Topic Objective 
To discuss the importance 
of testing and reevaluating 
query performance after 
overriding the query 
optimizer. 

Lead-in 
If you determine that 
overriding the query 
optimizer is necessary, test 
and reevaluate query 
performance. 



48  Module 13: Optimizing Query Performance 
 

 

Recommended Practices 

Have a Thorough Understanding of the Data and How Queries
Gain Access to Data 
Have a Thorough Understanding of the Data and How Queries
Gain Access to Data 

Establish Indexing Strategies for Individual and Multiple QueriesEstablish Indexing Strategies for Individual and Multiple Queries

Use the Query Governor to Prevent Long-Running Queries from 
Consuming System Resources 
Use the Query Governor to Prevent Long-Running Queries from 
Consuming System Resources 

Create Indexes That Cover the Most Frequently Used QueriesCreate Indexes That Cover the Most Frequently Used Queries

Avoid Overriding the Query OptimizerAvoid Overriding the Query Optimizer

 
 

These recommended practices will help you with indexing strategies that can 
ensure or improve query performance. 

! Use the query governor to prevent long-running queries from executing and 
consuming system resources. By default, queries are allowed to execute, no 
matter how long they take. The query governor uses an estimated cost to 
prevent queries with high cost from executing at all. 

! Have a thorough understanding of the data and how queries access it. To 
know how the query optimizer moves through clustered indexes, 
nonclustered indexes, and indexes that cover queries, enables design of 
effective indexes for the queries that your users execute. 

! Create indexes that cover the most frequently used queries. When a query is 
covered by an index, the query optimizer does not access the data pages, 
because all of the required data is contained in the index. The amount of I/O 
is significantly reduced. 

! Establish indexing strategies for individual and multiple queries. Strive to 
attain acceptable performance for each of the high-priority queries. 

! Avoid overriding the query optimizer. The query optimizer generally selects 
the most efficient execution plan. If you use optimizer hints, they may 
become outdated and negatively affect query performance. 

 

Topic Objective 
To list the recommended 
practices for improving 
query performance. 

Lead-in 
These recommended 
practices can help you 
optimize query performance. 



 Module 13: Optimizing Query Performance  49 
 

 

Additional information on the following topics is available in SQL Server 
Books Online. 

Topic Search on 
 
Graphically displaying the 
execution plan using icons 

�graphically displaying the execution plan using  
SQL Query Analyzer� 

Caching the execution plan �execution plan caching and reuse� 

Creating indexes that cover 
a query 

�using indexes on views�, �resolving indexes on views� 

 



50  Module 13: Optimizing Query Performance 
 

 

Lab A: Optimizing Query Performance 

 
 

Objectives 
After completing this lab, you will be able to: 

! Use the graphical execution plan to determine how a query is resolved. 
! Compare I/O for queries that are covered or not covered by indexes. 
! Compare I/O for queries that retrieve a range of data. 
! Use optimizer hints to force the use of an index and join method. 

 

Prerequisites 
Before working on this lab, you must have: 

! Script files for this lab, which are located in C:\Moc\2073A\Labfiles\L13. 
! Answer files for this lab, which are located in 

C:\Moc\2073A\Labfiles\L13\Answers. 
 

Lab Setup 
To complete this lab, you must have either: 

! Completed the prior lab, or 
! Executed the C:\Moc\2073A\Batches\Restore13.cmd batch file. 

This command file restores the credit database to a state required for this 
lab. 

! Created the index_cleanup stored procedure by running Index_cleanup.sql, 
which is located in C:\Moc\2073A\Labfiles\L13. 

 

For More Information 
If you require help with executing files, search SQL Query Analyzer Help for 
�Execute a query�. 

Topic Objective 
To introduce the lab. 

Lead-in 
In this lab, you will create 
indexes and analyze query 
performance. 

Explain the lab objectives. 



 Module 13: Optimizing Query Performance  51 
 

 

Other resources that you can use include: 

! The credit database schema. 
! SQL Server Books Online. 

 

Scenario 
The organization of the classroom is meant to simulate that of a worldwide 
trading firm named Northwind Traders. Its fictitious domain name is 
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor 
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where 
x is the assigned classroom number). The name of the instructor computer is 
London. 

The following table provides the user name, computer name, and IP address for 
each student computer in the fictitious nwtraders.msft domain. Find the user 
name for your computer, and make a note of it. 

