

Contents

Overview 1

Types of Data Integrity 2

Enforcing Data Integrity 3

Defining Constraints 4

Types of Constraints 9

Disabling Constraints 17

Using Defaults and Rules 21

Deciding Which Enforcement
Method to Use 23

Recommended Practices 24

Lab A: Implementing Data Integrity 25

Review 34

Module 5: Implementing
Data Integrity

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BackOffice, MS-DOS, PowerPoint, Visual Basic, Visual C++, Visual Studio,
Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Project Lead: Rich Rose
Instructional Designers: Rich Rose, Cheryl Hoople, Marilyn McGill
Instructional Software Design Engineers: Karl Dehmer, Carl Raebler,
Rick Byham
Technical Lead: Karl Dehmer
Subject Matter Experts: Karl Dehmer, Carl Raebler, Rick Byham
Graphic Artist: Kirsten Larson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Copy Editor: Edward McKillop (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Support: Lori Walker (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: TestingTesting123
Classroom Automation: Lorrin Smith-Bates
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager, Data Base: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 5: Implementing Data Integrity iii

Instructor Notes
This module provides students with an introduction to data integrity concepts,
including the methods available for enforcing data integrity. The module then
introduces constraints, which are the key method for ensuring data integrity.
Also illustrated are various types of constraints. The module discusses the
creation and implementation of constraints in detail, as well as the means to
disable constraints when necessary.

The module discusses defaults and rules as an alternate way to enforce data
integrity, although the emphasis remains on constraints. The module concludes
with a comparison of the different data integrity methods.

In the lab, students define DEFAULT, CHECK, PRIMARY KEY, and
FOREIGN KEY constraints.

After completing this module, students will be able to:

! Describe the types of data integrity.
! Describe the methods to enforce data integrity.
! Determine which constraint to use, and create constraints.
! Define and use DEFAULT, CHECK, PRIMARY KEY, UNIQUE, and

FOREIGN KEY constraints.
! Disable constraints.
! Describe and use defaults and rules.
! Determine which data integrity enforcement methods to use.

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

! Microsoft® PowerPoint® file 2073A_05.ppt
! The C:\Moc\2073A\Demo\Demo05\D05_Ex.sql example file, which

contains all of the example scripts from the module, unless otherwise noted
in the module.

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials for this module.
! Complete the lab.

Presentation:
45 Minutes

Lab:
30 Minutes

iv Module 5: Implementing Data Integrity

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing Microsoft
Official Curriculum (MOC) courseware.

The lab in this module is dependent on the classroom configuration
that is specified in the Customization Information section at the end of the
Classroom Setup Guide for course 2073A, Programming a Microsoft
SQL Server 2000 Database.

Lab Setup
The following section describes the setup requirement for the lab in this
module.

Setup Requirement
The lab in this module requires the ClassNorthwind database to be in a state
required for this lab. To prepare student computers to meet this requirement,
perform one of the following actions:

! Complete the prior lab
! Execute the C:\Moc\2073A\Batches\Restore05.cmd batch file.

If this course has been customized, students must execute the
C:\Moc\2073A\Batches\Restore05.cmd batch file to ensure that the lab will
function properly.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Important

Warning

 Module 5: Implementing Data Integrity v

Module Strategy
Use the following strategy to present this module:

! Types of Data Integrity
This topic should serve as a review for experienced students and as an
introduction for less experienced students. Data integrity is defined, and the
types of data integrity are introduced. Keep the teaching points general.

! Enforcing Data Integrity
This topic describes the two methods to enforce data integrity: declarative
data integrity and procedural data integrity. Point out that only the features
of the declarative method�constraints, defaults, and rules�are covered in
this module.

! Defining Constraints
Emphasize that constraints are the preferred method of enforcing data
integrity because they are ANSI-compliant, and describe how constraints
can be used. Introduce the different types of constraints.

! Types of Constraints
This section describes the types of constraints. Syntax, examples, and
considerations for use define each constraint. Make sure that you describe
the implications of the indexes that are created when users define
constraints.

! Disabling Constraints
This section describes how to disable constraint checking, whether you are
creating a new constraint or disabling an existing one.

! Using Defaults and Rules
This section discusses creating and implementing defaults and rules to
enforce data integrity. However, it is important to make the point that using
constraints is preferable to using defaults and rules, because defaults and
rules are not ANSI-compliant.

! Deciding Which Enforcement Method to Use
This section compares the methods of enforcing data integrity in terms of
functionality and overhead costs. Point out that because triggers allow data
to be changed before integrity has been verified, they can be resource
intensive if problems are encountered. You should only use triggers when
constraints alone do not provide the necessary functionality.

 Module 5: Implementing Data Integrity 1

Overview

! Types of Data Integrity

! Enforcing Data Integrity

! Defining Constraints

! Types of Constraints

! Disabling Constraints

! Using Defaults and Rules

! Deciding Which Enforcement Method to Use

This module begins with an introduction to data integrity concepts, including
the methods available for enforcing data integrity. The module then introduces
constraints, which are the key method for ensuring data integrity, and the
various types of constraints. The module discusses the creation and
implementation of constraints in detail, as well as the means to disable
constraints when necessary.

The module discusses defaults and rules as an alternate way to enforce data
integrity, although the emphasis remains on constraints. The module concludes
with a comparison of the different data integrity methods.

After completing this module, you will be able to:

! Describe the types of data integrity.
! Describe the methods to enforce data integrity.
! Determine which constraint to use and create constraints.
! Define and use DEFAULT, CHECK, PRIMARY KEY, UNIQUE, and

FOREIGN KEY constraints.
! Disable constraint checking.
! Describe and use defaults and rules.
! Determine which data integrity enforcement methods to use.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
about the different types of
data integrity and the
features that ensure it.

2 Module 5: Implementing Data Integrity

Types of Data Integrity
Domain Integrity

(columns)

Entity Integrity (rows)

Referential Integrity
(between tables)

An important step in database planning is deciding the best way to enforce the
integrity of the data. Data integrity refers to the consistency and accuracy of
data that is stored in a database. The different types of data integrity are as
follows.

Domain Integrity
Domain (or column) integrity specifies a set of data values that are valid for a
column and determines whether null values are allowed. Domain integrity is
often enforced through the use of validity checking and can also be enforced by
restricting the data type, format, or range of possible values allowed in a
column.

