

Contents

Overview 1

Preventing Data Loss 2

Setting and Changing a Database Recovery
Model 4

SQL Server Backup 6

When to Back Up Databases 8

Performing Backups 14

Types of Backup Methods 26

Planning a Backup Strategy 40

Performance Considerations 50

Recommended Practices 51

Lab A: Backing Up Databases 52

Review 63

Module 6: Backing Up
Databases

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, ActiveX, BackOffice, FrontPage, Jscript, Outlook, PowerPoint,
Visual Basic, Visual Studio, Windows, Windows Media, and Windows NT are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Development Lead: Xandria Eykel
Technical Lead: Rick Byham
Instructional Designers: Cheryl Hoople, Lin Joyner (Content Master Ltd), Marilyn McGill
(Independent Contractor), Gordon Ritchie (Content Master Ltd.),
Subject Matter Experts: Karl Dehmer, Mike Galos, Graeme Malcolm (Content Master),
Mary Neville (Content Master Ltd), and Carl Rabeler (Shadow Mountain Computers),
Classroom Automation: Lorrin Smith-Bates
Graphic Artist: Kimberly Jackson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Copy Editor: Bill Jones (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Support: Ed Casper (S&T Consulting), Theano Petersen (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: Testing Testing 123
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager, Database Management: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 6: Backing Up Databases iii

Instructor Notes
This module provides students with the fundamentals of backing up Microsoft®
SQL Server� 2000 databases, as well as suggestions on when to back up
databases and the steps to perform backups. After students familiarize
themselves with the different SQL Server backup methods, they will be able to
determine a backup strategy that is appropriate for their particular business
environments.

In the lab, students will have an opportunity to create backup files that store the
backups and to perform full database, differential, and transaction log backups.

After completing this module, students will be able to:

! Create backup files and backup sets.
! Set and change a database recovery model.
! Back up user and system databases by using Transact-SQL and SQL Server

Enterprise Manager.
! Back up databases that are created on multiple files and filegroups.
! Use the BACKUP LOG statement to back up and clear transaction logs.
! Apply the appropriate backup options to each of the different SQL Server

backup methods.
! Design an appropriate backup strategy.

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

! Microsoft PowerPoint® file 2073A_06.ppt.
! The C:\Moc\2072A\Demo\D06_Ex.sql example file, which contains all of

the example scripts from the module, unless otherwise noted in the module

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials for this module.
! Complete the lab.
! Practice the presentation, including the animated slide.
! Review any relevant white papers located on the Trainer Materials compact

disc.

Presentation:
90 Minutes

Lab:
45 Minutes

iv Module 6: Backing Up Databases

Demonstration
The following demonstrations are completed in this module:

Using SQL Server Enterprise Manager to Perform
Backups
In this demonstration, you will perform a full database backup of the
Northwind database to a backup file on disk. As you navigate through the
interface, map the interface to the Transact-SQL statements.

! To back up a database with SQL Server Enterprise Manager
Use the information in the following table to back up the Northwind database.
Option Value

Database name Northwind

Name of backup NorthwindFull

Description A full backup of Northwind

Backup type Full database (complete)

Destination of backup file Disk

Backup device C:\ Backup\Demo.bak

Overwrite existing media Selected

Initialize and label media Selected

Media set name DemoBackupFile

Media description Single file that contains a backup of Northwind

! To map the interface to the Transact-SQL statements and options
Use the information in the following table to point out the Transact-SQL
statements and options that map to the elements of the interface.
Interface element Maps to Transact-SQL

Database�Complete BACKUP DATABASE statement

Database�Differential BACKUP DATABASE WITH DIFFERENTIAL
statement

Transaction Log BACKUP LOG statement

File and Filegroup BACKUP DATABASE FILE statement

Backup to Disk
 File name

BACKUP DATABASE TO DISK statement
(A temporary backup file is created)

Backup to Backup Device sp_addumpdevice system stored procedure
(A permanent backup file is created)

Append to media WITH NOINIT option

Overwrite existing media WITH INIT option

Eject tape after backup WITH UNLOAD option

Initialize and label media WITH FORMAT and NAME options

 Module 6: Backing Up Databases v

Other Activities
This section provides procedures for implementing interactive activities to
present or review information, such as games or role playing exercises.

Displaying the Animated PowerPoint Slide
All animated slides are identified with an icon of links on the lower left corner
of the slide.

! To display the Using Multiple Backup Files to Store Backups slide
1. Display the topic slide.

Database A and Database B appear. The graphic shows that Database A is
backed up into three files (File1, File2, and File3).
Explain that the backups that are striped across the three files make up a
backup set. File1, File2, and File3 store parts of an entire backup that make
up a media set. File1, File2, and File3 must always be used together.

2. Advance to the next animation to illustrate that backing up Database B to
File3 cannot occur, because File1, File2, and File3 must always be used
together.

3. Advance to the next animation where the images return to a consistent state.
4. Advance to the next animation to illustrate that backing up Database B

across File1, File2, and File3 is acceptable.
Emphasize that when you use multiple backup files to store backups, you
must use the backup files together.

vi Module 6: Backing Up Databases

Module Strategy
Use the following strategy to present this module:

! Preventing Data Loss
Discuss events that can cause data loss or corruption, and describe how an
appropriate backup strategy can minimize damage. Also point out that
backing up frequently can help ensure data consistency in the event of a
system failure.

! Setting and Changing a Database Recovery Model
Emphasize that it is important to select the appropriate recovery model
based on performance requirements, storage requirements, and protection
against data loss.

! SQL Server Backup
Describe the SQL Server dynamic back up process and explain what data is
backed up, who can perform backups, and where to store backups.

! When to Back Up Databases
Point out that both system and user databases can be backed up. Although a
business environment determines when to back up databases, this module
discusses specific situations when system and user databases should be
backed up. Inform students that SQL Server allows backups to occur while
users are online; then describe selected activities that interfere with the
backup process.

! Performing Backups
Explain that before students can perform a backup, they first must create the
backup files that are necessary to store the backups. SQL Server creates
both permanent and temporary backup files. SQL Server also offers the
ability to back up to multiple files, so explain the factors that may affect a
decision to use this approach. Focus on the BACKUP statement and the
typical options that students will use when they perform backups. Then,
identify the specific issues that they must consider when they back up to a
tape device.

! Types of Backup Methods
Describe the different types of SQL Server backup methods: full database,
differential, transaction log, and database file or filegroup. Discuss the
BACKUP LOG statement and the various options that are available to back
up, as well as clear, transaction logs. Point out the specific requirement for
indexes when performing database file or filegroup backups.
Demonstrate backing up a database with SQL Server Enterprise Manager
and point out the Transact-SQL statement and options that map to the
interface.

 Module 6: Backing Up Databases vii

! Planning a Backup Strategy
After students are familiar with the fundamentals of backing up databases
and the different backup methods, apply the topics that are discussed in the
module to the planning of a backup strategy.
Choosing a backup strategy is dependent on the restore operation, so present
the provided scenarios with an emphasis on the backup strategy rather than
on the restore operation. Restoring a database is discussed in the next
module.

viii Module 6: Backing Up Databases

Customization Information
This section identifies the lab setup configuration changes that occur on student
computers during the lab. This information is provided to assist you in
replicating or customizing Microsoft Official Curriculum (MOC) courseware.

The lab in this module is dependent on the classroom configuration
that is specified in the Customization Information section at the end of the
Classroom Setup Guide for course 2072A, Administering a Microsoft
SQL Server 2000 Database.

Lab Setup
The lab in this module requires that SQL Server 2000 Enterprise Edition has
been installed on student computers. To prepare student computers to meet this
requirement, perform exercise 1 in lab A, �Installing SQL Server,� in module 2,
�Planning to Install SQL Server� of course 2072A, Administering a Microsoft
SQL Server 2000 Database.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Important

 Module 6: Backing Up Databases 1

Overview

! Preventing Data Loss

! Setting and Changing a Database Recovery Model

! SQL Server Backup

! When to Back Up Databases

! Performing Backups

! Types of Backup Methods

! Planning a Backup Strategy

This module provides the fundamentals of backing up Microsoft®
SQL Server� 2000 databases, as well as suggestions on when to back up
databases and the steps to perform backups. After you learn the different
SQL Server backup methods, you will be able to determine a backup strategy
that is appropriate for your particular business environment.

After completing this module, you will be able to:

! Create backup files and backup sets.
! Set and change a database recovery model.
! Back up user and system databases by using Transact-SQL and SQL Server

Enterprise Manager.
! Back up databases that are created on multiple files and filegroups.
! Use the BACKUP LOG statement to back up and clear transaction logs.
! Apply the appropriate backup options to each of the different SQL Server

backup methods.
! Design an appropriate backup strategy.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
Having a backup strategy is
critical to maintaining a
database

2 Module 6: Backing Up Databases

Preventing Data Loss

! Have a Backup Strategy

To minimize data loss

To recover lost data

To restore data with minimal cost to production time

! Back Up Regularly

Preventing data loss is one of the most critical issues that system administrators
encounter.

Have a Backup Strategy
You must have a backup strategy to minimize data loss and recover lost data.
You can lose data as a result of hardware or software failures or:

! Accidental or malicious use of the DELETE statement.
! Accidental or malicious use of the UPDATE statement�for example, not

using a WHERE clause with the UPDATE statement (all rows are updated
rather than a single row in a particular table).

! Destructive viruses.
! Natural disasters, such as fire, flood, and earthquakes.
! Theft.

If you have an appropriate backup strategy, you can restore data with minimal
cost to production time and minimize the chance of permanent data loss. Think
of a backup strategy as an insurance policy. Your backup strategy should put
your system back to where it was before a problem occurred. As with an
insurance policy, ask yourself, �How much am I willing to pay, and how much
loss is acceptable to me?�

The costs that are associated with a backup strategy include the amount of time
that is spent designing, implementing, automating, and testing the backup
procedure. Although you cannot prevent data loss completely, you should
design your backup strategy to minimize the extent of the damage. When you
plan your backup strategy, consider the acceptable amount of time that the
system can be down, as well as the acceptable amount of data loss (if any) in
the event of a system failure.

