

Contents

Overview 1

Using Transactions 2

Inserting Data 4

Deleting Data 15

Updating Data 20

Performance Considerations 24

Recommended Practices 25

Lab A: Modifying Data 26

Review 39

Module 7:
Modifying Data

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, BackOffice, MS-DOS, PowerPoint, Visual Studio, Windows, Windows Media, and
Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the
U.S.A. and/or other countries.

The names of companies, products, people, characters, and/or data mentioned herein are fictitious
and are in no way intended to represent any real individual, company, product, or event, unless
otherwise noted.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Project Lead: Cheryl Hoople
Instructional Designer: Cheryl Hoople
Technical Lead: LeRoy Tuttle
Program Manager: LeRoy Tuttle
Graphic Artist: Kimberly Jackson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Editorial Contributor: Elizabeth Reese
Copy Editor: Bill Jones (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Tools Specialist: Julie Challenger
Production Support: Lori Walker (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: Testing Testing 123
Classroom Automation: Lorrin Smith-Bates
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 7: Modifying Data iii

Instructor Notes
This module describes how transactions work and discusses how to write
INSERT, DELETE, and UPDATE statements to modify data in tables.

At the end of this module, you will be able to:

! Describe how transactions work.
! Write INSERT, DELETE, and UPDATE statements to modify data

in tables.
! Describe performance considerations related to modifying data.

Materials and Preparation
Required Materials
To teach this module, you need the following materials:

! Microsoft® PowerPoint® file 2071A_07.ppt.
! The C:\Moc\2071A\Demo\Ex_07.sql example file contains all of the

example scripts from the module, unless otherwise noted in the module.

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials.
! Complete the lab.

Presentation:
45 Minutes

Lab:
60 Minutes

iv Module 7: Modifying Data

Module Strategy
Use the following strategy to present this module:

! Using Transactions
Describe how students can use transactions to modify data.

! Inserting Data
Explain that rows can be inserted by using the DEFAULT and DEFAULT
VALUES keywords to save time during data entry.
Describe modifying data by using the INSERT�SELECT statement,
as well as deleting and updating rows that are based on other tables by
using subqueries.

! Deleting Data
Discuss the use of the DELETE and TRUNCATE TABLE statements to
remove rows.

! Updating Data
Explain how to update data with the UPDATE statement.
Compare the use of subqueries with the UPDATE statement to the use of a
JOIN. Explain to students that there can be a difference in
query performance.

! Performance Considerations
Discuss the performance considerations related to modifying data.

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing Microsoft
Official Curriculum (MOC) courseware.

The lab in this module is dependent on the classroom configuration
that is specified in the Customization Information section at the end of the
Classroom Setup Guide for course 2071A, Querying Microsoft SQL Server
2000 with Transact-SQL.

Lab Setup
There are no lab setup requirements that affect replication or customization.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Important

 Module 7: Modifying Data 1

Overview

! Using Transactions

! Inserting Data

! Deleting Data

! Updating Data

! Performance Considerations

This module describes how transactions work and discusses how to write
INSERT, DELETE, and UPDATE statements to modify data in tables.

At the end of this module, you will be able to:

! Describe how transactions work.
! Write INSERT, DELETE, and UPDATE statements to modify data

in tables.
! Describe performance considerations related to modifying data.

Slide Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module you will learn
about modifying data.

2 Module 7: Modifying Data

Using Transactions

! Starting Transactions

Explicit

Autocommit

Implicit

! Ending Transactions

COMMIT statement

ROLLBACK statement

BEGIN TRANSACTION
UPDATE savings
. . .
UPDATE checking
. . .

COMMIT TRANSACTION

BEGIN TRANSACTION
UPDATE savings
. . .
UPDATE checking
. . .

COMMIT TRANSACTION

A transaction is a sequence of operations performed as a single logical unit of
work. SQL programmers are responsible for starting and ending transactions at
points that enforce the logical consistency of the data. The programmer must
define the sequence of data modifications that leave the data in a consistent
state relative to the organization�s business rules.

Starting Transactions
You can start transactions in Microsoft® SQL Server� 2000 in one of three
modes�explicit, autocommit, or implicit.

! Explicit transactions start by issuing a BEGIN TRANSACTION statement.
! Autocommit transactions are the default for SQL Server. Each individual

Transact-SQL statement is committed when it completes. You do not have
to specify any statements to control transactions.

! Implicit transactions mode is set by an application programming interface
(API) function or the Transact-SQL SET IMPLICIT_TRANSACTIONS
ON statement. Using this mode, the next statement automatically starts a
new transaction. When that transaction completes, the next Transact-SQL
statement starts a new transaction.

The transaction mode is set on a session basis. If one session changes from one
transaction mode to another, the change has no effect on the transaction mode
session.

Slide Objective
To introduce the topics that
this section covers.

Lead-in
Transactions are used to
enforce data integrity.

 Module 7: Modifying Data 3

Ending Transactions
You can end transactions by using a COMMIT or ROLLBACK statement.

The COMMIT statement indicates that if a transaction is successful,
SQL Server should commit it. A COMMIT statement guarantees that all of the
transaction�s modifications are permanently part of the database. A COMMIT
statement also frees resources, such as locks, that the transaction uses.

The ROLLBACK statement cancels a transaction. It backs out all modifications
made in the transaction by returning the data to the state in which it was at the
start of the transaction. A ROLLBACK statement also frees resources held by
the transaction. If an error occurs within a transaction, SQL Server
automatically performs a ROLLBACK of the transaction in progress.

This example transfers $100 from a savings account to a checking account for a
customer, by using a transaction. It will undo any data changes if there is an
error at any point during the transaction.

BEGIN TRANSACTION

 UPDATE savings
 SET balance = balance - 100
 WHERE custid = 78910

 IF @@ERROR <> 0
 BEGIN
 RAISERROR ('Error, transaction not completed!', 16, -1)
 ROLLBACK TRANSACTION
 END

 UPDATE checking
 SET balance = balance + 100
 WHERE custid = 78910

 IF @@ERROR <> 0
 BEGIN
 RAISERROR ('Error, transaction not completed!', 16, -1)
 ROLLBACK TRANSACTION
 END

COMMIT TRANSACTION

Example

4 Module 7: Modifying Data

$$$$ Inserting Data

! Inserting a Row of Data by Values

! Using the INSERT�SELECT Statement

! Creating a Table Using the SELECT INTO Statement

! Inserting Partial Data

! Inserting Data by Using Column Defaults

You can insert data through a transaction by specifying a set of values or
inserting the results of a SELECT statement. You can create a table and insert
data simultaneously. You do not have to insert values into all data fields within
a row.

