

Contents

Overview 1

Introduction to Views 2

Advantages of Views 3

Defining Views 5

Modifying Data Through Views 15

Optimizing Performance by Using Views 16

Recommended Practices 22

Lab A: Implementing Views 24

Review 33

Module 8:
Implementing Views

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BackOffice, MS-DOS, PowerPoint, Visual Basic, Visual C++, Visual Studio,
Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Project Lead: Rich Rose
Instructional Designers: Rich Rose, Cheryl Hoople, Marilyn McGill
Instructional Software Design Engineers: Karl Dehmer, Carl Raebler,
Rick Byham
Technical Lead: Karl Dehmer
Subject Matter Experts: Karl Dehmer, Carl Raebler, Rick Byham
Graphic Artist: Kirsten Larson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Copy Editor: Edward McKillop (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Support: Lori Walker (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: TestingTesting123
Classroom Automation: Lorrin Smith-Bates
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager, Data Base: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 8: Implementing Views iii

Instructor Notes
This module provides students with the information needed to create and use
views.Views provide the ability to store a predefined query as an object in the
database for later use. They offer a convenient way to hide sensitive data or the
complexities of a database design and to provide information without requiring
the user to write or execute Transact-SQL statements.

The module defines views and their advantages. The module then describes
creating views and provides examples of projections and joins. These examples
illustrate how to include computed columns and built-in functions in the view
definitions. The module then covers restrictions on modifying data through
views. The last section discusses how views can improve performance.

In the lab, students will create and test views, including views with encrypted
definitions. Students will also make changes to source tables through a view
and look at view definitions.

After completing this module, students will be able to:

! Describe the concept of a view.
! List the advantages of views.
! Define a view by using the CREATE VIEW statement.
! Modify data through views.
! Optimize performance by using views.

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

! The Microsoft® PowerPoint® file 2073A_08.ppt
! The C:\Moc\2073A\Demo\D08_Ex.sql example file, which contains all of

the example scripts from the module, unless otherwise noted in the module.

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials for this module.
! Complete the lab.

Presentation:
45 Minutes

Lab:
30 Minutes

iv Module 8: Implementing Views

Module Strategy
Use the following strategy to present this module:

! Introduction to Views
Introduce the concept of views. Mention that views are simply
stored queries.

! Advantages of Views
List the advantages of using views.

! Defining Views
Discuss how users create, alter, and drop views, meanwhile covering the
restrictions and guidelines that users must consider. Describe how users can
encrypt the view definition. List the system tables that contain the view
definition information.

! Modifying Data Through Views
Describe how to modify data by using views and list the considerations and
restrictions that users must heed.

! Optimizing Performance by Using Views
Describe how views allow you to optimize performance by storing results of
complex queries and partitioning data.

 Module 8: Implementing Views v

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing Microsoft
Official Curriculum (MOC) courseware.

The lab in this module is dependent on the classroom configuration
that is specified in the Customization Information section at the end of the
Classroom Setup Guide for course 2073A, Programming a Microsoft
SQL Server 2000 Database.

Lab Setup
The following section describes the setup requirement for the lab in this
module.

Setup Requirement
The lab in this module requires the credit database to be in a state required for
this lab. To prepare student computers to meet this requirement, perform one of
the following actions:

! Complete the prior lab
! Execute the C:\Moc\2073A\Batches\Restore08.cmd batch file.

If this course has been customized, students must execute the
C:\Moc\2073A\Batches\Restore08.cmd batch file to ensure that the lab will
function properly.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Important

Warning

 Module 8: Implementing Views 1

Overview

! Introduction to Views

! Advantages of Views

! Defining Views

! Modifying Data Through Views

! Optimizing Performance by Using Views

This module defines views and their advantages. The module then describes
creating views and provides examples of projections and joins. These examples
illustrate how to include computed columns and built-in functions in view
definitions. The module then covers restrictions on modifying data through
views. The last section discusses how views can improve performance.

After completing this module, you will be able to:

! Describe the concept of a view.
! List the advantages of views.
! Define a view by using the CREATE VIEW statement.
! Modify data through views.
! Optimize performance by using views.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
how to create, use, and
maintain data views.

2 Module 8: Implementing Views

Introduction to Views

EmployeeViewEmployeeViewEmployeeView

Lastname Lastname FirstnameFirstname

Davolio
Fuller
Leverling

Davolio
Fuller
Leverling

Nancy
Andrew
Janet

Nancy
Andrew
Janet

EmployeesEmployeesEmployees

EmployeeIDEmployeeID LastName LastName FirstnameFirstname TitleTitle

1
2
3

1
2
3

Davolio
Fuller
Leverling

Davolio
Fuller
Leverling

Nancy
Andrew
Janet

Nancy
Andrew
Janet

~~~
~~~
~~~

~~~
~~~
~~~

User�s ViewUser�s View

USE Northwind
GO
CREATE VIEW dbo.EmployeeView
AS
SELECT LastName, Firstname
FROM Employees

USE Northwind
GO
CREATE VIEW dbo.EmployeeView
AS
SELECT LastName, Firstname
FROM Employees

A view provides the ability to store a predefined query as an object in the
database for later use. The tables queried in a view are called base tables. With
a few exceptions, you can name and store any SELECT statement as a view.
Common examples of views are:

! A subset of rows or columns of a base table.
! A union of two or more base tables.
! A join of two or more base tables.
! A statistical summary of a base table.
! A subset of another view, or some combination of views and base tables.

This example creates the dbo.EmployeeView view in the Northwind database.
The view displays two columns in the Employees table.

USE Northwind
GO
CREATE VIEW dbo.EmployeeView
AS
SELECT LastName, Firstname
FROM Employees

SELECT * from EmployeeView

LastName FirstName
Davolio Nancy
Fuller Andrew
Leverling Janet
.
.
.

