

Contents

Overview 1

Creating Data Types 2

Creating Tables 9

Generating Column Values 17

Generating Scripts 21

Recommended Practices 22

Lab A: Creating Data Types and Tables 23

Review 33

Module 4: Creating
Data Types and Tables

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BackOffice, MS-DOS, PowerPoint, Visual Basic, Visual C++, Visual Studio,
Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Project Lead: Rich Rose
Instructional Designers: Rich Rose, Cheryl Hoople, Marilyn McGill
Instructional Software Design Engineers: Karl Dehmer, Carl Raebler,
Rick Byham
Technical Lead: Karl Dehmer
Subject Matter Experts: Karl Dehmer, Carl Raebler, Rick Byham
Graphic Artist: Kirsten Larson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Copy Editor: Edward McKillop (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Support: Lori Walker (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: TestingTesting123
Classroom Automation: Lorrin Smith-Bates
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager, Data Base: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 4: Creating Data Types and Tables iii

Instructor Notes
This module provides students with a description of how to create data types
and tables, and generate Transact-SQL scripts containing statements that create
a database and its objects.

In the lab, students create the ClassNorthwind database data types and tables,
add and drop columns, and then generate a script to recreate all database objects
that were previously created.

After completing this module, students will be able to:

! Create and drop user-defined data types.
! Create and drop user tables.
! Generate column values.
! Generate a script.

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

! Microsoft® PowerPoint® file 2073A__04.ppt
! The C:\Moc\2073A\Demo\D04_Ex.sql example file, which contains all of

the example scripts from the module, unless otherwise noted in the module.

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials for this module.
! Complete the lab.

Presentation:
30 Minutes

Lab:
30 Minutes

iv Module 4: Creating Data Types and Tables

Module Strategy
Use the following strategy to present this module:

! Creating Data Types
Describe the system-supplied data types and the guidelines for creating
user-defined data types. Explain how to create and drop user-defined
data types.

! Creating Tables
Describe the process of creating, modifying, and dropping a table.

! Generating Column Values
Discuss the Identity property, the NEWID function, and the
uniqueidentifier data type so that the students will be able to define and use
these capabilities to generate values automatically.

! Generating Scripts
Describe how to generate a Transact-SQL script containing the statements
that are used to create a database and its objects.

 Module 4: Creating Data Types and Tables v

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing Microsoft
Official Curriculum (MOC) courseware.

The lab in this module is dependent on the classroom configuration
that is specified in the Customization Information section at the end of the
Classroom Setup Guide for course 2073A, Programming a Microsoft
SQL Server 2000 Database.

Lab Setup
The following section describes the setup requirement for the lab in this
module.

Setup Requirement 1
The lab in this module requires restoring the ClassNorthwind database to a
state required for this lab. To prepare student computers to meet this
requirement, perform one of the following actions:

! Complete the prior lab
! Execute the C:\Moc\2073A\Batches\Restore04.cmd batch file.

If this course has been customized, students must execute the
C:\Moc\2073A\Batches\Restore04.cmd batch file to ensure that the lab will
function properly.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Important

Warning

 Module 4: Creating Data Types and Tables 1

Overview

! Creating Data Types

! Creating Tables

! Generating Column Values

! Generating Scripts

This module describes how to create data types and tables, and generate
Transact-SQL scripts containing statements that create a database and its
objects.

After completing this module, students will be able to:

! Create and drop user-defined data types.
! Create and drop user tables.
! Generate column values.
! Generate scripts.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
about creating data types
and tables, and generating
scripts.

2 Module 4: Creating Data Types and Tables

Creating Data Types

! System-supplied Data Types

! Creating and Dropping User-defined Data Types

! Guidelines for Specifying Data Types

Before you can create a table, you must define the data types for the table. Data
types specify the type of information (characters, numbers, or dates) that a
column can hold, as well as how the data is stored. Microsoft®
SQL Server� 2000 supplies various system data types. SQL Server also allows
user-defined data types that are based on system data types.

Topic Objective
To provide an overview of
this topic.

Lead-in
In this section, you�ll learn
how to create and drop
user-defined data types.

 Module 4: Creating Data Types and Tables 3

System-supplied Data Types

! Numeric
$ Integer
$ Exact numeric
$ Approximate numeric
$ Monetary

! Date and Time
! Character and Unicode Character
! Binary
! Other

Data types define the data value allowed for each column. SQL Server provides
a number of different data types. Certain common data types have several
associated SQL Server data types. You should choose appropriate data types to
optimize performance and conserve disk space.

Categories of System-supplied Data Types
The following table maps common types of data to SQL Server system-
supplied data types. The table includes data type synonyms for ANSI
compatibility.

