

Contents

Overview 1

Creating Databases 2

Creating Filegroups 10

Managing Databases 12

Introduction to Data Structures 21

Recommended Practices 27

Lab A: Creating and Managing Databases 28

Review 34

Module 3:
Creating and Managing
Databases

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BackOffice, MS-DOS, PowerPoint, Visual Basic, Visual C++, Visual Studio,
Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Project Lead: Rich Rose
Instructional Designers: Rich Rose, Cheryl Hoople, Marilyn McGill
Instructional Software Design Engineers: Karl Dehmer, Carl Raebler,
Rick Byham
Technical Lead: Karl Dehmer
Subject Matter Experts: Karl Dehmer, Carl Raebler, Rick Byham
Graphic Artist: Kirsten Larson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Copy Editor: Edward McKillop (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Support: Lori Walker (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: TestingTesting123
Classroom Automation: Lorrin Smith-Bates
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager, Data Base: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 3: Creating and Managing Databases iii

Instructor Notes
This module provides students with a description of how to create a database,
set database options, create filegroups, and manage a database and the
transaction log. It reviews disk space allocation and how the transaction log
records data modifications.

This course is based on the Northwind database. The schema for the
Northwind database is in Appendix A. The labs use a parallel version of
the Northwind database that is called ClassNorthwind.

In the lab, students define the ClassNorthwind database, modify it, and then
set an option to clear the transaction log.

After completing this module, students will be able to:

! Create a database.
! Create a filegroup.
! Manage a database.
! Describe data structures.

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

! Microsoft® PowerPoint® file 2073A_03.ppt
! The C:\Moc\2073A\Demo\D03_Ex.sql example file, which contains all of

the example scripts from the module, unless otherwise noted in the module.

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials for this module.
! Complete the lab.
! Practice demonstrating the animated slide.

Presentation:
30 Minutes

Lab:
30 Minutes

Note

iv Module 3: Creating and Managing Databases

Other Activities
This section provides procedures for implementing interactive activities to
present or review information, such as games or role playing exercises.

Displaying the Animated PowerPoint Slides
All animated slides are identified with an icon of links on the lower-left corner
of the slide.

! To display the How the Transaction Log Works slide
1. Display the topic slide, which shows the first step where the application

sends the data modification.
2. Advance to the next animation, where the next step shows how affected data

pages are loaded from disk into memory (called the buffer cache).
Explain that affected data pages are loaded from disk into memory,
provided that the pages are not already in the buffer cache from a previous
query.

3. Advance to the next animation, where each data modification statement is
recorded in the transaction log as it is made.
Explain that the change is always recorded in the transaction log and written
to disk before that change is made in the database. Mention that this type of
log is called a write-ahead log.

4. Advance to the next animation, where the next step shows the checkpoint
process writing all completed transactions to the database on the disk.
Explain that this occurs on a recurring basis.

! To display the Pages That Track Tables and Indexes slide
This animated slide shows how Microsoft SQL Server� 2000 assigns pages
when it creates a table.

1. Display the topic slide and point out the existence of two mixed extents and
two uniform extents.

2. Advance to the next animation, where the Index Allocation Map (IAM)
page is created along with one data page. Briefly explain that the IAM page
contains a reference to the data page.

3. Advance to the next animation, where seven more data pages are assigned.
Briefly explain that the IAM page contains a reference to those seven data
pages, as well.

4. Advance to the next animation, where a uniform extent is assigned.
Conclude by explaining that from this point forward only uniform extents
are assigned and that the IAM page contains a bitmap identifying each
extent.

 Module 3: Creating and Managing Databases v

Module Strategy
Use the following strategy to present this module:

! Creating Databases
Describe the process of creating a database. Explain how to set database
options. Review the system stored procedures that display information about
database options.

! Creating Filegroups
Present an overview of the concept of filegroups. Describe the types of
filegroups and how to size the default filegroup. Review the system stored
procedures that display information about filegroups.

! Managing Databases
Describe and compare three methods for managing data and log file growth:
configuring files to grow automatically, increasing file size manually, and
adding secondary files. Explain how to shrink and drop a database.

! Introduction to Data Structures
Introduce students to pages and extents. Emphasize that most data is
managed in extents, and that mixed extents exist to efficiently manage small
tables. Review the different types of pages, but keep the discussion general.

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing Microsoft
Official Curriculum (MOC) courseware.

The lab in this module is dependent on the classroom configuration
that is specified in the Customization Information section at the end of the
Classroom Setup Guide for course 2073A, Programming a Microsoft
SQL Server 2000 Database.

Lab Setup
There are no lab setup requirements that affect replication or customization.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Important

 Module 3: Creating and Managing Databases 1

Overview

! Creating Databases

! Creating Filegroups

! Managing Databases

! Introduction to Data Structures

This module describes how to create a database, set database options, create
filegroups, and manage a database and the transaction log. It also describes how
Microsoft® SQL Server� 2000 stores data.

After completing this module, you will be able to:

! Create a database.
! Create a filegroup.
! Manage a database.
! Describe data structures.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
about creating and
managing databases and
filegroups and how
SQL Server stores data.

2 Module 3: Creating and Managing Databases

Creating Databases

! Defining Databases

! How the Transaction Log Works

! Setting Database Options

! Retrieving Database Information

This section describes how to create databases, specify database options, and
retrieve database information. It also describes how the transaction log works.

Topic Objective
To describe how to create
databases.

Lead-in
This section describes how
to create databases.