(9 row(s) affected)

Topic Objective
To introduce the concept
of views and provide
an example.

Lead-in
A view is an alternate way of
looking at data from one or
more tables.

Delivery Tip
Until this point in the course,
we have been writing ad-
hoc queries. With views,
we�ll begin our discussion of
storing queries as objects
(views, stored procedures,
and triggers) in the
database.

Example

Query

Result

 Module 8: Implementing Views 3

Advantages of Views

! Focus the Data for Users

Focus on important or appropriate data only

Limit access to sensitive data

! Mask Database Complexity

Hide complex database design

Simplify complex queries, including distributed queries to
heterogeneous data

! Simplify Management of User Permissions

! Improve Performance

! Organize Data for Export to Other Applications

Views offer several advantages, including focusing data for users, masking data
complexity, simplifying permission management, and organizing data for
export to other applications.

Focus the Data for Users
Views create a controlled environment that allows access to specific data while
other data is concealed. Data that is unnecessary, sensitive, or inappropriate can
be left out of a view. Users can manipulate the display of data in a view, as is
possible in a table. In addition, with the proper permissions and a few
restrictions, users can modify the data that a view produces.

Mask Database Complexity
Views shield the complexity of the database design from the user. This provides
developers with the ability to change the design without affecting user
interaction with the database. In addition, users can see a friendlier version of
the data by using names that are easier to understand than the cryptic names that
are often used in databases.

Complex queries, including distributed queries to heterogeneous data, can also
be masked through views. The user queries the view instead of writing the
query or executing a script.

Simplify Management of User Permissions
Instead of granting permission for users to query specific columns in base
tables, database owners can grant permission for users to query data through
views only. This also protects changes in the design of the underlying base
tables. Users can continue to query the view without interruption.

Topic Objective
To discuss why users would
want to create or use views.

Lead-in
Views offer several
advantages.

Delivery Tip
Point out that the
information schema views
allow SQL Server to present
system data in a consistent
manner, even when
significant changes have
been made to the system
tables.

4 Module 8: Implementing Views

Improve Performance
Views allow you to store results of complex queries. Other queries can use
these summarized results. Views also allow you to partition data. You can place
individual partitions on separate computers.

Organize Data for Export to Other Applications
You can create a view based on a complex query that joins two or more tables
and then export the data to another application for further analysis.

 Module 8: Implementing Views 5

$$$$ Defining Views

! Creating Views

! Example: View of Joined Tables

! Altering and Dropping Views

! Avoiding Broken Ownership Chains

! Locating View Definition Information

! Hiding View Definitions

This section describes creating, altering and dropping views. It also covers how
to avoid broken ownership chains, to hide view definitions, and to obtain
information on views within your database.

Topic Objective
To introduce a section on
working with views.

Lead-in
This section describes
creating, altering and
dropping views.

6 Module 8: Implementing Views

Creating Views

! Creating a View

! Restrictions on View Definitions
Cannot include ORDER BY clause
Cannot include INTO keyword

CREATE VIEW dbo.OrderSubtotalsView (OrderID, Subtotal)
AS
SELECT OD.OrderID,
SUM(CONVERT(money,(OD.UnitPrice*Quantity*(1-Discount)/100))*100)

FROM [Order Details] OD
GROUP BY OD.OrderID
GO

CREATE VIEW dbo.OrderSubtotalsView (OrderID, Subtotal)
AS
SELECT OD.OrderID,
SUM(CONVERT(money,(OD.UnitPrice*Quantity*(1-Discount)/100))*100)
FROM [Order Details] OD
GROUP BY OD.OrderID
GO

You can create views by using the Create View Wizard, SQL Server Enterprise
Manager, or Transact-SQL. You can create views only in the current database.

Creating a View
When you create a view, Microsoft® SQL Server� 2000 verifies the existence
of objects that are referenced in the view definition. Your view
name must follow the rules for identifiers. Specifying a view owner name is
optional. You should develop a consistent naming convention to distinguish
views from tables. For example, you could add the word view as a suffix
to each view object that you create. This allows similar objects (tables
and views) to be easily distinguished when you query the
INFORMATION_SCHEMA.TABLES view.

CREATE VIEW owner.view_name [(column [,n])]
[WITH {ENCRYPTION | SCHEMABINDING | VIEW_METADATA} [,n]]
AS
select_statement

[WITH CHECK OPTION]

To execute the CREATE VIEW statement, you must be a member of the
system administrators (sysadmin) role, database owner (db_owner) role, or the
data definition language administrator (db_ddladmin) role, or you must have
been granted the CREATE VIEW permission. You must also have SELECT
permission on all tables or views that are referenced within the view.

To avoid situations in which the owner of a view and the owner of the
underlying tables differ, it is recommended that the dbo user own all objects in
a database. Always specify the dbo user as the owner name when you create the
object; otherwise, the object will be created with your user name as the
object owner.

Topic Objective
To introduce creating and
dropping views.

Lead-in
Now that we have defined
views, let�s discuss how to
create a view.

Delivery Tip
Recommend that students
develop a consistent naming
convention to distinguish
views from tables and that
they specify dbo as the
owner name.

Syntax

Delivery Tip
It is possible to have been
granted permission to create
a view and not have
permission on the
underlying tables. However,
the view that is created in
this situation would not
return a result set.

 Module 8: Implementing Views 7

You specify the contents of a view by using a SELECT statement. With a few
limitations, views can be as complex as you like. You must specify column
names if:

! Any of the columns of the view are derived from an arithmetical expression,
built-in function, or constant.

! Any columns in tables that will be joined share the same name.

When you create views, it is important to test the SELECT
statement that defines the view to ensure that SQL Server returns the expected
result set. After you have written and tested the SELECT statement and verified
the results, create the view.

