

Contents

Overview 1

Introduction to Data Structures 2

Creating Databases 7

Managing Databases 13

Placing Database Files and Logs 20

Optimizing a Database Using
Hardware-based RAID 22

Optimizing a Database Using Filegroups 23

Optimizing the Database Using Filegroups
with Hardware-based RAID 30

Capacity Planning 31

Performance Considerations 35

Recommended Practices 36

Lab A: Managing Database Files 37

Review 46

Module 3: Managing
Database Files

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, ActiveX, BackOffice, FrontPage, Jscript, Outlook, PowerPoint,
Visual Basic, Visual Studio, Windows, Windows Media, and Windows NT are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Development Lead: Xandria Eykel
Technical Lead: Rick Byham
Instructional Designers: Cheryl Hoople, Lin Joyner (Content Master Ltd), Marilyn McGill
(Independent Contractor), Gordon Ritchie (Content Master Ltd.),
Subject Matter Experts: Karl Dehmer, Mike Galos, Graeme Malcolm (Content Master),
Mary Neville (Content Master Ltd), and Carl Rabeler (Shadow Mountain Computers),
Classroom Automation: Lorrin Smith-Bates
Graphic Artist: Kimberly Jackson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Copy Editor: Bill Jones (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Support: Ed Casper (S&T Consulting), Theano Petersen (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: Testing Testing 123
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager, Database Management: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 3: Managing Database Files iii

Instructor Notes
This module provides students with the knowledge and skills that they need to
create a database. It describes how Microsoft® SQL Server� 2000 stores data
and processes transactions; how to create, manage, and place databases files and
transaction logs; and how to optimize databases by using hardware-based
RAID, user-defined filegroups, and a combination of both. It concludes with
information on how to allocate, manage, and monitor the space and storage
requirements for a database, as well as some performance considerations.

In the lab, students will create a database by using the Create Database Wizard
and then create and modify a database by using SQL Server Enterprise Manager
and Transact-SQL statements. Students will view and change database options
by using Transact-SQL statements, and delete a database.

After completing this module, students will be able to:

! Describe how SQL Server stores data and handles transactions.
! Create a database, including specifying options during and after database

creation.
! Grow, shrink, or delete a database.
! Determine the placement of database files and transaction logs for

performance and fault tolerance.
! Optimize a database by using hardware-based RAID.
! Determine when and how to use filegroups to optimize a database.
! Optimize a database by using user-defined filegroups with hardware-based

RAID.
! Estimate the amount of space that a database requires.

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the Microsoft PowerPoint® file 2072A_03.ppt.

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials for this module.
! Complete the lab.
! Practice the presentation, including the animated slide and multimedia

presentation.
! Review any relevant white papers located on the Trainer Materials compact

disc.

Presentation:
90 Minutes

Lab:
30 Minutes

iv Module 3: Managing Database Files

Multimedia Presentation
This section provides multimedia presentation procedures that do not fit in the
margin notes or are not appropriate for the student notes.

Transactions
You must play the multimedia presentation in class because the content is not
presented anywhere else in the module.

! To prepare for the multimedia presentation
• Click the button in the slide to start the multimedia presentation.

This multimedia presentation shows how transactions work.

Other Activities
Displaying the Animated PowerPoint Slide
The animated slide is identified with an icon of links on the lower left corner of
the slide.

! To display the How the Transaction Log Works slide
1. Display the topic slide, which shows the first step where the application

sends the data modification.
2. Advance to the next animation, where the next step shows how affected data

pages are loaded from disk into memory (called the buffer cache).
Explain that affected data pages are loaded from disk into memory,
provided that the pages are not already in the buffer cache from a previous
query.

3. Advance to the next animation, where each data modification statement is
recorded in the transaction log as it is made.
Explain that the change is always recorded in the transaction log and written
to disk before that change is made in the database. Mention that this type of
log is called a write-ahead log.

4. Advance to the next animation, where the next step shows the checkpoint
process writing all completed transactions to the database on the disk.
Explain that this occurs on a recurring basis.

 Module 3: Managing Database Files v

Module Strategy
Use the following strategy to present this module:

! Introduction to Data Structures
Explain the importance of understanding how SQL Server stores data in
order for students to allocate the appropriate disk space for data files and
transaction logs. Then, play the multimedia presentation that describes how
SQL Server handles and stores transactions.

! Creating Databases
Describe what occurs during the process of creating a database and discuss
the options that students choose during database creation. Then, explain
how to change database options by using SQL Server Enterprise Manager
and Transact SQL. Explain how to view database information and
properties.

! Managing Databases
Describe the different ways to manage data and log file growth: using
automatic file growth, expanding file size manually, or creating secondary
files. Also describe how to shrink databases and files automatically and
manually, and mention the configuration options. Then, discuss how to
delete a database, as well as restrictions on deleting databases.

! Placing Database Files and Logs
Discuss how managing the placement of data files and transaction logs on
disks can improve performance and implement fault tolerance. Keep the
discussion general, because the following sections provide in-depth
information.

! Optimizing a Database Using Hardware-based RAID
Introduce how hardware-based RAID allows the management of multiple
disks as one disk, and explain how students can implement this strategy in
their own environments.

! Optimizing a Database Using Filegroups
Present an overview of the concept of filegroups, and then describe the
types of filegroups and how to size the default filegroup. Review the system
stored procedures that display information about filegroups.

! Optimizing the Database Using Filegroups with Hardware-based RAID
Describe how combining filegroups with hardware-based RAID solutions
reduces contention and offers system or database administrators an approach
that can be easily set up and managed.

! Capacity Planning
Discuss the thought processes involved with planning the size of databases
and associated files.

vi Module 3: Managing Database Files

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing Microsoft
Official Curriculum (MOC) courseware.

The lab in this module is dependent on the classroom configuration
that is specified in the Customization Information section at the end of the
Classroom Setup Guide for course 2072A, Administering a Microsoft
SQL Server 2000 Database.

Lab Setup
The lab in this module requires that SQL Server 2000 Enterprise Edition be
installed on student computers. To prepare student computers to meet this
requirement, perform exercise 1 in lab A, �Installing SQL Server,� in module 2,
�Planning to Install SQL Server� of course 2072A, Administering a Microsoft
SQL Server 2000 Database.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Important

 Module 3: Managing Database Files 1

Overview

! Introduction to Data Structures
! Creating Databases
! Managing Databases
! Placing Database Files and Logs
! Optimizing a Database Using Hardware-based RAID
! Optimizing a Database Using Filegroups
! Optimizing the Database Using Filegroups with

Hardware-based RAID
! Capacity Planning

This module describes how to create a database, set database options, create
filegroups, RAID and filegroups to optimize Microsoft® SQL Server� 2000,
and manage a database and the transaction log.

After completing this module, you will be able to:

! Describe how SQL Server stores data and handles transactions.
! Create a database, including specifying options during and after database

creation.
! Grow, shrink, or delete a database.
! Determine the placement of database files and transaction logs for

performance and fault tolerance.
! Optimize a database by using hardware-based RAID.
! Determine when and how to use filegroups to optimize a database.
! Optimize a database by using filegroups with hardware-based RAID.
! Estimate the amount of space that a database requires.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
about creating and
managing databases and
filegroups, using RAID and
filegroups to optimize
SQL Server, and how
SQL Server stores data.