Slide Objective
To introduce the topics that
this section covers.

Lead-in
You can insert data through
a transaction by specifying a
set of values or inserting the
results of a SELECT
statement.

 Module 7: Modifying Data 5

Inserting a Row of Data by Values

! Must Adhere to Destination Constraints or the
INSERT Transaction Fails

! Use a Column List to Specify Destination Columns
! Specify a Corresponding List of Values

USE northwind
INSERT customers

(customerid, companyname, contactname, contacttitle
,address, city, region, postalcode, country, phone
,fax)

VALUES ('PECOF', 'Pecos Coffee Company', 'Michael Dunn'
,'Owner', '1900 Oak Street', 'Vancouver', 'BC'
,'V3F 2K1', 'Canada', '(604) 555-3392'
,'(604) 555-7293')

GO

USE northwind
INSERT customers

(customerid, companyname, contactname, contacttitle
,address, city, region, postalcode, country, phone
,fax)

VALUES ('PECOF', 'Pecos Coffee Company', 'Michael Dunn'
,'Owner', '1900 Oak Street', 'Vancouver', 'BC'
,'V3F 2K1', 'Canada', '(604) 555-3392'
,'(604) 555-7293')

GO

The INSERT statement adds rows to a table.

INSERT [INTO]
{ table_name | view_name}
{ [(column_list)]
{ VALUES ({ DEFAULT | NULL| expression}[,�n])
| DEFAULT VALUES

Use the INSERT statement with the VALUES clause to add rows to a table.
When you insert rows, consider the following facts and guidelines:

! Must adhere to destination constraints or the INSERT transaction fails.
! Use the column_list to specify columns that will store each incoming value.

You must enclose the column_list in parentheses and delimit it by commas.
If you are supplying values for all columns, using the column_list
is optional.

! Specify the data that you want to insert by using the VALUES clause. The
VALUES clause is required for each column in the table or column_list.
The column order and data type of new data must correspond to the table
column order and data type. Many data types have an associated entry
format. For example, character data and dates must be enclosed in single
quotation marks.

Slide Objective
To show how you can add a
row of values to a table by
using the INSERT
statement.

Lead-in
The INSERT statement
adds rows to tables.

Partial Syntax

Delivery Tip
Point out in the slide
example that all values in
the customers table are
character values and,
therefore, are enclosed in
single quotation marks.

6 Module 7: Modifying Data

The following example adds Pecos Coffee Company as a new customer.

USE northwind
INSERT customers
 (customerid, companyname, contactname, contacttitle
 ,address, city, region, postalcode, country, phone
 ,fax)
VALUES ('PECOF', 'Pecos Coffee Company','Michael Dunn'
 ,'Owner', '1900 Oak Street', 'Vancouver', 'BC'
 ,'V3F 2K1', 'Canada', '(604) 555-3392'
 ,'(604) 555-7293')
GO

You can verify that Pecos Coffee Company has been added to the customers
table by executing the following statement.

USE northwind
SELECT companyname, contactname
 FROM customers
 WHERE customerid = 'PECOF'
GO

Companyname contactname
Pecos Coffee Company Michael Dunn

(1 row(s) affected)

Example

Result

 Module 7: Modifying Data 7

Using the INSERT�SELECT Statement

USE northwind
INSERT customers
SELECT substring(firstname, 1, 3)

+ substring (lastname, 1, 2)
,lastname, firstname, title, address, city
,region, postalcode, country, homephone, NULL

FROM employees
GO

USE northwind
INSERT customers
SELECT substring(firstname, 1, 3)

+ substring (lastname, 1, 2)
,lastname, firstname, title, address, city
,region, postalcode, country, homephone, NULL

FROM employees
GO

! All Rows That Satisfy the SELECT Statement Are Inserted
! Verify That the Table That Receives New Row Exists
! Ensure That Data Types Are Compatible
! Determine Whether Default Values Exist or Whether Null

Values Are Allowed

The INSERT�SELECT statement adds rows to a table by inserting the result
set of a SELECT statement.

Use the INSERT�SELECT statement to add rows to an existing table from
other sources. Using the INSERT�SELECT statement is more efficient
than writing multiple, single-row INSERT statements. When you use the
INSERT�SELECT statement, consider the following facts and guidelines:

! All rows that satisfy the SELECT statement are inserted into the outermost
table of the query.

! You must verify that the table that receives the new rows exists in
the database.

! You must ensure that the columns of the table that receives the new values
have data types compatible with the columns of the table source.

! You must determine whether a default value exists or whether a null value is
allowed for any columns that are omitted. If null values are not allowed, you
must provide values for these columns.

INSERT table_name

 SELECT column_list
 FROM table_list
 WHERE search_conditions

This example adds new customers to the customers table. Employees of
Northwind Traders are eligible to buy company products. This query contains
an INSERT statement with a SELECT clause that adds employee information
to the customers table.

Slide Objective
To show how to insert
rows from one table into
another by using nested
SELECT statements.

Lead-in
You can insert rows from
one table into the same or
another table by using
nested SELECT statements.

Syntax

Example

8 Module 7: Modifying Data

The new customerid column consists of the first three letters of the employee�s
first name, concatenated with the first two letters of the last name. The
employee�s last name is used as the new company name, and the first name is
used as the contact name.

USE northwind
INSERT customers
 SELECT substring (firstname, 1, 3)
 + substring (lastname, 1, 2)
 ,lastname, firstname, title, address, city
 ,region, postalcode, country, homephone, NULL
 FROM employees
GO

 Module 7: Modifying Data 9

Creating a Table Using the SELECT INTO Statement

! Use to Create a Table and Insert Rows into the Table
in a Single Operation

! Create a Local or Global Temporary Table
! Set the select into/bulkcopy Database Option ON in

Order to Create a Permanent Table

! Create Column Alias or Specify Column Names in the
Select List for New Table

USE northwind
SELECT productname AS products

,unitprice AS price
,(unitprice * 1.1) AS tax

INTO #pricetable
FROM products

GO

USE northwind
SELECT productname AS products

,unitprice AS price
,(unitprice * 1.1) AS tax

INTO #pricetable
FROM products

GO

You can place the result set of any query into a new table by using the SELECT
INTO statement.

