

Contents

Overview 1

Introduction to Stored Procedures 2

Creating, Executing, Modifying, and
Dropping Stored Procedures 10

Lab A: Creating Stored Procedures 20

Using Parameters in Stored Procedures 25

Executing Extended Stored Procedures 35

Handling Error Messages 37

Performance Considerations 43

Recommended Practices 45

Lab B: Creating Stored Procedures
Using Parameters 46

Review 56

Module 9: Implementing
Stored Procedures

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BackOffice, MS-DOS, PowerPoint, Visual Basic, Visual C++, Visual Studio,
Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Project Lead: Rich Rose
Instructional Designers: Rich Rose, Cheryl Hoople, Marilyn McGill
Instructional Software Design Engineers: Karl Dehmer, Carl Raebler,
Rick Byham
Technical Lead: Karl Dehmer
Subject Matter Experts: Karl Dehmer, Carl Raebler, Rick Byham
Graphic Artist: Kirsten Larson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Copy Editor: Edward McKillop (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Support: Lori Walker (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: TestingTesting123
Classroom Automation: Lorrin Smith-Bates
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager, Data Base: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 9: Implementing Stored Procedures iii

Instructor Notes
This module provides students with a description of how to use stored
procedures to improve application design and performance by encapsulating
business rules. It discusses ways to process common queries and data
modifications.

The module begins by discussing what stored procedures are, the advantages of
using them, and how they are processed.

The next section discusses how to create, execute, and modify stored
procedures. The section following discusses using stored procedures with input
and output parameters. It also discusses recompiling options.

Final sections describe executing extended stored procedures, how to handle
error messages, and performance issues to consider when implementing stored
procedures. Examples and demonstrations of stored procedures are provided
throughout the module.

In the first lab, students create stored procedures based on provided models and
use Microsoft® SQL Server� Enterprise Manager and SQL Query Analyzer to
display information on stored procedures. In the second lab, students use a
wizard to create a stored procedure and generate a stored procedure script.
Students also create stored procedures that accept information with input
parameters and return output parameters.

After completing module, students will be able to:

! Describe how a stored procedure is processed.
! Create, execute, modify, and drop a stored procedure.
! Create stored procedures that accept parameters.
! Execute extended stored procedures.
! Create custom error messages.

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

! Microsoft PowerPoint® file 2073a_09.ppt
! The C:\Moc\2073A\Demo\D09_Ex.sql example file, which contains all of

the example scripts from the module, unless otherwise noted in the module

Presentation:
90 Minutes

Lab:
60 Minutes

iv Module 9: Implementing Stored Procedures

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials for this module.
! Complete the labs.
! Complete all demonstrations.
! Practice the presentation.
! Review any relevant white papers located on the Trainer Materials compact

disc.

Demonstration
This section provides demonstration procedures that will not fit in the margin
notes or are not appropriate for the student notes.

Update Customer Phone
! To prepare for the demonstration
1. Open C:\Moc\2073A\Demo\ D09_UpdateCustomerPhone.sql, review its

contents, and then execute it.
2. Open C:\Moc\2073A\Demo\D09_TestUpdate.sql, and review its contents.

Select and execute each statement that follows the comment that explains
what is being tested so that you are familiar with the results.
In-line comments appear in the last SELECT statement in the script that
finds a member who meets all of the error checking criteria. If time permits,
you may want to execute this statement three times: the first time as-is; next,
removing the first in-line comment; and, finally, removing the second in-
line comment. This allows you to remove three different members from the
database and compare the error messages.

! To perform the demonstration
1. In SQL Query Analyzer, open

C:\Moc\2073A\Demo\D09_UpdateCustomerPhone.sql.
2. So that students in the back of the room can see the script easily, on the

View menu, click Properties.
3. In the Size box, type 20 and then click OK.

The main points in the script are included in the Student Workbook.

4. Scroll past the �IF EXISTS�DROP� statements.
5. Point out the custom error messages that are created with the

sp_addmessage system stored procedure.
6. When you review the section of the script that determines whether the

customer number exists in the database, ask students why these statements
are included.
Answer: If you were to execute an UPDATE statement that specifies a
customer number that does not exist, the result is �command completed
successfully.�

Note

 Module 9: Implementing Stored Procedures v

7. Point out that the actual transaction that updates the customer phone number
is short and begins only after all error checking and business logic is
complete. This example illustrates an optimistic model that prefers a smaller
transaction to an all-encompassing one. The model that you select depends
on your application environment and whether this has a negative impact on
data integrity.

8. After you review the script, execute it to add the UpdateCustomerPhone
stored procedure to the Northwind database.

9. Open C:\Moc\2073A\Demo\D09_TestUpdate.sql and then select and
execute each statement that follows the comment that explains the error
condition to be tested.

vi Module 9: Implementing Stored Procedures

Module Strategy
Use the following strategy to present this module:

! Introduction to Stored Procedures
Introduce the elements of a stored procedure, including an overview of the
types of stored procedures�system, local, temporary, remote, or extended.
The focus of this module is on creating stored procedures that are defined in
a user�s local database. Explain how stored procedures are processed and
then point out why students would want to create stored procedures in their
applications.

! Creating, Executing, and Modifying Stored Procedures
Describe how to create, execute, and modify stored procedures. Include a
discussion on the WITH ENCRYPTION option and programming
guidelines when creating stored procedures.

! Using Parameters in Stored Procedures
Give this section the greatest emphasis in the module, because parameters
provide stored procedures with the greatest functionality and flexibility.
Discuss input and output parameters. Compare stored procedures that
specify parameters by reference and position. You should emphasize that
passing by reference is preferred, as it provides the best documentation.
Finally, briefly discuss the ability to recompile a stored procedure explicitly.
Point out that students should use this feature infrequently.

! Executing Extended Stored Procedures
Briefly review extended stored procedures. Emphasize that if students create
a stored procedure with the sp_ prefix, which calls an extended stored
procedure, they can then execute the extended stored procedure from within
any database. If you have time, you may want to demonstrate how easily
students can create a stored procedure to call the xp_cmdshell extended
stored procedure.

! Handling Error Messages
Emphasize the importance of handling errors when you discuss the
RETURN statement, the @@error system function, the sp_addmessage
system stored procedure, and the RAISERROR statement. Demonstrate how
to remove a member from the Northwind database to illustrate strategies
for handling error messages. You must review the setup information before
performing the demonstration.

! Performance Considerations
Discuss some of the performance considerations that are involved in using
stored procedures.

 Module 9: Implementing Stored Procedures vii

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing Microsoft
Official Curriculum (MOC) courseware.

The labs in this module are dependent on the classroom
configuration that is specified in the Customization Information section at the
end of the Classroom Setup Guide for course 2073A, Programming a Microsoft
SQL Server 2000 Database.

Lab Setup
The following section describes the setup requirement for the labs in this
module.

Setup Requirement 1
The lab in this module requires the ClassNorthwind database to be in a state
required for this lab. To prepare student computers to meet this requirement,
perform one of the following actions:

! Complete the prior lab
! Execute the C:\Moc\2073A\Batches\Restore09A.cmd batch file.

Setup Requirement 2
The lab in this module requires the ClassNorthwind database to be in a state
required for this lab. To prepare student computers to meet this requirement,
perform one of the following actions:

! Complete the prior lab
! Execute the C:\Moc\2073A\Batches\Restore09B.cmd batch file.

If this course has been customized, students must execute the
C:\Moc\2073A\Batches\Restore09A.cmd batch file to ensure that the first lab
will function properly.
If this course has been customized, students must execute the
C:\Moc\2073A\Batches\Restore09B.cmd batch file to ensure that the second lab
will function properly.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Important

Warning

 Module 9: Implementing Stored Procedures 1

Overview

! Introduction to Stored Procedures

! Creating, Executing, Modifying, and Dropping Stored
Procedures

! Using Parameters in Stored Procedures

! Executing Extended Stored Procedures

! Handling Error Messages

Objectives
After completing this module, you will be able to:

! Describe how a stored procedure is processed.
! Create, execute, modify, and drop a stored procedure.
! Create stored procedures that accept parameters.
! Execute extended stored procedures.
! Create custom error messages.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
about stored procedures
and why you will want to
use them.

2 Module 9: Implementing Stored Procedures

Introduction to Stored Procedures

! Defining Stored Procedures

! Initial Processing of Stored Procedures

! Subsequent Processing of Stored Procedures

! Advantages of Stored Procedures

This section introduces the different types of Microsoft® SQL Server� 2000
stored procedures, describes how stored procedures are processed�both
initially and on subsequent execution�and lists some of the advantages of
using stored procedures.

Topic Objective
To list the topics in this
section.

Lead-in
In this section, we�ll cover�

 Module 9: Implementing Stored Procedures 3

Defining Stored Procedures

! Named Collections of Transact-SQL Statements

! Encapsulate Repetitive Tasks

! Five Types (System, Local, Temporary, Remote, and
Extended)

! Accept Input Parameters and Return Values

! Return Status Value to Indicate Success or Failure

A stored procedure is a named collection of Transact-SQL statements that is
stored on the server. Stored procedures are a method of encapsulating repetitive
tasks. Stored procedures support user-declared variables, conditional execution,
and other powerful programming features.

SQL Server supports five types of stored procedures:

Stored in the master database, system stored
procedures (identified by the sp_ prefix) provide an effective method to retrieve
information from system tables. They allow system administrators to perform
database administration tasks that update system tables even though the
administrators do not have permission to update the underlying tables directly.
System stored procedures can be executed in any database.