 Module 3: Creating and Managing Databases 3

Defining Databases

CREATE DATABASE Sample
ON

PRIMARY (NAME=SampleData,
FILENAME='c:\Program Files\..\..\Data\Sample.mdf',
SIZE=10MB,
MAXSIZE=15MB,
FILEGROWTH=20%)

LOG ON
(NAME=SampleLog,
FILENAME= 'c:\Program Files\..\..\Data\Sample.ldf',
SIZE=3MB,
MAXSIZE=5MB,
FILEGROWTH=1MB)

COLLATE SQL_Latin1_General_Cp1_CI_AS

CREATE DATABASE Sample
ON

PRIMARY (NAME=SampleData,
FILENAME='c:\Program Files\..\..\Data\Sample.mdf',
SIZE=10MB,
MAXSIZE=15MB,
FILEGROWTH=20%)

LOG ON
(NAME=SampleLog,
FILENAME= 'c:\Program Files\..\..\Data\Sample.ldf',
SIZE=3MB,
MAXSIZE=5MB,
FILEGROWTH=1MB)

COLLATE SQL_Latin1_General_Cp1_CI_AS

! Creating a Database Defines:
$ The name of the database
$ The size of the database
$ The files where the database will reside

You can define a database by using SQL Server Enterprise Manager or the
CREATE DATABASE statement in SQL Query Analyzer. The process of
defining a database also creates a transaction log for that database.

Information about each database in SQL Server is stored in the sysdatabases
table in the master database. Therefore, you must use the master database to
define a database when you use Transact-SQL.

Defining a database is a process of specifying the name of the database and
designating the size and location of the database files. When the new database
is created, it is a duplicate of the model database. Any options or settings in the
model database are copied into the new database.

You should back up the master database each time that you create,
modify, or drop a database.

Topic Objective
To describe how to define a
database.

Lead-in
You can define a database
by using SQL Server
Enterprise Manager, or by
executing Transact-SQL
statements.

Delivery Tip
Demonstrate the two ways
to define a database by
using SQL Server
Enterprise Manager.

Important

4 Module 3: Creating and Managing Databases

CREATE DATABASE database_name
[ON
 { [PRIMARY] (NAME = logical_file_name,
 FILENAME = 'os_file_name'
 [, SIZE = size]
 [, MAXSIZE = {max_size UNLIMITED}]
 [, FILEGROWTH = growth_increment])
 } [,...n]
]
[LOG ON
 { (NAME = logical_file_name,
 FILENAME = 'os_file_name'
 [, SIZE = size]
 [, MAXSIZE = {max_size UNLIMITED}]
 [, FILEGROWTH = growth_increment])
 } [,...n]
]
[COLLATE collation_name]

When you create a database, you can set the following parameters:

This parameter specifies the files in the primary filegroup. The
primary filegroup contains all of the database system tables. It also contains all
objects not assigned to user filegroups. Every database has one primary data
file. The primary data file is the starting point of the database and points to the
rest of the files in the database. The recommended file name extension for
primary data files is .mdf. If you do not specify the PRIMARY keyword, the
first file listed in the statement becomes the primary file.

This parameter specifies the operating system file name and path
for the file. The path in the os_file_name must specify a folder on the server on
which SQL Server is installed.

This parameter specifies the size of the data or log file. You can specify
sizes in megabytes (MB)�the default value�or kilobytes (KB). The minimum
size is 512 KB for both the data and log file. The size specified for the primary
data file must be at least as large as the primary file of the model database.
When adding a data file or log file, the default value is 1 MB.

This parameter specifies the maximum size to which the file can
grow. You can specify sizes in megabytes�the default value�or kilobytes. If
you do not specify a size, the file grows until the disk is full.

This parameter specifies the growth increment of the file. The
FILEGROWTH setting for a file cannot exceed the MAXSIZE setting. A value
of 0 indicates no growth. The value can be specified in megabytes�the
default�in kilobytes, or as a percentage (%). The default value if
FILEGROWTH is not specified is 10 percent, and the minimum value is 64 KB
(one extent). The specified size is rounded to the nearest 64 KB.

This parameter specifies the default collation for the database.
Collation includes the rules governing the use of characters for either a
language or an alphabet.

Syntax

PRIMARY

FILENAME

SIZE

MAXSIZE

You can specify file growth
in three ways: in megabytes,
in kilobytes, or as a
percentage. The percentage
only applies to file growth,
not maximum size.

FILEGROWTH

COLLATION

 Module 3: Creating and Managing Databases 5

The following example creates a database called Sample with a 10-MB primary
data file and a 3-MB log file in a default instance of SQL Server.

CREATE DATABASE Sample
ON
 PRIMARY (NAME=SampleData,
 FILENAME='c:\Program Files\
 Microsoft SQL Server\MSSQL\Data\Sample.mdf',
 SIZE=10MB,
 MAXSIZE=15MB,
 FILEGROWTH=20%)
LOG ON
 (NAME=SampleLog,
 FILENAME='c:\Program Files\
 Microsoft SQL Server\MSSQL\Data\Sample.ldf',
 SIZE=3MB,
 MAXSIZE=5MB,
 FILEGROWTH=1MB)
COLLATE SQL_Latin1_General_Cp1_CI_AS

Example

Delivery Tip
Mention that the file path will
vary if a named instance of
SQL Server is used instead
of a default instance.

6 Module 3: Creating and Managing Databases

How the Transaction Log Works

Data modification is
sent by application
Data modification is
sent by application

111

Disk

Modification is recorded
in transaction log on disk
Modification is recorded
in transaction log on disk

333

Data pages are located in,
or read into, buffer cache
and modified

Data pages are located in,
or read into, buffer cache
and modified

222

Buffer Cache

Disk

Checkpoint writes
committed
transactions
to database

Checkpoint writes
committed
transactions
to database

444

SQL Server records every transaction in a transaction log to maintain database
consistency and to aid in recovery. The log is a storage area that automatically
tracks changes to a database. SQL Server records modifications in the log on
disk as the modifications are executed, before they are written in the database.

The logging process is as follows:

1. A data modification is sent by the application.
2. When a modification is executed, the affected data pages are loaded from

disk into the buffer cache, provided that the pages are not already in the
buffer cache from a previous query.

3. Each data modification statement is recorded in the log as it is made. The
change is always recorded in the log and written to disk before that change
is made in the database. This type of log is called a write-ahead log.

4. On a recurring basis, the checkpoint process writes all completed
transactions to the database on the disk.

If the system fails, the automatic recovery process uses the transaction log to
roll forward all committed transactions and roll back any incomplete
transactions.

