

Contents

Overview 1

Introduction to Distributed Queries 2

Executing an Ad Hoc Query on
a Remote Data Source 4

Setting Up a Linked Server Environment 7

Executing a Query on a Linked Server 16

Executing a Stored Procedure on
a Linked Server 21

Managing Distributed Transactions 22

Modifying Data on a Linked Server 23

Using Partitioned Views 25

Recommended Practices 31

Lab A: Using Distributed Data 32

Review 43

Module 12:
Programming Across
Multiple Servers

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BackOffice, MS-DOS, PowerPoint, Visual Basic, Visual C++, Visual Studio,
Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Project Lead: Rich Rose
Instructional Designers: Rich Rose, Cheryl Hoople, Marilyn McGill
Instructional Software Design Engineers: Karl Dehmer, Carl Raebler,
Rick Byham
Technical Lead: Karl Dehmer
Subject Matter Experts: Karl Dehmer, Carl Raebler, Rick Byham
Graphic Artist: Kirsten Larson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Copy Editor: Edward McKillop (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Support: Lori Walker (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: TestingTesting123
Classroom Automation: Lorrin Smith-Bates
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager, Data Base: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 12: Programming Across Multiple Servers iii

Instructor Notes
This module provides students with an introduction to programming across

multiple servers. It describes how to execute an ad hoc query on a remote data
source. It then describes how to set up a linked server environment, including
setting up linked servers and establishing security between servers. The module
also presents how to execute linked server and pass-through queries on a linked
server, execute stored procedures on a linked server, modify distributed data,
and manage distributed transactions. The final section discusses how to use
partitioned views to optimize performance.

In the lab, students set up a linked environment, query linked data sources,
execute pass-through and ad hoc queries and remote stored procedures, and
manage distributed transactions.

After completing this module, students will be able to:

! Describe distributed queries.
! Write ad hoc queries that access data that is stored in a remote Microsoft®

SQL Server� 2000 or in an OLE DB data source.
! Set up a linked server environment to access data that is stored in a remote

SQL Server 2000, or in an OLE DB data source.
! Write queries that access data from a linked server.
! Execute stored procedures on a remote server or linked server.
! Manage distributed transactions.
! Use distributed transactions to modify distributed data.
! Use partitioned views to increase performance.

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the Microsoft PowerPoint® file 2073A_12.ppt.

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials for this module.
! Complete the lab.

The examples in this module are provided only for reference. They
cannot be executed.

Presentation:
60 Minutes

Lab:
60 Minutes

Important

iv Module 12: Programming Across Multiple Servers

Module Strategy
Use the following strategy to present this module:

! Introduction to Distributed Queries
Describe distributed queries and how they access data from multiple
heterogeneous data sources that can be stored on the same or different
computers. Compare the two techniques�ad hoc query and linked server
query�to access an OLE DB data source from SQL Server and explain
when to use each one. Point out how to specify where to process a
distributed query�on the local server or on a
remote server.

! Executing an Ad Hoc Query on a Remote Data Source
Describe when and how to use the OPENROWSET function to execute an
ad hoc query on a remote data source.

! Setting Up a Linked Server Environment
Describe why setting up an environment of linked servers is beneficial. In
this environment you can control where the query is executed (locally or
remotely). Linked servers allow a more flexible approach to security for
accessing remote data. You can choose to have users� credentials passed to
the linked server, or, alternatively, to map local SQL Server accounts or
Microsoft Windows® 2000 groups to accounts or groups on the linked
server.

! Executing a Query on a Linked Server
Make sure that students are aware of the four-part names that are required
for querying linked data. Also, go over why certain Transact-SQL
statements and actions cannot be performed on linked servers. Describe
and discuss when and how to execute linked server queries and pass-
through queries.

! Executing a Stored Procedure on a Linked Server
Point out that you can execute stored procedures on linked servers.

! Managing Distributed Transactions
Point out that students can build distributed applications by using pre-built
and custom components that encapsulate business logic. Components can
use the services provided by Windows 2000 Component Services.

! Modifying Data on a Linked Server
Point out that modifications that must maintain consistency across multiple
databases should be performed in a distributed transaction. Use the BEGIN
DISTRIBUTED TRANSACTION statement with a matching COMMIT or
ROLLBACK statement.

! Using Partitioned Views
Point out that partitioned views can increase performance by distribution of
processing across multiple servers.

 Module 12: Programming Across Multiple Servers v

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing Microsoft
Official Curriculum (MOC) courseware.

The lab in this module is dependent on the classroom configuration
that is specified in the Customization Information section at the end of the
Classroom Setup Guide for course 2073A, Programming a Microsoft
SQL Server 2000 Database.

Lab Setup
The following section describes the setup requirement for the lab in this
module.

Setup Requirement
The lab in this module requires the ClassNorthwind database to be in a state
required for this lab. To prepare student computers to meet this requirement,
perform one of the following actions:

! Complete the prior lab
! Execute the C:\Moc\2073A\Batches\Restore12.cmd batch file.

If this course has been customized, students must execute the
C:\Moc\2073A\Batches\Restore12.cmd batch file to ensure that the lab will
function properly.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Important

Warning

 Module 12: Programming Across Multiple Servers 1

Overview

! Introduction to Distributed Queries

! Executing an Ad Hoc Query on a Remote Data Source

! Setting Up a Linked Server Environment

! Executing a Query on a Linked Server

! Executing a Stored Procedure on a Linked Server

! Managing Distributed Transactions

! Modifying Data on a Linked Server

! Using Partitioned Views

This module introduces programming across multiple servers. It describes how
to execute an ad hoc query on a remote data source. It then describes how to set
up a linked server environment, including setting up linked servers and
establishing security between servers. The module also presents how to execute
linked server and pass-through queries on a linked server, execute stored
procedures on a linked server, modify distributed data, and manage distributed
transactions. The final section discusses how to use partitioned views to
optimize performance.

After completing this module, you will be able to:

! Describe distributed queries.
! Write ad hoc queries that access data that is stored in a remote Microsoft®

SQL Server� 2000 or in an OLE DB data source.
! Set up a linked server environment to access data that is stored in a remote

SQL Server 2000 or in an OLE DB data source.
! Write queries that access data from a linked server.
! Execute stored procedures on a remote server or linked server.
! Manage distributed transactions.
! Use distributed transactions to modify distributed data.
! Use partitioned views to increase performance.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
how to program across
multiple servers by using
distributed queries,
distributed transactions, and
partitioned views.

2 Module 12: Programming Across Multiple Servers

Introduction to Distributed Queries

! Accessing Remote Data

Ad hoc query

Linked server query

! Specifying Where to Process Distributed Queries

Local SQL Server

Remote OLE DB data source (pass-through query)

! Verifying Connection Settings

Distributed queries access data from multiple heterogeneous data sources stored
on a local or remote computer. SQL Server supports distributed queries by
using the Microsoft OLE DB Provider.

Distributed queries provide SQL Server users with access to:

! Distributed data stored on multiple computers that are running SQL Server.
! Heterogeneous data stored in various relational and non-relational data

sources for which either an OLE DB provider or Open Database
Connectivity (ODBC) driver exists.

Accessing Remote Data
You can use two techniques for accessing an OLE DB data source from
SQL Server:

! Ad hoc query
To access remote data when you do not expect to access a data source
repeatedly over time, you can write an ad hoc query with the
OPENROWSET or OPENDATASOURCE function.

! Linked server query
To access remote data repeatedly, you can use a linked server and a
four-part object name. A linked server is an OLE DB data source that is pre-
registered on the local SQL Server so that when it is referenced, the local
server knows where to look for the remote data and objects. Using linked
servers is an efficient way to provide cross-SQL Server joins and other
queries when you know in advance that certain data sources must
be available.

Topic Objective
To introduce distributed
queries.

Lead-in
Distributed queries access
data from multiple
heterogeneous data
sources, which is stored on
the local or remote
computer.

 Module 12: Programming Across Multiple Servers 3

Specifying Where to Process Distributed Queries
When you query an OLE DB data source, you can specify whether to process
the query locally or on a remote server:

! Local SQL Server
For linked servers, SQL Server processes distributed queries on the local
server by default.