Local stored procedures are created in individual
user databases.

Temporary stored procedures can be local, with
names that start with a single number sign (#), or global, with names that start
with a double number sign (##). Local temporary stored procedures are
available within a single user session; global temporary stored procedures are
available for all user sessions.

Remote stored procedures are an earlier feature of
SQL Server. Distributed queries now support this functionality.

Topic Objective
To define stored
procedures.

Lead-in
A stored procedure is a
precompiled collection of
Transact-SQL statements
that is stored on the server.

System Stored Procedures (sp_)

Local Stored Procedures

Temporary Stored Procedures

Remote Stored Procedures

4 Module 9: Implementing Stored Procedures

Extended stored procedures are
implemented as dynamic-link libraries (DLLs) executed outside of the
SQL Server environment. Extended stored procedures are typically identified
by the xp_ prefix. They are executed in a manner similar to that of stored
procedures.

Stored procedures in SQL Server are similar to procedures in other
programming languages, in that they can:

! Contain statements that perform operations in the database, including the
ability to call other stored procedures.

! Accept input parameters.
! Return a status value to a calling stored procedure or batch to indicate

success or failure (and the reason for failure).
! Return multiple values to the calling stored procedure or batch in the form

of output parameters.

For Your Information
Some system stored
procedures call extended
stored procedures.

Extended Stored Procedures (xp_)

 Module 9: Implementing Stored Procedures 5

Initial Processing of Stored Procedures

Entries into sysobjects
and syscomments tables
Entries into sysobjects

and syscomments tables

Compiled plan placed in
procedure cache

Compiled plan placed in
procedure cacheCompilationCompilation

OptimizationOptimization

CreationCreationCreation

Execution
(first time

or recompile)

ExecutionExecution
(first time(first time

or recompile)or recompile)

ParsingParsing

Processing a stored procedure includes creating it and then executing it the first
time, which places its execution plan in the procedure cache. The procedure
cache is a pool of memory containing the execution plans for all currently
executing Transact-SQL statements. The size of the procedure cache fluctuates
dynamically according to activity levels. The procedure cache is located in the
memory pool, which is the main unit of memory for SQL Server. It contains
most of the data structures that use memory in SQL Server.

Creation
When a stored procedure is created, the statements in it are parsed for
syntactical accuracy. SQL Server then stores the name of the stored procedure
in the sysobjects system table and the text of the stored procedure in the
syscomments system table in the current database. An error is returned if a
syntax error is encountered, and the stored procedure is not created.

Delayed Name Resolution
A process called delayed name resolution allows stored procedures to refer to
objects that do not exist when the stored procedure is created. This process
permits flexibility, because stored procedures and the objects that they reference
do not have to be created in a particular order. The objects must exist by the
time the stored procedure is executed. Delayed name resolution is performed at
the time the stored procedure is executed.

Topic Objective
To show the steps in
processing a stored
procedure.

Lead-in
Processing a stored
procedure includes creating
it and then executing it the
first time, which places its
execution plan in the cache.

Delivery Tip
Point out the delayed name
resolution process.

6 Module 9: Implementing Stored Procedures

Execution (First Time or Recompile)
The first time that a stored procedure is executed, or if the stored procedure
must be recompiled, the query processor reads the stored procedure in a process
called resolution.

Certain changes in a database can cause an execution plan to be either
inefficient or no longer valid. SQL Server detects these changes and
automatically recompiles the execution plan when any of the following apply:

! Any structural change is made to a table or view referenced by the query
(ALTER TABLE and ALTER VIEW).

! New distribution statistics are generated, either explicitly from a statement,
such as UPDATE STATISTICS, or automatically.

! An index used by the execution plan is dropped.
! Significant changes are made to keys (the INSERT or DELETE statement)

for a table referenced by the query.

Optimization
When a stored procedure successfully passes the resolution stage, the
SQL Server query optimizer analyzes the Transact-SQL statements in the stored
procedure and creates a plan that contains the fastest method to access the data.
To do so, the query optimizer takes into account:

! The amount of data in the tables.
! The presence and nature of table indexes and the distribution of data in the

indexed columns.
! The comparison operators and comparison values that are used in WHERE

clause conditions.
! The presence of joins and the UNION, GROUP BY, or ORDER BY clause.

Compilation
Compilation refers to the process of analyzing the stored procedure and creating
an execution plan that is in the procedure cache. The procedure cache contains
the most valuable stored procedure execution plans. Factors that increase the
value of a plan include the following:

! Time required to recompile (high compile cost)
! Frequent usage

 Module 9: Implementing Stored Procedures 7

Subsequent Processing of Stored Procedures

Execution Plan Retrieved

Unused plan is aged out

Execution Plan Execution Context

SELECT *
FROM
dbo.member
WHERE
member_no = ?

Connection 1

8082

Connection 2

Connection 3

24

1003

Subsequent processing of stored procedures is faster than initial processing,
because SQL Server uses the optimized execution plan in the procedure cache.

If the following conditions apply, SQL Server uses the in-memory plan to
execute the query subsequently:

! The current environment is the same as the environment in which the plan
was compiled.
Server, database, and connection settings determine the environment.

! Objects to which the stored procedure refers do not require name resolution.
Objects require name resolution when objects that are owned by different
users have the same names. For example, if the sales role owns a Product
table, and the development role owns a Product table, SQL Server must
determine the table on which to operate each time that a Product table is
referenced.

SQL Server execution plans have two main components:

! Execution Plan�most of the execution plan is in this reentrant, read-only
data structure that any number of users can use.

! Execution Context�each user currently executing the query has this
reusable data structure that holds the data specific to his or her execution,
such as parameter values. If a user executes a query, and one of the
structures is not in use, it is reinitialized with the context for the new user.

At most, there will always be one compiled plan in the cache for each unique
combination of stored procedure plus environment. There can be many plans in
cache for the same stored procedure if each is for a different environment.

Topic Objective
To describe the subsequent
processing of stored
procedures.

Lead-in
Subsequent processing of
stored procedures is faster
than initial processing,
because SQL Server uses
the execution plan in the
procedure cache.

For server settings, use
sp_configure; for database
settings, use sp_dboption;
for connection settings, use
SET options.

8 Module 9: Implementing Stored Procedures

The following factors result in different environments that affect compilation
choices:

! Parallel versus serial compiled plans
! Implicit ownership of objects
! Different SET options

For more information on parallel execution plans, see the �Degree of
Parallelism� topic in SQL Server Books Online.

Developers should choose an environment for their applications and use it.
Objects whose implicit ownership resolution is ambiguous should use explicit
resolution by specifying the object owner. SET options should be consistent;
they should be set at the start of a connection and not changed.

After an execution plan is generated, it stays in the procedure cache.
SQL Server ages old, unused plans out of the cache only when space
is needed.

Note

 Module 9: Implementing Stored Procedures 9

Advantages of Stored Procedures

! Share Application Logic

! Shield Database Schema Details

! Provide Security Mechanisms

! Improve Performance

! Reduce Network Traffic

Stored procedures offer numerous advantages. They can:

! Share application logic with other applications, thereby ensuring consistent
data access and modification.
Stored procedures can encapsulate business functionality. Business rules or
policies encapsulated in stored procedures can be changed in a single
location. All clients can use the same stored procedures to ensure consistent
data access and modification.

! Shield users from exposure to the details of the tables in the database. If a
set of stored procedures supports all of the business functions that users
need to perform, users never need to access the tables directly.

! Provide security mechanisms. Users can be granted permission to execute a
stored procedure even if they do not have permission to access the tables or
views to which the stored procedure refers.

! Improve performance. Stored procedures implement many tasks as a series
of Transact-SQL statements. Conditional logic can be applied to the results
of the first Transact-SQL statements to determine which subsequent
Transact-SQL statements are executed. All of these Transact-SQL
statements and conditional logic become part of a single execution plan on
the server.

! Reduce network traffic. Rather than sending hundreds of Transact-SQL
statements over the network, users can perform a complex operation by
sending a single statement, which reduces the number of requests that pass
between client and server.

Topic Objective
To show the advantages of
stored procedures.

Lead-in
Stored procedures
significantly reduce resource
and time requirements for
execution.

Network traffic is reduced
because fewer packets are
required to send requests.

10 Module 9: Implementing Stored Procedures

Creating, Executing, Modifying, and Dropping Stored
Procedures

! Creating Stored Procedures

! Guidelines for Creating Stored Procedures

! Executing Stored Procedures

! Altering and Dropping Stored Procedures

This section describes how to create, execute, modify, and drop stored
procedures.

Topic Objective
To introduce creating,
executing, and modifying
stored procedures.

Lead-in
Now that we�ve defined
stored procedures and how
they�re processed, we�ll
discuss how to create,
execute, and modify them.

 Module 9: Implementing Stored Procedures 11

Creating Stored Procedures

! Create in Current Database Using the CREATE PROCEDURE
Statement

! Can Nest to 32 Levels
! Use sp_help to Display Information

USE Northwind
GO
CREATE PROC dbo.OverdueOrders
AS

SELECT *
FROM dbo.Orders
WHERE RequiredDate < GETDATE() AND ShippedDate IS Null

GO

You can create a stored procedure in the current database only�except for
temporary stored procedures, which are always created in the tempdb database.
Creating a stored procedure is similar to creating a view. First, write and test the
Transact-SQL statements that you want to include in the stored procedure.
Then, if you receive the results that you expect, create the stored procedure.