2 Module 3: Managing Database Files

Introduction to Data Structures

! How Data Is Stored

! Transactions

! How the Transaction Log Works

When you create a database, you set up the data storage structure. This structure
includes at least one data file, which contains database objects, and one
transaction log file. Before you create a database, it is important that you
understand how SQL Server stores data, as well as the function of the
transaction log.

Topic Objective
To describe data structures.

Lead-in
When you create a
database, you set up the
data storage structure.

 Module 3: Managing Database Files 3

How Data Is Stored

Extent
(8 contiguous
8-KB pages)

Page (8 KB)

Tables, Indexes

Data

DatabaseDatabase

Data (file)
.mdf or .ndf
Data (file)

.mdf or .ndf
Log (file)

.ldf
Log (file)

.ldf

Maximum row size = 8060 bytes

When creating a database, it is important to understand how SQL Server stores
data so that you can calculate and specify the amount of disk space to allocate
for the data files and transaction logs. Consider the following facts and
guidelines about data storage:

! All databases have a primary data file (.mdf) and one or more transaction
log files (.ldf). A database also may have secondary data files (.ndf). These
physical files have both operating system file names and logical file names
that can be used in Transact-SQL statements. The default location for all
data files and transaction logs is C:\Program Files\Microsoft
SQL Server\MSSQL\Data.

! When you create a database, a copy of the model database, which includes
the system tables, is copied to the database.

! Data is stored in 8-kilobyte (KB) blocks of contiguous disk space called
pages. This means that a database can store 128 pages per megabyte (MB).

! Rows cannot span pages. Thus, the maximum amount of data in a single
row, subtracting the space required for row overhead, is 8060 bytes.

! Tables and indexes are stored in extents. An extent is eight contiguous
pages, or 64 KB. Therefore, a database has 16 extents per megabyte. Small
tables can share extents with other database objects.

! Transaction log files hold the information necessary for recovery of the
database in the event of a system failure.

Topic Objective
To describe how the
database is structured.

Lead-in
When you create a
database, it is important to
understand how SQL Server
stores data.

Delivery Tip
These numbers are
significant because they
specify the maximum size of
rows and extents; this is
important to know when
designing a database or
capacity planning.

Delivery Tip
The size of a row is an
important consideration
when estimating the size of
a database.

4 Module 3: Managing Database Files

Multimedia Presentation: Transactions

The main points of the multimedia presentation include:

Defining a Transaction
A transaction is a set of one or more Transact-SQL statements that are treated
as a single unit of work and recovery. The unit must execute entirely, or not at
all. Applications control transactions when you specify the beginning and end
of transactions. You can use either Transact-SQL statements or database
application programming interface (API) functions to specify the beginning and
end of transactions. SQL Server performs implicit and explicit transactions.

Implicit Transaction
SQL Server performs an implicit transaction when any of the following
Transact-SQL statements are executed as a transaction.

• ALTER TABLE • INSERT

• CREATE • OPEN

• DELETE • REVOKE

• DROP • SELECT

• FETCH • TRUNCATE TABLE

• GRANT • UPDATE

By default, SQL Server operates in autocommit mode. This means that an
implicit transaction commits after execution without a COMMIT
TRANSACTION statement to end the transaction.

SQL Server can also function in implicit transaction mode. This means that
when any of the above Transact-SQL statements begins a transaction, the
transaction must have a COMMIT TRANSACTION statement to end the
transaction.

Topic Objective
To introduce the concept of
how transactions operate.

Lead-in
Let�s watch a multimedia
presentation of how
transactions work�

 Module 3: Managing Database Files 5

Explicit Transaction
SQL Server performs an explicit transaction when the beginning and end of the
transaction are explicitly defined. You can define the beginning and end of the
transaction in Transact-SQL by using BEGIN TRANSACTION and COMMIT
TRANSACTION statements.

Explaining the Transaction Log
SQL Server records every transaction in a transaction log to maintain database
consistency and aid in recovery. The log is a storage area that automatically
tracks changes to a database. SQL Server records modifications in the log on
disk as the modifications are executed, before they are written in the database.

6 Module 3: Managing Database Files

How the Transaction Log Works

Data modification is
sent by application
Data modification is
sent by application

111

Disk

Modification is recorded
in transaction log on disk
Modification is recorded
in transaction log on disk

333

Data pages are located in,
or read into, buffer cache
and modified

Data pages are located in,
or read into, buffer cache
and modified

222

Buffer Cache

Disk

Checkpoint writes
committed
transactions
to database

Checkpoint writes
committed
transactions
to database

444

The transaction log records data modifications as they occur. The logging
process is as follows:

1. A data modification is sent by the application.
2. When a modification is executed, the affected data pages are loaded from

disk into memory (called the buffer cache), provided that the pages are not
already in the buffer cache from a previous query.

3. Each data modification statement is recorded in the log as it is made. The
change is always recorded in the log and written to disk before that change
is made in the database. This type of log is called a write-ahead log.

4. On a recurring basis, the checkpoint process writes all completed
transactions to the database on the disk.

If the system fails, the automatic recovery process uses the transaction log to
roll forward all committed transactions and roll back any incomplete
transactions.

Transaction markers in the log are used during automatic recovery to determine
the starting and ending points of a transaction. A transaction is considered
complete when the BEGIN TRANSACTION marker has an associated
COMMIT TRANSACTION marker. Data pages are written to the disk when a
checkpoint occurs.

Topic Objective
To describe how the
transaction log works.

Lead-in
The transaction log records
data modifications as they
occur.

Delivery Tip
The illustration consists of
three animated images from
which to teach.

The images reflect the steps
mentioned in the student
workbook.

Use the information in the
Instructor Notes if you
require additional teaching
suggestions.

 Module 3: Managing Database Files 7

Creating Databases

! What Occurs During Database Creation

! Specifying Options During Database Creation

! Changing Database Options After Database Creation

! Viewing Database Properties

When creating a database, you should understand what occurs during database
creation, the types of options that you have during the process, what options
you can change after you create the database, and how to view the database
properties.

Topic Objective
To list the topics in this
section.

Lead-in
When creating a database,
you should understand what
occurs during database
creation, the types of
options that you have during
the process, what options
you can change after you
create the database, and
how to view the database
properties.

8 Module 3: Managing Database Files

What Occurs During Database Creation

! Creates a Data File and a Transaction Log

! Requires That the Owner and Creator Have Permission
to the master Database

! Allows You to Define:

$ The name of the database

$ The properties of the database

$ The location of the database files

You can create a database by using SQL Server Enterprise Manager or the
CREATE DATABASE Transact-SQL statement in SQL Query Analyzer.

When you create a database, SQL Server:

! Creates a data file and a transaction log for that database.
! Requires that the owner and creator of the new database have permission to

use the master database, because information about each database in
SQL Server is recorded in the sysdatabases and sysaltfiles tables in the
master database.

! Allows you to define:

• The name of the database.

• The properties of the database.

• The location of the database files.
! SQL Server uses a copy of the model database to initialize the database and

its metadata. Any options or settings in the model database are copied into
the new database.

! SQL Server then fills the rest of the database with empty pages, except for
pages that have internal data recording how the space is used in the
database.

You should back up the master database each time that you create,
modify, or delete a database.

Topic Objective
To describe what occurs
during database creation.

Lead-in
You can create a database
by using SQL Server
Enterprise Manager, or by
executing Transact-SQL
statements. When you
create a database,
SQL Server�

Delivery Tip
Demonstrate the two ways
to create a database by
using SQL Server
Enterprise Manager.