Use the SELECT INTO statement to populate new tables in a database with
imported data. You also can use the SELECT INTO statement to break down
complex problems that require a data set from various sources. If you first
create a temporary table, the queries that you execute on it are simpler than
those you would execute on multiple tables or databases.

When you use the SELECT INTO statement, consider the following facts
and guidelines:

! You can use the SELECT INTO statement to create a table and to insert
rows into the table in a single operation.
Ensure that the table name that is specified in the SELECT INTO statement
is unique. If a table exists with the same name, the SELECT INTO
statement fails.

! You can create a local or global temporary table.
Create a local temporary table by preceding the table name with a number
sign (#), or create a global temporary table by preceding the table name with
a double number sign (##).
A local temporary table is visible in the current session only. A global
temporary table is visible to all sessions:

• Space for a local temporary table is reclaimed when the user ends
the session.

• Space for a global temporary table is reclaimed when the table is no
longer used by any session.

! Set the select into/bulkcopy database option ON in order to create a
permanent table.

! You must create column aliases or specify the column names of the new
table in the select list.

Slide Objective
To explain the purpose and
function of the SELECT
INTO statement.

Lead-in
You can place the result set
of any query into a new
table by using the SELECT
INTO statement.

10 Module 7: Modifying Data

SELECT <select_list>
INTO new_table
FROM {<table_source>}[,�n]
WHERE <search_condition>

This example creates a local temporary table based on a query made on the
products table. Notice that you can use string and mathematical functions to
manipulate the result set.

USE northwind
SELECT productname AS products
 ,unitprice AS price
 ,(unitprice * 1.1) AS tax
 INTO #pricetable
 FROM products
GO

To view your result set, you must execute the following query.

USE northwind
SELECT * FROM #pricetable
GO

products price tax
Chai 18 19.8
Chang 19 20.9
Aniseed Syrup 10 11
Chef Anton's Cajun Seasoning 22 24.2
Chef Anton's Gumbo Mix 21.35 23.485
Grandma's Boysenberry Spread 27.5 30.25
Uncle Bob's Organic Dried Pears 33 36.3
Northwoods Cranberry Sauce 44 48.4
Mishi Kobe Niku 97 106.7
Ikura 31 34.1
Queso Cabrales 21 23.1
Queso Manchego La Pastora 38 41.8
Konbu 6 6.6
Tofu 23.25 25.575
Genen Shouyu 15.5 17.05
.
.
.
(77 row(s) affected)

Partial Syntax

Example

Delivery Tip
Demonstrate this example
by using SQL Query
Analyzer.

Result

 Module 7: Modifying Data 11

Inserting Partial Data

USE northwind
INSERT shippers (companyname)
VALUES ('Fitch & Mather')
GO

USE northwind
INSERT shippers (companyname)
VALUES ('Fitch & Mather')
GO

Adding new data

USE northwind
SELECT *
FROM shippers
WHERE companyname = 'Fitch & Mather�
GO

USE northwind
SELECT *
FROM shippers
WHERE companyname = 'Fitch & Mather�
GO

Verifying new data

shipperidshipperidshipperid

3737
companynamecompanynamecompanyname

Fitch & MatherFitch & Mather
phonephonephone

NullNull

Allows Null Values

Example 1Example 1

Example 2Example 2

If a column has a default value or accepts null values, you can omit the column
from an INSERT statement. SQL Server automatically inserts the values.

When you insert partial data, consider the following facts and guidelines:

! List only the column names for the data that you are supplying in the
INSERT statement.

! Specify the columns for which you are providing a value in the column_list.
The data in the VALUES clause corresponds to the specified columns.
Unnamed columns are filled in as if they had been named and a default
value had been supplied.

! Do not specify columns in the column_list that have an IDENTITY property
or that allow default or null values.

! Enter a null value explicitly by typing Null without single
quotation marks.

Slide Objective
To explain how to insert a
row without supplying all of
the data items.

Lead-in
If a column has a default
value or accepts null values,
you can leave the column
out of an INSERT
statement. SQL Server
automatically inserts
the values.

Delivery Tip
Compare Example 1 to
Example 2. The DEFAULT
keyword is not used in
Example 1. Both examples
return the same result set.

12 Module 7: Modifying Data

This example adds the company Fitch & Mather as a new shipper in the
shippers table. Data is not entered for columns that have an IDENTITY
property or that allow default or null values. Compare this example with
Example 2. Notice that the DEFAULT keyword is omitted.

USE northwind
INSERT shippers (companyname)
VALUES ('Fitch & Mather')
GO

You can verify that Fitch & Mather has been added to the shippers table by
executing the following statement.

USE northwind
SELECT *
FROM shippers
WHERE companyname = 'Fitch & Mather'
GO

shipperid companyname phone
37 Fitch & Mather NULL

(1 row(s) affected)

This example also adds Fitch & Mather as a new shipper in the shippers table.
Notice that the DEFAULT keyword is used for columns that allow default or
null values. Compare this example to Example 1.

USE northwind
INSERT shippers (companyname, Phone)
VALUES ('Fitch & Mather', DEFAULT)
GO

shipperid companyname phone
37 Fitch & Mather NULL

(1 row(s) affected)

Example 1

Result

Example 2

Result

 Module 7: Modifying Data 13

Inserting Data by Using Column Defaults

Inserting Data by Using Column Defaults

! DEFAULT Keyword
Inserts default values for specified columns
Columns must have a default value or allow null values

! DEFAULT VALUES Keyword
Inserts default values for all columns
Columns must have a default value or allow null values

USE northwind
INSERT shippers (companyname, phone)
VALUES ('Kenya Coffee Co.', DEFAULT)
GO

USE northwind
INSERT shippers (companyname, phone)
VALUES ('Kenya Coffee Co.', DEFAULT)
GO

When you insert rows into a table, you can save time when entering values
by using the DEFAULT or DEFAULT VALUES keywords with the
INSERT statement.

DEFAULT Keyword
When a table has default constraints, or when a column has a default value, use
the DEFAULT keyword in the INSERT statement to have SQL Server supply
the default value for you.

When you use the DEFAULT keyword, consider the following facts
and guidelines:

! SQL Server inserts a null value for columns that allow null values and do
not have default values.

