

Contents

Overview 1

Designing Enterprise Application
Architecture 2

SQL Server Programming Tools 7

The Transact-SQL Programming Language 9

Elements of Transact-SQL 10

Additional Language Elements 17

Ways to Execute Transact-SQL
Statements 30

Recommended Practices 41

Lab A: Overview of Transact-SQL 42

Review 50

Module 2: Overview of
Programming
SQL Server

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BackOffice, MS-DOS, PowerPoint, Visual Basic, Visual C++, Visual Studio,
Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Project Lead: Rich Rose
Instructional Designers: Rich Rose, Cheryl Hoople, Marilyn McGill
Instructional Software Design Engineers: Karl Dehmer, Carl Raebler,
Rick Byham
Technical Lead: Karl Dehmer
Subject Matter Experts: Karl Dehmer, Carl Raebler, Rick Byham
Graphic Artist: Kirsten Larson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Copy Editor: Edward McKillop (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Support: Lori Walker (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: TestingTesting123
Classroom Automation: Lorrin Smith-Bates
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager, Data Base: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 2: Overview of Programming SQL Server iii

Instructor Notes
This module provides students with an overview of Enterprise-level application
architecture and Transact-SQL as a programming language. Transact-SQL is a
data definition, manipulation, and control language. Students are assumed to be
familiar with ANSI-SQL and basic programming concepts, such as functions,
operators, variables, and control-of-flow statements, which are covered in
Microsoft® Official Curriculum (MOC) course 2071, Querying Microsoft
SQL Server 2000 with Transact-SQL. Students will also learn the different ways
to execute Transact-SQL.

In the lab, students will write basic SELECT statements, modify a script file,
and use system functions.

After completing this module, students will be able to:

! Describe the concepts of enterprise-level application architecture.
! Describe the primary Microsoft SQL Server� 2000 programming tools.
! Explain the difference between the two primary programming tools in

SQL Server.
! Describe the basic elements of Transact-SQL.
! Describe the use of local variables, operators, functions, control of flow

statements, and comments.
! Describe the various ways to execute Transact-SQL statements.

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

! Microsoft PowerPoint® file 2073A_02.ppt
! The C:\Moc\2073A\Demo\D02_Ex.sql example file, which contains all of

the example scripts from the module, unless otherwise noted in the module.

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials for this module.
! Complete the lab.
! Complete all demonstrations.
! Practice the presentation.
! Review any relevant white papers located on the Trainer Materials

compact disc.

Presentation:
45 Minutes

Lab:
30 Minutes

iv Module 2: Overview of Programming SQL Server

Module Strategy
Use the following strategy to present this module:

! Designing Enterprise Application Architecture
Point out that students can design applications by using logical layers and
services. Emphasize that a physical application design depends on the
choice of architecture and how business logic is distributed across
application components.

! SQL Server Programming Tools
Introduce SQL Query Analyzer. Demonstrate the basic functions of SQL
Query Analyzer, pointing out that students can execute part or all of a query,
execute the query into a grid, and create an execution plan.
Introduce the osql command-line utility. If students ask about the isql
utility, point out that the osql utility uses the Open Database Connectivity
(ODBC) application programming interface (API) to connect to
SQL Server, which provides greater functionality), while the isql utility uses
the earlier DB-Library API to connect to SQL Server.

! The Transact-SQL Programming Language
Tell students that Transact-SQL is the programming language that
SQL Server uses.
Because students are expected to be familiar with the principles of
programming, the module does not cover basic programming or statement
writing. Instead, it provides an overview and points out where Transact-
SQL differs noticeably from the ANSI SQL International Standards
Organization (ISO) language.

! Elements of Transact-SQL
This section reviews the language elements of Transact-SQL. Because
students should be familiar with programming fundamentals, briefly discuss
the Data Definition Language (DDL), Data Manipulation Language (DML),
and Data Control Language (DCL) statements and discuss SQL Server
object names and guidelines for naming database objects.

! Additional Language Elements
Discuss local and system variables, the various operators and functions,
control of flow language, and comment characters. The module covers the
top keywords or clauses that students commonly use; direct students to
SQL Server Books Online for detailed information on other keywords.

! Ways to Execute Transact-SQL Statements
Familiarize students with the various ways that they can execute
Transact-SQL statements. These include dynamically constructing
statements, submitting batches, running scripts, and executing transactions.
Where possible, demonstrate these by using SQL Query Analyzer.

 Module 2: Overview of Programming SQL Server v

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing Microsoft
Official Curriculum (MOC) courseware.

The lab in this module is dependent on the classroom configuration
that is specified in the Customization Information section at the end of the
Classroom Setup Guide for course 2073A, Programming a Microsoft
SQL Server 2000 Database.

Lab Setup
There are no lab setup requirements that affect replication or customization.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Important

 Module 2: Overview of Programming SQL Server 1

Overview

! Designing Enterprise Application Architecture

! SQL Server Programming Tools

! The Transact-SQL Programming Language

! Elements of Transact-SQL

! Additional Language Elements

! Ways to Execute Transact-SQL Statements

After completing this module, you will be able to:

! Describe the concepts of enterprise-level application architecture.
! Describe the primary Microsoft® SQL Server� 2000 programming tools.
! Explain the difference between the two primary programming tools in

SQL Server.
! Describe the basic elements of Transact-SQL.
! Describe the use of local variables, operators, functions, control of flow

statements, and comments.
! Describe the various ways to execute Transact-SQL statements.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
about Enterprise-level
application architecture and
Transact-SQL as a
programming language.

2 Module 2: Overview of Programming SQL Server

Designing Enterprise Application Architecture

! Identifying Logical Layers

! Designing Physical Layers

! Accessing Data

SQL Server is often part of a distributed application. The design of a
SQL Server implementation for an enterprise solution depends on your choice
of architecture and how you intend to dsistribute logic across applications.

Topic Objective
To list the topics in this
section.

Lead-in
In this section, you�ll learn
how to describe enterprise
application architecture.

 Module 2: Overview of Programming SQL Server 3

Identifying Logical Layers

Data
Presentation

Layer

Custom Windows
applications
Web browsers

Application Logic
Layer

Custom-built
components
Integrated applications
and services

Business rules

Data rules

Data Services
Layer

Data access logic

Data storage

Enterprise application architecture contains logical layers. The layers represent
data presentation, application logic, and data services.

Data Presentation Layer
The data presentation layer is also referred to as user services and allows users
to browse and manipulate data. The two main types of client applications are
custom Microsoft Windows® applications and Web browsers. The data
presentation layer uses the services that the application logic layer provides.

Application Logic Layer
This layer contains the application logic that defines rules and processes. It
allows for scalability; instead of many clients directly accessing a database
(with each client requiring a separate connection), clients can connect to
business services that, in turn, connect to the data servers. Business services can
be custom-built components or integrated applications and services, such as
Web services. The application logic layer can also contain components that
make use of transaction services, messaging services, or object and connection
management services.

Data Services Layer
Data services include data access logic and data storage. These services can
include SQL Server stored procedures to manage data traffic and integrity on
the database server.

Topic Objective
To identify logical layers in
enterprise application
architecture.

Lead-in
Enterprise application
architecture contains logical
layers.

4 Module 2: Overview of Programming SQL Server

Designing Physical Layers

Data ServicesData Presentation
Application Logic

Data ServicesApplication LogicData Presentation

IIS Components

Two-Tier Model

Multi-Tier Model

You can physically place logical layers in a distributed environment in a variety
of ways. Although all logical layers can exist on one computer, it is typical to
distribute the logical layers in a two-tier or multi-tier model. This allows you to
implement logic, business rules, and processing where they are most effective.

Using a Two-Tier Model
If you use this model, you can locate the presentation and application logic on
the client and the data services on a server. Alternatively, you can locate the
application logic in stored procedures on the server. You can also have a mixed
solution in which the application logic is divided between the client and the
server.