Important

 Module 3: Managing Database Files 9

Specifying Options During Database Creation

! Primary File

! Secondary Files

! Transaction Log

! File Name and Location

! Size

! File Growth

! Maximum Size

! Collation

When you create a database, you can specify the following options.

Primary File
The primary file consists of the initial data file in the primary filegroup. A
filegroup is a named collection of data files. The primary filegroup contains all
of the database system tables. It also contains all objects and data not assigned
to user-defined filegroups. The primary data file is the starting point of the
database and points to the rest of the files in the database. Every database has
one primary data file and one primary filegroup. The recommended file name
extension for primary data files is .mdf.

Secondary Files
Databases may have secondary data files. Some databases may be large enough
to need multiple secondary data files, or they may use secondary files on
separate disk drives to spread the data across multiple disks. Secondary files
may be either in the primary filegroup or can be grouped into user-defined
filegroups. The recommended file name extension for secondary data files is
.ndf.

Transaction Log
Every database must have a transaction log. Unless specified otherwise, a
transaction log file is automatically created with a system-generated name. The
recommended file name extension for transaction log files is .ldf. Typically, the
transaction log file is about 10 to 15 percent of the database files.

File Name and Location
Every database file has a logical name and a physical location for the file. Files
generally should be spread across multiple disks for performance and
redundancy.

Topic Objective
To describe which options
are available during
database creation.

Lead-in
When you create a
database, you can specify
the following options.

10 Module 3: Managing Database Files

Size
You can specify sizes for each data and log file. The minimum size is 512 KB
for both the data or log file. The size specified for the primary data file must be
at least as large as the primary file of the model database.

File Growth
You can specify whether a file will grow in size if necessary. This option is
referred to as autogrow. The default is to enable file growth.

Maximum Size
You can specify the maximum size to which a file can grow in megabytes or as
a percentage. The default growth value is 10 percent. It is recommended that
you specify a maximum size to which the file is permitted to grow. If you do
not specify a size, and file growth is enabled, by default the file will grow until
the disk is full.

Collation
This parameter specifies the default collation for the database. By default, a
database inherits the collation of the instance of SQL Server in which the
database is created.

Delivery Tip
You can specify file growth
in megabytes or as a
percentage. The percentage
only applies to file growth,
not maximum size.

Delivery Tip
Mention that the file path will
vary if a named instance of
SQL Server is used instead
of a default instance.

 Module 3: Managing Database Files 11

Changing Database Options After Database Creation

Category of
database options

Category of Category of
database optionsdatabase options

Auto Auto

Cursor Cursor

Recovery Recovery

SQL SQL

ControlsControlsControls

Certain automatic behaviors Certain automatic behaviors

Cursor behavior and scope Cursor behavior and scope

The recovery model for the databaseThe recovery model for the database

Control ANSI compliance options Control ANSI compliance options

State State
Whether the database is online or offline
Who can connect to the database
Whether the database is in read-only mode

Whether the database is online or offline
Who can connect to the database
Whether the database is in read-only mode

After you have created a database, you can change the database options. You
set database options by using SQL Server Enterprise Manager, the ALTER
DATABASE Transact-SQL statement, or the sp_dboption stored procedure.

You can configure a number of database options for each database. To affect
options in all new databases, you must change the model database.

There are five categories of database options:

! Auto options control certain automatic behaviors.
! Cursor options control cursor behavior and scope.
! Recovery options control the recovery model for the database.
! SQL options control ANSI compliance options.
! State options control:

• Whether the database is online or offline.

• Who can connect to the database.

• Whether the database is in read-only mode.

Topic Objective
To list the configurable
database options.

Lead-in
After you have created a
database, you can change
the database options. You
can configure a number of
database options for each
database.

12 Module 3: Managing Database Files

Viewing Database Properties

! Use SQL Server Enterprise Manager

! Use SQL Query Analyzer

$ System functions

$ System stored procedures (sp_helpdb or
sp_spaceused)

$ DBCC statements (DBCC SQLPERF (LOGSPACE))

To obtain database properties and information, you can use SQL Server
Enterprise Manager, or system functions, system stored procedures, or Database
Consistency Checker (DBCC) statements in SQL Query Analyzer.

The following table lists the commonly used procedures and statements.

System stored procedure /
DBCC statement

Description

sp_helpdb Reports on all databases on a server. Provides database

name, size, owner, ID, creation date, and options.

sp_helpdb database_name Reports on a specified database only. Provides database
name, size, owner, ID, creation date, and options. Also
lists files for data and log.

sp_spaceused [objname] Summarizes the storage space that a database or
database object uses.

DBCC SQLPERF
(LOGSPACE)

Provides statistics about the use of transaction log
space in all databases.

Topic Objective
To discuss tools to view
database properties.

Lead-in
To obtain database
properties and information,
you can�

Delivery Tip
Demonstrate how to view
database information in
SQL Server Enterprise
Manager and SQL Query
Analyzer.

 Module 3: Managing Database Files 13

Managing Databases

! Managing Data and Log File Growth

! Shrinking a Database or Database File Automatically

! Shrinking a Database or Database File Manually

! Deleting a Database

As your database grows or changes, you can expand or shrink the size of data
and log files manually, or configure them to expand or shrink automatically.
When you no longer need a database, you can delete it, along with all
associated files.

Topic Objective
To list topics in this section.

Lead-in
In this section you�ll learn
how to manage databases
and transaction logs.

14 Module 3: Managing Database Files

Managing Data and Log File Growth

! Using Automatic File Growth

$ Specify space allocated, maximum size, and growth
increment of each file

$ Optimize performance by allocating sufficient space,
setting maximum size, and setting growth increments

! Manually Expanding Data and Transaction Log Files

! Determining Whether to Expand Files Automatically or
Manually

! Creating Secondary Data and Transaction Log Files

When data files grow, or when data modification activity increases, you may
need to expand the size of the data or log files. You can manage database
growth by using SQL Server Enterprise Manager or the ALTER DATABASE
statement. You must be in the master database to use the ALTER DATABASE
statement.

You can control the size of the database by configuring the database and log
files to grow automatically, manually increasing the existing database and log
files, or creating secondary database and log files.

Using Automatic File Growth
You can set the automatic file growth property of any database file to specify
that the file automatically expand by a specified amount or percentage
whenever necessary. Using automatic file growth reduces the administrative
tasks involved with manually increasing the database size.

You can specify the space allocated, maximum size, and growth increment of
each file. If you do not specify a maximum size, a file can continue to grow
until it uses all available space on the disk.

For optimum performance, you should:

! Allocate sufficient space to the database and the log to avoid frequently
activating automatic growth.

! Set a maximum size for data files.
! Set the data and log file growth increments to sufficient sizes to avoid

frequently activating automatic growth.

Topic Objective
To explain how to manage
data and transaction log file
growth.

Lead-in
When data files grow, or
when data modification
activity increases, you may
need to expand the size of
the data or log files.

 Module 3: Managing Database Files 15

Manually Expanding Data and Transaction Log Files
You can also manually increase the size of any data or transaction log file by
using either SQL Server Enterprise Manager or the ALTER DATABASE
statement in Transact-SQL. You may want to manually expand database files to
control when the expansion occurs. Expanding files in small increments
increases fragmentation and can affect performance if files are expanded while
the database is busy.