Transaction markers in the log are used during automatic recovery to determine
the starting and ending points of a transaction. A transaction is considered
complete when the BEGIN TRANSACTION marker has an associated
COMMIT TRANSACTION marker. Data pages are written to the disk when a
checkpoint occurs.

Topic Objective
To describe how the
transaction log works.

Lead-in
The transaction log records
data modifications as they
occur.

Delivery Tip
This slide is animated. Refer
to the Instructor Notes if you
require help with navigating
through this slide.

 Module 3: Creating and Managing Databases 7

Setting Database Options

! Set Database Options By Using:

$ SQL Server Enterprise Manager

$ ALTER DATABASE statement

! Database Option Categories

$ Auto options

$ Cursor options

$ Recovery options

$ SQL options

$ State options

After you have created a database, you can set the database options by using
SQL Server Enterprise Manager or the ALTER DATABASE statement.

You can configure a number of database options, but you are able to set them
for only one database at a time. To affect options in all new databases, change
the model database.

The following table lists some of the more frequently used options.

Database
option category

Database option

Description

Auto options AUTO_CREATE_STATISTICS Automatically creates any missing statistics needed by a

query for optimization. The default is ON.

 AUTO_UPDATE_STATISTICS Automatically updates out-of-date statistics required by
a query for optimization. The default is ON.

Cursor options CURSOR_CLOSE_ON_COMMIT Automatically closes open cursors when a transaction is
committed. The default is OFF, and cursors remain
open.

 CURSOR_DEFAULT LOCAL |
GLOBAL

CURSOR_DEFAULT_LOCAL limits the scope of the
cursor. It is local to the batch, stored procedure, or
trigger in which the cursor was created.
CURSOR_DEFAULT_GLOBAL is the default setting;
the scope of the cursor is global to the connection.

Topic Objective
To list some of the
configurable database
options.

Lead-in
For most databases, you
can configure a number of
options.

8 Module 3: Creating and Managing Databases

(continued)
Database
option category

Database option

Description

Recovery options RECOVERY FULL |

BULK_LOGGED | SIMPLE
FULL provides full recoverability from media failure; it is
the default. BULK_LOGGED uses less log space because
logging is minimal, but it has greater risk of exposure.
SIMPLE recovers the database only to the last full database
backup or last differential backup.

 TORN_PAGE_DETECTION Allows SQL Server to detect incomplete I/O operations
caused by power failures or other system outages. The
default is ON.

SQL options ANSI_NULL_DEFAULT Allows the user to control the database default nullability.
SQL Server 2000 defaults to NOT NULL.

 ANSI_NULLS When ON, all comparisons to a null value evaluate to NULL
(unknown). When OFF, comparisons of non-Unicode values
to a null value evaluate to TRUE if both values are NULL.
By default, the ANSI_NULLS database option is OFF.

State options READ_ONLY |
READ_WRITE

Defines a database as read-only�use to set security for
decision-support databases�or returns database to
read/write operations.

 SINGLE_USER |
RESTRICTED_USER |
MULTI_USER

SINGLE_USER allows one user at a time to connect to the
database. All other user connections are broken.
RESTRICTED_USER allows only members of the
db_owner fixed database role and dbcreator and sysadmin
fixed server roles to connect to the database. MULTI_USER
allows all users with the appropriate permissions to connect
to the database. MULTI_USER is the default setting.

 Module 3: Creating and Managing Databases 9

Retrieving Database Information

! Determine Database Properties by Using the
DATABASEPROPERTYEX Function

! Use System Stored Procedures to Display Information
About Databases and Database Parameters

$ sp_helpdb

$ sp_helpdb database_name

$ sp_spaceused [objname]

You can determine database properties by using the
DATABASEPROPERTYEX function.

SELECT DATABASEPROPERTYEX (database, property)

The following table lists some of the database properties.

Collation IsFulltextEnabled

IsAnsiNullDefault IsInStandBy

IsAnsiNullsEnabled IsNullConcat

IsAnsiPaddingEnabled IsQuotedIdentifiersEnabled

IsAnsiWarningsEnabled IsRecursiveTriggersEnabled

IsArithmeticAbortEnabled Recovery

IsAutoCreateStatistics Status

IsAutoShrink Updateability

IsAutoUpdateStatistics UserAccess

IsCloseCursorsOnCommitEnabled Version

The following table lists commonly-used system stored procedures that display
information about databases and database parameters.

System stored procedure Description

sp_helpdb Reports on all databases on a server. Provides database

name, size, owner, ID, creation date, and options.

sp_helpdb database_name Reports on a specified database only. Provides database
name, size, owner, ID, creation date, and options. Also
lists files for data and log.

sp_spaceused [objname] Summarizes the storage space that a database, or
database object uses.

Topic Objective
To list the various ways to
retrieve database
information.

Lead-in
There are several ways to
retrieve database
information.

Syntax

Delivery Tip
Demonstrate how to view
database information in
SQL Server Enterprise
Manager.

10 Module 3: Creating and Managing Databases

Creating Filegroups

Northwind Database

Default Filegroup OrderHistoryGroup

sys...sys...sys...
sys...sys...sys...

sysuserssysuserssysusers
sysobjectssysobjectssysobjects

.........
OrdersOrdersOrders

CustomersCustomersCustomers
ProductsProductsProducts

OrdHistYear2OrdHistYear2OrdHistYear2
OrdHistYear1OrdHistYear1OrdHistYear1

Northwind.mdfNorthwind.mdf

C:\ D:\

OrdHist1.ndfOrdHist1.ndf
OrdHist2.ndfOrdHist2.ndf Northwind.IdfNorthwind.Idf

E:\

If your hardware setup includes multiple disk drives, you can locate specific
objects and files on individual disks, grouping your database files into
filegroups. Filegroups are named collections of files. SQL Server includes one
filegroup as a default. You can create additional filegroups by using either the
CREATE DATABASE or ALTER DATABASE statement.

With filegroups, you can locate specific objects on a specific file. In the
illustration, the OrdHist1.ndf and OrdHist2.ndf files are placed on separate disk
to separate files that are heavily queried from those that are heavily modified
and to reduce disk drive contention.

