

Contents

Overview 1

Displaying the Text of
a Programming Object 2

Introduction to Views 4

Advantages of Views 6

Creating Views 7

Introduction to Stored Procedures 12

Introduction to Triggers 15

Introduction to User-defined Functions 16

Recommended Practices 21

Lab A: Working with Views 22

Review 28

Module 9: Introduction
to Programming Objects

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, BackOffice, MS-DOS, PowerPoint, Visual Studio, Windows, Windows Media, and
Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the
U.S.A. and/or other countries.

The names of companies, products, people, characters, and/or data mentioned herein are fictitious
and are in no way intended to represent any real individual, company, product, or event, unless
otherwise noted.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Project Lead: Cheryl Hoople
Instructional Designer: Cheryl Hoople
Technical Lead: LeRoy Tuttle
Program Manager: LeRoy Tuttle
Graphic Artist: Kimberly Jackson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Editorial Contributor: Elizabeth Reese
Copy Editor: Bill Jones (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Tools Specialist: Julie Challenger
Production Support: Lori Walker (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: Testing Testing 123
Classroom Automation: Lorrin Smith-Bates
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 9: Introduction to Programming Objects iii

Instructor Notes
This module describes how to create programming objects that enable the user
to view and manipulate data while hiding the complexity of the underlying
database structure. The module introduces these programming objects�views,
stored procedures, triggers, and user-defined functions�and describes the
advantages of using them.

At the end of this module, students will be able to:

! Display the text of a programming object.
! Describe the concept of views.
! List the advantages of using views.
! Create views.
! Describe stored procedures.
! Describe triggers.
! Describe user-defined functions.

Materials and Preparation
Required Materials
To teach this module, you will need the following materials:

! Microsoft® PowerPoint® file 2071A_09.ppt.
! The C:\Moc\2071A\Demo\Ex_09.sql example file contains all of the

example scripts from the module, unless otherwise noted in the module.

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials.
! Complete the lab.

Presentation:
60 Minutes

Lab:
30 Minutes

iv Module 9: Introduction to Programming Objects

Module Strategy
Use the following strategy to present this module:

! Displaying the Text of a Programming Object
Introduce the sp_helptext system stored procedure.

! Introduction to Views
Introduce the concept of views. Point out that views are simply stored
queries.

! Advantages of Views
List the advantages of using views.

! Creating Views
Views provide the ability to store a predefined query as an object in the
database for later use. They offer a convenient way to hide sensitive data or
the complexities of a database design and to provide a set of information
without requiring the user to write or execute Transact-SQL statements.
Discuss how to create, alter, and drop views. Emphasize the importance of
testing the statement that creates the view prior to creation of the view itself.
Cover the restrictions and guidelines that users must consider. Describe how
users can encrypt the view definition. List the system tables that contain the
view definition information.

! Introduction to Stored Procedures
Note that this topic introduces stored procedures and describes how to use
stored procedures to improve application design and performance by
encapsulating business rules to process common queries and data
modifications. Point out that this topic discusses what stored procedures are
and the advantages of using them. Emphasize that this topic does not
attempt to comprehensively address stored procedures.
Introduce the elements of a stored procedure. Note that students have
executed system stored procedures throughout the course, so they should be
familiar with how they work. Emphasize that the primary focus of this topic
is on creating stored procedures that are defined in a user�s local database.
Discuss how stored procedures are processed in order to explain why they
execute faster than batches. Contrast stored procedure performance with the
way that batches are processed. Highlight the advantages of stored
procedures to point out why students would want to create them in their
applications.

! Introduction to Triggers
Triggers are useful tools for database implementers who want certain
actions to be performed whenever data in a specific table is inserted,
updated, or deleted. The goal of this section is to promote awareness of
triggers and is intended only as an introductory overview.
Define triggers. Point out that a trigger is a special type of stored procedure
that is assigned to a specific table. Then discuss three key points�that
triggers are invoked automatically; that they cannot be called by anything
other than a trigger action to the trigger table; and that they are transactions.

 Module 9: Introduction to Programming Objects v

! Introduction to User-defined Functions
In addition to a number of system-defined functions that are built-in,
Microsoft SQL Server� 2000 allows users to create their own user-defined
functions.
Introduce the general syntax for creating a function, specifically CREATE
FUNCTION, the function name, the input parameters, the RETURNS
clause, and some of the restrictions on creating a user-defined function.

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing
Microsoft Official Curriculum (MOC) courseware.

The lab in this module is dependent on the classroom configuration
that is specified in the Customization Information section at the end of the
Classroom Setup Guide for course 2071A, Querying Microsoft SQL Server
2000 with Transact-SQL.

Lab Setup
There are no lab setup requirements that affect replication or customization.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Important

 Module 9: Introduction to Programming Objects 1

Overview

! Displaying the Text of a Programming Object

! Introduction to Views

! Advantages of Views

! Creating Views

! Introduction to Stored Procedures

! Introduction to Triggers

! Introduction to User-defined Functions

This module describes how to create programming objects that enable the user
to view and manipulate data without awareness of the complexity of the
underlying database structure. The module introduces these programming
objects�views, stored procedures, triggers, and user-defined functions�and
describes the advantages of using them.

