

Contents

Overview 1

Creating Indexes 2

Creating Index Options 11

Maintaining Indexes 16

Lab A: Creating and Maintaining Indexes 25

Introduction to Statistics 35

Querying the sysindexes Table 45

Setting Up Indexes Using the
Index Tuning Wizard 47

Performance Considerations 49

Recommended Practices 50

Lab B: Viewing Index Statistics 52

Review 61

Module 7: Creating and
Maintaining Indexes

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BackOffice, MS-DOS, PowerPoint, Visual Basic, Visual C++, Visual Studio,
Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Project Lead: Rich Rose
Instructional Designers: Rich Rose, Cheryl Hoople, Marilyn McGill
Instructional Software Design Engineers: Karl Dehmer, Carl Raebler,
Rick Byham
Technical Lead: Karl Dehmer
Subject Matter Experts: Karl Dehmer, Carl Raebler, Rick Byham
Graphic Artist: Kirsten Larson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Copy Editor: Edward McKillop (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Support: Lori Walker (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: TestingTesting123
Classroom Automation: Lorrin Smith-Bates
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager, Data Base: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 7: Creating and Maintaining Indexes iii

Instructor Notes
This module provides students with an overview of creating and maintaining
indexes with the CREATE INDEX options. It describes how maintenance
procedures physically change indexes. The module discusses maintenance tools
and describes the use of statistics in Microsoft® SQL Server� 2000. It also
describes ways to verify that indexes are used, and explains how to tell whether
they are performing optimally. The module concludes with a discussion of
when to use the Index Tuning Wizard.

After completing this module, students will be able to:

! Create indexes and indexed views with unique or composite characteristics.
! Use the CREATE INDEX options.
! Describe how to maintain indexes over time.
! Describe how the query optimizer creates, stores, maintains, and uses

statistics to optimize queries.
! Query the sysindexes table.
! Describe how the Index Tuning Wizard works and when to use it.
! Describe performance considerations that affect creating and maintaining

indexes.

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

! Microsoft PowerPoint® file 2073A_07.ppt
! The C:\Moc\2073A\Demo\D07_Ex.sql example file, which contains all of

the example scripts from the module, unless otherwise noted in the module.

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials for this module.
! Complete the labs.

Presentation:
60 Minutes

Lab:
60 Minutes

iv Module 7: Creating and Maintaining Indexes

Module Strategy
Use the following strategy to present this module:

! Creating Indexes
Discuss the CREATE INDEX and DROP INDEX statements and explain
the benefits of defining indexes with unique or composite characteristics.
Explain that obtaining information on existing indexes is recommended
before students create, modify, or delete them.

! Creating Index Options
Explain the use of the FILLFACTOR option. Emphasize the importance of
using it with the PAD_INDEX option to optimize insert and update
performance over time on tables that contain indexes.

! Maintaining Indexes
Explain that indexes must be maintained over time because data becomes
fragmented as tables grow. Discuss how the DBCC SHOWCONTIG
statement helps to maintain index performance. Then, point out that the
DROP_EXISTING option is used to maintain existing indexes. This option
changes the index definition and accelerates the rebuilding of indexes.

! Introduction to Statistics
Discuss how the query optimizer uses statistics to determine whether an
index is useful. Explain how statistics are gathered, stored, created, updated,
and viewed. Emphasize the importance of having current statistics.

! Querying the sysindexes Table
Discuss how to query the sysindexes table to get table and index
information, in addition to statistics for each index. Review the partial list of
the information that a query can return.

! Setting Up Indexes Using the Index Tuning Wizard
Present the Index Tuning Wizard and explain when to use the wizard.
Review the facts and guidelines to consider when using it.

! Performance Considerations
Discuss the performance considerations that affect creating and maintaining
indexes.

 Module 7: Creating and Maintaining Indexes v

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing Microsoft
Official Curriculum (MOC) courseware.

The labs in this module are dependent on the classroom
configuration that is specified in the Customization Information section at the
end of the Classroom Setup Guide for course 2073A, Programming a Microsoft
SQL Server 2000 Database.

Lab Setup
The following section describes the setup requirement for the labs in this
module.

Setup Requirement 1
The lab in this module requires the ClassNorthwind database to be in a state
required for this lab. To prepare student computers to meet this requirement,
perform one of the following actions:

! Complete the prior lab
! Execute the C:\Moc\2073A\Batches\Restore07A.cmd batch file.

Setup Requirement 2
The lab in this module requires the ClassNorthwind database to be in a state
required for this lab. To prepare student computers to meet this requirement,
perform one of the following actions:

! Complete the prior lab
! Execute the C:\Moc\2073A\Batches\Restore07B.cmd batch file.

If this course has been customized, students must execute the
C:\Moc\2073A\Batches\Restore07A.cmd batch file to ensure that the first lab
will function properly.
If this course has been customized, students must execute the
C:\Moc\2073A\Batches\Restore07B.cmd batch file to ensure that the second lab
will function properly.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Important

Warning

 Module 7: Creating and Maintaining Indexes 1

Overview

! Creating Indexes

! Creating Index Options

! Maintaining Indexes

! Introduction to Statistics

! Querying the sysindexes Table

! Setting Up Indexes Using the Index Tuning Wizard

! Performance Considerations

When you program a database, you want to create useful indexes that enable
you to quickly gain access to data. By using Microsoft® Windows® 2000, you
can create and maintain indexes and statistics. When you use the Index Tuning
Wizard, Microsoft SQL Server� 2000 creates indexes, analyzes your queries,
and determines the indexes that you should create.

After completing this module, you will be able to:

! Create indexes and indexed views with unique or composite characteristics.
! Use the CREATE INDEX options.
! Describe how to maintain indexes over time.
! Describe how the query optimizer creates, stores, maintains, and uses

statistics to optimize queries.
! Query the sysindexes table.
! Describe how the Index Tuning Wizard works and when to use it.
! Describe performance considerations that affect creating and maintaining

indexes.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
about creating and
maintaining indexes.

2 Module 7: Creating and Maintaining Indexes

Creating Indexes

! Creating and Dropping Indexes

! Creating Unique Indexes

! Creating Composite Indexes

! Creating Indexes on Computed Columns

! Obtaining Information on Existing Indexes

Now that you are familiar with the different index architectures, we will discuss
creating and dropping indexes and obtaining information on existing indexes.

Topic Objective
To introduce the topics on
creating indexes.

Lead-in
Now that you're familiar with
the different index
architectures, let's discuss
creating indexes and
obtaining information on
existing indexes.

 Module 7: Creating and Maintaining Indexes 3

Creating and Dropping Indexes

USE Northwind
CREATE CLUSTERED INDEX CL_lastname
ON employees(lastname)

USE Northwind
CREATE CLUSTERED INDEX CL_lastname
ON employees(lastname)

! Using the CREATE INDEX Statement
$ Indexes are created automatically on tables with

PRIMARY KEY or UNIQUE constraints
$ Indexes can be created on views if certain requirements

are met

! Using the DROP INDEX Statement

USE Northwind
DROP INDEX employees.CL_lastname

USE Northwind
DROP INDEX employees.CL_lastname

You create indexes by using the CREATE INDEX statement and can remove
them by using the DROP INDEX statement.

You must be the table owner to execute either statement in a database.

Using the CREATE INDEX Statement
Use the CREATE INDEX statement to create indexes. You also can use the
Create Index Wizard in SQL Server Enterprise Manager. When you create an
index on one or more columns in a table, consider the following facts and
guidelines:

! SQL Server automatically creates indexes when a PRIMARY KEY or
UNIQUE constraint is created on a table. Defining a PRIMARY KEY or
UNIQUE constraint is preferred over creating standard indexes.

! You must be the table owner to execute the CREATE INDEX statement.
! Indexes can be created on views.
! SQL Server stores index information in the sysindexes system table.
! Before you create an index on a column, determine whether indexes already

exist on that column.
! Keep your indexes small by defining them on columns that are small in size.

Typically, smaller indexes are more efficient than indexes with larger key
values.

! Select columns on the basis of uniqueness so that each key value identifies a
small number of rows.

! When you create a clustered index, all existing nonclustered indexes are
rebuilt.

Topic Objective
To introduce the CREATE
INDEX and DROP INDEX
statements.

Lead-in
You create indexes by using
the CREATE INDEX
statement and can remove
them by using the DROP
INDEX statement.

Note

4 Module 7: Creating and Maintaining Indexes

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED]
INDEX index_name ON { table | view } (column [ASC | DESC] [,...n])
[WITH
[PAD_INDEX]
[[,] FILLFACTOR = fillfactor]
[[,] IGNORE_DUP_KEY]
[[,] DROP_EXISTING]
[[,] STATISTICS_NORECOMPUTE]
[[,] SORT_IN_TEMPDB]
]
[ON filegroup]

This example creates a clustered index on the LastName column in the
Employees table.

CREATE CLUSTERED INDEX CL_lastname
 ON employees(lastname)

Using the DROP INDEX Statement
Use the DROP INDEX statement to remove an index on a table. When you
drop an index, consider the following facts:

! SQL Server reclaims disk space that is occupied by the index when you
execute the DROP INDEX statement.

! You cannot use the DROP INDEX statement on indexes that are created by
PRIMARY KEY or UNIQUE constraints. You must drop the constraint in
order to drop these indexes.

! When you drop a table, all indexes for that table are also dropped.
! When you drop a clustered index, all nonclustered indexes on the table are

rebuilt automatically.
! You must be in the database in which an index resides in order to drop that

index.
! The DROP INDEX statement cannot be used on system tables.

DROP INDEX 'table.index | view.index' [, ...n]

This example drops the cl_lastname index from the Member table.