Determining Whether to Expand Files Automatically or
Manually
Because you can set database files to grow automatically or expand files
manually, you should consider the following:

! In a large production environment, you should allocate sufficient space for
the data files you create the database and manually expand the files, if
necessary. This allows you to control when to expand the files.

! In a desktop or small production environment, such as a sales people out in
the field, setting database files to grow automatically reduces administrative
overhead.

Creating Secondary Data and Transaction Log Files
You can also create secondary data and transaction log files to expand the size
of a database. Use secondary data and transaction log files to place files on
separate physical disks. You can also use RAID to spread data across multiple
disks.

16 Module 3: Managing Database Files

Shrinking a Database or Database File Automatically

! Enabling Shrinking to Occur Automatically
$ Specifying the autoshrink option in SQL Server

Enterprise Manager
$ Executing the ALTER DATABASE AUTO_SHRINK

statement
$ Executing the sp_dboption system stored procedure

! SQL Server Activities During Auto Shrink
$ Shrinks data and transaction log files when more than 25

percent of the file contains unused space
$ Performs shrinking in the background and does not

affect user activity

When too much space is allocated, or when space requirements decrease, you
can shrink an entire database or specific data or transaction log files.

Enabling Shrinking to Occur Automatically
You can set a database or database files to shrink automatically by:

! Specifying the autoshrink option in SQL Server Enterprise Manager.
! Executing the ALTER DATABASE AUTO_SHRINK statement.
! Executing the sp_dboption system stored procedure.

SQL Server Activities During Auto Shrink
By default, the option to shrink files automatically is disabled in all SQL Server
editions, except the Desktop Edition. When you enable SQL Server to
automatically shrink files, SQL Server:

! Shrinks data and transaction log files when more than 25 percent of the file
contains unused space.
The percentage of free space to be removed cannot be configured.
SQL Server removes as much free space as possible. The transaction log is
only shrunk if it does not contain active portions of the logical log that are
required for database restoration.

! Performs this activity in the background and does not affect any user
activity within the database.

Topic Objective
To discuss shrinking
database or database files
automatically.

Lead-in
When too much space is
allocated, or when space
requirements decrease, you
can shrink an entire
database or specific data or
transaction log files.

 Module 3: Managing Database Files 17

Shrinking a Database or Database File Manually

! Methods of Shrinking

! Shrinking a Database and Data Files

! Shrinking Transaction Log Files

$ Shrinks inactive portions of the transaction log that are
larger than the desired size

$ If that is not enough to reduce to the desired size,
SQL Server returns a message and notifies you what to
perform

! Configuring Shrink Database Options

Shrinking an entire database or individual database files manually is useful in a
production environment, because you have control over when the activity takes
place.

Methods of Shrinking
To manually shrink databases and database files to a specific size, you can use
SQL Server Enterprise Manager or execute the DBCC SHRINKDATABASE
or DBCC SHRINKFILE statement. You can:

! Shrink data and transaction files as a group or individually.
! Shrink individual data and transaction log files that are smaller than their

initial creation size by using the DBCC SHRINKFILE statement.

Shrinking a Database and Data Files
SQL Server shrinks a database and individual data files immediately. You
cannot shrink an entire database to a size smaller than its initial creation size or
that of the model database.

Topic Objective
To discuss shrinking
databases or database files
manually.

Lead-in
Shrinking an entire
database or individual
database files manually is
useful in a production
environment because it
allows you to control when
to perform this activity

18 Module 3: Managing Database Files

Shrinking Transaction Log Files
When you manually shrink transaction log files, SQL Server attempts to shrink
the transaction log immediately. SQL Server:

1. Shrinks inactive portions of the transaction log that are larger than the
desired size.

2. If that is not enough to reduce the transaction log to the desired size,
SQL Server:
a. Returns an informational message that states that part of the active log is

beyond the desired size.
b. Notifies you what to do (such as a back up the database to truncate the

log) in order to move the active log from the end of the transaction log
file. Moving the active log from the end allows SQL Server to shrink the
transaction log file.

Upon receipt of the messages from SQL Server, you can perform the suggested
activity and then re-execute the DBCC SHRINKDATABASE or
DBCC SHRINKFILE statement to complete the shrink process.

Configuring Shrink Database Options
You can use the following database options when shrinking database files by
using SQL Server Enterprise Manager.

Option Description

Maximum free space in files after shrinking The desired percentage of free space left in the database

file after SQL Server has shrunk the database.

Move pages to beginning of file before shrinking Moves pages to the beginning of the file before shrinking
the database. Selecting this option may affect
performance but may be necessary to meet the desired
shrinkage goal.

Shrink the database based on this schedule Shrinks the database on a selected schedule.

Files Specifies the individual database files to shrink. This
provides more precise control when shrinking the
database.

Delivery Tip
Emphasize the fact that the
DBCC SHRINKDATABASE
or DBCC SHRINKFILE
statement must be re-
executed to restart the
shrink process.

 Module 3: Managing Database Files 19

Deleting a Database

! Methods of Deleting a Database

! Restrictions on Deleting a Database

$ While it is being restored

$ When a user is connected to it

$ When publishing as part of replication

$ A system database

You can delete a database when you no longer need it. Deleting a database
removes the database and the disk files that the database uses.

Methods of Deleting a Database
You can delete databases by using SQL Server Enterprise Manager or by
executing the DROP DATABASE statement. After you delete a database, every
login ID that used that particular database as its default database will not have a
default database.

Back up the master database after you delete a database.

Restrictions on Deleting a Database
The following restrictions apply to deleting databases. You cannot delete:

! A database that is in the process of being restored.
! A database that is open for reading or writing by any user.
! A database that is publishing any of its tables as part of SQL Server

replication.
! A system database.

Topic Objective
To illustrate how to delete a
database.

Lead-in
Delete a database only
when you are certain that it
is no longer needed.

Note

20 Module 3: Managing Database Files

Placing Database Files and Logs

! Managing Disk Storage

$ Performance

$ Fault tolerance

! Spreading Data Files

! Creating Transaction Logs on Separate Disks

! Placing the tempdb Database

You can improve performance and implement fault tolerance by managing the
placement of data files and transaction logs on disks.

SQL Server uses Microsoft Windows® 2000 input/output (I/O) calls to perform
disk reads and writes. SQL Server manages when and how disk I/O is
performed but relies on Windows to perform the underlying I/O operations. The
I/O subsystem includes the system bus, disk controller cards, disks, tape drives,
CD-ROM drives, and many other I/O devices. The disks are frequently the
biggest bottleneck in a system.

Managing Disk Storage
In the context of managing disk storage for SQL Server,

Performance refers in part to the speed of read and write operations.

Fault tolerance refers to the ability of the system to continue functioning
without data loss when part of the system fails.

In general, use disks formatted with NTFS that use 64 KB as the allocation unit.
Do not use compressed volumes.

Topic Objective
To discuss placing database
files and transaction logs
appropriately.

Lead-in
You can improve
performance and implement
fault tolerance by managing
the placement of data files
and transaction logs on
disks.

 Module 3: Managing Database Files 21

Spreading Data Files
You should spread as much data across as many physical drives as possible.
Doing so improves throughput through parallel data access by using multiple
files. In general, create one file for each physical disk and group the files into
one or more filegroups. SQL Server can perform:

! Parallel scans of the data if the computer has multiple processors and
multiple disks.