Topic Objective
To discuss the importance
of preventing data loss.

Lead-in
Preventing data loss is one
of the most critical issues
that you face as system
administrators.

 Module 6: Backing Up Databases 3

Back Up Regularly
How frequently you back up your database depends on the amount of data that
you are willing to lose and the volume of database activity. When you back up
user databases, consider the following facts and guidelines:

! You might back up your database frequently if your system is in an online
transaction processing (OLTP) environment.

! You might back up your database less frequently if your system has little
activity or is used primarily for decision support.

! You should schedule backups when SQL Server is not in the process of
being heavily updated.

! After you determine your backup strategy, you can automate the process by
using the Database Maintenance Plan Wizard.

4 Module 6: Backing Up Databases

Setting and Changing a Database Recovery Model

! Setting a Database Recovery Model

Full Recovery model

Bulk_Logged Recovery model

Simple Recovery model

! Changing a Database Recovery Model

ALTER DATABASE Northwind
SET RECOVERY BULK_LOGGED
ALTER DATABASE Northwind
SET RECOVERY BULK_LOGGED

You can set or change your recovery model at any time, but you should plan a
recovery model when you create a database.

Setting a Database Recovery Model
SQL Server 2000 has three database recovery models. Each of the models
maintains data in the event of a server failure, but there are key differences in
how SQL Server recovers data and in the storage and performance needs in the
event of disk failure.

Full Recovery Model
You can use the Full Recovery model when full recovery from damaged media
is the highest priority. This model uses copies of the database and all log
information to restore the database. SQL Server logs all changes to the
database, including bulk operations and index creations. Provided that the logs
themselves are not damaged, SQL Server can recover all data except
transactions actually in process at the time of the failure.

Because all transactions are logged, recovery can be made to any point in time.
SQL Server 2000 supports the insertion of named marks into the transaction log
to allow recovery to that specific mark.

Because log transaction marks consume log space, you should only use them
for transactions that play a significant role in the database recovery strategy.
The main limitation of this model is the large size of the log files and the
resulting storage and performance costs.

Topic Objective
To explain the database
recovery models.

Lead-in
SQL Server 2000 has three
database recovery models.

The Full Recovery model is
the default.

 Module 6: Backing Up Databases 5

Bulk_Logged Recovery Model
Similar to the full recovery model, the Bulk_Logged Recovery model uses both
database and log backups to recreate a database. However, the Bulk_Logged
Recovery model uses less log space for the following operations: CREATE
INDEX, bulk load operations, SELECT INTO, WRITETEXT, and
UPDATETEXT. The log notes only the occurrence of these operations as bits
in extents instead of storing details of the operations in the log.

To preserve the changes for an entire bulk load operation, extents that are
marked as changed are also stored in the log. As a result of only storing the
final result of multiple operations, the log is typically smaller and bulk
operations can run faster.

Using this model can restore all data, but a disadvantage is that it is not possible
to restore only part of a backup, such as restoring to a specific mark.

Simple Recovery Model
You typically use the Simple Recovery model for small databases or databases
where data changes infrequently. This model uses full or differential copies of
the database and recovery is limited to restoring the database to the point when
the last backup was made. All changes made after the backup are lost and need
to be recreated. The principal benefit of this model is that it takes less storage
space for logs and is the simplest model to implement.

Changing a Database Recovery Model
By default, SQL Server 2000 Standard Edition and SQL Server 2000 Enterprise
Edition use the Full Recovery model. You can change the recovery model at
any time, but you must make an additional backup at the time of the change. To
find out which model your database is using, use the
DATABASEPROPERTYEX function.

ALTER DATABASE database_name
SET RECOVERY {FULL | SIMPLE | BULK_LOGGED}

This example sets the recovery of the Northwind database as the Bulk_Logged
Recovery model.

ALTER DATABASE Northwind SET RECOVERY BULK_LOGGED

Syntax

Example

6 Module 6: Backing Up Databases

$$$$ SQL Server Backup

! Allows Backups to Occur While Users Continue to
Work with the Database

! Backs Up Original Files and Records Their Locations

! Captures Database Activities That Occur During the
Backup Process in the Backup

Issues a checkpoint and records the LSN

Writes all pages to the backup media

Writes all transaction log records written during the
backup process

During the backup operation, SQL Server:

! Allows you to perform database backups while users continue to work with
the database.

! Backs up the original database files and records their locations. The backup
contains:

! Schema and file structure.
! Data.
! Portions of the transaction log files. The portion of the transaction log that is

backed up contains database activities since the start of the backup process.

SQL Server uses these backups to recreate the files in their original
locations, complete with objects and data, when you restore a database.

! Captures database activities that occur during the backup process.
The SQL Server backup process is dynamic and, with some exceptions, can
occur while the database is online and being actively modified. The
dynamic backup process is accomplished when SQL Server:

! Issues a checkpoint on the database and records the log sequence number
(LSN) of the oldest active transaction log record.

! Writes all pages to the backup media by reading the disks directly
(bypassing the buffer cache).

! Writes all transaction log records written during the backup process.
Specifically, SQL Server writes transaction log records from the recorded
LSN through the end of the log.

Topic Objective
To introduce SQL Server
backup.

Lead-in
SQL Server backup is
dynamic.

Key Point
Point out that database
activities that occur during
the backup process are
included in the backup.

Key Point
Explain that the SQL Server
backup process is dynamic
and describe how this is
accomplished.

 Module 6: Backing Up Databases 7

Performing and Storing Backups

! Who Performs Backups

Members of the sysadmin fixed server role

Members of the db_owner and db_backupoperator
fixed database roles

! Where to Store Backups

Hard disk file

Tape

A location identified by a Named Pipe

To back up a database in SQL Server, you must consider who is allowed to
perform the backup and where to store it. You can back up databases by
executing Transact-SQL statements or by using SQL Server Enterprise
Manager.

Who Performs Backups
Members of the following roles have permission to back up a database:

! The sysadmin fixed server role
! The db_owner fixed database role
! The db_backupoperator fixed database role

Additional roles can be created and granted permission to back up a database.

Where to Store Backups
SQL Server can back up to a hard disk file, tape, or Named Pipe.

! Disk files (local or network) are the most common media that is used for
storing backups.

! When you back up to a tape, the tape drive must be attached locally to
SQL Server.

! SQL Server provides the ability to back up to a Named Pipe in order to
allow users to take advantage of the back up and restore features of third-
party software packages.

Topic Objective
To provide a basic overview
of SQL Server backup.

Lead-in
To back up a database in
SQL Server, you must
consider who is allowed to
perform the backup and
where to store it.

8 Module 6: Backing Up Databases

$$$$ When to Back Up Databases

! Backing Up System Databases

! Backing Up User Databases

! Activities That Are Restricted During Backup

When and how often you back up your database depends on your particular
business environment. However, there are times when you may need to
supplement your backup strategy. For instance, you may occasionally need to
back up the system databases or a specific user database.

Although SQL Server backup is dynamic, some activities cannot occur on the
database during backup operations.

Topic Objective
To provide an overview of
deciding when to back up
databases.

Lead-in
We�ll discuss specific
situations in which you
should back up system and
user databases, as well as
activities that interfere with
backing up databases.

 Module 6: Backing Up Databases 9

Backing Up System Databases

! After Modifying the master Database

Using the CREATE DATABASE, ALTER DATABASE,
or DROP DATABASE statement

Executing certain system stored procedures

! After Modifying the msdb Database

! After Modifying the model Database

System databases store important data about SQL Server and all user databases.
Therefore, you should back up system databases regularly, as a matter of
course, and specifically, whenever you modify them.

After Modifying the master Database
The master database contains information about all databases on a SQL Server.
Back up the master database when any user-defined databases are created. This
enables you to recover more easily and to restore user databases if the master
database becomes damaged.

After the master database is rebuilt and restored, you can restore other system
database backups and reference existing user databases.

Without a current backup of the master database that contains references
to user databases, you must completely rebuild all of the system databases with
the rebuildm command-prompt utility by running 80\Tools\Binn\
Rebuildm.exe. This utility rebuilds all system databases as a unit.

When you execute certain statements or system stored procedures, SQL Server
modifies the master database automatically. Therefore, back up the master
database when you execute the following:

! The CREATE DATABASE, ALTER DATABASE, or DROP DATABASE
statement that creates, alters, or removes a database

! The sp_logdevice system stored procedure, which alters the transaction log
! The sp_addserver, sp_dropserver, and sp_addlinkedserver system stored

procedures, which add or drop servers
! The sp_addmessage system stored procedure, or adding error messages

with the SQL Server Enterprise Manager.

Topic Objective
To explain when to back up
the system databases.

Lead-in
You should back up your
system databases regularly.

Note

Key Point
Briefly discuss the system
stored procedures and
explain why backing up the
master database is
recommended.

10 Module 6: Backing Up Databases

After Modifying the msdb Database
Back up the msdb database after you modify it, because msdb contains
information about jobs, alerts, and operators that are used by SQL Server
Agent. If you do not have a current backup of the msdb database, you must
rebuild all of the system databases in the event of a system failure and then
recreate each job, alert, and operator.

After Modifying the model Database
Back up the model database if you modify it to include the default
configuration for all new user databases. Because user databases are rebuilt
when the master or msdb databases are rebuilt, changes to the model database
are also lost. You can restore a backup of your customized model database in
the event of a system failure.