At the end of this module, you will be able to:

! Display the text of a programming object.
! Describe the concept of views.
! List the advantages of using views.
! Create views.
! Describe stored procedures.
! Describe triggers.
! Describe user-defined functions.

Slide Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
about programming objects.

2 Module 9: Introduction to Programming Objects

Displaying the Text of a Programming Object

! EXEC sp_helptext [@objectname =] �name�

! Not Every Programming Object Has Associated Text

USE library
EXEC sp_helptext 'dbo.OverdueView'
GO

USE library
EXEC sp_helptext 'dbo.OverdueView'
GO

You can use system stored procedures to perform many administrative and
informational activities in Microsoft® SQL Server� 2000. For example, you can
use the sp_helptext system stored procedure to retrieve the text associated with
a programming object.

EXEC sp_helptext [@objname =] 'name'

The parameter is the name of the object in the current database for which
SQL Server will display the text of the definition information.

The sp_helptext system stored procedure prints out the text used to create an
object in multiple rows, each with 255 characters of the Transact-SQL
definition. The definition resides in the text in the syscomments table of the
current database only.

Slide Objective
To describe how to display
the text associated with a
programming object.

Lead-in
You can display the text
definition of a programming
object with a special system
stored procedure.

Syntax

Delivery Tip
Throughout this module,
always use sp_helptext to
display the definition of
programming objects.

 Module 9: Introduction to Programming Objects 3

This example returns the text that defines the dbo.OverdueView view.

USE library
EXEC sp_helptext 'dbo.OverdueView'
GO

Text
--

/*
OverdueView: Queries OnloanView. (3 table join.)
Lists the member, title, and loan information of a copy on
loan that is overdue.
*/

CREATE VIEW dbo.OverdueView
AS
SELECT *
FROM OnloanView
WHERE OnloanView.due_date < GETDATE()

Use EXEC sp_helptext to verify the definition of newly created
programming objects.

Example

Result

Tip

4 Module 9: Introduction to Programming Objects

Introduction to Views

TitleViewTitleViewTitleView

title title authorauthor

Last of the Mohicans
The Village Watch-Tower
Poems

Last of the Mohicans
The Village Watch-Tower
Poems

James Fenimore Cooper
Kate Douglas Wiggin
Wilfred Owen

James Fenimore Cooper
Kate Douglas Wiggin
Wilfred Owen

titletitletitle

title_notitle_no title title authorauthor synopsissynopsis

1
2
3

1
2
3

Last of the Mohicans
The Village Watch-Tower
Poems

Last of the Mohicans
The Village Watch-Tower
Poems

James Fenimore Cooper
Kate Douglas Wiggin
Wilfred Owen

James Fenimore Cooper
Kate Douglas Wiggin
Wilfred Owen

~~~
~~~
~~~

~~~
~~~
~~~

User�s ViewUser�s ViewUser�s View

USE library
CREATE VIEW dbo.TitleView
AS
SELECT title, author
FROM title

GO

USE library
CREATE VIEW dbo.TitleView
AS
SELECT title, author
FROM title

GO

A view is an alternate way of looking at data from one or more tables.

A view can be thought of as either a virtual table or a stored query. The data
accessible through a view is not stored in the database as a distinct object. What
is stored in the database is a SELECT statement. The result set of the SELECT
statement forms the virtual table returned by the view. You can use this virtual
table by referencing the view name in Transact-SQL statements the same way
that you reference a table.

You can use a view to do any or all of these functions:

! Restrict a user to specific rows in a table.
For example, allow an employee to see only the rows recording his or her
work in a labor-tracking table.

! Restrict a user to specific columns.
For example, allow employees who do not work in payroll to see the name,
office, work phone, and department columns in an employee table, but do
not allow them to see any columns with salary information or personal
information.

! Join columns from multiple tables so that they look like a single table.
! Aggregate information instead of supplying details.

For example, present the sum of a column, or the maximum or minimum
value from a column.

Slide Objective
To introduce the concept
of views and provide
an example.

Lead-in
A view is an alternate way of
looking at data from one or
more tables.

Delivery Tip
Remind students that other
modules in this course cover
how to write ad-hoc queries.

Point out that this module
describes how to store
queries as objects (views,
stored procedures, and
triggers) in the database.

 Module 9: Introduction to Programming Objects 5

This example creates the titleview view in the library database. The view
displays two columns in the title table.

USE library
CREATE VIEW dbo.TitleView
AS
SELECT title, author
 FROM title
GO

SELECT * from TitleView
GO

Title author
Last of the Mohicans James Fenimore Cooper
The Village Watch-Tower Kate Douglas Wiggin
Self Help; Conduct & Perseverance Samuel Smiles
.
.
.