! Remote OLE DB data source
You can use the OPENQUERY function with linked servers to specify that
processing will occur on the remote server. This is called a pass-through
query. When you use the OPENROWSET function to execute an
ad hoc query on a remote data source, the query is also processed remotely.

Verifying Connection Settings
In any session issuing distributed queries, the ANSI_NULLS and
ANSI_WARNINGS options must be on. If you use OBDC or SQL Query
Analyzer to issue distributed queries, these options are on by default. If you use
the osql command line utility, you must explicitly set these options ON.

4 Module 12: Programming Across Multiple Servers

Executing an Ad Hoc Query on a Remote Data Source

! Use the OPENROWSET Function When You Do Not
Expect to Use the Data Source Repeatedly

! Use the OPENROWSET Function to Access Remote
Data Without Setting Up a Linked Server

SELECT a.*
FROM OPENROWSET('SQLOLEDB', 'LONDON1';
'newcustomer';'mypassword',
'SELECT ProductID, UnitPrice
FROM Northwind.dbo.Products ORDER BY UnitPrice')
AS a

SELECT a.*
FROM OPENROWSET('SQLOLEDB', 'LONDON1';
'newcustomer';'mypassword',
'SELECT ProductID, UnitPrice
FROM Northwind.dbo.Products ORDER BY UnitPrice')
AS a

You can access data ad hoc from remote sources by using an OLE DB provider.
The OPENROWSET function allows you to connect to and access data from a
remote source without setting up a linked server. Use the OPENROWSET
function when you do not expect to access a particular data source repeatedly
over time.

OPENROWSET('provider_name'
{'data -source'; 'user_id' ; 'password' | 'provider_string'},
{[catalog.][schema.]object | 'query'})

The following table describes the parameters of the OPENROWSET function.

Parameter Description

provider_name Unique, friendly name for the OLE DB provider corresponding to

this data source.
data_source Name of the data source as interpreted by the OLE DB provider.
user_id User name that will be passed to the specified OLE DB provider.

password Password to be passed to the OLE DB provider.

provider_string OLE DB provider-specific connection string that identifies a
unique data source.

catalog Catalog or database in which the object resides.

schema Schema or owner for an object.

object Unique object name to act upon.

query String containing a query to be sent to and executed by the
provider. If a query is specified rather than a remote object name,
the query is executed as a pass-through query.

Topic Objective
To describe how to execute
an ad hoc query on a
remote data source.

Lead-in
You can access data ad hoc
from remote sources by
using an OLE DB provider.

Syntax

 Module 12: Programming Across Multiple Servers 5

The following table lists some common OLE DB provider names. See
SQL Server Books Online for a more complete listing of OLE DB provider
names for various data sources.

Product Provider name

SQL Server N'SQLOLEDB'

Microsoft OLE DB Provider for
Access (Jet)

'Microsoft.Jet.OLEDB.4.0'

Microsoft OLE DB Provider for
Oracle

'MSDAORA'

data_source is the SQL*Net alias name for the
Oracle database to be added as a linked server

OLE DB Provider for ODBC
(Using data_source parameter)

provider_name is 'MSDASQL'
data_source is 'LocalServer'

OLE DB Provider for ODBC
(Using provider_string parameter)

provider_name is 'MSDASQL'
provider_string is 'DRIVER={SQL Server}
SERVER=servername
UID=login;PWD=password;'

Data Transformation Services DTSPackageDSO

Microsoft Directory Services ADSDSOObject

Microsoft Indexing Service MSIDXS

Consider the following facts and guidelines when executing queries by using
the OPENROWSET function:

! You must provide catalog and schema names if the data source supports
multiple catalogs and schemas (databases and object owners, in the case of
SQL Server).

! The user_id passed to the OLE DB provider determines the permissions
associated with the connection.

! The OPENROWSET function can be used in place of a table name in the
FROM clause of a SELECT statement.

This example uses the native OLE DB provider for SQL Server to access
information in the Northwind database on the London1 SQL Server. All
connection information as well as the query to be processed is contained in the
arguments of the OPENROWSET function. The newcustomer user account is
used to log in to the remote server.

SELECT a.*
FROM OPENROWSET('SQLOLEDB', 'LONDON1'; 'newcustomer';
'mypassword',
'SELECT ProductID, UnitPrice FROM Northwind.dbo.Products
 ORDER BY UnitPrice')
 AS a

Example 1

6 Module 12: Programming Across Multiple Servers

This example uses the OLE DB provider for Microsoft Access (Jet) to access
the Orders table in the Northwind database on a remote Access database.

SELECT a.*
FROM OPENROWSET('Microsoft.Jet.OLEDB.4.0'
'C:\MSOffice\Access\Samples\Northwind.mdb';
'newcustomer'; 'mypassword',
Orders)
 AS a

This example joins the Orders table in the Northwind database on a remote
Access database with the Customers table in the Northwind database on the
local SQL Server.

USE Northwind
SELECT cust.* ord.*
FROM Customers as cust JOIN
OPENROWSET('Microsoft.Jet.OLEDB.4.0'
'C:\MSOffice\Access\Samples\Northwind.mdb'';
'newcustomer'; 'mypassword',
Orders)
 AS ord
On cust.customerid = ord.customerid

Example 2

Example 3

 Module 12: Programming Across Multiple Servers 7

$$$$ Setting Up a Linked Server Environment

Other Data SourcesRemote
SQL Server

% SQL Server allows
access to other
data sources

% Remote servers
must be linked to
the local computer
running SQL Server

Local SQL Server

Remote
SQL Server

To work with data from a remote SQL Server or another OLE DB data source,
you must establish a linked server. A linked server is an OLE DB data source
that is pre-registered on the local SQL Server so that when it is referenced, the
local server knows where to look for the remote data and objects.

Why Use Linked Servers
Linked servers are a way to enable cross-SQL Server joins and other queries
when you know in advance that you want certain data sources to be available.

Using a linked server gives you the ability to submit Transact-SQL statements
directly to a remote SQL Server. These actions can be performed as part of a
distributed transaction. When you use linked servers, consider the following
facts and guidelines:

! You can access distributed data that is stored in multiple SQL Servers and
heterogeneous data that is stored in various relational and non-relational
data sources.

! A source other than SQL Server can be defined as a linked server if an OLE
DB provider exists for the source.

! If you regularly access information that resides on another SQL Server
computer, you should define that remote server as a linked server on your
local SQL Server computer.

! Information about linked servers is stored in the sysservers
system table.

Setting Up Linked Servers
To set up linked servers, you must first establish a link to a remote data source
and then establish security between the servers.

Topic Objective
To describe why a
distributed environment is
useful and the steps to set
up one.

Lead-in
To work with data from a
remote SQL Server or
another OLE DB data
source, you must establish a
linked server.

8 Module 12: Programming Across Multiple Servers

Linking to a Remote Data Source

! Connecting to a Remote SQL Server

! Connecting to an OLE DB Data Source

EXEC sp_addlinkedserver
@server = 'AccountingServer',
@svrproduct = 'SQL Server'

EXEC sp_addlinkedserver
@server = 'AccountingServer',
@svrproduct = 'SQL Server'

EXEC sp_addlinkedserver
@server = 'OracleFinance',
@svrproduct = 'Oracle',
@provider = 'MSDAORA',
@datasrc = 'OracleDB'

EXEC sp_addlinkedserver
@server = 'OracleFinance',
@svrproduct = 'Oracle',
@provider = 'MSDAORA',
@datasrc = 'OracleDB'

To execute Transact-SQL statements on a remote SQL Server or OLE DB data
source, you must establish a link to the server or data source.

You can establish a link to the remote SQL Server by using SQL Server
Enterprise Manager or the sp_addlinkedserver system stored procedure. The
sp_addlinkedserver system stored procedure defines a remote SQL Server on
the local computer and specifies the OLE DB provider.

sp_addlinkedserver [@server =] 'server'
 [, [@srvproduct =] 'product_name']
 [, [@provider =] 'provider_name']
 [, [@datasrc =] 'data_source']
 [, [@location =] 'location']
 [, [@provstr =] 'provider_string']
 [, [@catalog =] 'catalog']

The sp_addserver system stored procedure is provided for backward
compatibility, but you should use sp_addlinkedserver instead.