 Module 6: Backing Up Databases 11

Backing Up User Databases

! After Creating Databases

! After Creating Indexes

! After Clearing the Transaction Log

! After Performing Nonlogged Operations

BACKUP LOG WITH TRUNCATE_ONLY or
NO_LOG statement

WRITETEXT or UPDATETEXT statement

SELECT...INTO statement

You should plan to back up user databases regularly. You also should perform a
backup after a database or index is created and when certain nonlogged
operations are executed.

After Creating Databases
You should back up a database after it has been created or loaded with data.
Without a full database backup, you cannot restore transaction log backups
because you must have a baseline to which the transaction logs can be applied.

After Creating Indexes
You should back up the database whenever you create an index. Although you
are not required to do so, if the database is lost, you will save time during the
restore process. Backing up a database after an index is created ensures that the
database backup file contains the data and the index structures.

If you back up only the transaction log after an index is created, and you then
restore that transaction log at some point in the future, SQL Server must rebuild
the index. The amount of time that is required to rebuild the index may be
longer than the time it takes to restore a full database backup.

Be aware that the transaction log only records the fact that an index was
created, not the actual data page modifications.

After Clearing the Transaction Log
You should back up a database after you clear the transaction log with the
BACKUP LOG WITH TRUNCATE_ONLY or the BACKUP LOG WITH NO
LOG statement. When you execute these statements, the transaction log no
longer contains a record of database activity and cannot be used to recover
changes to the database.

Topic Objective
To describe when user
databases should be
backed up.

Lead-in
Similar to system
databases, you should back
up all user databases on a
regular basis, and
specifically, after certain
operations.

Note

12 Module 6: Backing Up Databases

After Performing Nonlogged Operations
Operations that are not recorded to the transaction log are called nonlogged
operations.

With some recovery models you cannot recover changes made by the following
nonlogged operations:

! BACKUP LOG WITH TRUNCATE ONLY or BACKUP LOG WITH
NO_LOG statement. SQL Server removes the inactive part of the
transaction log without making a backup copy. Additionally, the act of
truncating the transaction log is not recorded in the transaction log.

! WRITETEXT or UPDATETEXT statement. SQL Server modifies data in
text columns and, by default, does not record this activity in the transaction
log. However, you can specify the WITH LOG option to write these
activities to the transaction log.

! SELECT�INTO statement when creating a permanent table or the bulk
copy program.

Back up a database after you perform a nonlogged operation, because if your
system fails, the transaction log might not contain the information needed to
restore the database to a consistent state.

 Module 6: Backing Up Databases 13

Activities That Are Restricted During Backup

! Creating or Modifying Databases

! Performing Autogrow Operations

! Creating Indexes

! Performing Nonlogged Operations

! Shrinking a Database

You can back up a database while the database is online and active. However, a
few operations are not advisable during the backup process.

Avoid the following activities during database backups:

! Creating or modifying databases with the CREATE DATABASE or
ALTER DATABASE statement.

! Performing autogrow operations.
! Creating indexes.
! Performing any nonlogged operations, including a bulk load of data and the

SELECT�INTO, WRITETEXT, and UPDATETEXT statements.
! Shrinking a database.

Topic Objective
To identify some activities
that interfere with database
backups.

Lead-in
You can back up a database
while the database is online
and active. However, some
operations cannot take
place during a backup.

14 Module 6: Backing Up Databases

$$$$ Performing Backups

! Creating Backup Devices

! Creating Backup Files Without Permanent Devices

! Using Multiple Backup Files to Store Backups

! Using the BACKUP Statement

! Backing Up to a Tape Device

When you perform a backup, you first must create the backup files (permanent
or temporary) to contain your backup. SQL Server provides options that you
can apply to each of the different backup methods that are available to you.
Although SQL Server also allows you to choose a number of backup
destinations, backing up to a disk or tape is the most common.

Topic Objective
To introduce the steps that
are involved in performing a
backup.

Lead-in
Now we will discuss the
specific steps in performing
a backup.

 Module 6: Backing Up Databases 15

Creating Backup Devices

! Why to Create Permanent Backup Devices

To reuse the backup files for future backups

To automate the task of backing up

! Using the sp_addumpdevice System
Stored Procedure

Specify the logical name

Logical and physical names are stored in the
sysdevices system table

USE master
EXEC sp_addumpdevice 'disk', 'mybackupfile',
'C:\Backup\MyBackupFile.bak'

USE master
EXEC sp_addumpdevice 'disk', 'mybackupfile',
'C:\Backup\MyBackupFile.bak'

The first step in performing a backup is to create the backup files that will
contain your backup. A backup file that is created before it is used for a backup
operation is called a backup device.

Why to Create Permanent Backup Devices
If you want to reuse the backup files that you create or to automate the task of
backing up your database, you must create permanent backup devices. You can
create backup devices with SQL Server Enterprise Manager or by executing the
sp_addumpdevice system stored procedure.

Using the sp_addumpdevice System Stored Procedure
Execute the sp_addumpdevice system stored procedure to create backup
devices on a disk or tape or to direct data to a Named Pipe. When you create
backup devices, consider the following facts:

! SQL Server creates logical and physical names in the sysdevices system
table of the master database.

! You must specify the logical and physical names of the backup file.
! You can create up to 64 backup files for a database.

When you create a new backup device with SQL Server Enterprise Manager,
SQL Server executes the sp_addumpdevice system stored procedure for you.

sp_addumpdevice [@devtype =] �device_type�,
[@logicalname =] �logical_name�,
[@physicalname =] �physical_name�
[,{ [@cntrltype =] controller_type | [@devstatus =] �device_status�}]

Where device_type is {DISK | TAPE | PIPE}

Topic Objective
To discuss creating backup
devices.

Lead-in
The first step in performing
a backup is to create the
backup devices that will
contain your backup.

Delivery Tip
Use SQL Server Enterprise
Manager to demonstrate
how to create backup
devices.

A device does not create a
backup file; the file is
created on first use of the
device.

Syntax

16 Module 6: Backing Up Databases

This example creates a permanent backup file on a hard disk.

USE master
EXEC sp_addumpdevice 'disk', 'mybackupfile',
'C:\ Backup\MyBackupFile.bak'

This example creates a backup device on a tape with the logical name Mytape1
and the physical name \\.\tape0

USE master
EXEC sp_addumpdevice 'tape', 'mytape1', '\\.\tape0'

Example 1

Example 2

 Module 6: Backing Up Databases 17

Creating Backup Files Without Permanent Devices

! Why to Create Backup Files Without Permanent Devices

To perform a one-time-only backup

To test the backup operation that you plan to automate

! Using the BACKUP DATABASE Statement

Specify a media type (disk, tape, or Named Pipe)

Specify the complete path and file name

USE master
BACKUP DATABASE Northwind
TO DISK = 'C:\Temp\Mycustomers.bak'

USE master
BACKUP DATABASE Northwind
TO DISK = 'C:\Temp\Mycustomers.bak'

While creating a permanent backup device is preferable, you also can create
temporary backup files with the BACKUP DATABASE statement without
having to specify a backup device.

Why to Create Backup Files Without Permanent Devices
If you do not plan to reuse the backup files, create a backup file without a
permanent device. For example, if you are performing a one-time-only backup
of a database or are testing the backup operation that you plan to automate, you
may want to create a temporary backup file.

Using the BACKUP DATABASE Statement
Create temporary backup files with the BACKUP DATABASE statement or
with SQL Server Enterprise Manager. Before SQL Server performs a backup, it
creates a backup file to store the results of a backup operation. The temporary
backup file must not exist prior to performing the backup.

If you create a temporary backup file, you must:

! Specify a media type (disk, tape, or Named Pipe).
! Specify the complete path and file name.

Topic Objective
To discuss creating
temporary backup files by
using the BACKUP
DATABASE statement.

Lead-in
While creating a permanent
backup device is preferable,
you also can create
temporary backup files.

18 Module 6: Backing Up Databases

BACKUP DATABASE {database_name | @database_name_var}
TO <backup_device> [, ...n]

Where <backup_device> is:
 {{backup_device_name | @backup_device_name_var} | {DISK | TAPE |
PIPE} =
 {'temp_backup_device' | @temp_backup_device_var}

This example creates a temporary backup file on a disk and backs up the
master database onto the temporary backup file.

USE master
BACKUP DATABASE Northwind TO DISK = 'C:\Temp\MyCustomers.bak'

Partial Syntax

Example

 Module 6: Backing Up Databases 19

Using Multiple Backup Files to Store Backups

Media SetMedia Set
File 1

BackupA1
BackupA2
BackupA3

File 2
BackupA1
BackupA2
BackupA3

File 3

BackupA2
BackupA3

Database ADatabase A

Backup SetBackup Set BackupA1BackupB1

Ba
ck

up
B1

Ba
ck

up
B1

Ba
ck

up
B1

Database BDatabase B

Media SetMedia Set
File 1

BackupA1
BackupA2
BackupA3

File 2
BackupA1
BackupA2
BackupA3

File 3

BackupA2
BackupA3

Database ADatabase A

Backup SetBackup Set BackupA1

BackupB1 BackupB1 BackupB1

Ba
ck

up
 D

at
ab

as
e

Ba
ck

up
 D

at
ab

as
e

Ba
ck

up
 D

at
ab

as
e

Database BDatabase B

\

SQL Server can write to multiple backup files at the same time (in parallel).
When you have multiple backup files, data is striped across all files that are
used to create the backup. These files store a striped backup set. A backup set is
a result of a single backup operation on single or multiple files.

Storing Backups on Multiple Backup Files
Back up to multiple tapes or disk controllers to decrease the total time that it
takes to back up a database. For example, if a backup operation that uses one
tape drive normally takes four hours to complete, you can add a second tape
drive and reduce the length of the backup operation to only two hours.

BACKUP DATABASE {database_name | @database_name_var}
TO <backup_device> [, ...n]
[WITH
 [MEDIANAME = {media_name | @medianame_var}]
]

When you use multiple files to store your backups, consider the following facts:

! All devices that are used in a single backup operation must be of the same
media type (disk or tape). You cannot mix disk and tape devices for a single
backup media set. A media set is a collection of files that are used to contain
one or more backup sets.