User name Computer name IP address 
 
SQLAdmin1 Vancouver 192.168.x.1 

SQLAdmin2 Denver 192.168.x.2 

SQLAdmin3 Perth 192.168.x.3 

SQLAdmin4 Brisbane 192.168.x.4 

SQLAdmin5 Lisbon 192.168.x.5 

SQLAdmin6 Bonn 192.168.x.6 

SQLAdmin7 Lima 192.168.x.7 

SQLAdmin8 Santiago 192.168.x.8 

SQLAdmin9 Bangalore 192.168.x.9 

SQLAdmin10 Singapore 192.168.x.10 

SQLAdmin11 Casablanca 192.168.x.11 

SQLAdmin12 Tunis 192.168.x.12 

SQLAdmin13 Acapulco 192.168.x.13 

SQLAdmin14 Miami 192.168.x.14 

SQLAdmin15 Auckland 192.168.x.15 

SQLAdmin16 Suva 192.168.x.16 

SQLAdmin17 Stockholm 192.168.x.17 

SQLAdmin18 Moscow 192.168.x.18 

SQLAdmin19 Caracas 192.168.x.19 

SQLAdmin20 Montevideo 192.168.x.20 

SQLAdmin21 Manila 192.168.x.21 

SQLAdmin22 Tokyo 192.168.x.22 

SQLAdmin23 Khartoum 192.168.x.23 

SQLAdmin24 Nairobi 192.168.x.24 
 

Estimated time to complete this lab: 45 minutes 



52  Module 13: Optimizing Query Performance 
 

 

Exercise 1 
Use the Graphical Execution Plan to Determine How a Query  
Is Resolved 

In this exercise, you will create an index on a computed column and use the 
graphical execution plan to determine whether the index is useful. 

You can open, review, and execute sections of the Indexed_View.sql script file 
in C:\Moc\SQL2073A\Labfiles\L13, or type and execute the provided 
Transact-SQL statements. 

! To create an indexed view 
In this procedure, you will drop all existing indexes on the charge table in the 
credit database and create an indexed view that summarized charges by 
member. 
1. Log on to the NWTraders classroom domain by using the information in 

the following table. 

Option Value 
 
User name SQLAdminx (where x corresponds to your computer name as 

designated in the nwtraders.msft classroom domain) 

Password password 
 

2. Open SQL Query Analyzer and, if requested, log in to the (local) server 
with Microsoft Windows® Authentication. 
You have permission to log in to and administer Microsoft 
SQL Server 2000 because you are logged as SQLAdminx, which is a 
member of the Microsoft Windows 2000 local group, Administrators. All 
members of this group are automatically mapped to the SQL Server 
sysadmin role. 

3. Type and execute this statement to drop existing indexes on the charge 
table in the credit database: 
USE credit 
EXEC index_cleanup charge 

 
4. Type and execute this statement to create a view on the charge table in the 

credit database: 
CREATE VIEW mem_charges 
WITH SCHEMABINDING 
AS 
SELECT member_no, SUM(charge_amt) AS charge_SUM, 
COUNT_BIG(*) AS mem_count 
FROM dbo.charge GROUP BY member_no 

 
5. Type and execute these two statements to create indexes on the 

mem_charges view: 
CREATE UNIQUE CLUSTERED INDEX cl_mem_chg ON 
mem_charges(member_no) 
CREATE NONCLUSTERED INDEX nc_mem_chg_amt ON 
mem_charges(charge_SUM) 

 



 Module 13: Optimizing Query Performance  53 
 

 

! To view the graphical execution plan. 
In this procedure, you will query the charge table and view the query execution 
plan to determine how the query optimizer obtained the query result. 
1. In the Query window, on the Query menu, click Show Execution Plan to 

start the graphical execution plan. 
2. Type and execute this statement to query the charge table: 

SELECT member_no, SUM(charge_amt) AS Charge_SUM 
FROM dbo.charge GROUP BY member_no 

 
3. Switch to the Execution Plan tab and view the graphical execution plan. 

Did the query optimizer select the charge table as the source of the result 
set? Why or why not? 
No. The charges for each member were summed by member_no when 
the indexed view was created. Instead of recomputing them, it is more 
efficient to look up those values in the nc_mem_chg_amt index. 
____________________________________________________________  

____________________________________________________________  

____________________________________________________________  

 



54  Module 13: Optimizing Query Performance 
 

 

Exercise 2 
Comparing I/O for Queries That Are Covered or Not Covered by 
Indexes 

In this exercise, you will compare the I/O required when clustered and 
nonclustered indexes are used to retrieve selective data. 

