

Contents

Overview 1

Introduction to Triggers 2

Defining Triggers 9

How Triggers Work 15

Examples of Triggers 26

Performance Considerations 29

Recommended Practices 30

Lab A: Creating Triggers 31

Review 39

Module 11:
Implementing Triggers

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BackOffice, MS-DOS, PowerPoint, Visual Basic, Visual C++, Visual Studio,
Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Project Lead: Rich Rose
Instructional Designers: Rich Rose, Cheryl Hoople, Marilyn McGill
Instructional Software Design Engineers: Karl Dehmer, Carl Raebler,
Rick Byham
Technical Lead: Karl Dehmer
Subject Matter Experts: Karl Dehmer, Carl Raebler, Rick Byham
Graphic Artist: Kirsten Larson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Copy Editor: Edward McKillop (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Support: Lori Walker (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: TestingTesting123
Classroom Automation: Lorrin Smith-Bates
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager, Data Base: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 11: Implementing Triggers iii

Instructor Notes
This module provides the student with a definition of what triggers are and how
to create them. Triggers are a useful tool for database implementers who want
certain actions to be performed whenever data in a specific table is inserted,
updated, or deleted. They are an especially useful method for enforcing
business rules and ensuring data integrity.

The following parts of a trigger are discussed:

! The statement that activates it (INSERT, UPDATE, or DELETE)
! The table that the trigger protects
! The action that the trigger takes when it is invoked

This section also discusses the uses of triggers and issues that you must
consider when determining whether a trigger is the appropriate tool to
accomplish a task.

The next section discusses the process of creating and dropping triggers and
provides detailed information about the operation of each of the four types of
triggers: INSERT, UPDATE, DELETE, and INSTEAD OF. This section also
includes a discussion of how to alter triggers.

A discussion on working with triggers follows, including examples of nesting
triggers and how triggers can be useful for enforcing data integrity, complex
referential integrity, and business rules.

The module concludes with a list of recommended practices and performance
considerations that implementers should consider when they create and work
with triggers.

In the lab, students create triggers and test the effectiveness of these triggers.

After completing this module, students will be able to:

! Create a trigger.
! Drop a trigger.
! Alter a trigger.
! Evaluate the performance considerations that affect using triggers.

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

! Microsoft® PowerPoint® file 2073A_11.ppt
! The C:\Moc\2073A\Demo\D11_Ex.sql example file, which contains all of

the example scripts from the module, unless otherwise noted in the module.

Presentation:
45 Minutes

Lab:
30 Minutes

iv Module 11: Implementing Triggers

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials for this module.
! Complete the lab.

Other Activities
This section provides procedures for implementing interactive activities to
present or review information, such as games or role playing exercises.

Displaying the Animated PowerPoint Slides
All animated slides are identified with an icon of links on the lower left corner
of the slide.

! To display the How an INSERT Trigger Works slide
This slide shows how an INSERT trigger inserts a row and how the inserted
table is used.
1. Display the slide, which shows the Order Details table before any

modification is done.
2. Display the next image, which shows that a row has been inserted into the

table. The slide automatically continues to show that the inserted row is also
written to the log, and is accessible to the trigger and users as the inserted
table.

3. Display the next image, which shows the trigger definition script, and
discuss the actions that the statements perform.

4. Display the last image, which summarizes how the trigger works.

! To display the How a DELETE Trigger Works slide
This slide shows how a DELETE trigger deletes a row and how the deleted
table is used.
1. Display the slide, which shows the Categories table before any

modification is done.
2. Display the next image, which shows that a row has been deleted from the

table and is available as the deleted table.
3. Display the next image, which shows how the trigger definition script and

the trigger act on the Products table.
4. Display the last image, which summarizes how the trigger works.

 Module 11: Implementing Triggers v

! To display the How an UPDATE Trigger Works slide
This slide shows how an UPDATE trigger modifies a row by using the inserted
and deleted tables.
1. The slide displays an UPDATE statement to be executed on the Employees

table before any modification is done. The slide also displays the rows that
will be stored in the deleted and inserted tables.

2. Display the next image, which shows the trigger definition script and
discusses the actions that result from the trigger.

3. Display the last image, which summarizes the order of events when a trigger
is executed.

! To display the How an INSTEAD OF Trigger Works slide
This slide shows how an INSTEAD OF trigger can be used to redirect and
update to a view.
1. The slide displays a view that is based on two tables. Discuss how these

tables partition the customers by country.
2. Display the next image that updates the view. As the presentation proceeds,

discuss how the update is redirected and the original insert is not attempted
against the Customers view.

3. Display the last image, which summarizes the key points regarding
INSTEAD OF triggers.

! To display the Enforcing Business Rules slide
This slide shows how a trigger enforces the �products with outstanding orders
cannot be deleted� business rule.
1. The slide initially displays the DELETE trigger that enforces the �products

with outstanding orders cannot be deleted� business rule. It also displays the
Products table, from which ProductID 2 is being removed.

2. Display the next image, in which the product with the ProductID of 2 is
removed from the Products table.

3. Display the next image, which shows the Order Details table with the
ProductID 2 row selected, indicating that there are orders for that product.

4. Display the next image, in which an error message is printed.
5. Display the final image, in which the ProductID 2 row is returned to the

Products table.

vi Module 11: Implementing Triggers

Module Strategy
Use the following strategy to present this module:

! Introduction to Triggers
Define triggers for students. Tell them that a trigger is a special type of
stored procedure that is assigned to a specific table. Then discuss the three
key points: that triggers are invoked automatically; that they cannot be
called by anything other than a trigger action to the trigger table; and that
they are transactions.
Briefly discuss some of the primary uses of triggers. Triggers can cascade
changes throughout a database. They can enforce more complex business
rules than can be defined with CHECK constraints or rules. Triggers also
provide a way to compare the before and after states (images) of data that
are modified by an INSERT, UPDATE, or DELETE statement. Mention
that cascading referential integrity actions can replace the use of triggers.
Discuss some of the facts and guidelines that implementers must consider
when determining whether to use triggers instead of other tools.

! Defining Triggers
Discuss the CREATE TRIGGER statement and the various options that
users have when they create a trigger. Emphasize that students have full
control over the statements that a trigger executes and that users cannot
circumvent the trigger from firing.
Discuss permissions, the Microsoft SQL Server� 2000 statements that
cannot be used in trigger definitions, and that users can use the sp_depends
system stored procedure on a table to review trigger information that is
associated with the table.
Discuss the procedure for altering a trigger and give (or ask students for)
examples where they might want to alter trigger definitions. Also discuss
the DROP TRIGGER syntax.

! How Triggers Work
Discuss how the INSERT, DELETE, UPDATE, and INSTEAD OF
statements work, displaying the animated slides.
Describe the use of nested triggers and mention that users can enable or
disable nesting. Discuss situations in which students would want to use
nesting and the implications of doing so, such as lengthy transactions, locks,
and ROLLBACK TRANSACTION statements.
Finally, discuss how recursive triggers work. Inform students that a trigger
can call itself but that students should include a recursive termination check
statement in the trigger definition so that the trigger does not end up in an
endless loop.

! Examples of Triggers
Discuss and describe each example of effective triggers.

! Performance Considerations
Discuss some of the performance considerations for using triggers.

 Module 11: Implementing Triggers vii

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing Microsoft
Official Curriculum (MOC) courseware.

The lab in this module is dependent on the classroom configuration
that is specified in the Customization Information section at the end of the
Classroom Setup Guide for course 2073A, Programming a Microsoft
SQL Server 2000 Database.

Lab Setup
The following section describes the setup requirement for the lab in this
module.

Setup Requirement
The lab in this module requires the ClassNorthwind database to be in a state
required for this lab. To prepare student computers to meet this requirement,
perform one of the following actions:

! Complete the prior lab
! Execute the C:\Moc\2073A\Batches\Restore11.cmd batch file.

If this course has been customized, students must execute the
C:\Moc\2073A\Batches\Restore11.cmd batch file to ensure that the lab will
function properly.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Important

Warning

 Module 11: Implementing Triggers 1

Overview

! Introduction to Triggers

! Defining Triggers

! How Triggers Work

! Examples of Triggers

! Performance Considerations

A trigger is a stored procedure that executes when data in a specified table is
modified. You often create triggers to enforce referential integrity or
consistency among logically related data in different tables. Because users
cannot circumvent triggers, you can use triggers to enforce complex business
rules that maintain data integrity.

After completing this module, you will be able to:

! Create a trigger.
! Drop a trigger.
! Alter a trigger.
! Describe how various triggers work.
! Evaluate the performance considerations that affect using triggers.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
about creating triggers.