Common
data types

SQL Server
system-supplied
data types

ANSI synonym

Number of bytes

Integer int

bigint

smallint, tinyint

integer

−

−

4

8

2, 1

Exact
numeric

decimal[(p[, s])]

numeric[(p[, s])]

dec

−

2�17

Approximate
numeric

float[(n)]

real

double precision,
float[(n)] for n=8-15
float[(n)] for n=1-7

8

4

Monetary money,
smallmoney

− 8, 4

Date and time Datetime,
smalldatetime

− 8
4

Topic Objective
To list the SQL Server data
types.

Lead-in
SQL Server provides a
number of different data
types.

4 Module 4: Creating Data Types and Tables

(continued)

Common
data types

SQL Server
system-supplied
data types

ANSI synonym

Number of bytes

Character char[(n)]

varchar[(n)]

text

character[(n)]

char VARYING[(n)]
character
VARYING[(n)]
−

0�8000

0�2 GB

Unicode
character

nchar[(n)]

nvarchar[(n)]

ntext

− 0�8000

(4000 characters)

0�2 GB

Binary binary[(n)]

varbinary[(n)]

−

binary
VARYING[(n)]

0�8000

Image image − 0�2 GB

Global
identifier

uniqueidentifier − 16

Special bit, cursor,
uniqueidentifier

timestamp

sysname

table

sql_variant

−

rowversion

−

−

−

1, 0�8

8

256

0�8016

Exact and Approximate Numeric Data Types
How you plan to use a data type should determine whether you choose an exact
numeric or an approximate numeric data type.

Exact Numeric Data Types
Exact numeric data types let you specify exactly the scale and precision to use.
For example, you can specify three digits to the right of the decimal and four to
the left. A query always returns exactly what you entered. SQL Server supports
two exact numeric data types for ANSI compatibility: decimal and numeric.

In general, you would use exact numeric data types for financial applications in
which you want to portray the data consistently (always two decimal places)
and to query on that column (for example, to find all loans with an interest rate
of 8.75 percent).

Delivery Tip
SQL Server can support
multiple languages by
storing strings in Unicode
(double-byte) data
type fields.

Delivery Tip
Point out the cursor, table,
and sql_variant data types.

 Module 4: Creating Data Types and Tables 5

Approximate Numeric Data Types
Approximate numeric data types store data as accurately as possible. For
example, the fraction 1/3 is represented in a decimal system as .33333
(repeating). The number cannot be stored accurately, so an approximation
is stored. SQL Server supports two approximate data types: float and real.

If you are rounding numbers or performing quality checks between values, you
should avoid using approximate numeric data types.

It is best to avoid referencing columns with the float or real data type in
WHERE clauses.

Note

6 Module 4: Creating Data Types and Tables

Creating and Dropping User-defined Data Types

DroppingDropping

CreatingCreating

EXEC sp_addtype city, 'nvarchar(15)', NULL
EXEC sp_addtype region, 'nvarchar(15)', NULL
EXEC sp_addtype country, 'nvarchar(15)', NULL

EXEC sp_addtype city, 'nvarchar(15)', NULL
EXEC sp_addtype region, 'nvarchar(15)', NULL
EXEC sp_addtype country, 'nvarchar(15)', NULL

EXEC sp_droptype cityEXEC sp_droptype city

User-defined data types are based on system-supplied data types. They allow
you to refine data types further to ensure consistency when working with
common data elements in different tables or databases. A user-defined data type
is defined for a specific database.

User-defined data types that you create in the model database are
automatically included in all databases that are subsequently created. Each
user-defined data type is added as a row in the systypes table.

You can create and drop user-defined data types by using SQL Server
Enterprise Manager or system stored procedures. Data type names must follow
the rules for identifier names and must be unique to each database. Define each
user-defined data type in terms of a system-supplied data type, preferably by
specifying NULL or NOT NULL.

Topic Objective
To explain how to add and
drop user-defined data
types.

Lead-in
You can create and drop
user-defined data types by
using SQL Server
Enterprise Manager or
system stored procedures.

Delivery Tip
Demonstrate creating a data
type by using SQL Server
Enterprise Manager.

Note

 Module 4: Creating Data Types and Tables 7

Creating a User-defined Data Type
The sp_addtype system stored procedure creates user-defined data types.

sp_addtype {type}, [system_data_type] [, ['NULL' | 'NOT NULL']] [,
'owner_name']

The following example creates three user-defined data types.