You can open, review, and execute sections of the Covered_Queries.sql script 
file in C:\Moc\SQL2073A\Labfiles\L13, or type and execute the provided 
Transact-SQL statements. 

! To create a clustered index 
In this procedure, you will drop all existing indexes on the charge table and 
create a clustered index on the member_no column of the charge table in the 
credit database. 
1. Log on to the NWTraders classroom domain by using the information in 

the following table. 

Option Value 
 
User name SQLAdminx (where x corresponds to your computer name as 

designated in the nwtraders.msft classroom domain) 

Password password 
 

2. Open SQL Query Analyzer and, if prompted, log in to the (local) server 
with Windows Authentication. 
You have permission to log in to and administer SQL Server because you 
are logged as SQLAdminx, which is a member of the Windows 2000 local 
group, Administrators. All members of this group are automatically mapped 
to the SQL Server sysadmin role. 

3. Type and execute this statement to drop existing indexes on the charge 
table: 
USE credit 
EXEC index_cleanup charge 

 
4. Type and execute this statement to create a clustered index on the 

member_no column of the charge table: 
CREATE CLUSTERED INDEX charge_member_no_CL 
   ON charge(member_no) 

 



 Module 13: Optimizing Query Performance  55 
 

 

! To evaluate the difference in execution plans when a query is covered 
or not covered by an index 

In this procedure, you will execute a query that returns all columns, and you 
will view the execution plan. Then, you will drop existing clustered indexes and 
create a nonclustered index, re-execute the query, and evaluate the difference in 
the execution plan. 
1. In SQL Query Analyzer, on the Query menu, click Show Execution Plan. 
2. Type and execute this statement to set the statistics option ON: 

SET STATISTICS IO ON 
 

3. Type and execute this SELECT statement to retrieve all columns for 
member number 5001: 
SELECT * FROM charge WHERE member_no = 5001 

 
4. Record the statistical information in the following table. 

Information Result 

Scan count 1 

Logical reads 3 

Execution plan (index or table scan) Index 

Execution plan (type of index operation) Clustered Index Seek 
 

5. Type and execute these statements to drop the clustered index and create a 
nonclustered index on the member_no column of the charge table: 
EXEC index_cleanup charge 
CREATE NONCLUSTERED INDEX charge_member_no 
   ON charge(member_no) 

 
6. Re-execute this SELECT statement to retrieve all columns for member 

number 5001: 
SELECT * FROM charge WHERE member_no = 5001 

 
7. Record the statistical information in the following table. 

Information Result 

Scan count 1 

Logical reads 13 

Execution plan (index or table scan) Index 

Execution plan (type of index operation) Index Seek 
 

Both queries use an index to locate the records. Why did the nonclustered 
index require more logical reads? 
After finding the member in the nonclustered index, SQL Server 
retrieves the entire data for each row from the clustered index. This 
action requires reading the nonclustered and clustered indexes. 
____________________________________________________________  

____________________________________________________________  



56  Module 13: Optimizing Query Performance 
 

 

! To repeat the test with a query that is covered by the nonclustered 
index 

In this procedure, you will drop existing indexes, create a clustered index on the 
member_no column of the charge table, execute a query that is covered by the 
clustered index, and view the execution plan. Then, you will drop the clustered 
index, create a nonclustered index on the member_no column of the charge 
table, re-execute the query (which is also covered by the nonclustered index), 
and evaluate the difference in the execution plan. 
1. Type and execute these statements to drop existing indexes and create a 

clustered index on the member_no column of the charge table: 
EXEC index_cleanup charge 
 
CREATE CLUSTERED INDEX charge_member_no_CL 
   ON charge(member_no) 

 
2. Type and execute this SELECT statement to retrieve only the member_no 

column for member number 5001: 
SELECT member_no FROM charge WHERE member_no = 5001 

 
3. Record the statistical information in the following table. 

Information Result 

Scan count 1 

Logical reads 3 

Execution plan (index or table scan) Index 

Execution plan (type of index operation) Clustered Index Seek 
 

4. Type and execute these statements to drop the clustered index and create a 
nonclustered index on the member_no column of the charge table: 
EXEC index_cleanup charge 
 
CREATE NONCLUSTERED INDEX charge_member_no 
   ON charge(member_no) 