Two-tier designs are less common than multi-tier designs, due to the growing
popularity of Internet applications. They are not as scalable and may not be as
easy to maintain as multi-tier designs are.

Using a Multi-Tier Model
The multi-tier model, also known as three-tier or n-tier, allows you to distribute
logic across applications. Business rules can be separate from the client or the
database. When this model is applied to the Internet, you can divide
presentation services between a browser client and a Microsoft Internet
Information Services (IIS) Web server; the Web server formats the Web pages
that the browser displays.

The multi-tier model is scalable for large client bases and many applications,
and you can spread the workload among many computers. A multi-tier model is
easy to manage because you can isolate a change to one business rule without
affecting others. Also, an update to an Active Server Page (ASP) on a Web
server automatically updates all clients.

Topic Objective
To illustrate ways to
incorporate logical layers in
physical models.

Lead-in
You can physically place
logical layers in a distributed
environment in a variety of
ways.

 Module 2: Overview of Programming SQL Server 5

Accessing Data

Applications and ComponentsApplications and Components BrowserBrowser

IISIIS

ActiveX Data Objects (ADO)ActiveX Data Objects (ADO)Data
Consumers

Data
Providers

Access Excel Custom client

OLE DB Data Providers (Services)OLE DB Data Providers (Services)

Cursors Query
Processors

Business
Services

OLE DB Data Providers (Data)OLE DB Data Providers (Data)

ODBC ExchangeActive
DirectoryJetSQL Server Excel Other OLE DB

Providers

Microsoft technologies allow you to access enterprise data by using a wide
range of pre-built clients or custom clients that use a data access-programming
interface.

Using Pre-Built Clients
You can use pre-built client applications to access data on SQL Server. The
data retrieval logic is part of the client application.

Microsoft Office 2000 includes Microsoft Access and Microsoft Excel. When
part of a multi-tier solution, you use these applications primarily for
presentation services. However, you can also use them for application logic and
data services. These applications allow users to browse server-side data and
perform ad hoc queries. You can use them to retrieve SQL Server data or as a
client in a multi-tier design. You can also use Office 2000 as a development
environment for building data access applications.

Access and Excel are examples of pre-built clients that offer a range of
functionality. You can also use pre-built clients that only offer presentation
services, such as a browser that communicates with IIS.

Building Custom Clients
You can build custom clients by using a data access programming interface and
a development environment, such as Microsoft Visual Studio® version 6.0
Enterprise Edition.

Topic Objective
To illustrate the various
ways to access data.

Lead-in
You can access enterprise
data by using pre-built
clients or custom clients.

6 Module 2: Overview of Programming SQL Server

Providing Universal Data Access
Custom clients may need to access many different data sources in the
enterprise. Microsoft Data Access Components (MDAC) is an interface that
allows communication with different data sources. You can use the following
MDAC components to facilitate communication:

! OLE DB. A set of Component Services interfaces that provides uniform
access to data stored in diverse information sources. OLE DB enables you to
access relational and nonrelational data sources.

! Microsoft ActiveX® Data Objects (ADO). An easy-to-use application
programming interface (API) to any OLE DB data provider. You can use
ADO in a broad range of data access application scenarios. OLE DB and
ADO allow you to create data components that use the integrated services
provided by Component Services.
ADO allows you to:

• Open and maintain connections.

• Create ad hoc queries.

• Execute stored procedures on SQL Server.

• Retrieve results and use cursors.

• Cache query results on the client.

• Update rows in the database.

• Close connections.

 Module 2: Overview of Programming SQL Server 7

SQL Server Programming Tools

! SQL Query Analyzer

$ Color-codes syntax elements automatically

$ Multiple query windows

$ Customizable views of result sets

$ Graphical execution plans

$ Execute portions of scripts

! osql Utility

$ Command-line utility

SQL Server 2000 offers several programming tools, including SQL Query
Analyzer and the osql utility. SQL Query Analyzer is a Windows-based
application, and osql is a utility that you can run from a command prompt.

SQL Query Analyzer
You can use SQL Query Analyzer to view query statements and results at the
same time. You also can use it for writing, modifying, and saving
Transact-SQL scripts.

SQL Query Analyzer provides the following features:

! Customized marking of syntax elements. As you write a query, SQL Query
Analyzer highlights keywords, character strings, and other language
elements; you can customize how they appear.

! Multiple query windows, each with its own connection.
! Customizable views of result sets. You can view results in default result set

form or in a grid so that you can manipulate them as you would a table.
! Graphical execution plans that describe how SQL Server executes the query.

You can view the optimized plan of execution and verify your syntax.
! The ability to execute portions of a script. You can select portions of a

script, and SQL Server will execute only those portions.

Topic Objective
To introduce the
programming tools in
SQL Server.

Lead-in
SQL Server has many
programming tools. Those
you will use most often
include SQL Query Analyzer
and the osql utility.

8 Module 2: Overview of Programming SQL Server

osql Utility
The osql utility allows you to write Transact-SQL statements, system
procedures, and script files. It uses Open Database Connectivity (ODBC) to
communicate with the server. You start the utility directly from the operating
system with the case-sensitive arguments listed below. Once started, osql
accepts Transact-SQL statements and sends them to SQL Server interactively.
Osql formats and displays the results on the screen. Use the QUIT or EXIT
commands to exit from osql.

osql -U login_id [-e] [-E] [-p] [-n] [-d db_name] [-q �query�] [-Q �query�]
[-c cmd_end] [-h headers] [-w column_width] [-s col_separator]
[-t time_out] [-m error_level] [-L] [-?] [-r {0 | 1}]
[-H wksta_name] [-P password] [-R]
[-S server_name] [-i input_file] [-o output_file] [-a packet_size]
[-b] [-O] [-l time_out]

Parameters in osql statements are case sensitive.

The following table describes the most commonly used arguments.

Argument Description

-U login_id Is the user login ID. Login IDs are case sensitive. If neither the -U

or -P option is used, SQL Server uses the currently logged in user
account and will not prompt for a password.

-E Uses a trusted connection instead of requesting a password.
-? Displays the syntax summary of osql switches.
-P password Is a user-specified password. If the -P option is not used, osql

prompts for a password. If the -P option is used at the end of the
command prompt without any password, osql uses the default
password (NULL). Passwords are case sensitive. If neither the -U
or -P option is used, SQL Server uses the currently logged in user
account and will not prompt for a password.

-S server_name Specifies the SQL Server to which to connect. server_name is the
name of the server computer on the network. This option is
required if you execute osql from a remote computer on the
network.

-i input_file Identifies the file that contains a batch of Transact-SQL statements
or stored procedures. You can use the less than (<) symbol instead
of -i.

-o output_file Identifies the file that receives output from osql. You can use the
greater than (>) symbol in place of -o. If the input file is Unicode,
the output file will be Unicode if you specify -o. If the input file is
not Unicode, the output file is OEM.

-b Specifies that osql exits and returns a Microsoft MS-DOS®
ERRORLEVEL value when an error occurs. The value returned to
the DOS ERRORLEVEL variable is 1 when the SQL Server error
message has a severity of 10 or greater; otherwise, the value
returned is 0. MS-DOS batch files can test the value of DOS
ERRORLEVEL and handle the error appropriately.

For Your Information
The isql utility is not
included in this course
because it uses DB-Library
to communicate with the
server and does not support
Unicode data types.

Syntax

Note

Delivery Tip
Mention that arguments can
be preceded by either the
dash (-) or forward slash (/)
character.

 Module 2: Overview of Programming SQL Server 9

The Transact-SQL Programming Language

! SQL Server Implementation of Entry-Level ANSI ISO
Standard

! Can Be Run on Any Entry-Level Compliant Product

! Contains Additional Unique Functionality

Transact-SQL is the SQL Server implementation of the entry-level ANSI-SQL
International Standards Organization (ISO) standard. The ANSI-SQL compliant
language elements of Transact-SQL can be executed from any entry-level
ANSI-SQL compliant product. Transact-SQL also contains additional language
elements that are unique to it.