USE Northwind
DROP INDEX employees.CL_lastname

Syntax

Example 1

Syntax

Example 2

 Module 7: Creating and Maintaining Indexes 5

Creating Unique Indexes

USE Northwind
CREATE UNIQUE NONCLUSTERED INDEX U_CustID

ON customers(CustomerID)

USE Northwind
CREATE UNIQUE NONCLUSTERED INDEX U_CustID

ON customers(CustomerID)

RANCHRANCH Santé GourmetSanté Gourmet Jonas BergulfsenJonas Bergulfsen ��

Duplicate key values are not allowed
when a new row is added to the table

Duplicate key values are not allowed
when a new row is added to the table

CustomersCustomersCustomers
CustomerIDCustomerID CompanyNameCompanyName ContactNameContactName ��

QUICK
BONAP
12

QUICK
BONAP
12

QUICK-Stop
Bon app'
Walking

QUICK-Stop
Bon app'
Walking

Horst Kloss
Laurence Lebihan
Henry David Thoreau

Horst Kloss
Laurence Lebihan
Henry David ThoreauRANCH Rancho grande Sergio Gutiérrez

A unique index ensures that all data in an indexed column is unique and does
not contain duplicate values.

Unique indexes ensure that data in indexed columns is unique. If the table has a
PRIMARY KEY or UNIQUE constraint, SQL Server automatically creates a
unique index when you execute the CREATE TABLE or ALTER TABLE
statement.

Ensuring That Data in Indexed Columns Is Unique
Create a unique index for clustered or nonclustered indexes when the data itself
is inherently unique.

However, if uniqueness must be enforced, create PRIMARY KEY or UNIQUE
constraints on the column rather than creating a unique index. When you create
a unique index, consider the following facts and guidelines:

! SQL Server automatically creates unique indexes on columns in a table
defined with PRIMARY KEY or UNIQUE constraints.

! If a table contains data, SQL Server checks for duplicate values when you
create the index.

! SQL Server checks for duplicate values each time that you use the INSERT
or UPDATE statement. If duplicate key values exist, SQL Server cancels
your statement and returns an error message with the first duplicate.

! Ensure that each row has a unique value�no two rows can have the same
identification number if a unique index is created on that column. This
regulation ensures that each entity is identified uniquely.

! Create unique indexes only on columns in which entity integrity can be
enforced. For example, you would not create a unique index on the
LastName column of the Employees table because some employees may
have the same last names.

Topic Objective
To explain how unique
indexes ensure that indexed
columns are unique.

Lead-in
In a unique index, no two
rows are permitted to have
the same key value.

6 Module 7: Creating and Maintaining Indexes

This example creates a unique, nonclustered index named U_CustID on the
Customers table. The index is built on the CustomerID column. The value in
the CustomerID column must be a unique value for each row of the table.

USE Northwind
CREATE UNIQUE NONCLUSTERED INDEX U_CustID
 ON customers(CustomerID)

Finding All Duplicate Values in a Column
If duplicate key values exist when you create a unique index, the CREATE
INDEX statement fails. SQL Server returns an error message with the first
duplicate, but other duplicate values may exist, as well. Use the following
sample script on any table to find all duplicate values in a column. Replace the
italicized text with information specific to your query.

SELECT index_col, COUNT (index_col)
FROM tablename
GROUP BY index_col
HAVING COUNT(index_col)>1 ORDER BY index_col

This example determines whether duplicate customer identification exists in the
CustomerID column in the Customers table. If so, SQL Server returns the
customer identification and number of duplicate entries in the result set.

SELECT CustomerID, COUNT(CustomerID) AS '# of Duplicates'
FROM Northwind.dbo.Customers
GROUP BY CustomerID
HAVING COUNT(CustomerID)>1
ORDER BY CustomerID

CustomerID # of Duplicates

(0 row(s) affected)

Example 1

Example 2

Result

 Module 7: Creating and Maintaining Indexes 7

Creating Composite Indexes

USE Northwind
CREATE UNIQUE NONCLUSTERED INDEX U_OrdID_ProdID
ON [Order Details] (OrderID, ProductID)

USE Northwind
CREATE UNIQUE NONCLUSTERED INDEX U_OrdID_ProdID
ON [Order Details] (OrderID, ProductID)

Composite KeyComposite Key

Column 1 Column 2

Order DetailsOrder DetailsOrder Details
OrderIDOrderID ProductIDProductID UnitPriceUnitPrice QuantityQuantity

10248
10248
10248

10248
10248
10248

11
42
72

11
42
72

14.000
9.800
34.800

14.000
9.800
34.800

12
10
5

12
10
5

DiscountDiscount

0.0
0.0
0.0

0.0
0.0
0.0

Composite indexes specify more than one column as the key value. You create
composite indexes:

! When two or more columns are best searched as a key.
! If queries reference only the columns in the index.

For example, a telephone directory is a good example of where a composite
index would be useful. The directory is organized by last names. Within the last
names, it is organized by first names, because entries with the same last name
often exist.

When you create a composite index, consider the following facts and
guidelines:

! You can combine as many as 16 columns into a single composite index. The
sum of the lengths of the columns that make up the composite index cannot
exceed 900 bytes.

! All columns in a composite index must be from the same table, except when
an index is created on a view.

! Define the most unique column first. The first column defined in the
CREATE INDEX statement is referred to as the highest order.

! The WHERE clause of a query must reference the first column of the
composite index for the query optimizer to use the composite index.

! An index on (column1, column2) is not the same as an index on (column2,
column1)�each has a distinct column order. The column that contains
more selective data or that would return the lowest percentage of rows often
determines the column order.

Topic Objective
To explain how composite
indexes work.

Lead-in
Composite indexes specify
more than one column as
the key value.

Delivery Tip
Point out that the OrderID
column is the first column
because it is more selective
than the ProductID column.

8 Module 7: Creating and Maintaining Indexes

! Composite indexes are useful for tables with multiple column keys.
! Use composite indexes to increase query performance and reduce the

number of indexes that you create on a table.

Multiple indexes on the same columns are typically not useful.

This example creates a nonclustered, composite index on the Order Details
table. The OrderID and the ProductID columns are the composite key values.
Notice that the OrderID column is listed first because it is more selective than
the ProductID column.

USE Northwind
CREATE UNIQUE NONCLUSTERED INDEX U_OrdID_ProdID
ON [Order Details] (OrderID, ProductID)

Note

Example

 Module 7: Creating and Maintaining Indexes 9

Creating Indexes on Computed Columns

! You Can Create Indexes on Computed Columns When:
$ Computed_column_expression is deterministic and precise
$ ANSI_NULL connection-level option is ON
$ Computed column cannot evaluate to the text, ntext, or

image data types
$ Required SET options are set ON when you create the index

and when INSERT, UPDATE, or DELETE statements change
the index value

$ NUMERIC_ROUNDABORT option is set OFF

! Query Optimizer May Ignore an Index on a Computed
Column

You can create indexes on computed columns when:

! The computed_column_expression is deterministic. Deterministic
expressions always return the same result.

! The ANSI_NULL connection-level option is ON when the CREATE
TABLE statement is executed. The OBJECTPROPERTY function reports
whether the option is on through the IsAnsiNullsOn property.

! The computed_column_expression that is defined for the computed column
cannot evaluate the text, ntext, or image data types.

! The connection on which the index is created, and all connections
attempting INSERT, UPDATE, or DELETE statements that will change
values in the index, have six SET options set ON and one option set OFF.
These options must be set on:

• ANSI_NULLS

• ANSI_PADDING

• ANSI_WARNINGS

• ARITHABORT

• CONCAT_NULL_YIELDS_NULL

• QUOTED_IDENTIFIER
! In addition to these ON settings, the NUMERIC_ROUNDABORT option

must be set OFF.

The query optimizer ignores an index on a computed column for any
SELECT statement that is executed by a connection that does not have these
same option settings.

Topic Objective
To explain the requirements
for creating an index on a
computed column.

Lead-in
Before you can create an
index on a computed
column, you must meet
several requirements.

For Your Information
Point out that SQL Server
Books Online contains
additional information on
deterministic and
nondeterministic functions.

For Your Information
Point out that SQL Server
Books Online contains
additional information on
SET options that affect
results.

Note

10 Module 7: Creating and Maintaining Indexes

Obtaining Information on Existing Indexes

! Using the sp_helpindex System Stored Procedure

! Using the sp_help tablename System Stored Procedure

USE Northwind
EXEC sp_helpindex Customers

USE Northwind
EXEC sp_helpindex Customers

You may require information about existing indexes before you create, modify,
or remove an index.

Using the sp_helpindex System Stored Procedure
You can use SQL Server Enterprise Manager or execute the sp_helpindex
system stored procedure to obtain index information, such as index name, type,
and options for a specific table.

This example lists the indexes on the Customers table.

USE Northwind
EXEC sp_helpindex Customers

index_name

index_description

index_keys

PK_Customers clustered, unique, Primary Key located on PRIMARY CustomerID
PostalCode nonclustered located on PRIMARY PostalCode
City nonclustered located on PRIMARY City

(1 row(s) affected)

Using the sp_help tablename System Stored Procedure
You can also execute the sp_help tablename system stored procedure to obtain
information on indexes, as well as other table information.

Topic Objective
To discuss obtaining
information on existing
indexes.

Lead-in
You may require information
about existing indexes
before you create, modify,
or remove an index.

Example

Result

Delivery Tip
Demonstrate the result set
of sp_help tablename by
executing the following:

USE Northwind
EXEC sp_help Customers

Point out the additional table
information.

 Module 7: Creating and Maintaining Indexes 11

Creating Index Options

! Using the FILLFACTOR Option

! Using the PAD_INDEX Option

SQL Server offers creating index options that can speed up index creation and
also enhance index performance over time.