! You can use a combination of permanent and temporary files when you
create a backup set.

! If you define a file as a member of a backup set, you must always use the
files together.

Topic Objective
To discuss using multiple
backup files to store
backups.

Lead-in
SQL Server can write to
multiple backup files at the
same time (in parallel). You
can back up to a backup set
to reduce the total time that
it takes to back up and
restore your database.

Delivery Tip
This slide is animated. Refer
to the Instructor Notes if you
require help in navigating
through this slide.

Partial Syntax

Key Point
Point out that when you
use multiple files to back up
a database, you should use
the MEDIANAME option to
associate these striped
sections of a backup with
one another as members
of a backup set.

20 Module 6: Backing Up Databases

! You cannot use only one member of the backup set for a backup operation
unless you reformat the files.

! If you reformat one member of a backup set, the data that is contained in the
other members of the backup set is invalid and unusable.

For example, if a striped backup set was created on two files, all subsequent
backup operations that involve the same backup set must use these same two
files as well. You can append additional backups to these two files. However, if
you want to use only one of these files to back up another database or to use as
part of another backup set, you must reformat the file.

If you are using multiple devices, each backup file has a family
designation, such as Family 1, that identifies the device that created the file.

Using the MEDIANAME Option
The MEDIANAME option specifies the name for the entire backup media set.
When you use multiple files to back up a database, you should use the
MEDIANAME option. The MEDIANAME option associates the multiple files
with one another as members of a media set.

After the media set has been created and named, you can reuse the media set for
future backup operations. Names may have up to 128 characters.

Note

 Module 6: Backing Up Databases 21

Using the BACKUP Statement

! Specifying the INIT or NOINIT Option

NOINIT option appends to a backup file

INIT option overwrites a backup file

! Using the FORMAT Option

Overwrites the contents of a backup file

Splits up a striped backup set

You can perform backup operations with SQL Server Enterprise Manager, the
Backup Wizard, or Transact-SQL. You should be familiar with the backup
options that are available when you use any of the SQL Server backup methods.

BACKUP DATABASE {database_name | @database_name_var}
TO <backup_device> [, ...n]
[WITH
 [FORMAT]
 [[,] {INIT | NOINIT}]
]

Specifying the INIT or NOINIT Option
When you back up a database, determine whether to overwrite or append to a
backup file:

! The SQL Server default is to append (NOINIT) backups to a file. If you use
the NOINIT option, SQL Server appends a backup to an existing backup file
or backup set.

! If you use the INIT option, SQL Server overwrites any existing data on the
backup media set but retains the header information. If the first file of the
backup set on the device has an ANSI-standard label, SQL Server
determines whether the previous backup set can be overwritten.

The backup operation fails and data is not overwritten if:

! The EXPIREDATE option that you specified on the backup device has not
yet expired.

! The backup_set_name parameters that you specified in the NAME option
do not match the backup_set_name in the backup device.

! You attempt to overwrite one member of a previously named backup set.
SQL Server detects that the file is a member of a backup set.

Topic Objective
To introduce the BACKUP
statement and Transact-
SQL options that are used
for all backup methods.

Lead-in
SQL Server Enterprise
Manager makes it easy for
you to perform backups.

Syntax

22 Module 6: Backing Up Databases

Using the FORMAT Option
Use the FORMAT option to overwrite the contents of a backup file and split up
the backup set:

! A new media header is written on all files that are used for this backup
operation.

! SQL Server overwrites both the existing media and the contents of the
backup file.

! Use the FORMAT option carefully. Formatting only one backup file of a
media set renders the entire backup set unusable.
For example, if a single tape that contains a part of an existing striped
backup set is reformatted, the entire backup set is unusable.

 Module 6: Backing Up Databases 23

$$$$ Backing Up to a Tape Device

! Requires Tape to Be Attached Locally to SQL Server

! Records Backup Information on Tape Label

! Stores SQL Server and Non-SQL Server Backups

Tapes are a convenient medium for backups because they are inexpensive,
provide a large amount of storage, and can be stored off-site for data safety and
security.

Requires Tape to Be Attached Locally to SQL Server
When you back up to a tape, the tape drive must be attached locally to
SQL Server.

Records Backup Information on Tape Label
When you back up to a tape, SQL Server records backup information on the
tape label, which includes the:

! Database name
! Time
! Date
! Type of backup

Stores SQL Server and Non-SQL Server Backups
SQL Server uses a standard backup format called Microsoft Tape Format to
write backups to tapes. As a result, both SQL Server and non-SQL Server data
can be backed up to the same tape.

SQL Server backups can coexist on the same media as other backup sets or as
backup sets that are produced by other clients that use this standard format. For
example, both SQL Server backups and Microsoft Windows® 2000 backups can
exist on the same tape.

Topic Objective
To discuss details that are
involved with backing up to
a tape device.

Lead-in
You should be aware of
specific characteristics when
you back up to a tape
device.

24 Module 6: Backing Up Databases

Specifying Tape Options

Tape optionTape optionTape option DescriptionDescriptionDescription

UNLOAD (default)UNLOAD (default) Rewinds and unloads the tapeRewinds and unloads the tape

NOUNLOADNOUNLOAD Does not rewind and unload the tapeDoes not rewind and unload the tape

BLOCKSIZEBLOCKSIZE Changes the physical block size in bytesChanges the physical block size in bytes

FORMATFORMAT Writes a header on files that are used for a backupWrites a header on files that are used for a backup

SKIPSKIP Ignores ANSI tape labelsIgnores ANSI tape labels

NOSKIP (default)NOSKIP (default) Reads ANSI tape labelsReads ANSI tape labels

RESTARTRESTART Restarts the backup operation from the point of
interruption

Restarts the backup operation from the point of
interruption

When you back up to a tape, you can use options that are specific to this type of
backup medium.

UNLOAD
SQL Server automatically rewinds and unloads the tape from the tape drive
after the backup is complete. The UNLOAD option is the SQL Server default
and remains set until you select the NOUNLOAD option.

NOUNLOAD
Use this option if you do not want SQL Server to rewind and unload the tape
medium from the tape drive automatically after a backup. The NOUNLOAD
option remains set until you select UNLOAD.

BLOCKSIZE
Use this option to change the physical block size in bytes if you are overwriting
a tape medium with the FORMAT or SKIP and INIT options. When you back
up to a tape, SQL Server selects an appropriate block size. You can override the
block size selection by using the BLOCKSIZE option and specifying a block
size.

FORMAT
Use this option to write a header on all of the volumes (files) that are used for a
backup. SQL Server overwrites all headers and backups on the files. The header
includes information that is found in the MEDIANAME and
MEDIADESCRIPTION options.

When you use the FORMAT option to back up to a tape device, the INIT and
SKIP options are implied, and, therefore, you do not need to specify these
options.

Topic Objective
To discuss the specific
options for using tapes to
store backups.

Lead-in
When you back up to a
tape, you can use options
that are specific to this type
of backup medium.

 Module 6: Backing Up Databases 25

SKIP
Use this option to skip headers. SQL Server ignores any existing ANSI tape
labels on the tape device. The ANSI label of a tape can provide warning
information about the expiration date of the tape, as well as enforce write
permissions.

NOSKIP
Use this option if you want SQL Server to read ANSI tape labels. SQL Server
will check the expiration date and name of all backup sets on the media before
allowing them to be overwritten. SQL Server reads ANSI tape labels by default.

RESTART
Use this option to restart the backup operation from the point of interruption for
tape backups that span multiple tape volumes. You must restart the backup
process manually by executing the original BACKUP statement with the
RESTART option.

26 Module 6: Backing Up Databases

$$$$ Types of Backup Methods

! Performing a Full Database Backup

! Performing a Differential Backup

! Performing a Transaction Log Backup

! Performing a Database File or Filegroup Backup

SQL Server provides different backup methods to meet the needs of a wide
range of business environments and database activities.

Topic Objective
To provide an overview of
the different SQL Server
backup methods.

Lead-in
SQL Server provides you
with different backup
methods.

 Module 6: Backing Up Databases 27

Performing a Full Database Backup

! Provides a Baseline

! Backs Up Original Files, Objects, and Data

! Backs Up Portions of the Transaction Log

D:\

NwindBacBackupBackupBackup
Data

Log

Northwind

USE master
EXEC sp_addumpdevice 'disk', 'NwindBac',

'D:\MyBackupDir\NwindBac.bak'
BACKUP DATABASE Northwind TO NwindBac

USE master
EXEC sp_addumpdevice 'disk', 'NwindBac',

'D:\MyBackupDir\NwindBac.bak'
BACKUP DATABASE Northwind TO NwindBac

If your database is primarily a read-only database, full database backups may be
sufficient to prevent data loss. A full database backup serves as your baseline in
the event of a system failure. When you perform a full database backup,
SQL Server:

! Backs up any activity that took place during the backup.
! Backs up any uncommitted transactions in the transaction log.

SQL Server uses the portions of the transaction log that were captured in the
backup file to ensure data consistency when the backup is restored.

This example creates a named backup device with the logical name Nwindbac
and performs a full database backup.

USE master
EXEC sp_addumpdevice 'disk', 'NwindBac',
 'D:\MyBackupDir\NwindBac.bak'
BACKUP DATABASE Northwind TO NwindBac

This example performs a full database backup to the NwindBac file and
overwrites any previous backups on that file.

BACKUP DATABASE Northwind TO NwindBac WITH INIT

This example appends a full database backup to the NwindBac file. Any
previous backup files are left intact.

BACKUP DATABASE Northwind TO NwindBac WITH NOINIT

Topic Objective
To discuss how to perform a
full database backup and
how SQL Server processes
this type of backup.

Lead-in
You should perform a full
database backup
periodically, because you
must have a baseline from
which you can recover in the
event of system failure.