2 Module 11: Implementing Triggers

Introduction to Triggers

! What Is a Trigger?

! Uses of Triggers

! Considerations for Using Triggers

This section introduces triggers and describes when and how to use them.

Topic Objective
To introduce the concept of
trigger objects.

Lead-in
In this section, you will learn
when and how to use
triggers.

 Module 11: Implementing Triggers 3

What Is a Trigger?

! Associated with a Table

! Invoked Automatically

! Cannot Be Called Directly

! Is Part of a Transaction

A trigger is a special kind of stored procedure that executes whenever an
attempt is made to modify data in a table that the trigger protects. Triggers are
tied to specific tables.

Associated with a Table
Triggers are defined on a specific table, which is referred to as the trigger table.

Invoked Automatically
When an attempt is made to insert, update, or delete data in a table, and a
trigger for that particular action has been defined on the table, the trigger
executes automatically. It cannot be circumvented.

Cannot Be Called Directly
Unlike standard system-stored procedures, triggers cannot be called directly and
do not pass or accept parameters.

Is Part of a Transaction
The trigger and the statement that fires it are treated as a single transaction that
can be rolled back from anywhere within the trigger. When using triggers,
consider these facts and guidelines:

! Trigger definitions can include a ROLLBACK TRANSACTION statement
even if an explicit BEGIN TRANSACTION statement does not exist.

! If a ROLLBACK TRANSACTION statement is encountered, the entire
transaction rolls back. If a statement in the trigger script follows the
ROLLBACK TRANSACTION statement, the statement is executed. It may
be necessary to use a RETURN clause in an IF statement to prevent the
processing of other statements.

Topic Objective
To introduce the concept of
a trigger and to state the
advantages of using one.

Lead-in
A trigger is a special kind of
stored procedure that
executes automatically
whenever an attempt is
made to modify data that the
trigger protects. Triggers are
tied to specific tables.

Key Points
A trigger is a special type of
stored procedure. You can
include any Transact-SQL
statements in a trigger.
Triggers use the procedure
cache to store the execution
plan.

Delivery Tip
Do not discuss transactions
in detail. Transactions are
described in other modules
in this course.

4 Module 11: Implementing Triggers

! If a trigger that includes a ROLLBACK TRANSACTION statement is fired
from within a user-defined transaction, the ROLLBACK TRANSACTION
rolls back the entire transaction. A trigger that is executed from within a
batch that executes a ROLLBACK TRANSACTION statement cancels the
batch; subsequent statements in the batch are not executed.

! You should minimize or avoid the use of ROLLBACK TRANSACTION in
your trigger code. Rolling back a transaction creates additional work
because all of the work that was done to that point in the transaction has to
be undone. This has a negative impact on performance. It is recommended
that information be checked and validated outside the transaction. Start the
transaction after everything is checked and verified.

! The user that invokes the trigger must also have permission to perform all
statements on all tables.

 Module 11: Implementing Triggers 5

Uses of Triggers

! Cascade Changes Through Related Tables in
a Database

! Enforce More Complex Data Integrity Than a
CHECK Constraint

! Define Custom Error Messages

! Maintain Denormalized Data

! Compare Before and After States of Data Under
Modification

Triggers are best used to maintain low-level data integrity, not to return query
results. The primary benefit of triggers is that they can contain complex
processing logic. Triggers can cascade changes through related tables in a
database, enforce more complex data integrity than a CHECK constraint, define
custom error messages, maintain denormalized data, and compare before and
after states of data under modification.

Cascade Changes Through Related Tables in a Database
You can use a trigger to cascade updates and deletes through related tables in a
database. For example, a delete trigger on the Products table in the Northwind
database can delete matching rows in other tables that have rows that match the
deleted ProductID values. A trigger does this by using the ProductID foreign
key column as a way of locating rows in the Order Details table.

Enforce More Complex Data Integrity Than a CHECK Constraint
Unlike CHECK constraints, triggers can reference columns in other tables. For
example, you could place an insert trigger on the Order Details table that
checks the UnitsInStock column for that item in the Products table. The
trigger could determine that when the UnitsInStock value is less than 10, that
the maximum order amount is three items. This type of check references
columns in other tables. Referencing columns in other tables is not permitted
with a CHECK constraint.

Topic Objective
To introduce the advantages
of using triggers.

Lead-in
There are several
advantages to using
triggers.

Delivery Tip
Point out that you can use
triggers to cascade updates
and deletes through related
tables in a database.

Note that many databases
created with previous
versions of SQL Server can
contain this type of trigger.

6 Module 11: Implementing Triggers

You can use triggers to enforce complex referential integrity by:

! Taking action or cascading updates or deletes.
Referential integrity can be defined by using FOREIGN KEY and
REFERENCE constraints with the CREATE TABLE statement. Triggers
are useful for ensuring appropriate actions when cascading deletions or
updates must occur. If constraints exist on the trigger table, they are checked
prior to the trigger execution. If constraints are violated, the trigger is not
executed.

! Creating multi-row triggers
When more than one row is inserted, updated, or deleted, you must write a
trigger to handle multiple rows.

! Enforcing referential integrity between databases.

Define Custom Error Messages
Occasionally, your implementation may benefit from custom error messages
that indicate the status of an action. By using triggers, you can invoke
predefined or dynamic custom error messages when certain conditions occur as
a trigger executes.

Maintain Denormalized Data
Triggers can be used to maintain low-level data integrity in denormalized
database environments. Maintaining denormalized data is different from
cascading in that cascading typically refers to maintaining relationships
between primary and foreign key values. Denormalized data is typically
contrived, derived, or redundant data values. You must use a trigger if:

! Referential integrity requires something that is not an exact match, such as
maintaining derived data (year-to-date sales) or flagging columns (Y or N to
indicate whether a product is available).

! You require customized messages and complex error messaging.

Redundant data and derived data typically require the use of triggers.

Compare Before and After States of Data Under Modification
Most triggers provide the ability to reference the changes that are made to the
data by the INSERT, UPDATE, or DELETE statement. This allows you to
reference the rows that are being affected by the modification statements inside
the trigger.
Note:

Constraints, rules, and defaults can communicate errors only through
standardized system-error messages. If your application requires (or can benefit
from) customized messages and more complex error handling, you must use a
trigger.

Note

Note

 Module 11: Implementing Triggers 7

Considerations for Using Triggers

! Triggers Are Reactive; Constraints Are Proactive
! Constraints Are Checked First
! Tables Can Have Multiple Triggers for Any Action
! Table Owners Can Designate the First and Last Trigger

to Fire
! You Must Have Permission to Perform All Statements

That Define Triggers
! Table Owners Cannot Create AFTER Triggers on Views

or Temporary Tables

Consider the following facts and guidelines when you work with triggers:

! Most triggers are reactive; constraints and the INSTEAD OF trigger are
proactive.
Triggers are executed after an INSERT, UPDATE, or DELETE statement is
executed on the table in which the trigger is defined. For example, an
UPDATE statement updates a row in a table, and then the trigger on that
table executes automatically. Constraints are checked before an INSERT,
UPDATE, or DELETE statement executes.

! Constraints are checked first.
If constraints exist on the trigger table, they are checked prior to the trigger
execution. If constraints are violated, the trigger does not execute.

! Tables can have multiple triggers for any action.
SQL Server 2000 allows nesting of several triggers on a single table. A table
can have multiple triggers defined for it. Each trigger can be defined for a
single action or multiple actions.

! Table owners can designate the first and last trigger to fire.
When multiple triggers are placed on a table, the table owner can use the
sp_settriggerorder system stored procedure to specify the first and last
triggers to fire. The firing order of the remaining triggers cannot be set.

Topic Objective
To discuss various issues
that students must consider
when they use triggers.

Lead-in
Consider the following facts
and guidelines when you
work with triggers.

Delivery Tip
Be sure to cover all of the
bulleted items, even though
they do not all appear on the
slide.

8 Module 11: Implementing Triggers

! You must have permission to perform all trigger-defined statements.
Only the table owner, members of the sysadmin fixed-server role, and
members of the db_owner and db_ddladmin fixed-database roles can
create and drop triggers for that table. These permissions cannot be
transferred.
In addition, the trigger creator also must have permission to perform all of
the statements on all of the affected tables. If permissions are denied to any
portion of the Transact-SQL statements inside the trigger, the entire
transaction is rolled back.

! Table owners cannot create AFTER triggers on views or temporary tables.
Triggers can, however, reference views and temporary tables.

! Table owners can create INSTEAD OF triggers on views and tables, in
which case INSTEAD OF triggers greatly extend the types of updates that a
view can support.

