

Contents

Overview 1

Introduction to Indexes 2

Index Architecture 7

How SQL Server Retrieves Stored Data 12

How SQL Server Maintains Index and
Heap Structures 19

Deciding Which Columns to Index 25

Recommended Practices 36

Lab A: Determining the Indexes
of a Table 37

Review 41

Module 6:
Planning Indexes

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BackOffice, MS-DOS, PowerPoint, Visual Basic, Visual C++, Visual Studio,
Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Project Lead: Rich Rose
Instructional Designers: Rich Rose, Cheryl Hoople, Marilyn McGill
Instructional Software Design Engineers: Karl Dehmer, Carl Raebler,
Rick Byham
Technical Lead: Karl Dehmer
Subject Matter Experts: Karl Dehmer, Carl Raebler, Rick Byham
Graphic Artist: Kirsten Larson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Copy Editor: Edward McKillop (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Support: Lori Walker (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: TestingTesting123
Classroom Automation: Lorrin Smith-Bates
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager, Data Base: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 6: Planning Indexes iii

Instructor Notes
This module provides students with an overview of planning indexes. It
explains how indexes can improve database performance. It discusses how
Microsoft® SQL Server� 2000 stores clustered and nonclustered indexes and
how SQL Server retrieves rows by using indexes. It also explores how
SQL Server maintains indexes. The module concludes with guidelines for
deciding which columns to index.

In the lab, students explore two methods of determining the indexes on a table.

After completing this module, students will be able to:

! Describe why and when to use an index.
! Describe how SQL Server uses clustered and nonclustered indexes.
! Describe how SQL Server index architecture facilitates the retrieval of data.
! Describe how SQL Server maintains indexes and heaps.
! Describe the importance of selectivity, density, and distribution of data

when deciding which columns to index.

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need:

! The Microsoft PowerPoint® file 2073A_06.ppt
! The C:\Moc\2073A\Demo\D06_Ex.sql example file, which contains all of

the example scripts from the module, unless otherwise noted in the module.

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials for this module.
! Complete the lab.

Presentation:
90 Minutes

Lab:
15 Minutes

iv Module 6: Planning Indexes

Multimedia Presentation
This section provides multimedia presentation procedures that do not fit in the
margin notes or are not appropriate for the student notes.

SQL Server Index Architecture
! To prepare and start the multimedia presentation
• Click the button in the slide to start the multimedia presentation.

This multimedia presentation introduces the SQL Server index architecture.
It starts with the concept of the balanced tree (B-Tree). Then, it discusses
the architecture of a clustered index, explains how data is stored, and how
data is accessed in a clustered index.
The presentation continues with the architecture of a nonclustered index,
explaining how it differs from a clustered index and pointing out that there
are two possible structures of a nonclustered index. Then, it concludes with
the demonstration on how data is accessed by using a nonclustered index
built on top of a heap and a nonclustered index built on top of a clustered
index.

Other Activities
This section provides procedures for implementing interactive activities to
present or review information, such as games or role playing exercises.

Displaying the Animated PowerPoint Slides
All animated slides are identified with an icon of links on the lower left corner
of the slide.

! To display the Finding Rows Without Indexes slide
This slide shows how SQL Server finds rows in a heap when no useful indexes
are present.
1. Display the topic slide where the sysindexes table, the Index Allocation

Map (IAM) page, and data pages are visible. Point out that the data pages
are a heap and that there are no nonclustered indexes.

2. Advance to the first animation. Describe how the FirstIAM column of the
sysindexes table points SQL Server to the IAM page.

3. Advance to the final animation that shows how the IAM page directs
SQL Server to the extents containing data for that table. Do not discuss the
IAM page in detail.
Point out that table scans are an efficient method of returning all rows in a
table.

 Module 6: Planning Indexes v

! To display the Finding Rows in a Heap with a Nonclustered Index slide
This slide shows how SQL Server accesses the range of last names between
Masters and Rudd by using a nonclustered index on a heap.
1. Display the topic slide where the architecture of a nonclustered index on a

heap and the SELECT statement appear.
2. Advance to the first animation where SQL Server uses the nonclustered

index to locate the leaf level of the index with the last name Matey. The
index row is selected.

3. Advance to the next animation where SQL Server uses the row identifier to
locate the last name Matey in the data pages.

4. Advance to the final animation where the arrow points to the next rows in
the leaf level of the index and uses the row identifiers to locate the other
rows in the heap.
Point out that the row identifier uniquely identifies rows that contain
identical last names, such as Jones. SQL Server returns these rows in
response to the query.

! To display the Finding Rows in a Clustered Index slide
This slide shows how SQL Server finds a row in a clustered index, starting with
the sysindexes table.
1. Display the topic slide where the architecture of a clustered index and the

SELECT statement appear.
2. Advance to the first and only animation where a series of arrows shows the

path that SQL Server traverses in the index to find the row for Ota.
Point out that the leaf level of the clustered index is sorted by the clustering
key of lastname.

! To display the Finding Rows in a Clustered Index with a Nonclustered
Index slide

This slide shows how SQL Server accesses a single row with the first name of
Mike by using a nonclustered index on firstname and a clustered index on
lastname.
1. Display the topic slide where the architecture of a nonclustered index on a

clustered index and the SELECT statement appear.
2. Advance to the first animation where a series of arrows shows the path in

which SQL Server traverses the nonclustered index to find the row with
Mike as the first name.

3. Advance to the next animation where a series of arrows shows how
SQL Server uses the clustering key, with the last name of Nash, to find the
row in the clustered index.
Point out that SQL Server must traverse two indexes to find the record, but
that index retrievals are fast, and upper levels of the index are often in
memory.

vi Module 6: Planning Indexes

! To display the Page Splits in an Index slide
This slide shows why and how SQL Server splits a data page.
1. Display the topic slide. Read the Transact-SQL statement and show where

the new row goes. Point out that there is no room for the row.
2. Advance the slide showing the page split. Point out that a new page was

added and the contents were divided (split) between the old and new pages.

! To display the Forwarding Pointer in a Heap slide
This slide shows why and how SQL Server uses a forward pointer in a heap.
1. Display the topic slide. Read the Transact-SQL statement and point out that

the update of the row for Ota will require the row to grow.
2. Advance to the next animation showing how the index is used to locate the

row. Point out that the data page is full; there is no room for the row to grow
larger.

3. Advance to the final animation that shows how the row is moved to another
page. Discuss how the original location keeps a forwarding pointer to the
new location. Point out that the nonclustered index still points to the original
location.

 Module 6: Planning Indexes vii

Module Strategy
Use the following strategy to present this module:

! Introduction to Indexes
Describe how SQL Server stores and accesses data. Then discuss whether to
create indexes. Explain how SQL Server uses indexes.

! Index Architecture
Play the multimedia presentation on SQL Server index architecture. Avoid
discussing the use of indexes in greater detail because the various types of
data retrieval are addressed in subsequent sections of this module.
Discuss how SQL Server uses heaps and present specific points about
clustered and nonclustered indexes.

! How SQL Server Retrieves Stored Data
The illustrations in this section repeat much of the content covered in the
multimedia presentation. The amount of time spent discussing each slide
should vary based on the knowledge level of the class.
Introduce the students to sysindexes. Point out that the IAM page is used for
table or index scans, and that the root is used for drilling down through the
indexes. Differentiate between a heap and a table with a clustered index.
Make sure that the class understands how a nonclustered index uses either
the clustered index or the Row ID (RID) of a heap. Emphasize that a shorter
clustered index value can make a more-efficient nonclustered index, but that
clustered indexes are selected primarily on the range of queries that are
expected.

! How SQL Server Maintains Index and Heap Structures
Make sure that students understand why pages are split. Emphasize that
splits usually do not require index maintenance. Discuss forward pointers
and emphasize that they reduce the need to update nonclustered indexes.
Review the key points of updates and deletes.

! Deciding Which Columns to Index
Affirm the importance of creating useful indexes by reviewing the
fundamentals of indexes, such as understanding the data and writing queries
that limit a search. Then, explain the importance of selecting the appropriate
columns to index, because selectivity, density, and distribution of data affect
how the query optimizer accesses data.

viii Module 6: Planning Indexes

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing Microsoft
Official Curriculum (MOC) courseware.

The lab in this module is dependent on the classroom configuration
that is specified in the Customization Information section at the end of the
Classroom Setup Guide for course 2073A, Programming a Microsoft
SQL Server 2000 Database.

Lab Setup
The following section describes the setup requirement for the lab in this
module.

Setup Requirement
The lab in this module requires the credit database to be in a state required for
this lab. To prepare student computers to meet this requirement, perform one of
the following actions:

! Complete the prior lab
! Execute the C:\Moc\2073A\Batches\Restore06.cmd batch file.