Entity Integrity
Entity (or table) integrity requires that all rows in a table have a unique
identifier, known as the primary key value. Whether the primary key value can
be changed, or whether the whole row can be deleted, depends on the level of
integrity required between the primary key and any other tables.

Referential Integrity
Referential integrity ensures that the relationships among the primary keys (in
the referenced table) and foreign keys (in the referencing tables) are always
maintained. A row in a referenced table cannot be deleted, nor the primary key
changed, if a foreign key refers to the row, unless the cascade action is
permitted. You can define referential integrity relationships within the same
table or between separate tables.

Topic Objective
To introduce the different
types of data integrity.

Lead-in
An important step in
database planning is
deciding the best way to
enforce integrity of the data.
Data integrity falls into these
three categories.

Delivery Tip
The types of data integrity
referenced here represent
basic relational database
design. Keep the teaching
points general. Consider
giving an example from the
Northwind database.

 Module 5: Implementing Data Integrity 3

Enforcing Data Integrity

! Declarative Data Integrity

Criteria defined in object definitions

SQL Server enforces automatically

Implement by using constraints, defaults, and rules

! Procedural Data Integrity

Criteria defined in script

Script enforces

Implement by using triggers and stored procedures

You can enforce data integrity through two methods: declarative data integrity
or procedural data integrity.

Declarative Data Integrity
With declarative integrity, you define the criteria that the data must meet as part
of an object definition, and then Microsoft® SQL Server� 2000 automatically
ensures that the data conforms to the criteria. The preferred method of
implementing basic data integrity is to use declarative integrity. Consider the
following facts about the declarative method:

! Declarative integrity is declared as part of the database definition, by using
declarative constraints that you define directly on tables and columns.

! Implement declarative integrity by using constraints, defaults, and rules.

Procedural Data Integrity
With procedural integrity, you write scripts that define both the criteria that
data must meet and enforce the criteria. You should limit your use of procedural
integrity to more complicated business logic and exceptions. For example, use
procedural integrity when you want to have a cascading delete. The following
facts apply to procedural integrity:

! Procedural integrity can be implemented on the client or the server by using
other programming languages and tools.

! Implement procedural integrity by using triggers and stored procedures.

Topic Objective
To introduce how
SQL Server implements
data integrity.

Lead-in
You can enforce data
integrity through two
methods.

Delivery Tip
Mention that this module
covers only declarative
integrity features:
constraints, defaults, and
rules. Triggers and stored
procedures are covered in
later modules.

4 Module 5: Implementing Data Integrity

$$$$ Defining Constraints

! Determining Which Type of Constraint to Use

! Creating Constraints

! Considerations for Using Constraints

Constraints are the preferred method of enforcing data integrity. This section
discusses how to determine the type of constraint to use, what type of data
integrity that each type of constraint enforces, and how to define constraints.

Topic Objective
To introduce enforcing data
integrity by using
constraints.

Lead-in
Constraints are the
preferred method for
enforcing data integrity.

 Module 5: Implementing Data Integrity 5

Determining Which Type of Constraint to Use

Type of integrityType of integrityType of integrity Constraint typeConstraint typeConstraint type

DomainDomain
DEFAULTDEFAULT

CHECKCHECK

REFERENTIALREFERENTIAL

EntityEntity PRIMARY KEYPRIMARY KEY

UNIQUEUNIQUE

ReferentialReferential FOREIGN KEYFOREIGN KEY

CHECKCHECK

Constraints are an ANSI-standard method of enforcing data integrity. Each type
of data integrity domain, entity, and referential is enforced with separate
types of constraints. Constraints ensure that valid data values are entered in
columns and that relationships are maintained between tables. The following
table describes the different types of constraints.

Type of
integrity

Constraint type

Description

DEFAULT Specifies the value that will be provided for the

column when a value has not been explicitly
supplied in an INSERT statement.

CHECK Specifies data values that are acceptable in a
column.

Domain

REFERENTIAL Specifies the data values that are acceptable to
update, based on values in a column in another
table.

PRIMARY KEY Uniquely identifies each row�ensures that users
do not enter duplicate values and that an index is
created to enhance performance. Null values are
not allowed.

Entity

UNIQUE Prevents duplication of alternate (non-primary)
keys, and ensures that an index is created to
enhance performance. Null values are allowed.

FOREIGN KEY Defines a column or combination of columns with
values that match the primary key of the same or
another table.

Referential

CHECK Specifies the data values that are acceptable in a
column based on values in other columns in the
same table.

Topic Objective
To introduce the different
types of constraints and how
to use them to implement
data integrity.

Lead-in
Different types of constraints
ensure that valid data
values are entered in
columns and that
relationships are maintained
between tables.

Key Point
Emphasize that constraints
are ANSI-compliant.

6 Module 5: Implementing Data Integrity

Creating Constraints

! Use CREATE TABLE or ALTER TABLE

! Can Add Constraints to a Table with Existing Data

! Can Place Constraints on Single or Multiple Columns

Single column, called column-level constraint

Multiple columns, called table-level constraint

You create constraints by using the CREATE TABLE or ALTER TABLE
statement.

You can add constraints to a table with existing data, and you can place
constraints on single or multiple columns:

! If the constraint applies to a single column, it is called a column-level
constraint.

! If a constraint references multiple columns, it is called a table-level
constraint, even if it does not reference all columns in the table.

CREATE TABLE table_name

 ({ < column_definition >
 | < table_constraint > } [,...n])

< column_definition > ::= { column_name data_type }
 [[DEFAULT constant_expression]
 [< column_constraint >] [,..n]

< column_constraint > ::=
[CONSTRAINT constraint_name]
 | [{ PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED]]

 | [[FOREIGN KEY]
 REFERENCES ref_table [(ref_column)]
 [ON DELETE { CASCADE | NO ACTION }]
 [ON UPDATE { CASCADE | NO ACTION }]]
 | CHECK (logical_expression) }

Topic Objective
To introduce the syntax for
defining constraints.

Lead-in
Constraints are
implemented by using the
CREATE TABLE or ALTER
TABLE statement.

Delivery Tip
Point out that the term
table-level constraint refers
to any multicolumn
constraint.

Partial Syntax

Delivery Tips
Point out that the syntax is
split into column-level and
table-level constraints.

Advise students to create
the base table first and then
add constraints later, which
simplifies the process of
defining a table.