! If you use the DEFAULT keyword, and the columns do not have default
values or allow null values, the INSERT statement fails.

! You cannot use the DEFAULT keyword with a column that has the
IDENTITY property (an automatically assigned, incremented value).
Therefore, do not list columns with an IDENTITY property in the
column_list or VALUES clause.

! SQL Server inserts the next appropriate value for columns that are defined
with the rowversion data type.

Slide Objective
To discuss the DEFAULT
and DEFAULT VALUES
keywords.

Lead-in
Use an INSERT statement
with the DEFAULT keyword
to insert the default value for
specific columns, or use the
DEFAULT VALUES
keyword to insert an entire
row in a table.

Delivery Tip
Focus on the partial syntax
and compare the DEFAULT
keyword to the DEFAULT
VALUES keyword in
the syntax.

14 Module 7: Modifying Data

This example inserts a new row for the Kenya Coffee Company without using a
column_list. The shippers.shipperid column has an IDENTITY property and is
not included in the column list. The phone column allows null values.

USE northwind
INSERT shippers (companyname, phone)
 VALUES ('Kenya Coffee Co.', DEFAULT)
GO

You can verify that Kenya Coffee Co. has been added to the shippers table by
executing the following statement.

USE northwind
SELECT *
 FROM shippers
 WHERE companyname = 'Kenya Coffee Co.'
GO

shipperid companyname Phone
10 Kenya Coffee Co. NULL

(1 row(s) affected)

DEFAULT VALUES Keyword
Use the DEFAULT VALUES keyword to insert an entire row into a table.
When you use the DEFAULT VALUES keyword, consider the following facts
and guidelines:

! SQL Server inserts a null value for columns that allow null values and do
not have a default value.

! If you use the DEFAULT VALUES keyword, and the columns do not have
default values or allow null values, the INSERT statement fails.

! SQL Server inserts the next appropriate value for columns with an
IDENTITY property or a rowversion data type.

! Use the DEFAULT VALUES keyword to generate sample data and
populate tables with default values.

Example

Result

 Module 7: Modifying Data 15

$$$$ Deleting Data

! Using the DELETE Statement

! Using the TRUNCATE TABLE Statement

! Deleting Rows Based on Other Tables

You can specify the data that you want to delete.

The DELETE statement removes one or more rows from a table or view by
using a transaction. You can specify which rows SQL Server deletes by
filtering on the targeted table, or by using a JOIN clause or a subquery. The
TRUNCATE TABLE statement is used to remove all rows from a table without
using a transaction.

Slide Objective
To introduce the topics that
this section covers.

Lead-in
You can specify the data
that you want to delete.

16 Module 7: Modifying Data

Using the DELETE Statement

! The DELECT Statement Removes One or More Rows
in a Table Unless You Use a WHERE Clause

! Each Deleted Row Is Logged in the Transaction Log

USE northwind
DELETE orders
WHERE DATEDIFF(MONTH, shippeddate, GETDATE()) >= 6

GO

USE northwind
DELETE orders
WHERE DATEDIFF(MONTH, shippeddate, GETDATE()) >= 6

GO

The DELETE statement removes rows from tables. Use the DELETE statement
to remove one or more rows from a table.

DELETE [from] {table_name|view_name}
WHERE search_conditions

This example deletes all order records that are equal to or greater than six
months old.

USE northwind
DELETE orders
 WHERE DATEDIFF(MONTH, shippeddate, GETDATE()) >= 6
GO

When you use the DELETE statement, consider the following facts:

! SQL Server deletes all rows from a table unless you include a WHERE
clause in the DELETE statement.

! Each deleted row is logged in the transaction log.

Slide Objective
To discuss how to delete
rows from tables.

Lead-in
The DELETE statement
removes rows from tables.

Partial Syntax

Example

 Module 7: Modifying Data 17

Using the TRUNCATE TABLE Statement

USE northwind
TRUNCATE TABLE orders
GO

USE northwind
TRUNCATE TABLE orders
GO

! The TRUNCATE TABLE Statement Deletes All Rows
in a Table

! SQL Server Retains Table Structure and Associated
Objects

! Only Deallocation of Data Pages Is Logged in the
Transaction Log

THE TRUNCATE TABLE removes all data from a table. Use the TRUNCATE
TABLE statement to perform a nonlogged deletion of all rows.

TRUNCATE TABLE [[database.]owner.]table_name

This example removes all data from the orders table.

USE northwind
TRUNCATE TABLE orders
GO

When you use the TRUNCATE TABLE statement, consider the
following facts:

! SQL Server deletes all rows but retains the table structure and its
associated objects.

! The TRUNCATE TABLE statement executes more quickly than the
DELETE statement because SQL Server logs only the deallocation of
data pages.

! If a table has an IDENTITY column, the TRUNCATE TABLE statement
resets the seed value.

Slide Objective
To describe how to use the
TRUNCATE TABLE
statement.

Lead-in
The TRUNCATE TABLE
statement removes all data
from a table.

Syntax

Example

For Your Information
You cannot use TRUNCATE
TABLE on a table
referenced by a FOREIGN
KEY constraint; instead, use
DELETE statement without
a WHERE clause.

18 Module 7: Modifying Data

Deleting Rows Based on Other Tables

! Using an Additional FROM Clause

First FROM clause indicates table to modify

Second FROM clause specifies restricting criteria for the
DELETE statement

! Specifying Conditions in the WHERE Clause

Subqueries determine which rows to delete

Use the DELETE statement with joins or subqueries to remove rows from a
table based on data stored in other tables. This is more efficient than writing
multiple, single-row DELETE statements.

Using an Additional FROM Clause
In a DELETE statement, the WHERE clause references values in the table itself
and is used to decide which rows to delete. If you use an additional FROM
clause, you can reference other tables to make this decision. When you use
the DELETE statement with an additional FROM clause, consider the
following facts:

! The first FROM clause indicates the table from which the rows are deleted.
! The second FROM clause may introduce a join and acts as the restricting

criteria for the DELETE statement.

DELETE [FROM] {table_name | view_name}
[FROM {<table_source>} [,�n]]
[WHERE search_conditions]

This example uses a join operation with the DELETE statement to remove rows
from the order details table for orders taken on 4/14/1998.