If this course has been customized, students must execute the
C:\Moc\2073A\Batches\Restore06.cmd batch file to ensure that the first lab will
function properly.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Important

Warning

 Module 6: Planning Indexes 1

Overview

! Introduction to Indexes

! Index Architecture

! How SQL Server Retrieves Stored Data

! How SQL Server Maintains Index and Heap Structures

! Deciding Which Columns to Index

This module provides an overview of planning indexes. It explains how indexes
can improve database performance. It discusses how Microsoft®
SQL Server� 2000 stores clustered and nonclustered indexes and how
SQL Server retrieves rows by using indexes. It also explores how SQL Server
maintains indexes. The module concludes with guidelines for deciding which
columns to index.

After completing this module, you will be able to:

! Describe why and when to use an index.
! Describe how SQL Server uses clustered and nonclustered indexes.
! Describe how SQL Server index architecture facilitates the retrieval of data.
! Describe how SQL Server maintains indexes and heaps.
! Describe the importance of selectivity, density, and distribution of data

when deciding which columns to index.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
when and why you create
indexes and the different
types of indexes. You will
learn how SQL Server uses
and maintains indexes and
how to plan the appropriate
index for your needs.

2 Module 6: Planning Indexes

Introduction to Indexes

! How SQL Server Stores and Accesses Data

! Whether to Create Indexes

Using indexes can greatly improve database performance. This section
introduces basic index concepts and discusses when and why indexes are used.

Topic Objective
To introduce indexes.

Lead-in
This section describes why
and when to use an index.

 Module 6: Planning Indexes 3

How SQL Server Stores and Accesses Data

! How Data Is Stored
$ Rows are stored in data pages
$ Heaps are a collection of data pages for a table

! How Data Is Accessed
$ Scanning all data pages in a table
$ Using an index that points to data on a page

Data Pages
Page 7 Page 8 Page 9

AkhtarAkhtar
FunkFunk
SmithSmith
MartinMartin
......

Page 4 Page 5 Page 6
......
......
......
......
......

ConCon
FunkFunk
WhiteWhite
......
......

RuddRudd
WhiteWhite
BarrBarr
......
......

SmithSmith
OtaOta
JonesJones
......
......

MartinMartin
PhuaPhua
JonesJones
SmithSmith
......

GanioGanio
JonesJones
HallHall
......
......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

Understanding how data is stored is the basis for understanding how
SQL Server accesses data.

In the illustration, only the last names are shown in the data pages,
although the data pages store complete rows.

How Data Is Stored
A heap is a collection of data pages containing rows for a table:

! Each data page contains 8 kilobytes (KB) of information. A group of eight
adjacent pages is called an extent.

! The data rows are not stored in any particular order, and there is no
particular order to the sequence of the data pages.

! The data pages are not linked in a linked list.
! When rows are inserted into a page and a page is full, the data pages split.

Topic Objective
To discuss how SQL Server
stores and accesses data.

Lead-in
Understanding how data is
stored is the basis for
understanding how
SQL Server accesses data.

Delivery Tip
Point out that on the slide,
only the last names are
shown in the data pages,
although the data pages
store complete rows.

Note

4 Module 6: Planning Indexes

How Data Is Accessed
SQL Server accesses data in one of two ways:

! Scanning all of the data pages of tables�called a table scan. When
SQL Server performs a table scan, it:

• Starts at the beginning of the table.

• Scans from page-to-page through all of the rows in the table.

• Extracts the rows that meet the criteria of the query.
! Using indexes. When SQL Server uses an index, it:

• Traverses the index tree structure to find rows that the query requests.

• Extracts only the needed rows that meet the criteria of the query.

SQL Server first determines whether an index exists. Then, the query optimizer,
the component responsible for generating the optimum execution plan for a
query, determines whether scanning a table or using the index is more efficient
for accessing data.

 Module 6: Planning Indexes 5

Whether to Create Indexes

! Why to Create an Index

$ Speeds up data access

$ Enforces uniqueness of rows

! Why Not to Create an Index

$ Consumes disk space

$ Incurs overhead

When you are considering whether to create an index, evaluate two factors to
ensure that the index will be more efficient than a table scan: the nature of the
data and the nature of the queries based on the table.

Why to Create an Index
Indexes accelerate data retrieval. For example, without an index, you would
have to go through an entire textbook one page at a time to find information
about a topic.

SQL Server uses indexes to point to the location of a row on a data page instead
of having to look through all of the data pages of a table. Consider the
following facts and guidelines about indexes:

! Indexes generally accelerate queries that join tables and perform sorting or
grouping operations.

! Indexes enforce the uniqueness of rows if uniqueness is defined when you
create the index.

! Indexes are created and maintained in ascending or descending sorted order.
! Indexes are best created on columns with a high degree of selectivity�that

is, columns or combinations of columns in which the majority of the data
is unique.

Topic Objective
To discuss whether to
create indexes.

Lead-in
Creating an index is not
required. Let�s discuss why
you would want to create an
index.

6 Module 6: Planning Indexes

Why Not to Create an Index
Indexes are useful, but they consume disk space and incur overhead and
maintenance costs. Consider the following facts and guidelines about indexes:

! When you modify data on an indexed column, SQL Server updates the
associated indexes.

! Maintaining indexes requires time and resources. Therefore, do not create
an index that you will not use frequently.

! Indexes on columns containing a large amount of duplicate data may have
few benefits.

Delivery Tip
Ask: Are indexes required?

Answer: No. You can query
and manipulate data without
an index. However, data
access is considerably
slower.

 Module 6: Planning Indexes 7

Index Architecture

! SQL Server Index Architecture

! Using Heaps

! Using Clustered Indexes

! Using Nonclustered Indexes

The index architecture for clustered and nonclustered indexes is different.
Understanding the differences in architecture will help you create the most
effective type of index.

Topic Objective
To introduce the clustered
and nonclustered index
architecture.

Lead-in
This section describes how
SQL Server uses clustered
and nonclustered indexes.

8 Module 6: Planning Indexes

Multimedia Presentation: SQL Server Index Architecture

The multimedia presentation presents the following concepts.

Clustered Indexes
In a clustered index, the leaf level is the actual data page. Data is physically
stored on a data page in ascending order. The order of the values in the index
pages is also ascending.

Nonclustered Indexes Built on Top of a Heap
When a nonclustered index is built on top of a heap, SQL Server uses row
identifiers in the index pages that point to rows in the data pages. The row
identifiers store data location information.

Nonclustered Indexes Built on Top of a Clustered Index
When a nonclustered index is built on top of a table with a clustered index,
SQL Server uses a clustering key in the index pages that point to the clustered
index. The clustering key stores data location information.

Topic Objective
To introduce SQL Server
index architecture.

Lead-in
Let�s watch a multimedia
presentation on SQL Server
index architecture.

 Module 6: Planning Indexes 9

Using Heaps

SQL Server:

! Uses Index Allocation Map Pages That:

$ Contain information on where the extents of a heap
are stored

$ Navigate through the heap and find available space for
new rows being inserted

$ Connect data pages

! Reclaims Space for New Rows in the Heap When a Row
Is Deleted

SQL Server maintains data pages in a heap unless a clustered index is defined
on the table. SQL Server:

! Uses Index Allocation Map (IAM) pages to maintain heaps. IAM pages:

• Contain information on where the extents of a heap are stored.
The sysindexes system table stores a pointer to the first IAM page
associated with a heap.

• Are used to navigate through the heap and find available space for new
rows being inserted.

• Connect the data pages.
The data pages and the rows within them are not in any specific order
and are not linked together. The only logical connection between data
pages is that which is recorded in the IAM pages.

! Reclaims space for new rows in the heap when a row is deleted.

Topic Objective
To discuss how SQL Server
uses heaps.

Lead-in
SQL Server maintains data
pages in a heap unless a
clustered index is defined on
the table.

10 Module 6: Planning Indexes

Using Clustered Indexes

! Each Table Can Have Only One Clustered Index

! The Physical Row Order of the Table and the Order of
Rows in the Index Are the Same

! Key Value Uniqueness Is Maintained Explicitly
or Implicitly

Clustered indexes are useful for columns that are searched frequently for ranges
of key values, or are accessed in sorted order. When you create a clustered
index, consider the following facts and guidelines:

! Each table can have only one clustered index.
! The physical row order of the table and the order of rows in the index are

the same. You should create clustered indexes before you create any
nonclustered indexes because a clustered index changes the physical row
order of the table. Rows are sorted into a sequenced order and maintained in
that order.

! Key value uniqueness is maintained explicitly, with the UNIQUE keyword,
or implicitly, with an internal unique identifier. These unique identifiers are
internal to SQL Server and are not accessible to the user.

! The average size of a clustered index is about five percent of the table size.
However, clustered index size varies depending on the size of the indexed
column.

! When a row is deleted, space is reclaimed and is available for a new row.
! During index creation, SQL Server temporarily uses disk space from the

current database. A clustered index requires about 1.2 times the table size
for working space when the index is created. The disk space that is used
during index creation is reclaimed automatically after the index is created.

Be sure that you have sufficient disk space in the database when you
create clustered indexes.

Topic Objective
To discuss some facts about
clustered indexes.