The following table describes the parameters of the sp_addlinkedserver
system stored procedure.

Parameter Description

@server Name of the linked server to create

@svrproduct Product name of the OLE DB data source

@provider The unique, friendly name for the OLE DB provider corresponding to
this data source

@datasrc Name of the data source as interpreted by the OLE DB provider

@location Location of the database as interpreted by the OLE DB provider

Topic Objective
To describe how to link to a
remote server or OLE DB
data source.

Lead-in
To run Transact-SQL
statements on a remote
SQL Server or OLE DB data
source, you must establish a
link to the server or data
source.

Delivery Tip
Demonstrate linking to a
remote data source by using
SQL Server Enterprise
Manager.

Syntax

 Module 12: Programming Across Multiple Servers 9

(continued)
Parameter Description

@provstr The OLE DB provider-specific connection string that identifies a

unique data source

@catalog The catalog to use when making a connection to the OLE DB
provider

Connecting to a Remote SQL Server
If you want to connect to a server that is running SQL Server, the only
parameters that you must provide are @srvproduct and @server. You do not
need to specify @provider, @datasrc, @location, @provstr, and @catalog.
The SQL Server OLE DB provider (N'SQLOLEDB') is automatically used.

This example adds the AccountingServer, a computer running
SQL Server, to the list of linked servers that are available from the local
SQL Server computer.

EXEC sp_addlinkedserver 'AccountingServer', 'SQL Server'

Connecting to an OLE DB Data Source
If you want to connect to a data source other than SQL Server, you must specify
a @provider, @datasrc, @location, @provstr, and @catalog, as well as the
@srvproduct and @server parameters when creating a linked server.

This example adds the Oracle server OracleFinance to the list of linked servers
that are available from the local computer running SQL Server. This example
assumes that a SQL*Net alias of 'OracleDB' has been created. This alias is used
for the @datasrc parameter.

EXEC sp_addlinkedserver 'OracleFinance', 'Oracle', 'MSDAORA',
'OracleDB'

Example 1

Example 2

10 Module 12: Programming Across Multiple Servers

Establishing Linked Server Security

! Local Server Must Log In to Remote Server on Behalf
of User

! If User�s Login Account Exists on Both Servers, It Can
Be Used to Log In to Remote Server

! Map Login Accounts and Passwords Between Servers
by Using sp_addlinkedsrvlogin

! By Using Security Account Delegation, You Can
Connect to Multiple Servers with One Authentication

! Without Security Delegation, Map Local Login Account
to Login Account on the Linked Server

You may need to establish security between the local server and a remote
server. When you establish security between local and remote SQL Servers,
consider the following facts:

! When users log in to the local SQL Server and execute a distributed query,
the local SQL Server logs in to the remote SQL Server on behalf of the user.

! If the user�s login account and password exist on both the local and remote
SQL Servers, the local SQL Server can use the credentials of the user to log
in to the remote SQL Server. Establishing security in this manner is useful
when both servers are using domain accounts.

! You can map login accounts and passwords between local and remote
SQL Servers by using the sp_addlinkedsrvlogin system stored procedure.
When you map a local account to a remote login account, you do not have
to create a login account and password for each user on the remote
SQL Server.
For example, a user can log in to a client application that accesses a local
SQL Server. The local SQL Server then accesses the linked server on behalf
of the user by using one login account for all end users. The login account
on the linked server to which the local login account is mapped has
permission to access a specific table.

! It is possible to connect to multiple servers, and with each server change, to
retain the authentication credentials of the original client. This is known as
security account delegation. To use this delegation, all servers must be
running Microsoft Windows® 2000 and using providers that employ the
Security Support Provider Interface (SSPI). You must also be using the
Active Directory� directory service.

For more information about security account delegation, consult the
Windows 2000 documentation.

Topic Objective
To describe how to establish
security between linked
servers.

Lead-in
You may need to establish
security between the local
server and a remote server.

Note

 Module 12: Programming Across Multiple Servers 11

! If the linked server does not support security account delegation, you must
set up a local login mapping from a Windows Authenticated login account
to a login account on the linked server. You must establish an account
mapping to enable linked server communication.

sp_addlinkedsrvlogin [@rmtsrvname =] 'rmtsrvname'

 [, [@useself =] 'useself']
 [, [@locallogin =] 'locallogin']
 [, [@rmtuser =] 'rmtuser']
 [, [@rmtpassword =] 'rmtpassword'

The following table lists the parameters of the sp_addlinkedsrvlogin system
stored procedure.

Parameter Description

@rmtsrvname Name of a linked server to which the login mapping applies.

@useself Determines whether SQL Server login accounts use their own
credentials or the values of the @rmtuser and @rmtpassword
arguments to connect to the server specified by the @rmtsrvname
argument. A value of TRUE for @useself is invalid for a Windows
Authenticated login account.

@locallogin An optional login account on the local server. If used, @locallogin
must already exist on the local server. If this value is null, then all
login accounts on the local SQL Server will be mapped to the
account on the remote server specified by @rmtuser.

@rmtuser The optional user name for connection to @rmtsrvname when
@useself is FALSE.

@rmtpassword The optional password associated with @rmtuser.

In this example, a user who logs in to the local SQL Server with the
AccountWriter login account will be able to access remote data on the
AccountingServer SQL Server with the credentials of the rmtAccountWriter
login account.

EXEC sp_addlinkedsrvlogin
@rmtsrvname = 'AccountingServer',
@useself = 'false',
@locallogin = 'Accountwriter',
@rmtuser = 'rmtAccountWriter',
@rmtpassword = 'financepass'

This example establishes security between a local and a linked SQL Server.
Any users on the local SQL Server who access remote data on the
AccountingServer linked server are logged in to the remote SQL Server with
the AccountingServer/allcustomers user account.

EXEC sp_addlinkedsrvlogin
@rmtsrvname = 'AccountingServer',
@useself = 'false',
@rmtuser= 'allcustomers'

Syntax

Example 1

Example 2

12 Module 12: Programming Across Multiple Servers

Configuring Linked Server Options

! Collation Compatible

! Collation Name and Use Remote Collation

! Data Access

! RPC and RPC out

! Lazy Schema Validation

USE master

EXEC sp_serveroption 'AccountingServer',

'collation compatible', true

USE master

EXEC sp_serveroption 'AccountingServer',

'collation compatible', true

You can set options for linked servers by using the sp_serveroption system
stored procedure. Only a member of the sysadmin server role can use
sp_serveroption to set server options.

sp_serveroption ['server'] [, 'option_name'] [, 'option_value']

The following options affect linked servers:

Collation Compatible
This option affects the performance of distributed query execution against
linked servers. If this option is set to true, SQL Server assumes that all columns
and character sets on the remote server are compatible with the local server-
wide character set and collation. This enables SQL Server to send comparisons
on character columns to the provider. If this option is not set, SQL Server must
return all of the rows to the local server to evaluate comparisons on character
columns.

This option should only be set if the data source that corresponds to the linked
server has the same character set and sort order as the local server.

This example configures the AccountingServer linked server to be collation
compatible with the local SQL Server.

USE master
EXEC sp_serveroption 'AccountingServer',
'collation compatible', true

Topic Objective
To describe how to establish
security between linked
servers.

Lead-in
You may need to establish
security between the local
server and a remote server.

Syntax

Example

 Module 12: Programming Across Multiple Servers 13

Collation Name and Use Remote Collation
The following two options are often used together.

This option specifies the name of the collation used by the
remote data source if use remote collation is true and the data source is not a
SQL Server data source. The following conditions apply to this option:

! The name must be one of the collations supported by SQL Server.
! You should use this option when accessing an OLE DB data source, other

than SQL Server, that has a collation that matches one of the SQL Server
collations.

! The linked server must support a single collation to be used for all columns
in that server.

This option determines whether SQL Server will use the
collation of a remote column or of a local server:

! If true, the collation of remote columns is used for SQL Server data
sources, and the collation specified in collation name is used for non-
SQL Server data sources.