It is recommended that you write scripts that include only
ANSI-SQL standard statements to increase the compatibility and portability of
your database.

Topic Objective
To introduce the
SQL Server programming
language.

Lead-in
Transact-SQL is a version of
the SQL programming
language that is used
exclusively within
SQL Server.

Important

10 Module 2: Overview of Programming SQL Server

Elements of Transact-SQL

! Data Control Language Statements

! Data Definition Language Statements

! Data Manipulation Language Statements

! SQL Server Object Names

! Naming Guidelines

As you write and execute Transact-SQL statements, you will use different
languages statements, which are used to determine who can see or modify the
data, create objects in the database, and query and modify the data. You should
follow the rules for naming SQL Server objects, and become familiar with the
naming guidelines for database objects.

Topic Objective
To introduce the basic
elements of the
Transact-SQL programming
language.

Lead-in
As you write and execute
Transact-SQL statements,
you'll use some of these
elements of the language.

 Module 2: Overview of Programming SQL Server 11

Data Control Language Statements

! Set or Change Permissions

$ GRANT

$ DENY

$ REVOKE

! By Default, Only sysadmin, dbcreator, db_owner, and
db_securityadmin Roles Can Execute

You use Data Control Language (DCL) statements to change the permissions
associated with a database user or role. The following table describes the DCL
statements.

Statement Description

GRANT Creates an entry in the security system that allows a user to work with

data or execute certain Transact-SQL statements.

DENY Creates an entry in the security system that denies a permission from a
security account, and prevents the user, group, or role from inheriting
the permission through its group and role memberships.

REVOKE Removes a previously granted or denied permission.

By default, only members of the sysadmin, dbcreator, db_owner, or
db_securityadmin role can execute DCL statements.

This example grants the public role permission to query the Products table.

USE Northwind
GRANT SELECT ON Products TO public

Topic Objective
To introduce students to
DCL statements.

Lead-in
DCL statements control
access to database objects
and to the ability to execute
certain statements.

Delivery Tip
For more information on
DCL statements, see course
2072A, Administering a
Microsoft SQL Server 2000
Database.

Example

12 Module 2: Overview of Programming SQL Server

Data Definition Language Statements

! Define the Database Objects

$ CREATE object_type object_name

$ ALTER object_type object_name

$ DROP object_type object_name

Data Definition Language (DDL) statements define the database by creating
databases, tables, and user-defined data types. You also use DDL statements to
manage your database objects. Some DDL statements include:

! CREATE object_type object_name.
! ALTER object_type object_name.
! DROP object_type object_name.

By default, only members of the sysadmin, dbcreator, db_owner, or
db_ddladmin role can execute DDL statements. In general, it is recommended
that no other accounts be allowed to create database objects. If users create their
own objects in databases, then each object owner is required to grant the proper
permissions to each user of those objects. This causes an administrative burden
and should be avoided. Restricting statement permissions to these roles also
avoids problems with object ownership that can occur when an object owner
has been dropped from a database, or when the owner of a stored procedure or
view does not own the underlying tables.

If multiple user accounts create objects, the sysadmin and db_owner roles can
use the SETUSER function to impersonate other users or the
sp_changeobjectowner system stored procedure to change the owner of an
object.

The following script creates a table called Client in the ClassNorthwind
database. It includes CustomerID, Company, Contact, and Phone columns.

USE ClassNorthwind
CREATE TABLE Client
(CustomerID int, Company varchar(40),Contact varchar(30),
Phone char(12))

Topic Objective
To introduce students to
DDL statements.

Lead-in
DDL statements define a
database by creating
databases, tables, and user-
defined data types.

Example

 Module 2: Overview of Programming SQL Server 13

Data Manipulation Language Statements

! Use When Working with Data in the Database

$ SELECT

$ INSERT

$ UPDATE

$ DELETE

DML statements work with the data in the database. By using DML statements,
you can change data or retrieve information. DML statements include:

! SELECT.
! INSERT.
! UPDATE.
! DELETE.

By default, only members of the sysadmin, dbcreator, db_owner,
db_datawriter, and db_datareader roles can execute DML statements.

This example retrieves the category ID, product name, product ID, and unit
price of the products in the Northwind database.

SELECT CategoryID, ProductName, CategoryID, ProductID,
UnitPrice
FROM Northwind..Products

Topic Objective
To introduce students to
DML statements.

Lead-in
DML statements work with
the data in the database.

Example

14 Module 2: Overview of Programming SQL Server

SQL Server Object Names

! Standard Identifiers
$ First character must be alphabetic
$ Other characters can include letters, numerals, or

symbols
$ Identifiers starting with symbols have special uses

! Delimited Identifiers
$ Use when names contain embedded spaces
$ Use when reserved words are portions of names
$ Enclose in brackets ([]) or quotation marks (" ")

SQL Server provides a series of standard naming rules for object identifiers and
a method of using delimiters for identifiers that are not standard. It is
recommended that you name objects by using the standard identifier characters,
if possible.

Standard Identifiers
Standard identifiers can contain from one to 128 characters, including letters,
symbols (_, @, or #), and numbers. No embedded spaces are allowed in
standard identifiers. You should observe the following rules for using
identifiers:

! The first character must be an alphabetic character of a�z or A�Z.
! After the first character, identifiers can include letters, numerals, or the @,

$, #, or _ symbol.
! Identifier names starting with a symbol have special uses:

• An identifier beginning with the at sign (@)denotes a local variable or
parameter.

• An identifier beginning with a number sign (#) denotes a temporary
table or procedure.

• An identifier beginning with a double-number sign (##) denotes a global
temporary object.

Names for temporary objects should not exceed 116 characters,
including the number sign (#) or double-number sign (##), because
SQL Server gives temporary objects an internal numeric suffix.

Topic Objective
To introduce the rules for
naming SQL Server objects
(rules for identifiers).

Lead-in
SQL Server provides a
series of standard naming
rules for object identifiers
and a method of using
delimiters for identifiers that
are not standard.

Delivery Tip
Demonstrate how SQL
Query Analyzer
automatically color-codes
the statement elements to
show reserved words,
strings, and so on.

Note

 Module 2: Overview of Programming SQL Server 15

Delimited Identifiers
If an identifier complies with all of the rules for the format of identifiers, you
can use it with or without delimiters. If an identifier does not comply with one
or more of the rules for the format of identifiers, it must always be delimited.

You can use delimited identifiers in the following situations:

! When names contain embedded spaces
! When reserved words are used for object names or portions of object names

You must enclose delimited identifiers in brackets or quotation marks when you
use them in Transact-SQL statements.

! Bracketed identifiers are delimited by square brackets ([]):
SELECT * FROM [Blanks In Table Name]

You can always use bracketed delimiters, regardless of the status of
the SET QUOTED_IDENTIFIER option.

! Quoted identifiers are delimited by quotation marks (""):
SELECT * FROM "Blanks in Table Name"

You can use quoted identifiers only if the SET QUOTED_IDENTIFIER
option is on.

Note

16 Module 2: Overview of Programming SQL Server

Naming Guidelines

! Use Meaningful Names Where Possible

! Keep Names Short

! Use a Clear and Simple Naming Convention

! Chose an Identifier That Distinguishes Types of Objects

$ Views

$ Stored procedures

! Keep Object Names and User Names Unique

Guidelines for naming database objects are important for identifying the type of
object and to promote ease in troubleshooting or debugging. When naming
database objects, you should:

! Use meaningful names where possible.
For example, for a column that contains the name of customers, you could
name the column Chr_Name_Of_Customer. A prefix of Chr in the
column name denotes a character data type.