System administrators also can back up and restore individual files or
filegroups instead of backing up or restoring an entire database. Backing up
files or filegroups is necessary on large databases to have an effective back up
and restore strategy.

Considerations When Using Filegroups
Use of filegroups is an advanced database design technique. You must
understand your database structure, data, transactions, and queries thoroughly to
determine the best way to place tables and indexes on specific filegroups. In
many cases, using the striping capabilities of RAID systems provides much of
the same performance gain that you might achieve by using filegroups without
the added administrative burden of defining and managing them.

Log files are not part of a filegroup. Log space is managed separately
from data space.

Topic Objective
To introduce the concept of
filegroups.

Lead-in
Filegroups are a named
collection of one or more
files that form a unit of
allocation and
administration.

Delivery Tip
Point out that it is possible
to over-engineer a
database. Programs may
receive more benefits from
RAID than from filegroups.

Note

 Module 3: Creating and Managing Databases 11

Types of Filegroups
SQL Server offers the following two types of filegroups:

! The primary filegroup, which contains the system tables in the primary
data file.

! User-defined filegroups, which are any filegroups that are specified by using
the FILEGROUP keyword.

Designating the Default Filegroup
When you create a database, the primary filegroup automatically becomes the
default filegroup. The default filegroup receives all new tables, indexes, and
files for which a filegroup is not specified. If your database contains more than
one filegroup, it is recommended that you change the default to be one of your
user-defined filegroups. This prevents the primary filegroup, which contains the
system tables, from being unexpectedly filled by a user table.

Sizing the Primary Default Filegroup
If the default filegroup remains the primary filegroup, sizing this filegroup
correctly is important. If the filegroup runs out of space, you are not able to add
any new information to the system tables. If a user-defined filegroup runs out of
space, only the user files that are specifically allocated to that filegroup are
affected.

The following example creates a user-defined filegroup in the Northwind
database and adds a secondary data file to the user-defined filegroup.

ALTER DATABASE Northwind
ADD FILEGROUP OrderHistoryGroup
GO

ALTER DATABASE Northwind
ADD FILE
 (NAME = 'OrdHistYear1',
 FILENAME = 'c:\ Program Files\
 Microsoft SQL Server\MSSQL\Data\OrdHist1.ndf,
 SIZE = 5MB),
TO FILEGROUP OrderHistoryGroup
GO

Viewing Filegroup Information
Information about filegroups is available by using functions, such as
FILE_NAME, FILE_ID, FILE_PROPERTY, FILEGROUP_NAME,
FILEGROUP_ID, and FILEGROUP_PROPERTY. The system stored
procedures in the following table also display information about filegroups.

System stored procedure Description

sp_helpfile [[@filename =] 'name'] Returns the physical names and attributes of

files associated with the current database. Use
this system stored procedure to determine the
names of files to attach to, or detach from, the
server.

sp_helpfilegroup [filegroup_name] Returns the names and attributes of filegroups
associated with the current database.

Example

12 Module 3: Creating and Managing Databases

Managing Databases

! Managing Data and Log File Growth

! Monitoring and Expanding a Transaction Log

! Shrinking a Database or File

! Dropping a Database

As your database grows or changes, you can expand or shrink the database size
automatically or manually. When you no longer need a database, you can drop
it, along with all associated files.

Topic Objective
To provide an overview of
this topic.

Lead-in
In this section, you�ll learn
how to manage databases
and transaction logs.

Delivery Tip
Ask students if they are
familiar with the topics in
this section. If they are, you
can either teach this section
at a high level, or skip the
section entirely.

 Module 3: Creating and Managing Databases 13

Managing Data and Log File Growth

ALTER DATABASE Sample
MODIFY FILE (NAME = 'SampleLog',
SIZE = 15MB)

GO

ALTER DATABASE Sample

ADD FILE

(NAME = SampleData2,

FILENAME='c:\Program Files\..\..\
Data\Sample2.ndf',

SIZE=15MB,
MAXSIZE=20MB)

GO

ALTER DATABASE Sample
MODIFY FILE (NAME = 'SampleLog',
SIZE = 15MB)

GO

ALTER DATABASE Sample

ADD FILE

(NAME = SampleData2,

FILENAME='c:\Program Files\..\..\
Data\Sample2.ndf',

SIZE=15MB,
MAXSIZE=20MB)

GO

! Using Automatic File Growth
! Expanding Database Files
! Adding Secondary Database Files

When data files grow, or when data modification activity increases, you may
need to expand the size of the data or log files. You can manage database
growth by using SQL Server Enterprise Manager or the ALTER DATABASE
statement. You must be in the master database to use the ALTER DATABASE
statement.

You can control the size of the database by:

! Configuring the database and log files to grow automatically.
! Manually increasing or decreasing the current or maximum size of existing

database and log files.
! Manually adding secondary database and log files.

Using Automatic File Growth
You can set the automatic file growth option by using the ALTER DATABASE
statement or SQL Server Enterprise Manager to specify that database files
automatically expand by a specified amount whenever necessary. Using
automatic file growth reduces the administrative tasks involved with manually
increasing the database size.

You can specify the initial size, maximum size, and growth increment of each
file. Although it is possible to specify file growth in megabytes or kilobytes,
you should specify file growth by percentage. If you do not specify a maximum
size, a file can continue to grow until it uses all available space on the disk.

When you use automatic file growth with multiple files, SQL Server uses a
proportional fill strategy across all the files in each filegroup. As data is written
to the filegroup, SQL Server writes an amount proportional to the free space in
the file to each file in the filegroup, instead of writing all the data to the first file
until it is full and then writing to the next file.

Topic Objective
To explain how to manage
data and log file growth.

Lead-in
There are several ways to
control the size of a
database.

14 Module 3: Creating and Managing Databases

For optimum performance:

! Allocate sufficient initial size to the database and the log to avoid frequently
activating automatic growth.