 Module 5: Implementing Data Integrity 7

< table_constraint > ::=
 [CONSTRAINT constraint_name]
 { [{ PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED]
 { (column [ASC | DESC] [,...n]) }]
 | FOREIGN KEY
 [(column [,...n])]
 REFERENCES ref_table [(ref_column [,...n])]
 [ON DELETE { CASCADE | NO ACTION }]
 [ON UPDATE { CASCADE | NO ACTION }]
 | CHECK (search_conditions) }

This example creates the Products table, defines columns, and defines
constraints at both the column and table level.

USE Northwind
CREATE TABLE dbo.Products
(
 ProductID int IDENTITY (1,1) NOT NULL,
 ProductName nvarchar (40) NOT NULL,
 SupplierID int NULL,
 CategoryID int NULL,
 QuantityPerUnit nvarchar (20) NULL,
 UnitPrice money NULL CONSTRAINT DF_Products_UnitPrice DEFAULT(0),
 UnitsInStock smallint NULL CONSTRAINT DF_Products_UnitsInStock DEFAULT(0),
 UnitsOnOrder smallint NULL CONSTRAINT DF_Products_UnitsOnOrder DEFAULT(0),
 ReorderLevel smallint NULL CONSTRAINT DF_Products_ReorderLevel DEFAULT(0),
 Discontinued bit NOT NULL CONSTRAINT DF_Products_Discontinued DEFAULT(0),

 CONSTRAINT PK_Products PRIMARY KEY CLUSTERED (ProductID),

 CONSTRAINT FK_Products_Categories FOREIGN KEY (CategoryID)
 REFERENCES dbo.Categories (CategoryID) ON UPDATE CASCADE,
 CONSTRAINT FK_Products_Suppliers FOREIGN KEY (SupplierID)
 REFERENCES dbo.Suppliers (SupplierID) ON DELETE CASCADE,

 CONSTRAINT CK_Products_UnitPrice CHECK (UnitPrice >= 0),
 CONSTRAINT CK_ReorderLevel CHECK (ReorderLevel >= 0),
 CONSTRAINT CK_UnitsInStock CHECK (UnitsInStock >= 0),
 CONSTRAINT CK_UnitsOnOrder CHECK (UnitsOnOrder >= 0)
)
GO

Example

8 Module 5: Implementing Data Integrity

Considerations for Using Constraints

! Can Be Changed Without Recreating a Table

! Require Error-Checking in Applications and
Transactions

! Verify Existing Data

Consider the following facts when you implement or modify constraints:

! You can create, change, and drop constraints without having to drop and
recreate a table.

! You must build error-checking logic into your applications and transactions
to test whether a constraint has been violated.

! SQL Server verifies existing data when you add a constraint to a table.

You should specify names for constraints when you create them, because
SQL Server provides complicated, system-generated names. Names must be
unique to the database object owner and follow the rules for SQL Server
identifiers.

For help with constraints, execute the sp_helpconstraint or sp_help system
stored procedure, or query information schema views, such as
check_constraints, referential_constraints, and table_constraints.

The following system tables store constraint definitions: syscomments,
sysreferences, and sysconstraints.

Topic Objective
To describe some of the
considerations for using
constraints.

Lead-in
Consider these facts when
you implement or modify
constraints.

Delivery Tip
Demonstrate that
SQL Server creates
complicated, system-
generated constraint names.

 Module 5: Implementing Data Integrity 9

$$$$ Types of Constraints

! DEFAULT Constraints

! CHECK Constraints

! PRIMARY KEY Constraints

! UNIQUE Constraints

! FOREIGN KEY Constraints

! Cascading Referential Integrity

This section describes the types of constraints. Syntax, examples, and
considerations for use define each constraint.

Topic Objective
To describe the types of
constraints.

Lead-in
This section describes the
types of constraints.

10 Module 5: Implementing Data Integrity

DEFAULT Constraints

! Apply Only to INSERT Statements

! Only One DEFAULT Constraint Per Column

! Cannot Be Used with IDENTITY Property
or rowversion Data Type

! Allow Some System-supplied Values

USE Northwind
ALTER TABLE dbo.Customers
ADD
CONSTRAINT DF_contactname DEFAULT 'UNKNOWN'
FOR ContactName

USE Northwind
ALTER TABLE dbo.Customers
ADD
CONSTRAINT DF_contactname DEFAULT 'UNKNOWN'
FOR ContactName

A DEFAULT constraint enters a value in a column when one is not specified in
an INSERT statement. DEFAULT constraints enforce domain integrity.

[CONSTRAINT constraint_name]
 DEFAULT constant_expression

This example adds a DEFAULT constraint that inserts the UNKNOWN value
in the dbo.Customers table if a contact name is not provided.

USE Northwind
ALTER TABLE dbo.Customers
ADD
CONSTRAINT DF_contactname DEFAULT 'UNKNOWN' FOR ContactName

Consider the following facts when you apply a DEFAULT constraint:

! It verifies existing data in the table.
! It applies only to INSERT statements.
! Only one DEFAULT constraint can be defined per column.
! It cannot be placed on columns with the Identity property or on columns

with the rowversion data type.
! It allows some system-supplied values�USER, CURRENT_USER,

SESSION_USER, SYSTEM_USER, or CURRENT_TIMESTAMP�to be
specified rather than user-defined values. These system-supplied values can
be useful in providing a record of the users who have been inserting data.

Topic Objective
To introduce the DEFAULT
constraint.

Lead-in
The DEFAULT constraint
enforces domain integrity.

Partial Syntax

Example

 Module 5: Implementing Data Integrity 11

CHECK Constraints

! Are Used with INSERT and UPDATE Statements

! Can Reference Other Columns in the Same Table

! Cannot:
Be used with the rowversion data type
Contain subqueries

USE Northwind
ALTER TABLE dbo.Employees
ADD
CONSTRAINT CK_birthdate
CHECK (BirthDate > '01-01-1900' AND BirthDate <
getdate())

USE Northwind
ALTER TABLE dbo.Employees
ADD
CONSTRAINT CK_birthdate
CHECK (BirthDate > '01-01-1900' AND BirthDate <
getdate())

A CHECK constraint restricts the data that users can enter into a particular
column to specific values. CHECK constraints are similar to WHERE clauses
in that you can specify the conditions under which data will be accepted.

[CONSTRAINT constraint_name]
CHECK (logical_expression)

This example adds a CHECK constraint to ensure that a birth date conforms to
an acceptable range of dates.