! Keep names short.
For example, although the column name Chr_Name_Of_Customer is
meaningful, you could shorten the column name to Name or Chr_Name.

! Use a clear and simple naming convention.
Decide what works best for your situation, and be consistent. Avoid naming
conventions that are too complex, because they can become difficult to
remember. For example, you can remove vowels if an object name must
resemble a keyword (such as a backup stored procedure named Bckup).

! Chose an identifier that distinguishes the type of object, especially when
using views and stored procedures.
System administrators often mistake views for tables, an oversight that can
cause unexpected problems. For example, if you create a view that joins two
tables, you could name that view, SoldView.

! Keep object names and user names unique.
For example, avoid creating a Sales table and a sales role in the same
database.

Topic Objective
To introduce suggested
naming guidelines.

Lead-in
Guidelines for naming
database objects are
important for identifying the
type of object and to
promote ease in
troubleshooting or
debugging. When naming
database objects, you
should�

 Module 2: Overview of Programming SQL Server 17

Additional Language Elements

! Local Variables

! Operators

! Functions

! Function Examples

! Control of Flow Language Elements

! Comments

Some additional elements of the Transact-SQL language include local
variables, operators, functions, control of flow statements, and comments.

Topic Objective
To present an overview of
the additional elements of
the Transact-SQL language.

Lead-in
Some additional elements of
the Transact-SQL language
include�

18 Module 2: Overview of Programming SQL Server

Local Variables

! User-defined with DECLARE Statement

! Assigned Values with SET or Select Statement

DECLARE @vLastName char(20),
@vFirstName varchar(11)

SET @vLastName = 'Dodsworth'
SELECT @vFirstName = FirstName

FROM Northwind..Employees
WHERE LastName = @vLastName

PRINT @vFirstName + ' ' + @vLastName
GO

DECLARE @vLastName char(20),
@vFirstName varchar(11)

SET @vLastName = 'Dodsworth'
SELECT @vFirstName = FirstName

FROM Northwind..Employees
WHERE LastName = @vLastName

PRINT @vFirstName + ' ' + @vLastName
GO

Variables are language elements with assigned values. You can use local
variables in Transact-SQL.

You define a local variable in a DECLARE statement and then assign it an
initial value with either the SET or SELECT statement. Use the SET statement
when the desired value is known. Use the SELECT statement when you must
look up the desired value in a table. After you establish the value of the
variable, you can use it in the statement, batch, or procedure in which it was
declared. A batch is a set of Transact-SQL statements that are submitted
together and executed as a group. A local variable is shown with one at sign
(@) preceding its name.

DECLARE {@local_variable data_type} [,...n]

SET @local_variable_name = expression

The following example declares two variables. It uses the SET statement to
establish the value of the @vLastName variable and the SELECT statement to
look up the value of the @vFirstName variable. It then prints both variables.

DECLARE @vLastName char(20),
 @vFirstName varchar(11)
SET @vLastName = 'Dodsworth'
SELECT @vFirstName = FirstName
 FROM Northwind..Employees
 WHERE LastName = @vLastName
PRINT @vFirstName + ' ' + @vLastNameGO

Anne Dodsworth

Topic Objective
To define a variable and
discuss how to use it.

Lead-in
You declare local variables
in the body of a batch or
procedure by using the
DECLARE statement, and
you give them values by
using a SET or SELECT
statement.

Delivery Tip
Demonstrate this by using
SQL Query Analyzer.

Syntax

Example

Result

 Module 2: Overview of Programming SQL Server 19

Operators

! Types of Operators

$ Arithmetic

$ Comparison

$ String concatenation

$ Logical

! Operator Precedence Levels

Operators are symbols that perform mathematical computations, string
concatenations, and comparisons between columns, constants, and variables.
You can combine them and use them in search conditions. When you combine
them, the order in which SQL Server processes the operators is based on a
predefined precedence.

{constant | column_name | function | (subquery)}
[{arithmetic_operator | string_operator |
 AND | OR | NOT}
 {constant | column_name | function | (subquery)}�]

Types of Operators
SQL Server supports four types of operators: arithmetic, comparison, string
concatenation, and logical.

Arithmetic
Arithmetic operators perform computations with numeric columns or constants.
Transact-SQL supports multiplicative operators, including multiplication (*),
division (/), and modulo (%)�the integer remainder after integer division�and
the addition (+) and subtraction (-) additive operators.

Topic Objective
To show how you can use
operators to manipulate
result sets.

Lead-in
You can use operators to
perform computations or
compare values.

Partial Syntax

Delivery Tip
Transact-SQL also supports
bitwise operators. They are
omitted here because they
are seldom used.

20 Module 2: Overview of Programming SQL Server

Comparison
Comparison operators compare two expressions. You can make comparisons
between variables, columns, and expressions of similar type. The following
table defines the comparison operators in Transact-SQL.

Operator Meaning

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

String Concatenation
The string concatenation operator (+) concatenates string values. String
functions handle all other string manipulation.

Logical
The logical operators AND, OR, and NOT connect search conditions in
WHERE clauses.

Operator Precedence Levels
If you use multiple operators (logical or arithmetic) to combine expressions,
SQL Server processes the operators in order of their precedence, which may
affect the resulting value. The following table shows the precedence level of
operators (levels go from highest to lowest).

Type Operator Symbol

Grouping Primary grouping ()

Arithmetic Multiplicative * / %

Arithmetic Additive - +

Other String concatenation +

Logical NOT NOT

Logical AND AND

Logical OR OR

SQL Server handles the most deeply nested expression first. In addition, if all
arithmetic operators in an expression share the same level of precedence, the
order is from left to right.

Delivery Tip
Mention that the precedence
level of logical operators is
different from other
programming languages.

 Module 2: Overview of Programming SQL Server 21

Functions

! Aggregate Functions

! Scalar Functions

! Rowset Functions

SELECT *
FROM OPENQUERY
(OracleSvr, 'SELECT ENAME, EMPNO FROM SCOTT.EMP')

SELECT *
FROM OPENQUERY
(OracleSvr, 'SELECT ENAME, EMPNO FROM SCOTT.EMP')

SELECT AVG (UnitPrice) FROM ProductsSELECT AVG (UnitPrice) FROM Products

SELECT DB_NAME() AS 'database'SELECT DB_NAME() AS 'database'

Transact-SQL provides many functions that return information. Functions take
input parameters and return values that can be used in expressions. The
Transact-SQL programming language provides three types of functions,
aggregate, scalar, and rowset.

Aggregate Functions
Aggregate functions operate on a collection of values but return a single,
summarizing value.

This example determines the average of the UnitPrice column for all products
in the Products table.

SELECT AVG(UnitPrice) FROM Products

Products
28.8663

(1 row(s) affected)

Topic Objective
To provide an overview of
the functions available in
SQL Server.

Lead-in
Transact-SQL provides
many functions that return
information, including�

Delivery Tip
Mention that students can
use functions anywhere that
an expression is allowed in
a SELECT statement.

Example 1

Result

22 Module 2: Overview of Programming SQL Server

Scalar Functions
Scalar functions operate on a single value and then return a single value. You
can use these functions wherever an expression is valid. You can group scalar
functions into the categories in the following table.

Function category Description

Configuration Returns information about the current configuration

Cursor Returns information about cursors

Date and Time Performs an operation on a date and time input value and
returns a string, numeric, or date and time value

Mathematical Performs a calculation based on input values provided as
parameters to the function and then returns a numeric value

Metadata Returns information about the database and database objects

Security Returns information about users and roles

String Performs an operation on a string (char or varchar) input
value and returns a string or numeric value

System Performs operations and returns information about values,
objects, and settings in SQL Server

System Statistical Returns statistical information about the system

Text and Image Performs an operation on a text or image input value or
column and returns information about the value

This metadata function example returns the name of the database currently
in use.