USE northwind
DELETE FROM [order details]
 FROM orders AS o
 INNER JOIN [order details] AS od
 ON o.orderid = od.orderid
 WHERE orderdate = '4/14/1998'
GO

Slide Objective
To show how to delete data
from a table based on data
in other tables.

Lead-in
You can use the DELETE
statement with an additional
FROM clause (or a
subquery in the WHERE
clause) to look at data in
other tables and determine
whether a row should
be deleted.

Delivery Tip
Compare Examples 1 and 2.

Syntax

Example 1

Delivery Tip
Point out the additional
FROM clause in
the statement.

 Module 7: Modifying Data 19

Specifying Conditions in the WHERE Clause
You also can use subqueries to determine which rows to delete from a table
based on rows of another table. You can specify the conditions in the WHERE
clause rather than using an additional FROM clause. Use a nested or correlated
subquery in the WHERE clause to determine which rows to delete.

This example removes the same rows in the order details table as Example 1
and shows that you can convert a join operation to a nested subquery.

USE northwind
DELETE FROM [order details]
 WHERE orderid IN (
 SELECT orderid
 FROM orders
 WHERE orderdate = '4/14/1998'
)
GO

Example 2

20 Module 7: Modifying Data

$$$$ Updating Data

! Updating Rows Based on Data in the Table

! Updating Rows Based on Other Tables

The UPDATE statement can change data values in single rows, groups of rows,
or all rows in a table or view. You can update a table based on data in the table
or on data in other tables.

Slide Objective
To introduce the topics that
this section covers.

Lead-in
The UPDATE statement can
change data values in single
rows, groups of rows, or all
rows in a table or view.

 Module 7: Modifying Data 21

Updating Rows Based on Data in the Table

USE northwind
UPDATE products
SET unitprice = (unitprice * 1.1)

GO

USE northwind
UPDATE products
SET unitprice = (unitprice * 1.1)

GO

! WHERE Clause Specifies Rows to Change

! SET Keyword Specifies the New Data

! Input Values Must Be the Same Data Types as Columns

! Updates Do Not Occur in Rows That Violate Any
Integrity Constraints

The UPDATE statement modifies existing data.

UPDATE {table_name | view_name}
SET { column_name = {expression | DEFAULT | NULL} |
@variable=expression}[,�n]
WHERE {search_conditions}

Use the UPDATE statement to change single rows, groups of rows, or all
of the rows in a table. When you update rows, consider the following facts
and guidelines:

! Specify the rows to update with the WHERE clause.
! Specify the new values with the SET clause.
! Verify that the input values are the same as the data types that are defined

for the columns.
! SQL Server does not update rows that violate any integrity constraints. The

changes do not occur, and the statement is rolled back.
! You can change the data in only one table at a time.
! You can set one or more columns or variables to an expression. For

example, an expression can be a calculation (like price * 2) or the addition
of two columns.

The following example adds 10 percent to the current prices of all Northwind
Traders products.

USE northwind
UPDATE products
 SET unitprice = (unitprice * 1.1)
GO

Slide Objective
To show how to update
rows by using the
UPDATE statement.

Lead-in
You can use the UPDATE
statement to change data in
existing rows of a table.

Partial Syntax

Example

22 Module 7: Modifying Data

Updating Rows Based on Other Tables

! How the UPDATE Statement Works

Never updates the same row twice

Requires table prefixes on ambiguous column names

! Specifying Rows to Update Using Joins

Uses the FROM clause

! Specifying Rows to Update Using Subqueries

Correlates the subquery with the updated table

Use the UPDATE statement with a FROM clause to modify a table based on
values from other tables.

Using the UPDATE Statement
When you use joins and subqueries with the UPDATE statement, consider the
following facts and guidelines:

! SQL Server never updates the same row twice in a single UPDATE
statement. This is a built-in restriction that minimizes the amount of logging
that occurs during updates.

! Use the SET keyword to introduce the list of columns or variable names to
be updated. Columns referenced by the SET keyword must be
unambiguous. For example, you can use a table prefix to eliminate
ambiguity.

UPDATE {table_name | view_name}

SET
{ column_name={expression | DEFAULT | NULL}
 |@variable=expression}[,�n]
[FROM { <table_source>
]
[WHERE search_conditions]

Specifying Rows to Update Using Joins
When you use joins to update rows, use the FROM clause to specify joins in the
UPDATE statement.

Slide Objective
To show how you can use
joins or subqueries to
update data in one table
based on data in
another table.

Lead-in
You can use the UPDATE
statement to update rows
based on other tables.

Partial Syntax

 Module 7: Modifying Data 23

This example uses a join to update the products table by adding $2.00
to the unitprice column for all products supplied by suppliers in the
United States (USA).

UPDATE products
 SET unitprice = unitprice + 2
 FROM products
 INNER JOIN suppliers
 ON products.supplierid = suppliers.supplierid
 WHERE suppliers.country = 'USA'
GO

Specifying Rows to Update Using Subqueries
When you use subqueries to update rows, consider the following facts
and guidelines:

! If the subquery does not return a single value, you must introduce the
subquery with the IN, EXISTS, ANY or ALL keyword.

! Consider using aggregate functions with correlated subqueries,
because SQL Server never updates the same row twice in a single
UPDATE statement.

This example uses a subquery to update the products table by adding $2.00 to
the unitprice column for all products supplied by suppliers in the in the United
States (USA). Notice that each product has only one supplier.

UPDATE products
 SET unitprice = unitprice + 2
 WHERE supplierid IN (
 SELECT supplierid
 FROM suppliers
 WHERE country = 'USA'
)
GO

This example updates the total sales for all orders of each product in the
products table. Many orders for each product may exist. Because SQL Server
never updates the same row twice, you must use an aggregate function with a
correlated subquery to update the total number of sales-to-date of each product.
If you want to execute the following example, you must add a todatesales
column with a default value of 0 to the products table.

USE northwind
UPDATE products
 SET todatesales = (
 SELECT SUM(quantity)
 FROM [order details] AS od
 WHERE products.productid = od.productid
)
GO

Example 1

Example 2

Example 3

24 Module 7: Modifying Data

Performance Considerations

! All Data Modifications Occur Within a Transaction

! Data Page Allocation May Occur

! Modifying Indexed Data Incurs Additional Overhead

! Indexes Can Assist Search Criteria

Data modifications that occur within transactions can affect the performance of
SQL Server. When modifying data, remember that:

! Data locking during a single transaction can prevent other transactions and
queries from running until the transaction completes.