Restrictions on View Definitions
When you create views, consider the following restrictions:

! The CREATE VIEW statement cannot include the COMPUTE, or
COMPUTE BY clauses. The CREATE VIEW statement cannot include the
INTO keyword.

! The CREATE VIEW statement can include the ORDER BY clause, only if
the TOP keyword is used.

! Views cannot reference temporary tables.
! Views cannot reference more than 1,024 columns.
! The CREATE VIEW statement cannot be combined with other Transact-

SQL statements in a single batch.

Here is an example of a view that creates a column (Subtotal) that calculates
the subtotals of an order from the UnitPrice, Quantity, and Discount columns.

CREATE VIEW dbo.OrderSubtotalsView (OrderID, Subtotal)
AS
SELECT OD.OrderID,
 SUM(CONVERT
 (money,(OD.UnitPrice*Quantity*(1- Discount)/100))*100)
FROM [Order Details] OD
GROUP BY OD.OrderID
GO

This example queries the view to see the results.

SELECT * FROM OrderSubtotalsView

OrderID Subtotal

10271 48.0000
10977 2233.0000
10440 4924.1400
.
.
.

(830 row(s) affected)

Delivery Tip
You can specify column
names in one of two ways:
in the SELECT statement,
by using column aliasing, or
in the CREATE VIEW
statement.

Important

Example 1

Example 2

Result

8 Module 8: Implementing Views

Example: View of Joined Tables

OrderIDOrderIDOrderID

10663
10827
10427
10451
10515

10663
10827
10427
10451
10515

CustomerIDCustomerIDCustomerID
BONAP
BONAP
PICCO
QUICK
QUICK

BONAP
BONAP
PICCO
QUICK
QUICK

~~~ 
~~~ 
~~~ 
~~~ 
~~~

~~~ 
~~~ 
~~~ 
~~~ 
~~~

RequiredDateRequiredDateRequiredDate
1997-09-24
1998-01-26
1997-02-24
1997-03-05
1997-05-07

1997-09-24
1998-01-26
1997-02-24
1997-03-05
1997-05-07

ShippedDateShippedDateShippedDate
1997-10-03
1998-02-06
1997-03-03
1997-03-12
1997-05-23

1997-10-03
1998-02-06
1997-03-03
1997-03-12
1997-05-23

Orders Customers

ShipStatusViewUSE Northwind
GO
CREATE VIEW dbo.ShipStatusView
AS
SELECT OrderID, RequiredDate, ShippedDate,

ContactName
FROM Customers c INNER JOIN Orders o

ON c.CustomerID = O.CustomerID
WHERE RequiredDate < ShippedDate

USE Northwind
GO
CREATE VIEW dbo.ShipStatusView
AS
SELECT OrderID, RequiredDate, ShippedDate,

ContactName
FROM Customers c INNER JOIN Orders o

ON c.CustomerID = O.CustomerID
WHERE RequiredDate < ShippedDate

CustomerIDCustomerIDCustomerID
BONAP
PICCO
QUICK

BONAP
PICCO
QUICK

CompanyNameCompanyNameCompanyName
Bon app'
Piccolo und mehr
QUICK-Stop

Bon app'
Piccolo und mehr
QUICK-Stop

ContactNameContactNameContactName
Laurence Lebihan
Georg Pipps
Horst Kloss

Laurence Lebihan
Georg Pipps
Horst Kloss

OrderIDOrderIDOrderID
10264
10271
10280

10264
10271
10280

1996-08-21
1996-08-29
1996-09-11

1996-08-21
1996-08-29
1996-09-11

ShippedDateShippedDateShippedDate
1996-08-23
1996-08-30
1996-09-12

1996-08-23
1996-08-30
1996-09-12

ContactNameContactNameContactName
Laurence Lebihan
Georg Pipps
Horst Kloss

Laurence Lebihan
Georg Pipps
Horst Kloss

You often create views to provide a convenient way of looking at information
from two or more joined tables in one central location.

In this example, ShipStatusView joins the Customers and Orders tables.

USE Northwind
GO
CREATE VIEW dbo.ShipStatusView
AS
SELECT OrderID, ShippedDate, ContactName
FROM Customers c INNER JOIN Orders o
 ON c.CustomerID = O.CustomerID
WHERE RequiredDate < ShippedDate

SELECT * FROM ShipStatusView

OrderID ShippedDate ContactName
10264 1996-08-23 Maria Larsson
10271 1996-08-30 Art Braunschweiger
10280 1996-09-12 Christina Berglund
.
.
.

(37 row(s) affected)

Topic Objective
To give an example of a
view of two or more joined
tables.

Lead-in
You can create several
types of views. One type is
a subset of columns, as we
saw in an earlier slide.
Another, more common type
is a view of two or more
joined tables.

Example 1

Result

 Module 8: Implementing Views 9

Altering and Dropping Views

! Altering Views

Retains assigned permissions

Causes new SELECT statement and options to replace
existing definition

! Dropping Views

USE Northwind
GO
ALTER VIEW dbo.EmployeeView
AS
SELECT LastName, FirstName, Extension
FROM Employees

USE Northwind
GO
ALTER VIEW dbo.EmployeeView
AS
SELECT LastName, FirstName, Extension
FROM Employees

DROP VIEW dbo.ShipStatusViewDROP VIEW dbo.ShipStatusView

You often alter views in response to requests from users for additional
information or to changes in the underlying table definition. You can alter a
view by dropping and recreating it or by executing the ALTER VIEW
statement.

Altering Views
The ALTER VIEW statement changes the definition of a view, including
indexed views, without affecting dependent stored procedures or triggers. This
allows you to retain permissions for the view. This statement is subject to the
same restrictions as the CREATE VIEW statement. If you drop a view and then
recreate it, you must reassign permissions to it.