Using CREATE PROCEDURE
You create stored procedures by using the CREATE PROCEDURE statement.
Consider the following facts when you create stored procedures:

! Stored procedures can reference tables, views, user-defined functions, and
other stored procedures, as well as temporary tables.

! If a stored procedure creates a local temporary table, the temporary table
only exists for the purpose of the stored procedure and disappears when
stored procedure execution completes.

! A CREATE PROCEDURE statement cannot be combined with other
Transact-SQL statements in a single batch.

! The CREATE PROCEDURE definition can include any number and type of
Transact-SQL statements, with the exception of the following object
creation statements: CREATE DEFAULT, CREATE PROCEDURE,
CREATE RULE, CREATE TRIGGER, and CREATE VIEW. Other
database objects can be created within a stored procedure and should be
qualified with the name of the object owner.

! To execute the CREATE PROCEDURE statement, you must be a member
of the system administrators (sysadmin) role, database owner (db_owner)
role, or the Data Definition Language (DDL) administrator (db_ddladmin)
role, or you must have been granted CREATE PROCEDURE permission.

! The maximum size of a stored procedure is 128 megabytes (MB),
depending on available memory.

Topic Objective
To introduce the CREATE
PROCEDURE syntax.

Lead-in
Use the CREATE
PROCEDURE statement to
create stored procedures in
the current database.

The syntax does not allow
specifying the database
name as a prefix to the
object name.

12 Module 9: Implementing Stored Procedures

CREATE PROC [EDURE] procedure_name [; number]
 [{ @parameter data_type }
 [VARYING] [= default] [OUTPUT]
] [,...n]
[WITH
 { RECOMPILE | ENCRYPTION | RECOMPILE , ENCRYPTION }]
[FOR REPLICATION]
AS sql_statement [...n]

The following statements create a stored procedure that lists all overdue orders
in the Northwind database.

USE Northwind
GO
CREATE PROC dbo.OverdueOrders
AS
 SELECT *
 FROM dbo.Orders
 WHERE RequiredDate < GETDATE() AND ShippedDate IS Null
GO

Nesting Stored Procedures
Stored procedures can be nested (one stored procedure calls another).
Characteristics of nesting include the following:

! Stored procedures can be nested to 32 levels. Attempting to exceed 32 levels
of nesting causes the entire calling stored procedure chain to fail.

! The current nesting level is stored in the @@nestlevel system function.
! If one stored procedure calls a second stored procedure, the second stored

procedure can access all of the objects that the first stored procedure
created, including temporary tables.

! Nested stored procedures can be recursive. For example, Stored Procedure
X can call Stored Procedure Y. While Stored Procedure Y is executing, it
can call Stored Procedure X.

Viewing Information About Stored Procedures
As with other database objects, the following system stored procedures can be
used to find additional information about all types of stored procedures:
sp_help, sp_helptext, and sp_depends. To print a list of stored procedures and
owner names in the database, use the sp_stored_procedures system stored
procedure. You can also query the sysobjects, syscomments, and sysdepends
system tables to obtain information.

Partial Syntax

Example

 Module 9: Implementing Stored Procedures 13

Guidelines for Creating Stored Procedures

! dbo User Should Own All Stored Procedures

! One Stored Procedure for One Task

! Create, Test, and Troubleshoot

! Avoid sp_ Prefix in Stored Procedure Names

! Use Same Connection Settings for All Stored Procedures

! Minimize Use of Temporary Stored Procedures

! Never Delete Entries Directly From Syscomments

Consider the following guidelines when you create stored procedures:

! To avoid situations in which the owner of a stored procedure and the owner
of the underlying tables differ, it is recommended that the dbo user own all
objects in a database. Because a user can be a member of multiple roles,
always specify the dbo user as the owner name when you create the object.
Otherwise, the object will be created with your user name as the owner:

• You must also have appropriate permissions on all of the tables or views
that are referenced within the stored procedure.

• Avoid situations in which the owner of a stored procedure and the owner
of the underlying tables differ.

If you are creating a user-defined system stored procedure, you must
be logged in as a member of the system administrators (sysadmin) role and
use the master database.

! Design each stored procedure to accomplish a single task.
! Create, test, and troubleshoot your stored procedure on the server; then test

it from the client.
! To easily distinguish system stored procedures, avoid using the sp_ prefix

when you name local stored procedures.

Topic Objective
To describe the guidelines
for creating stored
procedures.

Lead-in
Consider these guidelines
when you create stored
procedures.

Note

Delivery Tip
Suggest that students first
use osql to test stored
procedure performance
because of its low
application overhead.

14 Module 9: Implementing Stored Procedures

! All stored procedures should use the same connection settings.
SQL Server saves the settings of both SET QUOTED_IDENTIFIER and
SET ANSI_NULLS when a stored procedure is created or altered. These
original settings are used when the stored procedure is executed. Therefore,
any client session settings for these SET options are ignored during stored
procedure execution.
Other SET options, such as SET ARITHABORT, SET ANSI_WARNINGS,
and SET ANSI_PADDINGS, are not saved when a stored procedure is
created or altered.
To determine whether the ANSI SET options were enabled when a stored
procedure was created, query the OBJECTPROPERTY system function.
SET options should not be changed during the execution of stored
procedures.

! Minimize use of temporary stored procedures to avoid contention on the
system tables in tempdb, a situation that can adversely affect performance.

! Use sp_executesql instead of using the EXECUTE statement to
dynamically execute a string in a stored procedure. sp_executesql is more
efficient because it generates execution plans that SQL Server is more likely
to reuse. SQL Server compiles the Transact-SQL statement or statements in
the string into an execution plan that is separate from the execution plan of
the stored procedure. You can use sp_executesql when executing a
Transact-SQL statement multiple times, if the only variation is in the
parameter values supplied to the Transact-SQL statement.

! Never delete entries directly from the syscomments system table. If you do
not want users to be able to view the text of your stored procedures, you
must create them by using the WITH ENCRYPTION option. If you do not
use WITH ENCRYPTION, users can use SQL Server Enterprise Manager
or execute the sp_helptext system stored procedure to view the text of
stored procedures located in the syscomments system table.

 Module 9: Implementing Stored Procedures 15

Executing Stored Procedures

! Executing a Stored Procedure by Itself

! Executing a Stored Procedure Within an INSERT
Statement

EXEC OverdueOrders

INSERT INTO Customers
EXEC EmployeeCustomer

You can execute a stored procedure by itself or as part of an INSERT statement.
You must have been granted EXECUTE permission on the stored procedure.

Executing a Stored Procedure by Itself
You can execute a stored procedure by issuing the EXECUTE statement along
with the name of the stored procedure and any parameters.

[[EXEC [UTE]]
 {
 [@return_status =]
 { procedure_name [;number] | @procedure_name_var
 }
 [[@parameter =] { value | @variable [OUTPUT] | [DEFAULT]]
 [,...n]
[WITH RECOMPILE]

The following statement executes a stored procedure that lists all overdue
orders in the Northwind database.

EXEC OverdueOrders

Executing a Stored Procedure Within an INSERT Statement
The INSERT statement can populate a local table with a result set that is
returned from a local or remote stored procedure. SQL Server loads the table
with data that is returned from SELECT statements in the stored procedure. The
table must already exist, and data types must match.

Topic Objective
To describe how to execute
a stored procedure.

Lead-in
You can execute a stored
procedure by itself or as part
of an INSERT statement.

Delivery Tip
It is recommended that you
teach students to use the
EXECUTE statement for
single stored procedures to
help them avoid errors when
executing stored procedures
in batches.

Syntax

Example 1

Stored procedures that are
executed within an INSERT
statement must return a
relational result set. For
example, you could not use
a COMPUTE BY statement.

16 Module 9: Implementing Stored Procedures

The following statement creates the EmployeeCustomer stored procedure,
which inserts employees into the Customers table of the Northwind database.

USE Northwind
GO
CREATE PROC dbo.EmployeeCustomer
AS
SELECT
 UPPER(SUBSTRING(LastName, 1, 4)+SUBSTRING(FirstName, 1,1)),
 'Northwind Traders', RTRIM(FirstName)+' '+LastName,
 'Employee', Address, City, Region, PostalCode, Country,
 ('(206) 555-1234'+' x'+Extension), NULL
FROM Employees
WHERE HireDate < GETDATE ()
GO

The following statements execute the EmployeeCustomer stored procedure.

INSERT INTO Customers
EXEC EmployeeCustomer

The number of employees hired earlier than today�s date is added to the
Customers table.

(9 row(s) affected)

Example 2

Result

 Module 9: Implementing Stored Procedures 17

Altering and Dropping Stored Procedures

! Altering Stored Procedures
$ Include any options in ALTER PROCEDURE
$ Does not affect nested stored procedures

$ Dropping stored procedures
$ Execute the sp_depends stored procedure to determine whether objects

depend on the stored procedure

USE Northwind
GO
ALTER PROC dbo.OverdueOrders
AS
SELECT CONVERT(char(8), RequiredDate, 1) RequiredDate,

CONVERT(char(8), OrderDate, 1) OrderDate,
OrderID, CustomerID, EmployeeID
FROM Orders

WHERE RequiredDate < GETDATE() AND ShippedDate IS Null
ORDER BY RequiredDate
GO

USE Northwind
GO
ALTER PROC dbo.OverdueOrders
AS
SELECT CONVERT(char(8), RequiredDate, 1) RequiredDate,

CONVERT(char(8), OrderDate, 1) OrderDate,
OrderID, CustomerID, EmployeeID
FROM Orders

WHERE RequiredDate < GETDATE() AND ShippedDate IS Null
ORDER BY RequiredDate
GO

Stored procedures are often modified in response to requests from users or to
changes in the underlying table definitions.