Topic Objective
To provide a brief overview
of some of the creating
index options.

Lead-in
SQL Server offers creating
index options that can
speed up index creation and
also enhance index
performance over time.

12 Module 7: Creating and Maintaining Indexes

Using the FILLFACTOR Option

! Specifies How Much to Fill the Page
! Impacts Leaf-Level Pages

Data Pages Full
Con
Funk
White
Rudd

...

...

...

...

470401
470402
470403
470501

White ... 470502
Barr ... 470503

Akhtar
Funk
Smith
Martin
Smith

...

...

...

...

...

470601
470602
470603
470604
470701

Ota ... 470702

Martin
Phua
Jones
Smith
Ganio

...

...

...

...

...

470801
470802
470803
470804
470901

Jones ... 470902

Fillfactor 50 = Leaf Pages 50% Full
Con
Funk
White

...

...

...

470401
470402
470403

Rudd
White
Barr

...

...

...

470501
470502
470503

Akhtar
Funk
Smith

...

...

...

470601
470402
470603

Martin
Smith
Ota

...

...

...

470604
470701
470702

Martin
Phua
Jones

...

...

...

470801
470802
470803

Smith
Ganio
White

...

...

...

470804
470901
470902

You can use the FILLFACTOR option to optimize the performance of INSERT
and UPDATE statements on tables that contain clustered or nonclustered
indexes.

When an index page becomes full, SQL Server must take time to split the page
to make room for new rows. Use the FILLFACTOR option to allocate a
percentage of free space on the leaf-level index pages to reduce page splitting.

The FILLFACTOR option is applied only when the index is created or
rebuilt. SQL Server does not dynamically maintain the specified percentage of
allocated space on the index pages.

The fillfactor value that you specify on a table depends on how often data is
modified (INSERT and UPDATE statements) and your organization�s
environment. Generally, you should:

! Use a low fillfactor value for online transaction processing
(OLTP) environments.

! Use a high fillfactor value for SQL Server Analysis Services environments.

The following table shows the FILLFACTOR option settings and the typical
environments in which these fillfactor values are used.

FILLFACTOR
percentage

Leaf-level pages

Non-leaf-level pages

Activity
on key values

Typical
business environment

0 (default) Fill completely Leave room for one

index entry
None to light
modification

Analysis Services

1�99 Fill to specified
percentage

Leave room for one
index entry

Moderate to heavy
modification

Mixed or OLTP

100 Fill completely Leave room for one
index entry

None to light
modification

Analysis Services

Topic Objective
To determine when and how
to use FILLFACTOR options
to improve performance.

Lead-in
You can use the
FILLFACTOR option to
optimize the performance of
INSERT and UPDATE
statements on tables that
contain clustered or
nonclustered indexes.

Note

 Module 7: Creating and Maintaining Indexes 13

When you use the FILLFACTOR option, consider the following facts and
guidelines:

! Fillfactor values range from 1 to 100 percent.
! The default fillfactor value is 0. This value fills the leaf-level index pages to

100 percent and leaves room for the maximum size of one index entry in the
non-leaf-level index pages. You cannot explicitly specify fillfactor = 0.

! You can change the default fillfactor value at the server level by using the
sp_configure system stored procedure.

! The sysindexes system table stores the fillfactor value that was last applied,
along with other index information.

! The fillfactor value is specified in percentages. The percentage determines
how much the leaf-level pages should be filled. For example, a fillfactor of
65 percent fills the leaf-level pages 65 percent, leaving 35 percent of the
page space free for new rows. The size of the row
has an impact on how many rows can fit into or fill the page for the
specified fillfactor percentage.

! Use the FILLFACTOR option on tables into which many rows are inserted,
or when clustered index key values are frequently modified.

14 Module 7: Creating and Maintaining Indexes

Using the PAD_INDEX Option

! The PAD_INDEX Option Applies to Non-Leaf-Level Index
Pages

! If PAD_INDEX Is Not Specified, the Default Leaves Space
for One Row Entry in Non-Leaf-Level Pages

! Number of Rows on Non-Leaf-Level Pages Is Never Less
Than Two

! PAD_INDEX Uses the Fillfactor Value

USE Northwind
CREATE INDEX OrderID_ind

ON Orders(OrderID)
WITH PAD_INDEX, FILLFACTOR=70

USE Northwind
CREATE INDEX OrderID_ind

ON Orders(OrderID)
WITH PAD_INDEX, FILLFACTOR=70

The PAD_INDEX option specifies the percentage to which to fill the non-leaf-
level index pages. You can use the PAD_INDEX option only when
FILLFACTOR is specified, because the PAD_INDEX percentage value is
determined by the percentage value specified for FILLFACTOR.

The following table shows the impact of FILLFACTOR option settings when
you use the PAD_INDEX option, and the typical environment in which
PAD_INDEX values are used.

FILLFACTOR
percentage

Leaf-level pages

Non-leaf-level pages

Activity
on key values

Typical
business environment

1�99 Fill to specified

percentage
Fill to specified
percentage

Moderate to heavy
modification

OLTP

When you use the PAD_INDEX option, consider the following facts:

! SQL Server applies the percentage that the FILLFACTOR option specifies
to the leaf-level and non-leaf-level pages.

! By default, SQL Server always leaves enough room to accommodate at least
one row of the maximum index size for each non-leaf-level page, regardless
of how high the fillfactor value is.

! The number of items on the non-leaf-level index page is never fewer than
two, regardless of how low the fillfactor value is.

! PAD_INDEX uses the fillfactor value.

Topic Objective
To discuss using the
PAD_INDEX option.

Lead-in
You can use the
PAD_INDEX option with the
FILLFACTOR option to
optimize performance when
you create or rebuild
an index.

Delivery Tip
Point out that students will
rarely use the PAD_INDEX
option. Most performance
gains come from using
FILLFACTOR appropriately.

 Module 7: Creating and Maintaining Indexes 15

This example creates the OrderID_ind index on the OrdersID column in the
Orders table. By specifying the PAD_INDEX option with the FILLFACTOR
option, SQL Server creates leaf-level and non-leaf-level pages that are 70
percent full. However, if you do not use the PAD_INDEX option, the leaf-level
pages are 70 percent full, and the non-leaf-level pages are almost completely
filled.

USE Northwind
CREATE INDEX OrderID_ind
 ON Orders(OrderID)
 WITH PAD_INDEX, FILLFACTOR=70

Example

16 Module 7: Creating and Maintaining Indexes

Maintaining Indexes

! Data Fragmentation

! DBCC SHOWCONTIG Statement

! DBCC INDEXDEFRAG

! DROP_EXISTING Option

You must maintain indexes after you create them to ensure optimal
performance. Over time, data becomes fragmented. You manage data
fragmentation according to your organization�s environment.

SQL Server provides an Index Tuning Wizard that tracks the usage of your
indexes automatically and assists with maintaining and creating indexes that
perform optimally.

You also can use various options and tools to help you rebuild indexes and
verify index optimization.

Topic Objective
To provide a brief overview
of several maintenance
tools.

Lead-in
You must maintain indexes
after you create them to
ensure optimal
performance.

 Module 7: Creating and Maintaining Indexes 17

Data Fragmentation

! How Fragmentation Occurs
$ SQL Server reorganizes index pages when data is modified
$ Reorganization causes index pages to split

! Methods of Managing Fragmentation
$ Drop and recreate an index and specify a fillfactor value
$ Rebuild an index and specify a fillfactor value

! Business Environment
$ Data fragmentation can be good for OLTP environment
$ Data fragmentation can be bad for Analysis Services

environment

Depending on your business environment, fragmentation can be either good or
bad for performance.

How Fragmentation Occurs
Fragmentation occurs when data is modified. For example, when rows of data
are added to or deleted from a table, or when values in the indexed columns are
changed, SQL Server adjusts the index pages to accommodate the changes and
to maintain the storage of the indexed data. The adjustment of the index pages
is known as a page split. The splitting process increases the size of a table and
the time that is needed to process queries.

Methods of Managing Fragmentation
There are two methods of managing fragmentation in SQL Server. The first
method is to drop and recreate a clustered index and to specify a fillfactor value
by using the FILLFACTOR option. The second method is to rebuild an index
and specify a fillfactor value.

Business Environment
The degree of fragmentation that is acceptable in your database depends on
your environment:

! In an OLTP environment, fragmentation can be beneficial, because an
OLTP environment is write-intensive. A typical OLTP system has large
numbers of concurrent users who are actively adding and modifying data.

! Fragmentation can be detrimental in an Analysis Services environment
because that environment is read-intensive.

Topic Objective
To discuss how data
fragmentation occurs and
ways to manage it.

Lead-in
Over time, fragmentation
occurs as tables are
modified. You apply different
methods to manage the
fragmentation based on
your business environment.

18 Module 7: Creating and Maintaining Indexes

DBCC SHOWCONTIG Statement

! What DBCC SHOWCONTIG Determines

$ Whether a table or index is heavily fragmented

$ Whether data and index pages are full

! When to Execute

$ If tables have been heavily modified

$ If tables contain imported data

$ If tables seem to cause poor query performance

The DBCC SHOWCONTIG statement displays fragmentation information on
the data and indexes of a specified table.

What DBCC SHOWCONTIG Statement Determines
When you execute the DBCC SHOWCONTIG statement, SQL Server goes
across the index pages at the leaf level to determine whether a table or specified
index is heavily fragmented. The DBCC SHOWCONTIG statement also
determines whether the data and index pages are full.