SELECT DB_NAME() AS 'database'

Database
Northwind

(1 row(s) affected)

Rowset Functions
Rowset functions can be used like table references in a Transact-SQL
statement.

This example performs a distributed query to retrieve information from the
EMP table.

SELECT *
FROM OPENQUERY(OracleSvr, 'SELECT ENAME, EMPNO FROM
SCOTT.EMP')

Example 2

Result

Example 3

 Module 2: Overview of Programming SQL Server 23

Function Examples

SELECT 'ANSI:' AS Region,
CONVERT(varchar(30), GETDATE(), 102) AS Style

UNION
SELECT 'European:', CONVERT(varchar(30), GETDATE(), 113)
UNION
SELECT 'Japanese:', CONVERT(varchar(30), GETDATE(), 111)

SELECT 'ANSI:' AS Region,
CONVERT(varchar(30), GETDATE(), 102) AS Style

UNION
SELECT 'European:', CONVERT(varchar(30), GETDATE(), 113)
UNION
SELECT 'Japanese:', CONVERT(varchar(30), GETDATE(), 111)

Result

ANSI:ANSI:

European:European:
Japanese:Japanese:

StyleStyleStyle
11

11
2000.03.222000.03.22

22 Mar 2000 14:20:00:01022 Mar 2000 14:20:00:010

2000/03/222000/03/22

RegionRegion

You commonly use functions when converting date data from the format of one
country to that of another.

To change date formats, you should use the CONVERT function with the
style option to determine the date format that will be returned.

This example demonstrates how you can convert dates to different styles.

SELECT 'ANSI:' AS Region,
 CONVERT (varchar(30), GETDATE(), 102) AS Style
UNION
SELECT 'European:', CONVERT(varchar(30), GETDATE(), 113)
UNION
SELECT 'Japanese:', CONVERT(varchar(30), GETDATE(), 111)

Region Style
ANSI: 2000.03.22
European: 22 Mar 2000 14:20:00:010
Japanese: 2000/03/22

Topic Objective
To demonstrate some of the
common uses of functions.

Lead-in
You commonly use
functions to convert date
data from the format of one
country to that of another.

Delivery Tip
Go to the �CONVERT� topic
in SQL Server Books Online
and point out the
style options.

Note

Example 1

Result

24 Module 2: Overview of Programming SQL Server

This example uses the DATEFORMAT option of the SET statement to format
dates for the duration of a connection. This setting is used only in the
interpretation of character strings as they are converted to date values and has
no effect on the display of date values.

SET DATEFORMAT dmy
GO
DECLARE @vdate datetime
SET @vdate = '29/11/00'
SELECT @vdate

2000-11-29 00:00:00.000

(1 row(s) affected)
This example returns the current user name and the application that the user is
using for the current session or connection. The user in this example is a
member of the sysadmin role.

USE Northwind
SELECT user_name(), app_name()

dbo MS SQL Query Analyzer

(1 row(s) affected)

This example determines whether the FirstName column in the Employees
table of the Northwind database allows null values.

A result of zero (false) means that null values are not allowed, and a result of
one (true) means that null values are allowed. Notice that the OBJECT_ID
function is embedded in the COLUMNPROPERTY function. This allows you
to retrieve the object id of the Employees table.

USE Northwind
SELECT COLUMNPROPERTY(OBJECT_ID('Employees'), 'FirstName',
 'AllowsNull')

0

(1 row(s) affected)

Example 2

Result

Example 3

Result

Example 4

Result

 Module 2: Overview of Programming SQL Server 25

Control of Flow Language Elements

! Statement Level

$ BEGIN�END blocks

$ IF�ELSE blocks

$ WHILE constructs

! Row Level

$ CASE expression

IF USER_NAME() <> 'dbo'
BEGIN
RAISERROR('Must be sysadmin
to Perform Operation',
10, 1)
RETURN

END
ELSE

DBCC CHECKDB(Northwind)

IF USER_NAME() <> 'dbo'
BEGIN
RAISERROR('Must be sysadmin
to Perform Operation',
10, 1)
RETURN

END
ELSE

DBCC CHECKDB(Northwind)

Transact-SQL contains several language elements that control the flow of
logic in a statement. It also contains the CASE expression that allows you to
use conditional logic on one row at a time in a SELECT or UPDATE statement.

Statement Level
The following language elements enable you to control the flow of logic in a
script:

These elements enclose a series of Transact-SQL
statements so that SQL Server treats them as a unit.

These elements specify that SQL Server should execute the
first alternative if a certain condition is true. Otherwise, SQL Server should
execute the second alternative.

These elements execute a statement repeatedly as long as
the specified condition is true. BREAK and CONTINUE statements control the
operation of the statements inside a WHILE loop.

Topic Objective
To introduce students to the
Transact-SQL language
elements that control the
processing of statements.

Lead-in
Transact-SQL supports
language that controls the
flow of logic in statements.

BEGIN�END Blocks

IF�ELSE Blocks

WHILE Constructs

26 Module 2: Overview of Programming SQL Server

This example determines whether a customer has any orders before deleting the
customer from the customer list.

USE Northwind
IF EXISTS (SELECT OrderID FROM Orders
 WHERE CustomerID = 'Frank')
 PRINT '*** Customer cannot be deleted ***'
ELSE
 BEGIN
 DELETE Customers WHERE CustomerID = 'Frank'
 PRINT '*** Customer deleted ***'
 END

Row Level
A CASE expression lists predicates, assigns a value for each, and then tests
each one. If the expression returns a true value, the CASE expression returns
the value in the WHEN clause. If the expression is false, and you have specified
an ELSE clause, SQL Server returns the value in the ELSE clause. You can use
a CASE expression anywhere that you use an expression.

CASE expression
 {WHEN expression THEN result} [,�n]
[ELSE result]
END

Example 1

Syntax

 Module 2: Overview of Programming SQL Server 27

The following example reviews the inventory status of products in the
Products table and returns messages based on the quantities available and
quantities back ordered, and whether the product has been discontinued.

SELECT ProductID, 'Product Inventory Status' =
 CASE
 WHEN (UnitsInStock < UnitsOnOrder AND Discontinued = 0)
 THEN 'Negative Inventory - Order Now!'
 WHEN ((UnitsInStock-UnitsOnOrder) < ReorderLevel AND
 Discontinued = 0)
 THEN 'Reorder level reached- Place Order'
 WHEN (Discontinued = 1) THEN '***Discontinued***'
 ELSE 'In Stock'
 END
FROM Northwind..Products

ProductID Product Inventory Status
1 In Stock
2 Negative Inventory - Order Now!
3 Negative Inventory - Order Now!
4 In Stock
5 ***Discontinued***
6 In Stock
7 In Stock
8 In Stock
9 ***Discontinued***
10 In Stock
11 Negative Inventory - Order Now!
12 In Stock
13 Reorder level reached - Place Order
.
.
.
(77 row(s) affected)

Example

Result

28 Module 2: Overview of Programming SQL Server

Comments

! In-Line Comments

! Block Comments

SELECT ProductName,
(UnitsInStock + UnitsOnOrder) AS Max -- Calculates inventory
, SupplierID
FROM Products

SELECT ProductName,
(UnitsInStock + UnitsOnOrder) AS Max -- Calculates inventory
, SupplierID
FROM Products

/*
** This code retrieves all rows of the products table
** and displays the unit price, the unit price increased
** by 10 percent, and the name of the product.
*/
SELECT UnitPrice, (UnitPrice * 1.1), ProductName
FROM Products

/*
** This code retrieves all rows of the products table
** and displays the unit price, the unit price increased
** by 10 percent, and the name of the product.
*/
SELECT UnitPrice, (UnitPrice * 1.1), ProductName
FROM Products

Comments are non-executing strings of text placed in statements to describe the
action that the statement is performing or to disable one or more lines of the
statement. You can use comments in one of two ways�in line with a statement,
or as a block.