Altering Stored Procedures
To modify an existing stored procedure and retain permission assignments, use
the ALTER PROCEDURE statement. SQL Server replaces the previous
definition of the stored procedure when it is altered with ALTER
PROCEDURE.

It is strongly recommended that you do not modify system stored
procedures directly. Instead, create a user-defined system stored procedure by
copying the statements from an existing system stored procedure, and then
modify it to meet your needs.

Consider the following facts when you use the ALTER PROCEDURE
statement:

! If you want to modify a stored procedure that was created with any options,
such as the WITH ENCRYPTION option, you must include the option in
the ALTER PROCEDURE statement to retain the functionality that the
option provides.

! ALTER PROCEDURE alters only a single procedure. If your procedure
calls other stored procedures, the nested stored procedures are not affected.

! Permission to execute this statement defaults to the creators of the initial
stored procedure, members of the sysadmin server role, and members of the
db_owner and db_ddladmin fixed database roles. You cannot grant
permission to execute ALTER PROCEDURE.

Topic Objective
To introduce the ALTER
PROCEDURE statement.

Lead-in
Stored procedures are often
modified in response to
requests from users or to
changes in the underlying
table definitions.

Caution

18 Module 9: Implementing Stored Procedures

ALTER PROC [EDURE] procedure_name [; number]
 [{ @parameter data_type }
 [VARYING] [= default] [OUTPUT]
] [,...n]
[WITH
 { RECOMPILE | ENCRYPTION
 | RECOMPILE , ENCRYPTION
 }
]
[FOR REPLICATION]
AS
 sql_statement [...n]

The following example modifies the OverdueOrders stored procedure to select
only specific column names rather than all columns from the Orders table, as
well as to sort the result set.

USE Northwind
GO
ALTER PROC dbo.OverdueOrders
AS
SELECT CONVERT(char(8), RequiredDate, 1) RequiredDate,
 CONVERT(char(8), OrderDate, 1) OrderDate,
 OrderID, CustomerID, EmployeeID
 FROM Orders
WHERE RequiredDate < GETDATE() AND ShippedDate IS Null
ORDER BY RequiredDate
GO

The following statement executes the OverdueOrders stored procedure.

EXEC OverdueOrders

If the OverdueOrders stored procedure is executed based on today�s date, the
result set will look similar to the following.

RequiredDate OrderDate OrderID CustomerID EmployeeID
05/06/98 04/08/98 11008 ERNSH 7
05/11/98 04/13/98 11019 RANCH 6
05/19/98 04/21/98 11039 LINOD 1
05/21/98 04/22/98 11040 GREAL 4
05/25/98 04/23/98 11045 BOTTM 6
.
.
.
(21 row(s) affected)

Syntax

Example

Result

 Module 9: Implementing Stored Procedures 19

Dropping Stored Procedures
Use the DROP PROCEDURE statement to remove user-defined stored
procedures from the current database.

Before you drop a stored procedure, execute the sp_depends stored procedure
to determine whether objects depend on the stored procedure.

DROP PROCEDURE { procedure } [,...n]

This example drops the OverdueOrders stored procedure.

USE Northwind
GO
DROP PROC dbo.OverdueOrders
GO

Syntax

Example

20 Module 9: Implementing Stored Procedures

Lab A: Creating Stored Procedures

Objectives
After completing this lab, you will be able to:

! Create a stored procedure by using SQL Query Analyzer.
! Display information about stored procedures that you create.

Prerequisites
Before working on this lab, you must have:

! Script files for this lab, which are located in C:\Moc\2073A\Labfiles\L09.
! Answer files for this lab, which are located in

C:\Moc\2073A\Labfiles\L09\Answers.

Lab Setup
To complete this lab, you must have either:

! Completed the prior lab, or
! Executed the C:\Moc\2073A\Batches\Restore09A.cmd batch file.

This command file restores the ClassNorthwind database to a state required
for this lab.

For More Information
If you require help in executing files, search SQL Query Analyzer Help for
�Execute a query�.

Other resources that you can use include:

! The Northwind database schema.
! Microsoft SQL Server Books Online.

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will create
stored procedures and
display information about
them.

Explain the lab objectives.

 Module 9: Implementing Stored Procedures 21

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 15 minutes

22 Module 9: Implementing Stored Procedures

Exercise 1
Writing and Executing a Stored Procedure

In this exercise, you will create a stored procedure that lists the five most
expensive products ordered by price.

! To create a stored procedure by using SQL Query Analyzer
In this procedure, you will create a stored procedure that lists the five most
expensive products.
C:\Moc\2073A\Labfiles\L09\Answers\FiveMostExpensiveProducts.sql is a
completed script for this procedure.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password password

2. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Microsoft Windows® Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Microsoft
Windows 2000 local group, Administrators. All members of this group are
automatically mapped to the SQL Server sysadmin role.

3. Verify that you are using the ClassNorthwind database.
4. Write a query against the Products table that lists only the product name

and unit price. Limit the rows returned to the five most expensive products,
and order the result set by unit price.

5. Test your query to ensure that it returns the expected result set.
6. Modify your query to create a stored procedure named

FiveMostExpensiveProducts.
7. Save your script as

C:\MOC\2073A\Labfiles\L09\FiveMostExpensiveProducts.sql.
8. Execute your stored procedure to verify that it works as expected.

What are the five most expensive products?
Côte de Blaye, Thüringer Rostbratwurst, Mishi Kobe Niku, Sir
Rodney's Marmalade, and Carnarvon Tigers.
__

__

 Module 9: Implementing Stored Procedures 23

Exercise 2
Locating Stored Procedure Information

In this exercise, you will execute system stored procedures and use SQL Server
Enterprise Manager and SQL Query Analyzer to display information about the
stored procedures that you have created.

! To display stored procedure definitions
In this procedure, you will use SQL Server Enterprise Manager and SQL Query
Analyzer to display stored procedure definitions.
1. Open SQL Server Enterprise Manager.
2. Expand your server, expand Databases, expand ClassNorthwind, and then

expand Stored Procedures.
3. In the details pane, right-click FiveMostExpensiveProducts, and then click

Properties.
4. Review the stored procedure definition.
5. Open SQL Query Analyzer.
6. Verify that you are using the ClassNorthwind database.
7. In the query window, execute the following system stored procedure.

sp_helptext FiveMostExpensiveProducts

8. Review the stored procedure definition.

! To display metadata information about stored procedures
In this procedure, you will use the OBJECT_ID and OBJECTPROPERTY
functions to display metadata about stored procedures.
1. Using SQL QueryAnalyzer, determine the object ID of the

FiveMostExpensiveProducts stored procedure by executing the following
statement:
SELECT OBJECT_ID('FiveMostExpensiveProducts')

Write the object ID below.
__

2. Execute the following statement to determine whether the ANSI NULLs
connection settings were turned on when you created the
FiveMostExpensiveProducts stored procedure. Substitute the object ID of
your stored procedure for x.
SELECT OBJECTPROPERTY(x, 'ExecIsAnsiNullsOn')

What was the result?
1 = True.
__

__

24 Module 9: Implementing Stored Procedures

3. Execute the following statement to determine whether the ANSI quoted
identifer connection setting was turned on when you created the
FiveMostExpensiveProducts stored procedure. Substitute the object ID of
your stored procedure for x.
SELECT OBJECTPROPERTY(x, 'ExecIsQuotedIdentOn')

What was the result?
1=True.
__

__

 Module 9: Implementing Stored Procedures 25

Using Parameters in Stored Procedures

! Using Input Parameters

! Executing Stored Procedures Using Input Parameters

! Returning Values Using Output Parameters

! Explicitly Recompiling Stored Procedures

Parameters extend the functionality of stored procedures. You can pass
information into and out of stored procedures by using parameters. They enable
you to use the same stored procedure to search a database many times.

For example, you can add a parameter to a stored procedure that searches the
Employee table for employees whose hire dates match a date that you specify.
You then can execute the stored procedure each time that you want to specify a
different hire date.

SQL Server supports two types of parameters: input parameters and output
parameters.

Topic Objective
To introduce the topics in
this section.

Lead-in
In this section, we'll cover�

26 Module 9: Implementing Stored Procedures

Using Input Parameters

! Validate All Incoming Parameter Values First

! Provide Appropriate Default Values and Include Null
Checks

CREATE PROCEDURE dbo.[Year to Year Sales]
@BeginningDate DateTime, @EndingDate DateTime

AS
IF @BeginningDate IS NULL OR @EndingDate IS NULL
BEGIN

RAISERROR('NULL values are not allowed', 14, 1)
RETURN

END
SELECT O.ShippedDate,

O.OrderID,
OS.Subtotal,
DATENAME(yy,ShippedDate) AS Year

FROM ORDERS O INNER JOIN [Order Subtotals] OS
ON O.OrderID = OS.OrderID

WHERE O.ShippedDate BETWEEN @BeginningDate AND @EndingDate
GO

CREATE PROCEDURE dbo.[Year to Year Sales]
@BeginningDate DateTime, @EndingDate DateTime

AS
IF @BeginningDate IS NULL OR @EndingDate IS NULL
BEGIN

RAISERROR('NULL values are not allowed', 14, 1)
RETURN

END
SELECT O.ShippedDate,

O.OrderID,
OS.Subtotal,
DATENAME(yy,ShippedDate) AS Year

FROM ORDERS O INNER JOIN [Order Subtotals] OS
ON O.OrderID = OS.OrderID

WHERE O.ShippedDate BETWEEN @BeginningDate AND @EndingDate
GO

Input parameters allow information to be passed into a stored procedure. To
define a stored procedure that accepts input parameters, you declare one or
more variables as parameters in the CREATE PROCEDURE statement.