Lead-in
Clustered indexes are useful
for columns that are
searched frequently for
ranges of key values or are
accessed in sorted order.

Delivery Tip
After discussing the bullet
points on the slide, ask
students what happens to a
clustered index when rows
are added to a table.

Ask: Why can�t you have
two clustered indexes on a
table?

Answer: SQL Server only
stores one physical ordering
of rows for a table.

Delivery Tip
Ask: Where does the 1.2
value come from?

Answer: 1 = data and .2 =
index. These values are
conservative estimates.

Note

 Module 6: Planning Indexes 11

Using Nonclustered Indexes

! Nonclustered Indexes Are the SQL Server Default

! Existing Nonclustered Indexes Are Automatically
Rebuilt When:

$ An existing clustered index is dropped

$ A clustered index is created

$ The DROP_EXISTING option is used to change which
columns define the clustered index

Nonclustered indexes are useful when users require multiple ways to search
data. For example, a reader may frequently search through a gardening book,
looking for both the common and scientific names of plants. You could create a
nonclustered index for retrieving the scientific names and a clustered index for
retrieving common names. When you create a nonclustered index, consider the
following facts and guidelines:

! If an index type is not specified, the type will default to nonclustered index.
! SQL Server automatically rebuilds existing nonclustered indexes when any

of the following occurs.

• An existing clustered index is dropped.

• A clustered index is created.

• The DROP_EXISTING option is used to change which columns define
the clustered index.

! The order of the leaf level pages of a nonclustered index differs from the
physical order of the table. The leaf level is sorted in ascending order.

! Uniqueness is maintained at the leaf level with either clustering keys or
row identifiers.

! You can have up to 249 nonclustered indexes per table.
! Nonclustered indexes are best created on columns in which the data

selectivity ranges from highly selective to unique.
! Create clustered indexes before nonclustered indexes.
! The row identifiers specify the logical ordering of rows and consist of the

file ID, page number, and row ID.

Topic Objective
To discuss some facts about
nonclustered indexes.

Lead-in
Nonclustered indexes are
useful when users require
multiple ways to search
data.

12 Module 6: Planning Indexes

How SQL Server Retrieves Stored Data

! How SQL Server Uses the sysindexes Table

! Finding Rows Without Indexes

! Finding Rows in a Heap with a Nonclustered Index

! Finding Rows in a Clustered Index

! Finding Rows in a Clustered Index with a Nonclustered
Index

To design efficient databases, it is important to understand how SQL Server
retrieves stored data. This section describes how SQL Server index architecture
facilitates the retrieval of data.

Topic Objective
To introduce data retrieval.

Lead-in
This section describes how
SQL Server index
architecture facilitates the
retrieval of data.

This section repeats
information contained in the
prerequisite courses.
Review it rapidly if students
have a good understanding
of a SELECT statement.

 Module 6: Planning Indexes 13

How SQL Server Uses the sysindexes Table

! Describes the Indexes

! Location of IAM, First, and Root of Indexes

! Number of Pages and Rows

! Distribution of Data

indidindidindid Object TypeObject TypeObject Type

00 HeapHeap

11 Clustered IndexClustered Index

2 to 2502 to 250 Nonclustered IndexNonclustered Index

255255 text, ntext, or imagetext, ntext, or image

The sysindexes system table is a central location for vital information about
tables and indexes. It contains statistical information, such as the number of
rows and data pages in each table. It describes how to find information stored in
a data table.

Page pointers in the sysindexes table anchor all of the page collections for
tables and indexes. Every table has one collection of data pages, plus additional
collections of pages to implement each index defined for the table.

A row in sysindexes for each table and index is uniquely identified by the
combination of the object identifier column (id) and the index identifier column
(indid).

The indid Column
This is how the columns of the sysindexes table assist in locating data pages for
different types of objects:

! A heap has a row in sysindexes with the indid column set to zero. The
FirstIAM column in sysindexes points to the chain of IAM pages for the
collection of data pages in the table. SQL Server must use the IAM pages to
find the pages in the data page collection because these pages are not linked
together.

! A clustered index created for a table has a row in sysindexes with the indid
column set to 1. The root column in sysindexes points to the top of the
clustered index balanced tree (B-Tree).

Topic Objective
To describe the role of
sysindexes in a data
search.

Lead-in
The sysindexes system
table provides the first step
in a data search.

14 Module 6: Planning Indexes

! Each nonclustered index created for a table has a row in sysindexes with a
value in the indid column. The value for the indid column for a
nonclustered index ranges from 2 to 250. The root column in sysindexes
points to the top of the nonclustered index B-Tree.

! Each table that has at least one text, ntext, or image column also has a row
in sysindexes with the indid column set to 255. The FirstIAM column in
sysindexes points to the chain of IAM pages that manage the text, ntext,
and image pages.

Delivery Tip
Information generated by
the UPDATE STATISTICS
command is also held in
sysindexes.

 Module 6: Planning Indexes 15

Finding Rows Without Indexes

Heap
Extent 127

idid indid = 0indid = 0 First IAMFirst IAM
sysindexes

IAM

Extent 128 Extent 129

0101
0202
0303
��
��

SmithSmith
OtaOta
JonesJones
��
......

��
��
��
......
......

0101
0202
0303
0404
��

AkhtarAkhtar
FunkFunk
SmithSmith
MartinMartin
......

��
��
��
......
......

0101
0202
0303
��
��

RuddRudd
WhiteWhite
BarrBarr
......
......

��
��
��
......
......

0101
0202
0303
��
��

ConCon
FunkFunk
WhiteWhite
......
......

��
��
��
......
......

0101
0202
0303
��
��

SmithSmith
OtaOta
JonesJones
��
......

��
��
��
......
......

0101
0202
0303
0404
��

AkhtarAkhtar
FunkFunk
SmithSmith
MartinMartin
......

��
��
��
......
......

0101
0202
0303
��
��

RuddRudd
WhiteWhite
BarrBarr
......
......

��
��
��
......
......

0101
0202
0303
0404
0505

ConCon
FunkFunk
WhiteWhite
DurkinDurkin
LangLang

��
��
��
......
......

0101
0202
0303
��
��

SmithSmith
OtaOta
JonesJones
��
......

��
��
��
......
......

0101
0202
0303
0404
��

AkhtarAkhtar
FunkFunk
SmithSmith
MartinMartin
......

��
��
��
......
......

0101
0202
0303
��
��

RuddRudd
WhiteWhite
BarrBarr
......
......

��
��
��
......
......

0101
0202
0303
��
��

ConCon
FunkFunk
WhiteWhite
......
......

��
��
��
......
......

0101
0202
0303
��
��

SmithSmith
OtaOta
JonesJones
��
......

��
��
��
......
......

0101
0202
0303
0404
��

AkhtarAkhtar
FunkFunk
SmithSmith
MartinMartin
......

��
��
��
......
......

0101
0202
0303
��
��

RuddRudd
WhiteWhite
BarrBarr
......
......

��
��
��
......
......

0101
0202
0303
0404
0505

DunnDunn
RandallRandall
OtaOta
SlichterSlichter
LaBrieLaBrie

��
��
��
......
......

0101
0202
0303
��
��

SmithSmith
OtaOta
JonesJones
��
......

��
��
��
......
......

0101
0202
0303
0404
��

AkhtarAkhtar
FunkFunk
SmithSmith
MartinMartin
......

��
��
��
......
......

0101
0202
0303
��
��

RuddRudd
WhiteWhite
BarrBarr
......
......

��
��
��
......
......

0101
0202
0303
��
��

ConCon
FunkFunk
WhiteWhite
......
......

��
��
��
......
......

0101
0202
0303
��
��

SmithSmith
OtaOta
JonesJones
��
......

��
��
��
......
......

0101
0202
0303
0404
��

AkhtarAkhtar
FunkFunk
SmithSmith
MartinMartin
......

��
��
��
......
......

0101
0202
0303
��
��

RuddRudd
WhiteWhite
BarrBarr
......
......

��
��
��
......
......

0101
0202
0303
��
��

SmithSmith
OtaOta
JonesJones
��
......

��
��
��
......
......

0101
0202
0303
0404
��

AkhtarAkhtar
FunkFunk
SmithSmith
MartinMartin
......

��
��
��
......
......

0101
0202
0303
��
��

RuddRudd
WhiteWhite
BarrBarr
......
......

��
��
��
......
......

0101
0202
0303
��
��

ConCon
FunkFunk
WhiteWhite
......
......

��
��
��
......
......

0101
0202
0303
��
��

SmithSmith
OtaOta
JonesJones
��
......

��
��
��
......
......

0101
0202
0303
0404
��

AkhtarAkhtar
FunkFunk
SmithSmith
MartinMartin
......

��
��
��
......
......

0101
0202
0303
��
��

RuddRudd
WhiteWhite
BarrBarr
......
......

��
��
��
......
......

0101
0202
0303
��
��

GraffGraff
BaconBacon
KochKoch
......
......

��
��
��
......
......