! Multiple parallel scans for a single table if the filegroup of the table contains
multiple files.

To spread data evenly across all disks, use RAID, and then use user-defined
filegroups to spread data across multiple hardware stripe sets, if needed.

An advanced technique is to separate the tables from nonclustered
indexes. A nonclustered index is an index in which the logical order of the
index is different than the physical, stored order of the rows on disk.

Creating Transaction Logs on Separate Disks
You should create the transaction log on a separate disk, or use RAID. Because
the transaction log file is written serially, using a separate, dedicated disk
allows the disk heads to stay in place for the next write operation. Using RAID
provides fault tolerance.

For example, if your production environment has multiple databases on a
server, you might want to use separate disks for each transaction log. This
strategy allows optimal performance.

Placing the tempdb Database
You should place the tempdb database on a fast I/O subsystem separate from
user databases to ensure optimal performance. You can use RAID to stripe the
tempdb database across multiple disks for better performance.

Note

22 Module 3: Managing Database Files

Optimizing a Database Using Hardware-based RAID

! Using Hardware-based RAID
$ Offers better performance than operating system-based

RAID
$ Enables you to replace failed drive without shutting down

the system
! Applying Types of RAID
$ Disk mirroring or disk duplexing (RAID 1) for redundancy

for the transaction log
$ Disk striping with parity for performance and redundancy

for data files and transaction logs
$ Disk mirroring with striping for maximum performance for

data files

Hardware-based RAID allows you to manage multiple disks by handling an
array of disks as one disk.

Using Hardware-based RAID
You should use hardware-based RAID rather than operating system-based
RAID for better performance. Using operating system-based RAID takes CPU
cycles away from other system requirements. Using hardware-based RAID
might also enable you to replace a failed drive without shutting down the
system. However, this advantage depends upon the particular implementation
of hardware RAID that you purchase.

Applying Types of RAID
When using hardware�based RAID to optimize your database, consider using
the following types of RAID:

! Disk mirroring or disk duplexing (RAID 1) for redundancy for the
transaction log.

! Disk striping with parity (RAID 5) for performance and redundancy for data
files and transaction logs.

! Disk mirroring with striping (RAID 10 or RAID 1 + RAID 0) for maximum
performance for data files.

Using RAID for fault tolerance does not replace proper backup
strategies. You must back up periodically to protect your databases and data
against catastrophic loss.

Topic Objective
To discuss how to optimize
a database by using
hardware-based RAID.

Lead-in
Hardware-based RAID
allows you to manage
multiple disks by handling
an array of disks as one
disk.

Important

 Module 3: Managing Database Files 23

Optimizing a Database Using Filegroups

! Introduction to User-defined Filegroups

! Creating User-defined Filegroups

! Using Filegroups for Performance

! Using Filegroups for Maintenance

! Considerations When Creating Filegroups

Filegroups improve performance by distributing data across multiple disks and
by using parallel threads for query processing. Filegroups also can facilitate
database maintenance.

Topic Objective
To introduce the topics in
this section.

Lead-in
In this section, you�ll learn
how to use filegroups to
improve performance.

24 Module 3: Managing Database Files

Introduction to User-defined Filegroups

Northwnd.ldfNorthwnd.ldf

E:\

User-defined FilegroupPrimary Filegroup Transaction Log

OrdHist1.ndfOrdHist1.ndf OrdHist2.ndfOrdHist2.ndf

D:\

Northwnd.mdfNorthwnd.mdf

C:\

sys�sys�sys�
sys�sys�sys�

sysuserssysuserssysusers
sysobjectssysobjectssysobjects

���
OrdersOrdersOrders

CustomersCustomersCustomers
ProductsProductsProducts

OrdHistYear2OrdHistYear2OrdHistYear2
OrdHistYear1OrdHistYear1OrdHistYear1

Northwind Database

If your hardware setup includes multiple disk drives, you can locate specific
objects and files on individual disks, grouping your database files into one or
more filegroups.

Types of Filegroups
SQL Server has a primary filegroup and may also have user-defined filegroups.

! The primary filegroup contains the primary data file with the system tables.
! A user-defined filegroup consists of data files that are grouped together for

allocation and administrative purposes.

Placing Files on Separate Disks
The illustration is an example of how you might place database files on separate
disks.

! You could create user-defined filegroups to separate files that are heavily
queried from those that are heavily modified. In the illustration, the
OrdHist1.ndf and OrdHist2.ndf files are placed on a separate disk from the
Products, Customers, and Orders tables because they are queried for
decision support rather than updated with current order information.

! You could also place the Ordhist1.ndf and Ordhst2.ndf files on separate
disks if they are both heavily queried.

! Transaction log files are not part of a filegroup. Transaction log space is
managed separately from data space.

Topic Objective
To introduce the concept of
filegroups.

Lead-in
If your hardware setup
includes multiple disk drives,
you can locate specific
objects and files on
individual disks, grouping
your database files into one
or more user-defined
filegroups

Delivery Tip
Explain that if the
Ordhist1.ndf and
Ordhst2.ndf are both heavily
queried, they should be
placed on separate disks.

 Module 3: Managing Database Files 25

Creating User-defined Filegroups

! Methods of Creating User-defined Filegroups
! Choosing a Default Filegroup
$ SQL Server designates one filegroup as the default

filegroup
$ Default filegroup is set to primary filegroup
$ Change the primary default filegroup if you create

user-defined filegroups
! Sizing the Primary Default Filegroup
! Viewing Filegroup Information

You can create multiple data files on separate disks and create a user-defined
filegroup to contain the files. If you use user-defined filegroups, try to have one
file per physical disk.

Methods of Creating User-defined Filegroups
You can create a user-defined filegroup at the time that you create a database,
or at a later time. You can use SQL Server Enterprise Manager or either the
CREATE DATABASE or ALTER DATABASE statement.

Choosing a Default Filegroup
SQL Server designates one filegroup as the default filegroup. The default
filegroup is set to the primary filegroup at the time of database creation, unless
you specify otherwise. The default filegroup contains the pages for all tables
and indexes that do not have a filegroup specified when they are created.

Sizing the Primary Default Filegroup
If the default filegroup is left as the primary filegroup, you must size the
primary filegroup appropriately or set it to automatically grow so that you do
not run out of space. The primary filegroup must be large enough to hold all
system tables and any tables and indexes not allocated to a user-defined
filegroup.

If the primary filegroup runs out of space, you will be unable to add any
information to the system tables. However, if a user-defined filegroup runs out
of space, only the user files that are specifically allocated to that filegroup are
affected.

Topic Objective
To discuss creating
filegroups.

Lead-in
You can create multiple files
on separate disks and
create a user-defined
filegroup to contain the files.

26 Module 3: Managing Database Files

Viewing Filegroup Information
You can view information about filegroups by using SQL Server Enterprise
Manager or system stored procedures in Transact-SQL.

System stored procedure Description

sp_helpfile [[@filename =] 'name'] Returns the physical names and attributes of

files associated with the current database. Use
this system stored procedure to determine the
names of files to attach to or detach from the
server.

sp_helpfilegroup [filegroup_name] Returns the names and attributes of filegroups
associated with the current database.