! Set a maximum size for data files if you have multiple databases.
! Set the data and log file growth increments to sufficient sizes to avoid

frequently activating automatic growth.
For example, if the log grows by 40 MB daily, set the autogrow increment
to 50 MB or 100 MB�rather than to 1 MB.

Expanding Database Files
If you do not configure an existing file to grow automatically, you still can
increase its size. A value of zero for the growth increment indicates that it does
not grow automatically.

Adding Secondary Database Files
You can create secondary database files to expand the size of a database. Use
secondary database files to place data files on separate physical disks when you
do not use the disk-striping capabilities of RAID systems.

ALTER DATABASE database
{ ADD FILE < filespec > [,...n] [TO FILEGROUP filegroup_name]
| ADD LOG FILE < filespec > [,...n]
| REMOVE FILE logical_file_name [WITH DELETE]
| ADD FILEGROUP filegroup_name
| REMOVE FILEGROUP filegroup_name
| MODIFY FILE < filespec >
| MODIFY NAME = new_dbname
| MODIFY FILEGROUP filegroup_name
 {filegroup_property | NAME = new_filegroup_name }
| SET < optionspec > [,...n] [WITH < termination >]
| COLLATE < collation_name >
}

The following example increases the current log size and adds a secondary data
file to the Sample database.

ALTER DATABASE Sample
 MODIFY FILE (NAME = 'SampleLog',
 SIZE = 15MB)
GO

ALTER DATABASE Sample
ADD FILE
(NAME = 'SampleData2' ,
FILENAME='c:\Program Files\
 Microsoft SQL Server\MSSQL\Data\Sample2.ndf',
SIZE=15MB ,
MAXSIZE=20MB)
GO

Partial Syntax

Example

 Module 3: Creating and Managing Databases 15

Monitoring and Expanding a Transaction Log

! Monitoring the Log

! Monitoring Situations That Produce Extensive
Log Activity

$ Mass loading of data into indexed table

$ Large transactions

$ Performing logged text or image operations

! Expanding the Log When Necessary

When a database grows, or when data modification activity increases, you may
need to expand the transaction log.

Monitoring the Log
Plan carefully so that you do not have too little log space. Monitoring the log on
a regular basis helps you determine the optimal time to expand it.

If your transaction log runs out of space, SQL Server cannot record
transactions and does not allow changes to your database.

You can monitor the transaction log with SQL Server Enterprise Manager, the
DBCC SQLPERF (LOGSPACE) statement, or Microsoft Windows® 2000
System Monitor.

You can monitor the transaction logs of individual databases by using
SQL Server:Database object counters in System Monitor. These counters
include ones listed in the following table.

Object counter Displays

Log Bytes Flushed/sec Number of bytes in the log buffer when buffer is flushed

Log Flushes/sec Number of log flushes

Log Flush Waits/Sec Number of commits that are waiting on log flush

Percent Log Used Percent of space in the log that is in use

Log File(s) Size (KB) Cumulative size of all of the log files in the database

Log Cache Hit Ratio Percent of log cache reads that were successful from the
log cache

Topic Objective
To show how to monitor and
expand transaction log
space.

Lead-in
Plan carefully so that you
have enough log space.

Warning

Delivery Tip
Demonstrate how to monitor
the log by using System
Monitor.

16 Module 3: Creating and Managing Databases

Monitoring Situations That Produce Extensive Log Activity
Some situations that produce additional transaction log activity are:

! Loading information into a table that has indexes. SQL Server logs all
inserts and index changes. When loading tables without indexes,
SQL Server logs only extent allocations.

! Transactions that perform many modifications (INSERT, UPDATE, and
DELETE statements) to a table in a single transaction. This typically occurs
when the statement lacks a WHERE clause or when the WHERE clause is
too general, causing a large number of records to be affected.

! Adding or modifying text or image data in a table.

Expanding the Log When Necessary
You can expand the transaction log by using SQL Server Enterprise Manager or
the ALTER DATABASE statement.

 Module 3: Creating and Managing Databases 17

Shrinking a Database or File

! Shrinking an Entire Database

! Shrinking a Data File in the Database

! Shrinking a Database Automatically
Set autoshrink database option to true

DBCC SHRINKDATABASE (Sample, 25)DBCC SHRINKDATABASE (Sample, 25)

DBCC SHRINKFILE (Sample_Data, 10)DBCC SHRINKFILE (Sample_Data, 10)

When too much space is allocated, or when space requirements decrease, you
can shrink an entire database or specific data files in a database.

Shrinking an Entire Database
You can shrink an entire database by using SQL Server Enterprise Manager or
by executing the Database Consistency Checker (DBCC) statement
SHRINKDATABASE. This shrinks the size of all data files in the database.

SQL Server shrinks log files by using a deferred shrink operation, and does so
as if all of the log files existed in one contiguous log pool. Log files are reset
when the log is truncated; SQL Server attempts to shrink the truncated log files
to as close to the targeted size as possible.

DBCC SHRINKDATABASE (database_name [, target_percent] [,
{NOTRUNCATE | TRUNCATEONLY}])

The following table describes the DBCC SHRINKDATABASE options.

Option Description

target_percent Specifies the wanted percentage of free space left in the

database file after SQL Server has shrunk the database.

NOTRUNCATE Causes SQL Server to retain the freed file space in the database
files. The default is to release the freed file space to the
operating system.

TRUNCATEONLY Causes any unused space in the data files to be released to the
operating system and shrinks the file to the last allocated extent,
reducing the file size without moving any data. No attempt is
made to relocate rows to unallocated pages. SQL Server ignores
target_percent when you use this option.

Topic Objective
To show how to shrink a
database.

Lead-in
You can shrink an entire
database or specific files in
a database.

Syntax

18 Module 3: Creating and Managing Databases

This example shrinks the size of the SampleData so that the file will have free
space of 25 percent.

DBCC SHRINKDATABASE (SampleData, 25)

In the preceding example, if the Sample database file contains 6 MB of data,
the new size of the database will be 8 MB (6 MB of data, 2 MB of free space).