EXEC sp_addtype city, 'nvarchar(15)', NULL
EXEC sp_addtype region, 'nvarchar(15)', NULL
EXEC sp_addtype country, 'nvarchar(15)', NULL

Dropping a User-Defined Data Type
The sp_droptype system stored procedure deletes user-defined data types from
the systypes system table. A user-defined data type cannot be dropped if tables
or other database objects reference it.

sp_droptype {�type�}

The following example drops a user-defined data type.

EXEC sp_droptype city

Execute the sp_help system stored procedure to retrieve a list of
currently defined data types.

Syntax

Example

Syntax

Example

Note

8 Module 4: Creating Data Types and Tables

Guidelines for Specifying Data Types

! If Column Length Varies, Use a Variable Data Type

! Use tinyint Appropriately

! For Numeric Data Types, Commonly Use decimal

! If Storage Is Greater Than 8000 Bytes, Use text or image

! Use money for Currency

! Do Not Use float or real as Primary Keys

Consider the following guidelines for selecting data types and balancing storage
size with requirements:

! If column length varies, use one of the variable data types. For example, if
you have a list of names, you can set it to varchar instead of char (fixed).

! If you own a growing bookselling business with many locations, and you
have specified the tinyint data type for the store identifier in the database,
you will have problems when you decide to open store number 256.

! For numeric data types, the size and required level of precision helps to
determine your choice. In general, use decimal.

! If the storage is greater than 8000 bytes, use text or image. If it is less than
8000, use binary or char. When possible, it is best to use varchar because
it has more functionality than text and image.

! Use the money data type for currency.
! Do not use the approximate data types float and real as primary keys.

Because the values of these data types are not precise, it is not appropriate to
use them in comparisons.

Topic Objective
To present some guidelines
for selecting data types.

Lead-in
When selecting data types,
balance storage size with
requirements.

 Module 4: Creating Data Types and Tables 9

Creating Tables

! How SQL Server Organizes Data in Rows

! How SQL Server Organizes text, ntext, and image Data

! Creating and Dropping a Table

! Adding and Dropping a Column

After you define all of the data types for your table, you can create tables, add
and drop columns, and generate column values.

Topic Objective
To provide an overview of
this topic.

Lead-in
In this section, you�ll learn
how to define all of the data
types for a table, create
tables, create and drop
columns, and generate
column values.

10 Module 4: Creating Data Types and Tables

How SQL Server Organizes Data in Rows

HeaderHeader Fixed DataFixed Data NBNB VBVB Variable DataVariable Data

Null
Block

Variable
Block

4 bytes

Data

A data row consists of a row header and a data portion. It is important to
understand the elements of the data portion of each row to accurately estimate
the size of a table.

Row Header
The 4-byte row header contains information about the columns in the data row,
such as a pointer to the location of the end of the fixed-data portion of the row,
and whether variable-length columns exist in the row.

Data Portion
The data portion of a row may contain the following elements:

! Fixed-length data. Fixed-length data is entered into the page before
variable-length data. An empty fixed-length data row takes up as much
space as a populated fixed-length data row. A table with only fixed-length
columns always stores the same number of rows on a page.

! Null block. A null block is a variable-length set of bytes. It consists of two
bytes storing the number of columns followed by a null bitmap indicating
whether each individual column is null. The size of a null bitmap is equal to
one bit per column, rounded up to the nearest byte. One to eight columns
require a 1-byte bitmap. Nine to sixteen columns require a 2-byte bitmap.

Topic Objective
To describe how data is
organized in rows.

Lead-in
It is important to understand
the elements of the data
portion of each row to
accurately estimate the size
of a table.

 Module 4: Creating Data Types and Tables 11

! Variable block. A variable block consists of two bytes that describe how
many variable-length columns are present. An additional two bytes per
column point to the end of each variable-length column. The variable block
is omitted if there are no variable-length columns.

! Variable-length data. Variable-length data is entered into the page after the
variable block. An empty variable-length data row takes up no space. A
table with variable-length columns may have a few long rows or many short
rows.

When possible, keep row length compact to allow more rows to fit on a
page. This reduces input/output (I/O) and improves the buffer cache hit ratio.

Tip

12 Module 4: Creating Data Types and Tables

How SQL Server Organizes text, ntext, and image Data
Data row

TextText
PointerPointer

Root StructureRoot Structure

Intermediate NodeIntermediate Node Intermediate NodeIntermediate Node

block 1block 1 block 2block 2 block 1block 1 block 2block 2

Variable-length data types can be stored as one collection of pages or in data
rows. They are the:

! text data type, which can hold 2,147,483,647 characters. The non-Unicode
text data type cannot be used for variables or parameters in stored
procedures.

! ntext data type, which can hold a maximum of 2³º -1 (1,073,741,823)
characters or 2³¹ -1 bytes, which is 2,147,483,647 bytes of variable-length
Unicode data. The SQL-92 synonym for ntext is national text.