(50 row(s) affected)

Example

Query

Result

6 Module 9: Introduction to Programming Objects

Advantages of Views

! Focus the Data for Users
Focus on important or appropriate data only
Limit access to sensitive data

! Mask Database Complexity

Hide complex database design

Simplify complex queries, including distributed queries to
heterogeneous data

! Simplify Management of User Permissions
! Organize Data for Export to Other Applications

Views offer several advantages, including focusing data for users, masking data
complexity, simplifying permission management, and organizing data for
export to other applications.

Focus the Data for Users
Views create a controlled environment that allows access to specific data and
conceals other data. Data that is unnecessary, sensitive, or inappropriate can be
left out of a view. Users can manipulate the display of data in a view, similar to
a table. In addition, with the proper permissions and a few restrictions, users
can modify the data that a view produces.

Mask Database Complexity
Views shield the complexity of the database design from the user. This provides
developers with the ability to change the design without affecting user
interaction with the database. In addition, users can see a friendlier version of
the data by using names that are easier to understand than the cryptic names that
are often used in databases.

Complex queries, including distributed queries to heterogeneous data, can also
be masked through views. The user queries the view instead of writing the
query or executing a script.

Simplify Management of User Permissions
Instead of granting permission for users to query specific columns in base
tables, database owners can grant permission for users to query data through
views only. This also protects changes in the design of the underlying base
tables. Users can continue to query the view without interruption.

Organize Data for Export to Other Applications
You can create a view based on a complex query that joins two or more tables
and then export the data to another application for further analysis.

Slide Objective
To discuss why users would
want to create or use views.

Lead-in
Views offer several
advantages.

 Module 9: Introduction to Programming Objects 7

$$$$ Creating Views

! Defining Views

! Restrictions on Creating Views

! Example: Viewing Information from Multiple Tables

This section describes how to create views and discusses restrictions to consider
when creating views. It also provides an example of how to view information
from two or more joined tables in one central location.

Slide Objective
To introduce the topics that
this section covers.

Lead-in
This section describes how
to create views.

8 Module 9: Introduction to Programming Objects

Defining Views

USE library
CREATE VIEW dbo.UnpaidFinesView (Member, TotalUnpaidFines)
AS
SELECT member_no, (sum(fine_assessed-fine_paid))
FROM loanhist
GROUP BY member_no
HAVING SUM(fine_assessed-fine_paid) > 0

GO

USE library
CREATE VIEW dbo.UnpaidFinesView (Member, TotalUnpaidFines)
AS
SELECT member_no, (sum(fine_assessed-fine_paid))
FROM loanhist
GROUP BY member_no
HAVING SUM(fine_assessed-fine_paid) > 0

GO

SELECT *
FROM UnpaidFinesView

GO

SELECT *
FROM UnpaidFinesView

GO

Example 1: Creating a ViewExample 1: Creating a View

Example 2: Querying a ViewExample 2: Querying a View

When you create a view, SQL Server verifies the existence of objects that are
referenced in the view definition. Your view name must follow the rules for
identifiers. Specifying a view owner name is optional. You should develop a
consistent naming convention to distinguish views from tables. For example,
you could add the word View as a suffix to each view object that you create.
This allows similar objects (tables and views) to be easily distinguished when
you query the INFORMATION_SCHEMA.TABLES view.

CREATE VIEW owner.view_name [(column[, n.])]
[WITH ENCRYPTION]
AS
 select_statement

[WITH CHECK OPTION]

To execute the CREATE VIEW statement, you must be a member of the
system administrators (sysadmin) role, database owner (db_owner) role, or the
data definition language administrator (db_ddladmin) role, or you must have
been granted the CREATE VIEW permission. You must also have SELECT
permission on all tables or views that are referenced within the view.

To avoid situations in which the owner of a view and the owner of the
underlying tables differ, it is recommended that the dbo user own all objects in
a database. Always specify the dbo user as the owner name when you create the
object; otherwise, the object will be created with your user name as the
object owner.

Slide Objective
To describe how to define
views.

Lead-in
When you create a view,
SQL Server verifies the
existence of objects that are
referenced in the view
definition.

Delivery Tip
Recommend that students
develop a consistent naming
convention to distinguish
views from tables and
specify dbo as the
owner name.

Syntax

 Module 9: Introduction to Programming Objects 9

The contents of a view are specified with a SELECT statement. With a few
limitations, views can be as complex as you like. You must specify column
names if:

! Any of the columns of the view are derived from an arithmetic expression,
built-in function, or constant.

! Any columns in tables that will be joined share the same name.

When you create views, it is important to test the SELECT
statement that defines the view in order to ensure that SQL Server returns the
expected result set. After you have written and tested the SELECT statement
and verified the results, create the view.

Here is an example of a view that creates a column (TotalUnpaidFines) that
contains the values that are calculated by subtracting the value of the fine_paid
column from the fine_assessed column.