 Module 3: Managing Database Files 27

Using Filegroups for Performance

! Balancing Data Load Across Multiple Disks

! Using Parallel Threads to Improve Data Access

One File in
One Filegroup
One File in

One Filegroup

File Map Salesdata.mdf

Two Files in
One Filegroup
Two Files in

One Filegroup

Salesdata.mdf

Salesdata1.ndf

File Map

File Map

Using user-defined filegroups can improve performance by balancing data load
across multiple disks and by using parallel threads to improve data access.

Balancing Data Load Across Multiple Disks
When you create a table, you can assign it to a user-defined filegroup.
Filegroups use a proportional fill strategy across all files within the filegroup.
As data is written to the filegroup, each file is filled in parallel.

Each file is physically placed on a disk or set of disks. SQL Server maintains a
file map that associates each database object with its location on the disk. The
illustration shows that:

! If one file is created on a filegroup that spans four disks, one file map points
to the location of data on all four physical disks.

! If two files are created on a filegroup that spans four disks, two file maps
(one map for each file) point to the location of the data on all four physical
disks.

Using Parallel Threads to Improve Data Access
Whenever a table is accessed sequentially, the system creates a separate thread
for each file in parallel. When the system performs a table scan for a table in a
filegroup with four files, it uses four separate threads to read the data in parallel.

In general, using multiple files on separate disks improves performance.
However, too many files in a filegroup can cause too many parallel threads and
create bottlenecks.

Topic Objective
To illustrate how to use
filegroups to improve
performance.

Lead-in
Filegroups improve
performance by balancing
data load across multiple
disks and by using parallel
threads to improve data
access.

28 Module 3: Managing Database Files

Using Filegroups for Maintenance

! Back Up or Restore Files or Filegroups Rather Than an
Entire Database

! Group Tables and Indexes with Similar Maintenance
Requirements into Same Filegroups

! Assign an Individual High-Maintenance Table to Its Own
Filegroup

In addition to using filegroups to balance data loads for performance, you can
use filegroups to facilitate maintenance.

To use filegroups to simplify maintenance, you can:

! Back up or restore individual files or filegroups instead of backing up or
restoring an entire database. Backing up files or filegroups may be
necessary on large databases in order to have an effective backup and
restore strategy.

! Group tables and indexes with similar maintenance requirements into the
same filegroups.
You may want to perform maintenance on some objects more frequently
than others. For example, by creating two filegroups and assigning tables to
them, you can run daily maintenance tasks against the tables in a daily
group and weekly maintenance tasks against the tables in a weekly group.
This limits disk contention between the two filegroups.

! Assign an individual high-maintenance table to its own filegroup.
For example, a table that has frequent updates may need to be backed up
and restored separately from the database as a whole.

Topic Objective
To describe how to use
filegroups for maintenance.

Lead-in
You can use filegroups to
facilitate maintenance.

 Module 3: Managing Database Files 29

Considerations When Creating Filegroups

! Monitor System Performance

! Use Maintenance Requirements Rather Than
Performance Considerations

! Specify a User-defined Filegroup as the Default

! Be Aware That Filegroups Do Not Provide Fault
Tolerance

Creating user-defined filegroups is an advanced database design technique. You
must understand your database structure, data, transactions, and queries
thoroughly in order to determine the best way to place tables and indexes on
specific filegroups.

When creating filegroups, you should:

! Use maintenance requirements rather than performance considerations to
determine the number of filegroups.
In many cases, using the striping capabilities of RAID provides much of the
same performance gain that you might achieve by using user-defined
filegroups without the added administrative burden of defining and
managing them.

! Change the default filegroup if you use user-defined filegroups. If your
database has multiple filegroups, you should assign one of the user-defined
filegroups as the default. This will prevent unexpected table growth from
constraining the system tables in the primary filegroup.

! Be aware that filegroups do not provide fault tolerance. To include fault
tolerance, you can mirror each disk by using RAID 1. However, this is an
expensive option.

Topic Objective
To discuss the effects of
creating filegroups.

Lead-in
Creating user-defined
filegroups is an advanced
database design technique.
When creating filegroups,
you should�

Delivery Tip
Point out that it is possible
to over-engineer a
database. Applications may
receive more benefits from
RAID than from user-
defined filegroups.

30 Module 3: Managing Database Files

Optimizing the Database Using Filegroups with
Hardware-based RAID

Disk
Controller

DiskDisk
ControllerController

FilegroupFilegroup

Disk
Controller

DiskDisk
ControllerController

FileE

FileF

FileG

FileH

FileA

FileB

FileC

FileD

Transaction LogTransaction Log

Transaction LogTransaction Log

Disk
Controller

DiskDisk
ControllerController

Operating SystemOperating System

Disk
Controller

DiskDisk
ControllerController

You can combine filegroups with hardware-based RAID solutions. First, set up
hardware striping, and then use filegroups to spread data across multiple
hardware stripe sets.

The illustration shows two controllers pointing to two hardware stripe sets. Four
files are associated with each stripe set. A filegroup contains all files on both
stripe sets. This option spreads the data evenly across all disks while keeping
administration simple.

This configuration uses the best features of hardware-based RAID and
filegroups. It provides parallel data access by using a separate thread for each
file, and it spreads the load among multiple disks to reduce contention. Because
this approach creates one logical grouping, it is easy for a system or database
administrator to set up and manage.

Topic Objective
To illustrate how filegroups
can be combined with
hardware-based RAID.

Lead-in
You can combine filegroups
with hardware-based RAID
solutions.

 Module 3: Managing Database Files 31

Capacity Planning

! Estimating the Size of a Database

! Estimating the Amount of Data in Tables

One of the main functions of a system or database administrator is to allocate,
manage, and monitor the space and storage requirements for SQL Server and its
databases. Estimating the space that a database requires can help you plan your
storage layout and determine hardware requirements.

Topic Objective
To introduce thought
processes involved with
planning the size of
databases and associated
files.

Lead-in
When you estimate the size
of your database and
transaction log files, you
should be aware of the
following�

32 Module 3: Managing Database Files

Estimating the Size of a Database

Log (file)Log (file)

Activity

Frequency
Transaction
Size

Back Up

Data (file)Data (file)

TablesTables

of Rows

User and
System

IndexesIndexes

Key Value

of Rows

Fill Factor

When you plan your database, you set up the logical structure. Underneath that
structure are several physical files and objects that occupy disk space. These
include the transaction log and the tables and indexes that make up the data
files.

When you create a database, SQL Server creates a copy of the model database,
including the system tables that contain information on files, objects,
permissions, and constraints. These tables grow in size as you create objects in
your database. Each object that you create generates a new row to be inserted
into one or more system tables.

Factors to Consider When Estimating the Size of a
Database
Consider the following factors when you estimate the amount of space that your
database will occupy:

! Size of model database and system tables, including projected growth
! Amount of data in tables, including projected growth
! Number and size of indexes, especially the size of the key value, the number

of rows, and the fill factor setting

Topic Objective
To review the SQL Server
physical objects that
requires storage space.

Lead-in
When you estimate the size
of your database, it is
important to understand the
factors that affect the size of
the physical containers that
store the data.

 Module 3: Managing Database Files 33

! Size of the transaction log, which is influenced by the amount and frequency
of modification activity, the size of each transaction, and how often you
back up or dump the log

! Size of system tables, such as the number of users, objects, and so on, which
typically is not a large percentage of the database size

As a starting point, you should allocate 10 to 25 percent of the database
size to the transaction log for online transaction processing (OLTP)
environments. You can allocate a smaller percentage for databases that are used
primarily for queries.