When to Execute
Execute the DBCC SHOWCONTIG statement on heavily modified tables,
tables that contain imported data, or tables that seem to cause poor query
performance. When you execute the DBCC SHOWCONTIG statement,
consider the following facts and guidelines:

! SQL Server requires you to reference either a table or index ID when you
execute the DBCC SHOWCONTIG statement. Query the sysindexes table
to obtain the table or index ID.

! Determine how often you should execute the DBCC SHOWCONTIG
statement. Measure the activity level on a table on a daily, weekly, or
monthly basis.

Topic Objective
To explain the use of the
DBCC SHOWCONTIG
statement.

Lead-in
If you�re concerned about
fragmentation, use the
DBCC SHOWCONTIG
statement to determine
whether your table or
indexes are fragmented.

Delivery Tip
Demonstrate DBCC
SHOWCONTIG statement
on a table in the
ClassNorthwind database
and do a high-level review
of the output.

Delivery Tip
Demonstrate one of the two
ways to obtain the table ID
of a table. One way uses
the OBJECT_ID function.
The other way involves
querying the sysindexes
system table of the
ClassNorthwind database.

 Module 7: Creating and Maintaining Indexes 19

The following table describes the statistics that the DBCC SHOWCONTIG
statement returns.

Statistic Description

Pages scanned Number of pages in the table or index.

Extents scanned Number of extents in the table or index.

Extent switches Number of times that the DBCC statement left an extent
while it was traversing the pages of the extent.

Average pages per extent Number of pages per extent in the page chain.
Scan density
[Best Count: Actual Count]

The number in scan density is 100 (a percentage) if
everything is contiguous; if it is below 100, some
fragmentation exists. Best Count is the ideal number of
extent changes that would be present if everything were
contiguously linked. Actual Count is the actual number of
extent changes.

Logical scan fragmentation Percentage of out-of-order pages returned from scanning
the leaf pages of an index. This number is not relevant to
heaps and text indexes. An out-of-order page is one for
which the next page indicated in an Index Allocation Map
(IAM) is a different page than the page pointed to by the
next-page pointer in the leaf page.

Extent scan fragmentation Percentage of out-of-order extents in scanning the leaf
pages of an index. This number is not relevant to heaps.
An out-of-order extent is one for which the extent
containing the current page for an index is not the next
physical extent�after the extent containing the previous
page for an index.

Average bytes free per page Average number of free bytes on the scanned pages. The
higher the number, the less full the pages are�lower
numbers are better. Be aware, however, that this number
is also affected by row size. A large row size may result
in a higher number.

Average page density (full) Value that shows the fullness of a page. This value
considers row size, so it is a more accurate indication of
the fullness of a page. Higher percentages are better than
lower percentages.

DBCC SHOWCONTIG
[({table_name | table_id | view_name | view_id }
[, index_name | index_id])]
[WITH
{ ALL_INDEXES | FAST
[, ALL_INDEXES] | TABLERESULTS
[, { ALL_INDEXES }]
[, { FAST | ALL_LEVELS }]
 }
]

Syntax

20 Module 7: Creating and Maintaining Indexes

This example executes a statement that accesses the Customers table.

USE Northwind
DBCC SHOWCONTIG (Customers, PK_Customers)

DBCC SHOWCONTIG scanning 'Customers' table...
Table: 'Customers' (2073058421); index ID: 1, database ID: 6
TABLE level scan performed.
Pages Scanned: 3
Extents Scanned: 2
Extent Switches: 1
Avg. Pages per Extent: 1.5
Scan Density [Best Count:Actual Count]: 50.00% [1:2]
Logical Scan Fragmentation 0.00%
Extent Scan Fragmentation: 50.00%
Avg. Bytes Free per Page: 246.7
Avg. Page Density (full): 96.95%
DBCC execution completed. If DBCC printed error messages,
contact your system administrator.

Example

Result

Delivery Tip
Compare whether these
results are appropriate in a
given environment.

 Module 7: Creating and Maintaining Indexes 21

DBCC INDEXDEFRAG Statement

! DBCC INDEXDEFRAG

$ Defragments the leaf level of an index

$ Arranges leaf-level pages so that the physical order of
the pages matches the left-to-right logical order

$ Improves index-scanning performance

! Index Defragmenting vs. Index Rebuilding

As data in a table changes, the indexes on the table sometimes become
fragmented. The DBCC INDEXDEFRAG statement can defragment the leaf
level of clustered and nonclustered indexes on tables and views. Defragmenting
arranges the pages so that the physical order of the pages matches the left-to-
right logical order of the leaf nodes. This rearrangement improves index-
scanning performance.

Using the DBCC INDEXDEFRAG Statement
When you use DBCC INDEXDEFRAG, it:

! Compacts the pages of an index, taking into account the FILLFACTOR
specified when the index was created. Any empty pages created as a result
of this compaction will be removed.

! Defragments one file at a time when an index spans more than one file.
Pages do not migrate between files.

! Reports to the user an estimated percentage completed. Reporting is done
every five minutes. The DBCC INDEXDEFRAG statement can be
terminated at any point in the process, and any completed work is retained.

! Is an online operation. It does not hold locks for an extended time, and does
not block running queries or updates. Defragmentation is always fully
logged, regardless of the database recovery model setting.

Topic Objective
To explain the use of the
DBCC INDEXDEFRAG
statement.

Lead-in
The DBCC INDEXDEFRAG
statement can defragment
the leaf level of clustered
and nonclustered indexes
on tables and views.

22 Module 7: Creating and Maintaining Indexes

Index Defragmenting vs. Index Rebuilding
The time required to defragment is related to the amount of fragmentation. A
very fragmented index might require more time to defragment than to rebuild.
A relatively unfragmented index defragments faster than rebuilding a new
index.

Using the DBCC INDEXDEFRAG statement does not improve
performance when indexes are physically defragmented on disk. To physically
defragment an index, rebuild the index.

DBCC INDEXDEFRAG
 ({ database_name | database_id | 0 }
 , { table_name | table_id | 'view_name' | view_id }
 , { index_name | index_id }
) [WITH NO_INFOMSGS]

This example executes the DBCC INDEXDEFRAG statement on the
mem_no_CL index of the Member table in the credit database.

DBCC INDEXDEFRAG(credit, member, mem_no_CL)

Pages scanned Pages moved Pages removed
150

28 9

(1 row(s) affected)

Note

Syntax

Example

Result

 Module 7: Creating and Maintaining Indexes 23

DROP_EXISTING Option

CREATE UNIQUE NONCLUSTERED INDEX U_OrdID_ProdID
ON [Order Details] (OrderID, ProductID)
WITH DROP_EXISTING, FILLFACTOR=65

CREATE UNIQUE NONCLUSTERED INDEX U_OrdID_ProdID
ON [Order Details] (OrderID, ProductID)
WITH DROP_EXISTING, FILLFACTOR=65

! Rebuilding an Index
$ Reorganizes leaf pages
$ Removes fragmentation
$ Recalculates index statistics

! Changing Index Characteristics
$ Type
$ Index columns
$ Options

Use the DROP_EXISTING option to change the characteristics of an index or
to rebuild indexes without having to drop the index and recreate it. The benefit
of using the DROP_EXISTING option is that you can modify indexes created
with PRIMARY KEY or UNIQUE constraints.

Rebuilding an Index
Execute the CREATE INDEX statement with the DROP_EXISTING option to
rebuild a named clustered or nonclustered index:

! Reorganize the leaf-level pages by compressing or expanding rows
! Remove fragmentation
! Recalculate the index statistics

Changing Index Characteristics
When you use the DROP_EXISTING option, you can change the following
index characteristics:

! Type

• You can change a nonclustered index into a clustered index.

• You cannot change a clustered index into a nonclustered index.
! Index columns

• You can change the index definition to specify different columns.

• You can specify additional columns or remove specified columns from a
composite index.

• You can change the index columns to be unique or not unique.
! Options

• You can change the FILLFACTOR or PAD INDEX percentage value.

Topic Objective
To discuss using the
DROP_EXISTING option to
change the index definition
or rebuild indexes.

Lead-in
Use the DROP_EXISTING
option to change the index
definition or to rebuild
indexes.

For Your Information
Do not teach the DBCC
DBREINDEX statement.
DROP_EXISTING provides
more functionality. The only
advantage of DBCC
DBREINDEX is that you can
rebuild multiple indexes
simultaneously.

24 Module 7: Creating and Maintaining Indexes

When you use the DROP_EXISTING option, consider the following facts and
guidelines:

! For a clustered index, SQL Server requires that you have 1.2 times the
amount of table space to physically reorganize the data.

! The DROP_EXISTING option accelerates the process of building clustered
and nonclustered indexes by eliminating the sorting process.

! Use the FILLFACTOR option with the DROP_EXISTING option if you
want your leaf-level pages to fill to a certain percentage.
This can be useful if space must be allocated for new data or if the index
must be compacted.

! You cannot rebuild indexes on system tables.
! The DROP_EXISTING option on a clustered index helps you avoid the

unnecessary work of deleting and re-creating nonclustered indexes if the
clustered index is rebuilt on the same column.

! The nonclustered indexes are rebuilt once, and only if the keys are different.

This example rebuilds the existing index, U_OrdID_ProdID , for the Order
Details table. The index is redefined as a clustered, composite index with a
specified option of filling each data page to 65 percent. This statement will fail
if a clustered index already exists on the Order Details table.

CREATE UNIQUE NONCLUSTERED INDEX U_OrdID_ProdID
ON [Order Details] (OrderID, ProductID)
WITH DROP_EXISTING, FILLFACTOR=65

Example

 Module 7: Creating and Maintaining Indexes 25

Lab A: Creating and Maintaining Indexes

Objectives
After completing this lab, you will be able to:

! Create indexes.
! Determine the size and density of indexes.