! Triggers should not return result sets.
Triggers contain Transact-SQL statements, in the same way that stored
procedures do. Like stored procedures, triggers can contain statements that
return a result set. However, including statements that return values in
triggers is not recommended because users or developers do not expect
to see any result sets when an UPDATE, INSERT, or DELETE
statement executes.

! Triggers can handle multi-row actions.
An INSERT, UPDATE, or DELETE action that invokes a trigger can affect
multiple rows. You can choose to:

• Process all of the rows together, in which case all affected rows must
meet the trigger criteria for any action to occur.

• Allow conditional actions.
For example, if you want to delete three customers from the Customers
table, you can define a trigger to ensure that there are no active orders or
outstanding invoices for each deleted customer. If one of the three
customers has an outstanding invoice, that customer will not be deleted,
but the qualifying customers will be deleted.

To determine whether there are multiple affected rows, use the
@@ROWCOUNT system function.

Delivery Tip
Remind students that
triggers do not return result
sets or pass parameters.

 Module 11: Implementing Triggers 9

Defining Triggers

! Creating Triggers

! Altering and Dropping Triggers

This section covers creating, altering, and dropping triggers. It also discusses
required permissions and guidelines to follow when defining triggers.

Topic Objective
To introduce the topics on
creating, altering, and
dropping triggers that this
section covers.

Lead-in
Now that you know what
triggers are, let�s see how to
create, alter, and drop them.

10 Module 11: Implementing Triggers

Creating Triggers

! Requires Appropriate Permissions

! Cannot Contain Certain Statements

Use Northwind
GO
CREATE TRIGGER Empl_Delete ON Employees
FOR DELETE
AS
IF (SELECT COUNT(*) FROM Deleted) > 1
BEGIN

RAISERROR(
'You cannot delete more than one employee at a time.', 16, 1)

ROLLBACK TRANSACTION
END

Use Northwind
GO
CREATE TRIGGER Empl_Delete ON Employees
FOR DELETE
AS
IF (SELECT COUNT(*) FROM Deleted) > 1
BEGIN

RAISERROR(
'You cannot delete more than one employee at a time.', 16, 1)

ROLLBACK TRANSACTION
END

Create triggers by using the CREATE TRIGGER statement. The statement
specifies the table on which a trigger is defined, the events for which the trigger
executes, and the particular instructions for the trigger.

CREATE TRIGGER [owner.] trigger_name
ON [owner.] table_name
[WITH ENCRYPTION]
{FOR | AFTER | INSTEAD OF} {INSERT | UPDATE | DELETE}
AS
[IF UPDATE (column_name)...]
 [{AND | OR} UPDATE (column_name)...]
 sql_statements}

When a FOR UPDATE action is specified, the IF UPDATE (column_name)
clause can be used to focus action on a specific column that is updated.

Both FOR and AFTER are equivalent syntax creating the same type of trigger,
which fires after the initiating (INSERT, UPDATE, or DELETE) action.

INSTEAD OF triggers cancel the triggering action and perform a new function
instead.

When you create a trigger, information about the trigger is inserted into the
sysobjects and syscomments system tables. If a trigger is created with the same
name as an existing trigger, the new trigger will overwrite the original trigger.

SQL Server does not support the addition of user-defined triggers on
system tables; therefore, you cannot create triggers on system tables.

Topic Objective
To introduce the CREATE
TRIGGER syntax.

Lead-in
Consider these facts and
guidelines when you
create triggers.

Syntax

Note

 Module 11: Implementing Triggers 11

Requires Appropriate Permissions
Table owners, and members of the database owner (db_owner) and the system
administrators (sysadmin) roles, have permission to create a trigger.

To avoid situations in which the owner of a view and the owner of the
underlying tables differ, it is recommended that the dbo user own all objects in
a database. Because a user can be a member of multiple roles, always specify
the dbo user as the owner name when you create the object. Otherwise, the
object will be created with your user name as the owner.

Cannot Contain Certain Statements
SQL Server does not allow the following statements to be used in a trigger
definition:

! ALTER DATABASE
! CREATE DATABASE
! DISK INIT
! DISK RESIZE
! DROP DATABASE
! LOAD DATABASE
! LOAD LOG
! RECONFIGURE
! RESTORE DATABASE
! RESTORE LOG

To determine the tables with triggers, execute the sp_depends <tablename>
system stored procedure. To view a trigger definition, execute the sp_helptext
<triggername> system stored procedure. To determine the triggers that exist on
a specific table and their actions, execute the sp_helptrigger <tablename>
system stored procedure.

The following example creates a trigger on the Employees table that prevents
users from deleting more than one employee at a time. The trigger fires every
time a record or group of records are deleted from the table. The trigger checks
the number of records being deleted by querying the Deleted table. If more than
one record is being deleted, the trigger returns a custom error message and rolls
back the transaction.

Use Northwind
GO

CREATE TRIGGER Empl_Delete ON NewEmployees
FOR DELETE
AS
IF (SELECT COUNT(*) FROM Deleted) > 1
BEGIN
 RAISERROR(
 'You cannot delete more than one employee at a time.',
 16, 1)
 ROLLBACK TRANSACTION
END

Example

12 Module 11: Implementing Triggers

The following DELETE statement fires the trigger and prevents the transaction.

DELETE FROM Employees WHERE EmployeeID > 6

The following DELETE statement fires the trigger and allows the transaction.

DELETE FROM Employees WHERE EmployeeID = 6

 Module 11: Implementing Triggers 13

Altering and Dropping Triggers

! Altering a Trigger
$ Changes the definition without dropping the trigger
$ Can disable or enable a trigger

! Dropping a Trigger

USE Northwind
GO
ALTER TRIGGER Empl_Delete ON Employees
FOR DELETE
AS
IF (SELECT COUNT(*) FROM Deleted) > 6
BEGIN

RAISERROR(
'You cannot delete more than six employees at a time.', 16, 1)

ROLLBACK TRANSACTION
END

USE Northwind
GO
ALTER TRIGGER Empl_Delete ON Employees
FOR DELETE
AS
IF (SELECT COUNT(*) FROM Deleted) > 6
BEGIN

RAISERROR(
'You cannot delete more than six employees at a time.', 16, 1)

ROLLBACK TRANSACTION
END

You can alter or drop a trigger.

Altering a Trigger
If you must change the definition of an existing trigger, you can alter it without
having to drop it.

Changes the Definition Without Dropping the Trigger
The altered definition replaces the definition of the existing trigger with the new
definition. Trigger action also can be altered. For example, if you create a
trigger for INSERT and then change the action to UPDATE, the altered trigger
executes whenever the table is updated.

With delayed name resolution, your trigger can reference tables and views that
do not yet exist. If the object does not exist when a trigger is created, you
receive a warning message and SQL Server updates the trigger definition
immediately.

ALTER TRIGGER trigger_name
ON table
[WITH ENCRYPTION]
{{FOR {[,] [DELETE] [,] [UPDATE] [,][INSERT]}
[NOT FOR REPLICATION]
AS
sql_statement [...n] }
|
{FOR {[,] [INSERT] [,] [UPDATE]}
[NOT FOR REPLICATION]
AS
IF UPDATE (column)
[{AND | OR} UPDATE (column) [,...n]]
sql_statement [...n] }
}

Topic Objective
To introduce the concept of
altering a trigger.

Lead-in
If you must change the
definition of an existing
trigger, you can alter it
without having to drop it.

Syntax

14 Module 11: Implementing Triggers

This example alters the delete trigger created in the previous example. New
trigger content is provided, which changes the delete limit from one record to
six records.

Use Northwind
GO
CREATE TRIGGER Empl_Delete ON Employees
FOR DELETE
AS
IF (SELECT COUNT(*) FROM Deleted) > 6
BEGIN
 RAISERROR(
 'You cannot delete more than six employees at a time.',
 16, 1)
 ROLLBACK TRANSACTION
END

Disabling or Enabling a Trigger
You can disable or enable a specific trigger, or all triggers on a table. When a
trigger is disabled, it is still defined for the table; however, when an INSERT,
UPDATE, or DELETE statement is executed against the table, the actions in
the trigger are not performed until the trigger is re-enabled.

You can enable or disable triggers in the ALTER TABLE statement.

ALTER TABLE table
 {ENABLE | DISABLE} TRIGGER
 {ALL | trigger_name[,�n]}

Dropping a Trigger
You can remove a trigger by dropping it. Triggers are dropped automatically
whenever their associated tables are dropped.

Permission to drop a trigger defaults to the table owner and is non-transferable.
However, members of the system administrators (sysadmin) and database
owner (db_owner) roles can drop any object by specifying the owner in the
DROP TRIGGER statement.