! If false, distributed queries will always use the default collation of the local
server. The default is false.

Data Access
This option enables and disables a linked server for distributed query access.
You can only use this for sysserver entries that are added by using
sp_addlinkedserver.

This example configures the AccountingServer remote server for data access
and enables its use as a linked server.

USE master
EXEC sp_serveroption 'AccountingServer',
'data access', true

RPC and RPC out
The RPC option enables remote procedure calls (RPCs) from a given
server. The RPC out option enables remote procedure calls to a given server.

Lazy Schema Validation
This option determines whether the schema of remote tables will be checked. If
true, SQL Server does not check the schema of remote tables at the beginning
of the query. Deferring the schema validation can improve performance.

Collation Name

Use Remote Collation

Example

14 Module 12: Programming Across Multiple Servers

Getting Information About Linked Servers

System
stored procedure
SystemSystem
stored procedurestored procedure

sp_linkedserverssp_linkedservers

sp_catalogssp_catalogs

sp_indexessp_indexes

sp_primarykeyssp_primarykeys

sp_foreignkeyssp_foreignkeys

sp_tables_exsp_tables_ex

sp_columns_exsp_columns_ex

ReturnsReturnsReturns

A list of linked servers defined on the local serverA list of linked servers defined on the local server

A list of catalogs and descriptions for a specific
linked server
A list of catalogs and descriptions for a specific
linked server

Index information for the specified remote tableIndex information for the specified remote table

The primary key columns, one row per key column,
for the specified table
The primary key columns, one row per key column,
for the specified table

The foreign keys defined on the specified remote tableThe foreign keys defined on the specified remote table

Table information on the tables from the specified
linked server
Table information on the tables from the specified
linked server

The column information, for all columns or a
specified column, for linked table
The column information, for all columns or a
specified column, for linked table

In addition to using SQL Server Enterprise Manager, you can use the following
stored procedures to gather information about linked servers:

This system stored procedure returns a list of linked servers
that are defined on the local server.

This system stored procedure returns a list of catalogs and
descriptions for a specified linked server. For remote SQL Servers, this is a list
of available databases.

This system stored procedure returns index information for the
specified remote table.

sp_indexes {'table_server'} [, 'table_name'] [, 'table_schema']
[, 'table_catalog'][, 'index'] [, 'is_unique']

This example returns all index information from the Employees table of the
Northwind database on the Cairo server.

USE master
EXEC sp_indexes 'CAIRO', 'Employees', 'dbo', 'Northwind',
NULL, 0

This system stored procedure returns the primary key
columns, one row per key column, for the specified table.

This system stored procedure returns the foreign keys that are
defined on the specified remote table.

This system stored procedure is a version of sp_tables for use
with remote data sources, and it returns table information on the tables from the
specified linked server.

Topic Objective
To describe how to gather
information about linked
servers.

Lead-in
In addition to using
SQL Server Enterprise
Manager, you can use the
following stored procedures
to get information about
linked servers.

sp_linkedservers

sp_catalogs

sp_indexes

Syntax

Example

sp_primarykeys

sp_foreignkeys

sp_tables_ex

 Module 12: Programming Across Multiple Servers 15

sp_tables_ex {'table_server'} [, 'table_name'] [, 'table_schema']
[, 'table_catalog'] [, 'table_type']

This is a version of sp_columns for linked servers. This
system stored procedure returns the column information, for all columns or a
specified column, for the given linked server table. If a column is specified,
only information for that particular column is returned.

sp_columns_ex {'table_server'} [, 'table_name'] [, 'table_schema']
 [, 'table_catalog'] [, 'column']

Syntax

sp_columns_ex

Syntax

16 Module 12: Programming Across Multiple Servers

$$$$ Executing a Query on a Linked Server

! Working with Linked Servers

! Executing Linked Server Queries

! Executing Pass-Through Queries

SQL Server can process a distributed query locally on the local server, or
remotely on a linked server.

Topic Objective
To introduce how to execute
a query on a linked server.

Lead-in
SQL Server can process a
distributed query locally on
the local server, or remotely
on a linked server.

 Module 12: Programming Across Multiple Servers 17

Working with Linked Servers

! How SQL Server Optimizes Remote Queries

! Referring to Objects on Linked Servers

! Allowed Transact-SQL Statements

SELECT, INSERT, UPDATE, DELETE

! Disallowed Transact-SQL Statements

CREATE, ALTER, DROP

ORDER BY on remote tables containing large objects

READTEXT, WRITETEXT, UPDATETEXT

Distributed queries access data from multiple data sources, such as OLE DB
providers and other SQL Servers.

How SQL Server Optimizes Remote Queries
SQL Server attempts to delegate distributed query evaluation to the OLE DB
providers. SQL Server extracts from the original distributed query those
syntactical elements that access only the remote tables in the provider's data
source, and then it executes this reduced query against the provider. This
process reduces the number of rows returned from the provider and allows the
provider to use its indexes to evaluate the query.

Referring to Objects on Linked Servers
When you perform distributed queries, you must refer to the linked objects
with four-part names in the following format:
linked-server-name.catalog-name.schema-name.object-name

The following table describes these parameters.

Parameter Description

linked-server-name Is the network-wide name of a linked server

catalog-name Corresponds to a database

schema-name Is the collection of objects that are owned by a particular user
and corresponds to the object owner

object-name Refers to the table that you want to access

For example, to refer to the Orders table that is owned by the database owner
(dbo) role in the Northwind database on the linked server, Corpserver, use the
four-part name corpserver.Northwind.dbo.Orders in your query.

Topic Objective
To describe how to access
data from tables on a linked
server.

Lead-in
In a query, you can include
multiple data sources.

18 Module 12: Programming Across Multiple Servers

Allowed Transact-SQL Statements
When you use a linked SQL Server, you can execute the following
Transact-SQL statements on linked data:

! SELECT statement with a WHERE clause or a JOIN clause
! INSERT, UPDATE, and DELETE statements

Disallowed Transact-SQL Statements
When you use a linked SQL Server, you cannot:

! Use the CREATE, ALTER, or DROP statements on linked servers.
Therefore, you cannot execute a CREATE TABLE statement that contains a
SELECT INTO statement. However, you can use linked data as the source
for tables that are created on the local server with the SELECT INTO
statement.

! Include an ORDER BY clause in a SELECT statement if a large object
column from a linked table is in the select list of the SELECT statement.

! Use the READTEXT, WRITETEXT, and UPDATETEXT statements.

Delivery Tip
Point out that this is only a
partial list.

 Module 12: Programming Across Multiple Servers 19

Executing Linked Server Queries

! Use Fully Qualified Names to Reference Objects on
Linked Servers

SELECT CompanyName
FROM AccountingServer.NorthwindRemote.dbo.Suppliers

SELECT CompanyName
FROM AccountingServer.NorthwindRemote.dbo.Suppliers

SELECT CompanyName, Phone
INTO PhoneList
FROM AccountingServer.NorthwindRemote.dbo.Suppliers

SELECT CompanyName, Phone
INTO PhoneList
FROM AccountingServer.NorthwindRemote.dbo.Suppliers

Example 1

Example 3

When you query a linked server, you should reference objects by using the fully
qualified four-part object name.

This example retrieves the company names from the Suppliers table in the
NorthwindRemote database on the AccountingServer linked server.

SELECT CompanyName
FROM AccountingServer.NorthwindRemote.dbo.Suppliers

This example joins the Suppliers table in the NorthwindRemote database on a
linked server to the Products table on the local SQL Server.

SELECT ProductName, CompanyName
FROM Products p JOIN
AccountingServer.NorthwindRemote.dbo.Suppliers
ON p.supplierid = s.supplierid

This example uses a SELECT INTO statement to create and transfer data from
a table on a linked SQL Server to a permanent table on the local SQL Server.
You must set the SELECT INTO/BULK COPY database option if you want to
execute this example.

SELECT CompanyName, Phone
INTO PhoneList
FROM AccountingServer.NorthwindRemote.dbo.Suppliers

Topic Objective
To describe how to query a
linked server.