In-Line Comments
You can create in-line comments by using two hyphens (--) to set a comment
apart from a statement. Transact-SQL ignores text to the right of the comment
characters. You can also use this commenting character to disable lines of a
statement.

This example uses an in-line comment to explain what a calculation is doing.

SELECT ProductName
,(UnitsInStock + UnitsOnOrder) AS Max -- Calculates inventory
 , SupplierID
FROM Products

This example uses a second set of in-line comments, as represented by the
second set of hyphens (--), to prevent the execution of a section (SupplierID) of
a statement.

SELECT ProductName
,(UnitsInStock + UnitsOnOrder) AS Max -- Calculates inventory
-- , SupplierID
FROM Products

Topic Objective
To introduce students to the
basic use of comments.

Lead-in
Comments are non-
executing strings that you
can place in a statement to
annotate it or to disable a
portion of it during testing.

Example 1

Example 2

 Module 2: Overview of Programming SQL Server 29

Block Comments
You can create multiple line blocks of comments by placing one comment
character (/*) at the start of the comment text, typing your comments, and then
concluding the comment with a closing comment character (*/).

Use this character designator to create one or more lines of comments or
comment headers�descriptive text that documents the statements that follow it.
Comment headers often include the author�s name, creation and last
modification dates of the script, version information, and a description of the
action that the statement performs.

You cannot place the GO statement inside of block comments.

This example shows a comment header that spans several lines. The two
asterisks (**) preceding each line improve readability.

/*
** This code retrieves all rows of the products table
** and displays the unit price, the unit price increased
** by 10 percent, and the name of the product.
*/
SELECT UnitPrice, (UnitPrice * 1.1), ProductName
FROM Products

You should place comments throughout a script to describe the actions
that the statements are performing. This is especially important if others must
also review or implement the script.

This section of a script is commented to prevent it from executing. This can be
helpful when debugging or troubleshooting a script file.

/*
DECLARE @v1 int
SET @v1 = 0
WHILE @v1 < 100
 BEGIN
 SELECT @v1 = (@v1 + 1)
 SELECT @v1
 END
*/

Note

Example 3

Note

Example 4

30 Module 2: Overview of Programming SQL Server

Ways to Execute Transact-SQL Statements

! Dynamically Constructing Statements

! Using Batches

! Using Scripts

! Using Transactions

! Using XML

You can execute Transact-SQL statements by dynamically constructing
statements, and by using batches, scripts, and transactions. You can also use
Extensible Markup Language (XML) to present data to Web pages.

Topic Objective
To provide an overview of
the ways to execute
Transact-SQL statements.

Lead-in
You can execute Transact-
SQL statements in a variety
of ways.

 Module 2: Overview of Programming SQL Server 31

Dynamically Constructing Statements

! Use EXECUTE with String Literals and Variables

! Use When You Must Assign Value of Variable at
Execution Time

! Any Variables and Temporary Tables Last Only
During Execution

DECLARE @dbname varchar(30), @tblname varchar(30)
SET @dbname = 'Northwind'
SET @tblname = 'Products'

EXECUTE
('USE ' + @dbname + ' SELECT * FROM '+ @tblname)

DECLARE @dbname varchar(30), @tblname varchar(30)
SET @dbname = 'Northwind'
SET @tblname = 'Products'

EXECUTE
('USE ' + @dbname + ' SELECT * FROM '+ @tblname)

You can build statements dynamically so that they are constructed at the same
time that SQL Server executes a script.

To build a statement dynamically, use the EXECUTE statement with a series of
string literals and variables that are resolved at execution time.

Dynamically constructed statements are useful when you want SQL Server to
assign the value of the variable when it executes the statement. For example,
you can create a dynamic statement that performs the same action on a series of
database objects.

EXECUTE ({@str_var | 'tsql_string'} + [{@str_var | 'tsql_string'}...])}

You set options dynamically, and variables and temporary tables that you create
dynamically last only as long as it takes for SQL Server to execute the
statement.

Consider the following facts about the EXECUTE statement:

! The EXECUTE statement executes statements composed of character
strings in a Transact-SQL batch. Because these are string literals, be sure
that you add spaces in the appropriate places to ensure proper concatenation.

! The EXECUTE statement can include a string literal, a string local variable,
or a concatenation of both.

! All items in the EXECUTE string must consist of character data; you must
convert all numeric data before you use the EXECUTE statement.

! You cannot use functions to build the string for execution.
! You can create any valid Transact-SQL statements dynamically, including

functions.
! You can nest EXECUTE statements.

Topic Objective
To introduce students to the
dynamic execution of
statements.

Lead-in
You can build statements
dynamically so that they are
constructed at the same
time that SQL Server
executes a script.

Syntax

32 Module 2: Overview of Programming SQL Server

This example demonstrates how you can use a dynamically executed statement
to specify a database context other than the one you are currently in, and then
use it to select all of the columns and rows from a specified table. In this
example, the change of the database context to the Northwind database lasts
only for the duration of the query. The current database context is unchanged.

By using a stored procedure, the user could pass the database and table
information into the statement as parameters, and then query a specific table in
a database.

DECLARE @dbname varchar(30), @tablename varchar(30)
SET @dbname = 'Northwind'
SET @tablename = 'Products'

EXECUTE
 ('USE ' + @dbname +
 ' SELECT ProductName FROM ' + @tablename)

ProductName
Chai
Chang
Aniseed Syrup

This example demonstrates how you can use a dynamically executed statement
to change a database option for the duration of the statement. The following
statement does not return a count of the number of rows affected.

EXECUTE ('SET NOCOUNT ON '+ 'SELECT LastName, ReportsTo
 FROM Employees WHERE ReportsTo IS NULL')

LastName ReportsTo
Fuller NULL

Example 1

Result

Example 2

Result

 Module 2: Overview of Programming SQL Server 33

Using Batches

! One or More Transact-SQL Statements
Submitted Together

! Define a Batch by Using the GO Statement
! How SQL Server Processes Batches
! You Cannot Combine Some Statements in a Batch

$ CREATE PROCEDURE

$ CREATE VIEW

$ CREATE TRIGGER
$ CREATE RULE

$ CREATE DEFAULT

You can also submit one or more statements in a batch.

One or More Transact-SQL Statements Submitted Together
Batches can be run interactively or as part of a script. A script can include more
than one batch of Transact-SQL statements.

Define a Batch by Using the GO Statement
Use a GO statement to signal the end of a batch. GO is not a universally
accepted Transact-SQL statement; only SQL Query Analyzer and the osql
utility accept it. Applications based on the ODBC or OLE DB APIs generate a
syntax error if they attempt to execute a GO statement.

How SQL Server Processes Batches
SQL Server optimizes, compiles, and executes the statements in a batch
together. However, the statements do not necessarily execute as a recoverable
unit of work.

The scope of user-defined variables is limited to a batch, so a variable cannot be
referenced after a GO statement.

If a syntax error exists in a batch, none of the statements in that batch
executes. Execution begins with the next batch.

Topic Objective
To introduce students to
using batches.

Lead-in
A batch is a set of
Transact-SQL statements
that are submitted together
and executed as a group.

Note

34 Module 2: Overview of Programming SQL Server

You Cannot Combine Some Statements in a Batch
SQL Server must execute certain object creation statements in their own
batches in a script, because of the way that the objects are defined. Each of the
following statements is defined by including an object definition header
followed by the AS keyword (indicating that one or more statements follow).
The object definitions are delimited by the GO statement; SQL Server
recognizes the end of the object definition when it reaches the GO statement:

! CREATE PROCEDURE
! CREATE VIEW
! CREATE TRIGGER
! CREATE RULE
! CREATE DEFAULT

If you want to use more than one of the non-combinable statements, you must
submit multiple batches, as the following script indicates.