USE Northwind
ALTER TABLE dbo.Employees
ADD
CONSTRAINT CK_birthdate
CHECK (BirthDate > '01-01-1900' AND BirthDate < getdate())

Consider the following facts when you apply a CHECK constraint:

! It verifies data every time that you execute an INSERT or UPDATE
statement.

! It can reference other columns in the same table.
For example, a salary column could reference a value in a job_grade
column.

! It cannot be placed on columns with the rowversion data type.
! It cannot contain subqueries.
! If any data violates the CHECK constraint, you can execute the DBCC

CHECKCONSTRAINTS statement to return the violating rows.

Topic Objective
To introduce the CHECK
constraint.

Lead-in
A CHECK constraint
restricts the data entered
into a column to specific
values.

Partial Syntax

Example

12 Module 5: Implementing Data Integrity

PRIMARY KEY Constraints

! Only One PRIMARY KEY Constraint Per Table

! Values Must Be Unique

! Null Values Are Not Allowed

! Creates a Unique Index on Specified Columns

USE Northwind
ALTER TABLE dbo.Customers
ADD
CONSTRAINT PK_Customers

PRIMARY KEY NONCLUSTERED (CustomerID)

USE Northwind
ALTER TABLE dbo.Customers
ADD
CONSTRAINT PK_Customers

PRIMARY KEY NONCLUSTERED (CustomerID)

A PRIMARY KEY constraint defines a primary key on a table that uniquely
identifies a row. It enforces entity integrity.

[CONSTRAINT constraint_name]
 PRIMARY KEY [CLUSTERED | NONCLUSTERED]
 { (column[,...n]) }

This example adds a constraint that specifies that the primary key value of the
dbo.Customers table is the customer identification and indicates that a
nonclustered index will be created to enforce the constraint.

USE Northwind
ALTER TABLE dbo.Customers
ADD
CONSTRAINT PK_Customers

PRIMARY KEY NONCLUSTERED (CustomerID)

Consider the following facts when you apply a PRIMARY KEY constraint:

! Only one PRIMARY KEY constraint can be defined per table.
! The values entered must be unique.
! Null values are not allowed.
! It creates a unique index on the specified columns. You can specify a

clustered or nonclustered index (clustered is the default if it does not already
exist).

The index created for a PRIMARY KEY constraint cannot be dropped
directly. It is dropped when you drop the constraint.

Topic Objective
To introduce PRIMARY KEY
constraints.

Lead-in
PRIMARY KEY constraints
enforce entity integrity.

Partial Syntax

Example

Key Points
The PRIMARY KEY
constraint is always unique,
and it does not allow null
values.

The PRIMARY KEY
constraint always creates an
index.

Note

 Module 5: Implementing Data Integrity 13

UNIQUE Constraints

! Allow One Null Value

! Allow Multiple UNIQUE Constraints on a Table

! Defined with One or More Columns

! Enforced with a Unique Index

USE Northwind
ALTER TABLE dbo.Suppliers
ADD
CONSTRAINT U_CompanyName

UNIQUE NONCLUSTERED (CompanyName)

USE Northwind
ALTER TABLE dbo.Suppliers
ADD
CONSTRAINT U_CompanyName

UNIQUE NONCLUSTERED (CompanyName)

A UNIQUE constraint specifies that two rows in a column cannot have the
same value. This constraint enforces entity integrity with a unique index.

A UNIQUE constraint is helpful when you already have a primary key, such as
an employee number, but you want to guarantee that other identifiers, such as
an employee�s driver�s license number, are also unique.

[CONSTRAINT constraint_name]
 UNIQUE [CLUSTERED | NONCLUSTERED]
 { (column[,...n]) }

This example creates a UNIQUE constraint on the company name in the
dbo.Suppliers table.

USE Northwind
ALTER TABLE dbo.Suppliers
ADD
CONSTRAINT U_CompanyName

UNIQUE NONCLUSTERED (CompanyName)

Consider the following facts when you apply a UNIQUE constraint:

! It can allow one null value.
! You can place multiple UNIQUE constraints on a table.
! You can apply the UNIQUE constraint to one or more columns that must

have unique values, but are not the primary key of a table.
! The UNIQUE constraint is enforced through the creation of a unique index

on the specified column or columns.

Topic Objective
To introduce UNIQUE
constraints.

Lead-in
A UNIQUE constraint
specifies that two rows in a
column cannot have the
same value.

Partial Syntax

Example

14 Module 5: Implementing Data Integrity

FOREIGN KEY Constraints

! Must Reference a PRIMARY KEY or UNIQUE Constraint

! Provide Single or Multicolumn Referential Integrity

! Do Not Automatically Create Indexes

! Users Must Have SELECT or REFERENCES
Permissions on Referenced Tables

! Use Only REFERENCES Clause Within Same Table

USE Northwind
ALTER TABLE dbo.Orders
ADD CONSTRAINT FK_Orders_Customers

FOREIGN KEY (CustomerID)
REFERENCES dbo.Customers(CustomerID)

USE Northwind
ALTER TABLE dbo.Orders
ADD CONSTRAINT FK_Orders_Customers

FOREIGN KEY (CustomerID)
REFERENCES dbo.Customers(CustomerID)

A FOREIGN KEY constraint enforces referential integrity. The FOREIGN
KEY constraint defines a reference to a column with a PRIMARY KEY or
UNIQUE constraint in the same, or another table.

[CONSTRAINT constraint_name]
 [FOREIGN KEY] [(column[,�n])]
 REFERENCES ref_table [(ref_column [,�n])].

This example uses a FOREIGN KEY constraint to ensure that customer
identification in the dbo.Orders table is associated with a valid identification in
the dbo.Customers table.

USE Northwind
ALTER TABLE dbo.Orders
ADD CONSTRAINT FK_Orders_Customers

FOREIGN KEY (CustomerID)
REFERENCES dbo.Customers(CustomerID)

Consider the following facts and guidelines when you apply a FOREIGN KEY
constraint:

! It provides single or multicolumn referential integrity. The number of
columns and data types that are specified in the FOREIGN KEY statement
must match the number of columns and data types in the REFERENCES
clause.

! Unlike PRIMARY KEY or UNIQUE constraints, FOREIGN KEY
constraints do not create indexes automatically. However, if you will be
using many joins in your database, you should create an index for the
FOREIGN KEY to improve join performance.