Extent 130
0101
0202
0303
0404
��

SeattleSeattle
ParisParis
TokyoTokyo
AtlantaAtlanta
......

��
��
��
......
......

��
127 1127 1
128 1128 1
129 0129 0
130 1130 1
��

Extent Bit Map

When an index does not exist on a table, SQL Server must use a table scan to
retrieve rows. SQL Server uses the sysindexes table to find the IAM page.
Because the IAM page contains a list of all pages related to that table, as a
bitmap of eight-page extents, SQL Server can then read all data pages.

Initiating a data search on a heap by using an IAM page is efficient for a table
scan, but it is not a good means to find a small number of rows in a large table.

The rows are returned unsorted. They may initially be returned in insertion
order, but this order will not be maintained. After deletions have occurred, new
inserts will fill in the gaps, making the order unpredictable.

Topic Objective
To describe data searching
in a heap.

Lead-in
When a table has neither a
clustered index nor useful
nonclustered indexes,
SQL Server uses the IAM
page to initiate a table scan.

Delivery Tip
This slide is animated. Refer
to the Instructor Notes if you
require help with navigating
through this slide.

Point out that the IAM page
is often in memory and
contains efficient, densely
packed information.

Point out that only a table
scan can retrieve rows in
the absence of an index.

16 Module 6: Planning Indexes

Finding Rows in a Heap with a Nonclustered Index

Non-Leaf
Level

Page 12 - RootPage 37 Page 28

Leaf Level
(Key Value)

Page 41 Page 51 Page 61 Page 71

AkhtarAkhtar
......
MartinMartin

AkhtarAkhtar
BarrBarr
ConCon
FunkFunk
FunkFunk

4:706:014:706:01
4:705:034:705:03
4:704:014:704:01
4:706:024:706:02
4:704:024:704:02

MartinMartin
SmithSmith
......

SmithSmith
SmithSmith
SmithSmith
WhiteWhite
WhiteWhite

4:706:034:706:03
4:708:044:708:04
4:707:014:707:01
4:704:034:704:03
4:705:024:705:02

AkhtarAkhtar
GanioGanio
......

GanioGanio
HallHall

JonesJones
JonesJones
JonesJones

4:709:014:709:01
4:709:044:709:04
4:709:024:709:02
4:708:034:708:03
4:707:034:707:03

Heap
Page 707 Page 808 Page 709

0101
0202
0303
0404
......

......

......

......

......

......

AkhtarAkhtar
FunkFunk
SmithSmith
MateyMatey
......

Page 704 Page 705 Page 706
0101
0202
0303
......
......

......

......

......

......

......

ConnConn
FunkFunk
WhiteWhite
......
......

0101
0202
0303
......
......

......

......

......

......

......

RuddRudd
WhiteWhite
BarrBarr

......

......

0101
0202
0303
......
......

......

......

......

......

......

SmithSmith
OtaOta

JonesJones
......
......

0101
0202
0303
0404
......

......

......

......

......

......

MartinMartin
PhuaPhua
JonesJones
SmithSmith
......

0101
0202
0303
......
......

......

......

......

......

......

GanioGanio
JonesJones
HallHall

......

......

MartinMartin
MateyMatey
OtaOta

PhuaPhua
RuddRudd

4:708:014:708:01
4:706:044:706:04
4:707:024:707:02
4:708:024:708:02
4:705:014:705:01

Non
Clustered

Index

File ID #4

idid indid = 2indid = 2 rootrootsysindexes

SELECT lastname, firstname
FROM member
WHERE lastname
BETWEEN 'Masters' AND 'Rudd'

SELECT lastname, firstname
FROM member
WHERE lastname
BETWEEN 'Masters' AND 'Rudd'

Non-Leaf
Level

Page 12 - RootPage 37 Page 28

Leaf Level
(Key Value)

Page 41 Page 51 Page 61 Page 71

AkhtarAkhtar
......
MartinMartin

AkhtarAkhtar
BarrBarr
ConCon
FunkFunk
FunkFunk

4:706:014:706:01
4:705:034:705:03
4:704:014:704:01
4:706:024:706:02
4:704:024:704:02

MartinMartin
SmithSmith
......

SmithSmith
SmithSmith
SmithSmith
WhiteWhite
WhiteWhite

4:706:034:706:03
4:708:044:708:04
4:707:014:707:01
4:704:034:704:03
4:705:024:705:02

AkhtarAkhtar
GanioGanio
......

GanioGanio
HallHall

JonesJones
JonesJones
JonesJones

4:709:014:709:01
4:709:044:709:04
4:709:024:709:02
4:708:034:708:03
4:707:034:707:03

Heap
Page 707 Page 808 Page 709

0101
0202
0303
0404
......

......

......

......

......

......

AkhtarAkhtar
FunkFunk
SmithSmith
MateyMatey
......

Page 704 Page 705 Page 706
0101
0202
0303
......
......

......

......

......

......

......

ConnConn
FunkFunk
WhiteWhite
......
......

0101
0202
0303
......
......

......

......

......

......

......

RuddRudd
WhiteWhite
BarrBarr

......

......

0101
0202
0303
......
......

......

......

......

......

......

SmithSmith
OtaOta

JonesJones
......
......

0101
0202
0303
0404
......

......

......

......

......

......

MartinMartin
PhuaPhua
JonesJones
SmithSmith
......

0101
0202
0303
......
......

......

......

......

......

......

GanioGanio
JonesJones
HallHall

......

......

MartinMartin
MateyMatey
OtaOta

PhuaPhua
RuddRudd

4:708:014:708:01
4:706:044:706:04
4:707:024:707:02
4:708:024:708:02
4:705:014:705:01

Non
clustered

Index

File ID #4

MartinMartin

MartinMartin

0404 MateyMatey

MateyMatey 4:706:044:706:04

0202 PhuaPhua

PhuaPhua 4:708:024:708:02

0101 RuddRudd

RuddRudd 4:705:014:705:01

0202 OtaOta

OtaOta 4:707:024:707:02

A nonclustered index is like the index of a textbook. The data is stored in one
place and the index is stored in another. Pointers indicate the storage location of
the indexed items in the underlying table.

SQL Server indexes are organized as B-Trees. Each page in an index holds a
page header followed by index rows. Each index row contains a key value and a
pointer to either another page or a data row.

Each page in an index is called an index node. The top node of the B-Tree is
called the root node or root level. The bottom node is called the leaf node or
leaf level. Any index levels between the root and the leaf nodes are intermediate
levels. Each page in the intermediate or bottom layers has a pointer to the
preceding and subsequent pages in a doubly linked list.

In a table that only contains a nonclustered index, the leaf nodes contain row
locators with pointers to the data rows holding the key values. Each pointer
(Row ID or RID) is built from the file ID, page number, and the number of the
row on the page.

SELECT lastname, firstname
FROM member
WHERE lastname
BETWEEN 'Masters' AND 'Rudd'

Topic Objective
To describe data searching
with a nonclustered index.

Lead-in
Pointers are critical to
nonclustered index
searching.

Delivery Tip
This slide is animated. Refer
to the Instructor Notes if you
require help in navigating
through this slide.

Students should already be
familiar with the B-Tree
structure. Emphasize the
use and structure of the
pointers.

Example

 Module 6: Planning Indexes 17

Finding Rows in a Clustered Index

Clustered Index

Page 140 - Root

Page 100 Page 120 Page 130

Page 141 Page 145

AkhtarAkhtar
BarrBarr
ConCon
FunkFunk
FunkFunk
......

23342334
56785678
25342534
13341334
15341534
......

......

......

......

......

......

......

MartinMartin
MartinMartin
OtaOta
PhuaPhua
RuddRudd
......

12341234
77787778
58785878
78787878
60786078
......

......

......

......

......

......

......

SmithSmith
SmithSmith
SmithSmith
WhiteWhite
WhiteWhite
......

14341434
57785778
79787978
22342234
16341634
......

......

......

......

......

......

......

AkhtarAkhtar
GanioGanio

���

AkhtarAkhtar
��

MartinMartin

MartinMartin
SmithSmith

��

Page 110

GanioGanio
HallHall
JonesJones
JonesJones
JonesJones
......

76787678
80788078
24342434
59785978
26342634
......

......

......

......

......

......

......

SELECT lastname, firstname
FROM member
WHERE lastname = 'Ota'

SELECT lastname, firstname
FROM member
WHERE lastname = 'Ota'

Clustered Index

Page 140 - Root

Page 100 Page 120 Page 130

Page 141 Page 145

AkhtarAkhtar
BarrBarr
ConCon
FunkFunk
FunkFunk
......

23342334
56785678
25342534
13341334
15341534
......

......

......

......

......

......

......

MartinMartin
MartinMartin
OtaOta
PhuaPhua
RuddRudd
......

12341234
77787778
58785878
78787878
60786078
......

......

......

......

......

......

......

SmithSmith
SmithSmith
SmithSmith
WhiteWhite
WhiteWhite
......

14341434
57785778
79787978
22342234
16341634
......

......

......

......

......

......

......