SQL Server does not shrink a file to a size smaller than the amount of
space that the data occupies. Also, it does not shrink a file beyond the size
specified in the SIZE parameter of the CREATE DATABASE statement.

Shrinking a Data File in the Database
You can shrink a data file in a database by using SQL Server Enterprise
Manager or by executing the DBCC statement SHRINKFILE.

DBCC SHRINKFILE ({file_name | file_id} [, target_size] [,
{ EMPTYFILE | NOTRUNCATE | TRUNCATEONLY}])

The following table describes the DBCC SHRINKFILE options.

Option Description

target_size Specifies the wanted size for the data file in megabytes, expressed as

an integer. If not specified, DBCC SHRINKFILE reduces the size as
much as possible.

EMPTYFILE Migrates all data from the specified file to other files in the same
filegroup. SQL Server no longer allows data to be placed on the file
used with the EMPTY_FILE option. Use this option to drop the file by
using the ALTER DATABASE statement.

This example shrinks the size of the sample data file to 10 MB.

DBCC SHRINKFILE (Sample, 10)

Shrinking a Database Automatically
Autoshrink is not enabled by default. By setting the autoshrink database option
to true, you can set a database option to recover unused space automatically.
You can also change this option with SQL Server Enterprise Manager.

Consider the following facts and guidelines when you shrink a database or a
data file:

! The resulting database must be larger than the size of the model database or
the existing data in the database or data file.

! Before you shrink a database or a data file, you should back up the database,
and the master database.

! DBCC SHRINKDATABASE and SHRINKFILE perform some actions on a
deferred basis, so you may not see the database or file size reduced
immediately.

! DBCC SHRINKFILE can reduce the size of a database to smaller than the
size specified when the database was created or altered, but not to smaller
than the size that the data occupies.

Example

Note

Syntax

Example

 Module 3: Creating and Managing Databases 19

Dropping a Database

DROP DATABASE Northwind, pubsDROP DATABASE Northwind, pubs

! Methods of Dropping a Database

$ SQL Server Enterprise Manager

$ DROP DATABASE statement

! Restrictions on Dropping a Database

$ While it is being restored

$ When a user is connected to it

$ When publishing as part of replication

$ If it is a system database

You can drop a database when you no longer need it. Dropping a database
deletes the database and the disk files that the database uses.

Methods of Dropping a Database
You can drop databases by using SQL Server Enterprise Manager or by
executing the DROP DATABASE statement.

DROP DATABASE database_name [,�n]

This example drops multiple databases by using one statement.

DROP DATABASE Northwind, pubs

When you drop a database, consider the following facts and guidelines:

! With SQL Server Enterprise Manager, you can drop only one database at
a time.

! With Transact-SQL, you can drop several databases at once.
! After you drop a database, every login ID that used that particular database

as its default database will not have a default database.

Back up the master database after you drop a database.

Topic Objective
To illustrate how to drop a
database.

Lead-in
Drop a database only when
you are certain that it is no
longer needed.

Syntax

Example

Note

20 Module 3: Creating and Managing Databases

Restrictions on Dropping a Database
The following restrictions apply to dropping databases. You cannot drop:

! A database that is in the process of being restored.
! A database that is open for reading or writing by any user.
! A database that is publishing any of its tables as part of SQL Server

replication.
! A system database.

Delivery Tip
Mention that SQL Server
does not let you drop
master, model, and
tempdb databases but does
allow you to drop the msdb
system database.

 Module 3: Creating and Managing Databases 21

Introduction to Data Structures

! How Data Is Stored

! Types of Pages and Extents

! Pages That Manage File Space

! Pages That Track Tables and Indexes

This section describes the data structures that SQL Server uses to store data.

Topic Objective
To introduce data
structures.

Lead-in
In this section, you�ll learn
about the SQL Server data
structures.

22 Module 3: Creating and Managing Databases

How Data Is Stored

DatabaseDatabase

Extent
(8 contiguous
8-KB pages)

Page (8 KB)

Tables,
Indexes

Data

Max row size = 8060 bytes

Data (file)
.mdf or .ndf

Log (file)
.Idf

When creating a database, it is important to understand how SQL Server stores
data so that you can calculate and specify the amount of disk space to allocate
for the database. Consider the following facts and guidelines about data storage:

! All databases have a primary data file, identified by the .mdf file name
extension, and one or more transaction log files, identified by the .ldf file
name extension. A database also may have secondary data files, which are
identified by the .ndf file name extension. These physical files have both
operating system file names and logical file names that you can use in
Transact-SQL statements.

! When you create a database, a copy of the model database, which includes
the system tables, is copied to the database. The minimum size of a database
must be equal to or greater than the size of the model database.

! SQL Server stores, reads, and writes data in 8-KB blocks of contiguous disk
space called pages. This means that a database can store 128 pages per
megabyte.

! Rows cannot span pages. Thus, the maximum amount of data in a single
row, subtracting the space required for row overhead, is 8060 bytes.

! All pages are stored in extents. An extent is eight contiguous pages, or 64
KB. Therefore, a database has 16 extents per megabyte.

! Transaction log files hold all of the information necessary for recovery of
the database in the event of a system failure. By default, the size of the
transaction log is 25 percent of the size of the data files. Use this figure as a
starting point and adjust it according to the needs of your application.

Topic Objective
To describe how the
database is structured.

Lead-in
When you create a
database, it is important to
understand how SQL Server
stores data.

Delivery Tip
It is important to know the
maximum size of rows and
extents when designing a
database or when capacity
planning.

For example, because rows
cannot span pages, only
one row of 4035 bytes can
fit on an 8060-byte page.

 Module 3: Creating and Managing Databases 23

Types of Pages and Extents

Uniform
Extents

Free
Space

Mixed
Extent

! Types of Pages

! Pages that track space allocation

! Pages that contain user and index data

! Types of Extents

Pages and extents are the primary data structures in the SQL Server physical
database.

Types of Pages
SQL Server uses several types of pages: some track space allocation, and some
contain user and index data. The pages that track allocation contain densely
packed information. This allows SQL Server to efficiently keep them in
memory for easy tracking.