Prerequisites
Before working on this lab, you must have:

! Script files for this lab, which are located in C:\Moc\2073A\Labfiles\L07.
! Answer files for this lab, which are located in

C:\Moc\2073A\Labfiles\L07\Answers.

Lab Setup
To complete this lab, you must have either:

! Completed the prior lab, or
! Executed the C:\Moc\2073A\Batches\Restore07A.cmd batch file.

This command file restores the ClassNorthwind database to a state required
for this lab.

For More Information
If you require help with executing files, search SQL Query Analyzer Help for
�Execute a query�.

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will create
indexes and determine the
size and density of indexes.

Explain the lab objectives.

26 Module 7: Creating and Maintaining Indexes

Other resources that you can use include:

! The Northwind database schema.
! The credit database schema.
! Microsoft SQL Server Books Online.

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 30 minutes

 Module 7: Creating and Maintaining Indexes 27

Exercise 1
Creating Indexes

In this exercise, you will create several indexes to complement FOREIGN KEY
constraints on tables in the ClassNorthwind database.

! To create an index on the Orders table
In this procedure, you will open a script file that creates an index, review the
contents of the script, execute it, and then verify that the index was created.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password password

2. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Microsoft Windows Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Windows 2000 local
group, Administrators. All members of this group are automatically mapped
to the SQL Server sysadmin role.

3. In the DB list, click ClassNorthwind.
4. Open the C:\Moc\2073A\Labfiles\L07\CreaIndx1.sql script file.
5. Review the CREATE INDEX statement.

This script creates a nonclustered index named Orders_Customers_link on
the CustomerID column in the Orders table with a fillfactor value of 75.

6. Execute the script file.
7. Verify that the Orders_Customers_link index was created by executing the

following statement:
EXEC sp_help Orders

The results of the sp_help system stored procedure show that the
Orders_Customers_link nonclustered index exists on the CustomerID
column in the Orders table.

28 Module 7: Creating and Maintaining Indexes

! To create indexes on foreign keys that reference the Products table
In this procedure, you will create clustered and nonclustered indexes for all
foreign key references in the Products table by using the following
information. You can use the Create Index wizard in SQL Server Enterprise
Manager or write a Transact-SQL statement in SQL Query Analyzer.
C:\Moc\2073A\Labfiles\L07\Answers\CreaIndx2.sql is a completed script for
this procedure.
1. Verify that you are using the ClassNorthwind database.
2. Write and execute a script that creates the following indexes.

Index type

Name

Table

Column

Fillfactor
value

Clustered Products_CategoryID_link Products CategoryID 0

Nonclustered Products_SupplierID_link Products SupplierID 0

CREATE CLUSTERED INDEX Products_CategoryID_link ON
 Products(CategoryID)

CREATE NONCLUSTERED INDEX Products_SupplierID_link ON
 Products(SupplierID)

3. Query the sysindexes system table to verify that the indexes were created.

 Module 7: Creating and Maintaining Indexes 29

! To verify the existence of the indexes that you created
In this procedure, you will execute statements to verify that the indexes that you
created exist and are correct.
1. Execute the sp_helpindex system stored procedure on the Orders table.

What are the results?
PK_Orders, Orders_Customers_link.
__

__

2. Execute the sp_helpindex system stored procedure on the Products table.
Why are there indexes on the foreign key columns?
An index on a foreign key is not required but is recommended to
associate foreign key members with the primary key.
__

__

Why are all of the indexes not unique?
Because these indexes represent foreign keys. Often the relationship
between primary and foreign keys is a one-to-many relationship.
Therefore, one unique key value in the primary key can have
relationships with many of the same key values in the foreign key
column.
__

__

30 Module 7: Creating and Maintaining Indexes

Exercise 2
Examining Index Structures

In this exercise, you will use SQL Query Analyzer to examine the table
structure before creating indexes. You will create various types of indexes with
different fillfactors and observe the effects on the table structure.

You can open, review, and execute sections of the ExamIndex.sql script file in
the C:\Moc\SQL2073A\Labfiles\L07 folder, or type and execute the provided
Transact-SQL statements.

! To observe the initial table structure
In this procedure, you will execute a Transact-SQL statement to obtain
information about the Member table.
1. Type and execute these statements individually to obtain information about

the Member table:
USE credit
GO
EXEC sp_spaceused member

SELECT * FROM sysindexes WHERE id = OBJECT_ID('member')

DBCC SHOWCONTIG ('member')

2. Record the statistical information in the following table.

Information Source Result

Number of rows sp_spaceused: rows 10,000

Number of indexes SELECT * FROM sysindexes WHERE
id = OBJECT_ID('member')

None. A row in sysindexes with a
0 for the value of indid represents
the table itself.

Number of pages SHOWCONTIG: Pages Scanned 150

Number of rows per page Calculate and round up the results.

(# of rows/ # of pages) = # of rows per
page

67

Number of extents SHOWCONTIG: Extent Switches 18

Average extent fill SHOWCONTIG: Avg. Pages per Extent 8

Average page fill SHOWCONTIG: Avg. Page Density (full) 98%

 Module 7: Creating and Maintaining Indexes 31

! To create a clustered index
In this procedure, you will create a unique clustered index and observe changes
to the table structure. You also will obtain information about the index
structure.
1. Type and execute this statement to create a unique clustered index on the

member_no column of the Member table, without specifying a fillfactor:
USE credit
CREATE UNIQUE CLUSTERED INDEX mem_no_CL
 ON member (member_no)

2. Type and execute the following statement to obtain information about the

Member table:
USE credit
SELECT * FROM sysindexes WHERE id = OBJECT_ID('member')

DBCC SHOWCONTIG ('member')

3. Record the statistical information in the following table.

Information Source Result

Number of clustered index
pages

sysindexes row: used 145

Number of data pages in the
clustered index

sysindexes row: dpages 142

Number of non-data pages in
the clustered index

 (used � dpages) 145 � 142 = 3

Number of indexes SELECT * FROM sysindexes

One. A row in sysindexes with a
1 for the value of indid
represents the clustered index.

Number of pages SHOWCONTIG: Pages Scanned 142

Number of rows per page Calculate and round up the results.

(# of rows/ # of pages) = # of rows per
page

71

Number of extents SHOWCONTIG: Extent Switches 17

Average extent fill SHOWCONTIG: Avg. Pages per Extent 8

Average page fill SHOWCONTIG: Avg. Page Density (full) 99%

32 Module 7: Creating and Maintaining Indexes

Are the pages still full?
Yes.
__

__

Is the table still contiguous?
Yes.
__

__

Will creating a clustered index always make the data pages more compact?
Why or why not?
No. Creating a clustered index may not always compact the pages. It
depends on the nature of the data. Pages can be compacted if the table
is fragmented because of updates to the key value or unordered
insertions and deletions. If the pages are already compacted, creating a
clustered index will have no effect.
__

__

__

! To create a nonclustered index
In this procedure, you will create a nonclustered index and obtain information
about the index structure.
1. Type and execute this statement to drop the previously created index:

USE credit
EXEC index_cleanup member

2. Type and execute this statement to create a nonclustered index on the

firstname column of the Member table, without specifying a fillfactor:
USE credit
CREATE NONCLUSTERED INDEX indx_fname
 ON member(firstname)

 Module 7: Creating and Maintaining Indexes 33

3. Type and execute this SELECT statement that returns the sysindexes rows
for the Member table:
USE credit
SELECT * FROM sysindexes WHERE id = OBJECT_ID('member')

4. Record the statistical information in the following table.

Information Source Result

Number of pages in the nonclustered index
on the firstname column

sysindexes row: used 40

Number of pages in the leaf level sysindexes row: dpages 37

Approximate number of rows per leaf page (# rows in table/# leaf-level pages) (10000 / 37) = 271

34 Module 7: Creating and Maintaining Indexes

! To create a nonclustered index with a fillfactor
In this procedure, you will create a nonclustered index and observe changes to
the table structure.
1. Type and execute this statement to drop the nonclustered index from the

Member table:
USE credit
EXEC index_cleanup member

2. Type and execute this statement to create the same index, with a fillfactor of

25 percent:
USE credit
CREATE NONCLUSTERED INDEX indx_fname
 ON member(firstname)
 WITH FILLFACTOR=25

3. Type and execute this SELECT statement that returns the sysindexes rows

for the Member table:
USE credit
SELECT * FROM sysindexes WHERE id = OBJECT_ID('member')

4. Record the statistical information in the following table.

Information Source Result

Number of pages in this index sysindexes row: used 148

Number of pages in the leaf level sysindexes row: dpages 145

Approximate number of rows per leaf page (# rows in table/# leaf-level pages) (10000 / 145) = 68

Is the increase in the leaf-level size in proportion to the fillfactor?
Yes, the increase is proportional.

How can you determine whether the increase in the leaf-level size is
proportional to the fillfactor of 25 percent?
Using a fillfactor of 0 (default), you can fit 271 rows per leaf-level page.
Multiply 271 by 25 percent, and the result is 68 rows. This is the
number of rows that will fit on a leaf-level page that is only 25 percent
full.
__

__

 Module 7: Creating and Maintaining Indexes 35

Introduction to Statistics

! How Statistics Are Gathered

! How Statistics Are Stored

! Creating Statistics

! Updating Statistics

! Viewing Statistics

Statistics are created on indexes and can be created on columns. Because the
query optimizer uses statistics to optimize queries, you should know how they
are gathered, stored, created, updated, and viewed.

Topic Objective
To introduce the topics in
this section.

Lead-in
Statistics are created on
indexes and can be created
on columns. Because the
query optimizer uses
statistics to optimize
queries, you should know
how they are gathered,
stored, created, updated,
and viewed.