Lead-in
When you query a linked
server, you should reference
objects by using the fully
qualified four-part object
name.

Example 1

Example 2

Example 3

20 Module 12: Programming Across Multiple Servers

Executing Pass-Through Queries

! Use the OPENQUERY Function to Execute Pass-
Through Queries on a Linked Server

! Use the OPENQUERY Function in a SELECT Statement
in Place of a Table Name

! Use the Result of an OPENQUERY Function as the
Target Table of an INSERT, UPDATE, or DELETE
Statement

SELECT * FROM OPENQUERY
(AsiaServer, 'SELECT ProductID, Royalty
FROM Northwind.dbo.ProductInfo')

SELECT * FROM OPENQUERY
(AsiaServer, 'SELECT ProductID, Royalty
FROM Northwind.dbo.ProductInfo')

When querying a linked server, you can specify that SQL Server perform a
pass-through query. Use the OPENQUERY function to execute pass-through
queries on a linked server.

OPENQUERY (linked_server, 'query')

Consider the following facts when performing pass-through queries with the
OPENQUERY function:

! You can use the result of the OPENQUERY function with a SELECT
statement in the place of a table name.

! You can use the result of the OPENQUERY function as the target table of
an INSERT, UPDATE, or DELETE statement if the OLE DB provider for
the data source supports these actions.

In this example, the OPENQUERY function is used to process a SELECT
statement on the AsiaServer linked server and return the results to the local
SQL Server. Assume that AsiaServer has already been established as a linked
server and that security has been set up.

SELECT * FROM OPENQUERY(AsiaServer, 'SELECT ProductID, Royalty
FROM Northwind.dbo.ProductInfo')

In this example, the OPENQUERY function is used to delete discontinued
products from the Northwind.Products table on the AsiaServer linked server.
All processing of the DELETE statement occurs on the AsiaServer linked
server.

DELETE FROM OPENQUERY(AsiaServer, 'Northwind.dbo.Products')
WHERE Discontinued = 1

Topic Objective
To describe how to execute
pass-through queries on a
linked server.

Lead-in
When querying a linked
server, you can specify that
SQL Server perform a pass-
through query.

Syntax

Example 1

Example 2

 Module 12: Programming Across Multiple Servers 21

Executing a Stored Procedure on a Linked Server

User

Local
Server

Stored Procedure Call

Parameters and Output

Linked
Server

EXEC accounting.master.dbo.sp_helpntgroupEXEC accounting.master.dbo.sp_helpntgroup

Stored
Procedure

Processing

Execution of stored procedures on a linked server allows a client that is
connected to one SQL Server to execute a stored procedure on another
SQL Server without establishing a client connection to that server.

! The server to which the client is connected accepts the client request and
sends the request to the linked server. The EXECUTE statement must
contain the name of the linked server as part of its syntax.

! The linked server processes the request and returns any results to the
original server, which in turn passes those results to the client.

! Applications on either the client or server can initiate linked stored
procedure requests.

EXECUTE servername.dbname.owner. procedure_name

The following batch executes the sp_helpntgroup system stored procedure on
the Accounting remote server. The system stored procedure lists the
Windows 2000 groups and specifies the databases to which they have access.

EXEC accounting.master.dbo.sp_helpntgroup

Topic Objective
To illustrate how a stored
procedure can be executed
remotely.

Lead-in
It is possible to execute a
stored procedure on a linked
server.

Syntax

Example

22 Module 12: Programming Across Multiple Servers

Managing Distributed Transactions

! Managing Distributed Transactions by Using MS DTC

! Managing Distributed Transactions by Using
Component Services

Distributed transactions coordinate activity on multiple resources as a single
unit of work. SQL Server supports distributed transactions, allowing users to
update multiple SQL Server databases and other sources of data. You can also
use Windows 2000 Component Services to coordinate distributed transactions
among components.

Managing Distributed Transactions by Using MS DTC
The Microsoft Distributed Transaction Coordinator (MS DTC) coordinates
commitment of a distributed transaction across all servers that participate in the
transaction. These servers can include SQL Server in addition to middle-tier
components.

You can use MS DTC from a SQL Server stored procedure to coordinate
transactions across multiple computers running SQL Server or between a
SQL Server and linked servers.

You can add remote computers running SQL Server to a distributed transaction.
A stored procedure issues a BEGIN DISTRIBUTED TRANSACTION
statement, and then it either makes a remote stored procedure call referencing a
remote server or executes a distributed query referencing a remote or linked
server.

Managing Distributed Transactions by Using Component
Services
Use Component Services to deploy and manage distributed transactions. The
underlying mechanism is MS DTC. Components in the middle tier can
participate in a distributed transaction.

Topic Objective
To describe how to manage
distributed transactions.

Lead-in
Distributed transactions
coordinate activity on
multiple resources as a
single unit of work.

 Module 12: Programming Across Multiple Servers 23

Modifying Data on a Linked Server

! Distribute Transactions by:
Executing BEGIN DISTRIBUTED TRANSACTION

-OR-
Calling API functions from a client

! Consider These Facts:
BEGIN DISTRIBUTED TRANSACTION statements

cannot be nested
ROLLBACK TRANSACTION rolls back entire transaction
Savepoints are not supported
Set the XACT_ABORT session option

When you want to modify data on a linked server, you must perform a
distributed transaction. You can execute a BEGIN DISTRIBUTED
TRANSACTION statement or reference the API functions in a client
application.

BEGIN DISTRIBUTED TRANSACTION [transaction_name]

The following example uses a distributed transaction to transfer funds between
two bank accounts stored on different servers. A stored procedure named
withdraw on the local server is used to withdraw funds from a savings account,
and a stored procedure named deposit on a linked server is used to deposit
funds to a checking account. One hundred dollars is withdrawn from account
number 1234 on the local server and deposited in the corresponding checking
account on the Centralserver linked server. Both the local and linked databases
commit or roll back the transaction.

SET XACT_ABORT ON
BEGIN DISTRIBUTED TRANSACTION
 EXEC Savingsdb.dbo.withdraw 1234, 100
 EXEC Centralserver.Checkingdb.dbo.deposit 1234, 100
COMMIT TRAN

Topic Objective
To introduce distributed
transactions.

Lead-in
When you want to modify
data on a linked server, you
can perform a distributed
transaction by executing the
BEGIN DISTRIBUTED
TRANSACTION statement.

Syntax

Example

24 Module 12: Programming Across Multiple Servers

Consider the following facts when you work with distributed transactions:

! BEGIN DISTRIBUTED TRANSACTION statements cannot be nested.
SQL Server detects such calls, rejects them, and reports an error.

! A ROLLBACK TRANSACTION statement rolls back the entire distributed
transaction.

! Savepoints are not supported. If SQL Server rolls back a distributed
transaction, the entire transaction is rolled back to the beginning of the
distributed transaction, regardless of any savepoints.

! You must set the XACT_ABORT session option when performing
distributed transactions among linked servers. If a Transact-SQL statement
fails when the XACT_ABORT session option is set, the entire transaction is
rolled back. If this option is not set, only the statement that failed is rolled
back, and transaction processing continues.

 Module 12: Programming Across Multiple Servers 25

$$$$ Using Partitioned Views

! The Need for Partitioned Views

! How Partitioned Views Work

! Implementing Distributed Partitioned Views

! Considerations for Partitioning Data

Partitioned views can increase performance by distributing what is processed
across multiple servers.

Topic Objective
To introduce how partitioned
views can increase
performance.

Lead-in
Partitioned views can
increase performance by
distributing processing
across multiple servers.

26 Module 12: Programming Across Multiple Servers

The Need for Partitioned Views

! Scalability

Add more hardware to a single server

Divide workload and database across multiple
independent computers

! Benefits of Partitioned Views

Results of separate tables can appear as one table

Data location is transparent to the application

Database is programmed as a single entity

When workloads increase, it is important to be able to easily add resources.

Scalability
Use scalability to increase the resources of a computer to meet increasing
workloads over time. You can achieve scalability by either adding more
hardware to a single server or adding multiple independent computers that
divide the database. Partitioning the workload across an array is especially
suited for e-commerce applications wherein enormous growth will occur.