AkhtarAkhtar
GanioGanio

���

AkhtarAkhtar
��

MartinMartin

MartinMartin
SmithSmith

��

Page 110

GanioGanio
HallHall
JonesJones
JonesJones
JonesJones
......

76787678
80788078
24342434
59785978
26342634
......

......

......

......

......

......

......

MartinMartinMartin

OtaOtaOta 587858785878

MartinMartinMartin

idid indid = 1indid = 1 rootrootsysindexes

Clustered and nonclustered indexes share a similar B-Tree structure. The
differences are that:

! The data pages of a clustered index are the leaf nodes of the B-Tree
structure.

! The data rows of a clustered index are sorted and stored in a sequential
order based on their clustered key.

A clustered index is like a telephone directory in which all of the rows for
customers with the same last name are clustered together in the same part of the
book. Just as the organization of a telephone directory makes it easy for a
person to search, SQL Server quickly searches a table with a clustered index.
Because a clustered index determines the sequence in which rows are stored in
a table, there can only be one clustered index for a table at a time.

Keeping your clustered key value small increases the number of index rows that
can be placed on an index page and decreases the number of levels that must be
traversed. This minimizes I/O.

If there are duplicate values in a clustered index, SQL Server must
distinguish between rows that contain identical values in the key column or
columns. It does this by using a 4-byte integer (uniquifier value) in an
additional system-only uniquifier column.

SELECT lastname, firstname
FROM member
WHERE lastname = 'Ota'

Topic Objective
To describe data searching
with a clustered index.

Lead-in
Clustered indexes are
sorted in sequential order
based on their clustered
key.

Delivery Tip
This slide is animated. Refer
to the Instructor Notes if you
require help in navigating
through this slide.

Note

Example

18 Module 6: Planning Indexes

Finding Rows in a Clustered Index with a Nonclustered Index

Clustered Index
On Last Name

Nonclustered
Index on
First Name

Non-Leaf
Level

Leaf Level
(Clustered

Key Value)

AaronAaron
DeannaDeanna
��

AaronAaron
......
JoseJose

JoseJose
NinaNina
��

DeannaDeanna
DonDon
DougDoug

DaumDaum
HallHall
HamptonHampton

�� ��

AaronAaron
AdamAdam
AmieAmie

ConCon
BarrBarr
BaldwinBaldwin

�� ��

JoseJose
JudyJudy
MikeMike

LugoLugo
KaethlerKaethler
NashNash

�� ��

BarrBarr AdamAdam
CoxCox
DaumDaum

ArletteArlette
DeannaDeanna

�� ��

��
��
��
��

KimKim
KobaraKobara
LaBrieLaBrie

ShaneShane
LindaLinda
RyanRyan

�� ��

��
��
��
��

NagataNagata
NashNash
NixonNixon

SusanneSusanne
MikeMike
TobyToby

�� ��

��
��
��
��

BarrBarr
KimKim
NagataNagata
O�MeliaO�Melia

idid indid = 2indid = 2 rootrootsysindexes

SELECT lastname, firstname, phone
FROM member
WHERE firstname = 'Mike'

SELECT lastname, firstname, phone
FROM member
WHERE firstname = 'Mike'

Clustered Index
On Last Name

Nonclustered
Index on
First Name

Non-Leaf
Level

Leaf Level
(Clustered

Key Value)

AaronAaron
DeannaDeanna
��

AaronAaron
......
JoseJose

JoseJose
NinaNina
��

DeannaDeanna
DonDon
DougDoug

DaumDaum
HallHall
HamptonHampton

�� ��

AaronAaron
AdamAdam
AmieAmie

ConCon
BarrBarr
BaldwinBaldwin

�� ��

JoseJose
JudyJudy
MikeMike

LugoLugo
KaethlerKaethler
NashNash

�� ��

BarrBarr AdamAdam
CoxCox
DaumDaum

ArletteArlette
DeannaDeanna

�� ��

��
��
��
��

KimKim
KobaraKobara
LaBrieLaBrie

ShaneShane
LindaLinda
RyanRyan

�� ��

��
��
��
��

NagataNagata
NashNash
NixonNixon

SusanneSusanne
MikeMike
TobyToby

�� ��

��
��
��
��

BarrBarr
KimKim
NagataNagata
O�MeliaO�Melia

MikeMikeMike NashNashNash

NagataNagataNagata

NashNashNash MikeMikeMike ���

When a nonclustered index is added to a table that already has a clustered
index, the row locator of each nonclustered index contains the clustered key
index value for the row.

When using clustered and nonclustered indexes on the same table, the B-Tree
structures of both indexes must be traversed to reach data. This generates
additional I/O.

Because the key value of a clustered index is usually larger than the 8-byte RID
used for heaps, nonclustered indexes can be substantially larger on clustered
indexed tables than when built on heaps. Keeping the key values of the
clustered index small helps you to build smaller, faster indexes.

SELECT lastname, firstname, phone
FROM member
WHERE firstname = 'Mike'

Topic Objective
To describe data searching
when both types of indexes
are present.

Lead-in
The secondary index is
used to speed up searches
on additional columns.

Delivery Tip
This slide is animated. Refer
to the Instructor Notes if you
require help in navigating
through this slide.

Example

 Module 6: Planning Indexes 19

How SQL Server Maintains Index and Heap Structures

! Page Splits in an Index

! Forwarding Pointer in a Heap

! How SQL Server Updates Rows

! How SQL Server Deletes Rows

This section discusses how SQL Server maintains indexes and heaps when
inserting, updating, and deleting rows.

Topic Objective
To introduce how
SQL Server maintains index
and heap structures.

Lead-in
This section describes how
SQL Server maintains
indexes and heaps.

20 Module 6: Planning Indexes

Page Splits in an Index

Index Pages

Non-Leaf
Level

INSERT member (last name)
VALUES lastname = �Jackson'

INSERT member (last name)
VALUES lastname = �Jackson'

LangLang
SmithSmith

��

AkhtarAkhtar
GanioGanio

��

AkhtarAkhtar
��

MartinMartin

Jackson

Leaf Level
(Key Value)

AkhtarAkhtar
BarrBarr
BarrBarr
BormBorm
BuhlBuhl

��
��
��
��
��

LangLang
MartinMartin
MartinMartin
MartinMartin
MorisMoris

��
��
��
��
��

SmithSmith
SmithSmith
SmithSmith
SmithSmith
SmithSmith

��
��
��
��
��

� ��
GanioGanio
HallHall
HartHart

JonesJones
JonesJones

��
��
��
��
��

�

Leaf Level
(Key Value)

AkhtarAkhtar
BarrBarr
BarrBarr
BormBorm
BuhlBuhl

��
��
��
��
��

JacksonJackson
JonesJones
JonesJones

��
��
��

LangLang
MartinMartin
MartinMartin
MartinMartin
MorisMoris

��
��
��
��
��

SmithSmith
SmithSmith
SmithSmith
SmithSmith
SmithSmith

��
��
��
��
��

� ��
GanioGanio
HallHall
HartHart

��
��
�� �

Jackson �

A clustered index directs an inserted or updated row to a specific page, which is
determined by the clustered key value. If either the data page or index page
does not have enough room to accommodate the data, a new page is added in a
process known as a page split. Approximately half of the data remains on the
old page, and the other half is moved to the new page.

Logically, the new page follows the original page; physically, the new page
may be assigned to any available page. If an index experiences a large number
of page splits, rebuilding the index will improve performance.

If a page splits in a clustered index, SQL Server does not need to
maintain the nonclustered indexes for all of the rows that have moved to a new
page. The row locator continues to identify the correct location in the clustering
key.

Topic Objective
To describe the concept of a
page split.

Lead-in
Inserting a row into a full
page can cause a page
split.

Delivery Tip
This slide is animated. Refer
to the Instructor Notes if you
require help with navigating
through this slide.

Delivery Tip
Point out that the
nonclustered index must be
modified to add Jackson,
but it does not need to be
updated with the new
location of Jones.

Note

 Module 6: Planning Indexes 21

Forwarding Pointer in a Heap

Non-Leaf
Level

Page 12 - RootPage 37 Page 28

Leaf Level
(Key Value)

Page 41 Page 51 Page 61 Page 71

AkhtarAkhtar
......
MartinMartin

AkhtarAkhtar
BarrBarr
ConCon
FunkFunk
FunkFunk

4:706:014:706:01
4:705:034:705:03
4:704:014:704:01
4:706:024:706:02
4:704:024:704:02

MartinMartin
SmithSmith
......

SmithSmith
SmithSmith
SmithSmith
WhiteWhite
WhiteWhite

4:706:034:706:03
4:708:044:708:04
4:707:014:707:01
4:704:034:704:03
4:705:024:705:02

AkhtarAkhtar
GanioGanio
......

GanioGanio
HallHall

JonesJones
JonesJones
JonesJones

4:709:014:709:01
4:709:044:709:04
4:709:024:709:02
4:708:034:708:03
4:707:034:707:03

Heap
Page 707 Page 808 Page 709

0101
0202
0303
0404
......