DROP TRIGGER trigger_name

Example

Partial Syntax

Syntax

 Module 11: Implementing Triggers 15

How Triggers Work

! How an INSERT Trigger Works

! How a DELETE Trigger Works

! How an UPDATE Trigger Works

! How an INSTEAD OF Trigger Works

! How Nested Triggers Work

! Recursive Triggers

When you design triggers, it is important to understand how they work. This
section discusses INSERT, DELETE, UPDATE, INSTEAD OF, nested, and
recursive triggers.

Topic Objective
To introduce the section on
how triggers work.

Lead-in
Let's examine how different
types of triggers work.

16 Module 11: Implementing Triggers

How an INSERT Trigger Works
INSERT statement to a table with an INSERT Trigger Defined

INSERT [Order Details] VALUES
(10525, 2, 19.00, 5, 0.2)

INSERT [Order Details] VALUES
(10525, 2, 19.00, 5, 0.2)

Order DetailsOrder DetailsOrder Details
OrderIDOrderID

10522
10523
10524

10522
10523
10524

ProductIDProductID

10
41
7

10
41
7

UnitPriceUnitPrice

31.00
9.65
30.00

31.00
9.65
30.00

QuantityQuantity

7
9

24

7
9

24

DiscountDiscount

0.2
0.15
0.0

0.2
0.15
0.0

519.002 0.210523

Insert statement logged

insertedinsertedinserted

1052310523 22 19.0019.00 55 0.20.2

TRIGGER Actions Execute

Order DetailsOrder DetailsOrder Details
OrderIDOrderID

10522
10523
10524

10522
10523
10524

ProductIDProductID

10
41
7

10
41
7

UnitPriceUnitPrice

31.00
9.65
30.00

31.00
9.65
30.00

QuantityQuantity

7
9

24

7
9

24

DiscountDiscount

0.2
0.15
0.0

0.2
0.15
0.0

519.002 0.210523

Trigger Code:
USE Northwind
CREATE TRIGGER OrdDet_Insert
ON [Order Details]
FOR INSERT
AS
UPDATE P SET
UnitsInStock = (P.UnitsInStock � I.Quantity)
FROM Products AS P INNER JOIN Inserted AS I
ON P.ProductID = I.ProductID

Trigger Code:
USE Northwind
CREATE TRIGGER OrdDet_Insert
ON [Order Details]
FOR INSERT
AS
UPDATE P SET
UnitsInStock = (P.UnitsInStock � I.Quantity)
FROM Products AS P INNER JOIN Inserted AS I
ON P.ProductID = I.ProductID

UPDATE P SET
UnitsInStock = (P.UnitsInStock � I.Quantity)
FROM Products AS P INNER JOIN Inserted AS I
ON P.ProductID = I.ProductID

ProductsProductsProducts
ProductIDProductID UnitsInStockUnitsInStock �� ��

1
2
3
4

1
2
3
4

15
10
65
20

15
10
65
20

2 15

INSERT Statement to a Table with an INSERT
Trigger Defined

INSERT Statement Logged

Trigger Actions Executed

111

222

333

You can define a trigger to execute whenever an INSERT statement inserts data
into a table.

When an INSERT trigger is fired, new rows are added to both the trigger table
and the inserted table. The inserted table is a logical table that holds a copy of
the rows that have been inserted. The inserted table contains the logged insert
activity from the INSERT statement. The inserted table allows you to reference
logged data from the initiating INSERT statement. The trigger can examine the
inserted table to determine whether, or how, the trigger actions should be
carried out. The rows in the inserted table are always duplicates of one or more
rows in the trigger table.

All data modification activity (INSERT, UPDATE, and DELETE statements) is
logged, but the information in the transaction log is unreadable. However, the
inserted table allows you to reference the logged changes that the INSERT
statement caused. Then you can compare the changes to the inserted data in
order to verify them or take further action. You also can reference inserted data
without having to store the information in variables.

The trigger in this example was created to update a column (UnitsInStock) in
the Products table whenever a product is ordered (whenever a record is
inserted into the Order Details table). The new value is set to the previous
value minus the ordered amount.

USE Northwind
CREATE TRIGGER OrdDet_Insert
ON [Order Details]
FOR INSERT
AS
UPDATE P SET
UnitsInStock = (P.UnitsInStock � I.Quantity)
FROM Products AS P INNER JOIN Inserted AS I
ON P.ProductID = I.ProductID

Topic Objective
To show an example of an
INSERT trigger.

Lead-in
An INSERT trigger is
invoked when an attempt is
made to insert a row into a
table that the trigger
protects.

All inserts are recorded in a
special inserted table, as
illustrated in the slide.

Delivery Tip
Point out how to read
CREATE TRIGGER
statements quickly to find
the trigger name, table, and
action The trigger does
everything below the AS
statement when it executes.

Example

 Module 11: Implementing Triggers 17

How a DELETE Trigger Works
DELETE Statement to a table with a DELETE Trigger DefinedDELETE Statement to a table with a DELETE Trigger Defined

DeletedDeletedDeleted
44 Dairy ProductsDairy Products CheesesCheeses 0x15�0x15�

DELETE statement logged

CategoriesCategoriesCategories
CategoryIDCategoryID

1
2
3

1
2
3

CategoryNameCategoryName

Beverages
Condiments
Confections

Beverages
Condiments
Confections

DescriptionDescription

Soft drinks, coffees�
Sweet and savory �
Desserts, candies, �

Soft drinks, coffees�
Sweet and savory �
Desserts, candies, �

PicturePicture

0x15�
0x15�
0x15�

0x15�
0x15�
0x15�
0x15�CheesesDairy Products4

DELETE Categories
WHERE
CategoryID = 4

DELETE Categories
WHERE
CategoryID = 4

USE Northwind
CREATE TRIGGER Category_Delete

ON Categories
FOR DELETE

AS
UPDATE P SET Discontinued = 1
FROM Products AS P INNER JOIN deleted AS d
ON P.CategoryID = d.CategoryID

USE Northwind
CREATE TRIGGER Category_Delete

ON Categories
FOR DELETE

AS
UPDATE P SET Discontinued = 1
FROM Products AS P INNER JOIN deleted AS d
ON P.CategoryID = d.CategoryID

ProductsProductsProducts
ProductIDProductID DiscontinuedDiscontinued �� ��

1
2
3
4

1
2
3
4

0
0
0
0

0
0
0
0

Trigger Actions Execute

2 1

UPDATE P SET Discontinued = 1
FROM Products AS P INNER JOIN deleted AS d
ON P.CategoryID = d.CategoryID

DELETE Statement to a Table with a DELETE
Statement Defined

DELETE Statement Logged

Trigger Actions Executed

111

222

333

When a DELETE trigger is fired, deleted rows from the affected table are
placed in a special deleted table. The deleted table is a logical table that holds a
copy of the rows that have been deleted. The deleted table allows you to
reference logged data from the initiating DELETE statement.

Consider the following facts when you use the DELETE trigger:

! When a row is appended to the deleted table, it no longer exists in the
database table; therefore, the deleted table and the database tables have no
rows in common.

! Space is allocated from memory to create the deleted table. The deleted
table is always in the cache.

! A trigger that is defined for a DELETE action does not execute for the
TRUNCATE TABLE statement because TRUNCATE TABLE is
not logged.

The trigger in this example was created to update the Discontinued column in
the Products table whenever a category is deleted (whenever a record is deleted
from the Categories table). All affected products are marked as 1, indicating
they are discontinued.

USE Northwind
CREATE TRIGGER Category_Delete
 ON Categories
 FOR DELETE
AS
 UPDATE P SET Discontinued = 1
 FROM Products AS P INNER JOIN deleted AS d
 ON P.CategoryID = d.CategoryID

Topic Objective
To show an example of a
DELETE trigger.

Lead-in
A DELETE trigger is invoked
whenever an attempt is
made to delete information
from the table on which the
trigger is defined.

When rows are deleted from
a table, they are placed in a
special deleted table, as
illustrated in the slide.

Example

18 Module 11: Implementing Triggers

How an UPDATE Trigger Works

UPDATE Statement to a table with an UPDATE Trigger Defined

UPDATE Employees
SET EmployeeID = 17
WHERE EmployeeID = 2

UPDATE Employees
SET EmployeeID = 17
WHERE EmployeeID = 2

UPDATE Statement logged as INSERT and DELETE Statements

EmployeesEmployeesEmployees
EmployeeIDEmployeeID LastNameLastName FirstNameFirstName TitleTitle HireDateHireDate

1
2
3
4

1
2
3
4

Davolio
Barr
Leverling
Peacock

Davolio
Barr
Leverling
Peacock

Nancy
Andrew
Janet
Margaret

Nancy
Andrew
Janet
Margaret

Sales Rep.
R
Sales Rep.
Sales Rep.