! image data type, which can hold from 0 through 2,147,483,647 bytes of
binary data.

Because text, ntext, and image data types are usually large, SQL Server stores
them outside of rows. A 16-byte pointer in the data row points to a root
structure that holds the data. The text root structure forms the root node of the
B-Tree, which points to the data blocks. If there are more than 32 kilobytes
(KB) of data, intermediate nodes in the B-Tree are added between the root node
and the blocks of data. This permits quick B-Tree navigation starting in the
middle of a string.

With small- to medium-sized text, ntext, and image content, SQL Server
provides the option to store values in the data row rather than in a separate B-
Tree structure. You can specify this text in row option. You can also set the
option limit; the range is 24 through 7,000 bytes.

You can enable the text in row option for a table by using the sp_tableoption
system stored procedure.

Topic Objective
To demonstrate how three
data types are an exception
to row organization.

Lead-in
Variable-length data types
are usually stored as one
collection of pages, rather
than in data rows.

 Module 4: Creating Data Types and Tables 13

This example sets the sp_tableoption system stored procedure text in row
option ON and specifies that up to 1000 text, ntext, or image characters will be
stored in the data page.

EXEC sp_tableoption N'Employees', 'text in row', '1000'

If you specify ON, but do not specify a value, the default is 256 bytes.
The default value ensures that small values and text pointers can be stored in
the data rows.

Example

Note

14 Module 4: Creating Data Types and Tables

Creating and Dropping a Table

! Creating a Table

! Column Collation
! Specifying NULL or NOT NULL
! Computed Columns
! Dropping a Table

Column nameColumn nameColumn name Data typeData typeData type NULL or
NOT NULL

NULL or NULL or
NOT NULLNOT NULL

CREATE TABLE dbo.Categories
(CategoryID

CategoryName
Description
Picture

CREATE TABLE dbo.Categories
(CategoryID

CategoryName
Description
Picture

int IDENTITY
(1,1)
nvarchar(15)
ntext
image

int IDENTITY
(1,1)
nvarchar(15)
ntext
image

NOT NULL,
NOT NULL,
NULL,
NULL)

NOT NULL,
NOT NULL,
NULL,
NULL)

When you create a table, you must specify the table name, column names, and
column data types. Column names must be unique to a specific table, but you
can use the same column name in different tables within the same database.
You must specify a data type for each column.

Creating a Table
Consider the following facts when you create tables in SQL Server. You can
have up to:

! Two billion tables per database.
! 1,024 columns per table.
! 8060 bytes per row (this approximate maximum length does not apply to

image, text, and ntext data types).

Column Collation
SQL Server supports storing objects with different collations in the same
database. Separate SQL Server collations can be specified at the column-level,
so that each column in a table can be assigned a different collation.

Specifying NULL or NOT NULL
You can specify in the table definition whether to allow null values in each
column. If you do not specify NULL or NOT NULL, SQL Server provides the
NULL or NOT NULL characteristic, based on the session- or database-level
default. However, these defaults can change, so do not rely on them. NOT
NULL is the SQL Server default.

Topic Objective
To explain how to create
and drop tables.

Lead-in
When you create a table,
you must specify the table
name, column names, and
data types.

Delivery Tip
Demonstrate creating a
table by using SQL Server
Enterprise Manager.

 Module 4: Creating Data Types and Tables 15

CREATE TABLE table_name
 column_name data type [COLLATE<collation_name>]
 [NULL | NOT NULL]
 | column_name AS computed_column_expression
 [,�.n]

The following example creates the dbo.CategoriesNew table, specifying the
columns of the table, a data type for each column, and whether that column
allows null values.

CREATE TABLE dbo.CategoriesNew
(CategoryID int IDENTITY

(1, 1)

NOT NULL,

CategoryName nvarchar(15) NOT NULL,
Description ntext NULL,
Picture image NULL)

To view table properties, right-click a table in SQL Server Enterprise
Manager, or execute the sp_help system stored procedure and then scroll to
the right.

Computed Columns
A computed column is a virtual column that is not physically stored in the table.
SQL Server uses a formula that you create to calculate this column value by
using other columns in the same table. Using a computed column name in a
query can simplify the query syntax.

Dropping a Table
Dropping a table removes the table definition and all data, as well as the
permission specifications for that table.

Before you can drop a table, you should remove any dependencies between the
table and other objects. To view existing dependencies, execute the sp_depends
system stored procedure.