USE library
CREATE VIEW dbo.UnpaidFinesView (Member, TotalUnpaidFines)
AS
SELECT member_no, (sum(fine_assessed-fine_paid))
 FROM loanhist
 GROUP BY member_no
 HAVING SUM(fine_assessed-fine_paid) > 0
GO

This example queries the view to see the results.

SELECT *
 FROM UnpaidFinesView
GO

Member TotalUnpaidFines

7744

83.2

(1 row(s) affected)

Warning: Null value eliminated from aggregate

Delivery Tip
Column names can be
specified in one of two
ways: in the SELECT
statement, by using column
aliasing, or in the CREATE
VIEW statement.

Important

Example 1

Example 2

Result

10 Module 9: Introduction to Programming Objects

Restrictions on Creating Views

% Can Reference a Maximum of 1024 Columns

% Cannot Include COMPUTE or COMPUTE BY clauses

% Cannot Include ORDER BY Clause, Unless Used in
Conjunction with a TOP Clause

% Cannot Include the INTO Keyword

% Cannot Reference a Temporary Table

% Must Be Expressed as a Single Transact-SQL Batch

When you create views, consider the following restrictions:

! Views cannot reference more than 1024 columns.
! The CREATE VIEW statement cannot include the COMPUTE or

COMPUTE BY clauses.
! The CREATE VIEW statement cannot include the ORDER BY clause,

unless used with a TOP clause in the SELECT statement.
! The CREATE VIEW statement cannot include the INTO keyword.
! Views cannot reference temporary tables.
! The CREATE VIEW statement cannot be combined with other Transact-

SQL statements in a single batch.

Slide Objective
To describe restrictions
when creating views.

Lead-in
When you define views,
consider these restrictions.

 Module 9: Introduction to Programming Objects 11

Example: Viewing Information from Multiple Tables

lastnamelastnamelastname

Thomas
Funk

Thomas
Funk

firstnamefirstnamefirstname

Gary
Frank

Gary
Frank

Birth DateBirth DateBirth Date

92.01.16
84.01.18

92.01.16
84.01.18

member_nomember_nomember_no

12
13

12
13

adult_noadult_noadult_no

11
6

11
6

birth_datebirth_datebirth_date

1992-01-16 00:00:00.000
1984-01-18 00:00:00.000

1992-01-16 00:00:00.000
1984-01-18 00:00:00.000

member juvenile

BirthdayView
USE library
CREATE VIEW dbo.birthdayview

(lastname, firstname, birthday)
AS
SELECT lastname, firstname

,CONVERT(char(8), birthday, 2)
FROM member
INNER JOIN juvenile
ON member.member_no = juvenile.member_no

GO

USE library
CREATE VIEW dbo.birthdayview

(lastname, firstname, birthday)
AS
SELECT lastname, firstname

,CONVERT(char(8), birthday, 2)
FROM member
INNER JOIN juvenile
ON member.member_no = juvenile.member_no

GO

member_nomember_nomember_no

11
12
13
14

11
12
13
14

lastnamelastnamelastname

Thomas
Thomas
Funk
Rudd

Thomas
Thomas
Funk
Rudd

firstnamefirstnamefirstname

Gary
Clair
Frank
Clair

Gary
Clair
Frank
Clair

middleinitialmiddleinitialmiddleinitial

~~~
~~~
~~~
~~~

~~~
~~~
~~~
~~~

photographphotographphotograph

~~~
~~~
~~~
~~~

~~~
~~~
~~~
~~~


You often create views to view information from two or more joined tables in
one central location.

In this example, birthdayview that joins the member and juvenile tables
is created.

USE library
CREATE VIEW dbo.birthdayview
 (lastname, firstname, birthday)
AS
SELECT lastname, firstname
 ,CONVERT(char(8), birthday, 2)
 FROM member
 INNER JOIN juvenile
 ON member.member_no = juvenile.member_no
GO

If we query the view to determine whether there are any null values in the
birthday column, it correctly returns no rows.

SELECT *
 FROM birthdayview
 WHERE birthday is null
GO

lastname firstname birthday

(0 row(s) affected)

Slide Objective
To give an example of
viewing information from
multiple tables.

Lead-in
You often create views to
view information from two or
more joined tables in one
central location.

Example

Delivery Tip
The CONVERT function in
the query changes the
birth_date column, which
is defined with the
datetime data type, to the
ANSI format.

Result

12 Module 9: Introduction to Programming Objects

$$$$ Introduction to Stored Procedures

! Defining Stored Procedures

! Advantages of Using Stored Procedures

This section introduces stored procedures and lists some of the advantages of
using stored procedures.

Slide Objective
To list the topics that this
section covers.

Lead-in
This section introduces
stored procedures and lists
some of the advantages of
using stored procedures.

Key Points
Emphasize that this topic
does not attempt to
comprehensively address
stored procedures. Refer
students to SQL Server
Books Online for more
information.