Sales Rep.
R
Sales Rep.
Sales Rep.

~~~
~~~
~~~
~~~

~~~
~~~
~~~
~~~

2 Fuller Andrew Vice Pres. ~~~

insertedinsertedinserted
1717 FullerFuller AndrewAndrew Vice Pres.Vice Pres. ~~~~~~

deleteddeleteddeleted
22 FullerFuller AndrewAndrew Vice Pres.Vice Pres. ~~~~~~

TRIGGER Actions Execute
USE Northwind
GO
CREATE TRIGGER Employee_Update
ON Employees
FOR UPDATE
AS
IF UPDATE (EmployeeID)
BEGIN TRANSACTION
RAISERROR ('Transaction cannot be processed.\
***** Employee ID number cannot be modified.', 10, 1)
ROLLBACK TRANSACTION

USE Northwind
GO
CREATE TRIGGER Employee_Update
ON Employees
FOR UPDATE
AS
IF UPDATE (EmployeeID)
BEGIN TRANSACTION
RAISERROR ('Transaction cannot be processed.\
***** Employee ID number cannot be modified.', 10, 1)
ROLLBACK TRANSACTION

AS
IF UPDATE (EmployeeID)
BEGIN TRANSACTION
RAISERROR ('Transaction cannot be processed.\
***** Employee ID number cannot be modified.', 10, 1)
ROLLBACK TRANSACTION

Transaction cannot be processed.
***** Member number cannot be modified
Transaction cannot be processed.
***** Member number cannot be modified

EmployeesEmployeesEmployees
EmployeeIDEmployeeID LastNameLastName FirstNameFirstName TitleTitle HireDateHireDate

1
2
3
4

1
2
3
4

Davolio
Barr
Leverling
Peacock

Davolio
Barr
Leverling
Peacock

Nancy
Andrew
Janet
Margaret

Nancy
Andrew
Janet
Margaret

Sales Rep.
R
Sales Rep.
Sales Rep.

Sales Rep.
R
Sales Rep.
Sales Rep.

~~~
~~~
~~~
~~~

~~~
~~~
~~~
~~~

2 Fuller Andrew Vice Pres. ~~~

UPDATE Statement to a Table with an UPDATE
Trigger Defined

UPDATE Statement Logged as INSERT and
DELETE Statements

Trigger Actions Executed

111

222

333

An UPDATE statement can be thought of as two steps: the DELETE step that
captures the before image of the data, and the INSERT step that captures the
after image of the data. When an UPDATE statement is executed on a table
that has a trigger defined on it, the original rows (before image) are moved into
the deleted table, and the updated rows (after image) are inserted into the
inserted table.

The trigger can examine the deleted and inserted tables, as well as the updated
table, to determine whether multiple rows have been updated and how the
trigger actions should be carried out.

You can define a trigger to monitor data updates on a specific column by using
the IF UPDATE statement. This allows the trigger to isolate activity easily for a
specific column. When it detects that the specific column has been updated, it
can take proper action, such as raising an error message that says that the
column cannot be updated, or by processing a series of statements based on the
newly updated column value.

IF UPDATE (<column_name>)

Topic Objective
To provide an example of an
UPDATE trigger.

Lead-in
A trigger that is defined for
an UPDATE statement is
invoked whenever an
attempt is made to update
data in a table on which the
trigger is defined.

An UPDATE statement
moves the original row into
the deleted table and
inserts the updated row into
the inserted table, as
illustrated by this graphic.

Syntax

 Module 11: Implementing Triggers 19

This example prevents a user from modifying the EmployeeID column in the
Employees table.

USE Northwind
GO
CREATE TRIGGER Employee_Update
 ON Employees
 FOR UPDATE
AS
IF UPDATE (EmployeeID)
BEGIN TRANSACTION
 RAISERROR ('Transaction cannot be processed.\
 ***** Employee ID number cannot be modified.', 10, 1)
 ROLLBACK TRANSACTION
END

Example 1

Delivery Tip
The backslash (\) character
in the RAISERROR
statement is a continuation
character that allows the
entire error message text to
display on one line.

20 Module 11: Implementing Triggers

How an INSTEAD OF Trigger Works

Create a View That Combines Two or More Tables

CREATE VIEW
Customers AS
SELECT *
FROM CustomersMex

UNION
SELECT *
FROM CustomersGer

CREATE VIEW
Customers AS
SELECT *
FROM CustomersMex

UNION
SELECT *
FROM CustomersGer

CustomersMexCustomersMexCustomersMex
CustomerIDCustomerID CompanyNameCompanyName CountryCountry PhonePhone ��

ANATR
ANTON
CENTC

ANATR
ANTON
CENTC

Ana Trujill�
Antonio M�
Centro Co�

Ana Trujill�
Antonio M�
Centro Co�

Mexico
Mexico
Mexico

Mexico
Mexico
Mexico

(5) 555-4729
(5) 555-3932
(5) 555-3392

(5) 555-4729
(5) 555-3932
(5) 555-3392

~~~
~~~
~~~

~~~
~~~
~~~

CustomersGerCustomersGerCustomersGer
CustomerIDCustomerID CompanyNameCompanyName CountryCountry PhonePhone ��

ALFKI
BLAUS
DRACD

ALFKI
BLAUS
DRACD

Alfreds Fu�
Blauer Se�
Drachenb�

Alfreds Fu�
Blauer Se�
Drachenb�

Germany
Germany
Germany

Germany
Germany
Germany

030-0074321
0621-08460
0241-039123

030-0074321
0621-08460
0241-039123

~~~
~~~
~~~

~~~
~~~
~~~

INSTEAD OF
trigger directs the
update to the base
table

CustomersCustomersCustomers
CustomerIDCustomerID CompanyNameCompanyName CountryCountry PhonePhone ��

ALFKI
ANATR
ANTON

ALFKI
ANATR
ANTON

Alfreds Fu�
Ana Trujill�
Antonio M�

Alfreds Fu�
Ana Trujill�
Antonio M�

Germany
Mexico
Mexico

Germany
Mexico
Mexico

030-0074321
(5) 555-4729
(5) 555-3932

030-0074321
(5) 555-4729
(5) 555-3932

~~~
~~~
~~~

~~~
~~~
~~~

Original Insert to
the Customers
View Does Not
Occur

UPDATE is Made
to the View

ALFKI Alfreds Fu� Germany 030-0074321 ~~~

ALFKI Alfreds Fu� Germany 030-0074321 ~~~

INSTEAD OF Trigger Can Be on a Table or View

The Action That Initiates the Trigger Does NOT Occur

Allows Updates to Views Not Previously Updateable

111

222

333

You can specify an INSTEAD OF trigger on both tables and views. This trigger
executes instead of the original triggering action. INSTEAD OF triggers
increase the variety of types of updates that you can perform against a view.
Each table or view is limited to one INSTEAD OF trigger for each triggering
action (INSERT, UPDATE, or DELETE).

You cannot create an INSTEAD OF trigger on views that have the WITH
CHECK OPTION defined.

Topic Objective
To show an example of an
INSTEAD OF Trigger.

Lead-in
An INSTEAD OF trigger
cancels the original
triggering action and
performs its own function
instead.

Key Points
Contrast an INSTEAD OF
trigger with an AFTER
trigger.

Point out that when you use
an INSTEAD OF trigger, the
original triggering action (the
INSERT, UPDATE, or
DELETE) does not occur.
Note that you can place an
INSTEAD OF trigger on
tables and views.

 Module 11: Implementing Triggers 21

This example creates a table with customers in Germany and a table with
customers in Mexico. An INSTEAD OF trigger placed on the view redirects
updates to the appropriate underlying table. The insert to the CustomersGer
table occurs instead of the insert to the view.

Create two tables with customer data

SELECT * INTO CustomersGer FROM Customers WHERE
Customers.Country = 'Germany'
SELECT * INTO CustomersMex FROM Customers WHERE
Customers.Country = 'Mexico'
GO

Create a view on that data

CREATE VIEW CustomersView AS
SELECT * FROM CustomersGer
UNION
SELECT * FROM CustomersMex
GO

Create an INSTEAD OF trigger on the view

CREATE TRIGGER Customers_Update2
ON CustomersView
INSTEAD OF UPDATE AS
DECLARE @Country nvarchar(15)
SET @Country = (SELECT Country FROM Inserted)
IF @Country = 'Germany'
 BEGIN
 UPDATE CustomersGer
 SET CustomersGer.Phone = Inserted.Phone
 FROM CustomersGer JOIN Inserted
 ON CustomersGer.CustomerID = Inserted.CustomerID
 END
ELSE
 IF @Country = 'Mexico'
 BEGIN
 UPDATE CustomersMex
 SET CustomersMex.Phone = Inserted.Phone
 FROM CustomersMex JOIN Inserted
 ON CustomersMex.CustomerID = Inserted.CustomerID
 END

Test the trigger by updating the view

UPDATE CustomersView SET Phone = ' 030-007xxxx'
 WHERE CustomerID = 'ALFKI'
SELECT CustomerID, Phone FROM CustomersView
 WHERE CustomerID = 'ALFKI'
SELECT CustomerID, Phone FROM CustomersGer
 WHERE CustomerID = 'ALFKI'

Example

Delivery Tip
This example creates the
CustomersGer and
CustomersMex tables and
then a view called
CustomersView.