Delivery Tip
Use SQL Server Enterprise
Manager to demonstrate
how to perform a full
database backup.

Example 1

Example 2

Example 3

28 Module 6: Backing Up Databases

This example creates a backup disk file and performs a full database backup to
that file.

BACKUP DATABASE Northwind TO
DISK = �D:\Temp\MyTempBackup.bak�

Example 4

 Module 6: Backing Up Databases 29

Performing a Differential Backup

! Use on Frequently Modified Databases

! Requires a Full Database Backup

! Backs Up Database Changes Since the Last Full
Database Backup

! Saves Time in Both Backup and Restore Process

BACKUP DATABASE Northwind
DISK = 'D:\MyData\MyDiffBackup.bak'
WITH DIFFERENTIAL

BACKUP DATABASE Northwind
DISK = 'D:\MyData\MyDiffBackup.bak'
WITH DIFFERENTIAL

You should perform a differential backup to minimize the time that is necessary
for restoring a frequently modified database. Perform a differential backup only
if you have performed a full database backup. In a differential backup,
SQL Server:

! Backs up the parts of the database that have changed since the last full
database backup.
To determine which pages have changed since the last full database backup,
SQL Server compares the LSN on a page to the synchronization LSN of the
last full database backup.
When performing a differential backup, SQL Server backs up extents rather
than individual pages. An extent is backed up when the LSN on any page in
the extent is greater than the LSN of the last full database backup.

! Backs up any activity that took place during the differential backup, as well
as any uncommitted transactions in the transaction log.

When you perform a differential backup, consider the following facts and
guidelines:

! If a certain row in the database has been modified several times since the
last full database backup, the differential backup contains only the last set of
values for that row. This is different from a transaction log backup that
contains a history of all changes to that row.

! You minimize the time that is required to back up a database because the
backup sets are smaller than they are in full backups.

! You minimize the time that is required to restore a database because you do
not have to apply a series of transaction logs.

! You should establish a naming convention for backup files that contain
differential backups to distinguish them from files that contain full
database backups.

Topic Objective
To discuss how to perform a
differential backup and how
SQL Server processes this
type of backup method.

Lead-in
You should perform a
differential backup on a
database when data is
heavily modified; a
differential backup offers the
advantages of a smaller
backup set and faster
restore time.

Key Points
Point out that a naming
convention should be used
for backup files that contain
differential backups to
distinguish them from files
that contain full database
backups.

30 Module 6: Backing Up Databases

BACKUP DATABASE {database_name | @database_name_var}
TO <backup_device> [, ...n]
[WITH
 [DIFFERENTIAL]
]

This example creates a differential backup on a temporary backup file.

BACKUP DATABASE Northwind TO
DISK = 'D:\MyData\MyDiffBackup.bak'
WITH DIFFERENTIAL

Partial Syntax

Example

 Module 6: Backing Up Databases 31

$$$$ Performing a Transaction Log Backup

! Requires a Full Database Backup

! Backs Up All Database Changes from the Last
BACKUP LOG Statement to the End of the Current
Transaction Log

! Truncates the Transaction Log

USE master
EXEC sp_addumpdevice 'disk', �NwindBacLog',

'D:\Backup\NwindBacLog.bak'
BACKUP LOG Northwind TO NwindBacLog

USE master
EXEC sp_addumpdevice 'disk', �NwindBacLog',

'D:\Backup\NwindBacLog.bak'
BACKUP LOG Northwind TO NwindBacLog

You back up transaction logs to record any database changes. You typically
back up transaction logs when you perform full database backups:

! You should not back up a transaction log unless you have performed a full
database backup at least once.

! Transaction logs cannot be restored without a corresponding database
backup.

! You cannot back up transaction logs when using the Simple Recovery
model.

How SQL Server Backs Up the Transaction Log
When you back up the transaction log, SQL Server:

! Backs up the transaction log from the last successfully executed BACKUP
LOG statement to the end of the current transaction log.

! Truncates the transaction log up to the beginning of the active portion of the
transaction log and discards the information in the inactive portion.
The active portion of the transaction log starts at the point of the oldest open
transaction and continues to the end of the transaction log.

BACKUP LOG {database_name | @database_name_var}
TO <backup_device> [, �n]
[WITH
 [{INIT | NOINIT}]
]

Topic Objective
To discuss how to perform a
transaction log backup and
how SQL Server processes
this type of backup.

Lead-in
You perform transaction log
backups to record any
database changes. You
typically perform transaction
log backups when you
perform full database
backups.

Partial Syntax

32 Module 6: Backing Up Databases

This example creates a backup device for the log and backs up the transaction
log of the Northwind database.

USE master
EXEC sp_addumpdevice 'disk', 'NwindBacLog',
 'D:\Backup\NwindBacLog.bak'
BACKUP LOG Northwind TO NwindBacLog

Example

 Module 6: Backing Up Databases 33

Using the NO_TRUNCATE Option

SQL Server:

! Saves the Entire Transaction Log Even if the
Database Is Inaccessible

! Does Not Purge the Transaction Log of
Committed Transactions

! Allows Data to Be Recovered Up to the Time
When the System Failed

If the database files are damaged or lost, you should back up transaction logs
with the NO_TRUNCATE option. Using this option backs up all recent
database activity.

SQL Server:

! Saves the entire transaction log (everything that has happened since the last
BACKUP LOG statement), even if the database is inaccessible.

! Does not purge the transaction log of committed transactions.
! Allows you to recover data up to the time when the system failed.

When you restore the database, you can restore the database backup and apply
the transaction log backup that is created with the NO_TRUNCATE option to
recover data.

Topic Objective
To discuss the
NO_TRUNCATE option.

Lead-in
If the database files are
damaged or lost, you should
back up transaction logs
with the NO_TRUNCATE
option.

Delivery Tip
Point out how to clear
inactive entries from the
transaction log by using
SQL Server Enterprise
Manager.

34 Module 6: Backing Up Databases

Clearing the Transaction Log

! Use the BACKUP Statement to Clear the Transaction
Log

! Using the TRUNCATE_ONLY or NO_LOG Option

Cannot recover changes

Is not recorded

! Setting the trunc. log on chkpt. Option

Writes all committed transactions

Occurs automatically when set to true

You can use the BACKUP LOG statement with the TRUNCATE_ONLY or
NO_LOG option to clear transaction logs. You should back up the transaction
log regularly to keep it at a reasonable size:

! If the transaction log is full, users cannot update the databases and you
cannot fully restore the database in the event of a system failure. You must
clear the transaction log either by performing a full database backup and
saving the data, or by truncating the transaction log.

! If backing up the transaction log does not truncate the majority of your
transaction log, you may have an old transaction that is open in the
transaction log.

Using the TRUNCATE_ONLY or NO_LOG Option
The TRUNCATE_ONLY and NO_LOG options perform the same function. If
you want to clear the transaction log and do not want to keep a backup copy of
the data, use these options. SQL Server removes the inactive part of the log
without making a backup copy of it. The active portion of the transaction log
consisting of uncommitted transactions is never truncated.

Consider the following facts and guidelines when truncating a transaction log:

! Clearing the transaction log before you back up the database results in a
smaller backup of the full database.

! You cannot recover the changes that were recorded in the transaction log.
You should execute the BACKUP DATABASE statement immediately.

! The action of truncating the transaction log is not recorded.

Topic Objective
To discuss clearing
transaction logs.

Lead-in
The BACKUP LOG
statement has a dual
purpose. In addition to
backing up transaction logs,
you can use options that
clear the transaction log if it
becomes full.

 Module 6: Backing Up Databases 35

BACKUP LOG {database_name | @database_name_var}
 [WITH {TRUNCATE_ONLY | NO_LOG }]

This example uses the BACKUP LOG statement to remove the inactive portion
of a transaction log without making a backup copy.

BACKUP LOG Northwind WITH TRUNCATE_ONLY

This example uses the BACKUP LOG statement to remove the inactive portion
of a full transaction log without making a backup copy of it.

BACKUP LOG Northwind WITH NO_LOG

Setting the trunc. log on chkpt. Option
You can set the trunc. log on chkpt. option to true to write all committed
transactions to the database when a checkpoint occurs. This option
automatically truncates the transaction log. The trunc. log on chkpt. option is
provided for backward compatibility only. The Simple Recovery model
replaces it.

If you set the trunc. log on chkpt. option to true, you cannot back up
the transaction log and use it to help restore the database in the event of a
system failure. The transaction log no longer stores the changes that are made to
the database since the last full database backup.

Partial Syntax

Example 1

Example 2

Caution

36 Module 6: Backing Up Databases

$$$$ Performing a Database File or Filegroup Backup

! Use on Very Large Databases

! Back Up the Database Files Individually

! Ensure That All Database Files in Filegroup
Are Backed Up

! Back Up Transaction Logs

BACKUP DATABASE Phoneorders
FILE = Orders2 TO OrderBackup2
BACKUP LOG PhoneOrders to OrderLog

BACKUP DATABASE Phoneorders
FILE = Orders2 TO OrderBackup2
BACKUP LOG PhoneOrders to OrderLog

If performing a full database backup on very large databases (VLDBs) is not
practical, you can perform database file or filegroup backups. When
SQL Server backs up files or filegroups, it:

! Backs up only the database files that you specify in the FILE or
FILEGROUP option.

! Allows you to back up specific database files instead of the entire database.

When you perform database file or filegroup backups, you:

! Must specify the logical files or filegroups.
! Must perform transaction log backups in order to make restored files

consistent with the rest of the database.
! Should establish a plan to back up each file on a rotating basis in order to

ensure that all database files or filegroups are backed up regularly.
! Can specify up to 16 files or filegroups.