 
5. Re-execute this SELECT statement to retrieve only the member_no column 

for member number 5001: 
SELECT member_no FROM charge WHERE member_no = 5001 

 
Information Result 

Scan count 1 

Logical reads 2 

Execution plan (index or table scan) Index 

Execution plan (type of index operation) Index Seek 
 



 Module 13: Optimizing Query Performance  57 
 

 

Did the amount of I/O differ between the two queries executed by using the 
clustered index, even though one of the queries was covered by the clustered 
index? Why? 
No. Because of the characteristics of a clustered index, the leaf level is 
the same as the data pages. A query covered by the clustered index is 
not beneficial. 
____________________________________________________________  

____________________________________________________________  

Did the amount of I/O differ between the two queries executed by using the 
nonclustered index, even though one of the queries was covered by the 
nonclustered index? Why? 
Yes. Because of the characteristics of a nonclustered index, the leaf level 
is different from the data pages. A query covered by the nonclustered 
index is beneficial because the data pages never have to be accessed. 
Because the query was covered by the nonclustered index, I/O was 
reduced from 13 to 2. 
____________________________________________________________  

____________________________________________________________  

Is the performance of the query covered by the clustered index significantly 
different from the query covered by the nonclustered index? 
No. In this case, the queries are almost identical, except for one I/O, 
which is not a significant performance gain. 
____________________________________________________________  

____________________________________________________________  

 



58  Module 13: Optimizing Query Performance 
 

 

Exercise 3 
Comparing I/O for Queries That Retrieve a Range of Data 

In this exercise, you will compare the I/O required for when clustered and 
nonclustered indexes are used to retrieve a range of data. 

You can open, review, and execute sections of the Range_Queries.sql script file 
in C:\Moc\SQL2073A\Labfiles\L13, or type and execute the provided 
Transact-SQL statements. 

! To compare the use of a clustered index and a nonclustered index that 
covers a query 

In this procedure, you will drop all existing indexes, create a clustered index on 
the member_no column of the charge table, execute a query, and view the 
execution plan. You then will drop existing clustered indexes and create a 
nonclustered index, re-execute the query, and evaluate the difference in the 
execution plan. 
1. Type and execute these statements to drop existing indexes and create a 

clustered index on the member_no column of the charge table: 
USE credit 
EXEC index_cleanup charge 
 
CREATE CLUSTERED INDEX charge_member_no_CL 
   ON charge(member_no) 

 
2. In the query window, on the Query menu, click Show Execution Plan. 
3. Type and execute this statement to set the statistics option ON: 

SET STATISTICS IO ON 
 

4. Type and execute this SELECT statement to retrieve member numbers 5001 
to 6000: 
SELECT member_no FROM charge WHERE member_no 
   BETWEEN 5001 AND 6000 

 
5. Record the statistical information in the following table. 

Information Result 

Scan count 1 

Logical reads 55 

Execution plan (index or table scan) Index 

Execution plan (type of index operation) Clustered Index Seek 
 



 Module 13: Optimizing Query Performance  59 
 

 

6. Type and execute these statements to drop the clustered index and create a 
nonclustered index on the member_no column of the charge table: 
EXEC index_cleanup charge 
 
CREATE NONCLUSTERED INDEX charge_member_no 
   ON charge(member_no) 

 
7. Re-execute this SELECT statement to retrieve member numbers 5001 to 

6000: 
SELECT member_no FROM charge WHERE member_no 
   BETWEEN 5001 AND 6000 

 
8. Record the statistical information in the following table. 

Information Result 

Scan count 1 

Logical reads 16 

Execution plan (index or table scan) Index 

Execution plan (type of index operation) Index Seek 
 

9. Compare the statistics output from both queries. 
Is the performance of one index significantly greater than the other index in 
this example? Why? 
Yes. The difference in I/O will be proportional to the difference 
between the number of rows per data page and the number of rows per 
leaf-level page. For example, if you can fit 10 rows per data page and 
100 rows per leaf-level page, your ratio will be 10 to 1. That means that 
for every 10 I/O needed to access the data pages, you would only need 
one I/O to access the leaf level of a covered query. 
____________________________________________________________  

____________________________________________________________  

 



60  Module 13: Optimizing Query Performance 
 

 

! To execute a covered query that does not contain a WHERE clause 
In this procedure, you will drop all existing indexes, create a clustered index on 
the member_no column of the charge table, execute a query, and view the 
execution plan. Then, you will drop existing clustered indexes and create a 
nonclustered index, re-execute the query, and evaluate the difference in the 
execution plan. 