! To modify data, users must have SELECT or REFERENCES permissions
on other tables that are referenced with a FOREIGN KEY constraint.

! You can use only the REFERENCES clause without the FOREIGN KEY
clause when you reference a column in the same table.

Topic Objective
To introduce the FOREIGN
KEY constraint.

Lead-in
A FOREIGN KEY constraint
enforces referential integrity.

Partial Syntax

Example

 Module 5: Implementing Data Integrity 15

Cascading Referential Integrity

CASCADENO ACTION
CustomersCustomersCustomers

INSERT new
CustomerID
INSERT new
CustomerID

CustomerID (PK)

11

OrdersOrdersOrders
CustomerID (FK)

UPDATE old
CustomerID to new
CustomerID

UPDATE old
CustomerID to new
CustomerID

22

CustomersCustomersCustomers
CustomerID (PK)

UPDATE CustomerIDUPDATE CustomerID

OrdersOrdersOrders
CustomerID (FK)

11

CASCADE

CustomersCustomersCustomers

DELETE old
CustomerID
DELETE old
CustomerID

CustomerID (PK)

33

The FOREIGN KEY constraint includes a CASCADE option that allows any
change to a column value that defines a UNIQUE or PRIMARY KEY
constraint to automatically propagate the change to the foreign key value. This
action is referred to as cascading referential integrity.

The REFERENCES clauses of the CREATE TABLE and ALTER TABLE
statements support ON DELETE and ON UPDATE clauses. These clauses
allow you to specify the CASCADE or NO ACTION option.

[CONSTRAINT constraint_name]
 [FOREIGN KEY] [(column[,�n])]
 REFERENCES ref_table [(ref_column [,�n])].
 [ON DELETE { CASCADE | NO ACTION }]
 [ON UPDATE { CASCADE | NO ACTION }]

NO ACTION specifies that any attempt to delete or update a key referenced by
foreign keys in other tables raises an error and the change is rolled back. NO
ACTION is the default.

If CASCADE is defined and a row is changed in the parent table, the
corresponding row is then changed in the referencing table.

For example, in the Northwind database, the Orders table has a referential
relationship with the Customers table; specifically, the Orders.CustomerID
foreign key references the Customers.CustomerID primary key.

If an UPDATE statement is executed on CustomerID in the Customers table,
and an ON UPDATE CASCADE action is specified for Orders.CustomerID,
SQL Server checks for one or more dependent rows in the Orders table. If any
exist, it updates the dependent rows in the Orders table, as well as the row
referenced in the Customers table.

Topic Objective
To describe how to cascade
referential integrity.

Lead-in
Cascading referential
integrity automatically
propagates changes to the
database.

Partial Syntax

16 Module 5: Implementing Data Integrity

Consider these factors when applying the CASCADE option:

! It is possible to combine CASCADE and NO ACTION on tables that have
referential relationships with one another. If SQL Server encounters NO
ACTION, it terminates and rolls back related CASCADE actions.
When a DELETE statement causes a combination of CASCADE and NO
ACTION actions, all the CASCADE actions are applied before SQL Server
checks for any NO ACTION.

! CASCADE cannot be specified for any foreign key or primary key columns
that are defined with a rowversion column.

 Module 5: Implementing Data Integrity 17

$$$$ Disabling Constraints

! Disabling Constraint Checking on Existing Data

! Disabling Constraint Checking When Loading New Data

For reasons of performance, it is sometimes advisable to disable constraints.
For example, it is more efficient to allow large batch operations to process
before enabling constraints. This section describes how to disable constraint
checking, whether you are creating a new constraint or disabling an existing
one.

Topic Objective
To describe the ways to
disable constraints.

Lead-in
For reasons of performance,
it is sometimes advisable to
disable constraints.

18 Module 5: Implementing Data Integrity

Disabling Constraint Checking on Existing Data

! Applies to CHECK and FOREIGN KEY Constraints

! Use WITH NOCHECK Option When Adding a New
Constraint

! Use if Existing Data Will Not Change

! Can Change Existing Data Before Adding Constraints

USE Northwind
ALTER TABLE dbo.Employees
WITH NOCHECK

ADD CONSTRAINT FK_Employees_Employees
FOREIGN KEY (ReportsTo)
REFERENCES dbo.Employees(EmployeeID)

USE Northwind
ALTER TABLE dbo.Employees
WITH NOCHECK

ADD CONSTRAINT FK_Employees_Employees
FOREIGN KEY (ReportsTo)
REFERENCES dbo.Employees(EmployeeID)

When you define a constraint on a table that already contains data, SQL Server
checks the data automatically to verify that it meets the constraint requirements.
However, you can disable constraint checking on existing data when you add a
constraint to the table.

Consider the following guidelines for disabling constraint checking on existing
data:

! You can disable only CHECK and FOREIGN KEY constraints. Other
constraints must be dropped and then added again.

! To disable constraint checking when you add a CHECK or FOREIGN KEY
constraint to a table with existing data, include the WITH NOCHECK
option in the ALTER TABLE statement.

! Use the WITH NOCHECK option if existing data will not change. Data
must conform to CHECK constraints if the data is updated.

! Be certain that it is appropriate to disable constraint checking. You can
execute a query to change existing data before you decide to add a
constraint.

Topic Objective
To introduce how to disable
constraints.

Lead-in
You can disable constraint
checking when you add a
constraint to a table.

 Module 5: Implementing Data Integrity 19

ALTER TABLE table
[WITH CHECK WITH NOCHECK]
ADD CONSTRAINT constraint

 [FOREIGN KEY] [(column[,�n])]
 REFERENCES ref_table [(ref_col [,�n])]
 [CHECK (search_conditions)]

In this example, you add a FOREIGN KEY constraint that verifies that all
employees are associated with a valid manager. The constraint is not enforced
on existing data at the time that the constraint is added.

USE Northwind
ALTER TABLE dbo.Employees
WITH NOCHECK

ADD CONSTRAINT FK_Employees_Employees
FOREIGN KEY (ReportsTo)
REFERENCES dbo.Employees(EmployeeID)

Partial Syntax

Example

20 Module 5: Implementing Data Integrity

Disabling Constraint Checking When Loading New Data

! Applies to CHECK and FOREIGN KEY Constraints

! Use When:

Data conforms to constraints

You load new data that does not conform to constraints

USE Northwind
ALTER TABLE dbo.Employees
NOCHECK

CONSTRAINT FK_Employees_Employees

USE Northwind
ALTER TABLE dbo.Employees
NOCHECK

CONSTRAINT FK_Employees_Employees

You can disable constraint checking on existing CHECK and FOREIGN KEY
constraints so that any data that you modify or add to the table is not checked
against the constraint.