@parameter data_type [= default]

Consider the following facts and guidelines when you specify parameters:

! All incoming parameter values should be checked at the beginning of a
stored procedure to trap missing and invalid values early.

! You should provide appropriate default values for a parameter.
If a default is defined, a user can execute the stored procedure without
specifying a value for that parameter.

Parameter defaults must be constants or NULL. When you specify
NULL as a default value for a parameter, you must use =Null; IS NULL
will not work because the syntax does not support the ANSI NULL
designation.

! The maximum number of parameters in a stored procedure is 1,024.
! The maximum number of local variables in a stored procedure is limited

only by available memory.
! Parameters are local to a stored procedure. The same parameter names can

be used in other stored procedures.

Parameter information is stored in the syscolumns system table.

Topic Objective
To introduce input
parameters.

Lead-in
Input parameters allow
information to be passed
into a stored procedure.

Partial Syntax

Note

 Module 9: Implementing Stored Procedures 27

The following example creates the Year to Year Sales stored procedure, which
returns all sales between specific dates.

CREATE PROCEDURE dbo.[Year to Year Sales]
 @BeginningDate DateTime, @EndingDate DateTime
AS
IF @BeginningDate IS NULL OR @EndingDate IS NULL
BEGIN
 RAISERROR('NULL values are not allowed', 14, 1)
 RETURN
END
SELECT O.ShippedDate,
 O.OrderID,
 OS.Subtotal,
 DATENAME(yy,ShippedDate) AS Year
FROM ORDERS O INNER JOIN [Order Subtotals] OS
 ON O.OrderID = OS.OrderID
WHERE O.ShippedDate BETWEEN @BeginningDate AND @EndingDate
GO

Example

28 Module 9: Implementing Stored Procedures

Executing Stored Procedures Using Input Parameters

! Passing Values by Parameter Name

! Passing Values by Position

EXEC AddCustomer 'ALFKI2', 'Alfreds
Futterkiste', 'Maria Anders', 'Sales
Representative', 'Obere Str. 57', 'Berlin',
NULL, '12209', 'Germany', '030-0074321'

EXEC AddCustomer 'ALFKI2', 'Alfreds
Futterkiste', 'Maria Anders', 'Sales
Representative', 'Obere Str. 57', 'Berlin',
NULL, '12209', 'Germany', '030-0074321'

EXEC AddCustomer
@CustomerID = 'ALFKI',
@ContactName = 'Maria Anders',
@CompanyName = 'Alfreds Futterkiste',
@ContactTitle = 'Sales Representative',
@Address = 'Obere Str. 57',
@City = 'Berlin',
@PostalCode = '12209',
@Country = 'Germany',
@Phone = '030-0074321'

EXEC AddCustomer
@CustomerID = 'ALFKI',
@ContactName = 'Maria Anders',
@CompanyName = 'Alfreds Futterkiste',
@ContactTitle = 'Sales Representative',
@Address = 'Obere Str. 57',
@City = 'Berlin',
@PostalCode = '12209',
@Country = 'Germany',
@Phone = '030-0074321'

You can set the value of a parameter by either passing the value to the stored
procedure, by parameter name, or by position. You should not mix the different
formats when you supply values.

Passing Values by Parameter Name
Specifying a parameter in an EXECUTE statement in the format @parameter =
value is referred to as passing by parameter name. When you pass values by
parameter name, the parameter values can be specified in any order, and you
can omit parameters that allow null values or that have a default.

The default value of a parameter, if defined for the parameter in the stored
procedure, is used when:

! No value for the parameter is specified when the stored procedure
is executed.

! The DEFAULT keyword is specified as the value for the parameter.

[[EXEC [UTE]]
 {
 [@return_status =]
 { procedure_name [;number] | @procedure_name_var
 }
 [[@parameter =] { value | @variable [OUTPUT] | [DEFAULT]]
 [,...n]
[WITH RECOMPILE]

Topic Objective
To show how to execute
stored procedures by using
the EXECUTE statement
with parameters.

Lead-in
You can pass parameter
values to a stored procedure
by reference or by position.

Delivery Tip
Recommend passing values
by parameter name
for readability.

Syntax

 Module 9: Implementing Stored Procedures 29

The following partial example creates the AddCustomer stored procedure,
which adds a new customer to the Northwind database. Notice that all
variables except for CustomerID and CompanyName are specified to allow a
null value.

USE Northwind
GO
CREATE PROCEDURE dbo.AddCustomer
 @CustomerID nchar (5),
 @CompanyName nvarchar (40),
 @ContactName nvarchar (30) = NULL,
 @ContactTitle nvarchar (30) = NULL,
 @Address nvarchar (60) = NULL,
 @City nvarchar (15) = NULL,
 @Region nvarchar (15) = NULL,
 @PostalCode nvarchar (10) = NULL,
 @Country nvarchar (15) = NULL,
 @Phone nvarchar (24) = NULL,
 @Fax nvarchar (24) = NULL
 AS
.
.
.

The following example passes values by parameter name to the AddCustomer
stored procedure. Notice that the order of the values is different from the
CREATE PROCEDURE statement.

Also notice that values for the @Region and @Fax parameters are not
specified. If the Region and Fax columns in the table allow null values, the
AddCustomer stored procedure will execute successfully. However, if the
Region and Fax columns do not allow null values, you must pass a value to a
parameter, regardless of whether you have defined the parameter to allow a null
value.

EXEC AddCustomer
 @CustomerID = 'ALFKI',
 @ContactName = 'Maria Anders',
 @CompanyName = 'Alfreds Futterkiste',
 @ContactTitle = 'Sales Representative',
 @Address = 'Obere Str. 57',
 @City = 'Berlin',
 @PostalCode = '12209',
 @Country = 'Germany',
 @Phone = '030-0074321'
.
.
.

Partial Example 1

Partial Example 2

30 Module 9: Implementing Stored Procedures

Passing Values by Position
Passing only values (without reference to the parameters to which they are
being passed) is referred to as passing values by position. When you specify
only a value, the parameter values must be listed in the order in which they are
defined in the CREATE PROCEDURE statement.

When you pass values by position, you can omit parameters where defaults
exist, but you cannot interrupt the sequence. For example, if a stored procedure
has five parameters, you can omit both the fourth and fifth parameters, but you
cannot omit the fourth parameter and specify the fifth.

The following example passes values by position to the AddCustomer stored
procedure. Notice that the @Region and @Fax parameter have no values.
However, only the @Region parameter is supplied with NULL. The @Fax
parameter is omitted because it is the last parameter.

EXEC AddCustomer 'ALFKI2', 'Alfreds Futterkiste', 'Maria
Anders', 'Sales Representative', 'Obere Str. 57', 'Berlin',
NULL, '12209', 'Germany', '030-0074321'

Partial Example 3

 Module 9: Implementing Stored Procedures 31

Returning Values Using Output Parameters

CREATE PROCEDURE dbo.MathTutor
@m1 smallint,
@m2 smallint,
@result smallint OUTPUT

AS
SET @result = @m1* @m2

GO

DECLARE @answer smallint
EXECUTE MathTutor 5,6, @answer OUTPUT
SELECT 'The result is: ', @answer

The result is: 30

CREATE PROCEDURE dbo.MathTutor
@m1 smallint,
@m2 smallint,
@result smallint OUTPUT

AS
SET @result = @m1* @m2

GO

DECLARE @answer smallint
EXECUTE MathTutor 5,6, @answer OUTPUT
SELECT 'The result is: ', @answer

The result is: 30
Results of Stored
Procedure

Results of StoredResults of Stored
ProcedureProcedure

Executing Stored
Procedure

Executing StoredExecuting Stored
ProcedureProcedure

Creating Stored
Procedure

Creating Stored Creating Stored
ProcedureProcedure

Stored procedures can return information to the calling stored procedure or
client with output parameters (variables designated with the OUTPUT
keyword). By using output parameters, any changes to the parameter that result
from the execution of the stored procedure can be retained, even after the stored
procedure completes execution.

To use an output parameter, you must specify the OUTPUT keyword in both
the CREATE PROCEDURE and EXECUTE statements. If the keyword
OUTPUT is omitted when the stored procedure is executed, the stored
procedure still executes but does not return a value. Output parameters have the
following characteristics:

! The calling statement must contain a variable name to receive the return
value. It is not possible to pass constants.

! You can use the variable subsequently in additional Transact-SQL
statements in the batch or the calling stored procedure.

! The parameter can be of any data type, except text or image.
! They can be cursor placeholders.

Topic Objective
To show how the OUTPUT
keyword can produce a
value.

Lead-in
A stored procedure can
return several values. Each
must be defined as a
variable by using the
OUTPUT keyword in both
the stored procedure and
the calling statements.

Delivery Tip
Discuss the slide example in
detail and demonstrate how
to create and use the
MathTutor stored
procedure.