! Modifying tables can change the way data is physically stored, leading to
data page allocations that must occur within the transaction.

! When modifying data columns that are indexed, the indexes on those
columns change as part of the transaction.

! Placing indexes on columns used in the WHERE clause of a data
modification statement improves performance.

Slide Objective
To describe the
performance considerations
when using views, triggers,
or stored procedures.

Lead-in
Data modifications that
occur within transactions
can affect the performance
of SQL Server.

Key Points
Only one transaction at a
time can modify a specific
row. An ongoing transaction
blocks other transactions
from executing until the
transaction is committed or
rolled back.

 Module 7: Modifying Data 25

Recommended Practices

Always Write a SELECT Statement That Does Not Modify
Data Before You Actually Modify Data
Always Write a SELECT Statement That Does Not Modify
Data Before You Actually Modify Data

Improve the Readability of a Result Set by Changing
Column Names or by Using Literals
Improve the Readability of a Result Set by Changing
Column Names or by Using Literals

Always Include a WHERE Clause with the DELETE and
UPDATE Statements
Always Include a WHERE Clause with the DELETE and
UPDATE Statements

The following recommended practices should help you perform basic queries:

! Always write a SELECT statement that does not modify data before you
actually modify data. This test verifies which rows your INSERT,
UPDATE, or DELETE statement affects.

! Improve the readability of result sets by changing column names to column
aliases or using literals to replace result set values. These formatting options
change the presentation of the data, not the data itself.

! SQL Server deletes or updates all rows in a table unless you include a
WHERE clause in the DELETE or UPDATE statements.

Additional information on the following topics is available in SQL Server
Books Online.

Topic Search on

Using character strings "LIKE comparisons"

Sorting result sets �sort order�

Slide Objective
To list the recommended
practices for performing
basic queries.

Lead-in
The following recommended
practices should help you
perform basic queries.

26 Module 7: Modifying Data

Lab A: Modifying Data

Objectives
After completing this lab, you will be able to:

! Modify data in tables by using the INSERT, DELETE, and UPDATE
statements.

! Insert rows into a table by using the DEFAULT and DEFAULT VALUES
keywords.

! Modify data based on data in other tables.

Prerequisites
Before working on this lab, you must have:

! The script files for this lab, which are located in
C:\Moc\2071A\Labfiles\L07.

! Answer files for this lab, which are located in
C:\Moc\2071A\Labfiles\L07\Answers.

! The library database installed.

Lab Setup
None.

For More Information
If you require help in executing files, search SQL Query Analyzer Help for
�Execute a query�.

Other resources that you can use include:

! The library database schema.
! Microsoft® SQL Server� Books Online.

Slide Objective
To introduce the lab.

Lead-in
In this lab, you will modify
existing data by using
INSERT, DELETE, and
UPDATE statements.

Explain the lab objectives.

 Module 7: Modifying Data 27

Scenario
The organization of the classroom is meant to simulate a worldwide trading
firm named Northwind Traders. Its fictitious domain name is nwtraders.msft.
The primary DNS server for nwtraders.msft is the instructor computer, which
has an Internet Protocol (IP) address of 192.168.x.200 (where x is the assigned
classroom number). The name of the instructor computer is London.

The following table provides the user name, computer name, and the IP address
for each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 60 minutes

28 Module 7: Modifying Data

Exercise 1
Using the INSERT Statement

In this exercise, you will use the INSERT statement to add rows to tables in the
library database. Then, you will execute a query to verify that the new rows are
added to the tables. C:\Moc\2071A\Labfiles\L07\Answers contains completed
scripts for this exercise.

! To insert values into the item table
In this procedure, you will insert rows into the item table to represent a book in
the library collection.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password Password

2. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Microsoft Windows® Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Windows 2000 local
group, Administrators. All members of this group are automatically mapped
to the SQL Server sysadmin role.

3. In the DB list, click library.
4. Insert two rows into the item table for title number 8, The Cherry Orchard.

Specify the column names for which you are supplying values. Make the
first item a hardback and the second item a paperback, and use the following
values. Answer_InsValues1.sql is a completed script for this step.

Column name Data

Isbn 10001 for HARDBACK; 10101 for SOFTBACK

title_no 8

Cover HARDBACK and SOFTBACK

Loanable Y

Translation ENGLISH

USE library
INSERT item (isbn, title_no, cover, loanable, translation)
 VALUES (10001, 8, 'HARDBACK', 'Y', 'ENGLISH')
INSERT item (isbn, title_no, cover, loanable, translation)
 VALUES (10101, 8, 'SOFTBACK', 'Y', 'ENGLISH')
GO

5. Execute the query and verify that a single row is inserted in two different
transactions.

 Module 7: Modifying Data 29

! To insert values into the copy table
In this procedure, you will insert rows into the copy table to represent a book in
the library collection.
1. Add a row into the copy table for the hardback item that you added in

step 4, and use the following values. Answer_InsValues2.sql is a completed
script for this step.

Column name Data

Isbn 10001 (the ISBN number for the hardback item that you added

in step 1)

copy_no 1

title_no 8 (the title number of The Cherry Orchard)

On_loan N

USE library
INSERT copy (isbn, copy_no, title_no, on_loan)
 VALUES (10001,1,8,'N')
GO

2. Execute the query and verify that a single row is inserted.

! To determine the translation language of an item
In this procedure, you will write a query that returns the language that an item
has been translated into.
1. Write a query that returns the translation of one of the items that you

inserted in step 4 from the item table. Answer_Translate.sql is a completed
script for this step.
USE library
SELECT translation
 FROM item
 WHERE isbn = 10001
GO

2. Execute the query to verify that it returns the desired results.

30 Module 7: Modifying Data

Exercise 2
Using the INSERT Statement with the DEFAULT Keyword

In this exercise, you will use the INSERT statement with the DEFAULT
keyword to add two rows to the title table and to provide partial data for
columns that allow null values or have default values.
C:\Moc\2071A\Labfiles\L07\Answers contains completed scripts for this
exercise.