Show how the update fails
against the view. Then
create the trigger and show
how the trigger redirects the
update.

If students ask why this
script apparently updated
CustomersView. Point out
that the view gets its
information from the
CustomerGer table.

22 Module 11: Implementing Triggers

How Nested Triggers Work

UnitsInStock + UnitsOnOrder
is < ReorderLevel for ProductID 2

OrDe_UpdateOrDe_Update

Placing an order causes the
OrDe_Update trigger to
execute

Executes an UPDATE
statement on the Products
table

InStock_UpdateInStock_Update ProductsProductsProducts
ProductIDProductID UnitsInStockUnitsInStock �� ��

1

3
4

1

3
4

15
10
65
20

15
10
65
20

2 15

InStock_Update trigger
executes
Sends message

Order_DetailsOrder_DetailsOrder_Details
OrderIDOrderID

10522
10523
10524

10522
10523
10524

ProductIDProductID

10
41
7

10
41
7

UnitPriceUnitPrice

31.00
9.65
30.00

31.00
9.65
30.00

QuantityQuantity

7
9

24

7
9

24

DiscountDiscount

0.2
0.15
0.0

0.2
0.15
0.0

10525 19.002 0.25

Any trigger can contain an UPDATE, INSERT, or DELETE statement that
affects another table. With nesting enabled, a trigger that changes a table can
activate a second trigger, which in turn can activate a third trigger, and so on.
Nesting is enabled at installation, but you can disable and re-enable it by using
the sp_configure system stored procedure.

Triggers can be nested up to 32 levels deep. If any trigger in a nested chain sets
off an infinite loop, the nesting level is exceeded. The trigger then terminates
and rolls back the transaction. You can use nested triggers to perform functions,
such as the storage of a backup copy of rows that were affected by a previous
trigger. Consider the following facts when you use nested triggers:

! By default, the nested triggers configuration option is on.
! A nested trigger will not fire twice in the same trigger transaction; a trigger

does not call itself in response to a second update to the same table within
the trigger. For example, if a trigger modifies a table that, in turn, modifies
the original trigger table, the trigger does not fire again.

! Because a trigger is a transaction, a failure at any level of a set of nested
triggers cancels the entire transaction, and all data modifications are rolled
back. Therefore, you should include PRINT statements when you test
triggers so that you can determine where the failure occurred.

Checking the Nesting Level
Each time that a nested trigger fires, the nesting level increments. SQL Server
supports up to 32 levels of nesting, but you may want to limit the levels of
nesting to avoid exceeding the maximum nesting level. You can use the
@@NESTLEVEL function to see the current levels of nesting.

Topic Objective
To discuss the use of
nested triggers.

Lead-in
As mentioned previously,
triggers can be nested up to
32 levels deep. If nested
triggers are enabled, a
trigger that changes a table
can activate a second
trigger, which in turn can
activate a third trigger, and
so on.

Delivery Tip
The @@NESTLEVEL
function is useful when
testing and troubleshooting
triggers but would not
typically be included in a
production environment.

 Module 11: Implementing Triggers 23

Determining Whether to Use Nesting
Nesting is a powerful feature that you can use to maintain data integrity
throughout a database. Occasionally, however, you may want to disable nesting.
If nesting is disabled, a trigger that modifies another table does not invoke any
of the triggers on the second table.

Use the following statement to disable nesting:

sp_configure 'nested triggers', 0

You may decide to disable nesting because:

! Nested triggers require a complex and well-planned design. Cascading
changes can modify data that you did not intend to affect.

! A data modification at any point in a series of nested triggers sets off the
trigger series. Although this offers powerful protection for your data, it can
be a problem if your tables must be updated in a specific order.

You can create the same functionality with or without the nesting feature;
however, your trigger design will differ substantially. In designing nested
triggers, each trigger should initiate only the next data modification  the
design should be modular. In designing non-nested triggers, each trigger should
initiate all data modifications that you want it to make.

This example shows how placing an order causes the OrDe_Update trigger to
execute. This trigger executes an UPDATE statement on the UnitsInStock
column of the Products table. When the update occurs, it fires the
Products_Update trigger and compares the new value of the stock in
inventory, plus the stock on order, to the reorder level. If the stock in inventory
plus the stock on order falls below the reorder level, a message is sent alerting
the buyer to purchase more stock.

USE Northwind
GO
CREATE TRIGGER Products_Update
 ON Products
 FOR UPDATE
AS
IF UPDATE (UnitsInStock)
 IF (Products.UnitsInStock + Products.UnitsOnOrder) <
Products.ReorderLevel
BEGIN
 --Send message to the purchasing department
END

Syntax

Example

24 Module 11: Implementing Triggers

Recursive Triggers

! Activating a Trigger Recursively
! Types of Recursive Triggers
$ Direct recursion occurs when a trigger fires and performs

an action that causes the same trigger to fire again

$ Indirect recursion occurs when a trigger fires and
performs an action that causes a trigger on another table
to fire

! Determining Whether to Use Recursive Triggers

Any trigger can contain an UPDATE, INSERT, or DELETE statement that
affects the same table or another table. With the recursive trigger option
enabled, a trigger that changes data in a table can activate itself again, in a
recursive execution. The recursive trigger option is disabled by default when a
database is created, but you can enable it by using the ALTER DATABASE
statement.

Activating a Trigger Recursively
Use the following statement to enable recursive triggers:

ALTER DATABASE ClassNorthwind SET RECURSIVE_TRIGGERS ON

sp_dboption databasename, 'recursive triggers', True

Use the sp_settriggerorder system stored procedure to specify a trigger
that fires as the first AFTER trigger, or the last AFTER trigger. There is no
fixed order in which other triggers, that are defined for a given event, are
executed. Each trigger should be self-contained.

If the nested trigger option is off, the recursive trigger option is also disabled,
regardless of the recursive trigger setting of the database.

The inserted and deleted tables for a given trigger contain rows that
correspond only to the UPDATE, INSERT, or DELETE statement that last
invoked the trigger.

Trigger recursion can occur up to 32 levels deep. If any trigger in a recursive
loop sets off an infinite loop, the nesting level is exceeded, and the trigger
terminates and rolls back the transaction.

Topic Objective
To discuss the use of
recursive triggers.

Lead-in
With the recursive trigger
option enabled, a trigger
that changes data in a table
can activate a second
trigger, which in turn can
activate the original calling
trigger by modifying data in
the original table.

Syntax

Note

 Module 11: Implementing Triggers 25

Types of Recursive Triggers
There are two different types of recursion:

! Direct recursion, which occurs when a trigger fires and performs an action
that causes the same trigger to fire again.
For example, an application updates table T1, which causes trigger Trig1 to
fire. Trig1 updates table T1 again, which causes trigger Trig1 to fire again.

! Indirect recursion, which occurs when a trigger fires and performs an action
that causes a trigger on another table to fire, subsequently causes an update
to occur on the original table. This then causes the original trigger to fire
again.
For example, an application updates table T2, which causes trigger Trig2 to
fire. Trig2 updates table T3, which causes trigger Trig3 to fire. Trig3 in
turn updates table T2, which causes Trig2 to fire again.

Determining Whether to Use Recursive Triggers
Recursive triggers are a complex feature that you can use to solve complex
relationships, such as self-referencing relationships (also known as transitive
closures). In these special situations, you may want to enable recursive triggers.

Recursive triggers may be useful when you must maintain:

! The number of reports columns in the employee table where the table
contains an employee ID column and a manager ID column.
For example, assume that two update triggers, tr_update_employee and
tr_update_manager, are defined on the employee table. The
tr_update_employee trigger updates the employee table.
An UPDATE statement fires both tr_update_employee and
tr_update_manager triggers once. In addition, the execution of
tr_update_employee triggers the execution of tr_update_employee again
(recursively) and tr_update_manager.

! A chart for production scheduling data in which an implied scheduling
hierarchy exists.

! An assembly tracking system in which subparts are tracked to parent parts.