......

......

......

......

......

AkhtarAkhtar
FunkFunk
SmithSmith
MartinMartin
......

Page 704 Page 705 Page 706
0101
0202
0303
......
......

......

......

......

......

......

ConnConn
FunkFunk
WhiteWhite
......
......

0101
0202
0303
......
......

......

......

......

......

......

RuddRudd
WhiteWhite
BarrBarr

......

......

0101
0202
0303
0404
0505

......

......

......

......

......

SmithSmith
OtaOta

JonesJones
CoretsCorets
NashNash

0101
0202
0303
0404
......

......

......

......

......

......

MartinMartin
PhuaPhua
JonesJones
SmithSmith
......

0101
0202
0303
......
......

......

......

......

......

......

GanioGanio
JonesJones
HallHall

......

......

MartinMartin
MartinMartin

OtaOta
PhuaPhua
RuddRudd

4:708:014:708:01
4:706:044:706:04
4:707:024:707:02
4:708:024:708:02
4:705:014:705:01

Non
Clustered

Index

File ID #4

idid indid = 2indid = 2 rootrootsysindexes

UPDATE member
SET Address = <something long>
WHERE lastname = 'Ota'

UPDATE member
SET Address = <something long>
WHERE lastname = 'Ota'

Non-Leaf
Level

Page 12 - RootPage 37 Page 28

Leaf Level
(Key Value)

Page 41 Page 51 Page 61 Page 71

AkhtarAkhtar
......
MartinMartin

AkhtarAkhtar
BarrBarr
ConCon
FunkFunk
FunkFunk

4:706:014:706:01
4:705:034:705:03
4:704:014:704:01
4:706:024:706:02
4:704:024:704:02

MartinMartin
SmithSmith
......

SmithSmith
SmithSmith
SmithSmith
WhiteWhite
WhiteWhite

4:706:034:706:03
4:708:044:708:04
4:707:014:707:01
4:704:034:704:03
4:705:024:705:02

AkhtarAkhtar
GanioGanio
......

GanioGanio
HallHall

JonesJones
JonesJones
JonesJones

4:709:014:709:01
4:709:044:709:04
4:709:024:709:02
4:708:034:708:03
4:707:034:707:03

Heap
Page 707 Page 808 Page 709

0101
0202
0303
0404
......

......

......

......

......

......

AkhtarAkhtar
FunkFunk
SmithSmith
MartinMartin
......

Page 704 Page 705 Page 706
0101
0202
0303
......
......

......

......

......

......

......

ConnConn
FunkFunk
WhiteWhite
......
......

0101
0202
0303
......
......

......

......

......

......

......

RuddRudd
WhiteWhite
BarrBarr

......

......

0101
0202
0303
0404
0505

......

......

......

......

......

SmithSmith
OtaOta

JonesJones
CoretsCorets
NashNash

0101
0202
0303
0404
......

......

......

......

......

......

MartinMartin
PhuaPhua
JonesJones
SmithSmith
......

0101
0202
0303
......
......

......

......

......

......

......

GanioGanio
JonesJones
HallHall

......

......

MartinMartin
MartinMartin

OtaOta
PhuaPhua
RuddRudd

4:708:014:708:01
4:706:044:706:04
4:707:024:707:02
4:708:024:708:02
4:705:014:705:01

Non
clustered

Index

File ID #4

0202 OtaOta0202 OtaOta

MartinMartin

MartinMartin

OtaOta 4:707:024:707:02

0202 OtaOta

0404 OtaOta

Page splits do not occur in a heap. SQL Server has a different means of
handling updates and inserts when data pages are full.

Inserts to a Heap
The insert of a new row into a heap cannot cause a page split, because a new
row can be inserted wherever room is available.

Forwarding Pointers
If an update to a row in a heap needs more room than is currently available on
that page, the row will be moved to a new data page. The row leaves a
forwarding pointer in its original location. If the row with the forwarding
pointer must move again, the original pointer is redirected to the new location.

The forwarding pointer ensures that nonclustered indexes need not be changed.
If an update causes the forwarded row to shrink enough to fit in its original
place, the pointer is eliminated, and the record is restored to its original location
by the update.

Page Splits in Nonclustered Indexes on a Heap
Although an insert or update cannot cause a page split in a heap, if a
nonclustered index exists on the heap, an insert or update can still cause a page
split in the nonclustered index.

Topic Objective
To describe the concept of a
forward pointer.

Lead-in
If a row in a heap grows too
large for its original location,
it will be moved to another
page.

Delivery Tip
This slide is animated. Refer
to the Instructor Notes if you
require help with navigating
through this slide.

22 Module 6: Planning Indexes

How SQL Server Updates Rows

! An Update Generally Does Not Cause a Row to Move

! An Update Can Be a Delete Followed by an Insert

! Batch Updates Touch Each Index Only Once

Updates can often take place without impacting the structure of data rows.

An Update Generally Does Not Cause a Row to Move
Updates generally do not require rows to move. No move occurs if the update
does not enlarge the record or if any enlargement still fits on the same page.
Updates typically generate only a single log record.

An Update Can Be a Delete Followed by an Insert
An update causing a row to be moved is logged as a delete followed by an
insert, if:

! The update does not fit on a page of a heap.
! The table has an update trigger.
! The table is marked for replication.
! The value of the clustered index key requires the row to be placed in a

different location. For example, a last name changed from Abercrombie to
Yukish would move that name in a telephone directory.

Batch Updates Touch Each Index Only Once
If a significant number of rows are inserted, updated or deleted in a table in a
single SQL statement, SQL Server presorts the changes for each index so that
the changes are performed in the order of the index. This batch update results in
a significantly greater performance improvement than when using a series of
Transact-SQL statements.

Topic Objective
To describe the effects of
updating data.

Lead-in
Updates can often take
place without impacting the
structure of data rows.

 Module 6: Planning Indexes 23

How SQL Server Deletes Rows

Heap records move individually

Clustered index pages move as a unit

! How Deletes Cause Ghost Records

! How SQL Server Reclaims Space

! How Files Can Shrink

The deletion of rows impacts both the index and data pages.

How Deletes Cause Ghost Records
Rows deleted from the leaf level of an index are not removed immediately.
They are marked as invalid and called ghost records. This process can prevent
the need to lock adjacent records. It can also prevent lock contention over
ranges of data. SQL Server periodically initializes a special housekeeping
thread that checks indexes for the existence of ghost records and removes them.

How SQL Server Reclaims Space
When the last row is deleted from a data page, the entire page is deallocated,
unless it is the only page remaining in the table.

Deleting Rows in an Index
Space in an index is available for use by adjacent rows immediately after a row
is deleted, but some gaps usually remain until the index is rebuilt.

Deleting Rows in a Heap
Deleted rows in heaps are not compacted until the space is required for an
insertion.

Topic Objective
To describe the deletion of
rows.

Lead-in
When a row is deleted, both
the index and data pages
are changed.

24 Module 6: Planning Indexes

How Files Can Shrink
After records have been deleted, a file is able to shrink. SQL Server shrinks a
file by moving data to available pages at the beginning of the file. Within an
index, SQL Server moves whole pages so that the rows stay in their proper,
sorted relationship. Page pointers adjust to link the moved page into the correct
sequence in the table. If there is no clustered index, individual rows can move
wherever there is room in the file.

A database option, autoshrink, tries to shrink the database without
manual intervention. It does so five minutes after startup and every thirty
minutes thereafter. The file is shrunk to a size where 25 percent of the file is
unused space, or to the size of the file when it was created, whichever is greater.

Delivery Tip
Point out that rows in a heap
move individually. Rows do
not stay in insertion order.

Note

 Module 6: Planning Indexes 25

Deciding Which Columns to Index

! Understanding the Data

! Indexing Guidelines

! Choosing the Appropriate Clustered Index

! Indexing to Support Queries

! Determining Selectivity

! Determining Density

! Determining Distribution of Data

Planning useful indexes is one of the most important aspects of improving
query performance. It requires both an understanding of index structure and
how the data is used.

Topic Objective
To point out the topics in
this section.

Lead-in
Planning useful indexes is
one of the most important
aspects of improving query
performance.

26 Module 6: Planning Indexes

Understanding the Data

! Logical and Physical Design

! Data Characteristics

! How Data Is Used

$ The types of queries performed

$ The frequency of queries that are typically performed

Before you create an index, you should have a thorough understanding of the
data, including:

! Logical and physical design.
! Data characteristics.
! How data is used.

To design useful and effective indexes, you must rely on the analysis of
queries that users send. A poor analysis of how users access data becomes
apparent in the form of slow query response or even unnecessary table
locks. You should be aware of how users access data by observing:

• The types of queries performed.

• The frequency of queries that are typically performed.

Having a thorough understanding of the user�s data requirements helps to
determine which columns to index and what types of indexes to create. You
might have to sacrifice some speed on one query to gain better performance on
another.

Topic Objective
To point out that the first
step in creating indexes is to
understand the data and
how users access it.