32 Module 9: Implementing Stored Procedures

This example creates a MathTutor stored procedure that calculates the product
of two numbers. This example uses the SET statement. However, you can also
use the SELECT statement to dynamically concatenate a string. A SET
statement requires that you declare a variable in order to print the string �The
result is:�

CREATE PROCEDURE dbo.MathTutor
 @m1 smallint,
 @m2 smallint,
 @result smallint OUTPUT
AS
 SET @result = @m1* @m2
GO

This batch calls the MathTutor stored procedure and passes the values of 5 and
6. These values become variables, which are entered into the SET statement.

DECLARE @answer smallint
EXECUTE MathTutor 5,6, @answer OUTPUT
SELECT 'The result is: ', @answer

The @result parameter is designated with the OUTPUT keyword. SQL Server
prints the content of the @result variable when you execute the MathTutor
stored procedure. The result variable is defined as the product of the two values,
5 and 6.

The result is: 30

Example 1

Result

 Module 9: Implementing Stored Procedures 33

Explicitly Recompiling Stored Procedures

! Recompile When

$ Stored procedure returns widely varying result sets

$ A new index is added to an underlying table

$ The parameter value is atypical

! Recompile by Using

$ CREATE PROCEDURE [WITH RECOMPILE]

$ EXECUTE [WITH RECOMPILE]
$ sp_recompile

Stored procedures can be recompiled explicitly, but you should do so
infrequently, and only when:

! Parameter values are passed to a stored procedure that returns widely
varying result sets.

! A new index is added to an underlying table from which a stored procedure
might benefit.

! The parameter value that you are supplying is atypical.

SQL Server provides three methods for recompiling a stored procedure
explicitly.

Topic Objective
To discuss when to
recompile stored procedures
and which options to use.

Lead-in
Stored procedures can be
recompiled explicitly, but
you should do so
infrequently.

34 Module 9: Implementing Stored Procedures

CREATE PROCEDURE�[WITH RECOMPILE]
The CREATE PROCEDURE...[WITH RECOMPILE] statement indicates that
SQL Server does not cache a plan for this stored procedure. Instead, the option
recompiles the stored procedure each time that it is executed.

The following example creates a stored procedure called OrderCount that is
recompiled each time that it is executed.

USE Northwind
GO
CREATE PROC dbo.OrderCount
@CustomerID nchar (10)
WITH RECOMPILE
AS
 SELECT count(*) FROM [Orders Qry]
 WHERE CustomerID = @CustomerID
GO

EXECUTE�[WITH RECOMPILE]
The EXECUTE...[WITH RECOMPILE] statement creates a new execution plan
each time that the procedure is executed, if you specify WITH RECOMPILE.
The new execution plan is not stored in the cache. Use this option if the
parameter that you are passing varies greatly from those that are usually passed
to the stored procedure. Because this optimized plan is the exception rather than
the rule, when execution is completed, you should re-execute the stored
procedure by using a parameter that is typically passed. This option is also
useful if the data has changed significantly since the stored procedure was last
compiled.

This example recompiles the CustomerInfo stored procedure at the time that it
is executed.

EXEC CustomerInfo WITH RECOMPILE

sp_recompile
The sp_recompile system stored procedure recompiles the specified stored
procedure or trigger the next time that it is executed. If the @objname
parameter specifies a table or view, all stored procedures that use the named
object will be recompiled the next time that they are executed.

Use the sp_recompile system stored procedure with the tablename option if
you have added a new index to an underlying table that the stored procedure
references, and if you believe that the performance of the stored procedure will
benefit from the new index.

This example recompiles all stored procedures or triggers that reference the
Customers table in the Northwind database.

EXEC sp_recompile Customers

You can use DBCC FREEPROCCACHE to clear all stored procedure
plans from the cache.

Example 1

Example 2

Example 3

Note

 Module 9: Implementing Stored Procedures 35

Executing Extended Stored Procedures

! Are Programmed Using Open Data Services API

! Can Include C and C++ Features

! Can Contain Multiple Functions

! Can Be Called from a Client or SQL Server

! Can Be Added to the master Database Only

EXEC master..xp_cmdshell 'dir c:\'

Extended stored procedures are functions inside a DLL that increase
SQL Server functionality. They are executed in the same way as stored
procedures, and they support input parameters, return status codes, and output
parameters.

This example executes the xp_cmdshell extended stored procedure that
displays a list of files and subdirectories by executing the dir operating system
command.

EXEC master..xp_cmdshell 'dir c:\ '

Extended stored procedures:

! Are programmed by using the Open Data Services (ODS) application
programming interface (API).

! Allow you to create your own external routines in programming languages
such as Microsoft Visual C++® and Visual C.

! Can contain multiple functions.
! Can be called from a client or SQL Server.
! Can be added to the master database only.

You can execute an extended stored procedure from the master database
only, or by explicitly specifying the location master. You can also create a
user-defined system stored procedure that calls the extended stored procedure.
This allows you to execute the extended stored procedure from within
any database.

Topic Objective
To describe the features of
extended stored
procedures.

Lead-in
Extended stored
procedures�

Example 1

Note

36 Module 9: Implementing Stored Procedures

The following table includes some commonly used extended stored procedures.

Extended
stored procedure

Description

xp_cmdshell Executes a given command string as an operating system

command shell and returns output as rows of text

xp_logevent Logs a user-defined message in a SQL Server log file or in the
Windows 2000 Event Viewer.

This example executes the sp_helptext system stored procedure to display the
name of the DLL that contains the xp_cmdshell extended stored procedure.

EXEC master..sp_helptext xp_cmdshell

This result displays the DLL that contains the xp_cmdshell extended stored
procedure.

xplog70.dll

You can also create your own extended stored procedures. Generally, you call
extended stored procedures to communicate with other applications or the
operating system. For example, Sqlmap70.dll allows you to send e-mail
messages from within SQL Server by using the xp_sendmail extended stored
procedure.

When you select Development Tools during SQL Server Setup, SQL Server
installs sample extended stored procedures in the C:\Program Files\Microsoft
SQL Server\80\Tools\Devtools\Samples\ODS folder as a compressed
self-extracting executable.

Delivery Tip
Demonstrate how to
execute the xp_cmdshell
extended stored procedure
to see files that are listed in
one of the SQL Server
directories.

Example 2

Result

 Module 9: Implementing Stored Procedures 37

Handling Error Messages

! RETURN Statement Exits Query or Procedure
Unconditionally

! sp_addmessage Creates Custom Error Messages

! @@error Contains Error Number for Last Executed
Statement

! RAISERROR Statement

$ Returns user-defined or system error message

$ Sets system flag to record error

To enhance the effectiveness of stored procedures, you should include error
messages that communicate transaction status (success or failure) to the user.
You should perform the task logic, business logic, and error checking before
you begin transactions, and you should keep your transactions short.

You can use coding strategies, such as existence checks, to recognize errors.
When an error occurs, provide as much information as possible to the client.
You can check the following in your error handling logic: return codes,
SQL Server errors, and custom error messages.

RETURN Statement
The RETURN statement exits from a query or stored procedure
unconditionally. It also can return an integer status value (return code).

A return value of 0 indicates success. Return values 0 through -14 are currently
in use, and return values from -15 through -99 are reserved for future use. If a
user-defined return value is not provided, the SQL Server value is used. User-
defined return values always take precedence over those that SQL Server
supplies.

Topic Objective
To discuss the various
options for creating error
messages in stored
procedures.

Lead-in
To enhance the
effectiveness of stored
procedures, you should
include error messages that
communicate transaction
status to the user.

A demonstration of how
error messages work is
found on the following
pages.

38 Module 9: Implementing Stored Procedures

This example creates the GetOrders stored procedure that retrieves information
from the Orders and Customers tables by querying the Orders Qry view. The
RETURN statement in the GetOrders stored procedure returns the total
number of rows from the SELECT statement to another stored procedure. You
could also nest the GetOrders stored procedure within another stored
procedure.

USE Northwind
GO
CREATE PROCEDURE dbo.GetOrders
 @CustomerID nchar (10)
AS
 SELECT OrderID, CustomerID, EmployeeID
 FROM [Orders Qry]
 WHERE CustomerID = @CustomerID
 RETURN (@@ROWCOUNT)
GO

sp_addmessage
This stored procedure allows developers to create custom error messages.
SQL Server treats both system and custom error messages the same way. All
messages are stored in the sysmessages table in the master database. These
error messages also can be written automatically to the Windows 2000
application log.

This example creates a user-defined error message that requires the message to
be written to the Windows 2000 application log when it occurs.

EXEC sp_addmessage
@msgnum = 50010,
@severity = 10,
@msgtext = 'Customer cannot be deleted.',
@with_log = 'true'

@@error
This system function contains the error number for the most recently executed
Transact-SQL statement. It is cleared and reset with each statement that is
executed. A value of 0 is returned if the statement executes successfully. You
can use the @@error system function to detect a specific error number or to
exit a stored procedure conditionally.

This example creates the AddSupplierProduct stored procedure in the
Northwind database. This stored procedure uses the @@error system function
to determine whether an error occurs when each INSERT statement is executed.
If the error does occur, the transaction is rolled back.