DROP TABLE table_name [,�n]

Partial Syntax

Example

Note

Syntax

16 Module 4: Creating Data Types and Tables

Adding and Dropping a Column

ALTER TABLE CategoriesNew
ADD Commission money null

ALTER TABLE CategoriesNew
ADD Commission money null

ADD

ALTER TABLE CategoriesNew
DROP COLUMN Sales_date

ALTER TABLE CategoriesNew
DROP COLUMN Sales_date

DROP

Customer_nameCustomer_name Sales_amountSales_amount Sales_dateSales_date Customer IDCustomer ID CommissionCommission

Adding and dropping columns are two ways to modify tables.

ALTER TABLE table
 {| [ALTER COLUMN column_name]
 |{ ADD
 { <column_definition> ::=
 column_name data_type
 { [NULL | NOT NULL]
 | DROP column column_name} [,�n]

Adding a Column
The type of information that you specify when you add a column is similar to
that which you supply when you create a table.

This example adds a column that allows null values.

ALTER TABLE CategoriesNew
 ADD Commission money null

Dropping a Column
Dropped columns are unrecoverable. Therefore, be certain that you want to
remove a column before doing so.

This example drops a column from a table.

ALTER TABLE CategoriesNew
 DROP COLUMN Sales_date

All indexes and constraints that are based on a column must be removed
before you drop the column.

Topic Objective
To show how to add and
drop columns.

Lead-in
As requirements change,
you may have to modify
tables by adding or
dropping columns.

Partial Syntax

Example

Example

Note

 Module 4: Creating Data Types and Tables 17

Generating Column Values

! Using the Identity Property

! Using the NEWID Function and the
uniqueidentifier Data Type

Several features allow you to generate column values: the Identity property, the
NEWID function, and the uniqueidentifier data type.

Topic Objective
To list the topics in this
section.

Lead-in
This section describes how
to generate column values.

18 Module 4: Creating Data Types and Tables

Using the Identity Property

! Requirements for Using the Identity Property

$ Only one identity column is allowed per table

$ Use with integer, numeric, and decimal data types

! Retrieving Information About the Identity Property

$ Use IDENT_SEED and IDENT_INCR for definition
information

$ Use @@identity to determine most recent value

! Managing the Identity Property

You can use the Identity property to create columns (referred to as identity
columns) that contain system-generated sequential values identifying each row
inserted into a table. An identity column is often used for primary key values.

Having SQL Server automatically provide key values can reduce costs and
improve performance. It simplifies programming, keeps primary key values
short, and reduces user-transaction bottlenecks.

CREATE TABLE table
(column_name data_type
 [IDENTITY [(seed, increment)]] NOT NULL)

Consider the following requirements for using the Identity property:

! Only one identity column is allowed per table.
! It must be used with integer (int, bigint, smallint, or tinyint), numeric, or

decimal data types. The numeric and decimal data types must be specified
with a scale of 0.

! It cannot be updated.
! You can use the IDENTITYCOL keyword in place of the column name in a

query. This allows you to reference the column in the table having the
Identity property without having to know the column name.

! It does not allow null values.

Topic Objective
To explain how to use the
Identity property.

Lead-in
An identity column is often
used for primary key values.

Delivery Tip
If you do not use auto-
incrementing, you must
query to find the next value.

Partial Syntax

When you determine what
data type to use when
defining the column, by
using the Identity property,
try to estimate the number
of rows that the table will
contain.

 Module 4: Creating Data Types and Tables 19

You can retrieve information about the Identity property in several ways:

! Two system functions return information about an identity column
definition: IDENT_SEED (returns the seed, or starting, value) and
IDENT_INCR (returns the increment value).

! You can retrieve data from identity columns using the @@identity global
variable, which determines the value of the last row inserted into an identity
column during a session.

! SCOPE_IDENTITY returns the last IDENTITY value inserted into an
indentity column in the same scope. A scope is a stored procedure, trigger,
function, or batch.

! IDENT_CURRENT returns the last identity value generated for a specified
table in any session and any scope.

You can manage the Identity property in several ways:

! You can allow explicit values to be inserted into the identity column of a
table by setting the IDENTITY_INSERT option ON. When
IDENTITY_INSERT is ON, INSERT statements must supply a value.

! To check and possibly correct the current identity value for a table, you can
use the DBCC CHECKIDENT statement. DBCC CHECKIDENT allows
you to compare the current identity value with the maximum value in the
identity column.

The Identity property does not enforce uniqueness. To enforce
uniqueness, create a unique index.

This example creates a table with two columns, StudentId and Name. The
Identity property is used to increment the value automatically in each row
added to the StudentId column. The seed is set to 100, and the increment value
is 5. The values in the column would be 100, 105, 110, 115, and so on. Using 5
as an increment value allows you to insert records between the values at a later
time.