ALTER VIEW owner.view_name
[(column [,...n])]
[WITH {ENCRYPTION | SCHEMABINDING | VIEW_METADATA} [,...n]]
AS
select_statement
[WITH CHECK OPTION]

If you use the WITH CHECK OPTION, WITH ENCRYPTION, WITH
SCHEMABINDING, or WITH VIEW_METADATA option when you create
the view, you must include it in the ALTER VIEW statement if you want to
retain the functionality that the option provides.

Topic Objective
To introduce how to alter a
view.

Lead-in
It is possible to alter a view.

Syntax

Note

10 Module 8: Implementing Views

The following example alters EmployeeView to add the Extension column.

USE Northwind
GO
ALTER VIEW dbo.EmployeeView
AS
SELECT LastName, FirstName, Extension
FROM Employees
SELECT * from dbo.EmployeeView

LastName FirstName Extension
Davolio Nancy 5467
Fuller Andrew 3457
Leverling Janet 3355
.
.
.
(9 row(s) affected)

If you define a view with a SELECT * statement, and then alter the
structure of the underlying tables by adding columns, the new columns do not
appear in the view. When all columns are selected in a CREATE VIEW
statement, the column list is interpreted only when you first create the view. To
see the new columns in the view, you must alter the view.

Dropping Views
If you no longer need a view, you can remove its definition from the database
by executing the DROP VIEW statement. Dropping a view removes its
definition and all permissions assigned to it. Furthermore, if users query any
views that reference the dropped view, they receive an error message. However,
dropping a table that references a view does not drop the view automatically.
You must drop it explicitly.

The permission to drop a view goes to the view owner and is
nontransferable. This is the default. However, the system administrator or
database owner can drop any object by specifying the owner name in the DROP
VIEW statement.

Example

Query

Result

NoteDelivery Tip
When the view is created,
the column list is stored in
the syscolumns table.

Note

 Module 8: Implementing Views 11

Avoiding Broken Ownership Chains

GRANT SELECT ON view2 TO pierreGRANT SELECT ON view2 TO pierre

SELECT * FROM maria.view2SELECT * FROM maria.view2

! Dependent Objects with
Different Owners

! Example:

Maria executes:

Pierre executes:

maria.view2

lucia.view1

lucia.table1

SQL Server allows the owner of the original object to retain control over users
who are authorized to access the object.

Dependent Objects with Different Owners
View definitions depend on underlying objects (views or tables). These
dependencies can be thought of as the ownership chain. If the owner of a view
also owns the underlying objects, the owner only has to grant permission for the
view. When the object is used, permissions are checked only on the view.

To avoid broken ownership chains, the dbo user should own all views. When
the object is used, permissions are checked on each dependent object with a
different owner.

Maria creates view2. With the following statement, she grants permission to
Pierre to query it.

GRANT select ON view2 TO pierre

However, maria.view2 depends on an object (view1) owned by another user
(Lucia). Permissions are checked on each dependent object with a different
owner.

Pierre queries the view by using the following statement:

SELECT * FROM maria.view2

Because maria.view2 depends on lucia.view1, SQL Server checks the
permissions on maria.view2 and lucia.view1. If Lucia has previously granted
permission to Pierre on view1, Pierre is allowed access. If Lucia has not
previously granted permission to Pierre, access is denied, allowing Lucia to
retain control over individuals who are authorized to access the objects that she
creates.

Topic Objective
To introduce the concept of
ownership chains.

Lead-in
To avoid broken ownership
chains, the dbo user should
own all views.

Example

Syntax

Syntax

12 Module 8: Implementing Views

Locating View Definition Information

! Locating View Definitions

Not available if view was created using
WITH ENCRYPTION option

! Locating View Dependencies

Lists objects upon which view depends

Lists objects that depend on a view

You may want to see the definition of a view in order to alter the view
definition or to understand how its data is derived from the base tables.

Locating View Definitions
You can locate view definition information with SQL Server Enterprise
Manager or by querying the following views and system tables.

Information schema view or system table Displays information on

INFORMATION_SCHEMA.TABLES or sysobjects View names.

INFORMATION_SCHEMA.VIEW_TABLE_USAGE or sysdepends Base object names.

INFORMATION_SCHEMA.VIEWS or syscomments View definition.

INFORMATION_SCHEMA.VIEW_COLUMN_USAGE or syscolumns Columns that are defined in a view.

INFORMATION_SCHEMA.VIEW_TABLE_USAGE and
INFORMATION_SCHEMA.VIEW_COLUMN_USAGE display
information for your user name only.

Topic Objective
To describe how to see
information about views.

Lead-in
As you create, alter, or drop
tables, you will want to see
information about the views
in your database.

Note

 Module 8: Implementing Views 13

To display the text that was used to create a view, use SQL Server Enterprise
Manager, query INFORMATION_SCHEMA.VIEWS, or execute the
sp_helptext system stored procedure with the view name as the parameter.

sp_helptext objname

Locating View Dependencies
To retrieve a report of the tables or views on which a view depends and of
objects that depend on a particular view, use SQL Server Enterprise Manager or
execute the sp_depends system stored procedure.

You should view dependencies before you drop any object. Before you alter or
drop a table, use the sp_depends system stored procedure to determine whether
any objects reference the table.

sp_depends objname

Syntax

Delivery Tip
Demonstrate how to display
dependency information by
using SQL Server
Enterprise Manager.