Lead-in
Before you create an index,
you should have a thorough
understanding of the data.

 Module 6: Planning Indexes 27

Indexing Guidelines

! Columns to Index
$ Primary and foreign keys
$ Those frequently searched in ranges
$ Those frequently accessed in sorted order
$ Those frequently grouped together during aggregation

! Columns Not to Index
$ Those seldom referenced in queries
$ Those that contain few unique values
$ Those defined with text, ntext, or image data types

Your business environment, data characteristics, and use of the data determine
the columns that you specify to build an index. The usefulness of an index is
directly related to the percentage of rows returned from a query. Low
percentages or high selectivity are more efficient.

When you create an index on a column, the column is referred to as the
index column. A value within an index column is called a key value.

Columns to Index
Create indexes on frequently searched columns, such as:

! Primary keys.
! Foreign keys or columns that are used frequently in joining tables.
! Columns that are searched for ranges of key values.
! Columns that are accessed in sorted order.
! Columns that are grouped together during aggregation.

Columns Not to Index
Do not index columns that:

! You seldom reference in a query.
! Contain few unique values. For example, an index on a column with two

values, male and female, returns a high percentage of rows.
! Are defined with text, ntext, and image data types. Columns with these data

types cannot be indexed.

Topic Objective
To consider which columns
to index.

Lead-in
When you create an index,
think about the nature of
your environment and how
data will be distributed.

Note

Delivery Tip
Ask: Can every column be
indexed?

Answer: Yes, every column
can be indexed, but doing
so would be inefficient.

Ask: Can you index a single
column more than once?

Answer: Yes, but doing so
is generally inefficient.

28 Module 6: Planning Indexes

Choosing the Appropriate Clustered Index

! Heavily Updated Tables
$ A clustered index with an identity column keeps

updated pages in memory
! Sorting
$ A clustered index keeps the data pre-sorted

! Column Length and Data Type
$ Limit the number of columns
$ Reduce the number of characters
$ Use the smallest data type possible

Consider how the table is used when you choose the clustered index for each
table.

Heavily Updated Tables
When you optimize performance for data insertion to a heavily used table,
consider creating a clustered index on a primary key identity column. By
forcing inserts to a small group of pages at the end of the table, speed increases.
The frequent access keeps these pages in memory.

Sorting
Tables that are frequently sorted for reports, grouped for aggregation, or
searched for ranges of data can benefit from a clustered index on the sorting
column. Using a clustered index is particularly helpful when many columns of
the table are returned and a nonclustered index is impractical. For example, a
mailing list table would benefit from a clustered index on the postal code,
because the mailing labels must be printed and applied in a specified order.

Column Length and Data Type
SQL Server uses the clustered index value as the row identifier within each
nonclustered index. The clustered index value can be repeated many times in
your table structure.

To prevent large clustered indexes from making their associated nonclustered
indexes larger and slower:

! Limit the number of columns in your clustered index.
! Reduce the average number of characters by using a varchar data type

instead of a char data type.
! Use the smallest data type possible, such as tinyint instead of int.

Topic Objective
To determine the best type
of index for a database.

Lead-in
Consider how the table is
used when you select the
clustered index.

Delivery Tip
Tell students that they
should not automatically
place the clustered index on
the primary key. Consider
the usage of the table.

 Module 6: Planning Indexes 29

Indexing to Support Queries

! Using Search Arguments

! Writing Good Search Arguments

$ Specify a WHERE clause in the query

$ Verify that the WHERE clause limits the number of rows

$ Verify that an expression exists for every table
referenced in the query

$ Avoid using leading wildcards

Query performance is dependent on how well you have designed your indexes.
It is also important to write your queries with a search argument that can take
advantage of an indexed column.

Using Search Arguments
A search argument limits a search to an exact match, a range of values, or a
combination of two or more items joined by an AND operator. A search
argument contains a constant expression that acts on a column by using an
operator. When you write queries that contain search arguments, you increase
the opportunity for the query optimizer to use an index.

Writing Good Search Arguments
If an expression does not limit a search, it is considered a non-search argument.
In many cases, you should rewrite queries to convert non-search arguments into
search arguments.

To limit the search, you should:

! Specify a WHERE clause in the query.
! Verify that the WHERE clause limits the number of rows.
! Verify that an expression exists for every table referenced in the query.
! Avoid using leading wildcard characters.

Topic Objective
To understand why it is
important to limit the search
and how to limit a search.

Lead-in
Query performance relies on
how well you design your
indexes and how selective
your queries are. You
should always write queries
that limit a search.

30 Module 6: Planning Indexes

The following table shows good search arguments:

Good search argument Query

WHERE cust_id = 47635 Limits the search because cust_id is unique
WHERE date BETWEEN
'07/23/2000' AND
'07/30/2000'

Limits the search to only a small range of data

WHERE lastname LIKE 'Gre%' Limits the search to only last names that begin
with the letters Gre

 Module 6: Planning Indexes 31

Determining Selectivity
High selectivity

member_nomember_nomember_no

11

22

..

..

last_namelast_namelast_name first_namefirst_namefirst_name

RandallRandall

FloodFlood
JoshuaJoshua

KathieKathie

..

1000010000 AndersonAnderson BillBill

SELECT *
FROM member
WHERE member_no > 8999

SELECT *
FROM member
WHERE member_no > 8999

1000
10000 = 10%

Number of rows meeting criteria
Total number of rows in table =

Low selectivity
member_nomember_nomember_no

11

22

..

..

last_namelast_namelast_name first_namefirst_namefirst_name

RandallRandall

FloodFlood
JoshuaJoshua

KathieKathie

..

1000010000 AndersonAnderson BillBill

SELECT *
FROM member
WHERE member_no < 9001

SELECT *
FROM member
WHERE member_no < 9001

9000
10000 = 90%

Number of rows meeting criteria
Total number of rows in table =

A concept and term that is frequently used when discussing indexes is
selectivity. When determining which columns to index and choosing the type of
index to create, you should consider how selective the data values are.

Defining Selectivity
Selectivity is derived from the percentage of rows in a table that are accessed or
returned by a query. The query optimizer determines selectivity for SELECT,
UPDATE, or DELETE statements. When creating indexes, you should create
them on:

! Columns that are often referenced in join operations or in the WHERE
clause.

! Data that is highly selective.

High Selectivity and Low Selectivity
In high selectivity, the search criteria limit the number of rows returned to a low
percentage of the total possible. One row returned is the highest selectivity that
can be achieved.

In low selectivity, the search criteria return a high percentage of the rows in the
table.

Estimating Selectivity
You can determine how selective a query is by estimating the number of rows
returned, relative to the total number of rows in a table for a specific query.

Topic Objective
To discuss the concept of
selectivity.

Lead-in
A concept and term that is
frequently used when
discussing indexes is
selectivity.

Delivery Tip
The examples on the slide
cannot be executed against
the credit database.

32 Module 6: Planning Indexes

In this example, assuming that there are 10,000 rows in the member table and
that the member numbers are in the range of 1 to 10,000�all unique values�
the query returns one row.

SELECT *
FROM member
WHERE member_no = 8999

In this example, assuming that there are 10,000 rows in the member table and
that the member numbers are in the range of 1 to 10,000�all unique values�
the query returns 999 rows.

SELECT *
FROM member
WHERE member_no > 9001

In this example, assuming that there are 10,000 rows in the member table and
that the member numbers are in the range of 1 to 10,000�all unique values�
the query returns 9,000 rows.

SELECT *
FROM member
WHERE member_no < 9001

Example 1

Example 2

Example 3

 Module 6: Planning Indexes 33

Determining Density

last_namelast_namelast_name first_namefirst_namefirst_name

RandallRandall

..

..

..

JoshuaJoshua

RandallRandall CynthiaCynthia

RandallRandall TristanTristan

..

..

..

OtaOta LaniLani

..

..

..

SELECT *
FROM member
WHERE last_name = �Ota�

SELECT *
FROM member
WHERE last_name = �Ota�

Low Density

SELECT *
FROM member
WHERE last_name =
�Randall�

SELECT *
FROM member
WHERE last_name =
�Randall�

High Density

A related concept to selectivity is the concept of density. When determining
which columns to index, you should examine the density of your data.

Defining Density
Density is the average percentage of duplicate rows in an index. If your data or
query is not very selective (low selectivity), you have a high amount of density.

! An index with a large number of duplicates has high density.
For example, an index on the lastname column can be very dense.

! A unique index has low density.
An example of this would be an index on social security number, ID,
driver�s license number, or last name and first name (composite).

Relating Density to the Data
When determining the density of your data, remember that density relates to the
specific data elements. Density can vary. Consider an index on the lastname
column. Data elements of this index are very dense for popular last names such
as Randall, whereas the last name Ota is not likely to be very dense.

How Density Affects the Query Plan
Because data is not distributed evenly, the query optimizer might or might not
use an index. In the illustration, the query optimizer might:

! Perform a table scan to retrieve the last name Randall.
! Use an index to access the last name Ota.