BACKUP DATABASE {database_name | @database_name_var}
 [<file_or_filegroup> [, ...m]] TO <backup_device> [, �n]]

Where <file_or_filegroup> is:
{FILE = {logical_file_name | @logical_file_name_var}
|
FILEGROUP = {logical_filegroup_name | @logical_filegroup_name_var}
}

Topic Objective
To discuss how to perform
database file backups and
how SQL Server processes
this type of backup method.

Lead-in
Perform database file or
filegroup backups when you
have very large databases
or when the database must
allow updates 24 hours a
day. You can back up the
critical database files more
often.

Partial Syntax

 Module 6: Backing Up Databases 37

This example backs up the Orders2 file of a database filegroup. The
PhoneOrders database consists of three files: Orders1, Orders2, and Orders3.
The transaction log is stored in the Orderlog file. These backup files already
exist: OrderBackup1, OrderBackup2, OrderBackup3, and OrderBackupLog.

BACKUP DATABASE PhoneOrders
FILE = Orders2 TO OrderBackup2
BACKUP LOG PhoneOrders to OrderBackupLog

Example

38 Module 6: Backing Up Databases

Restrictions on Backing Up Database Files or Filegroups

D:\

D:\

Both files must be
backed up as a unit
Both files must be
backed up as a unit

Scenario 1

TableTableTable

Filegroup1Filegroup1

IndexIndexIndex

Scenario 2

Filegroup 2Filegroup 2

Index 1Index 1Index 1

Filegroup 3Filegroup 3

Index 2Index 2Index 2

Filegroup 1Filegroup 1

TableTableTable

Filegroups 1, 2,
and 3 must be
backed up as a unit

Filegroups 1, 2,
and 3 must be
backed up as a unit

When you back up a database that consists of multiple files or filegroups, you
may need to back up several database files as a single unit if you create indexes.

SQL Server automatically detects if an index was created since the last time that
a database file was backed up and requires that the complete set of the affected
files be backed up as a single unit.

Backing Up Indexes and Tables as a Single Unit
When you create an index in the Simple Recovery model, the transaction log
records only that an index was created and the list of pages that were used to
create the index. If you apply this transaction log when you restore or recover
the database, SQL Server executes the CREATE INDEX statement and uses the
original index pages.

In order for SQL Server to recreate the index, all database files that contain the
base table, and all database files that are affected by the index creation, must be
in the same condition in which they were when the index first was created.

Index and Table Are Created on the Same Filegroup
If an index and the base table are created in one filegroup, as shown in
Scenario 1, you must back up the entire filegroup as a single unit.

Index and Table Are Created on Different Filegroups
If indexes are created on multiple filegroups, and the base table is created on
another filegroup, as shown in Scenario 2, you must back up all filegroups as a
single unit.

For example, if the Contact database consists of three filegroups, where
Filegroup1contains the Customer table, and the indexes on the Customer table
are created in Filegroup2 and Filegroup3, you must back up all three filegroups
as a single unit.

Topic Objective
To discuss backing up
indexes that are created on
filegroups.

Lead-in
You may need to back up
and restore several
database files as a single
unit if you created indexes
on filegroups.

 Module 6: Backing Up Databases 39

Demonstration: Using SQL Server Enterprise Manager to
Perform Backups

In this demonstration, you will view how to use SQL Server Enterprise
Manager to perform backups.

Topic Objective
To demonstrate backing up
databases with options in
SQL Server Enterprise
Manager.

Lead-in
In this demonstration, we'll
navigate through
SQL Server Enterprise
Manager and see how the
Transact-SQL options map
to the interface.

40 Module 6: Backing Up Databases

$$$$ Planning a Backup Strategy

! Full Database Backup Strategy

! Full Database and Transaction Log Backup Strategy

! Differential Backup Strategy

! Database File or Filegroup Backup Strategy

When you plan a backup strategy, your particular business environment
determines the backup method or combination of methods that you choose.
Consider the restore process, as well as the requirements of each strategy that is
presented in this module, when you determine which backup strategy to
implement.

Topic Objective
To provide an overview of
considerations for planning
a backup strategy.

Lead-in
Now that you have an
understanding of the
different SQL Server backup
methods, you can determine
which method or
combination of methods is
appropriate for your
particular business
environment.

 Module 6: Backing Up Databases 41

Full Database Backup Strategy

Created Database
and Performed Full
Database Backup

Full Database Backup Full Database Backup

SundaySunday MondayMonday TuesdayTuesday

Data
Log

Data
Log

Data
Log

Your database size and how frequently the data is modified together determine
the time and resources that are involved in implementing a full database backup
strategy.

Business Implementation
Perform full database backups if:

! The database is small. The amount of time that is required to back up a
small database is reasonable.

! The database has few data modifications or is read-only. Performing a full
database backup captures a reasonably complete set of data. You may be
willing to accept a minor loss of data if the database fails between backups
and must be restored.

Transaction Log Becomes Full
If you implement only a full database backup strategy, the transaction log will
eventually fill up. When the transaction log becomes full, SQL Server may
prevent further database activity until you clear the transaction log:

! You should clear the transaction log periodically.
! You can set the trunc. log on chkpt. option to true to minimize the size of

the transaction log.

This option is provided for backward compatibility only.
SQL Server 2000 uses the Simple Recovery model to implement this
strategy.

Topic Objective
To discuss the advantages
of implementing a full
database backup strategy
and to provide examples of
situations in which you
would use this strategy.

Lead-in
Your database size and how
frequently the data is
modified determine the time
and resources that are
involved in implementing a
full database backup
strategy.

Note

42 Module 6: Backing Up Databases

When you use this option, all committed transactions are written to the
database when a checkpoint occurs, and the transaction log is truncated
automatically.
The transaction log does not contain the changes that were made to the
database since the last full database backup.

If you set the trunc. log on chkpt. option to true, you cannot back up
the transaction log and use it to help restore the database in the event of a
system failure.

Strategy Example 1
Consider the following example of a backup plan and the steps that you would
take to restore your database. Assume the following:

! The database contains only 10 megabytes (MB) of data.
! The full database backup process takes a few minutes to complete.
! The database is used mostly for decision support and is modified very little

each day.
! The possibility of losing a day�s worth of changes to the database is

acceptable. These changes can be recreated easily.
! The system administrator does not want to monitor the log size or perform

any maintenance on the transaction log.
! The trunc. log on chkpt. database option is set to true to ensure that the

transaction log is truncated frequently. The transaction log is not used to
record changes to the database over time and cannot be used to restore the
database in the event of a system failure.

! A full database backup is done each night at 6:00 P.M.
! The database becomes corrupted at 10:00 A.M.

Restore Process
To recover the database, restore the full database backup from the previous
night at 6:00 P.M., overwriting the corrupted version of the database.

The limitation of this approach is that all data modifications that were made
since the last full backup are lost.

Strategy Example 2
Consider the following example of a backup plan and the steps that you would
take to restore your database. Assume that the database is similar to the one
described in Strategy Example 1, with the following exceptions:

! The database is modified very little each day (but more frequently than the
database in Strategy Example 1).

! The system administrator takes responsibility for ensuring that adequate
space exists in the transaction log.

! The trunc. log on chkpt. database option is cleared (set to false). The
transaction log records changes since the last full database backup and can
be used to restore or recover the database if the system fails.

Caution

 Module 6: Backing Up Databases 43

! The transaction log is stored on a separate physical device from the
database.

! A full database backup is done each day at 6:00 P.M. Transaction log
backups are not performed on a regular basis, but the transaction log is
cleared periodically.

Restore Process
You would go through the following steps to recover the database:

1. Back up the transaction log without truncating any data
(NO_TRUNCATE option).

2. Restore the full database backup from the previous night at 6:00 P.M.,
overwriting the corrupted version of the database.

3. Restore the transaction log backup that you created in Step 1, and recover
the database.

Using this approach, you may be able to recover changes since the backup of
the previous night if the transaction log is not damaged. However, if the
potential data loss is too great, you should consider implementing a backup
strategy that includes periodic transaction log backups.

44 Module 6: Backing Up Databases

Full Database and Transaction Log Backup Strategy

SundaySunday MondayMonday

Full Database
Backup

Full Database
Backup

Log Log Log
Log Data

Log
Data

Log

In addition to performing a full database backup, you also should back up the
transaction log in order to have a record of all database activities that occurred
between full database backups. This is a common backup strategy.

When you implement a full database and transaction log backup strategy, you
can restore a database from the most recent full database backup and then apply
all of the transaction log backups that were created since the last full database
backup.

Business Implementation
Perform a full database and transaction log backup strategy for frequently
modified databases. You also should consider whether the database and
transaction logs could be backed up in an acceptable amount of time.

Strategy Example
Consider the following example of a backup plan and the steps that you would
take to restore your database. Assume the following:

! The database and transaction logs are stored in separate files on separate
physical media.

! A full database backup is done each night at 6:00 P.M.
! The transaction log backups are performed each day at 9:00 A.M.,

12:00 noon, and 3:00 P.M.
! The physical medium that contains the database is damaged at 1:30 P.M.

Topic Objective
To discuss the advantages
of implementing a full
database and transaction
log backup strategy.

Lead-in
In addition to performing a
full database backup, you
also should back up the
transaction log.

 Module 6: Backing Up Databases 45

Restore Process
You would go through the following steps to recover the database:

1. Back up the transaction log, if possible. Use the WITH NO_TRUNCATE
option.

2. Restore the full database backup that was created the previous night at
6:00 P.M.

3. Apply all transaction logs that were created that day (9:00 A.M. and
12:00 P.M.).

4. Apply the transaction log backup that was created at the beginning of the
restore process (if one was created).

46 Module 6: Backing Up Databases

Differential Backup Strategy

MondayMonday TuesdayTuesday

Full Database
Backup

Differential
Backup

Differential
Backup

.........Log
Data Log Log Log Log Log LogLogData∆∆∆∆ ∆

When you implement a differential backup strategy, you must include a full
database backup, as well as transaction log backups. Differential backups
consist only of the portions of the database that have changed since the last full
database backup. In a differential backup, SQL Server:

! Does not capture the changes in the transaction logs. Therefore, you should
back up the transaction logs periodically.