CREATE TABLE Class
 (StudentID int IDENTITY(100, 5) NOT NULL,
 Name varchar(16))

Note

Example

20 Module 4: Creating Data Types and Tables

Using the NEWID Function and the uniqueidentifier Data Type

! These Features Are Used Together

! Ensure Globally Unique Values

! Use with the DEFAULT Constraint

CREATE TABLE Customer
(CustID uniqueidentifier NOT NULL DEFAULT NEWID(),
CustName char(30) NOT NULL)

CREATE TABLE Customer
(CustID uniqueidentifier NOT NULL DEFAULT NEWID(),
CustName char(30) NOT NULL)

The uniqueidentifier data type and the NEWID function are two features that
are used together. Use these features when data is collated from many tables
into a larger table and when uniqueness among all records must be maintained:

! The uniqueidentifier data type stores a unique identification number as a
16-byte binary string. This data type is used for storing a globally unique
identifier (GUID).

! The NEWID function creates a unique identifier number that can store a
GUID by using the uniqueidentifier data type.

! The uniqueidentifier data type does not automatically generate new IDs for
inserted rows the way the Identity property does. To get new
uniqueidentifier values, you must define a table with a DEFAULT
constraint that specifies the NEWID function. When you use an INSERT
statement, you must also specify the NEWID function.

In this example, the Customer table customer ID column is created with a
uniqueidentifier data type, with a default value generated by the NEWID
function. A unique value for the CustID column will be generated for each new
and existing row.

CREATE TABLE Customer
(CustID uniqueidentifier NOT NULL DEFAULT NEWID(),
 CustName char(30) NOT NULL)

Topic Objective
To describe how to use
these features.

Lead-in
The uniqueidentifier data
type and the NEWID
function are two features
that are used together.

Example

 Module 4: Creating Data Types and Tables 21

Generating Scripts

! Generate Schema as a Transact-SQL Script

$ Maintain backup script

$ Create or update a database development script

$ Create a test or development environment

$ Train new employees

! What to Generate

$ Entire database into single script file

$ Table-only schema

$ Table and index schema

When you create objects in a database, it is important to save all object
definitions in a script file.

Generate Schema as a Transact-SQL Script
You can use SQL Server Enterprise Manager to document an existing database
structure (schema) by generating it as one or more Transact-SQL scripts. These
Transact-SQL scripts contain descriptions of the statements that were used to
create a database and its objects.

Schema generated as Transact-SQL scripts can be used to:

! Maintain a backup script that allows a user to recreate all users, groups,
logins, and permissions.

! Create or update a database development script.
! Create a test or development environment from an existing schema.
! Train newly hired employees.

What to Generate
You can generate:

! An entire database into a single script file.
! Table-only schema for one, some, or all tables in a database into one or

more script files.
! Table and index schema into one script file, stored procedures into another

script file, and defaults and rules into yet another script file.

Topic Objective
To describe how to generate
a script file.

Lead-in
When you create objects in
a database, it is important to
save all object definitions in
a script file.

Delivery Tip
Demonstrate generating a
script using the Northwind
database.

22 Module 4: Creating Data Types and Tables

Recommended Practices

Always Specify Column Characteristics in CREATE TABLEAlways Specify Column Characteristics in CREATE TABLE

Generate Scripts to Recreate Database and Database ObjectsGenerate Scripts to Recreate Database and Database Objects

Specify Appropriate Data Types and Data Type SizesSpecify Appropriate Data Types and Data Type Sizes

The following recommended practices will help you create data types and
tables:

! Specify appropriate data types and data type sizes.
! When writing a CREATE TABLE statement, always specify column

characteristics.
! After you create a database and database objects, generate a script that

allows you to recreate the database and its objects.

Topic Objective
To present recommended
practices for creating data
types and tables.

Lead-in
The following are
recommended practices for
creating data types and
tables.

 Module 4: Creating Data Types and Tables 23

Lab A: Creating Data Types and Tables

Objectives
After completing this lab, you will be able to:

! Create user-defined data types.
! Create tables.
! Add and drop columns.
! Generate Transact-SQL scripts from a database.

Prerequisites
Before working on this lab, you must have:

! Script files for this lab, which are located in C:\Moc\2073A\Labfiles\L04.
! Answer files for this lab, which are located in

C:\Moc\2073A\Labfiles\L04\Answers.

Lab Setup
To complete this lab, you must have either:

! Completed the prior lab, or
! Executed the C:\Moc\2073A\Batches\Restore04.cmd batch file.

This command file restores the ClassNorthwind database to a state required
for this lab.

For More Information
If you require help in executing files, search SQL Query Analyzer Help for
�Execute a query�.

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will create
user-defined data types,
create tables, add and drop
columns, and generate
scripts.