Topic Objective
To discuss the concept of
density.

Lead-in
A related concept to
selectivity is density. When
determining which columns
to index, you should
examine the density of your
data.

Delivery Tip
The examples on the slide
cannot be executed against
the credit database.

34 Module 6: Planning Indexes

Determining Distribution of Data

Standard Distribution of Values

F - JA - E K - O P - U V - Z
Last Name

Number
of
Last Names

Even Distribution of Values

Last Name

Number
of
Last Names

C - FA - B G - K L - N O - Z

The distribution of data is related to the concept of density. When determining
the density of the data, you should also examine how the data is distributed.

Defining Distribution of Data
The distribution of data indicates the amount of data that exists for a range of
values in a given table and how many rows fall in that range. If an indexed
column has very few unique values, data retrieval may be slow because of the
distribution of data. For example, a telephone directory sorted alphabetically on
last name may show that there is a high occurrence of people with the last name
Randall or Jones.

Standard or Even Distribution
In a standard distribution, the key value ranges remain constant while the
number per range changes. An even distribution allows the query optimizer to
easily determine the selectivity of a query by estimating the number of
qualifying rows as a percentage of the total rows in the table.

Relating Density to Distribution of Data
Similar to density, data elements of the index can vary in how the data is
distributed. Typically, data is not evenly distributed. For example, if the
member table contains 10,000 rows and has an index on the lastname column,
the last names are typically not evenly distributed.

Topic Objective
To discuss the concept of
data distribution and the
different ways in which data
distribution can be
examined.

Lead-in
The distribution of data is
related to the concept of
density. When determining
the density of the data, you
should also examine how
the data is distributed.

 Module 6: Planning Indexes 35

Estimating the Percentage of Rows Returned
In many cases, you can approximate the percentage of data to be returned in a
result set. For example, if the criterion is male/female, the result set for females
can be estimated at 50 percent. When estimating the percentage of rows
returned on values such as last name, city, or other demographic data, it is
critical that you know your data, because data distribution varies widely in
different environments.

This query is used to show the distribution (amount of duplicates) of column
values on an existing database. In this example, the query returns each value
only once with a number (count) that indicates how many times it occurs in the
table.

SELECT column, count(*) AS 'Data Count'
FROM table
GROUP BY column
ORDER BY 'Data count' DESC

Example

Delivery Tip
The examples on the slide
cannot be executed against
the credit database.

36 Module 6: Planning Indexes

Recommended Practices

Use Indexes to Enforce UniquenessUse Indexes to Enforce Uniqueness

Drop Unused Indexes Drop Unused Indexes

Avoid Long Clustering KeysAvoid Long Clustering Keys

Create Indexes on Columns That Join TablesCreate Indexes on Columns That Join Tables

Consider Using a Clustered Index to Support Sorting
and Range Searches
Consider Using a Clustered Index to Support Sorting
and Range Searches

Create Indexes That Support Search ArgumentsCreate Indexes That Support Search Arguments

The following recommended practices should help you plan indexes effectively:

! Create indexes on columns that join tables, including primary keys or
foreign keys.

! Create unique indexes to enforce uniqueness in a column or group of
columns.

! Review your indexes and drop those that are not being used. Indexes require
disk space and time to maintain them. Databases with high data insert
activity should have fewer indexes. Databases with high read activity should
have more indexes.

! Avoid including unnecessary columns in the clustered index. When
possible, use small data types, such as varchar instead of char.

! Consider using a clustered index to support sorting and range searches.
When you optimize a table for data retrieval, the clustered index should
support the retrieval of groups of records. Select the column or columns for
the clustering key that sorts data in a frequently needed order or that groups
records that must be accessed together.

! Create indexes that support the search arguments of common queries.
Highly selective columns are good candidates for indexes. Columns with
high density are poor candidates for indexes.

Topic Objective
To present recommended
practices for planning
indexes.

Lead-in
These are recommended
practices for planning
indexes.

 Module 6: Planning Indexes 37

Lab A: Determining the Indexes of a Table

Objectives
After completing this lab, you will be able to:

! Use the sp_help system stored procedure to determine the index structure of
a table.

! Query the sysindexes table to identify the index structure of a table.

Prerequisites
Before working on this lab, you must have script files for this lab, which are
located in C:\Moc\2073A\Labfiles\L06.

Lab Setup
To complete this lab, you must have either:

! Completed the prior lab, or
! Executed the C:\Moc\2073A\Batches\Restore06.cmd batch file.

This command file restores the credit database to a state required for
this lab.

For More Information
If you require help in executing files, search SQL Query Analyzer Help for
�Execute a query�.

Other resources that you can use include:

! The credit database schema.
! Microsoft SQL Server Books Online.

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will use two
methods to determine the
index structure of a table.

Explain the lab objectives.

38 Module 6: Planning Indexes

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 15 minutes

 Module 6: Planning Indexes 39

Exercise 1
Identifying Indexes Using sp_help

In this exercise, you will use the sp_help system stored procedure to determine
the index structure of a table.

! To use sp_help
In this procedure, you will use the sp_help system stored procedure to
determine the name, type, and key columns of the indexes on a table.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password password

2. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Microsoft Windows® Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Microsoft
Windows 2000 local group, Administrators. All members of this group are
automatically mapped to the SQL Server sysadmin role.

3. In the DB list, click credit.
4. Open C:\Moc\2073A\Labfiles\L06\Inspect_corporation.sql, and then review

and execute it.
This script will use sp_help to return information about the corporation
table. This stored procedure returns nine grids of data.

5. Navigate to the sixth grid, called index_name.
What are the names of the indexes on the corporation table?
The corporation table has two indexes called corporation_ident and
corporation_region_link.
__

__

Is the primary key of the corporation table a clustered or a nonclustered
index?
The primary key is a clustered index called corporation_ident.
__

__

40 Module 6: Planning Indexes

Exercise 2
Viewing Entries in the sysindexes Table

In this exercise, you will query the sysindexes system table and identify
indexes.

! To view the sysindexes system table
In this procedure, you will execute a script that queries the sysindexes system
table.
1. Open C:\Moc\2073A\Labfiles\L06\Inspect_sysindexes.sql, and then review

and execute it.
This script will query the sysobjects and sysindexes tables for user-created
tables, sorted by the table name.
Which tables do not have a clustered index? How can you tell?
The charge, member, provider and status tables do not have clustered
indexes. The indid value of 0 indicates a heap.
__

__

What type of indexes does the corporation table have?
Both clustered and nonclustered indexes.
__

__

2. Review the column names in the sysindexes table.
How many rows are in the member table? How many pages are used?
The value of the rows column is 10000. The value of the used column is
192 pages.
__

__

How does SQL Server locate the root of an index or the first IAM page in a
heap?
This information is in the root and FirstIAM columns of sysindexes.
__

__

 Module 6: Planning Indexes 41

Review

! Introduction to Indexes

! Index Architecture

! How SQL Server Retrieves Stored Data

! How SQL Server Maintains Index and Heap Structures

! Deciding Which Columns to Index

1. If a customer table has no indexes, how does SQL Server find the row for a
customer named Eva Corets?
SQL Server must perform a table scan, reading every row in the table,
to find the required row.

2. How many clustered indexes can be created for a table?
One. The clustered index defines the physical storage of the data pages,
and the complete table data is stored in only one location.

3. How does a nonclustered index identify the parent rows when a table has a
clustered index? How does a nonclustered index identify the data rows when
a table does not have a clustered index?
When a clustered index exists, the nonclustered index stores the
clustered index value for each indexed row. When a clustered index
does not exist, the nonclustered index stores the file ID, page number,
and RID of the data row.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

42 Module 6: Planning Indexes

4. The expansion of a field that is not included in an index causes a page split.
This page split has moved the row to a new page. What is the impact of this
move on the nonclustered indexes in the table?
There is no impact on the nonclustered indexes. If there were a
clustered index, that clustering value would not be changed. The
nonclustered index still points to the row because the clustering key has
not changed. If there is no clustered index, a forward pointer is left in
the position of the old record to point to the new record. In either case,
the nonclustered index does not need to be modified.

5. You are considering creating a composite, clustered index on the company
name, last name, and first name columns of a table. What are some
important points to consider when you create the index, and why? Is there a
better solution?
Keep the clustered index key as small as possible. The larger the
clustering key value, the greater the impact on all nonclustered indexes.
The larger the clustered index, the less efficient it becomes. As the size
of key values increases, the values require more space on a page; the
page then holds fewer key values, which causes the clustered index tree
(B-Tree) to become larger. The larger the clustered index becomes (the
more non-leaf-levels it has), the more I/O cycles that are required to
traverse the index tree.
Also, this unique composite key may be better defined as a nonclustered
index or as multiple indexes.
Better solutions that you might consider are creating the clustered
index on a customer ID column (if one exists) or the last name column.
If a customer ID column does not exist, you should consider using the
Identity property or adding a new column that contains a key value
that is derived by extracting various parts of data in the row.