To avoid the costs of constraint checking, you might want to disable constraints
when:

! You already have ensured that the data conforms to the constraints.
! You want to load data that does not conform to the constraints. Later, you

can execute queries to change the data and then re-enable the constraints.

Disabling constraints on one table does not affect constraints on
other tables that reference the original table. Updates to a table still can generate
constraint violation errors.

Enabling a constraint that has been disabled requires executing another ALTER
TABLE statement that contains either a CHECK or CHECK ALL clause.

ALTER TABLE table
{CHECK | NOCHECK} CONSTRAINT
{ALL | constraint[,...n]}

This example disables the FK_Employees_Employees constraint. It can be re-
enabled by executing another ALTER TABLE statement with the CHECK
clause.

USE Northwind
ALTER TABLE dbo.Employees
NOCHECK

CONSTRAINT FK_Employees_Employees

To determine whether a constraint is enabled or disabled on a table, execute the
sp_help system stored procedure, or use the CnstIsDisabled property in the
OBJECTPROPERTY function.

Topic Objective
To describe how to disable
constraint checking when
you load new data.

Lead-in
This feature is limited to
CHECK and FOREIGN KEY
constraints.

Important

Partial Syntax

Example

 Module 5: Implementing Data Integrity 21

Using Defaults and Rules
! As Independent Objects They:
Are defined once
Can be bound to one or more columns

or user-defined data types

CREATE DEFAULT phone_no_default
AS '(000)000-0000'

GO
EXEC sp_bindefault phone_no_default,

'Customers.Phone'

CREATE DEFAULT phone_no_default
AS '(000)000-0000'

GO
EXEC sp_bindefault phone_no_default,

'Customers.Phone'

CREATE RULE regioncode_rule
AS @regioncode IN ('IA', 'IL', 'KS', 'MO')

GO
EXEC sp_bindrule regioncode_rule,

'Customers.Region'

CREATE RULE regioncode_rule
AS @regioncode IN ('IA', 'IL', 'KS', 'MO')

GO
EXEC sp_bindrule regioncode_rule,

'Customers.Region'

Defaults and rules are objects that can be bound to one or more columns or
user-defined data types, making it possible to define them once and use them
repeatedly. A disadvantage to using defaults and rules is that they are not
ANSI-compliant.

Creating a Default
If a value is not specified when you insert data, a default specifies one for the
column to which the object is bound. Consider these facts before you create
defaults:

! Any rules that are bound to the column and the data types validate the value
of a default.

! Any CHECK constraints on the column must validate the value of a default.
! You cannot create a DEFAULT constraint on a column that is defined with

a user-defined data type if a default is already bound to the data type or
column.

CREATE DEFAULT default

AS constant_expression

Binding a Default
After you create a default, you must bind it to a column or user-defined data
type by executing the sp_bindefault system stored procedure. To detach a
default, execute the sp_unbindefault system stored procedure.

Topic Objective
To specify how to create
defaults and rules.

Lead-in
Defaults and rules are two
additional methods of
enforcing data integrity.

Key Point
You cannot use a default
constraint on a column with
a user-defined data type if a
default is already bound to
the data type or column.

Syntax

22 Module 5: Implementing Data Integrity

This example inserts a placeholder phone number in the correct format until the
actual phone number can be supplied.

USE Northwind
GO
CREATE DEFAULT phone_no_default
 AS '(000)000-0000'
GO
EXEC sp_bindefault phone_no_default, 'Customers.Phone'

Creating a Rule
Rules specify the acceptable values that you can insert into a column. They
ensure that data falls within a specified range of values, matches a particular
pattern, or matches entries in a specified list. Consider these facts about rules:

! A rule definition can contain any expression that is valid in a WHERE
clause.

! A column or user-defined data type can have only one rule that is bound
to it.

CREATE RULE rule

AS condition_expression

Binding a Rule
After you create a rule, you must bind it to a column or user-defined data type
by executing the sp_bindrule system stored procedure. To detach a rule,
execute the sp_unbindrule system stored procedure.

In this example, the rule ensures that only specified states are allowed.

USE Northwind
GO
CREATE RULE regioncode_rule
 AS @regioncode IN ('IA', 'IL', 'KS', 'MO')
GO
EXEC sp_bindrule regioncode_rule, 'Customers.Region'

Dropping a Default or Rule
The DROP statement removes a default or rule from the database.

DROP DEFAULT default [,...n]

DROP RULE rule [, ...n]

Example

Syntax

Example

Syntax

Syntax

 Module 5: Implementing Data Integrity 23

Deciding Which Enforcement Method to Use

Data integrity
components

Data integrityData integrity
componentscomponents

ConstraintsConstraints

Defaults and rulesDefaults and rules

TriggersTriggers

FunctionalityFunctionalityFunctionality

MediumMedium

LowLow

HighHigh

Performance
costs
Performance Performance
costscosts

LowLow

LowLow

Medium-HighMedium-High

Before or after
modification

Before or afterBefore or after
modificationmodification

BeforeBefore

BeforeBefore

AfterAfter

Data types,
Null/Not Null

Data types,
Null/Not Null LowLow LowLow BeforeBefore

You should consider functionality and performance costs when you determine
which methods to use to enforce data integrity:

! It is best to use declarative integrity for fundamental integrity logic, such as
when enforcing valid values and maintaining the relationships between
tables.

! If you want to maintain complex redundant data that is not part of a primary
or foreign key relationship, you must use triggers or stored procedures.
However, because triggers do not fire until a modification occurs, error
checking happens after the statement is completed. When a trigger detects a
violation, it must undo the changes.

Data integrity
component

Impact

Functionality

Performance
costs

Before or after
modification

Constraints Define with a table and validate the

data before a transaction begins,
resulting in better performance.

Medium Low Before

Defaults and rules Implement data integrity as separate
objects that can be associated with
one or more tables.

Low Low Before

Triggers Provide additional functionality, such
as cascading and complex
application logic. Any modifications
must be rolled back.