Consider the following guidelines before you use recursive triggers:

! Recursive triggers are complex and must be well designed and thoroughly
tested. Recursive triggers require controlled looping logic code (termination
check). Otherwise, you will exceed the 32-level nesting limit.

! A data modification at any point can set off the trigger series. Although this
provides the ability to process complex relationships, it can be a problem if
your tables must be updated in a specific order.

You can create similar functionality without the recursive trigger feature;
however, your trigger design will differ substantially. In designing recursive
triggers, each trigger must contain a conditional check in order to stop recursive
processing when the condition becomes false. In designing non-recursive
triggers, each trigger must contain the full programming looping structures and
checks.

Delivery Tip
Point out that the first
example does not refer or
apply to the Employees
table in the Northwind
database.

26 Module 11: Implementing Triggers

Examples of Triggers

! Enforcing Data Integrity

! Enforcing Business Rules

Triggers enforce data integrity and business rules. You can accomplish some of
the actions that triggers perform through the use of constraints, and for certain
actions, you should first consider constraints. However, triggers are needed to
enforce various degrees of denormalization and to enforce complex business
rules.

Topic Objective
To explain why triggers are
necessary in SQL Server.

Lead-in
Triggers enforce data
integrity and business rules.

 Module 11: Implementing Triggers 27

Enforcing Data Integrity

CREATE TRIGGER BackOrderList_Delete
ON Products FOR UPDATE

AS
IF (SELECT BO.ProductID FROM BackOrders AS BO JOIN

Inserted AS I ON BO.ProductID = I.Product_ID
) > 0

BEGIN
DELETE BO FROM BackOrders AS BO
INNER JOIN Inserted AS I
ON BO.ProductID = I.ProductID

END

CREATE TRIGGER BackOrderList_Delete
ON Products FOR UPDATE

AS
IF (SELECT BO.ProductID FROM BackOrders AS BO JOIN

Inserted AS I ON BO.ProductID = I.Product_ID
) > 0

BEGIN
DELETE BO FROM BackOrders AS BO
INNER JOIN Inserted AS I
ON BO.ProductID = I.ProductID

END

ProductsProductsProducts
ProductIDProductID UnitsInStockUnitsInStock �� ��

1

3
4

1

3
4

15
10
65
20

15
10
65
20

2 15 UpdatedUpdated

BackOrdersBackOrdersBackOrders
ProductIDProductID UnitsOnOrderUnitsOnOrder ��

1
12
3

1
12
3

15
10
65

15
10
65

2 15 Trigger Deletes RowTrigger Deletes Row

You can use triggers to maintain data integrity by cascading changes to related
tables throughout the database.

The following example shows how a trigger maintains data integrity on a
BackOrders table. The BackOrderList_delete trigger maintains the list of
products in the BackOrders table. When products are received, the UPDATE
trigger on the Products table deletes records from a BackOrders table.

CREATE TRIGGER BackOrderList_Delete
 ON Products FOR UPDATE
AS
IF (SELECT BO.ProductID FROM BackOrders AS BO JOIN
 Inserted AS I ON BO.ProductID = I.Product_ID
) > 0
BEGIN
 DELETE BO FROM BackOrders AS BO
 INNER JOIN Inserted AS I
 ON BO.ProductID = I.ProductID
END

Topic Objective
To show an example of how
triggers enforce data
integrity.

Lead-in
You can use triggers to
maintain data integrity by
cascading changes to
related tables throughout
the database.

Example

For Your Information
This example is
hypothetical. There is no
BackOrders table in the
Northwind database.

28 Module 11: Implementing Triggers

Enforcing Business Rules

ProductsProductsProducts
ProductIDProductID UnitsInStockUnitsInStock �� ��

1
2
3
4

1
2
3
4

15
10
65
20

15
10
65
20

Products with Outstanding Orders Cannot Be Deleted
IF (Select Count (*)

FROM [Order Details] INNER JOIN deleted
ON [Order Details].ProductID = deleted.ProductID
) > 0

ROLLBACK TRANSACTION

IF (Select Count (*)
FROM [Order Details] INNER JOIN deleted
ON [Order Details].ProductID = deleted.ProductID
) > 0

ROLLBACK TRANSACTION

DELETE statement executed on
Product table

Trigger code
checks the Order Details
table

Order DetailsOrder DetailsOrder Details
OrderIDOrderID

10522
10523
10524
10525

10522
10523
10524
10525

ProductIDProductID

10
2

41
7

10
2

41
7

UnitPriceUnitPrice

31.00
19.00
9.65
30.00

31.00
19.00
9.65
30.00

QuantityQuantity

7
9

24

7
9

24

DiscountDiscount

0.2
0.15
0.0

0.2
0.15
0.0

9

'Transaction cannot be processed'
'This product has order history'

'Transaction cannot be processed'
'This product has order history'

Transaction
rolled back

ProductsProductsProducts
ProductIDProductID UnitsInStockUnitsInStock �� ��

1

3
4

1

3
4

15
10
65
20

15
10
65
20

2 0

You can use triggers to enforce business rules that are too complex for the
CHECK constraint. This includes checking the status of rows in other tables.

For example, you may want to ensure that members� outstanding fines are paid
before they are allowed to discontinue membership.

This example creates a trigger that determines whether a product has order
history. If it does, the DELETE is rolled back and the trigger returns a custom
error message.

Use Northwind
GO
CREATE TRIGGER Product_Delete
 ON Products FOR DELETE
AS
IF (Select Count (*)
 FROM [Order Details] INNER JOIN deleted
 ON [Order Details].ProductID = Deleted.ProductID
) > 0
BEGIN
 RAISERROR('Transaction cannot be processed. \
 This product has order history.', 16, 1)
 ROLLBACK TRANSACTION
END

Topic Objective
To show an example of how
to enforce business rules.

Lead-in
Triggers also can be used to
enforce particular business
rules, such as �Don�t delete
products that have order
history.�

Example

 Module 11: Implementing Triggers 29

Performance Considerations

! Triggers Work Quickly Because the Inserted and
Deleted Tables Are in Cache

! Execution Time Is Determined by:

$ Number of tables that are referenced

$ Number of rows that are affected

! Actions Contained in Triggers Implicitly Are Part of
a Transaction

You should consider the following performance issues when using triggers:

! Triggers work quickly because the Inserted and Deleted tables are in cache.
The Inserted and Deleted tables are always in memory rather than on a
disk, because they are logical tables and are usually very small.

! The number of tables referenced and the number of rows affected
determines execution time.
Time that is spent invoking a trigger is minimal. The largest portion of
execution time occurs as a result of referencing other tables (which may be
either in memory or on a disk) and modifying data, if the trigger definition
calls for it.

! Actions contained in triggers are implicitly part of a transaction.
After a trigger is defined, the user action (INSERT, UPDATE, or DELETE
statement) on the table that executes the trigger is always implicitly part of a
transaction, along with the trigger itself. If a ROLLBACK TRANSACTION
statement is encountered, the whole transaction rolls back. If any statements
exist in the trigger script after the ROLLBACK TRANSACTION statement,
those statements are executed. Therefore, it may be necessary to use a
RETURN clause in an IF statement to prevent the processing of other
statements.

Topic Objective
To introduce performance
considerations for using
triggers.

Lead-in
You should consider these
performance issues when
using triggers.

30 Module 11: Implementing Triggers

Recommended Practices

Keep Trigger Definition Statements as Simple as PossibleKeep Trigger Definition Statements as Simple as Possible

Minimize Use of ROLLBACK Statements in TriggersMinimize Use of ROLLBACK Statements in Triggers

Use Triggers Only When NecessaryUse Triggers Only When Necessary

Include Recursion Termination Check Statements in
Recursive Trigger Definitions
Include Recursion Termination Check Statements in
Recursive Trigger Definitions

The following recommended practices should help you manage your databases:

! Use triggers only when necessary. Consider a constraint before using a
trigger.

! Keep trigger definition statements as simple as possible. Most of the time
that is required to process a trigger is spent referencing tables and modifying
data. Because triggers are an inherent transaction, locks are maintained until
the transaction completes.

! Include recursion-termination check statements in recursive trigger
definitions. This prevents the trigger from being stuck in an endless loop.

! Minimize the use of ROLLBACK statements in triggers. When you roll
back a trigger, SQL Server must undo all of the actions that it performed up
to that point.

Additional information on the following topics is available in SQL Server
Books Online.

Topic Search on

CREATE TRIGGER �create trigger�

ALTER TRIGGER �alter trigger�

DROP TRIGGER �drop trigger�

Creating a trigger �creating a trigger�

Programming triggers �programming triggers�

Topic Objective
To present recommended
practices for using triggers.