! To determine which columns allow null values
In this procedure, you will determine which columns allow null values.
1. Execute the sp_help system stored procedure to determine which columns

in the title table allow null values. You do not have to supply values for
columns that allow null values or have default values or have the
IDENTITY property. Answer_WhichNull.sql is a completed script for this
step.
USE library
EXEC sp_help title
GO

2. Review the second results returned to determine which columns allow null
values.

! To insert values into the title table
In this procedure, you will insert values into the title table.
1. Insert a row into the title table for the book, The Art of Lawn Tennis, by

William T. Tilden. Use the DEFAULT keyword for columns that allow null
values or that have default values. Do not supply a value for the title_no
column because this column has the IDENTITY property.
Answer_InsDefault1.sql is a completed script for this step.
USE library
INSERT title (title, author, synopsis)
 VALUES ('The Art of Lawn Tennis', 'William T. Tilden'
 ,DEFAULT)
GO

2. Execute the query and verify that a single row is inserted.

! To determine the last identity value used
In this procedure, you will determine the last identity value used.
1. Write query to determine the title_no of the title that you added in step 1 of

the previous procedure. Answer_Identity.sql is a completed script for this
step.
USE library
SELECT @@identity
GO

2. Execute the query and make note of the value that is returned.

 Module 7: Modifying Data 31

! To retrieve the last row inserted into the title table
In this procedure, you will retrieve the last row inserted into the title table.
1. Write a query to verify that the new title was added to the title table. Use the

value that you obtained in step 1 of the previous procedure for the title_no
column. Answer_LastRow.sql is a completed script for this step.
USE library
SELECT *
 FROM title
 WHERE title_no = @@identity
GO

2. Execute the query to verify that it returns the desired results.

! To insert more values into the title table
In this procedure, you will insert more values into the title table.
1. Insert a row into the title table for the title, Riders of the Purple Sage, by

Zane Grey. Specify a column_list and values for columns that do not allow
null values or have default values. Answer_InsValues3.sql is a completed
script for this step.
USE library
INSERT title (title, author)
 VALUES ('Riders of the Purple Sage', 'Zane Grey')
GO

2. Execute the query and verify that a single row is inserted.

! To verify that values were inserted into the title table
In this procedure, you will verify that values were inserted into the title table.
1. Write and execute a query to verify that the new member was added to the

member table. Answer_ChkValues3.sql is a completed script for this step.
USE library
SELECT *
 FROM title
 WHERE title = 'Riders of the Purple Sage'
GO

2. Execute the query to verify that it returns the desired results.

32 Module 7: Modifying Data

Exercise 3
Using the INSERT Statement with the DEFAULT VALUES Keyword

In this exercise, you will use the INSERT statement with the DEFAULT
VALUES keyword to add rows to a table without providing values. First you
will create and work with a sample table in the library database.
C:\Moc\2071A\Labfiles\L07\Answers contains completed scripts for this
exercise.

! To create the sample1 table
In this procedure, you will create a new table in the library database that allows
null values and that specifies default values for some columns.
1. Execute the C:\Moc\2071A\Labfiles\L07\ MakeSample1.sql script to create

a new table called sample1 in the library database with the following
characteristics.

Column name Datatype IDENTITY property? Allows NULL?

Cust_id Int Yes (100,5) No

Name char(10) No Yes

USE LIBRARY
CREATE TABLE sample1 (
 Cust_id int NOT NULL IDENTITY(100,5)
 ,Name char(10) NULL
)
GO

2. Execute the query to verify that it creates the sample1 table.

! To insert a row of default values into the sample1 table
In this procedure, you will insert a row into the sample1 table by using the
DEFAULT VALUES keyword. Then, you will write and execute a query to
verify that the new row was added to the table. Answer_InsDefault2.sql is a
completed script for this procedure.
1. Write a query that would insert a new row into the sample1 table without

specifying the column names. Use the DEFAULT VALUES keyword with
the INSERT statement.
USE LIBRARY
INSERT sample1
 DEFAULT VALUES
GO

2. Execute the query and verify that a single row is inserted.

 Module 7: Modifying Data 33

! To verify that values that were inserted into the sample1 table
In this procedure, you will verify that values that were inserted into the
sample1 table.
1. Write a query to verify that the new row was added to the sample1 table.

Answer_ChkDefault2.sql is a completed script for this procedure.
USE LIBRARY
SELECT *
 FROM sample1
GO

2. Execute the query and compare the results to the default values defined for
the table.

Your result should look similar to the following result set.

cust_id name
100

NULL

(1 row(s) affected)

Result

34 Module 7: Modifying Data

Exercise 4
Using the DELETE Statement

In this exercise, you will use the DELETE statement to remove a book with an
ISBN of 10101 and a title number of 8 from the item table in the library
database. C:\Moc\2071A\Labfiles\L07\Answers contains completed scripts for
this exercise.

! To retrieve a row of data that you intend on deleting from the item
table

In this procedure, you will retrieve a row of data that you want to delete from
the item table. Answer_SelDelete1.sql is a completed script for this procedure.
1. Write a query that returns the row from the item table that represents a

paperback copy (isbn 10101) of The Cherry Orchard (title_no 8).
USE library
SELECT *
 FROM item
 WHERE isbn = 10101
 AND title_no = 8
GO

2. Execute the query to verify that it returns the desired results.

! To delete a specific row of data from the item table
In this procedure, you will delete a specific row of data from the item table.
Answer_Delete1.sql is a completed script for this procedure.
1. Modify the query from step 1 in the previous procedure so that it deletes the

row from the item table that represents a paperback copy (isbn 10101) of
The Cherry Orchard (title_no 8).
USE library
DELETE FROM item
 WHERE isbn = 10101
 AND title_no = 8
GO

2. Execute the query and confirm that it one row is deleted from the item table.

 Module 7: Modifying Data 35

Exercise 5
Using the UPDATE Statement

In this exercise you will modify the last name of member number 507 in the
member table of the library database. C:\Moc\2071A\Labfiles\L07\Answers
contains completed scripts for this exercise.

! To retrieve a row of data that you intend on updating from the member
table

In this procedure, you will retrieve a row of data that you want to update from
the member table. Answer_SelUpdate1.sql is a completed script for this
procedure.
1. Write a query that retrieves the last name of member number 507 in the

member table.
USE library
SELECT *
 FROM member
 WHERE member_no = 507
GO

2. Execute the query to verify that it returns the desired results.

! To update a specific row of data from the member table
In this procedure, you will update a specific row of data from the member
table. Answer_Update1.sql is a completed script for this procedure.
1. Write a query that changes the last name of member number 507 in the

member table to a different one of your choice.
USE library
UPDATE member
 SET lastname = 'BENSON'
 WHERE member_no = 507
GO

2. Execute the query and confirm that it updates one row in the member table.

36 Module 7: Modifying Data

Exercise 6
Modifying Tables Based on Data in Other Tables

In this exercise, you will write queries that insert values from one or more
tables in the database into an existing table, and you will delete or update rows
in a table based on criteria in other tables.
C:\Moc\2071A\Labfiles\L07\Answers contains completed scripts for this
exercise.