High Medium-High After
(except for
INSTEAD OF
triggers)

Data types,
Null/Not Null

Provides the lowest level of data
integrity. Implemented for each
column when the table is created.
Data is validated before a transaction
begins.

Low Low Before

Topic Objective
To show the advantages
and disadvantages of
various data integrity
components.

Lead-in
You should consider
functionality and
performance costs when
you determine which
methods to use to enforce
data integrity.

Key Points
Use constraints if possible.
Use defaults and rules if you
need independent objects.
Use triggers only when
complex business logic is
required.

24 Module 5: Implementing Data Integrity

Recommended Practices

Use Cascading Referential Integrity Instead of TriggersUse Cascading Referential Integrity Instead of Triggers

Use Constraints Because They Are ANSI-compliantUse Constraints Because They Are ANSI-compliant

The following recommended practices should help you implement data
integrity:

! Use constraints because they are ANSI-compliant and are supported by
third-party development tools.

! Use cascading referential integrity instead of triggers.

Additional information on the following topics is available in SQL Server
Books Online.

Topic Search on

Developing databases �data integrity�

Clustered and nonclustered indexes �creating an index�

Cascading referential integrity �cascading referential integrity restraints�

Triggers �triggers�

Topic Objective
To present the
recommended practices for
implementing data integrity.

Lead-in
These recommended
practices should help you
when implementing data
integrity.

 Module 5: Implementing Data Integrity 25

Lab A: Implementing Data Integrity

Objectives
After completing this lab, you will be able to:

! Define and use DEFAULT and CHECK constraints to enforce
domain integrity.

! Define and use PRIMARY KEY and FOREIGN KEY constraints to enforce
entity and referential integrity.

! Create and use Microsoft SQL Server 2000 rules and defaults.

Prerequisites
Before working on this lab, you must have:

! Script files for this lab, which are located in C:\Moc\2073A\Labfiles\L05.
! Answer files for this lab, which are located in

C:\Moc\2073A\Labfiles\L05\Answers.

Lab Setup
To complete this lab, you must have either:

! Completed the prior lab, or
! Executed the C:\Moc\2073A\Batches\Restore05.cmd batch file.

This command file restores the ClassNorthwind database to a state required
for this lab.

For More Information
If you require help with executing files, search SQL Query Analyzer Help for
�Execute a query�.

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will add
DEFAULT, CHECK,
PRIMARY KEY, and
FOREIGN KEY constraints
to certain tables.

Explain the lab objectives.

26 Module 5: Implementing Data Integrity

Other resources that you can use include:

! The Northwind database schema.
! SQL Server Books Online.

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 30 minutes

 Module 5: Implementing Data Integrity 27

Exercise 1
Defining DEFAULT Constraints

In this exercise, you will add DEFAULT constraints to the Employees table in
the ClassNorthwind database.

! To define a DEFAULT constraint
In this procedure, you will execute a script that creates a default for the Region
column in the Employees table, and then you will modify the same script to
change the default region.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password password

2. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Microsoft Windows® authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Microsoft
Windows 2000 local group, Administrators. All members of this group are
automatically mapped to the SQL Server sysadmin role.

3. In the DB list, click ClassNorthwind.
4. Open Labfiles\L05\DefConst.sql, and then review and execute it.

This script will create a DEFAULT constraint that adds NY (New York) as
the default for the Region column in the Employees table.

5. Execute sp_helpconstraint tablename and sp_help constraintname to
view information on the DEFAULT constraint that you just created.
EXEC SP_HELPCONSTRAINT Employees

EXEC SP_HELP DF_Region

6. Modify Labfiles\L05\DefConst.sql to replace the DEFAULT constraint
created in step 4 with a constraint that makes WA (Washington) the default
for the Region column in the Employees table. L05\Answers\DefCons2.sql
is a completed script for this step.
USE ClassNorthwind
GO

ALTER TABLE Employees DROP CONSTRAINT DF_Region
GO

ALTER TABLE Employees
 ADD CONSTRAINT DF_Region DEFAULT 'WA' FOR Region
GO

28 Module 5: Implementing Data Integrity

Exercise 2
Defining CHECK Constraints

In this exercise, you will add two CHECK constraints to the tables in the
ClassNorthwind database.

! To define a CHECK constraint
In this procedure, you will execute a script to add a title of courtesy constraint
to the Employees table, and then you will write and execute a statement to add
a birth date constraint to the Employee table. Finally, you will write and
execute a statement to test the new constraints.
1. Open Labfiles\L05\ChkConst.sql, and then review and execute it.

This script will add a title of courtesy CHECK constraint to the Employees
table of the ClassNorthwind database.

2. Write and execute a statement that adds a constraint to the BirthDate
column in the Employees table called CK_BirthDate. The value in the
BirthDate column must be earlier than today�s date.
L05\Answers\BirthDate.sql is a completed script for this step.
USE ClassNorthwind
ALTER TABLE Employees
 ADD CONSTRAINT CK_BirthDate
 CHECK (BirthDate < GETDATE())
GO

 Module 5: Implementing Data Integrity 29

3. Execute statements that violate each constraint.
Use the following examples as a template.
USE ClassNorthwind
GO
UPDATE Employees SET TitleOfCourtesy = 'None'
WHERE EmployeeID = 1
GO
UPDATE Employees SET BirthDate = (GETDATE()+1)
WHERE EmployeeID = 1
GO

What happens?
In each case, the command is stopped, with the message that the
UPDATE statement conflicted with the constraint.
__

__

4. Execute sp_helpconstraint tablename and sp_help constraintname to
view information on the CHECK constraints that you created.
EXEC SP_HELPCONSTRAINT Employees
GO

EXEC SP_HELP CK_TitleOfCourtesy
GO

EXEC SP_HELP CK_BirthDate
GO

30 Module 5: Implementing Data Integrity

Exercise 3
Defining PRIMARY KEY Constraints

In this exercise, you will add PRIMARY KEY constraints to all of the tables in
the ClassNorthwind database.

! To define a PRIMARY KEY constraint
In this procedure, you first will execute a script that creates a primary key on
the Employees table, and then you will write a statement to create a PRIMARY
KEY constraint on the Customers table. Finally, you will execute a script that
adds PRIMARY KEY constraints to the other tables in the ClassNorthwind
database.
1. Open Labfiles\L05\Prikey1.sql, and then review and execute it

to create a PRIMARY KEY constraint on the Employees table in the
ClassNorthwind database.