Syntax

14 Module 8: Implementing Views

Hiding View Definitions

! Use the WITH ENCRYPTION Option

! Do Not Delete Entries in the syscomments Table

USE Northwind
GO
CREATE VIEW dbo.[Order Subtotals]

WITH ENCRYPTION
AS
SELECT OrderID,
Sum(CONVERT(money,(UnitPrice*Quantity*(1-Discount)/100))*100)

AS Subtotal
FROM [Order Details]
GROUP BY OrderID
GO

USE Northwind
GO
CREATE VIEW dbo.[Order Subtotals]

WITH ENCRYPTION
AS
SELECT OrderID,
Sum(CONVERT(money,(UnitPrice*Quantity*(1-Discount)/100))*100)

AS Subtotal
FROM [Order Details]
GROUP BY OrderID
GO

Because users may display the definition of a view by using SQL Server
Enterprise Manager, by querying INFORMATION_SCHEMA.VIEWS, or by
querying the syscomments system table, you might want to hide certain view
definitions.

Use the WITH ENCRYPTION Option
You can encrypt the syscomments table entries that contain the text of the
CREATE VIEW statement by specifying the WITH ENCRYPTION option in
the view definition.

Before you encrypt a view, ensure that the view definition (script) is saved to a
file. To decrypt the text of a view, you must drop the view and recreate it, or
alter the view and use the original syntax.

In this example, dbo.[Order Subtotals] is created by using the WITH
ENCRYPTION option so that the view definition is hidden.

USE Northwind
GO
CREATE VIEW dbo.[Order Subtotals]
 WITH ENCRYPTION
AS
SELECT OrderID,
 Sum(CONVERT(money,(UnitPrice*Quantity*(1-Discount)/100))*100)
 AS Subtotal
FROM [Order Details]
GROUP BY OrderID

Do Not Delete Entries in the syscomments Table
When security considerations require that the view definition be unavailable to
users, use encryption. Never delete entries from the syscomments table. This
prevents you from using the view, and it prevents SQL Server from recreating
the view when you upgrade a database to a newer version of SQL Server.

Topic Objective
To discuss how to encrypt
view definitions.

Lead-In
You can encrypt the
definition of views to hide
the details of the base
tables that the view queries.

Example

 Module 8: Implementing Views 15

Modifying Data Through Views

! Cannot Affect More Than One Underlying Table

! Cannot Be Made to Certain Columns

! Can Cause Errors If They Affect Columns That Are Not
Referenced in the View

! Are Verified If the WITH CHECK OPTION Has Been
Specified

Views do not maintain a separate copy of data. Instead, they show the result set
of a query on one or more base tables. Therefore, whenever you modify data in
a view, you are actually modifying the base table.

With some restrictions, you can insert, update, or delete table data freely
through a view. In general, the view must be defined on a single table and must
not include aggregate functions or GROUP BY clauses in the SELECT
statement.

Specifically, modifications that are made by using views:

! Cannot affect more than one underlying table.
You can modify views that are derived from two or more tables, but each
update or modification can affect only one table.

! Cannot be made on certain columns.
SQL Server does not allow you to change a column that is the result of a
calculation, such as columns that contain computed values, built-in
functions, or row aggregate functions.

! Can cause errors if modifications affect columns that are not referenced in
the view.
For example, you will receive an error message if you insert a row into a
view that is defined on a table that contains columns that are not referenced
in the view and that do not allow NULLs or contain default values.

! Are verified if the WITH CHECK OPTION has been specified in the view
definition.
The WITH CHECK OPTION forces all data modification statements that
are executed against the view to adhere to certain criteria. These criteria are
specified within the SELECT statement that defines the view. If the changed
values are out of the range of the view definition, SQL Server rejects the
modifications.

Topic Objective
To introduce considerations
of which students must be
aware when they modify
data with views.

Lead-in
Data changes that you
make through a view modify
the underlying tables.

16 Module 8: Implementing Views

$$$$ Optimizing Performance by Using Views

! Performance Considerations

! Using Indexed Views

! Using Views to Partition Data

This section describes performance considerations for using views, and how
views allow you optimize performance by storing results of complex queries
and partitioning data.

Topic Objective
To describe how to optimize
performance by using views.

Lead-in
This section describes how
to optimize performance by
using views.

 Module 8: Implementing Views 17

Performance Considerations

USE Northwind
GO
CREATE VIEW dbo.TopSalesView
AS
SELECT *
FROM dbo.TotalPurchaseView
WHERE Subtotal > 50000
GO

USE Northwind
GO
CREATE VIEW dbo.TopSalesView
AS
SELECT *
FROM dbo.TotalPurchaseView
WHERE Subtotal > 50000
GO

TotalPurchaseViewTotalPurchaseTotalPurchaseViewView

11 ~~ ~~ ~~ ~~

22 ~~ ~~ ~~ ~~

33 ~~ ~~ ~~ ~~

44 ~~ ~~ ~~ ~~

55 ~~ ~~ ~~ ~~

66 ~~ ~~ ~~ ~~

CustomersCustomersCustomers
11 ~~ ~~ ~~ nn

22 ~~ ~~ ~~ nn

33 ~~ ~~ ~~ yy

44 ~~ ~~ ~~ yy

55 ~~ ~~ ~~ nn

66 ~~ ~~ ~~ yy

OrdersOrdersOrders
11 ~~ ~~ ~~ nn

22 ~~ ~~ ~~ nn

33 ~~ ~~ ~~ yy

44 ~~ ~~ ~~ yy

55 ~~ ~~ ~~ nn

66 ~~ ~~ ~~ yy

Order DetailsOrder DetailsOrder Details
11 ~~ ~~ ~~ ~~

22 ~~ ~~ ~~ ~~

33 ~~ ~~ ~~ ~~

44 ~~ ~~ ~~ ~~

55 ~~ ~~ ~~ ~~

66 ~~ ~~ ~~ ~~

SELECT *
FROM dbo.TopSales
WHERE CompanyName = 'Ernst Handel'

SELECT *
FROM dbo.TopSales
WHERE CompanyName = 'Ernst Handel'

TopSalesViewTopSalesViewTopSalesView

~~ ~~ ~~

~~ ~~ ~~

~~ ~~ ~~

When views that join several tables and evaluate complex expressions are
nested within another view, the immediate source of any performance problems
may be difficult to determine. Therefore, you may want to consider creating
separate view definitions rather than nesting views.