36 Module 7: Creating and Maintaining Indexes

How Statistics Are Gathered

! Reads Column Values or a Sampling of Column Values
$ Produces an evenly distributed sorted list of values

! Performs a Full Scan or Sampling of Rows
$ Dynamically determines the percentage of rows to be

sampled based on the number of rows in the table
! Selects Samplings
$ From the table or from the smallest nonclustered index

on the columns
$ All of the rows on the data page are used to update the

statistical information

Statistics are a sampling of column values.

Reads Column Values or a Sampling of Column Values
SQL Server gathers statistics by reading all of the column values or a sampling
of column values to produce an evenly distributed and sorted list of values
known as distribution steps. SQL Server generates distribution steps by
performing a full scan or sample scan and then by selecting samplings.

Performs a Full Scan or Sampling of Rows
SQL Server dynamically determines the percentage of rows to be sampled
based on the number of rows in the table. The query optimizer performs either a
full scan or a sampling of rows when gathering statistics.

! The SAMPLE option is the default for updating and creating statistics.
! The FULLSCAN option is used when:

• Indexes are created.

• The FULLSCAN option is specified in the CREATE STATISTICS
statement.

• The UPDATE STATISTICS statement is executed.

Topic Objective
To discuss how SQL Server
gathers statistics.

Lead-in
Statistics are a sampling of
column values.

 Module 7: Creating and Maintaining Indexes 37

Selects Samplings
The sampling is randomly selected across data pages from the table or from the
smallest nonclustered index on the columns needed by the statistics. After a
data page has been read from disk, all of the rows on the data page are used to
update the statistical information.

When the query optimizer gathers samplings:

! The table size determines which method is chosen.
! A minimum number of values are sampled to derive useful statistics.
! If the number of rows specified is too few to be useful, the query optimizer

automatically corrects the sampling, based on the number of existing rows
in the table.

! Statistics are kept only on the first column defined in a composite index.

38 Module 7: Creating and Maintaining Indexes

How Statistics Are Stored
Step

AL

CA

IL

IL

OR

TX

WA

WY

Sales ���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

statestatestate

AL
AK
CA
CA
CA
CT
IL
IL
IL
IL
IL

MT
OR
OR
PA
TX
TX
WA
WA
WA
WI
WY

AL
AK
CA
CA
CA
CT
IL
IL
IL
IL
IL

MT
OR
OR
PA
TX
TX
WA
WA
WA
WI
WY

Step #
0

1

2

3

4

5

6

7

statblobstatblobstatblob

AL
CA
IL
IL

OR
TX
WA
WY

AL
CA
IL
IL

OR
TX
WA
WY

���

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

sysindexes

Statistics are stored in the statblob column of the sysindexes system table.

Distribution Steps
Each value stored in the statblob column is called a distribution step.
Distribution steps refer to space between data samplings, or how many rows are
stepped across before the next sampling is taken and stored. The first and last
key values in the index are always included in the statistics. There can be as
many as 300 values, of which the end point is the 300th value.

Contents in the statblob Column
In addition to storing distribution steps, the statblob column also stores:

! Date and time when statistics were last updated.
! Number of rows in the table.
! Number of rows sampled to create the histogram and determine density.
! Number of distribution steps.
! Average key length.
! Density for individual columns and all of the columns combined.
! Number of rows that fall within a histogram step.
! Number of rows that are equal in value to the upper bound of the

histogram step.
! Number of distinct values within a histogram step.

The statblob column is defined as an image data type.

Topic Objective
To discuss how statistics
are stored in SQL Server.

Lead-in
Statistics are stored in the
statblob column of the
sysindexes system table.

Delivery Tip
When you build an index on
the Sales table, SQL Server
automatically builds
statistics.

This example shows the
process of how SQL Server
creates statistics.

Note

 Module 7: Creating and Maintaining Indexes 39

Creating Statistics

! Automatically Creating Statistics

$ Indexed columns that contain data

$ Non-indexed columns that are used in a join predicate or
a WHERE clause

! Manually Creating Statistics

$ Columns that are not indexed

$ All columns other than the first column of a composite
index

You can create statistics automatically or manually. However, you should allow
SQL Server to create statistics automatically for you.

Automatically Creating Statistics
When the auto create statistics database option default is set to ON,
SQL Server automatically creates statistics for:

! Indexed columns that contain data.
! Non-indexed columns that are used in a join predicate or a WHERE clause.

The query optimizer activates the automatic creation of statistics when
optimizing a query. This can be a disadvantage if the query optimizer
determines that statistics are missing. The execution plan will include the
statistics creation action, which requires additional time when processing the
query.

When you execute a query and view the execution plan, the query
optimizer may suggest remedial action, such as creating or updating statistics,
or creating an index. At that point, you can immediately create or update
statistics and indexes.

Topic Objective
To discuss when statistics
are created and when to
create them.

Lead-in
You can create statistics
automatically or manually.
However, you should allow
SQL Server to create
statistics automatically for
you.

Note

40 Module 7: Creating and Maintaining Indexes

Manually Creating Statistics
You can execute the CREATE STATISTICS statement to create a histogram
and associated density groups for specific columns. You can create statistics on:

! Columns that are not indexed.
! All columns other than the first column of a composite index.
! Computed columns only if the conditions are such that an index can be

created on these columns.
! Columns that are not defined of image, text, and ntext data types.

Manually creating statistics is useful when you have a column that may not
benefit from an index, but statistics on that column may be useful for creating
more optimal execution plans. Having statistics on those columns eliminates the
overhead of an index, while allowing the query optimizer to use the column
when optimizing queries.

You must be the table owner to manually create statistics on a table.

CREATE STATISTICS statistics_name ON {table| view} (column [,...n])

Note

Partial Syntax

 Module 7: Creating and Maintaining Indexes 41

Updating Statistics

! Frequency of Updating Statistics

! Automatically Updating Statistics

! Manually Updating Statistics

$ If you create an index before any data is put
into the table

$ If a table is truncated

$ If you add many rows to a table that contains
minimal or no data, and you plan to immediately
query against that table

Over time, statistics can become outdated, which can affect the performance of
the query optimizer.

Frequency of Updating Statistics
SQL Server updates statistical information when the information becomes
outdated. The volume of data in the column relative to the amount of changing
data determines the frequency of the update. For example:

! The statistics for a table containing 10,000 rows may require updating when
1,000 index values have changed, because 1,000 index values represent a
significant percentage of the table.

! The statistics for a table containing 10 million index entries may not require
updating when 1,000 index values have changed, because 1,000 index
values represents a small percentage of the table.

SQL Server always samples a minimum number of rows. Tables that are
smaller than 8 megabytes (MB) are always fully scanned to gather statistics.

SQL Server issues a warning when statistics are out-of-date or
unavailable. This warning appears when the execution plan is viewed by using
the execution plan. You can use SQL Profiler to monitor the Missing Column
Statistics event class. This event class indicates when statistics are missing.

Topic Objective
To describe how
SQL Server determines how
often to update statistics,
and when to update them.

Lead-in
Over time, statistics can
become outdated, which
can affect the performance
of the query optimizer.

Note

42 Module 7: Creating and Maintaining Indexes

Automatically Updating Statistics
You should allow SQL Server to automatically update statistics for you. When
the auto update statistics database option is set to ON (default), SQL Server
automatically updates existing statistics when they become outdated.

For example, if a table is substantially updated since the last time that the
statistics were created or updated, SQL Server automatically updates the
statistics to optimize a query that uses the table.

The query optimizer activates the automatic updating of statistics when
optimizing a query. This can be a disadvantage if the query optimizer
determines that statistics are out-of-date. The execution plan will include the
statistics update action, which requires additional time in processing the query.

Manually Updating Statistics
You can execute the UPDATE STATISTICS statement to update information
about the distribution of key values for one or more statistics in a specified
table. You may want to manually update statistics for a table or column in the
following situations:

! If you create an index before any data is put into a table.
! If a table is truncated.
! If you add many rows to a table that contains minimal or no data, and you

plan to immediately query against that table.

UPDATE STATISTICS table| view [index | (statistics_name[,...n])]

To see a list of index names and descriptions, execute the sp_helpindex
system stored procedure with the table name.

Partial Syntax

Note

 Module 7: Creating and Maintaining Indexes 43

Viewing Statistics

! The DBCC SHOW_STATISTICS Statement Returns
Statistical Information in the Distribution Page for an
Index or Column

! Statistical Information Includes:
$ The time when the statistics were last updated
$ The number of rows sampled to produce the histogram
$ Density information
$ Average key length
$ Histogram step information

You can view statistical information in the distribution page for an index or a
column by executing the DBCC SHOW_STATISTICS statement.

The following table describes the information that the DBCC
SHOW_STATISTICS statement returns.

Column name Description

Updated Date and time the statistics were last updated

Rows Number of rows in the table

Rows sampled Number of rows sampled for statistics information

Steps Number of distribution steps

Density Selectivity of the first index column prefix (non-frequent)

Average key length Average length of the first index column prefix

All density Selectivity of a set of index column prefixes (frequent)

Average length Average length of a set of index column prefixes

Columns Names of index column prefixes for which All density and
Average length are displayed

RANGE_HI_KEY Upper bound value of a histogram step

RANGE_ROWS Number of rows from the sample that fall in a histogram step,
excluding the upper bound

Topic Objective
To discuss how to view
information about statistics.

Lead-in
You can view statistical
information in the
distribution page for an
index or a column by
executing the DBCC
SHOW_STATISTICS
statement.