Note

34 Module 3: Managing Database Files

Estimating the Amount of Data in Tables

! Calculate Number of Bytes in a Row

$ Total the bytes in the row

$ Average variable-length columns

! Determine Number of Rows in a Data Page

$ Divide 8060 by the total bytes in the row

$ Round down to the next whole number

! Divide Number of Rows in the Table by Number of
Rows in a Data Page

After you consider the amount of space that is allocated to the model database,
you should estimate the amount of data in your tables, including projected
growth. This can be calculated by determining the total number of rows, row
size, number of rows that fit on a page, and the total number of pages that are
required for each table in the database.

You can estimate the number of pages that are required for a table and the disk
space that the table occupies if you know the number of characters for each row
and the approximate number of rows that the table will have. Use the following
method:

! Calculate the number of bytes in a row by totaling the number of bytes that
each column contains. If one or more columns are defined as variable
length�such as a column for names�you can add the column average to
the total.

! Determine the number of rows that are contained in each data page. To do
this, divide 8060 by the number of bytes in a row. Round the result down to
the next whole number.

! Divide the approximate number of rows in the table by the number of rows
that are contained in each data page. The result equals the number of pages
that are needed to store your table.

A row cannot be larger than one page.

Topic Objective
To familiarize students with
the way that SQL Server
stores information.

Lead-in
To estimate the amount of
data that will be stored in
your database tables, you
first must understand the file
structure that is used to
create a database.

Note

 Module 3: Managing Database Files 35

Performance Considerations

! Use RAID to Improve Performance or Fault Tolerance

! Place Data Files and Transaction Logs on Separate
Physical Disks

! Use User-defined Filegroups to Simplify Backup
Strategies of Very Large Databases

If you want to achieve the best performance from your database, consider the
following guidelines.

! Use RAID to improve performance and provide fault tolerance. You should
use hardware-based RAID to gain faster access to data and to increase the
safety of your data, and apply the appropriate RAID level to achieve the
performance gains that you want while still maintaining the fault tolerance
levels that you require.
When possible, choose RAID disk striping before choosing user-defined
filegroups.

! Place data files and transaction logs on separate physical disks with separate
I/O controllers. This ensures that write operations to the transaction log do
not compete with concurrent INSERT, UPDATE, or DELETE actions to the
database tables.

! Use user-defined filegroups to place database objects on separate disks to
simplify backup strategies of very large databases. This allows you to set
individual backup strategies based on how often data is revised. If you have
a group of files that changes often, you can back up those tables or objects
frequently.

Topic Objective
To discuss some guidelines
related to performance.

Lead-in
If you want to achieve the
best performance from your
database, consider the
following guidelines.

36 Module 3: Managing Database Files

Recommended Practices

Change the Default FilegroupChange the Default Filegroup

Back Up the master DatabaseBack Up the master Database

Specify a Maximum File Size Specify a Maximum File Size

Make Initial Database File Size and Autogrow Increments LargeMake Initial Database File Size and Autogrow Increments Large

Use Disk Mirroring, Disk Striping with Parity or
Disk Mirroring with Striping
Use Disk Mirroring, Disk Striping with Parity or
Disk Mirroring with Striping

Create One File for Each Physical DiskCreate One File for Each Physical Disk

The following recommended practices will help you create and manage
databases:

! Back up the master database immediately after you create or modify a
database.

! Specify a maximum size when you use automatic file growth.
This will prevent any one file from filling the entire hard disk.

! Make the initial database file size and autogrow increments large enough to
avoid frequent file growth.
This will reduce SQL Server administrative activity and help keep a file
from becoming fragmented on the hard disk.

! Use disk mirroring, disk striping with parity, or disk mirroring with striping
for performance and fault tolerance.

! Create one file for each physical disk and group them into a single primary
filegroup.

! Change the default filegroup if you use user-defined filegroups. If your
database has multiple filegroups, you should assign one of the user-defined
filegroups as the default.
This will prevent unexpected table growth from constraining the system
tables in the primary filegroup.

Topic Objective
To present recommended
practices for creating and
managing databases.

Lead-in
The following are
recommended practices for
creating and managing
databases.

 Module 3: Managing Database Files 37

Lab A: Managing Database Files

Objectives
After completing this lab, you will be able to:

! Create a database by using the Create Database Wizard.
! Create a database by using SQL Server Enterprise Manager or the CREATE

DATABASE statement.
! Modify a database by using SQL Server Enterprise Manager or

Transact-SQL statements.
! View and modify database options by using SQL Server Enterprise

Manager or Transact-SQL statements.
! Delete a database by using SQL Server Enterprise Manager or

TransactSQL-statements.

Prerequisites
Before working on this lab, you must have script files for this lab. These script
files are located in C:\Moc\2072A\Labfiles\L03.

For More Information
If you require help in executing files, search SQL Query Analyzer Help for
�Execute a query�.

Other resources that you can use include:

! The Northwind database schema.
! SQL Server Books Online.

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will create
and modify databases.

Explain the lab objectives.

38 Module 3: Managing Database Files

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 30 minutes

 Module 3: Managing Database Files 39

Exercise 1
Using the Create Database Wizard

In this exercise, you will create a database by using the Create Database Wizard
in SQL Server Enterprise Manager.

! To create a database by using the Create Database Wizard in
SQL Server Enterprise Manager

In this procedure, you will use the Create Database Wizard in SQL Server
Enterprise Manager to create a database.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your

computer name as designated in the
nwtraders.msft classroom domain)

Password password

2. Start SQL Server Enterprise Manager.
3. In the console tree, expand Microsoft SQL Servers, and then expand

SQL Server Group.
4. Click your server.
5. On the Tools menu, click Wizards.
6. In the Select Wizard dialog box, expand Database, and then double-click

Create Database Wizard.
7. Complete the wizard by using the information in the following table. Use

the defaults provided by the wizard for any options that the table does
not specify.
Database name: SampleDBWizard

File

Location

File name

Initial size

Growth
size

Maximum
file size

Database C:\Program Files\Microsoft

SQL Server\MSSQL\Data
SampleDBWizard_Data 2 MB 2 MB Unrestricted

Log C:\Program Files\Microsoft
SQL Server\MSSQL\Data

SampleDBWizard_Log 2 MB 1 MB Unrestricted

Do not create a maintenance plan at this time.
8. In the console tree, expand Databases, right-click SampleDBWizard, and

then click Properties.
Review the properties of the SampleDBWizard database to verify that the
database has been created properly.

9. Close the SampleDBWizard Properties dialog box.

40 Module 3: Managing Database Files

Exercise 2
Creating a Database

In this exercise, you will create a database by using SQL Server Enterprise
Manager and Transact-SQL statements.