 Module 9: Introduction to Programming Objects 13

Defining Stored Procedures

! A Stored Procedure Is a Precompiled Collection of
Transact-SQL Statements

! A Stored Procedure Encapsulates Repetitive Tasks
! Stored Procedures Can:

Contain statements that perform operations

Accept input parameters
Return status value to indicate success or failure
Return multiple output parameters

A stored procedure is a named collection of precompiled Transact-SQL
statements that is stored on the server. Using a stored procedure is a method of
encapsulating repetitive tasks that executes efficiently. Stored procedures
support user-declared variables, control-of-flow execution, and other advanced
programming features.

Stored procedures in SQL Server are similar to procedures in other
programming languages in that they can:

! Contain statements that perform operations in the database, including the
ability to call other stored procedures.

! Accept input parameters.
! Return a status value to a calling stored procedure or batch to indicate

success or failure (and the reason for failure).
! Return multiple values to the calling stored procedure or batch in the form

of output parameters.

This example shows the creation of a simple stored procedure with a complex
SELECT statement. This stored procedure returns all authors (first and last
names supplied), their titles, and their publishers from a four-table join in the
pubs database. This stored procedure does not use any parameters.

USE pubs
CREATE PROCEDURE au_info_all
AS
SELECT au_lname, au_fname, title, pub_name
 FROM authors AS a
 INNER JOIN titleauthor AS ta ON a.au_id = ta.au_id
 INNER JOIN titles AS t ON t.title_id = ta.title_id
 INNER JOIN publishers AS p ON t.pub_id = p.pub_id
GO

Slide Objective
To define stored
procedures.

Lead-in
A stored procedure is a
named collection of
precompiledTransact-SQL
statements that is stored on
the server.

Example

14 Module 9: Introduction to Programming Objects

Advantages of Using Stored Procedures

! Share Application Logic

! Shield Database Schema Details

! Provide Security Mechanisms

! Improve Performance

! Reduce Network Traffic

Stored procedures offer numerous advantages. Stored procedures significantly
reduce resource and time requirements for execution. They can:

! Share application logic with other applications, thereby ensuring consistent
data access and modification.
Stored procedures can encapsulate business functionality. Business rules or
policies encapsulated in stored procedures can be changed in a single
location. All clients can use the same stored procedures to ensure consistent
data access and modification.

! Shield users from exposure to the details of the tables in the database. If a
set of stored procedures supports all of the business functions that users
must perform, users never have to access the tables directly.

! Provide security mechanisms. Users can be granted permission to execute a
stored procedure even if they do not have permission to access the tables or
views that are referred to in the stored procedure.

! Improve performance. Stored procedures implement many tasks as a series
of Transact-SQL statements. Conditional logic can be applied to the results
of the first Transact-SQL statements to determine which subsequent
Transact-SQL statements will be executed. All of these Transact-SQL
statements and conditional logic become part of a single execution plan on
the server.

! Reduce network traffic. Rather than sending hundreds of Transact-SQL
statements over the network, users can perform a complex operation by
sending a single statement, which reduces the number of requests that pass
between the client and server.

Slide Objective
To show the advantages of
stored procedures.

Lead-in
Stored procedures offer
numerous advantages.

Network traffic is reduced
because fewer packets are
required to send requests.

 Module 9: Introduction to Programming Objects 15

Introduction to Triggers

! A Trigger Is a Special Type of Stored Procedure

! A Trigger Is:

Associated with a table

Invoked automatically

Not called directly

Treated as part of the transaction that fired it

A trigger is a special type of stored procedure that executes whenever an
attempt is made to modify data in a table that the trigger protects.

Triggers are best used to maintain low-level data integrity, not to return query
results. The primary benefit of triggers is that they can contain complex
processing logic. A trigger is:

Triggers are defined on a specific table, which is
referred to as the trigger table.

When an attempt is made to insert, update, or delete
data in a table and a trigger for that particular action has been defined on the
table, the trigger executes automatically. It cannot be circumvented.

Unlike standard system stored procedures, triggers cannot
be called directly and do not pass or accept parameters.

The trigger and the statement
that fires it are treated as a single transaction that can be rolled back from
anywhere within the trigger. The statement that invokes the trigger is
considered the beginning of an implicit transaction, unless an explicit BEGIN
TRANSACTION statement is included. The user that invoked the trigger must
also have permission to perform all of the statements on all of the tables. If the
trigger fails, then the transaction that called it also fails.

Slide Objective
To introduce the concept of
a trigger.

Lead-in
A trigger is a special type of
stored procedure.

Key Points
Emphasize that this topic
does not attempt to
comprehensively address
triggers. Refer students to
SQL Server Books Online
for more information. Associated with a Table

Invoked Automatically

Not Called Directly

Treated as Part of the Transaction That Fired It

16 Module 9: Introduction to Programming Objects

$$$$ Introduction to User-defined Functions

! What Is a User-defined Function?

! Creating a User-defined Function

Functions are subroutines made up of one or more Transact-SQL statements
that you can use to encapsulate code for reuse. In addition to a number of
system-defined functions that are built-in, SQL Server allows users to create
their own user-defined functions.

Slide Objective
To introduce the topics that
this section covers.