Example 1

Example 2

Example 3

 Module 9: Implementing Stored Procedures 39

USE Northwind
GO
CREATE PROCEDURE dbo.AddSupplierProduct
 @CompanyName nvarchar (40) = NULL,
 @ContactName nvarchar (40) = NULL,
 @ContactTitle nvarchar (40)= NULL,
 @Address nvarchar (60) = NULL,
 @City nvarchar (15) = NULL,
 @Region nvarchar (40) = NULL,
 @PostalCode nvarchar (10) = NULL,
 @Country nvarchar (15) = NULL,
 @Phone nvarchar (24) = NULL,
 @Fax nvarchar (24) = NULL,
 @HomePage ntext = NULL,
 @ProductName nvarchar (40) = NULL,
 @CategoryID int = NULL,
 @QuantityPerUnit nvarchar (20) = NULL,
 @UnitPrice money = NULL,
 @UnitsInStock smallint = NULL,
 @UnitsOnOrder smallint = NULL,
 @ReorderLevel smallint = NULL,
 @Discontinued bit = NULL
AS
BEGIN TRANSACTION
 INSERT Suppliers (
 CompanyName,
 ContactName,
 Address,
 City,
 Region,
 PostalCode,
 Country,
 Phone)
 VALUES (
 @CompanyName,
 @ContactName,
 @Address,
 @City,
 @Region,
 @PostalCode,
 @Country,
 @Phone)
 IF @@error <> 0
 BEGIN
 ROLLBACK TRAN
 RETURN
 END
 DECLARE @InsertSupplierID int
 SELECT @InsertSupplierID=@@identity
 INSERT Products (
 ProductName,
 SupplierID,
 CategoryID,
 QuantityPerUnit,
 Discontinued)
 VALUES (

40 Module 9: Implementing Stored Procedures

 @ProductName,
 @InsertSupplierID,
 @CategoryID,
 @QuantityPerUnit,
 @Discontinued)
 IF @@error <> 0
 BEGIN
 ROLLBACK TRAN
 RETURN
 END
COMMIT TRANSACTION

RAISERROR Statement
The RAISERROR statement returns a user-defined error message and sets a
system flag to record that an error has occurred. You must specify an error
severity level and message state when using the RAISERROR statement.

The RAISERROR statement allows the application to retrieve an entry from the
master..sysmessages system table or build a message dynamically with user-
specified severity and state information. The RAISERROR statement can write
error messages to the SQL Server Error Log and to the Windows 2000
application log.

This example raises a user-defined error message and writes the message to the
Windows 2000 application log.

RAISERROR(50010, 16, 1) WITH LOG

The PRINT statement returns a user-defined message to the message
handler of the client; however, unlike the RAISERROR statement, the PRINT
statement does not store the error number in the @@error system function.

Example 4

Delivery Tip
The RAISERROR statement
requires that you specify the
error severity level and
message states.

Notes

 Module 9: Implementing Stored Procedures 41

Demonstration: Handling Error Messages

Follow this script as the instructor points out the error handling techniques that
are included in it.

/* UpdateCustomerPhone
Updates a customer phone number
Error checking ensures that a valid customer
identification number is supplied
*/
/*
The following user-defined message supports the
UpdateCustomerPhone stored procedure*/
EXEC sp_addmessage 50010, 16, 'CustomerID not found.',
@replace='replace'
USE Northwind
GO
CREATE PROCEDURE UpdateCustomerPhone
 @CustomerID nchar (5) = NULL,
 @Phone nvarchar (24) = NULL
AS
IF @CustomerID IS NULL
 BEGIN
 PRINT 'You must supply a valid CustomerID.'
 RETURN
END
/* Ensure a valid CustomerID is supplied' */
IF NOT EXISTS
 (SELECT * FROM Customers WHERE CustomerID = @CustomerID)
 BEGIN
 RAISERROR (50010, 16, 1) --Customer not found.
 RETURN
 END

Topic Objective
To demonstrate handling
error messages.

Lead-in
In this demonstration, we
will review the stored
procedure that you would
use to remove a member
from the Northwind
database.

Delivery Tip
You must have reviewed the
Instructor Notes for this
module for demonstration
setup information.

Review the
D09_UpdateCustomerPhone.sql
script in detail, and then
execute it.

Use the
D09_TestUpdate.sql script
to verify that the error
handling logic is working.

42 Module 9: Implementing Stored Procedures

BEGIN TRANSACTION
UPDATE Customers
 SET Phone = @Phone
 WHERE CustomerID = @CustomerID

/* Display message that the phone number for CompanyName has
been updated */
SELECT 'The phone number for ' + @CustomerID + ' has been
updated to ' +
@Phone
COMMIT TRANSACTION
GO

Delivery Tip
Point out that the UPDATE
transaction starts here. The
preceding code is related to
error checking.

Explain that this is a typical
ratio of error checking to
transaction statements.

 Module 9: Implementing Stored Procedures 43

Performance Considerations

! Windows 2000 System Monitor

$ Object: SQL Server: Cache Manager

$ Object: SQL Statistics

! SQL Profiler

$ Can monitor events

$ Can test each statement in a stored procedure

You can use the following tools to help you find the source of performance
problems that may be related to stored procedure execution.

Windows 2000 System Monitor
Windows 2000 System Monitor monitors the use of the procedure cache, in
addition to many other related activities.

The following objects and counters provide general information about the
compiled plans in the procedure cache and the number of recompilations. You
can also monitor a specific instance, such as procedure plan.

Object Counters

SQL Server: Cache Manager Cache Hit-Ratio

Cache Object Counts

Cache Pages

Cache Use Count/sec

SQL Statistics SQL Re-compilations/sec

Topic Objective
To explain some of the
performance considerations
for implementing stored
procedures.

Lead-in
You should be aware of
these performance
considerations when you
implement stored
procedures.

44 Module 9: Implementing Stored Procedures

SQL Profiler
SQL Profiler is a graphical tool that allows you to monitor events, such as
when the stored procedure has started or completed, or when individual
Transact-SQL statements within a stored procedure have started or completed.
In addition, you can monitor whether a stored procedure is found in the
procedure cache.

In the development phase of a project, you can also test stored procedure
statements one line at a time to confirm that the statements work as expected.

Use caution when you create nested stored procedures. Nesting stored
procedures adds a level of complexity that can make troubleshooting
performance problems difficult.

Note

 Module 9: Implementing Stored Procedures 45

Recommended Practices

Design Each Stored Procedure to Accomplish a Single TaskDesign Each Stored Procedure to Accomplish a Single Task

Validate Data Before You Begin TransactionsValidate Data Before You Begin Transactions

Verify Input ParametersVerify Input Parameters

Use the Same Connection Settings for All Stored ProceduresUse the Same Connection Settings for All Stored Procedures

Use WITH ENCRYPTION to Hide Text of Stored Procedures Use WITH ENCRYPTION to Hide Text of Stored Procedures

To write more effective and efficient stored procedures, follow these
recommended practices:

! Verify all input parameters at the beginning of each stored procedure to trap
missing and invalid values early.

! Design each stored procedure to accomplish a single task.
! Perform task and business logic error checking and data validation before

you begin transactions. Keep your transactions short.
! Use the same connection settings for all stored procedures.
! To conceal the text of stored procedures, use the WITH ENCRYPTION

option. Never delete entries from the syscomments system table.

Additional information on the following topic is available in SQL Server Books
Online.

Topic Search on

Procedure cache �SQL Server memory pool�

�execution plan caching and reuse�

Topic Objective
To summarize tips and
techniques for writing
effective stored procedures.

Lead-in
Use these recommended
practices to implement
stored procedures.

46 Module 9: Implementing Stored Procedures

Lab B: Creating Stored Procedures Using Parameters

Objectives
After completing this lab, you will be able to:

! Create a stored procedure by using the Create Stored Procedure Wizard.
! Test a stored procedure that includes error-handling techniques.
! Create custom error messages.
! Create stored procedures that return codes.

Prerequisites
Before working on this lab, you must have:

! Script files for this lab, which are located in C:\Moc\2073A\Labfiles\L09.
! Answer files for this lab, which are located in

C:\Moc\2073A\Labfiles\L09\Answers.

Lab Setup
To complete this lab, you must have either:

! Completed the prior lab, or
! Executed the C:\Moc\2073A\Batches\Restore09B.cmd batch file.

This command file restores the ClassNorthwind database to a state required
for this lab.

For More Information
If you require help in executing files, search SQL Query Analyzer Help for
�Execute a query�.

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will execute
a script that creates several
stored procedures, and
create and modify your own
stored procedures.

 Module 9: Implementing Stored Procedures 47

Other resources that you can use include:

! The Northwind database schema.
! Microsoft SQL Server Books Online.

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 45 minutes

48 Module 9: Implementing Stored Procedures

Exercise 1
Using the Create Stored Procedure Wizard

In this exercise, you will use the Create Stored Procedure Wizard to create a
stored procedure in the ClassNorthwind database that updates the phone
number of an employee.

! To use the Create Stored Procedure Wizard
In this procedure, you will use the Create Stored Procedure Wizard to create a
stored procedure that updates an employee�s phone number.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password password

2. Open SQL Server Enterprise Manager.
3. In the console tree, click your server.
4. On the Tools menu, click Wizards.
5. Expand Database, and then double-click Create Stored Procedure Wizard.
6. Select the ClassNorthwind database.
7. Create a stored procedure that updates an employee�s phone number. The

phone number is maintained in the Employees table. Select the Update
action for the Employees table.

8. Click the Edit button to edit the stored procedure properties.
9. Name your stored procedure UpdateEmployeePhone.
10. Include only the HomePhone column in the SET clause and only

EmployeeID in the WHERE clause.
11. In the console tree, expand the ClassNorthwind database, and then expand

Stored Procedures.
12. Verify that the UpdateEmployeePhone stored procedure is listed in the

details pane.
13. Review the properties of the UpdateEmployeePhone stored procedure.