44 Module 7: Creating and Maintaining Indexes

(continued)
Column name Description

EQ_ROWS Number of rows from the sample that are equal in

value to the upper bound of the histogram step

DISTINCT_RANGE_ROWS Number of distinct values within a histogram step,
excluding the upper bound

AVG_RANGE_ROWS Average number of duplicate values within a
histogram step, excluding the upper bound
(RANGE_ROWS / DISTINCT_RANGE_ROWS for
DISTINCT_RANGE_ROWS > 0)

DBCC SHOW_STATISTICS (table, target)

Viewing statistics is typically useful when you do high-end performance tuning
for specific queries. In most applications, it is not necessary to view statistics.

Syntax

 Module 7: Creating and Maintaining Indexes 45

Querying the sysindexes Table

! Stores Table and Index Information

$ Type of index (indid)

$ Space used (dpages, reserved, and used)

$ Fillfactor (OrigFillFactor)

! Stores Statistics for Each Index

You can query the sysindexes table to get index and table information, in
addition to statistics for each index. The following table is a partial list of the
information that you can view that comes from the data stored in the sysindexes
table.

Column Description Values

indid
(type of index)

ID of the index (type of index) Possible values are:

• 0 for nonclustered table

• 1 for clustered index

• >1 for nonclustered index

• 255 for tables that have text or image data

dpages
(space used)

Count of leaf-level index pages For indid = 0 or indid = 1, dpages is the count of data pages
used.

For indid=255, dpages is set to 0.

Otherwise, dpages is the count of nonclustered index pages
used.

reserved
(space used)

Count of reserved pages for an
index

For indid = 0 or indid = 1, reserved is the count of pages
allocated for all indexes and table data.

For indid = 255, reserved is a count of the pages allocated
for text or image data.

Otherwise, reserved is the count of pages allocated for the
index.

used
(space used)

Count of space used by an index For indid = 0 or indid = 1, used is the count of the total
pages used for all index and table data.

For indid = 255, used is a count of the pages used for text or
image data.

Otherwise, used is the count of pages used for the index.

Topic Objective
To discuss querying the
sysindexes table to get
table and index information.

Lead-in
You can query the
sysindexes table to get
index and table information,
in addition to statistics for
each index.

46 Module 7: Creating and Maintaining Indexes

(continued)
Column Description Values

OrigFillFactor
(fillfactor)

Original fillfactor value used
when the index was created

This value is not maintained; however, it can be helpful if
you need to recreate an index and do not remember which
fillfactor value was used.

minlen Minimum size of a row Integer value.

xmaxlen Maximum size of a row Integer value.

maxirow Maximum size of a non-leaf
index row

Integer value.

keys Description of key columns Applies only if entry is an index.

statversion Number of times the statistics
have been updated

Integer value.

statblob Statistics binary large object
(BLOB)

Stores statistical information.

This example executes a statement that accesses the index ID and other
information from the sysindexes system table. Specify the clustered index name
(index_name) in the WHERE clause to obtain the index ID of a clustered index.

SELECT id, indid, reserved, used, origfillfactor, name
FROM Northwind.dbo.sysindexes
WHERE name = 'PK_customers'

id

indid

reserved

used

origfillfactor

name

2073058421 1 15 15 0 PK_Customers

(1 row(s) affected)

Example

Result

 Module 7: Creating and Maintaining Indexes 47

Setting Up Indexes Using the Index Tuning Wizard

! Use the Index Tuning Wizard to:

$ Recommend or verify optimal index configuration

$ Provide cost analysis reports

$ Recommend ways to tune the database

$ Specify criteria when a workload is evaluated

! Do Not Use the Index Tuning Wizard on:

$ Tables referenced by cross-database queries that do not exist

$ System tables, PRIMARY KEY constraints, unique indexes

Whether you are a novice or an advanced SQL Server user, the Index Tuning
Wizard can help you create appropriate indexes on a new database or verify
existing indexing on your current database. The Index Tuning Wizard looks at
the query load to determine which indexes are useful, whereas the execution
plan feature displays which indexes are used in queries.

Determining When to Use the Index Tuning Wizard
Novice users can use the wizard to quickly create an optimal index
configuration. Advanced users can use the wizard for establishing a baseline
index configuration. Advanced users can then custom-tune or verify their
existing index configurations.

The Index Tuning Wizard can:

! Recommend or verify the optimal index configuration for a database, given
an applied workload or trace file, by using the query optimizer costing
analysis.

! Provide cost-analysis reports on the effects of the proposed
changes, including:

• Index usage on current and recommended indexes.

• Query performance improvement for the 100 most expensive queries
and table participation in a workload.

! Recommend ways to tune the database for a small set of problem queries.
! Specify criteria to consider when the Index Tuning Wizard evaluates a

workload, such as maximum queries to tune, maximum space for
recommended indexes, and maximum columns per index.

Topic Objective
To introduce the Index
Tuning Wizard.

Lead-in
Whether you are a novice or
an advanced SQL Server
user, the Index Tuning
Wizard can help you create
appropriate indexes on a
new database or verify
existing indexing on your
current database.

48 Module 7: Creating and Maintaining Indexes

Determining How To Use the Wizard
When you want to use the Index Tuning Wizard, consider the following facts
and guidelines:

! The user invoking the Index Tuning Wizard must be a member of the
sysadmin fixed server role because the queries in the workload are analyzed
in the security context of the user.

! It is not recommended that you use the Index Tuning Wizard on:

• Tables referenced by cross-database queries that do not exist in the
currently selected database.

• System tables.

• PRIMARY KEY constraints and unique indexes.
The wizard may drop or replace a clustered index that is not unique, or
currently created on a PRIMARY KEY constraint.

! It is not recommended that you drop any indexes when the Keep all
existing indexes option is selected.
The wizard recommends only new indexes, if appropriate. Clearing this
option can result in a greater overall improvement in the performance of the
workload.

! It is recommended that you leave the Add indexed views option selected.
! Hints can prevent the Index Tuning Wizard from choosing a better

execution plan. Consider removing any index hints from queries before
analyzing the workload.

! When you want to reduce the execution time of the Index Tuning Wizard,
you should:

• Ensure that Perform thorough analysis is not selected in the Select
Server and Database dialog box. Performing a thorough analysis
causes the Index Tuning Wizard to perform an exhaustive analysis of the
queries, resulting in a longer execution time. Selecting this option can
result in a greater overall improvement in the performance of the tuned
workload.

• Tune only a subset of the tables in the database.

• Reduce the size of the workload file.

When you use the Index Tuning Wizard to analyze a Transact-SQL script
that does not have a file name extension of .sql, such as My_script.txt, and you
open the file with File Format set to Auto, the wizard generates the error
message Not a valid File Format. Set File Format to ANSI SQL or
UNICODE SQL instead.

Note

 Module 7: Creating and Maintaining Indexes 49

Performance Considerations

! Create Indexes on Foreign Keys

! Create the Clustered Index Before Nonclustered Indexes

! Consider Creating Composite Indexes

! Create Multiple Indexes for a Table That Is Read
Frequently

! Use the Index Tuning Wizard

Take the following actions to reduce the impact on performance when you
create or use indexes:

! Create indexes on foreign keys, because foreign keys are typically
referenced in queries.

! Create the clustered index before nonclustered indexes, because a clustered
index changes the physical row order of the table.

! Create composite indexes. Query performance is enhanced with composite
indexes, especially when users regularly search for information in more than
one way.

! Create multiple indexes for a table, especially if the table is read frequently.
Query performance is enhanced when a table has a clustered index and
nonclustered indexes.

! Use the Index Tuning Wizard to track the usage of your indexes
automatically and to assist you with maintaining and creating indexes that
perform optimally.

Topic Objective
To discuss the performance
considerations for planning
and creating indexes.

Lead-in
Take the following actions to
reduce the impact on
performance when you
create or use indexes.

50 Module 7: Creating and Maintaining Indexes

Recommended Practices

Use the FILLFACTOR Option to Optimize PerformanceUse the FILLFACTOR Option to Optimize Performance

Execute DBCC SHOWCONTIG to Measure Fragmentation

Allow SQL Server to Create and Update Statistics Automatically

Consider Creating Statistics on Nonindexed Columns
to Enable More Efficient Execution Plans

Use the DROP_EXISTING Option for Maintaining Indexes

To get the most out of your indexes, consider the following practices:

! Use the FILLFACTOR option to optimize the performance of INSERT and
UPDATE statements. This option allows you to specify a percentage of free
space on the leaf-level pages.

! Use the DROP_EXISTING option to rebuild indexes quickly.
! Execute the DBCC SHOWCONTIG statement to determine the

fragmentation of a table. The DBCC SHOWCONTIG statement shows the
percentage of fragmentation and the average page density in a table.

! Allow SQL Server to create and update statistics for you automatically.
Over time, statistics sometimes become outdated, which can affect the
performance of the query optimizer. You should set auto update statistics
and auto create statistics to ON.

! Consider creating statistics on nonindexed columns and secondary columns
of a composite index. You can enhance query performance without
incurring the overhead of maintaining additional indexes. Creating statistics
allows the query optimizer to create more efficient execution plans.

Topic Objective
To list the recommended
practices for using or
creating indexes.

Lead-in
To get the most out of your
indexes, consider these
recommended practices.

 Module 7: Creating and Maintaining Indexes 51

Additional information on the following topics is available in SQL Server
Books Online.

Topic Search on

Index statistics sp_autostats

 DBCC SHOW_STATISTICS

 �update statistics�

Creating indexes �index tuning recommendations�

Computed columns �SET options that affect results�

Functions �deterministic and nondeterministic functions�

52 Module 7: Creating and Maintaining Indexes

Lab B: Viewing Index Statistics

Objectives
After completing this lab, you will be able to:

! Estimate density and determine selectivity of indexes.
! View index statistics to determine whether the index is selective.

Prerequisites
Before working on this lab, you must have:

! Script files for this lab, which are located in C:\Moc\2073A\Labfiles\L07.
! Answer files for this lab, which are located in

C:\Moc\2073A\Labfiles\L07\Answers.