! To add a new juvenile member to the database
In this procedure, you will add a new juvenile member to the library database.
1. Review and execute the C:\Moc\2071A\Labfiles\L07\AddJuvenile.sql script

file to add a new juvenile member to the library database.
Because the process of adding a new juvenile member requires two INSERT
statements, this action is treated as a transaction. The SET
IDENTITY_INSERT statement is used to supply a specific value for the
member.member_no column rather than using the value that the
IDENTITY property supplied.

2. Execute the query and verify that a single row was inserted into each of two
tables.

! To determine which records should be moved from the juvenile table to
the adult table

In this procedure, you will retrieve data from the adult and item tables for all
juvenile members over age 18. Answer_SelNewAdult.sql is a completed script
for this procedure.
1. Write a SELECT statement that returns the member_no column from the

juvenile table and the street, city, state, zip, and phone_no columns from
the adult table. Also include in the query today�s date plus one year by
using the following expression:
DATEADD(YY, 1, GETDATE())

This last column will be used later to provide a value for the
adult.expr_date column. This SELECT statement joins the juvenile table
with the member table, such that juvenile.adult_member_no =
adult.member_no.
Include a WHERE clause to limit the rows that are added to those members
in the juvenile table who are over age 18 by using the DATEADD function
in an expression. Search Books Online for �DATEADD� if you need further
assistance.
USE library
 SELECT ju.member_no, ad.street, ad.city, ad.state
 ,ad.zip, ad.phone_no, DATEADD(YY, 1, GETDATE())
 FROM juvenile AS ju
 INNER JOIN adult AS ad
 ON ju.adult_member_no = ad.member_no
 WHERE (DATEADD(YY, 18, ju.birth_date) < GETDATE())
GO

2. Execute the query to verify that it returns the desired results. Note the
member_no values that are returned.

 Module 7: Modifying Data 37

! To insert new rows into the adult table from the juvenile table
1. Write an INSERT statement that incorporates the SELECT statement that

you created in step 1 of the previous procedure in order to add rows to the
adult table. Answer_InsNewAdult.sql is a completed script for this
procedure.
USE library
INSERT adult(member_no, street, city, state
 ,zip, phone_no, expr_date)
 SELECT ju.member_no, ad.street, ad.city, ad.state
 ,ad.zip, ad.phone_no, DATEADD(YY, 1, GETDATE())
 FROM juvenile AS ju
 INNER JOIN adult AS ad
 ON ju.adult_member_no = ad.member_no
 WHERE (DATEADD(YY, 18, ju.birth_date) < GETDATE())
GO

2. Execute the query and verify that one row is inserted.

! To verify that a certain juvenile record was added to the adult table
1. Write a query to verify that juvenile member number 16101 was added to

the adult table. Answer_ChkNewAdult.sql is a completed script for this
procedure.
USE library
SELECT *
 FROM adult
 WHERE member_no = 16101
GO

2. Execute the query to verify that it returns the desired results.

Your result will look similar to the following partial result set.

member_no name expr_date
16101 Walters, B. L. Feb 7 1998 2:58PM

(1 row(s) affected)

! To determine which rows in the juvenile table should be removed
In this procedure, you will create a query that deletes rows from the juvenile
table that have matching rows in the adult table. After juvenile members are
converted to adult members, those members must be deleted from the juvenile
table. Answer_SelOldJuvenile.sql is a completed script for this procedure.
1. Write a SELECT statement that joins the adult and juvenile tables so that

juvenile.member_no = adult.member_no.
USE library
SELECT *
 FROM juvenile
 INNER JOIN adult
 ON juvenile.member_no = adult.member_no
GO

2. Execute the query to verify that it returns the desired results.

Result

38 Module 7: Modifying Data

! To delete rows in the juvenile table that have matches in the adult table
1. Write a DELETE statement that uses the SELECT statement that you

created in step 1 of the previous procedure to delete these rows from the
juvenile table. Answer_DelOldJuvenile.sql is a completed script for this
procedure.
USE library
DELETE juvenile
 FROM juvenile
 INNER JOIN adult
 ON juvenile.member_no = adult.member_no
GO

2. Execute the query and verify that one row is deleted.

! To verify that a certain records were removed from the juvenile table
1. Write a SELECT statement to verify that member number 16101 was

removed from the juvenile table. Answer_ChkOldJuvenile.sql is an
example of this query.
USE library
SELECT *
 FROM juvenile
 WHERE member_no = 16101
GO

2. Execute the query and verify that no records are returned.

 Module 7: Modifying Data 39

Review

! Using Transactions

! Inserting Data

! Deleting Data

! Updating Data

! Performance Considerations

You are the database administrator for a health care plan. The physicians table
was created by using the following statement:

CREATE TABLE dbo.physicians (
 physician_no int IDENTITY (100, 2) NOT NULL
,f_name varchar (25) NOT NULL
,l_name varchar (25) NOT NULL
,street varchar (50) NULL
,city varchar (255) NULL
,state varchar (255) NULL
,postal_code varchar (7) NULL
,co_pay money NOT NULL CONSTRAINT phys_co_pay DEFAULT (10)
)

GO

1. What is the minimum number of column values that you must supply to add
a new row to the table?
You must supply data for at least two columns. At a minimum, the
INSERT statement will contain values for f_name and l_name. All
other columns allow null values or have defaults generated for them.
__

__

Slide Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

Use this scenario to answer
these questions and review
module topics.

Ask students whether
they need clarification on
any topic.

40 Module 7: Modifying Data

2. The participating physicians have increased their costs of services. How can
you increase the co_pay value for all doctors by 12 percent?
Use an UPDATE statement of the following type:
UPDATE physicians SET co_pay = (co_pay + co_pay * .12)

__

__

3. How can you remove all rows from the physicians table?
Use a DELETE statement or a TRUNCATE TABLE statement.
__

__