 

1. Type and execute these statements to drop existing indexes and create a 
clustered index on the member_no column of the charge table: 
EXEC index_cleanup charge 
 
CREATE CLUSTERED INDEX charge_member_no_CL 
   ON charge(member_no) 

 
2. Type and execute this SELECT statement to retrieve all member numbers: 

SELECT member_no FROM charge 
 

3. Record the statistical information in the following table. 

Information Result 

Scan count 1 

Logical reads 675 

Execution plan (index or table scan) Index 

Execution plan (type of index operation) Clustered Index Scan 
 

4. Type and execute these statements to drop the clustered index and create a 
nonclustered index on the member_no column of the charge table: 
EXEC index_cleanup charge 
 
CREATE NONCLUSTERED INDEX charge_member_no 
   ON charge(member_no) 

 
5. Re-execute this SELECT statement to retrieve all member numbers: 

SELECT member_no FROM charge 
 



 Module 13: Optimizing Query Performance  61 
 

 

6. Record the statistical information in the following table. 

Information Result 

Scan count 1 

Logical reads 187 

Execution plan (index or table scan) Index 

Execution plan (type of index operation) Index Scan 
 

7. Compare the statistics output from both queries. 
What is the difference between a table scan and an index scan? 
A table scan always scans through the entire table. An index scan 
(clustered index or nonclustered index that covers a query) scans the 
entire leaf-level pages or scans only part of the leaf-level pages. The 
query optimizer always performs an index scan rather than a table scan 
because an index scan limits the number of pages read in most cases. 
____________________________________________________________  

____________________________________________________________  

____________________________________________________________  

____________________________________________________________  

When looking at the statistics output, what is the size (number of pages) of 
the leaf level of the nonclustered index? 
The size of the leaf level of the nonclustered index is approximately 186 
pages (187 pages � 1 root page = 186). 
____________________________________________________________  

____________________________________________________________  

 



62  Module 13: Optimizing Query Performance 
 

 

If Time Permits: 
Using Optimizer Hints to Force the Use of an Index or Join 

In this exercise, you will use optimizer hints to force the query optimizer to use 
indexes and joins that you specify. 

You can open, review, and execute sections of the Hints.sql script file in 
C:\Moc\SQL2073A\Labfiles\L13, or type and execute the provided 
Transact-SQL statements. 

! To compare execution plans using an index hint 
In this procedure, you will force the query optimizer to use a specific index. 
1. Log on to the NWTraders classroom domain by using the information in 

the following table. 

Option Value 
 
User name SQLAdminx (where x corresponds to your computer name as 

designated in the nwtraders.msft classroom domain) 

Password password 
 

2. Open SQL Query Analyzer and, if prompted, log in to the (local) server 
with Windows Authentication. 
You have permission to log in to and administer SQL Server because you 
are logged as SQLAdminx, which is a member of the Windows 2000 local 
group, Administrators. All members of this group are automatically mapped 
to the SQL Server sysadmin role. 

3. Type and execute these statements to drop existing indexes and create a 
clustered and nonclustered index on the charge table in the credit database: 
USE credit 
GO 
 
EXEC index_cleanup charge 

 
4. Type and execute this statement to create a clustered index on the 

charge_dt column of the charge table: 
CREATE CLUSTERED INDEX charge_date_CL 
   ON charge(charge_dt) 

 
5. Type and execute this statement to create a nonclustered index on the 

member_no column of the charge table: 
CREATE NONCLUSTERED INDEX charge_member_NC 
   ON charge(member_no) 

 
6. On the Query menu, select Show Execution Plan to turn on the graphical 

execution plan. 



 Module 13: Optimizing Query Performance  63 
 

 

7. Type and execute this SELECT statement to retrieve rows from the charge 
table where the member_no equals 4000: 
SELECT * FROM charge 
WHERE member_no = 4000 

 
When looking at the output from the execution plan, what index does the 
query optimizer use? 
The charge_member_NC index is selected because it is highly selective 
for this query. 
____________________________________________________________  

____________________________________________________________  

8. Type and execute this SELECT statement to retrieve rows from the charge 
table where the member_no equals 4000 while using the charge_date_CL 
index. 
SELECT * FROM charge WITH(INDEX (charge_date_CL)) 
WHERE member_no = 4000 

 
When looking at the output from the execution plan, what index does the 
query optimizer use? 
The charge_date_CL index is selected because it is forced. 
____________________________________________________________  

____________________________________________________________  

 

! To compare the execution plan by using an index hint 
In this procedure, you will see how an index hint forces the query optimizer to 
provide a different execution plan. 
1. Type and execute these statements to drop existing indexes and create a 

clustered index on the charge table in the credit database. 
USE credit 
GO 
 
EXEC index_cleanup member 
CREATE UNIQUE CLUSTERED INDEX member_no_CL 
   ON member(member_no) 

 
2. In SQL Query Analyzer, turn on the graphical execution plan, and then, on 

the Query menu, select Show Execution Plan. 