! To create a database by using SQL Server Enterprise Manager
In this procedure, you will create a database by using SQL Server Enterprise
Manager.
1. In the SQL Server Enterprise Manager console tree, right-click Databases,

and then click New Database.
2. Use the information in the following table to create a new database. Use

the defaults for any options that the table does not specify.
Database name: SampleDBEM
Collation name: Use the server default

File

Location

File name

Initial size

Growth
size

Maximum
file size

Database SampleDBEM_Data C:\Program Files\Microsoft

SQL Server\MSSQL\Data
5 MB 25% 15 MB

Log SampleDBEM_Log C:\Program Files\Microsoft
SQL Server\MSSQL\Data

2 MB 50% 5 MB

3. View the database properties of the SampleDBEM database to verify that
the database has been created properly.

 Module 3: Managing Database Files 41

! To create a database by using Transact-SQL statements in SQL Query
Analyzer

In this procedure, you will use the CREATE DATABASE statement to create a
database by using the information in the following table.
Database name: SampleDBTsql

File

File name

Location

Initial size

Maximum
file size

Growth
size

Database SampleDBTsql_Data.mdf C:\Program Files\Microsoft

SQL Server\MSSQL\Data
7 MB Unrestricted 3 MB

Log SampleDBTsql_Log.ldf C:\Program Files\Microsoft
SQL Server\MSSQL\Data

3 MB 10 MB 1 MB

1. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Windows Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Windows 2000 local
group, Administrators. All members of this group are automatically mapped
to the SQL Server sysadmin role.

2. Open C:\Moc\2072A\Labfiles\L03\Creasmpl.sql, review its contents, and
then execute it.
This script creates the SampleDBTsql database by using the CREATE
DATABASE statement

3. Switch to SQL Server Enterprise Manager.
4. In the console tree, right-click Databases, and then click Refresh.
5. View the database properties of the SampleDBTsql database to verify that

the database has been created properly.

42 Module 3: Managing Database Files

Exercise 3
Modifying a Database

In this exercise, you will modify a database by changing the initial size, the
growth increment, and the maximum size specification of a database file.

! To modify a database by using SQL Server Enterprise Manager
In this procedure, you will change the initial size, the growth increment and the
maximum size of the SampleDBEM database that you created in Exercise 2.
1. In SQL Server Enterprise Manager, in the console tree, expand Databases,

right-click SampleDBEM, and then click Properties.
2. Use the information in the following table to modify the properties of the

SampleDBEM database.

File name

Space allocated

Growth
increment

Maximum
file size

SampleDBEM_Data 10 MB 10% Unrestricted

SampleDBEM_Log 5 MB 20% 15 MB

3. View the database properties for the SampleDBEM database to verify that
the database has been modified properly.

! To modify a database by using Transact-SQL statements
In this procedure, you will increase the maximum size of the log file to 20
megabytes (MB) for the SampleDBTsql database that you created in
Exercise 2.
1. Switch to SQL Query Analyzer.
2. Open C:\Moc\2072A\Labfiles\L03\Modismpl.sql, review its contents, and

then execute it.
This script alters the SampleDBTsql database by using the ALTER
DATABASE statement.

3. Switch to SQL Server Enterprise Manager and view the database properties
for the SampleDBTsql database to verify that the database has been
modified properly.

 Module 3: Managing Database Files 43

Exercise 4
Viewing Database Information and Changing Database Options

In this exercise, you will view information about databases and change database
options.

! To view information about databases by using SQL Server Enterprise
Manager

In this procedure, you will use SQL Server Enterprise Manager to view
information about the SampleDBEM database.
1. In the SQL Server Enterprise Manager console tree, expand Databases, and

then click SampleDBEM.
2. On the View menu, click Taskpad.
3. In the details pane, review the displayed information.

! To view information about databases by using Transact-SQL
statements

In this procedure, you will use system stored procedures to view information
about previously created databases.
1. Switch to SQL Query Analyzer and, on the toolbar, click Clear Window.
2. In the query window, type and then execute the following system stored

procedure to display information about all databases in this instance of
SQL Server.
EXEC sp_helpdb

3. Type and then execute the following system stored procedure to display

information about the SampleDBTsql database.
EXEC sp_helpdb SampleDBTsql

4. On the toolbar, click Clear Window.
5. Type and then execute the following system stored procedure to display

information about the amount of space used in the SampleDBTsql database.
USE SampleDBTsql
EXEC sp_spaceused

6. On the toolbar, click Clear Window.
7. Type and then execute the following system stored procedure to display

information about space usage for the sysobjects table in the
SampleDBTsql database.
EXEC sp_spaceused sysobjects

44 Module 3: Managing Database Files

! To change the database to read-only mode by using SQL Server
Enterprise Manager

In this procedure, you will use SQL Server Enterprise Manager to change
database options.
1. In the SQL Server Enterprise Manager console tree, expand Databases,

right-click SampleDBEM, and then click Properties.
2. Click the Options tab, and review the available database options.
3. Select the Read-only check box to change the SampleDBEM database to

read-only mode, and then click OK.

! To view database options and change database options by using
Transact-SQL statements

In this procedure, you will use the sp_dboption system stored procedure to
view database options and change the SampleDBTsql database to read-only
mode.
1. Switch to SQL Query Analyzer and, on the toolbar, click Clear Window.
2. In the query window, type and then execute the following system stored

procedure to view a list of settable database options.
EXEC sp_dboption

3. Type and execute the following system stored procedure to view a list of

database options that are enabled for the SampleDBTsql database.
EXEC sp_dboption SampleDBTsql

4. Type and then execute the following sp_dboption system stored procedure

to change the SampleDBTsql database to read-only mode.
EXEC sp_dboption SampleDBTsql, 'read only', 'true'

5. On the toolbar, click Clear Window.
6. Type and then execute the following sp_dboption system stored procedure

to verify that the SampleDBTsql database is now in read-only mode.
EXEC sp_dboption SampleDBTsql

 Module 3: Managing Database Files 45

Exercise 5
Deleting a Database

In this exercise, you will delete a database by using SQL Server Enterprise
Manager and Transact-SQL statements.

! To delete a database by using SQL Server Enterprise Manager
In this procedure, you will use SQL Server Enterprise Manager to delete the
SampleDBEM database.
1. In the SQL Server Enterprise Manager console tree, expand Databases,

right-click SampleDBEM, and then click Delete.
2. Click Yes to delete the SampleDBEM database and all backup and restore

history for the database.
3. Verify that the SampleDBEM database has been deleted.

! To delete one or more databases by using Transact-SQL statements
In this procedure, you will use Transact-SQL statements to delete two databases
that you created in a previous exercise.
1. Switch to SQL Query Analyzer.
2. Open C:\Moc\2072A\Labfiles\L03\Dropdb.sql, review its contents, and then

execute it.
This script deletes the SampleDBTsql and SampleDBWizard databases by
using a single DROP DATABASE statement.

3. Review the output in the results pane and verify that you have deleted the
SampleDBTsql and SampleDBWizard databases.

46 Module 3: Managing Database Files

Review

! Introduction to Data Structures
! Creating Databases
! Managing Databases
! Placing Database Files and Logs
! Optimizing a Database Using Hardware-based RAID
! Optimizing a Database Using Filegroups
! Optimizing the Database Using Filegroups with

Hardware-based RAID
! Capacity Planning

1. You are creating a database that is updated infrequently; it is used mainly
for decision support and is query-intensive. What percentage of the database
would you allocate to the transaction log?
Because the database has little insert, update, or delete activity, it might
make sense to reduce the default percentage from 25 percent to
something closer to 10 percent. These percentages are general estimates
only. The actual size would depend on the specific environment,
including the size of the database, the size of the transactions involved,
and the recovery model used.

2. What are the advantages of using user-defined filegroups? What is the main
disadvantage?
The advantages are that you can place tables on specific disks to
eliminate disk contention and simplify backup strategies. The main
disadvantage is the administrative complexity involved.

3. What is the advantage of using RAID?
RAID provides fault tolerance, improves performance by spreading
data across multiple drives, and is simpler to administer than user-
defined filegroups.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