! Requires you to restore only the latest differential backup to recover a
database. The latest differential backup contains all changes that were made
to the database since the last full database backup.

Business Implementation
Use this strategy to reduce recovery time if the database becomes damaged. For
example, rather than applying multiple, large transaction logs, you can use a
differential backup to apply the changes that were made to the database since
the last full database backup.

Strategy Example
Consider the following example of a backup plan and the steps that you would
take to restore your database. Assume the following:

! A full database backup is performed once a week. The last full database
backup was made on Sunday at 1:00 A.M.

! A differential backup is performed at the end of each business day. A
differential backup was performed on both Monday and Tuesday at
6:00 P.M.

! Transaction log backups are performed every hour during the business day
(8:00 A.M. to 5:00 P.M.). A transaction log backup was performed on
Wednesday at 8:00 A.M. and again at 9:00 A.M.

! The database becomes corrupted on Wednesday at 9:30 A.M.

Topic Objective
To discuss the advantages
of implementing a
differential with a full
database and transaction
log backup strategy.

Lead-in
You can perform a
differential backup in
addition to a full database
and transaction log backup.

 Module 6: Backing Up Databases 47

Restore Process
You would go through the following steps to recover the database:

1. Back up the transaction log, if possible. Use the WITH NO_TRUNCATE
option.

2. Restore the full database backup that was created on Sunday at 1:00 A.M.
3. Restore the differential backup that was created on Tuesday at 6:00 P.M.

This backup file is the latest differential backup and contains all changes
that were made to the database since the full database backup on Sunday
at 1:00 A.M.

4. Apply the transaction log backups that were created on Wednesday
at 8:00 A.M. and 9:00 A.M.

5. Apply the transaction log backup that was created at the beginning of the
restore process (Step 1) to ensure data consistency.

48 Module 6: Backing Up Databases

Database File or Filegroup Backup Strategy

MondayMonday TuesdayTuesday WednesdayWednesday ThursdayThursday

Data
File 1

Data
File 3

Data
File 2

Full Database
Backup

Log
Data Log Log Log Log Log Log Log Log

When you implement a database file or filegroup backup strategy, you usually
back up the transaction log as part of the strategy.

Business Implementation
Use this strategy for a VLDB that is partitioned among multiple files. When
combined with regular transaction log backups, this technique offers a time-
sensitive alternative to full database backups. For example, if you have only one
hour to perform a full database backup (which normally takes four hours), you
could back up individual files each night and still ensure data consistency.

However, this strategy is complicated and does not automatically maintain
referential integrity.

Strategy Example
Consider the following example of a backup plan and the steps that you would
take to restore your database. Assume the following:

! The data in a database is divided among File1, File2, and File3.
! A full database backup is performed every week. The last full database

backup was performed on Monday at 1:00 A.M.
! Selected files are backed up on a rotating basis each day at 1:00 A.M:
! File1 was backed up on Tuesday at 1:00 A.M.
! File2 was backed up on Wednesday at 1:00 A.M.
! File3 was backed up on Thursday at 1:00 A.M.
! Transaction log backups are performed each day at 12:00 noon

and 6:00 P.M.
! On Thursday at 8:00 A.M., the physical medium of File2 becomes damaged.

Topic Objective
To discuss the advantages
of implementing a database
file and transaction log
backup strategy.

Lead-in
When a database is
partitioned among multiple
files, you can implement a
strategy that backs up
selected files along with the
transaction log.

 Module 6: Backing Up Databases 49

Restore Process
You would go through the following steps to recover the database:

1. Back up the transaction log, if possible. Use the WITH NO_TRUNCATE
option.

2. Restore the backup of File2 that was created on Wednesday at 1:00 A.M.
3. Apply all transaction log backups that were created since Wednesday

at 1:00 A.M.
4. Apply the transaction log created at the beginning of the restore process to

recover the data. Applying all of the transaction logs makes the objects in
File2 consistent with the rest of the database.

The performance that is gained by using this strategy is a result of the fact that
only transaction log events that affect data that is stored on File2 are applied.
Events in the transaction log prior to 1:00 A.M. on Wednesday are not used.
Only transactions for File2 after 1:00 A.M. on Wednesday are applied.

50 Module 6: Backing Up Databases

Performance Considerations

! Back Up to Multiple Physical Devices

! Type of Physical Backup Device Determines Speed
of Backup Process

! Minimize Concurrent Activity on SQL Server

Consider some of the issues that impact the performance of SQL Server when
you back up databases:

! Backing up to multiple physical devices is generally faster than using a
single physical device. SQL Server takes advantage of multiple backup
devices by writing the data to each backup device in parallel.

! The time that is needed to back up a database is dependent on the speed of
the physical device. Tape drives are generally slower than disk devices.

! You should minimize concurrent activity when you back up a database.
Concurrent activity on SQL Server may impact the time that is necessary for
backing up your database.

Topic Objective
To discuss performance
considerations when you
back up databases.

Lead-in
Consider some of the issues
that impact the performance
of SQL Server when you
back up databases.

 Module 6: Backing Up Databases 51

Recommended Practices

Have a Backup StrategyHave a Backup Strategy

Back Up System Databases After They Have Been ModifiedBack Up System Databases After They Have Been Modified

Schedule Backup Operations When Database Activity Is LowSchedule Backup Operations When Database Activity Is Low

Create Backup Devices Create Backup Devices

Test Your Backup Strategy Test Your Backup Strategy

The following practices should help you implement a backup strategy that is
appropriate for your particular business environment and database:

! Have a backup strategy in order to minimize data loss and to recover lost
data more easily. If you have a backup strategy, you can restore data with
minimal cost to production time and minimize the chance of permanently
lost data.

! Back up system databases after they have been modified. Remember that
executing system stored procedures modifies system databases.

! Schedule backup operations when database activity is low. Although you
can back up a database while the database is online and active, some
operations can interfere with the backup process.

! Create backup devices so that you can reuse the backup files and automate
the task of backing up your databases.

! Test your backup strategy and periodically test the data in your backup.

Additional information on the following topics is available in SQL Server
Books Online.

Topic Search on

Allowing users to back up databases �creating user-defined

SQL Server database roles�

Using Transact-SQL to create database backup files sp_addumpdevice

Setting database options �setting database options�

Specifying checkpoints for transaction logs checkpoint

Backing up striped database files striping

Backing up to a tape media �tape media�

Topic Objective
To review some of the
practices that are discussed
in the module in regard to
backing up databases.

Lead-in
When you back up
databases, consider the
following practices.

52 Module 6: Backing Up Databases

Lab A: Backing Up Databases

Objectives
After completing this lab, you will be able to:

! Create a permanent backup file.
! Back up a database.
! Back up and clear a transaction log.
! Perform a differential backup.

Prerequisites
Before working on this lab, you must have:

! Script files for this lab, which are located in C:\Moc\2072A\Labfiles\L06.
! Answer files for this lab, which are located in

C:\Moc\2072A\Labfiles\L06\Answers.

For More Information
If you require help in executing files, search SQL Query Analyzer Help for
�Execute a query�.

Other resources that you can use include:

! The Northwind database schema.
! SQL Server Books Online.

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will back up
a database and transaction
log with SQL Server
Enterprise Manager.

Explain the lab objectives.

 Module 6: Backing Up Databases 53

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 45 minutes

54 Module 6: Backing Up Databases

Exercise 1
Creating Backup Devices

In this exercise, you will use SQL Server Enterprise Manager and Transact-
SQL statements to create backup devices to contain database and transaction
log backups.

! To create a backup device using SQL Server Enterprise Manager
In this procedure, you will use SQL Server Enterprise Manager to create two
backup devices. Labfiles\L06\Answers\MakeDev1.sql is a completed script for
this procedure.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your

computer name as designated in the
nwtraders.msft classroom domain)

Password password

2. Open SQL Server Enterprise Manager.
3. In the console tree, expand Microsoft SQL Servers, and then expand

SQL Server Group.
4. Expand your server, expand Management, right-click Backup, and then

click New Backup Device.
5. Using Windows Explorer, create a folder named Backup in the root

directory of drive C.
6. Use the information in the following table to create two permanent backup

files with SQL Server Enterprise Manager.

Name Disk file name

Nw1 C:\Backup\Nw1.bak

Nwlog C:\ Backup\Nwlog.bak

7. Close SQL Server Enterprise Manager.

 Module 6: Backing Up Databases 55

! To create backup devices using Transact-SQL
In this procedure, you will create two backup devices by using
the sp_addumpdevice system stored procedure.
Labfiles\L06\Answers\MakeDev2.sql is a completed script for this procedure.
1. Open SQL Query Analyzer and, if requested, log in to the (local) server

with Windows Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Windows 2000 local
group, Administrators. All members of this group are automatically mapped
to the SQL Server sysadmin role.

2. Write and execute a Transact-SQL statement to create two permanent
backup files based on the information in the following table.

Device type Logical name Physical name

Disk Nwstripe1 C:\ Backup\Nwstripe1.bak

Disk Nwstripe2 C:\ Backup\Nwstripe2.bak

! To confirm that new devices were created
In this procedure, you will use SQL Server Enterprise Manager to confirm that
Nwstripe1 and Nwstripe2 were created.
1. Open SQL Server Enterprise Manager.
2. In the console tree, expand Microsoft SQL Servers, and then expand

SQL Server Group.
3. Expand your server, expand Management, right-click Backup, and then

click Refresh.
4. Confirm that the Nwstripe1 and Nwstripe2 devices were created.

56 Module 6: Backing Up Databases

Exercise 2
Backing Up Databases

In this exercise, you will perform several full database backups using
SQL Server Enterprise Manager and Transact-SQL statements.