Types of Extents
SQL Server uses two types of extents:

! Extents that contain pages from two or more objects are called mixed
extents. Every table starts as a mixed extent. You use mixed extents
primarily for pages that track space and contain small objects.

! Extents that have all eight pages allocated to a single object are called
uniform extents. They are used when tables or indexes need more than
64 KB of space.

Topic Objective
To introduce the types of
pages and extents.

Lead-in
Most allocation in the
database occurs in eight-
page blocks called extents.

24 Module 3: Creating and Managing Databases

Pages That Manage File Space

000 111 222 333 44 55 66 77

File Header
PFS

GAM
SGAM

Page number

The first extent of each file is a mixed extent that contains a file header page
followed by three allocation pages. SQL Server allocates this mixed extent
when you create the primary data file and uses these pages internally.

File Header Page
The file header page contains the attributes of the file, such as the name of the
database that owns the file, its file group, minimum size, and growth increment.
It is the first page in every file (Page 0).

PFS Page
The Page Free Space (PFS) page is an allocation page that contains information
about free space available on the pages in a file. Page 1 of each file is a PFS
page. SQL Server adds other PFS pages as needed.

Each PFS page can track 8,000 contiguous pages, which is nearly 64 MB of
data. For each page, the PFS page contains a byte that tracks:

! Whether the page has been allocated.
! Whether the page is on a mixed or uniform extent.
! An approximation of how much space is available on the page.

Topic Objective
To describe the pages that
manage file space.

Lead-in
The first four pages of each
file tell SQL Server which
pages are in use.

Delivery Tip
Emphasize the following
points: (1) The PFS tracks
each page. (2) The GAM
and SGAM track extents,
not pages. (3) By using both
the GAM and SGAM
SQL Server can find space
when new pages are
needed. (4) PFS, GAM, and
SGAM pages are repeated
as needed in large files.

 Module 3: Creating and Managing Databases 25

GAM and SGAM Pages
SQL Server uses Global Allocation Map (GAM) and Secondary Global
Allocation Map (SGAM) pages to determine the location of free extents or
mixed extents with free pages.

GAM Pages
The GAM page is an allocation page that contains information about allocated
extents. Page 2 of each file is a GAM page. SQL Server adds additional GAM
pages as needed.

Each GAM page covers 63,904 extents, or nearly 4 gigabytes (GB) of data. The
GAM page contains one bit for each extent that it covers. The bit is set to 0 if
the extent is allocated, and set to 1 if it is free.

SGAM Pages
The SGAM page is an allocation page that contains information about allocated
mixed extents. Page 3 of each file is an SGAM page. SQL Server adds
additional SGAM pages as needed.

SGAM pages track mixed extents that currently have at least one unused page.
They also cover 63,904 extents. A bit set to 0 indicates that an extent is either a
uniform extent or a mixed extent without any free pages. A bit set to 1 indicates
a mixed extent with one or more free pages.

The following table summarizes the setting of the GAM and SGAM bits:

If the GAM bit is set to� And the SGAM is set to� Then �

1 0 It is an available extent. This extent is not in use.

0 1 It is an available page. This mixed extent has an
unassigned page or pages.

0 0 It is an extent with nothing available. The extent is
assigned as a uniform extent or a full mixed extent.

26 Module 3: Creating and Managing Databases

Pages That Track Tables and Indexes

Mixed Extents Uniform Extents

Data
Pages 3-8

IAM
Data Page

SQL Server initially assigns every table and index an allocation page and at
least one data page in a mixed extent. As the object grows, SQL Server assigns
up to seven more pages from mixed extents as needed. When the object exceeds
eight pages, SQL Server assigns additional pages from uniform extents.
SQL Server uses four types of pages to manage tables and indexes. They may
appear at any location in the file. They are the IAM, Data, Text/Image, and
Index pages.

IAM Page
The IAM page is an allocation page that contains information about the extents
that a table or index uses.

The IAM page contains the location of the eight initial pages and a bitmap of
extents indicating which extents are in use for that object. A single IAM page
can track up to 512,000 data pages. SQL Server adds more IAM pages for
larger tables.
IAM pages are always allocated from mixed extents and can appear anywhere
in a file or filegroup. SQL Server attempts to group IAM pages together for
speedy retrieval.

Data Page
The Data page contains content other than text, ntext, and image data.

Text/Image Page
The Text/Image page contains text, ntext, and image content.

Index Page
The Index page contains index structures.

Topic Objective
To examine the role of IAM
pages.

Lead-in
IAM pages track the
relationship between an
object and the extents or
pages that it uses.

Delivery Tip
This slide is animated. Refer
to the Instructor Notes if you
require help with navigating
through this slide.

Emphasize that every table
and index has its own IAM
page. SQL Server can use
the IAM page to find every
extent and page assigned to
the object.

 Module 3: Creating and Managing Databases 27

Recommended Practices

Specify a Maximum File SizeSpecify a Maximum File Size

Change the Default FilegroupChange the Default Filegroup

Back Up the Master DatabaseBack Up the Master Database

Specify Large Autogrow IncrementsSpecify Large Autogrow Increments

The following recommended practices will help you create and manage
databases:

! Back up the master database immediately after you create or modify a
database.
This is important because the master database has the system catalog.

! Specify a maximum size when you use automatic file growth.
This will prevent any single file from filling the entire hard disk.

! Specify large autogrow increments to avoid frequent file growth.
This will reduce SQL Server administrative activity and help keep the file
from becoming fragmented on the hard disk.

! Change the default filegroup.
If your database has multiple filegroups, assign one of the user-defined
filegroups as the default. This will prevent any unexpected table growth
from adversely affecting the system tables in the primary filegroup.

Topic Objective
To present recommended
practices for creating and
managing databases.

Lead-in
The following are
recommended practices for
creating and managing
databases.

28 Module 3: Creating and Managing Databases

Lab A: Creating and Managing Databases

Objectives
After completing this lab, you will be able to:

! Create a database.
! Manage the growth of a database.
! Change database options to control how often the transaction log is cleared.