24 Module 4: Creating Data Types and Tables

Other resources that you can use include:

! The Northwind database schema.
! Microsoft SQL Server Books Online.

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 30 minutes

 Module 4: Creating Data Types and Tables 25

Exercise 1
Creating User-defined Data Types

In this exercise, you will create user-defined data types for the ClassNorthwind
database.

! To execute a script that creates a user-defined data type
In this procedure, you will execute a script to create a user-defined data type in
the ClassNorthwind database.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password password

2. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Microsoft Windows® Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the
Microsoft Windows 2000 local group, Administrators. All members of this
group are automatically mapped to the SQL Server sysadmin role.

3. In the DB list, click ClassNorthwind.
4. Open and review the Creatyp1.sql script file in

C:\Moc\2073A\Labfiles\L04.
This script creates a new data type named postalcode that contains up to 10
bytes of character data and that may be NULL.

5. Execute Creatyp1.sql.
6. Open, review and execute the Vertype.sql script file in

C:\Moc\2073A\Labfiles\L04. Verify that the data type was created.

26 Module 4: Creating Data Types and Tables

! To create user-defined data types
In this procedure, you will write and execute statements that create user-defined
data types in the ClassNorthwind database.
A complete Transact-SQL script for this procedure is located in
C:\MOC\2073A\Labfiles\L04\Answers\Creatyp2.sql.
1. Verify that you are using the ClassNorthwind database.
2. Write and execute statements to create the user-defined data types described

in the following table.

Data type Description of data

City Up to 15 bytes of character data that may be NULL

Region Up to 15 bytes of character data that may be NULL

Country Up to 15 bytes of character data that may be NULL

EXEC sp_addtype city, 'nvarchar(15)', NULL
EXEC sp_addtype region, 'nvarchar(15)', NULL
EXEC sp_addtype country, 'varchar(15)', NULL

3. Open and execute Vertype.sql to verify that the data types were created.

 Module 4: Creating Data Types and Tables 27

Exercise 2
Creating Tables in the ClassNorthwind Database

In this exercise, you will create all of the tables for the ClassNorthwind
database.

! To execute a script that creates a table
In this procedure, you will execute a script that creates the Employees table in
the ClassNorthwind database.
1. Open and review the Creatab1.sql script file in C:\Moc\2073A\Labfiles\L04.

This script creates the Employees table in the ClassNorthwind database.
2. Execute Creatab1.sql.

! To create a table by using statements
In this procedure, you will write and execute a statement that creates the
Suppliers table in the ClassNorthwind database.
A complete Transact-SQL script for this procedure is located in
C:\Moc\2073A\Labfiles\L04\Answers\ Creatab2.sql.
1. Verify that you are using the ClassNorthwind database.
2. Write and execute a statement to create the Suppliers table, defining the

following column names with their respective data types.

28 Module 4: Creating Data Types and Tables

Ensure that the SupplierID and CompanyName columns do not allow null
values, and that all other columns do allow null values.

Column name Data type Allows NULLs Identity property

SupplierID int No Seed = 1

Increment = 1

CompanyName nvarchar (40) No No

ContactName nvarchar (30) Yes No

ContactTitle nvarchar (30) Yes No

Address nvarchar (60) Yes No

City city Yes No

Region region Yes No

PostalCode postalcode Yes No

Country country Yes No

Phone nvarchar (24) Yes No

Fax nvarchar (24) Yes No

HomePage ntext Yes No

CREATE TABLE Suppliers

(SupplierID int IDENTITY(1,1) NOT NULL,

CompanyName nvarchar (40) NOT NULL,

ContactName nvarchar (30) NULL,

ContactTitle nvarchar (30) NULL

Address nvarchar (60) NULL

City city NULL

Region region NULL

PostalCode postalcode NULL

Country country NULL

Phone nvarchar (24) NULL

Fax nvarchar (24) NULL

HomePage ntext NULL)

Which data types are user-defined?
City, region, postalcode, and country.
__

__

 Module 4: Creating Data Types and Tables 29

! To create a table by using SQL Server Enterprise Manager
In this procedure, you will use SQL Server Enterprise Manager to create the
Customers table in the ClassNorthwind database.
1. Open SQL Server Enterprise Manager.
2. Expand Microsoft SQL Servers, expand SQL Server Group, expand your

server, and then expand Databases.
3. Right-click ClassNorthwind, point to New, and then click Table.
4. Use the information in the following table to create the Customers table,

defining the column names with their respective data types.
Make sure that the CustomerID and CompanyName columns do not allow
null values. Make sure that all other columns allow null values.
Column name Data type Allows NULLs?