Benefits of Partitioned Views
You can use views to partition data across multiple databases or instances of
SQL Server. The benefits of using partitioned views are as follows:

! The results of separate tables can be combined into one result set that
appears to the user as a single table called a partitioned view.

! The location of the data is transparent to the application.
! The database is programmed as a single entity.

Topic Objective
To describe the need for
distributed partitioned views.

Lead-in
When workloads increase, it
is important to be able to
easily add resources.

 Module 12: Programming Across Multiple Servers 27

How Partitioned Views Work

Table BTable BTable B
BB ~~ ~~ ~~ ~~

~~ ~~ ~~ ~~

Member
Server 2

CustomerCustomerCustomer
AA ~~ ~~ ~~ ~~

~~ ~~ ~~ ~~

BB ~~ ~~ ~~ ~~

~~ ~~ ~~ ~~

Member
Server 1

CREATE VIEW
Cust_View

SELECT Table A
UNION ALL

SELECT Table B

CREATE VIEW
Cust_View

SELECT Table A
UNION ALL

SELECT Table B

Partitioned View

Table ATable ATable A
AA ~~ ~~ ~~ ~~

~~ ~~ ~~ ~~

CREATE VIEW
Cust_View

SELECT Table A
UNION ALL

SELECT Table B

CREATE VIEW
Cust_View

SELECT Table A
UNION ALL

SELECT Table B

CustomerCustomer
AA ~~ ~~ ~~ ~~

~~ ~~ ~~ ~~

BB ~~ ~~ ~~ ~~

~~ ~~ ~~ ~~

Partitioned views allow the data in a large table to be horizontally partitioned
into smaller member tables. Each member table has the same format as the
original table, but only part of the rows. A server containing a member table is
called a member server. Each member server contains one member table and a
distributed partitioned view.

An application that references the partitioned view on any of the servers gets
the same results as would be obtained if a complete copy of the original table
were present on each server.

Local and Distributed Partitioned Views
You can implement partitioned views locally on a single server or in a
distributed environment on multiple servers. Local partitioned views reference
member tables on one server. Distributed partitioned views reference member
tables on multiple servers. You will typically use distributed partitioned views.

In the illustration, the Customer table is partitioned by region. Region A is on
member server 1, and Region B is on member server 2. A view is created on
each server that makes it possible to view the partitioned data as if it were in
one table. This view will appear as a virtual table rendition of the original table.

Features Necessary to Implement Partitioned Views
Certain SQL Server features are necessary to implement partitioned views.
These features appear in the following table.

Feature Benefit

Views Allow user to see all of the partitioned tables as one table

CHECK constraints Define and enforce the integrity of partitions

Distributed queries Query and update partitioned data

INSTEAD OF triggers Manage updates to views

Topic Objective
To describe how partitioned
views work.

Lead-in
Partitioned views allow the
data in a large table to be
horizontally partitioned into
smaller tables.

28 Module 12: Programming Across Multiple Servers

Implementing Distributed Partitioned Views

To Set Up Distributed Partitioned Views:

! Create multiple databases, each on a different
member server

! Horizontally partition the tables

! Create linked server definitions on each member server

! Create a partitioned view on each member server by
using the UNION ALL set operator

111

222

333

444

Setting up distributed partitioned views requires four steps.

1. Create multiple databases, each on a different member server running an
instance of SQL Server.

2. Horizontally partition the tables by creating tables on each member server.
3. Create linked server definitions on each member server. The linked server

definition will be used to send distributed queries to each member server.
4. Create a partitioned view on each member server by using the UNION ALL

set operator to combine all of the rows from each member server table.
Each view should have the same name. This allows queries referencing the
distributed partitioned view name to run on any of the member servers.

Topic Objective
To list the steps necessary
to implement distributed
partitioned views.

Lead-in
Setting up distributed
partitioned views requires
four steps.

 Module 12: Programming Across Multiple Servers 29

Considerations for Partitioning Data

! Design Considerations

Partition data to keep related data on the same server

Minimize need to access data on other member servers

Place complete records on the same member server

Select the appropriate column to define the partition

! Ways to Partition

! Rules For Partitioning

Partitioning works well if the tables in the database are naturally divisible into
similar partitions where most of the rows accessed by any SQL statement can
be found on the same member server.

Design Considerations
Design considerations for partitioning include the following:

! Partition the individual tables in the original database so that most related
data is placed together on a member server.

! Minimize any requirements for data on other member servers. Distributed
queries should only be needed for 20 percent, or less, of the data.

! Place complete records on the same member server. A partition should
allow all rows to be placed on the same member server as all their
referencing foreign key rows.

! To evenly distribute the workload, you should define the partition on the
column that most evenly distributes the data among the partitioned tables.
For example, a primary key may be the best method to partition, wherein
you specify a range of data for each table. In some cases it may be more
beneficial to partition by a non-primary key column such as region.

Ways to Partition
You can use different methods of distributing data in various tables across all
the member databases. You should consider:

! Partitioning some tables.
! Making complete copies of other tables in each member database.
! Leaving some tables intact on the original server.

Topic Objective
To describe some of the
considerations for
partitioning data.

Lead-in
It is essential to have a good
database design to partition
data.

30 Module 12: Programming Across Multiple Servers

Rules for Partitioning
Some rules for partitioning are:

! Tables must have the same format as the original table. Tables must include
the same number of columns, which must have the same attributes.

! Partition ranges cannot overlap.
! You must enforce the partitioned range of values on each member table

through the use of a CHECK constraint.

 Module 12: Programming Across Multiple Servers 31

Recommended Practices

Set Up Linked Servers to Execute Stored Procedures Remotely
or to Execute Distributed Queries
Set Up Linked Servers to Execute Stored Procedures Remotely
or to Execute Distributed Queries

Restrict Access to Linked ResourcesRestrict Access to Linked Resources

Use Linked Servers for Frequent Remote Data AccessUse Linked Servers for Frequent Remote Data Access

Avoid Setting Up Duplicate Login Accounts on Different ServersAvoid Setting Up Duplicate Login Accounts on Different Servers

Use Ad Hoc Queries for Infrequent Remote Data AccessUse Ad Hoc Queries for Infrequent Remote Data Access

Select the Appropriate Column to Define the PartitionSelect the Appropriate Column to Define the Partition

The following recommended practices should help you when you program
multiple servers:

! Use linked servers when you expect to access remote data on a regular
basis.

! Use ad hoc queries when you do not expect to access a data source
repeatedly over time.

! Set up a linked server environment in which to execute either stored
procedures remotely or to execute distributed queries.

! Restrict access to linked resources by using application roles or local
accounts that are mapped to accounts on the linked server.

! Avoid setting up duplicate login accounts on different servers. Map user
accounts on a server to a single account (with appropriate permissions) on
the linked server to access data on the linked server.

! Select the appropriate column to define the partition.

Additional information on the following topics is available in SQL Server
Books Online.

Topic Search on

OLE DB providers �OLE DB providers tested with SQL Server�

Linked servers sp_addlinkedserver

Linked server security sp_addlinkedsrvlogin

Pass-through queries OPENQUERY

Ad hoc queries OPENROWSET

Allowed and disallowed Transact-SQL
statements and actions

�accessing external data using distributed
queries�

Distributed query restrictions �external data and Transact-SQL�

Topic Objective
To summarize tips and
techniques for optimizing
programming multiple
servers.

Lead-in
Use these recommended
practices to optimize the
process of programming
multiple servers.

32 Module 12: Programming Across Multiple Servers

Lab A: Using Distributed Data

Objectives
After completing this lab, you will be able to:

! Set up a linked server and establish security.
! Query data on a linked server.
! Import data from a linked server.

Prerequisites
Before working on this lab, you must have:

! Script files for this lab, which are located in C:\Moc\2073A\Labfiles\L12.
! Answer files for this lab, which are located in

C:\Moc\2073A\Labfiles\L12\Answers.

Lab Setup
To complete this lab, you must have either:

! Completed the prior lab, or
! Executed the C:\Moc\2073A\Batches\Restore12.cmd batch file.