Lead-in
The following suggestions
are recommended practices
for using triggers.

 Module 11: Implementing Triggers 31

Lab A: Creating Triggers

Objectives
After completing this lab, you will be able to:

! Create triggers to maintain data integrity.
! Create triggers to enforce complex business rules.

Prerequisites
Before working on this lab, you must have:

! Script files for this lab, which are located in C:\Moc\2073A\Labfiles\L11.
! Answer files for this lab, which are located in

C:\Moc\2073A\Labfiles\L11\Answers.

Lab Setup
To complete this lab, you must have either:

! Completed the prior lab, or
! Executed the C:\Moc\2073A\Batches\Restore11.cmd batch file.

This command file restores the ClassNorthwind database to a state required
for this lab.

For More Information
If you require help in executing files, search SQL Query Analyzer Help for
�Execute a query�.

Other resources that you can use include:

! The Northwind database schema.
! Microsoft SQL Server Books Online.

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will create
triggers and test them.

Explain the lab objectives.

32 Module 11: Implementing Triggers

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 30 minutes

 Module 11: Implementing Triggers 33

Exercise 1
Creating Triggers

In this exercise, you will execute a script that creates a trigger. After the trigger
is created, you will test it to verify that it works.

! To create a trigger
In this procedure, you will create a trigger by executing a script file.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password password

2. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Microsoft Windows® Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Microsoft Windows
2000 local group, Administrators. All members of this group are
automatically mapped to the SQL Server sysadmin role.

3. In the DB list, click ClassNorthwind.
4. Open C:\Moc\2073A\Labfiles\L11\OrdDetInsert.sql and review it.

This script creates a trigger on the Order Details table. This trigger updates
the UnitsInStock column of the Products table whenever a row is inserted
into the Order Details table (whenever an order is received).

5. Execute C:\Moc\2073A\Labfiles\L11\OrdDetInsert.sql.
6. Execute the sp_helptrigger system stored procedure on the Order Details

table in the ClassNorthwind database to determine whether the trigger was
created.

34 Module 11: Implementing Triggers

! To test the trigger
In this procedure, you will test the trigger that you just created by inserting a
row into the Order Details table.
1. Execute the following SELECT statement to select a row from the Products

table to determine the units of a product that are in stock:
SELECT * FROM Products WHERE ProductID = 22

The UnitsInStock column should contain the value of 104. If the
UnitsInStock column displays a different number, make a note of it.

2. Insert a row into the Order Details table ordering 50 units of product 22.
Your INSERT statement will be similar to the following:
INSERT [Order Details]
(OrderID, ProductID, UnitPrice, Quantity, Discount)
VALUES (11077, 22, 21.00, 50, 0.0)
GO

3. Query the Products table to verify that the UnitsInStock column value for

the specific ProductID has changed to 54.

 Module 11: Implementing Triggers 35

Exercise 2
Creating a Trigger for Updating Derived Data

In this exercise, you will create two new tables (without PRIMARY and
FOREIGN KEY constraints) and then a trigger on the NewCategories table to
enforce integrity in the NewProducts.Discontinued column.
C:\Moc\2073A\Labfiles\L11\Answers\CategoryDelete.sql is a completed script
for this exercise.

! To create a trigger that updates derived data
In this procedure, you will create two new tables called NewCategories and
NewProducts. Neither have the PRIMARY and FOREIGN KEY constraints of
the Categories and Products tables. You will create a trigger on the
NewCategories table. This trigger updates the Discontinued column in the
NewProducts table whenever a category is deleted (whenever a record is
deleted from the NewCategories table). All affected products are marked as 1,
indicating that they are discontinued. Use
C:\Moc\2073A\Labfiles\L11\CategoryDelete.sql and make the appropriate
changes.
1. Type and execute the following query to create two new tables called

NewCategories and NewProducts.
USE ClassNorthwind
GO
--This creates a NewCategories table
SELECT * INTO NewCategories FROM Categories
--This creates a NewProducts table
SELECT * INTO NewProducts FROM Products
GO

2. Type and execute the following query to create a trigger on the

NewCategories table. This trigger updates the Discontinued column of the
NewProducts table to 1 when a product�s parent category is deleted
(whenever a row is deleted from the NewCategories table).
CREATE TRIGGER Category_Delete
 ON NewCategories
 FOR DELETE
AS
 UPDATE P SET Discontinued = 1
 FROM NewProducts AS P INNER JOIN Deleted AS d
 ON P.CategoryID = D.CategoryID

36 Module 11: Implementing Triggers

3. Type and execute the following SELECT statement that queries the
NewProducts table to determine the discontinued value of the products in
CategoryID 7.
SELECT ProductID, CategoryID, Discontinued
FROM NewProducts WHERE CategoryID = 7

4. Write a DELETE statement that removes a row from the NewCategories

table, and then verify that the trigger executes correctly.
Are these triggers necessary to maintain data integrity in the
ClassNorthwind database? Why or why not?
Yes. Cascading referential integrity could remove the related products
from the NewProducts table, but a trigger is the best way to implement
a more complex action, such as leaving the records in NewProducts
while updating the Discontinued column.
__

__

 Module 11: Implementing Triggers 37

Exercise 3
Creating a Trigger That Maintains a Complex Business Rule

In this exercise, you will create a DELETE trigger on the NewProducts table.
This trigger determines whether an order history exists in the Order Details
table before the trigger permits a deletion from the NewProducts table.

! To create a trigger for the loan table
In this procedure, you will use the NewProducts table created in the previous
exercise. You will create a trigger that determines whether an order history
exists for a product that is being deleted. If the product has never been ordered,
then the product can be deleted. If the product has a history of orders, then the
delete from the product table is rolled back, and the trigger returns a custom
error message. C:\Moc\2073A\Labfiles\L11\Answers\BusinessRule.sql is a
completed script for this exercise.
1. Create a DELETE trigger on the NewProducts table that determines

whether an order history exists for a product that is possibly being deleted.
If records exist in the Order Details table for that product, then display a
message and roll back the trigger.

2. Delete product 6 from the NewProducts table to test the trigger.
Answers\BusinessRule.sql is a completed script for this step.
Did the trigger fire? Why or why not?
Yes. The product that was deleted from the NewProducts table
contained orders in the Order Details table. The trigger prevented the
delete and returned an error message.
__

__

38 Module 11: Implementing Triggers

Exercise 4
Testing the Firing Order of Constraints and Triggers

In this exercise, you will modify the statement from the previous exercise to test
the firing order of constraints and triggers.
C:\Moc\2073A\Labfiles\L11\Answers\BusinessRule2.sql is a completed script
for this exercise.

! To modify the trigger from the previous exercise
1. Create a trigger similar to that used in the previous exercise called

Product_Delete2 on the Products table.
Remember that the previous exercise created a DELETE trigger called
Product_Delete on the NewProducts table.
CREATE TRIGGER Product_Delete2
 ON Products FOR DELETE
AS
IF (Select Count (*)
 FROM [Order Details] INNER JOIN deleted
 ON [Order Details].ProductID = Deleted.ProductID
) > 0
BEGIN
 RAISERROR('Transaction cannot be processed. This Product
still has a history of orders.', 16, 1)
 ROLLBACK TRANSACTION
END

2. Test the trigger.

Did the trigger fire? Why or why not?
No. The PRIMARY KEY constraint prevented this trigger from firing.
__

__

 Module 11: Implementing Triggers 39

Review

! Introduction to Triggers

! Defining Triggers

! How Triggers Work

! Examples of Triggers

! Performance Considerations

1. If the inventory manager does not provide the Products.ProductID column
value in the INSERT statement, what characteristics must exist in the
column definition?
The column must allow NULLs, or if it does not allow NULLs, it must
contain a DEFAULT constraint.
__

__

2. If the Products table contains a PRIMARY KEY constraint on the
ProductID column, would a trigger work? Why or why not?
No. Constraints are processed before data is modified (inserted). A
PRIMARY KEY constraint does not allow NULLs, so the INSERT
statement would fail.
__

__

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
the key concepts taught in
the module.

Use these questions to
review module topics.

Ask students whether they
have any questions before
continuing.

40 Module 11: Implementing Triggers

3. What must you do to make a trigger work?
You could use a default that would place a temporary ProductID
number as a placeholder, and then let the trigger assign the correct
value. The temporary ProductID number would need to be a value
outside the possible range of ProductID numbers. For example,
9999999 would be a good copy number because it is unlikely that this
inventory would have more than 9,999,999 products.
Another option would be to drop the PRIMARY KEY constraint. You
would have to replace it by creating an additional trigger to maintain
and check referential integrity for the ProductID column. You would
possibly have to create a unique index on the ProductID column, as
well.
__

__