! To clear the database options
In this procedure, you will clear any database options that are set for the
Northwind database.
1. In the console tree, expand your server, and then click Databases.
2. In the details pane, right-click Northwind, and then click Properties.
3. On the Options tab, clear any selected options.
4. Click OK.

! To back up a database using SQL Server Enterprise Manager
In this procedure, you will perform a full database backup of the Northwind
database to the Nw1 backup file on disk.
1. In the console tree, right-click Backup, and then click Backup a database.
2. In the SQL Server Backup window, fill in the options using the information

in the following table.

Field Value

Database Northwind

Name NorthwindFull

Description The first backup of Northwind

Backup type Database�complete

Destination Nw1

Overwrite Overwrite existing media

3. Click OK to perform the backup.

 Module 6: Backing Up Databases 57

! To append subsequent backups to one backup file using Transact-SQL
In this procedure, you will write and execute a Transact-SQL statement to
perform another full database backup of the Northwind database and append
the backup to the Nw1 backup file. Labfiles\L06\Answers\Append.sql is a
completed script for this procedure.
1. Switch to SQL Query Analyzer.
2. Write and execute a Transact-SQL statement that backs up the Northwind

database and appends the backup to the Nw1 backup file. Use the options in
the following table.

Option Value

Database name Northwind

Backup file (logical device) Nw1

Append, overwrite, or initialize Append(NOINIT)

Description The second full backup of Northwind

! To view the contents of a backup device
In this procedure, you will use SQL Server Enterprise Manager to view the
contents of the Nw1 backup file to ensure that it contains two complete
database backups.
1. Switch to SQL Server Enterprise Manager.
2. In the console tree, expand Management, and then click Backup.
3. In the details pane, right-click Nw1, and then click Properties.
4. Click View Contents.
5. Confirm that the backup file contains two complete database backups.

! To overwrite an existing backup using Transact-SQL
In this procedure, you will write and execute a Transact-SQL statement to back
up the Northwind database and overwrite any existing backups on the Nw1
backup file. Labfiles\L06\Answers\Overwrite.sql is a completed script for this
procedure.
1. Switch to SQL Query Analyzer.
2. Write and execute a Transact-SQL statement to back up the Northwind

database onto the Nw1 backup file. Use the information in the
following table.

Option Value

Database name Northwind

Backup file (logical device) Nw1

Append, overwrite, or initialize Overwrite(INIT)

Description A third backup of Northwind overwrites all
others

58 Module 6: Backing Up Databases

! To back up one database to multiple backup files
In this procedure, you will use SQL Server Enterprise Manager to perform a
full database backup of the Northwind database onto two existing backup files:
Nwstripe1 and Nwstripe2. You will also overwrite any existing data, including
header information.
1. Switch to SQL Server Enterprise Manager.
2. In the console tree, right-click Backup, and then click Backup a database.
3. In the SQL Server Backup window, fill in the options using the information

in the following table.

Field Value

Database Northwind

Name Northwind striped

Description A parallel backup of Northwind

Backup type Database�complete

Destination Nwstripe1 and Nwstripe2

(If the Nw1 backup file is the Destination
list, remove it.)

Overwrite Overwrite existing media

4. Click OK to perform the backup.

What do the Nwstripe1 and Nwstripe2 backup files contain?
The content of Nwstripe1 is Family 1, Media 1. The content of
Nwstripe2 is Family 2, Media 1.
__

__

 Module 6: Backing Up Databases 59

! To back up a database and create a temporary backup device
In this procedure, you will write and execute a single Transact-SQL statement
to back up the Northwind database to a new, temporary backup file.
Labfiles\L06\Answers\BacToTmp.sql is a completed script for this procedure.
1. Switch to SQL Query Analyzer.
2. Write and execute a single Transact-SQL statement that backs up the

Northwind database to a new, temporary backup file. Use the information
in the following table.

Option Value

Database name Northwind

File location C:\ Backup\MyNewBackup.bak

Append, overwrite, or initialize Initialize(FORMAT)

Description New temporary backup device, not
recorded in system tables

3. Start Windows Explorer.
4. Expand C: \Backup to confirm that the MyNewBackup.bak file was created

and populated.
5. Switch to SQL Server Enterprise Manager.
6. In the console tree, right-click Northwind, point to All Tasks, and then

click Backup Database.
7. In the SQL Server Backup dialog box, in the Destination list, click

MyNewBackup.bak and then click Contents to view information about the
contents of the temporary device.

60 Module 6: Backing Up Databases

Exercise 3
Backing Up a Transaction Log

In this exercise, you will back up a transaction log to capture changes to the
database. You will use SQL Server Enterprise Manager, as well as Transact-
SQL statements, to back up a transaction log.

! To back up a transaction log using SQL Server Enterprise Manager
In this procedure, you will use SQL Server Enterprise Manager to back up the
transaction log for the Northwind database onto the Nwlog backup file.
1. In the console tree, right-click Northwind, and then click Properties.
2. On the Options tab, change the Recovery Model to Full, and then click

OK.
3. In the console tree, right-click Backup, and then click Backup a database.
4. In the SQL Server Backup window, fill in the options using the information

in the following table.

Field Value

Database Northwind

Name NwindLog

Description Northwind transaction log

Backup type Transaction log

Destination Nwlog

Overwrite Overwrite existing media

5. Click OK to perform the backup.
6. After the backup completes, review the contents of the Nwlog backup file

with SQL Server Enterprise Manager.

! To back up a transaction log using Transact-SQL statements
In this procedure, you will write and execute a Transact-SQL statement to
append a second backup of the transaction log onto the Nwlog backup file.
Labfiles\L06\Answers\AppendLg.sql is a completed script for this procedure.
1. Switch to SQL Query Analyzer.
2. Write and execute a Transact-SQL statement to append a second backup of

the transaction log onto the Nwlog backup file. Use the information in the
following table.

Option Value

Database name Northwind

Backup file (logical device) Nwlog

Append, overwrite, or initialize Append(NOINIT)

 Module 6: Backing Up Databases 61

! To clear a transaction log without making a backup copy
In this procedure, you will write and execute a Transact-SQL statement to
clear the transaction log of the Northwind database. Assume that the log has
become full. After you clear the transaction log, you must back up the database.
Labfiles\L06\Answers\ClearLog.sql is a completed script for this procedure.
1. Write and execute a Transact-SQL statement to clear the transaction log of

all committed transactions.
2. Write and execute a Transact-SQL statement to back up the database to the

Nw1 backup file.

62 Module 6: Backing Up Databases

Exercise 4
Performing a Differential Backup

In this exercise, you will perform a differential backup to capture the latest
changes to all rows in the Northwind database with SQL Server Enterprise
Manager or Transact-SQL statements.

! To perform a differential backup
In this procedure, you will perform a differential backup of the Northwind
database and append the differential backup to the Nwdiff.bak backup file.
Labfiles\L06\Answers\DiffBac.sql is a completed script for this procedure.
1. In the console tree, right-click Backup, and then click Backup a database.
2. In the SQL Server Backup window, fill in the options using the information

in the following table.

Field Value

Database Northwind

Name Nwind differential

Description Changes since the last full database backup

Backup type Database�differential

Destination C:\Backup\Nwdiff.bak
(Enter this in the File name field)

Overwrite Append to media

3. Click OK to perform the backup.
4. After the backup operation completes, right-click Northwind, point to All

Tasks, and then click Backup Database.
5. In the Backup Database dialog box, in the Destination list, click

Nwdiff.bak, and then click Contents to view information about the
contents of the temporary device.

 Module 6: Backing Up Databases 63

Review

! Preventing Data Loss

! Setting and Changing a Database Recovery Model

! SQL Server Backup

! When to Back Up Databases

! Performing Backups

! Types of Backup Methods

! Planning a Backup Strategy

1. Your database consists of 5 gigabytes (GB) of data and is stored in one
database file. This database is used as an order-taking system for a mail-
order catalog company. Operators take orders 24 hours a day. The company
typically receives about 12,000 orders each day. Describe an appropriate
backup plan for this database.
SQL Server backups can occur while the database is online. However,
avoid scheduling backups during high database activity.
Because the database exists on a single database file, you cannot back
up individual parts of the database. You must back up the entire
database as a single unit.
Consider a backup plan that includes full database and transaction log
backups. You may want to add differential backups as the volume of
daily orders increases. These differential backups shorten the restore
time if the system fails.

2. Your database contains image data that is gathered from a weather satellite
and is being continually updated. The database is 700 GB. The database is
partitioned onto three files. If you were to perform a full database backup,
the process would take about 20 hours. How can you minimize the amount
of time that is spent performing backups each day and yet still ensure good
data recoverability in the event of a system failure?
Use a backup plan that starts with one full database backup. A full
database backup will be done infrequently. Perform a backup of one
of the database files each day on a rotating basis. Perform differential
backups in addition to transaction log backups in order to minimize
recovery time.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

64 Module 6: Backing Up Databases

3. You have a database for which you generally perform only full database
backups. The transaction log exists on a separate physical disk from the data
files. It is allowed to accumulate changes but is periodically cleared. The
disk that contains the data files is damaged. After you replace the disk, what
can you do to minimize data loss?
Try to back up the undamaged transaction log by using the
NO_TRUNCATE option. This captures some of the activity since the
last full database backup. After you restore the database, apply the
transaction log backup and recover the database.

4. What are the advantages and disadvantages of using differential backups as
part of your backup strategy?
Differential backups save time in the restore process. You can recover a
database by restoring the full backup and the last differential backup
only. It is not necessary to apply all of the transaction logs or previous
differential backups in order to bring the database to a consistent state.
A disadvantage of differential backups is that because differential
backups do not capture intermediate changes to the database, you
cannot use them to recover data from a specific point in time. You must
use transaction log backups to perform point-in-time recovery. In
addition, each new differential backup will be larger than the previous
one, as the time increases between the last full database backup and the
differential backup.