Lead-in
This section provides an
overview of user-defined
functions and explains why
and how to use them.

Key Points
Emphasize that this topic
does not attempt to
comprehensively address
user-defined functions.
Refer students to
SQL Server Books Online
for more information.

 Module 9: Introduction to Programming Objects 17

What Is a User-defined Function?

! Scalar Functions

Similar to a built-in function

Returns a single data value built by a series of statements

! Multi-Statement Table-valued Functions

Content like a stored procedure

Referenced like a view

! In-line Table-valued Functions

Similar to a view with parameters

Returns a table as the result of single SELECT statement

With SQL Server, you can design your own functions to supplement and extend
the system-supplied (built-in) functions. You can use user-defined functions as
part of a Transact-SQL query, in the same way that you use system-supplied
functions.

A user-defined function takes zero or more input parameters and returns either a
scalar value or a table. Input parameters can be any data type except
timestamp, cursor, or table. User-defined functions do not support output
parameters.

SQL Server 2000 supports three types of user-defined functions:

Scalar Functions
This type of user-defined function returns a single data value of the type defined
in a RETURNS clause. The body of the function, defined in a BEGIN-END
block, contains the series of Transact-SQL statements that return the value. The
return type can be any data type except text, ntext, image, cursor, or
timestamp.

Multi-Statement Table-valued Functions
This type of user-defined function returns a table built by one or more Transact-
SQL statements. The function body is defined in a BEGIN-END block and is
similar to a stored procedure. Unlike a stored procedure, though, a multi-
statement table-valued function can be referenced in the FROM clause of a
SELECT statement as if it were a view.

In-line Table-valued Functions
This type of user-defined function returns a table that is the result of a single
SELECT statement. An in-line table-valued function provides a representation
of data similar to a view. This type of function offers more flexibility than
views in the use of parameters and extends the features of indexed views.

Slide Objective
To introduce the concept of
a user-defined function and
to state the advantages of
using one.

Lead-in
There are three types of
user-defined functions.

18 Module 9: Introduction to Programming Objects

Creating a User-defined Function

! Creating a User-defined Function

! Restrictions on User-defined Functions

USE northwind
CREATE FUNCTION fn_NewRegion (@myinput nvarchar(30))

RETURNS nvarchar(30)
BEGIN

IF @myinput IS NULL
SET @myinput = 'Not Applicable�

RETURN @myinput
END
GO

USE northwind
CREATE FUNCTION fn_NewRegion (@myinput nvarchar(30))

RETURNS nvarchar(30)
BEGIN

IF @myinput IS NULL
SET @myinput = 'Not Applicable�

RETURN @myinput
END
GO

You create a user-defined function in much the same way that you create a view
or stored procedure.

Creating a User-defined Function
You create user-defined functions by using the CREATE FUNCTION
statement. Each fully qualified user-defined function name
(database_name.owner_name.function_name) must be unique. The statement
specifies the input parameters with their data types, the processing instructions,
and the value returned with each data type.

CREATE FUNCTION [owner_name.] function_name
([{ @parameter_name scalar_parameter_data_type [= default] } [,...n]])
RETURNS scalar_return_data_type
[WITH < function_option> [,...n]]
[AS]
BEGIN
function_body
RETURN scalar_expression
END

Slide Objective
To describe the CREATE
FUNCTION statement.

Lead-in
You create a user-defined
function in much the same
way that you create a view
or stored procedure.

Syntax

 Module 9: Introduction to Programming Objects 19

This example creates a user-defined function to replace a null value with the
words Not Applicable.

USE northwind
CREATE FUNCTION fn_NewRegion (@myinput nvarchar(30))
 RETURNS nvarchar(30)
BEGIN
 IF @myinput IS NULL
 SET @myinput = 'Not Applicable'

 RETURN @myinput
END
GO

When referencing a scalar user-defined function, specify both the function
owner and the function name in two-part syntax.

SELECT LastName, City
 ,dbo.fn_NewRegion(Region) AS Region
 ,Country
 FROM Employees
GO

LastName City Region Country
Davolio Seattle WA USA

Fuller Tacoma WA USA

Leverling Kirkland WA USA

Peacock Redmond WA USA

Buchanan London Not Applicable UK

Suyama London Not Applicable UK

King London Not Applicable UK

Callahan Seattle WA USA

Dodsworth London Not Applicable UK

Example

Result

20 Module 9: Introduction to Programming Objects

Restrictions on User-defined Functions
Nondeterministic functions are functions such as GETDATE() that could return
different result values each time that they are called with the same set of input
values. Built-in nondeterministic functions are not allowed in the body of user-
defined functions. These built-in functions from other categories are always
nondeterministic:

@@ERROR FORMATMESSAGE IDENTITY USER_NAME

@@IDENTITY GETANSINULL NEWID @@ERROR

@@ROWCOUNT GETDATE PERMISSIONS @@IDENTITY

@@TRANCOUNT GetUTCDate SESSION_USER @@ROWCOUNT

APP_NAME HOST_ID STATS_DATE @@TRANCOUNT

CURRENT_TIMESTAMP HOST_NAME SYSTEM_USER

CURRENT_USER IDENT_INCR TEXTPTR

DATENAME IDENT_SEED TEXTVALID

 Module 9: Introduction to Programming Objects 21

Recommended Practices

Verify Object Definition Text with EXEC sp_helptextVerify Object Definition Text with EXEC sp_helptext

Use Views to Capture and Reuse QueriesUse Views to Capture and Reuse Queries

Use Stored Procedures to Encapsulate Complex ProceduresUse Stored Procedures to Encapsulate Complex Procedures

Use User-defined Functions to Encapsulate ExpressionsUse User-defined Functions to Encapsulate Expressions

The following recommended practices should help you use programming
objects:

! Verify object definitions by displaying the text associated with the object by
using the EXEC sp_helptext system stored procedure.

! Use views to capture and reuse common queries for consistency and
efficiency.

! Use stored procedures to encapsulate complex multi-statement procedures.
! Use user-defined functions to encapsulate common expressions.

Additional information on the following topics is available in SQL Server
Books Online.

Topic Search on

Using stored procedures �effects of stored procedures on application performance�

Using views �comparison of queries and views�

Using triggers �enforcing business rules with triggers�

Slide Objective
To present recommended
practices for programming
objects.

Lead-in
The following are
recommended practices for
using programming objects.

22 Module 9: Introduction to Programming Objects

Lab A: Working with Views

Objectives
After completing this lab, you will be able to:

! Generate a view by using a SQL Query Analyzer template.
! Alter a view by using the Object Browser in SQL Query Analyzer.

Prerequisites
Before working on this lab, you must have:

! Script files for this lab, which are located in C:\Moc\2071A\Labfiles\L09.
! Answer files for this lab, which are located in

C:\Moc\2071A\Labfiles\L09\Answers.
! The library database installed.

For More Information
If you require help, search SQL Query Analyzer Help for �Using Templates in
SQL Query Analyzer.�

Other resources that you can use include:

! The library database schema.
! Microsoft® SQL Server� Books Online.

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

Slide Objective
To introduce the lab.

Lead-in
In this lab, you will create
and alter views.

Explain the lab objectives.

 Module 9: Introduction to Programming Objects 23

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 30 minutes

24 Module 9: Introduction to Programming Objects

Exercise 1
Generating a View by Using a SQL Query Analyzer Template

In this exercise, you will use a SQL Query Analyzer template to create a view
and assign values to the parameters in the view.
C:\Moc\2071A\Labfiles\L09\Answers contains completed scripts for this
exercise.

! To create a Transact-SQL statement from a SQL Query Analyzer
template

In this procedure, you will create a Transact-SQL statement by using a SQL
Query Analyzer template. Answer_Template1.sql is a completed script for this
step.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password Password

2. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Microsoft Windows® Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Windows 2000 local
group, Administrators. All members of this group are automatically mapped
to the SQL Server sysadmin role.

3. In the DB list, click library.
4. On the Edit menu, click Insert Template.
5. In the Insert Template dialog box, double-click Create View, and then

open Create View Basic Template.tql.
6. Review the contents of the file in the edit pane.

How does the generated script differ from standard Transact-SQL?
The generated script has template parameters in place of expected
identifier names, in the format of <parameter_name, data_type, value>.
__

__

 Module 9: Introduction to Programming Objects 25

! To replace template parameters
In this procedure, you will replace template parameters. Answer_Template2.sql
is a completed script for this step.
1. On the Edit menu, click Replace Template Parameters.
2. In the Replace Template Parameters dialog box, in the Value column,

type AustenTitlesView to change the view_name parameter.
3. In the Replace Template Parameters dialog box, in the Value column,

type the following statement to change the view_name parameter:
SELECT * FROM title WHERE author = �Jane Austen�

4. On the Edit menu, click Replace All to replace each of the occurring

parameters with the newly assigned values.

! To validate the syntax and create the view
In this procedure, you will validate and execute Transact-SQL statements to
create the view. Answer_View1.sql is a completed script for this step.
1. On the Query menu, click Parse.

This verifies that the syntax of the newly constructed Transact-SQL script is
valid.

2. In the edit pane, create the view by executing the script.
3. On the toolbar, click the New Query button to open a new Query window.

This opens a new connection to SQL Server.
4. Write a query that uses an asterisk in the SELECT statement to retrieve all

of the data in the AustenTitlesView view.
USE library
SELECT *
 FROM AustenTitlesView
GO

5. Execute the query to verify that it returns the desired results.
What columns does querying the view return?
The columns are title_no, title, author, and synopsis.
__

__

What are the advantages of using SQL Query Analyzer templates for
generating Transact-SQL scripts?
Using SQL Query Analyzer templates for generating Transact-SQL
scripts reduces repetitive typing and errors and fosters consistency
through reuse of standard code and syntax.
__

__

26 Module 9: Introduction to Programming Objects

Exercise 2
Altering a View by Using the Object Browser in SQL Query Analyzer

In this exercise, you will use the Object Browser in SQL Query Analyzer to
script and edit Transact-SQL statements that alter the view that you created in
exercise 1. C:\Moc\2071A\Labfiles\L09\Answers contains completed scripts for
this exercise.