What parameters were defined in the stored procedure?
@EmployeeID_1 and @HomePhone_2
__

__

 Module 9: Implementing Stored Procedures 49

14. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Windows Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Windows 2000 local
group, Administrators. All members of this group are automatically mapped
to the SQL Server sysadmin role.

15. Execute the UpdateEmployeePhone stored procedure to verify that it
works as expected. Update the phone number to (503) 555-1212 for
employee Nancy Davolio, whose EmployeeID is 1.
EXEC UpdateemployeePhone
@EmployeeID_1 = 1,
@HomePhone_2 = '(503)555-1212'

! To generate a script
In this procedure, you will generate and save a script for the stored procedure
that you created with the Create Stored Procedure Wizard.
1. Switch to SQL Server Enterprise Manager.
2. In the console tree, expand Databases, expand ClassNorthwind, and then

click Stored Procedures.
3. In the details pane, right-click UpdateEmployeePhone, point to All Tasks,

and then click Generate SQL Script.
4. Click OK to generate the script.
5. Save the script as UpdateEmployeePhone.sql.
6. Open and review the saved script.

50 Module 9: Implementing Stored Procedures

Exercise 2
Using Error Handling in Stored Procedures

In this exercise, you will execute a script that creates a stored procedure to add
a supplier and a product to the ClassNorthwind database. You will then test the
error handling contained in this script.

! To create and test a stored procedure
In this procedure, you will open and review a script that creates a stored
procedure to add a new supplier and a new product. Then you will test to ensure
that the stored procedure executes as expected by using it to insert a new
supplier and a new product. Finally, you will test the error handling of the
stored procedure.
1. Switch to SQL Query Analyzer.
2. Open C:\Moc\2073A\Labfiles\L09\SupplierProduct.sql, and review its

contents.
What is the benefit of using the @@error system function while inserting
values into the Suppliers and Products tables?
If the insertion fails due to a data type or constraint violation, the
transaction is rolled back.
__

__

3. Execute the script to create the SupplierProductInsert stored procedure.
4. Open C:\Moc\2073A\Labfiles\L09\SupplierProductInsert.sql. Modify the

script by entering the appropriate values to add a new supplier and a new
product. (You may use any values that you want.)

5. Execute the modified script.
6. Test the error handling in the SupplierProductInsert stored procedure by

modifying the values and placing an in-line comment in front of the
@contactname parameter. Execute your modified script to ensure that the
value will be ignored.
What error message did you receive?
You must provide Company Name, Contact Name, Address, City,
Region, Postal Code, Country, Phone, Product Name and Discontinued.
(Contact Title, Fax, Home Page, Unit Price, Units in Stock, Units on
Order, and Reorder Level can be null.)
__

__

 Module 9: Implementing Stored Procedures 51

Exercise 3
Customizing Error Messages

In this exercise, you will create a custom error message that will be logged into
the Windows 2000 Event Viewer application log that lists the supplier ID that
was inserted, along with the SQL Server user who performed the insertion.

! To create a custom error message
In this procedure, you will modify the SupplierProduct stored procedure to
call custom error messages.
C:\Moc\2073A\Labfiles\L09\Answers\CustomErrorAnswer.sql is a complete
script for this procedure.
1. Open C:\Moc\2073A\Labfiles\L09\CustomError.sql, review its contents,

and then execute it.
2. Search for the comment /* #1 Substitute student code here */, and then add a

variable to the CustomError stored procedure that will store the value of
the user name that inserts the supplier.
/* #1 Substitute Student Code Here. */

DECLARE @UserName nvarchar (60)

SELECT @UserName = suser_sname()

Use the SUSER_SNAME system function.

3. Search for the next comment /* #2 Substitute student code here */. Add a
RAISERROR statement that indicates that a new supplier has been added.
The RAISERROR statement should call error #50018 and pass the
parameters for the supplier number and the user who is executing the stored
procedure.
See SQL Server Books Online for additional information about the
RAISERROR statement.
RAISERROR (50018, 16, 1, @InsertSupplierID, @UserName)

4. Search for the next comment /* #3 Substitute student code here */ to create
the error message number 50018 by using the sp_addmessage system
stored procedure. Include the Supplier and UserName values in your error
message.
EXEC sp_addmessage 50018, 16, 'Supplier %d was inserted by
%s', 'us_english','true'

Tip

52 Module 9: Implementing Stored Procedures

5. Execute the script to create the CustomError stored procedure.
6. Open C:\Moc\2073A\Labfiles\L09\SupplierProductInsert.sql. Modify the

script by entering the appropriate values to add a new supplier and a new
product. (You may use any values that you want.)

7. Execute the modified script.
8. Review the results, and then open Event Viewer and view the application

log to verify that your information message was recorded.

 Module 9: Implementing Stored Procedures 53

Exercise 4
Using Return Codes

In this exercise, you will create a stored procedure with the OUTPUT keyword
by using the C:\Moc\2073A\Labfiles\L09\Return1.sql script. Then you will
execute that stored procedure and test it for different return codes by using the
Return2.sql and Return3.sql scripts.

! To create the OrderCount stored procedure
In this procedure, you will create a stored procedure named OrderCount that
counts the number of unfilled orders for a customer. If the customer has at least
one unfilled order, it returns a status of 1. If the customer does not have unfilled
orders, it returns a status of 0. This is an example of a nested stored procedure.
1. Using SQL Query Analyzer, open C:\Moc\2073A\Labfiles\L09\Return1.sql,

review its contents, and then execute it.
2. Type and execute the following procedure:

EXEC OrderCount 1,1

What is the result?
This command completes successfully but does not return data.
__

__

! To execute the OrderCount stored procedure with the OUTPUT option
In this procedure, you will observe the effects of using the OUTPUT option in
the OrderCount stored procedure.
1. Using SQL Query Analyzer, open C:\Moc\2073A\Labfiles\L09\Return2.sql,

review its contents, and then execute it.
This script executes the OrderCount stored procedure and passes a value of
a CustomerID that has unfilled orders.
What is the result?
Customer RATTC has 18 unfilled order(s).
__

__

2. Open C:\Moc\2073A\Labfiles\L09\Return3.sql, review its contents, and
then execute it.
This script executes the OrderCount stored procedure and passes a value of
a CustomerID that has unfilled orders.
What is the result?
Customer WOLZA has NO unfilled order(s).
__

__

54 Module 9: Implementing Stored Procedures

If Time Permits
Executing Extended Stored Procedures

In this exercise, you will execute an extended stored procedure and view the
DLL file name in which the function is defined.

! To execute an extended stored procedure
In this procedure, you will execute the xp_cmdshell extended stored procedure
to list all of the files and folders in the root of drive C.
1. Using SQL Query Analyzer, verify that you are using the master database.
2. Execute the xp_cmdshell extended stored procedure to view the list of all

files in the C:\ folder.
EXEC master..xp_cmdshell 'dir c:\'

What was the result?
The directory listing was returned as rows of text.
__

__

3. Execute the sp_helptext system stored procedure to view the definition for
xp_cmdshell.
EXEC master..sp_helptext xp_cmdshell

What was the result?
Xplog70.dll. This is the DLL that contains the extended stored
procedure function.
__

__

 Module 9: Implementing Stored Procedures 55

If Time Permits
Tracing Stored Procedures Using SQL Profiler

In this exercise, you will use the SQL Profiler graphical tool to trace individual
stored procedures.

! To trace stored procedure events by using SQL Profiler
In this procedure, you will start a SQL Profiler trace by using a custom trace
template to monitor stored procedures.
1. Open SQL Profiler.
2. On the toolbar, click New Trace.
3. Connect to the (local) server with Windows Authentication.
4. On the Events tab, add all stored procedures and Transact-SQL event

classes.
5. Click Run.
6. Switch to SQL Query Analyzer, open

C:\Moc\2073A\Labfiles\L09\SupplierProductInsert.sql, review its contents,
and then execute it.

7. Switch to SQL Profiler.
8. Stop and then review the trace.

56 Module 9: Implementing Stored Procedures

Review

! Introduction to Stored Procedures

! Creating, Executing, Modifying, and Dropping Stored
Procedures

! Using Parameters in Stored Procedures

! Executing Extended Stored Procedures

! Handling Error Messages

1. You have created a stored procedure to remove a customer from your
database. You would like to have a custom error message written to the
Windows 2000 application log when the delete transaction completes. How
would you perform this task?
Create a custom error message by specifying the @with_log parameter
in the sp_addmessage stored procedure. Issue the RAISERROR
statement in your stored procedure to raise your custom error message
when the delete transaction has been committed.

2. You want users in the payroll department to be able to insert, update, and
delete data in the payroll database. However, you do not want them to have
access to the underlying tables. How would you accomplish this goal,
besides creating a view?
Create stored procedures that accomplish each specific task. Grant
EXECUTE permission to the payroll department users on the
stored procedures.

3. You must modify a stored procedure in your database. Several users have
been granted permission to execute this stored procedure. What statement
would you execute to perform the modification without affecting the
existing permissions?
ALTER PROC. If you execute the DROP PROC and CREATE PROC
statements with the desired modifications, you must grant EXECUTE
permission to the users once again.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

Use these questions to
review module topics.

Ask students whether they
have any questions before
continuing.