Lab Setup
To complete this lab, you must have either:

! Completed the prior lab, or
! Executed the C:\Moc\2073A\Batches\Restore07B.cmd batch file.

This command file restores the ClassNorthwind database to a state required
for this lab.

For More Information
If you require help in executing files, search SQL Query Analyzer Help for
�Execute a query�.

Other resources that you can use include:

! The credit database schema.
! Microsoft SQL Server Books Online.

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will execute
queries and compare
statistics.

Explain the lab objectives.

 Module 7: Creating and Maintaining Indexes 53

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 30 minutes

54 Module 7: Creating and Maintaining Indexes

Exercise 1
Examining the Use of Indexes

In this exercise, you will create indexes, execute a series of SELECT statements
to examine the density of four columns in the Charge table, and determine
selectivity.

You can open, review, and execute sections of the ExamUse.sql script file in
the C:\Moc\SQL2073A\Labfiles\L07 folder, or type and execute the provided
Transact-SQL statements.

! To create indexes
In this procedure, you will drop existing indexes on the Charge table and create
nonclustered indexes.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password password

2. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Microsoft Windows® Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Windows 2000 local
group, Administrators. All members of this group are automatically mapped
to the SQL Server sysadmin role.

3. Type and execute this statement to create unique, nonclustered indexes on
the charge_no, member_no, provider_no, and category_no columns of
the charge table:
USE credit
CREATE UNIQUE NONCLUSTERED INDEX charge_no_CL
 ON charge (charge_no)
CREATE NONCLUSTERED INDEX indx_member_no
 ON charge (member_no)
CREATE NONCLUSTERED INDEX indx_provider_no
 ON charge (provider_no)
CREATE NONCLUSTERED INDEX indx_category_no
 ON charge (category_no)
GO

 Module 7: Creating and Maintaining Indexes 55

! To review the charge table structure
In this procedure, you will creates indexes on the Charge table and determine
the minimum and maximum values for the indexed columns.
1. Type or select these statements, and execute them to obtain the minimum

and maximum values for the charge_no, member_no, provider_no, and
category_no columns:
SELECT 'Charge_No ', MIN(Charge_No) AS 'Minimum Value',
 MAX(Charge_No) AS 'Maximum Value' FROM charge
UNION
SELECT 'Member_No ', MIN(Member_No) AS 'Minimum Value',
 MAX(Member_No) AS 'Maximum Value' FROM charge
UNION
SELECT 'Provider_No ', MIN(Provider_No) AS 'Minimum Value',
 MAX(Provider_No) AS 'Maximum Value' FROM charge
UNION
SELECT 'Category_No ', MIN(Category_No) AS 'Minimum Value',
 MAX(Category_No) AS 'Maximum Value' FROM charge
GO

2. Record the information in the following table.

Value charge_no member_no provider_no category_no

Min 1 41 18 1

Max 100,000 10,000 500 10

! To determine selectivity
In this procedure, you will execute a series of SELECT statements that select all
rows from the Charge table. A table scan is performed for each SELECT
statement. For each SELECT statement, you will first select the query and then
view the estimated execution plan. You will modify the WHERE clause so that
the query optimizer uses an index to retrieve the rows, and then you execute
that query. After executing the query, you will record and evaluate the
maximum number of rows that can be returned by using an index.
USE credit
SELECT * FROM charge
WHERE charge_no BETWEEN 1 AND 100000

USE credit
SELECT * FROM charge
WHERE member_no BETWEEN 1 AND 10000

USE credit
SELECT * FROM charge
WHERE provider_no BETWEEN 1 AND 500

USE credit
SELECT * FROM charge
WHERE category_no between 1 AND 10

56 Module 7: Creating and Maintaining Indexes

1. Select the first statement, but do not execute it.
2. In the query window, on the Query menu, click Display Estimated

Execution Plan.
Notice the query plan for the statement.

3. Modify the range in the SELECT statements so that the query optimizer
uses an index to retrieve the rows, rather than the optimizer using a table
scan or full index scan.
When choosing a range, remember that:

• Each page has approximately 172 charges.

• Older members and providers are less active than newer ones.

• All categories are equally popular.
4. Execute the statements.
5. In the following table, record the maximum number of rows that can be

returned by using an index.

WHERE clause Approximate number of rows

WHERE charge_no BETWEEN 1 AND n 116

WHERE member_no BETWEEN 1 AND n 222

WHERE provider_no BETWEEN 1 AND n 70

WHERE category_no BETWEEN 1 AND n 0

6. Repeat steps 1 through 5 for the remaining SELECT statements.

You will notice that it is not easy to predict the selectivity of a query,
even when you know the values of all of the arguments. It is best to let the
query optimizer decide how to execute the query.

Note

 Module 7: Creating and Maintaining Indexes 57

Is the number of rows accessed by the query optimizer the same for all
indexes? Why or why not?
No. As selectivity decreases and distribution changes, indexes become
less effective for the query optimizer to use because:

• The charge numbers are evenly distributed throughout the table
and they are unique. The predictability of the data is very accurate.

• The member number is less selective and is unevenly distributed.
Estimating the number of rows that are returned becomes less
accurate.

• The provider numbers are not evenly distributed in the charge
table. The older providers (those with low provider numbers) do not
have as many charges as newer providers. To obtain the same
number of charges as newer providers, a larger percentage of the
older providers is used when selecting charges.

• Categories are evenly distributed throughout the table. However,
because there are only 10 categories, even when selecting charges for
only one category, a significant number of rows will be returned.
Thus, the index is not beneficial.

__

__

__

__

__

__

__

__

58 Module 7: Creating and Maintaining Indexes

Exercise 2
Viewing Index Statistics and Evaluating Index Selectivity

In this exercise, you will create various indexes on the Member table, obtain
index statistics, and evaluate whether an index is useful to the query optimizer
based on its selectivity.

You can open, review, and execute sections of the IndexStats.sql script file in
C:\Moc\SQL2073A\Labfiles\L07, or type and execute the provided
Transact-SQL statements.

! To create indexes
In this procedure, you will execute a script that checks for any existing indexes
and statistics, drops them, and then creates appropriate indexes. You will view
the statistics based on the indexes created.
1. Using SQL Query Analyzer, type and execute this statement to drop

existing indexes on the Member table:
USE credit
EXEC index_cleanup member

2. Type and execute these statements to create three indexes on the Member

table:
USE credit
CREATE UNIQUE INDEX indx_member_no ON member (member_no)
CREATE INDEX indx_corp_lname ON member(corp_no,lastname)
CREATE INDEX indx_lastname ON member (lastname)
GO

 Module 7: Creating and Maintaining Indexes 59

! To view index statistics and evaluate selectivity of indexes
In this procedure, you will obtain index statistics for the new indexes, record
the statistical information, and evaluate the selectivity of the indexes.
1. Type and execute this statement to display index statistical information on

the member_no column of the Member table:
USE credit
DBCC SHOW_STATISTICS (member,indx_member_no)

2. Record the statistical information in the following table.

Information Result

Rows 10,000

Steps 3

Density .00009

All density .00009

How selective is the index on the member_no column?
Very selective. The index_member_no index is created on the
member_no column, which contains unique values. If a query specifies
a member number in the WHERE clause using an equality, only one
row will be returned.
__

__

3. Type and execute this statement to display index statistical information on a
composite index on the corp_no and lastname columns of the Member
table:
USE credit
DBCC SHOW_STATISTICS (member,indx_corp_lname)

4. Record the statistical information in the following table.

Information Result

Rows 10,000

Steps 200

Density .0003

All density
(corp_no)

.002

(corp_no,
lastname)

.0006

How selective is this index?

Still selective, but not as selective as member_no column, because
duplicate values exist.
__

__

60 Module 7: Creating and Maintaining Indexes

5. Type and execute this statement to display index statistical information on
the lastname column of the Member table:
USE credit
DBCC SHOW_STATISTICS (member,indx_lastname)

6. Record the statistical information in the following table.

Information Result

Rows 10,000

Steps 26

Density .0

All density .03

How selective is this index?

This index is not very selective. Using the formula to calculate density
shows that this index has low selectivity. Because you cannot divide by
zero, zero is the result. All density indicates the total density.
((26/0)/10000) = 0
__

__

 Module 7: Creating and Maintaining Indexes 61

Review

! Creating Indexes

! Creating Index Options

! Maintaining Indexes

! Introduction to Statistics

! Querying the sysindexes Table

! Setting Up Indexes Using the Index Tuning Wizard

! Performance Considerations

1. You are the database administrator responsible for a large customer
database. Lately, the order processing department has been encountering
slower system response times when submitting customer orders. Your
experience says that the indexing on the Orders and Order Details tables is
correct. What other factors may be causing the slow performance?
Index statistics may not be automatically maintained; therefore, they
may be becoming more and more out of date as data is modified. The
FILLFACTOR option may need to be reapplied to allocate table and
index space for new orders (rows) that are inserted into the Orders and
Order Details tables.

2. What are the advantages of having the SQL Server automatically create and
update statistics?
Letting the query optimizer automatically create and update statistics
reduces administrative overhead and improves query performance.

3. You now have the responsibility of maintaining a database that the Sales
department uses for taking customer orders. The Sales database has
performed poorly. Your manager asks you to improve performance in two
days. What is the appropriate tool to use to solve this problem?
Use the Index Tuning Wizard. On the first day, create a workload file
recording a full day of user activity. On the second day, run the Index
Tuning Wizard against that workload; review the index analysis, and
apply the indexes that the Index Tuning Wizard suggests.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

THIS PAGE INTENTIONALLY LEFT BLANK