CREATE DATABASE ...
CREATE TABLE ...
GO

CREATE VIEW1 ...
GO
CREATE VIEW2 ...
GO

The following example is a batch that fails. To execute it correctly, insert a GO
statement before each CREATE TRIGGER statement.

CREATE DATABASE ...
CREATE TABLE ...
CREATE TRIGGER ...
CREATE TRIGGER ...
GO

The following example shows how to group the statements of Example 2 so
that they execute correctly.

CREATE DATABASE ...
CREATE TABLE ...
GO

CREATE TRIGGER ...
GO

CREATE TRIGGER ...
GO

Example 1

Example 2

Example 3

 Module 2: Overview of Programming SQL Server 35

Using Scripts

! Contain Saved Statements

! Can Be Written in Any Text Editor

$ Save by using .sql file name extension

! Execute in SQL Query Analyzer or osql Utility

! Use to Recreate Database Objects or to Execute
Statements Repeatedly

Scripts are one of the most common ways to execute Transact-SQL statements.
A script is one or more Transact-SQL statements that are saved as a file.

You can write and save scripts in SQL Query Analyzer or in any text editor,
such as Notepad. Save the script file by using the .sql file name extension.

You can open and execute the script file in SQL Query Analyzer or the osql
utility (or another query tool).

Saved scripts are very useful when recreating databases or data objects, or when
you must use a set of statements repeatedly.

Format Transact-SQL statements to be legible to others. Use indenting to
indicate levels of relationships.

Topic Objective
To introduce using scripts to
execute Transact-SQL
statements.

Lead-in
Scripts are one of the most
common ways to execute
Transact-SQL statements.

36 Module 2: Overview of Programming SQL Server

Using Transactions

! Processed Like a Batch

! Data Integrity Is Guaranteed

! Changes to the Database Are Either Applied Together or
Rolled Back

BEGIN TRANSACTION
UPDATE savings SET amount = (amount - 100)

WHERE custid = 78910
� <Rollback transaction if error>

UPDATE checking SET amount = (amount + 100)
WHERE custid = 78910
� <Rollback transaction if error>

COMMIT TRANSACTION

BEGIN TRANSACTION
UPDATE savings SET amount = (amount - 100)

WHERE custid = 78910
� <Rollback transaction if error>

UPDATE checking SET amount = (amount + 100)
WHERE custid = 78910
� <Rollback transaction if error>

COMMIT TRANSACTION

Transactions, like batches, are groups of statements that are submitted as a set.
However, SQL Server handles transactions as a single unit of work, and the
transaction succeeds or fails as a whole. This process maintains data integrity.
Transactions can span multiple batches.

Preface a transaction with a BEGIN TRANSACTION statement, and terminate
it with a COMMIT TRANSACTION or ROLLBACK TRANSACTION
statement.

When a transaction is committed, SQL Server makes the changes to that
transaction permanent. When a transaction is rolled back, SQL Server returns
any rows affected by the transaction to their pretransaction states.

BEGIN TRANSACTION

COMMIT / ROLLBACK TRANSACTION

Topic Objective
To introduce students to
transactions.

Lead-in
Transactions are processed
like batches but with a few
key differences�

Delivery Tip
The Savings and Checking
tables used in the examples
in this topic are fictitious.

Partial Syntax

 Module 2: Overview of Programming SQL Server 37

In the following example, $100 is debited from the savings account of customer
number 78910, and $100 is credited to the customer�s checking account. The
customer transferred $100 from savings to checking.

BEGIN TRANSACTION
UPDATE savings
 SET balance = (amount � 100)
 WHERE custid = 78910
IF @@ERROR <> 0
 BEGIN
 RAISERROR ('Transaction not completed due to
 savings account problem.', 16, -1)
 ROLLBACK TRANSACTION
 END
UPDATE checking
 SET balance = (amount + 100)
 WHERE custid = 78910
IF @@ERROR <> 0
 BEGIN
 RAISERROR ('Transaction not completed due to
 checking account problem.', 16, -1)
 ROLLBACK TRANSACTION
 END
COMMIT TRANSACTION

Example

38 Module 2: Overview of Programming SQL Server

Using XML

! Allowing Client Browser to Format Data

! Specifying the FOR XML AUTO Option

! Specifying the FOR XML RAW Option

! Identifying Limitations of Using the FOR XML Clause

XML is a programming language that Web developers can use to present data
from a SQL Server database to Web pages.

Allowing Client Browser to Format Data
When using the FOR XML clause in the SELECT statement, SQL Server:

! Returns the results of a query as a character string.
! Returns the attributes of the data, such as column and table names, as tags.

A client browser can then use these tags to format the returned data.

Specifying the FOR XML AUTO Option
You can specify the FOR XML AUTO option to return query results in a
standardized format.

Each table in the FROM clause for which at least one column is listed in the
SELECT clause is represented as an XML element. An element includes both
data and attributes that describe the data.

Slide Objective
To introduce XML and how
a query can return data
formatted as well-formed
XML.

Lead-in
XML is a programming
language that Web
developers can use to
present data from a
SQL Server database to
Web pages.

 Module 2: Overview of Programming SQL Server 39

This example selects three columns from two joined tables. Notice that the
results combine all of the columns into a single text string.

SELECT Orders.OrderID, Shippers.CompanyName, Orders.CustomerID
FROM Orders JOIN Shippers
ON Orders.shipvia = Shippers.ShipperID
WHERE OrderID < 10250
FOR XML AUTO

XML_F52E2B61-18A1-11d1-B105-00805F49916B
--
<Orders OrderID="10248" CustomerID="VINET">
 <Shippers CompanyName="Federal Shipping"/>
</Orders>
<Orders OrderID="10249" CustomerID="TOMSP">
 <Shippers CompanyName="Speedy Express"/>
</Orders>

SQL Server reorders the result set to group columns by table name.

Specifying the FOR XML RAW Option
In some cases, Web developers do not want the automatic formatting. You can
specify the RAW option to transform each row in the result set into an XML
element with a generic identifier row as the element tag.

Compare the result from this example with that of Example 1. This example
returns the same data, but the formatting is more generic. Notice that the tables
are not named, and the columns are not grouped by table name.

SELECT Orders.OrderID, Shippers.CompanyName, Orders.CustomerID
FROM Orders JOIN Shippers
ON Orders.shipvia = Shippers.ShipperID
WHERE OrderID < 10250
FOR XML RAW

XML_F52E2B61-18A1-11d1-B105-00805F49916B
--
<row OrderID="10248"
 CompanyName="Federal Shipping"
 CustomerID="VINET"/>
<row OrderID="10249"
 CompanyName="Speedy Express"
 CustomerID="TOMSP"/>

Example 1

Result

Note

Example 2

Result

40 Module 2: Overview of Programming SQL Server

Identifying Limitations of Using the FOR XML Clause
A SELECT statement that contains the FOR XML clause reformats the output
for the SQL Server client. Because of these changes, you cannot use a query
output in XML format as an input for further SQL Server processing.

You cannot use XML formatted output in:

! A nested SELECT statement.
! A SELECT INTO statement.
! A COMPUTE BY clause.
! Stored procedures that are called in an INSERT statement.
! A view definition or a user-defined function that returns a rowset.

 Module 2: Overview of Programming SQL Server 41

Recommended Practices

Use ANSI SQL SyntaxUse ANSI SQL Syntax

Keep Business Logic on the Server As Stored ProceduresKeep Business Logic on the Server As Stored Procedures

Save Statements As Scripts and Comment Them ThoroughlySave Statements As Scripts and Comment Them Thoroughly

Format Transact-SQL Statements to Be Legible to OthersFormat Transact-SQL Statements to Be Legible to Others

Choose an Appropriate Naming ConventionChoose an Appropriate Naming Convention

The following recommended practices should help you to create clean scripts in
Transact-SQL:

! Keep business logic on the server as stored procedures.
! Use ANSI SQL syntax when possible to ensure that your scripts are as

compatible and portable as possible.
! Choose an appropriate naming convention, and name items consistently.
! Save statements as scripts, and comment them thoroughly.
! Format Transact-SQL statements to be legible to others. Use indenting to

indicate levels of relationships.