CustomerID nchar (5) No

CompanyName nvarchar (40) No

ContactName nvarchar (40) Yes

ContactTitle nvarchar (30) Yes

Address nvarchar (60) Yes

City city Yes

Region region Yes

PostalCode postalcode Yes

Country country Yes

Phone nvarchar (24) Yes

Fax nvarchar (24) Yes

5. Save the new table as Customers and close the New Table window.

! To execute a script that creates all tables in the ClassNorthwind
database

In this procedure, you will execute a script that creates all of the tables in the
ClassNorthwind database.
1. Switch to SQL Query Analyzer.
2. Open, review and execute the Creatab3.sql script file in

C:\Moc\2073A\Labfiles\L04.
This script creates all of the tables in the ClassNorthwind database. It first
drops all previously created tables.

30 Module 4: Creating Data Types and Tables

Exercise 3
Adding and Dropping Columns

In this exercise, you will use the ALTER TABLE statement to add columns to a
table and drop columns from a table in the ClassNorthwind database.

! To add a column to a table
In this procedure, you will write and execute a statement that adds a column to
the Employees table in the ClassNorthwind database.
A complete Transact-SQL script for this procedure is located in
C:\Moc\2073A\Labfiles\L04\Answers\Addcol.sql.
1. Verify that you are using the ClassNorthwind database.
2. Write and execute a statement to add a column to the Employees table. The

column should be named Age, use the tinyint data type, and allow null
values.
ALTER TABLE Employees
 ADD Age tinyint NULL
GO

3. Execute the sp_help system stored procedure on the Employees table to
verify that the Age column was defined as you specified. Notice that the
Age column appears as the final column in the table.
EXEC sp_help Employees
GO

! To drop a column from a table
After discussing client requirements with your users, you have determined that
the Age column is not needed after all. In this procedure, you will write and
execute a statement that drops the Age column from the Employees table in the
ClassNorthwind database.
A complete Transact-SQL script for this procedure is located in
C:\Moc\2073A\Labfiles\L04\Answers\Dropcol.sql.
1. Verify that you are using the ClassNorthwind database.
2. Write and execute a statement that drops the Age column from the

Employees table.
ALTER TABLE Employees
 DROP COLUMN Age
GO

3. Execute the sp_help system stored procedure on the Employees table to
verify that the Age column was dropped.
EXEC sp_help Employees
GO

 Module 4: Creating Data Types and Tables 31

Exercise 4
Generating Transact-SQL Scripts

In this exercise, you will use SQL Server Enterprise Manager to generate a
Transact-SQL script of objects that you have created in the ClassNorthwind
database.

! To generate scripts to recreate objects
In this procedure, you will use SQL Server Enterprise Manager to generate a
Transact-SQL script that allows you to recreate all objects that you have created
in the ClassNorthwind database.
1. Switch to SQL Server Enterprise Manager.
2. Expand Microsoft SQL Servers, expand SQL Server Group, expand your

server, and then expand Databases.
3. Right-click ClassNorthwind, point to All Tasks, and then click Generate

SQL Script.
4. On the General tab, click Show All.
5. Select the All tables and the All user-defined data types check boxes, and

then click OK.
6. Save this script file as L04.sql.
7. Open and review the generated script.

32 Module 4: Creating Data Types and Tables

Exercise 5
Loading the ClassNorthwind Database with Data

In this exercise, you will run a script to populate the ClassNorthwind database
with data.

! To load data into the ClassNorthwind database
In this procedure, you will execute scripts that will generate and load sample
data into the ClassNorthwind database.
1. Switch to SQL Query Analyzer.
2. Open and review the Loaddata.sql script file in

C:\Moc\2073A\Labfiles\L04
3. Execute Loaddata.sql. This may take a minute or two to complete. Review

the output in the results pane.

 Module 4: Creating Data Types and Tables 33

Review

! Creating Data Types

! Creating Tables

! Generating Column Values

! Generating Scripts

1. Can a user-defined data type in one database be used in another database on
the same SQL Server?
No. User-defined data types are limited to a single database. You can
create a matching data type in another database or you can create user-
defined data types in the model database.

2. You are designing a database that stores information about millions of
different products. You want to minimize the storage space that you use to
store the product information. Each product has a description line in the
products table. Occasionally, a product description will require up to 200
characters, but most product descriptions will only require 50 characters.
What data type would you use?
Use a varchar(200) data type to keep the rows compact while at the
same time allowing for the occasional product description that will
require up to 200 bytes.

3. You need to run a script that was created using SQL Server Enterprise
Manager. How do you do this?
Open and run the script by using SQL Query Analyzer or osql.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

THIS PAGE INTENTIONALLY LEFT BLANK