2. Write and execute a statement that adds a PRIMARY KEY constraint called
PK_Customers on the CustomerID column in the Customers table.
L05\Answers\PriTitle.sql is a completed script for this step.
USE ClassNorthwind
ALTER TABLE Customers
 ADD CONSTRAINT PK_Customers PRIMARY KEY NONCLUSTERED
 (CustomerID)
GO

What is the impact on nonclustered indexes associated with the table when
you create a PRIMARY KEY constraint?
A PRIMARY KEY constraint automatically creates a clustered index,
and, in turn, the creation of a clustered index automatically rebuilds all
nonclustered indexes.
__

__

3. Open Labfiles\L05\PriKey2.sql, and then review and execute it to create
PRIMARY KEY constraints on the remaining tables in the
ClassNorthwind database.

4. Execute the sp_helpconstraint system stored procedure to view
information on the PRIMARY KEY constraint that you created for the
orders table. Also execute the sp_help system stored procedure on the
constraint on PK_Employees in the ClassNorthwind database.
EXEC SP_HELPCONSTRAINT orders
GO

EXEC SP_HELP PK_Employees
GO

 Module 5: Implementing Data Integrity 31

Exercise 4
Defining FOREIGN KEY Constraints

In this exercise, you will add FOREIGN KEY constraints to tables in the
ClassNorthwind database.

! To define a FOREIGN KEY constraint
In this procedure, you will first execute a script that creates a foreign key on the
Orders table, and then you will write a statement to create a FOREIGN KEY
constraint on the Orders table. Finally, you will execute a script that adds
FOREIGN KEY constraints to the other tables in the ClassNorthwind
database.
1. Open Labfiles\L05\ForKey1.sql, and then review and execute it to create a

FOREIGN KEY constraint on the Orders table.
Why was it not necessary to execute any DROP INDEX statements?
Creating a FOREIGN KEY does not automatically create an index.
__

__

Does the FOREIGN KEY constraint prevent the referenced table from being
dropped or truncated?
Yes. You cannot drop a table referenced by a FOREIGN KEY
constraint. Truncating a table referenced by a FOREIGN KEY
constraint would also violate the constraint, because the primary keys
that it references would no longer exist.
__

__

2. Write and execute a statement that adds a FOREIGN KEY constraint, called
FK_Products_Categories, to the CategoryID column in the Products
table referencing the CategoryID column in the Categories table. Specify
an option that does not verify that the existing data conforms to the new
constraint. L05\Answers\ForeignKeyProd.sql is a completed script for this
step.
USE ClassNorthwind
ALTER TABLE dbo.Products WITH NOCHECK
 ADD CONSTRAINT FK_Products_Categories
 FOREIGN KEY(CategoryID) REFERENCES
 dbo.Categories(CategoryID)
GO

32 Module 5: Implementing Data Integrity

3. Open Labfiles\L05\ForKey2.sql, and then review and execute it to create the
remaining FOREIGN KEY constraints in the ClassNorthwind database.

4. Execute sp_helpconstraint tablename to view information on some of the
FOREIGN KEY constraints that you created. You can use the following
tables with FOREIGN KEY constraints for this step: Products, Orders,
Order Details, Suppliers, and Employees.
EXEC SP_HELPCONSTRAINT Products
GO
EXEC SP_HELPCONSTRAINT Employees
GO
..

 Module 5: Implementing Data Integrity 33

If Time Permits
Creating Defaults and Rules

In this exercise, you will add defaults and rules to the ClassNorthwind
database.

! To create a default
In this procedure, you will execute a script to create and bind a default, and then
you will verify that the default is functioning correctly.
1. Open Labfiles\L05\CreaDefa.sql, and then review and execute it.

This script creates and binds a default to the Suppliers.Country column.
The default is Singapore.

2. Execute a statement that inserts a new record to verify that the default is
working properly. The example below shows how to do this for the
Suppliers table. You can change the example to include your favorite book
title and author.
USE ClassNorthwind
INSERT Suppliers (CompanyName) VALUES ('Karl''s Bakery')
GO

3. Write and execute a statement to query the Suppliers table to view the
results. The example below assumes that you used the data supplied in the
previous step.
USE ClassNorthwind
SELECT * FROM Suppliers
 WHERE Country = 'Singapore'
GO

! To create a rule
In this procedure, you will execute a script to create and bind a rule, and then
you will verify that the rule is functioning correctly.
1. Open Labfiles\L05\CreaRule.sql, and then review and execute it.

This script creates a path rule that ensures that employee-photo paths follow
the format described in the script.

2. Execute the following UPDATE statement to test the rule by attempting to
update the PhotoPath column with an invalid path. The statement should
fail because it violates the path rule.
USE ClassNorthwind
UPDATE Employees
 SET PhotoPath = 'http://accweb/xemmployees/new.bmp'
 WHERE LastName = 'Fuller'
GO

34 Module 5: Implementing Data Integrity

Review

! Types of Data Integrity

! Enforcing Data Integrity

! Defining Constraints

! Types of Constraints

! Disabling Constraints

! Using Defaults and Rules

! Deciding Which Enforcement Method to Use

1. What type of constraint would you add to the Country field in your database
to ensure that your Indonesian subsidiary does business only with other
Indonesian companies?
A CHECK constraint (or a rule).

2. After implementation of the constraint, or rule, in question 1, your data
entry operators are complaining that they have to enter the word Indonesia
over and over again. How can you fix this?
Create a DEFAULT constraint (or a default).

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

 Module 5: Implementing Data Integrity 35

3. Your business has changed and you no longer do work in Indonesia. Your
subsidiary has moved to Malaysia and is now doing business with several
other East Asian countries. Currently, there are 4.5 million sales records that
include Indonesia in the country field. How can you add the new countries
and still preserve the rows that contain Indonesia?
Alter the table to drop the existing constraint and then alter the table to
add the new constraint. When you add the constraint, use the WITH
NOCHECK option.

4. Your order entry system has two main tables: Orders and Customers.
What data integrity components should you consider if you want to ensure
that each order and customer can be uniquely identified? How would you
manage the relationship between the two tables?
Make sure that you define a PRIMARY KEY constraint on the
Customers table. Use a FOREIGN KEY constraint in the Orders table
to reference the Customers table.

THIS PAGE INTENTIONALLY LEFT BLANK