Additional information on the following topics is available in SQL Server
Books Online.

Topic Search on

Transact-SQL variables variables

Functions functions

Transact-SQL tips transact-sql

Transact-SQL conventions transact-sql

SQL syntax recommendations �sql syntax�

Preparing statements �preparing statements�

osql utility osql

Reserved keywords keywords

Ad hoc batch caching �OLE DB�, ODBC

Using XML �SELECT (T-SQL)�

Topic Objective
To present recommended
practices for programming
with Transact-SQL.

Lead-in
The following are
recommended practices
for programming with
Transact-SQL.

42 Module 2: Overview of Programming SQL Server

Lab A: Overview of Transact-SQL

Objectives
After completing this lab, you will be able to:

! Write basic SELECT statements that return ordered and limited result sets.
! Modify and execute a script.
! Execute a script by using the osql utility.
! Use system functions to retrieve system information.

Prerequisites
Before working on this lab, you must have:

! Script files for this lab, which are located in C:\Moc\2073A\Labfiles\L02.
! Answer files for this lab, which are located in

C:\Moc\2073A\Labfiles\L02\Answers.

For More Information
If you require help in executing files, search SQL Query Analyzer Help for
�Execute a query�.

Other resources that you can use include:

! The Northwind database schema.
! Microsoft SQL Server Books Online.

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will write
basic SELECT statements,
modify a script file, and use
system functions.

Explain the lab objectives.

 Module 2: Overview of Programming SQL Server 43

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 30 minutes

44 Module 2: Overview of Programming SQL Server

Exercise 1
Writing Basic SELECT Statements

In this exercise, you will write various statements that return rows from the
Products table in the Northwind database.

! To write a SELECT statement that returns ordered data
In this procedure, you will write a statement that returns all of the rows and
columns from the Products table and sorts the results in ascending order by the
ProductName column. C:\Moc\2073A\Labfiles\L02\Answers\Basica.sql is a
completed script for this procedure.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password password

2. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Windows authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Microsoft
Windows 2000 local group, Administrators. All members of this group are
automatically mapped to the SQL Server sysadmin role.

3. In the DB list, click Northwind.
4. Write a SELECT statement that returns all of the rows and columns from

the Products table and sorts the results in ascending order by the
ProductName column.
You can execute the sp_help system stored procedure on the Products table
to find the correct column names.
SELECT * FROM Products ORDER BY ProductName

5. On the toolbar, click Execute mode, and then click Results in grid.
6. Execute the statement again.

 Module 2: Overview of Programming SQL Server 45

! To write a SELECT statement that returns limited data
In this procedure, you will write a statement that retrieves products from a
specific category.
• Write a SELECT statement that retrieves all products in category

(CategoryID) 4 from the Products table.
You can execute the sp_help system stored procedure on the Products table
to find the correct column names.
SELECT * FROM Products WHERE CategoryID = 4

For more information about the SELECT statement (as well as any
Transact-SQL statement and system table), select the SELECT keyword in the
query window, and then press SHIFT+F1 to open SQL Server Books Online.
Double-click SELECT: clauses.

Tip

46 Module 2: Overview of Programming SQL Server

Exercise 2
Modifying a Script File

In this exercise, you will modify, save, and execute a simple script file.

! To modify a script file
In this procedure, you will execute a script that contains errors. By using the
error information that SQL Server returns, you will make changes to the script
so that it executes correctly. Then, you will save and execute the script.
1. Open C:\Moc\2073A\Labfiles\L02\Sample_Script.sql, review it, and then

execute it.
You will receive errors when you run this file. These errors are intentional.
C:\Moc\2073A\Labfiles\L02\Answers\Sample_Script.sql is a completed
script for this procedure.

2. Place comments around the script name and description so that they
do not execute.
/*
** Sample_Script.sql
**
** This script creates the Sample1 table and the
** Sample_View view. After the objects are created
** five rows are inserted into the Sample1 table
** and then queried.
** This script should be run in the Northwind
** database.
**
*/

3. Add a statement that specifies that the script be executed in the context of

the Northwind database.
USE Northwind

4. Include end of batch markers (GO statements) in the proper areas of the

script. Only two additional batch markers are necessary.
GO
CREATE VIEW Sample_View
 AS
 SELECT cust_no, lname FROM Sample1
GO

5. Save the script, and then execute it.

 Module 2: Overview of Programming SQL Server 47

! To execute a script file by using osql
In this procedure, you will execute a script file by using the osql utility.

1. Open a command prompt window.
2. Type the following command to execute

C:\Moc\2073A\Labfiles\L02\Sample_Script2.sql. Make sure that the path is
correct.
osql /Usa /P /i
"c:\moc\2073A\labfiles\L02\Sample_Script2.sql"

Write this command in one line.

Note

48 Module 2: Overview of Programming SQL Server

Exercise 3
Using System Functions

In this exercise, you will gather system information by using system functions.

! To determine the server process ID
In this procedure, you will observe current server activity and determine the
activity that your session is generating.

1. Execute the sp_who system stored procedure.
SQL Server displays all activity that is occurring on the server.

2. To determine which activity is yours, execute the following statement:
SELECT @@spid

SQL Server returns the server process ID (spid) number of your process in
the results.

3. Execute the sp_who system stored procedure again, using your spid number
as an additional parameter. (In the following statement, n represents your
spid number.)
EXEC sp_who n

SQL Server displays the activity related to your spid.

! To retrieve environmental information
In this procedure, you will determine the version of SQL Server that you are
running, and you will retrieve connection, database context, and server
information. You will perform these tasks by using system functions.
1. Execute the following statement:

SELECT @@version

2. Execute the following statement:
SELECT USER_NAME(), DB_NAME(), @@servername

 Module 2: Overview of Programming SQL Server 49

! To retrieve metadata
In this procedure, you will execute several queries to return the metadata from
specific database objects by using information schema views. Remember that
INFORMATION_SCHEMA is a predefined database user who is the owner
of the information schema views.
1. Execute the following statement to return a list of all of the user-defined

tables in a database:
USE Northwind
SELECT * FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_TYPE = 'BASE TABLE'

2. Execute the following statement to return the primary key and foreign key

columns for the Orders table:
SELECT * FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE
 WHERE TABLE_NAME = 'Orders'

What column has a primary key defined on it?
OrderID.
__

__

50 Module 2: Overview of Programming SQL Server

Review

! Designing Enterprise Application Architecture

! SQL Server Programming Tools

! The Transact-SQL Programming Language

! Elements of Transact-SQL

! Additional Language Elements

! Ways to Execute Transact-SQL Statements

1. You are designing a multi-tier application with a Web interface. This
application must update a database table frequently. How and where should
you implement the logic to perform the update?
You will probably achieve the best performance by creating a stored
procedure on the SQL Server to perform the update. You call this
stored procedure from a middle-tier component.

2. Explain the difference between a batch and a script.
A batch is a set of Transact-SQL statements submitted together,
checked for syntax together, and executed as a group. A script is a
group of Transact-SQL statements saved as a file.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

 Module 2: Overview of Programming SQL Server 51

3. What advantage does a transaction have over a batch or script?
A transaction executes as a single unit of work. If a transaction fails, it
can be rolled back as a unit, leaving data in a consistent state.

4. If you want to include conditional logic in a script, what type of language
element would you use? Give as many examples of the language element
keywords as you can.
Control of flow keywords. Examples include BEGIN...END, IF...ELSE,
RETURN, WHILE, BREAK, and CONTINUE.

THIS PAGE INTENTIONALLY LEFT BLANK