In the following example, TopSalesView queries a subset of rows from
TotalPurchaseView.

USE Northwind
GO
CREATE VIEW dbo.TopSalesView
AS
SELECT *
FROM dbo.TotalPurchaseView
WHERE Subtotal > 50000
GO

The view definition of dbo.TopSalesView hides the complexity of the
underlying query that is used to create TotalPurchaseView, which joins three
base tables.

Topic Objective
To show how to create a
view that contains another
view.

Lead-in
If you want to use work that
you�ve already done, you
can create a view of another
view. However, you should
be aware of potential
performance problems.

Example

Delivery Tip
Ask: How far can you nest a
view of a view?

Answer: Available
resources are the only limit.
Generally, do not nest more
than three levels in order to
avoid hiding potential
performance problems.

18 Module 8: Implementing Views

USE Northwind
GO
CREATE VIEW dbo.TotalPurchaseView
AS
SELECT CompanyName, Sum(CONVERT(money,
 (UnitPrice*Quantity*(1-Discount)/100))*100) AS Subtotal
FROM Customers c INNER JOIN Orders o
 ON c.CustomerID=o.CustomerID
 INNER JOIN [Order Details] od
 ON o.OrderID = od.OrderID
GROUP BY CompanyName
GO

If users experience any performance problems when they execute the following
query to list the available French language books, the source of the problem
will not be readily apparent.

SELECT *
FROM dbo.TopSales
WHERE CompanyName = 'Ernst Handel'

CompanyName Subtotal
Ernst Handel

104874.98

(1 row(s) affected)

Query

Result

 Module 8: Implementing Views 19

Using Indexed Views

! Indexed Views Store the Result Sets in the Database

! Creating an Indexed View

! Guidelines for Creating Indexed Views

Use when:

Performance gains outweigh maintenance costs

Underlying data is infrequently updated

Queries perform many joins and aggregations

! Restrictions on Creating Indexed Views

You can create indexes on views. An indexed view stores the result set of a
view in the database. Because of the fast retrieval time, you can use indexed
views to improve query performance.

Creating an Indexed View
Create an indexed view by implementing a UNIQUE CLUSTERED index on a
view. The results of the view are stored in the leaf-level pages of the clustered
index. After you create the UNIQUE CLUSTERED index, you can create other
indexes on that view.

An indexed view automatically reflects modifications made to data in the base
tables. As data changes, the UNIQUE CLUSTERED index is updated.

Guidelines for Creating Indexed Views
The query optimizer automatically determines whether a given query will
benefit from using an indexed view. It can determine this even if the query does
not reference the indexed view. As a general practice, allow the query optimizer
to determine when to use indexed views.

By using the Index Tuning Wizard, you can greatly enhance your ability to
determine the best mix of indexes and indexed views to optimize query
performance.

Create indexed views when:

! The performance gain of improved speed in retrieving results outweighs the
increased maintenance cost.

! The underlying data is infrequently updated.
! Queries perform a significant amount of joins and aggregations that either

process many rows or are performed frequently by many users.

Topic Objective
To describe indexed views.

Lead-in
You can create indexes on
views.

20 Module 8: Implementing Views

Restrictions on Creating Indexed Views
Consider the following guidelines when you create indexed views:

! The first index that you create on a view must be a unique clustered index.
! You must create the view with the SCHEMABINDING option.
! The view can reference base tables, but it cannot reference other views.
! You must use two-part names to reference tables and user-defined functions.
! Subsequent connections must have the same option settings to use the

indexed view.

You should use the IsIndexable property of the OBJECTPROPERTY
function to make sure that you can index a view.

Note

 Module 8: Implementing Views 21

Using Views to Partition Data

! You Can Use Views to Partition Data Across Multiple
Servers or Instances of SQL Server

! How SQL Server Uses Views to Partition Data

! How Partitioned Views Improve Performance

You can use views to partition data across multiple databases or instances of
SQL Server to improve performance.

How SQL Server Uses Views to Partition Data
You can use the UNION set operator within a view to combine the results of
two or more queries from separate tables into a single result set. This appears to
the user as a single table called a partitioned view. You can update partitioned
views even though they reference multiple tables.

Partitioned views can be based on data from multiple heterogeneous sources,
such as remote servers, not just tables in the same database. This allows you to
distribute database processing across a group of servers. The group of servers
can support the processing needs for large e-commerce applications or
corporate data centers.

How Partitioned Views Improve Performance
If the tables in a partitioned view are on different servers, or on a computer with
multiple processors, each table involved in the query can be scanned in parallel,
thereby improving query performance. In addition, maintenance tasks, such as
rebuilding indexes or backing up a table, can execute faster.

You cannot create an index on a partitioned view. The view definition
required to build the indexed view only allows two-part names; a partitioned
view requires the use of three- or four-part names, such as,
Servername.databasename.ownername.objectname.

Topic Objective
To introduce partitioned
views.

Lead-in
You can use views to
partition data across
multiple databases or
instances of SQL Server.

Note

22 Module 8: Implementing Views

Recommended Practices

dbo Should Own All Viewsdbo Should Own All Views

Verify Object Dependencies Before You Drop ObjectsVerify Object Dependencies Before You Drop Objects

Carefully Evaluate Creating Views Based on ViewsCarefully Evaluate Creating Views Based on Views

Never Delete Entries in the syscomments TableNever Delete Entries in the syscomments Table

Use a Standard Naming ConventionUse a Standard Naming Convention

The following recommended practices should help you use and manage views
in your databases:

! You should develop a consistent naming convention to distinguish views
from tables.