! To display the Object Browser
• On the Tools menu, select Object Browser, and then click Show/Hide.

This displays the Object Browser pane.

! To locate the dbo.AustenTitlesView object
In this procedure, you will locate the dbo.AustenTitlesView object.
1. In the Object Browser pane, expand library.
2. Expand Views, and then expand the dbo.AustenTitlesView object.

! To generate a script to alter the view
In this procedure, you will generate a script that alters a view.
Answer_View2.sql is a completed script for this step.
1. Right-click dbo.AustenTitlesView.
2. Select Script Object to New Window as.
3. Click Alter.

This creates a series of Transact-SQL statements that alter the
dbo.AustenTitlesView object, which was created in a new edit pane.
What other types of scripts can you create that relate to this view object?
You can create scripts that act on the view object that create, alter, and
drop. You can also create scripts that perform operations by using the
object, such as SELECT, INSERT, UPDATE, and DELETE.
__

__

! To copy a column list from the Object Browser
In this procedure, you will copy a column list from the Object Browser.
Answer_View3.sql is a completed script for this step.
1. On the Query menu, click Parse.

This verifies that the syntax of the newly constructed Transact-SQL script is
valid.

2. Expand dbo.AustenTitlesView, and then expand Columns.
3. Drag the Columns folder from the Object Browser pane to the edit pane,

and then place the folder in the SELECT statement of the view definition
after the asterisk.

4. Delete the asterisk in the SELECT statement.

 Module 9: Introduction to Programming Objects 27

! To copy an object name from the Object Browser
In this procedure, you will copy an object name from the Object Browser.
Answer_View4.sql is a completed script for this step.
1. In the edit pane, delete the AustenTitlesView view name that immediately

follows the ALTER VIEW statement.
2. Drag the dbo.AustenTitlesView object from the Object Browser pane to the

edit pane, and then place the object after the ALTER VIEW statement.

! To validate the syntax and alter the view
In this procedure, you will validate the syntax and alter the view.
Answer_View5.sql is a completed script for this step.
1. On the Query menu, click Parse.

This verifies that the syntax of the newly constructed Transact-SQL script is
valid.

2. Execute the script in the edit pane to alter the view.
3. On the toolbar, click the New Query button to open a new Query window.

This opens a new connection to SQL Server.
4. Write a SELECT statement to retrieve all of the data in the

dbo.AustenTitlesView view.
USE library
SELECT title_no, title, author, synopsis
 FROM dbo.AustenTitlesView
GO

5. Execute the query to verify that it returns the desired results.
Why should you enumerate all columns when constructing Transact-SQL
statements?
You should always explicitly reference column names to ensure their
intended use and relative order. The SELECT * syntax retrieves
columns in the order in which they are defined. This order may differ
from table to table, or may subsequently change.
__

__

28 Module 9: Introduction to Programming Objects

Review

! Displaying the Text of a Programming Object

! Introduction to Views

! Advantages of Views

! Creating Views

! Introduction to Stored Procedures

! Introduction to Triggers

! Introduction to User-defined Functions

1. What are the benefits of views?
Users focus only on data that they need; user manipulation of data is
simplified; database and query complexity is hidden from users,
allowing users to see friendly names; and views provide a security
mechanism by allowing users access to data in views only.
__

__

2. What are the benefits of stored procedures?
Encapsulation of shared application logic, improved performance,
better security management, and reduced network traffic.
__

__

3. Why would you use a view instead of a stored procedure to encapsulate a
query?
When you use a view to encapsulate a query, you can readily reuse the
view as part of a SELECT statement when writing another query.
__

__

Slide Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

Use these questions to
review module topics.

Ask students whether they
have any questions
before continuing.

 Module 9: Introduction to Programming Objects 29

4. You have developed a query that joins the member, title, and loanhist
tables to list the fines that are assessed, paid, and waived for each member
and the title of each overdue book and to calculate the number of days that
each book is overdue. Other developers are interested in leveraging the
work that you have done to build their own queries. How can you best
accomplish this?
Create a view on your query. Have the other developers write their
queries or views to execute against your view. This ensures that all
queries return consistent results and that the work and business
knowledge encapsulated in the original view does not have to be
recreated.
__

__

5. Describe the three types of user-defined functions.
Scalar functions are similar to built-in functions.
Multi-statement table-valued functions are similar to stored
procedures.
In-line table-valued functions are similar to views.
__

__

6. How is a trigger different from a stored procedure?
Triggers are a special type of stored procedure that is attached to a
table and executed automatically whenever an attempt is made to
modify data in the table. Triggers cannot be called directly and do not
accept parameters.
__

__

THIS PAGE INTENTIONALLY LEFT BLANK