This command file restores the ClassNorthwind database to a state required
for this lab.

For More Information
If you require help with executing files, search SQL Query Analyzer Help for
�Execute a query�.

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will set up
linked servers and query
remote data.

Explain the lab objectives.

 Module 12: Programming Across Multiple Servers 33

Other resources that you can use include:

! The Northwind database schema.
! Microsoft SQL Server Books Online.

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 60 minutes

34 Module 12: Programming Across Multiple Servers

Exercise 1
Setting Up Linked Servers

In this exercise, you will work with a partner. You will set up your local
SQL Server as a remote data source for your partner. You will also set up a link
to your partner�s SQL Server and manage security for remote data access.

! To create and populate the ProductInfo table on your local server
In this procedure, you will create a new table in the ClassNorthwind database.
Your partner will use this table.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password password

2. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Microsoft Windows® Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Windows 2000 local
group, Administrators. All members of this group are automatically mapped
to the SQL Server sysadmin role.
Leave this query window open for the remainder of the exercise.

3. Open, review, and execute the Labfiles\L12\RemoteTbl.sql script. This file
creates the ProductInfo table in the local ClassNorthwind database.

 Module 12: Programming Across Multiple Servers 35

! To create login accounts for local and remote users
In this procedure, you will create two new login accounts: one for your partner
to use when your partner links to your SQL Server and one for you to use when
you access linked servers.

1. Open SQL Server Enterprise Manager.
2. Open the SQL Server Books Online topics �How to add a SQL Server login

(Enterprise Manager)� and �How to grant a SQL Server login access to a
database (Enterprise Manager).�

3. Use the procedures in SQL Server Books Online and the information in the
following table to create a new login account that remote servers that access
information on the local computer will use.

Option Value

Login name NWInfoRemote

Authentication SQL Server

Password nwpassrmt

Default database ClassNorthwind

Database access ClassNorthwind

Permit in database role public

4. Create another login account with the following characteristics. This local
account will be mapped to the NWInfoRemote login account on your
partner�s SQL Server.

Option Value

Login name NWInfoLocal

Authentication SQL Server

Password nwpasslocal

Default database ClassNorthwind

Database access ClassNorthwind

Permit in database role public

! To grant SELECT and INSERT permissions on the ProductInfo table
In this procedure, you will grant SELECT and INSERT permissions on the
ProductInfo table on your local computer running SQL Server to the
NWInfoRemote login account. This allows remote users to read and insert data
into the ProductInfo table.
1. Open the SQL Server Books Online topic �How to grant permissions on

multiple objects to a user, group, or role (Enterprise Manager).�
2. Use the procedure in SQL Server Books Online to grant SELECT and

INSERT permissions on the ClassNorthwind.dbo.ProductInfo table to the
NWInfoRemote login account.

36 Module 12: Programming Across Multiple Servers

! To add the NWInfoLocal login account to the db_datareader role
in ClassNorthwind

In this procedure, you will add the NWInfoLocal login account to the
db_datareader role for the ClassNorthwind database. The db_datareader
role has SELECT permission on all user tables in the database. This role will be
used to access the local copy of ClassNorthwind.
1. Open the SQL Server Books Online topic, �How to add a member to a

SQL Server database role (Enterprise Manager).�
2. Use the procedure in SQL Server Books Online to add the NWInfoLocal

login account to the db_datareader role in the ClassNorthwind database.

! To set up a linked server
In this procedure, you will register your partner�s computer as a linked server
on your local server.
1. Switch to SQL Query Analyzer.
2. Open the Labfiles\L12\MakeLink.sql script.
3. Modify the script, substituting the name of your partner�s SQL Server

for servername.
4. Execute the script.

! To establish security between your local computer and the linked
SQL Server

In this procedure, you will map a login account on your local computer, running
SQL Server, to a login account on your partner�s computer running
SQL Server.
1. Open the Labfiles\L12\MapToLnk.sql script by using SQL

Query Analyzer.
2. Modify the script, substituting the name of your partner�s SQL Server

for servername.
3. Execute the script.
4. Close SQL Query Analyzer.

 Module 12: Programming Across Multiple Servers 37

Exercise 2
Querying Remote Data

In this exercise, you will write and execute queries that access data on the
linked server that you set up in the previous exercise. Both you and your partner
must complete Exercise 1 before you start this exercise.

! To access remote data on the linked server
• In this procedure, you will log in to your local SQL Server with security

credentials for a local application. You will then write a simple query that
returns data from the ProductInfo table in the ClassNorthwind database on
your partner�s computer. \L12\Answers\LnkSelect.sql is a completed script
for this procedure.

! To access remote data by using a pass-through query
Because each linked server is using SQL Server Authentication, each server
needs to be configured to allow both SQL Server and Windows Authentication.
1. Using SQL Server Enterprise Manager, expand the server group.
2. Right-click your server, and then click Properties.
3. Click the Security tab.
4. Under Authentication, click SQL Server and Windows.
5. Stop and restart SQL Server.

! To log on to your server by using SQL Server Authentication
1. On the Start menu, point to Programs, point to Microsoft SQL Server,

and then click Query Analyzer. Log in to the (local) server with
SQL Server Authentication. Connect as NWInfoLocal with a password of
nwpasslocal�you will use this connection for all procedures in this
exercise.

2. Write and execute a Transact-SQL statement that returns all columns from
the Northwind.dbo.ProductInfo table on the linked server (your partner�s
computer).
SELECT * FROM <servername>.ClassNorthwind.dbo.ProductInfo

! To access remote data by using a pass-through query
In this procedure, you will write a query that uses the OPENQUERY function
to return data from the ProductInfo table in the ClassNorthwind database on
your partner�s computer. The query will be processed remotely as a pass-
through query. \L12\Answers\PassThru.sql is a completed script for this
procedure.
• Write and execute a pass-through query that returns the ProductID and

Royalty columns from the Northwind.dbo.ProductInfo table on the linked
server (your partner�s computer). Use the OPENQUERY function in the
FROM clause of the SELECT statement.
SELECT * FROM
 OPENQUERY(<servername>,
 'SELECT ProductID, Royalty
 FROM ClassNorthwind.dbo. ProductInfo')

38 Module 12: Programming Across Multiple Servers

! To join local and remote tables
In this procedure, you will write a query that joins the local copy of
ClassNorthwind.dbo.Products to the ClassNorthwind.dbo.ProductInfo table
on your partner�s computer. \L12\Answers\LnkJoin.sql is a completed script for
this procedure.
• Write and execute a Transact-SQL statement that joins the local copy of

ClassNorthwind.dbo.Products to the ClassNorthwind.dbo.ProductInfo
table on the linked server. Join the tables on the ProductID column. Include
the ProductName, ProductID, and ImportTax columns, and then order
the results by ProductName.
USE ClassNorthwind

SELECT ProductName, Products.ProductID, Royalty, ImportTax
FROM Products JOIN
<servername>.ClassNorthwind.dbo.ProductInfo CNWR
 ON Products.ProductID = CNWR.ProductID

! To add the NWInfoLocal login account to the database owner role
In this procedure, you will add the NWInfoLocal login account to the
db_owner role for the ClassNorthwind database. As a member of the
db_owner role, the NWInfoLocal login account will have the ability to create
new tables in the ClassNorthwind database.
1. Open the SQL Server Books Online topic, �How to add a member to a

SQL Server database role (Enterprise Manager).�
2. Use the procedure in SQL Server Books Online to add the NWInfoLocal

login account to the db_owner role for the ClassNorthwind database.

! To import data from a linked server and create a new local table
In this procedure, you will create a new table on your local server and populate
it with the results of a query on your linked server.
\L12\Answers\LnkImport.sql is a completed script for this procedure.
1. Switch to SQL Query Analyzer.
2. Write and execute a Transact-SQL statement that returns the ProductID

and Royalty columns from the ProductInfo table on the linked server.
3. Modify the statement to create a new, local, and permanent table named

LocalProdInfo that contains the results of the query.
4. Examine the contents of LocalProdInfo.