Prerequisites
Before working on this lab, you must have:

! Script files for this lab, which are located in C:\Moc\2073A\Labfiles\L03.
! Answer files for this lab, which are located in

C:\Moc\2073A\Labfiles\L03\Answers.

Lab Setup
To complete this lab, you must have completed the prior lab.

This course is based on the Northwind database. The schema for the
Northwind database is in Appendix A. The labs use a parallel version of the
Northwind database that is called ClassNorthwind.

For More Information
If you require help when executing files, search SQL Query Analyzer Help for
�Execute a query�.

Other resources that you can use include:

! The Northwind database schema.
! Microsoft SQL Server Books Online.

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will create
and manage the
ClassNorthwind database
and clear the transaction
log.

Explain the lab objectives.

Note

 Module 3: Creating and Managing Databases 29

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 30 minutes

30 Module 3: Creating and Managing Databases

Exercise 1
Creating the ClassNorthwind Database

In this exercise, you will create the ClassNorthwind database and define the
files used for data and the transaction log.

! To create the ClassNorthwind database
In this procedure, you will use SQL Server Enterprise Manager to create the
ClassNorthwind database.
A complete Transact-SQL script for this procedure is located in
C:\MOC\2073A\Labfiles\L03\Answers\Creabase.sql.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password password

2. Open SQL Server Enterprise Manager.
You have permission to log in to and administer the installation of
SQL Server on your computer because your SQLAdminx account is a
member of the Microsoft Windows® 2000 local group Administrators,
which is automatically mapped to the SQL Server sysadmin role.

3. Expand Microsoft SQL Servers, expand SQL Server Group, and then
expand your computer.

4. Right-click Databases, and then click New Database.
5. Use the values in the following table to create the ClassNorthwind

database.

For this parameter Use this value

Database name ClassNorthwind

Database file name ClassNorthwind_Data

Location (Default)

Initial size 25 MB

Filegroup Primary

File growth 10 percent

Maximum file size 100 MB

Transaction log file name ClassNorthwind_Log

Location (Default)

Initial size 15 MB

File growth 10 percent

Log file maximum size 40 MB

 Module 3: Creating and Managing Databases 31

6. After you create the ClassNorthwind database, in the console tree, expand
Databases, and then click ClassNorthwind.
Review the information available in the details pane on the General tab.

7. Open SQL Query Analyzer and connect by using Windows 2000
Authentication.

8. Execute the sp_helpdb system stored procedure to view information on the
ClassNorthwind database.
EXEC sp_helpdb ClassNorthwind

32 Module 3: Creating and Managing Databases

Exercise 2
Managing the Growth of the ClassNorthwind Transaction Log File

In this exercise, you will modify the maximum size of the ClassNorthwind
transaction log file.

! To increase the size of the ClassNorthwind transaction log file
In this procedure, you will write and execute a statement to increase the
maximum size of the ClassNorthwind transaction log file to 50 MB and the
current log size to 20 MB.
A complete Transact-SQL script for this procedure is located in
C:\MOC\2073A\Labfiles\L03\Answers\Altebase.sql.
1. Write and execute a statement that increases the maximum size of the

ClassNorthwind transaction log file to 50 MB.
USE master
GO

ALTER DATABASE ClassNorthwind
 MODIFY FILE (NAME=ClassNorthwind_Log,
 MAXSIZE=50MB)
GO

2. Write and execute a statement that increases the current size of the
ClassNorthwind transaction log file to 25 MB.
USE master
GO

ALTER DATABASE ClassNorthwind
 MODIFY FILE (NAME=ClassNorthwind_Log,
 SIZE=25MB)
GO

3. Write and execute a statement that increases the growth increment of the
ClassNorthwind transaction log file to 20 percent.
USE master
GO

ALTER DATABASE ClassNorthwind
 MODIFY FILE (NAME=ClassNorthwind_Log,
 FILEGROWTH=20%)
GO

4. Execute the sp_helpdb system stored procedure to view information on the
ClassNorthwind database and to verify the changes.
EXEC sp_helpdb ClassNorthwind

 Module 3: Creating and Managing Databases 33

Exercise 3
Setting the Database Recovery Model

In this exercise, you will set the database recovery model to SIMPLE. This will
allow SQL Server to reclaim log space after the log space is no longer needed
for recovery. It also reduces space requirements.

! To set the database recovery model
In this procedure, you will write and execute a statement to set the
ClassNorthwind database recovery model to SIMPLE. You will use the
ALTER DATABASE statement.
A complete Transact-SQL script for this procedure is located in
C:\MOC\2073A\Labfiles\L03\Answers\RecovModel.sql.
1. Execute the following statement to turn on the option that clears the

transaction log automatically each time that SQL Server performs
a checkpoint:
ALTER DATABASE ClassNorthwind SET RECOVERY SIMPLE
GO

2. Execute the sp_helpdb system stored procedure to view information on the
ClassNorthwind database to verify that the recovery model has been
changed.
EXEC sp_helpdb ClassNorthwind
GO

34 Module 3: Creating and Managing Databases

Review

! Creating Databases

! Creating Filegroups

! Managing Databases

! Introduction to Data Structures

1. You are creating a database that is updated infrequently; it is used mainly
for decision support and read-only queries. What percentage of the database
would you allocate to the transaction log?
Answer varies. It can be in the range of 10�20 percent. You would not
want more than 20 percent. Because the database has so little
modification activity, it would make sense to allocate closer to 10
percent.

2. What are the advantages of using filegroups?
You can place tables on specific disks. You can back up large tables
separately.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

 Module 3: Creating and Managing Databases 35

3. You are responsible for managing the mission-critical accounting records of
your organization. Which database recovery model would be appropriate for
this database?
You should use the Full Recovery model.

4. The GAM, SGAM, and IAM pages all track data allocation. How is the
IAM page different from the GAM and SGAM pages?
The GAM and SGAM pages track all objects. The IAM page tracks
allocation for only one specific table or index.

THIS PAGE INTENTIONALLY LEFT BLANK