! Specify dbo as the owner when you create views. The dbo should own all
objects referenced in the view definition. This prevents the need to specify
the owner name when you query the view, because the database owner is
the default owner. The database owner also has permission on all underlying
objects in the database, thereby preventing potential broken ownership
chains.

! Verify object dependencies before you drop objects from the database.
Execute the sp_depends system stored procedure, or display the
dependencies in SQL Server Enterprise Manager to ensure that
dependencies do not exist on an object that you plan to drop.

! Never delete entries in the syscomments system table. If your application
requires that the definition is invisible to others, include the WITH
ENCRYPTION option with either the CREATE VIEW or ALTER VIEW
statement. Be sure to save your script definition before you encrypt the
script.

! Carefully evaluate whether to create views based on views. They can hide
complexities and could be the source of performance problems.

Topic Objective
To present recommended
practices for using views.

Lead-in
The following are
recommended practices for
using views.

 Module 8: Implementing Views 23

Additional information on the following topics is available in SQL Server
Books Online.

Topic Search on

CREATE VIEW �create view�

ALTER VIEW �alter view�

DROP VIEW �drop view�

Broken ownership chains �ownership chain�

Generating SQL scripts �documenting and scripting databases�

24 Module 8: Implementing Views

Lab A: Implementing Views

Objectives
After completing this lab, you will be able to:

! Create a view using a wizard.
! Alter a view to encrypt its definition.
! Alter a view by using WITH CHECK OPTION.
! Use information schema to obtain information about views.

Prerequisites
Before working on this lab, you must have:

! Script files for this lab, which are located in C:\Moc\2073A\Labfiles\L08.
! Answer files for this lab, which are located in

C:\Moc\2073A\Labfiles\L08\Answers.

Lab Setup
To complete this lab, you must have either:

! Completed the prior lab, or
! Executed the C:\Moc\2073A\Batches\Restore08.cmd batch file.

This command file restores the ClassNorthwind database to a state required
for this lab.

For More Information
If you require help with executing files, search SQL Query Analyzer Help for
�Execute a query�.

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will create,
test, and modify views.

Explain the lab objectives.

 Module 8: Implementing Views 25

Other resources that you can use include:

! The Northwind database schema.
! Microsoft SQL Server Books Online.

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 30 minutes

26 Module 8: Implementing Views

Exercise 1
Creating and Testing Views

In this exercise, you will create views to manage daily requests on the
ClassNorthwind database. You will use the Create View Wizard and execute a
script that creates several views. Finally, you will query the views to verify that
you received the expected results.

! To use the Create View Wizard
In this procedure, you will use the Create View Wizard to quickly create a
view.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password password

2. Open SQL Server Enterprise Manager.
3. In the console tree, click your server.
4. On the Tools menu, click Wizards.
5. Expand Database, and then double-click Create View Wizard.
6. Use the information in the following table to create a view that lists the

products from a particular supplier.

Option Value

Select a database ClassNorthwind

Select tables Products

Select columns ProductID, ProductName, SupplierID, CategoryID,
QuantityPerUnit, UnitPrice, Discontinued

Define restriction WHERE SupplierID = 14

Name the view FormaggiProductsView

7. Query the view to ensure that you received the expected result set.

 Module 8: Implementing Views 27

! To create views from a script
In this procedure, you will execute a script to create views.
1. Open SQL Query Analyzer and, if requested, log in to the (local) server

with Microsoft Windows® Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Microsoft
Windows 2000 local group, Administrators. All members of this group are
automatically mapped to the SQL Server sysadmin role.

2. Open, review, and execute Labfiles\L08\CreaView.sql to create the
following views.

View name View description

FormaggiProductsView All products from supplier ID of 14

Customer and
Suppliers by City

All customers and all suppliers listed (UNION)

Current Product List All products that are not discontinued

Orders Qry All customers orders and order information

Products Above
Average Price

All products that are priced above the average product
unit price

Products by Category All products listed by category

Invoices All invoice information

Order Details Extended All order details extended price information

Sales by Category All sales for 1997 listed by category

3. Open a new query window and execute the sp_depends system stored
procedure. List the tables on which the Order Details Extended view
depends, as well as objects that depend on Order Details Extended.
Tables: Order details and Products. View: Sales by Category.
__

__

4. Switch to SQL Server Enterprise Manager to determine the dependencies on
the Orders table.

5. In the console tree, expand the ClassNorthwind database, and then click
Tables.

6. In the details pane, right-click the Orders table; on the shortcut menu, click
All Tasks, and then click Display Dependencies.
What objects are dependent on the Orders table?
Tables: Order Details. Views: Invoices, Orders Qry, Product Sales for
1997, Quarterly Orders, Sales by Category, and Sales Totals by
Amount.
__

__

28 Module 8: Implementing Views

Exercise 2
Encrypting a View Definition

In this exercise, you will alter a view to encrypt its definition so that it will be
invisible.

! To alter and encrypt the Sales by Category view
In this procedure, you will use SQL Server Enterprise Manager to display the
script that created the Sales by Category view. Then, you will alter the view to
encrypt the script. L08\Answers\EncryptView.sql is a completed script for
this procedure.
1. Open SQL Server Books Online to the topic �How to generate a script

(Enterprise Manager).�
2. Use the procedure in SQL Server Books Online to generate a script for the

Sales by Category view.
3. Save your script as SaleByCatView.sql

If you display the properties of the view or select preview when you
generate the script, you can copy and paste the view definition into a query
window for modification.

4. In a query window, revise the script to alter Sales by Category so that it is
created by using the WITH ENCRYPTION option.