USE ClassNorthwind

SELECT ProductID,Royalty
FROM <servername>.ClassNorthwind.dbo.ProductInfo

SELECT ProductID,Royalty
INTO LocalProdInfo
FROM <servername>.ClassNorthwind.dbo.ProductInfo

SELECT * FROM LocalProdInfo

 Module 12: Programming Across Multiple Servers 39

! To execute a stored procedure on a linked server
In this procedure, you will execute the Sales by Year stored procedure on
the linked server. \L12\Answers \RmtProc.sql is a completed script for
this procedure.
1. Write and execute a Transact-SQL statement that executes the Sales by

Year stored procedure in the ClassNorthwind database on the linked server
by using a fully qualified four-part name. Use the information in the
following table to write this query.

Parameter Value

Start_date '1996'

End_date '1997'

2. Close all open query windows, and then quit SQL Query Analyzer.
EXECUTE <servername>.ClassNorthwind.dbo.[Sales by Year]
'1996', '1997'

! To access remote data with an ad hoc query
In this procedure, you will write an ad hoc query that returns all columns from
the ClassNorthwind.dbo.ProductInfo table on the remote server. Use the
OPENROWSET function to connect to the remote data source.
\L12\Answers\Adhoc.sql is a completed script for this procedure.
1. Open SQL Query Analyzer and, if prompted, log in to the (local) server

with Windows Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Windows 2000 local
group, Administrators. All members of this group are automatically mapped
to the SQL Server sysadmin role.
Because you are not using the NWInfoLocal user account, your partner�s
server cannot be used as a linked server directly from this connection.

2. Write and execute a Transact-SQL statement that returns the ProductID
and Royalty columns from the ProductInfo table on your partner�s
computer. Use the OPENROWSET function to provide connection
information. Use the information in the following table to write this query.

Parameter Value

provider_name 'SQLOLEDB'

data_source <Servername> (your partner�s computer name)

User_id 'nwinforemote'

Password 'nwpassrmt'

SELECT * FROM
OPENROWSET('SQLOLEDB', '<servername>'; 'NWInfoRemote';
'nwpassrmt',
'SELECT ProductID, Royalty FROM
 ClassNorthwind.dbo.ProductInfo')

3. Close all connections to SQL Query Analyzer.

40 Module 12: Programming Across Multiple Servers

If Time Permits
Managing Distributed Transactions

In this exercise, you will create a stored procedure to use in distributed
transactions. You will confirm that the MS DTC service has been started. You
will write and execute Transact-SQL statements inside a distributed transaction
to ensure tight data consistency between two SQL Servers.

! To create a stored procedure to use in distributed transactions on your
local computer

In this procedure, you will log in to your local SQL Server as a member of the
sysadmin role. You will review and execute a script that creates the
DeleteProductInfo stored procedure and grants EXECUTE permission to the
NWInfoRemote login account. Later, your partner will use this stored
procedure to delete rows from the ProductInfo table on your local computer.

You and your partner must complete the preceding procedure before
continuing with this exercise.

1. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Windows Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Windows 2000 local
group, Administrators. All members of this group are automatically mapped
to the SQL Server sysadmin role.

2. Open, review, and execute the Labfiles\L12\RemoteSP.sql script. This file
creates the DeleteProductInfo stored procedure in the local
ClassNorthwind database and grants EXECUTE permission to the
NWInfoRemote user account. Your partner will use this stored procedure to
delete rows from the ProductInfo table on your local computer.

3. Close SQL Query Analyzer.

! To start the MS DTC service
In this procedure, you will start the MS DTC service.
1. Open the SQL Server Service Manager.
2. Start the MS DTC service on your local computer if it is not running.

Important

 Module 12: Programming Across Multiple Servers 41

! To perform a distributed transaction between the local computer and a
linked server

Suppose that ClassNorthwind Traders has two copies of its database, one at
each of its warehouses. Any changes to one copy should be made to the other
copy.
In this procedure, you will insert data into your local ProductInfo table as well
as the ProductInfo table on your partner�s computer as a single transaction.
\L12\Answers \DistIns.sql is a completed script for this procedure.
1. On the Start menu, point to Programs, point to Microsoft SQL Server,

and then click Query Analyzer. Log in to the (local) server with
SQL Server Authentication. Connect as NWInfoLocal with a password of
nwpasslocal

2. Write a Transact-SQL statement that inserts a new row into the
ProductInfo table on your local computer. Select one row in the following
table. Your partner should select the remaining row.

Productid Royalty Import tax

55 3 .09

55 3 .09

3. Write a Transact-SQL statement that inserts the row that you selected into
the ClassNorthwind.dbo.ProductInfo table on the linked server (your
partner�s computer). Use a fully qualified four-part name.

4. Enclose the two statements in a BEGIN DISTRIBUTED TRANSACTION
and COMMIT TRANSACTION block and set the XACT_ABORT
session option.

5. Execute the transaction.
USE ClassNorthwind
SET XACT_ABORT ON
GO

BEGIN DISTRIBUTED TRANSACTION
 -- Insert to the liked server.
 INSERT INTO <servername>.ClassNorthwind.dbo.ProductInfo
 VALUES (55, 3, .09)
 INSERT INTO ClassNorthwind.dbo.ProductInfo
 VALUES (55, 3, .09)
COMMIT TRANSACTION

6. Write and execute queries to confirm that the added row appears in
both tables.
SELECT * FROM <servername>.ClassNorthwind.dbo.ProductInfo
SELECT * FROM ClassNorthwind.dbo.ProductInfo

42 Module 12: Programming Across Multiple Servers

! To manage distributed data by using a stored procedure
In this procedure, you will examine and execute a script that deletes the rows
previously added to the ClassNorthwind.dbo.ProductInfo tables on the local
and linked servers.
1. Open and review the Labfiles\L12\DistDel.sql script by using SQL Query

Analyzer. This script deletes the row that you added to the local
ProductInfo table by using a Transact-SQL statement. A stored procedure
deletes the row that you added to the ProductInfo table on the linked
server. These actions are done as a transaction.

2. Modify the script so that your partner�s computer serves as the
linked server.

3. Modify the script to delete the Product_id that you added in the
previous procedure.

4. Execute the modified Labfiles\L12\DistDel.sql script.
5. Examine the output to confirm that the rows were deleted.

 Module 12: Programming Across Multiple Servers 43

Review

! Introduction to Distributed Queries

! Executing an Ad Hoc Query on a Remote Data Source

! Setting Up a Linked Server Environment

! Executing a Query on a Linked Server

! Executing a Stored Procedure on a Linked Server

! Managing Distributed Transactions

! Modifying Data on a Linked Server

! Using Partitioned Views

You own a mail order business with two warehouse locations, one in the United
States and one in Asia. Each warehouse has a SQL Server that hosts a location-
specific copy of the inventory database. The servers, named USsales and
Asiasales, are connected by a WAN. Your business requires that these
databases remain current and synchronized at all times.

1. What method of data distribution should you use to propagate changes from
one server to the other?
You should use distributed transactions to update both databases,
because tight consistency is required. Do not use replication, because
these databases must remain synchronized at all times.

2. Your office is based in the United States. Each morning, you generate a
report that shows the number of units in stock for the ten most frequently
sold items from each warehouse. How would you generate this report?
You would register the Asiasales server as a linked server on the
USsales computer and then write and execute queries on the USsales
server, using fully qualified four-part names to access information on
the linked server.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

44 Module 12: Programming Across Multiple Servers

3. Because you often transfer inventory between warehouses, you must update
the databases at both locations so that the number of stocked units is always
current. How would you do this?
You would write distributed queries or stored procedures to subtract
and add inventory to each database. You then would write a query that
encloses these queries, or calls to stored procedures, in a BEGIN
DISTRIBUTED TRANSACTION and COMMIT TRANSACTION
block. Using distributed transactions ensures that the databases are
synchronized.

4. The Asiasales server also hosts a Microsoft Access database that contains
sales summary information. Occasionally, you want to access this data to
produce a report that includes the data from the USsales inventory database.
How would you combine data from both sources in your report?
You would write a query that accesses data in the Access database by
using the OPENROWSET function. To generate the report, you would
join tables in the Access database with tables in the local SQL Server
database.