64  Module 13: Optimizing Query Performance 
 

 

3. Type and execute this SELECT statement to join the charge and member 
tables 
SELECT m.lastname, SUM(charge_amt) 
FROM charge AS c JOIN member AS m 
   ON c.member_no = m.member_no 
WHERE m.lastname = 'BARR' 
GROUP BY m.lastname 

 
When looking at the execution plan output, what join method does the query 
optimizer use? 
A merge join/inner join is selected as the most efficient. 
____________________________________________________________  

____________________________________________________________  

4. Type and execute this SELECT statement to force the query optimizer to 
use the hash join method to join the charge and member tables: 
SELECT m.lastname, SUM(charge_amt) 
FROM charge AS c INNER HASH JOIN member AS m 
   ON c.member_no = m.member_no 
WHERE m.lastname = 'BARR' 
GROUP BY m.lastname 

 
When looking at the execution plan output, what join method does the query 
optimizer use? 
A merge join/inner join is selected as the most efficient. 
____________________________________________________________  

____________________________________________________________  

 



 Module 13: Optimizing Query Performance  65 
 

 

Review 

! Introduction to the Query Optimizer

! Obtaining Query Plan Information

! Using an Index to Cover a Query

! Indexing Strategies

! Overriding the Query Optimizer

 
 

1. A financial analyst performs long-running queries that slow down response 
time for the transaction entry staff. You ask the financial analyst to limit 
activity, but the financial analyst cannot tell which queries use more 
resources than others. What can you do to reduce the effect on the 
transaction query staff? 
Use the query governor to limit financial analysis queries to 30 seconds. 
 
 

2. With SQL Profiler, you identify the five worst performing queries. How can 
you determine the cause of poor query performance? What benefit does 
each method provide? 
Graphical execution plans are one of the primary tools that indicate the 
cause of poor query performance. Graphical execution plans allow you 
to view how the query was executed. You can view each step of the plan 
and the sequence in which it executed. You also can view cost estimates 
and warnings if indexes or statistics are missing. You can also use 
STATISTICS IO and STATISTICS TIME to view additional 
information about the query, including the number of times that the 
table was scanned and the total I/O that SQL Server used to process the 
query. STATISTICS TIME lets you view how much time it takes to 
process each stage for the query, including CPU and compile time. 
 
 

Topic Objective 
To reinforce module 
objectives by reviewing key 
points. 

Lead-in 
The review questions cover 
some of the key concepts 
taught in the module. 

Delivery Tip 
Use these questions to 
review module topics. 
 
Ask students whether they 
have any questions. 



66  Module 13: Optimizing Query Performance 
 

 

3. You have determined that by adding one more index to a table, the index 
can cover several queries. Having an index that covers a query increases 
your performance and outweighs the cost of having the additional index. To 
cover an index, what requirements must you meet? 
All columns referenced in the query must be indexed. At least one 
nonclustered index must exist. In addition, covering can use composite 
indexes and clustered indexes. 
 
 

4. While examining your indexes, you notice that the clustered index of your 
Client table is on the Last Name column. You know that you typically look 
up clients individually by last names. You also know that you frequently 
group clients by the Client Representative ID column for reporting. Should 
you create a nonclustered index on the Client Representative ID column? 
No. You first should drop the clustered index on Last Name and create 
a new clustered index on the Client Representative ID. Creating a new 
clustered index greatly improves your reporting. You then should 
create a nonclustered index on the Last Name column. Creating a 
nonclustered index gives the same performance when looking up single 
clients by Last Name. 
 

 

5. In July, you used optimizer hints in a query to improve performance. Three 
months later, you discover that this query again performs poorly. What is 
the cause? 
Data can change in such a way that the optimizer hint that you specified 
no longer processes the query efficiently. The parameter value 
characteristics that users pass to the query also can change, causing the 
optimizer hint to perform inefficiently. 

 