5. Execute the modified script to alter Sales by Category.
6. Save your revised script as SaleByCatView.sql

Note

 Module 8: Implementing Views 29

! To test that the statements have been encrypted
In this procedure, you will use the sp_helptext system stored procedure
and SQL Server Enterprise Manager to observe the effect of using the
encryption option.
1. Execute the sp_helptext system stored procedure that displays the script

that created Sales by Category.
The Results window will display the following statement: �The object�s
comments have been encrypted.�

2. In SQL Server Enterprise Manager, in the details pane, right-click Sales by
Category, and then click Properties.
Can you see the CREATE VIEW syntax that was used to create Sales by
Category?
No. The syntax is encrypted.
__

3. How would you decrypt the Sales by Category view?
By altering the view and including the original syntax, without
including the WITH ENCRYPTION option. This assumes that you
have previously saved the script with the original syntax.
__

30 Module 8: Implementing Views

Exercise 3
Modifying Data Through Views

In this exercise, you will alter FormaggiProductsView to include WITH
CHECK OPTION so that data modifications can only be made that adhere to
the view definition.

! To alter FormaggiProductsView to enable WITH CHECK OPTION
In this procedure, you will alter FormaggiProductsView to enable WITH
CHECK OPTION. L08\Answers\Supplier14.sql is a completed script for this
procedure.
1. Generate a script for the FormaggiProductsView view.
2. Modify your script to enable WITH CHECK OPTION.
3. Execute the script and save the file with your modifications.

! To update the title table through FormaggiProductsView
In this procedure, you will update the Products table with data that is out of the
range of FormaggiProductsView. You then will observe the results.
1. Write an UPDATE statement to change the products listed in

FormaggiProductsView from supplier 14 to supplier 12, where product ID
equals 31.
UPDATE dbo.FormaggiProductsView
SET SupplierID = 12 WHERE ProductID = 31

2. Execute the UPDATE statement.
What was the result?
Error Message 550: The attempted insert or update failed because the
target view either specifies WITH CHECK OPTION or spans a view
that specifies WITH CHECK OPTION and one or more rows resulting
from the operation did not qualify under the CHECK OPTION
constraint.
__

__

 Module 8: Implementing Views 31

Exercise 4
Locating View Definitions

In this exercise, you will query the information schema views to obtain
information about the views that you have created in the ClassNorthwind
database. L08\Answers\Schema.sql is a completed script for this exercise.

! To display information about views
In this procedure, you will query the information schema views to display
details about views in the ClassNorthwind database.
1. Verify that you are using the ClassNorthwind database.
2. Query INFORMATION_SCHEMA.VIEWS to display all views and

their definitions.
SELECT *
FROM INFORMATION_SCHEMA.VIEWS

What information was displayed about FormaggiProductsView and
Products Above Average Price?
FormaggiProductsView displays CASCADE in the check_option
column. The Sales by Category view definition is encrypted in the
view_definition column.
__

__

3. Which information schema view displays a list of table and view names?
INFORMATION_SCHEMA.TABLES
__

__

4. Query INFORMATION_SCHEMA.VIEW_COLUMN_USAGE to
display a list of columns that are referenced in the Invoices view.
SELECT *
FROM INFORMATION_SCHEMA.VIEW_COLUMN_USAGE
WHERE view_name = 'Invoices'

32 Module 8: Implementing Views

5. Query INFORMATION_SCHEMA.VIEW_TABLE_USAGE to display
a list of tables that are referenced in the Sales by Category view.
SELECT *
FROM INFORMATION_SCHEMA.VIEW_TABLE_USAGE
WHERE view_name = 'Sales by Category '

What tables were listed?
Tables: Categories, Orders, and Products. Views: Order Details
Extended.
__

__

Why were you able to see the tables that are referenced in Sales by
Category when this view is encrypted?
The WITH ENCRYPTION option only encrypts the view definition in
the syscomments system table. Tables or views that are referenced in a
view are listed in the sysobjects system table.
__

__

Which system tables, system functions, or system stored procedures could
also have been used to display information about views?
Sysobjects, sysdepends, syscomments, syscolumns,
OBJECTPROPERTY, OBJECT_ID, OBJECT_NAME, sp_helptext,
sp_help, and sp_depends.
__

__

 Module 8: Implementing Views 33

Review

! Introduction to Views

! Advantages of Views

! Defining Views

! Modifying Data Through Views

! Optimizing Performance by Using Views

1. What are the benefits of views?
Users focus only on data that they need; user manipulation of data is
simplified; database and query complexity is hidden from users,
allowing users to see friendly names. Views provide a security
mechanism by allowing users access to data only in views. Creating
indexes on views and partitioning data by using views can optimize
performance.

2. You have developed a query that joins the Customer, Orders, and Order
Details tables to list the details of each customer order, such as the quantity
of an item and the date that delivery is required. When customers change an
existing order, employees need to be able to update the Orders and Order
Details tables. How would you accomplish this task without granting
permission on the underlying tables?
Create a view on your query named OrderDetailsView. Grant update
permissions on the RequiredDate and Quantity columns in the view.
This ensures that employees can update these columns only in the
Orders and Order Details tables.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

34 Module 8: Implementing Views

3. What is the benefit of using the WITH CHECK OPTION in your
view definition?
The option forces modification statements that are executed against the
view to adhere to the criteria that are set within the SELECT statement
that defines the view.

4. What are some considerations to remember when you use views?
Objects that are referenced in a view are verified when a view is
created; views can be altered so that the permissions that are assigned
to the view are maintained. Dropping or altering an underlying table
affects the view; if the owner of a view is not the dbo user, the user
name must be specified as part of the view name. The same owner
should own all objects upon which a view depends in order to avoid
broken ownership chains. Hidden complexity can make it difficult to
determine the source of performance problems.

