

Contents

Overview 1

Introduction to Subqueries 2

Using a Subquery as a Derived Table 4

Using a Subquery as an Expression 5

Using a Subquery to Correlate Data 6

Using the EXISTS and
NOT EXISTS Clauses 13

Recommended Practices 15

Lab A: Working with Subqueries 16

Review 27

Module 6: Working with
Subqueries

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, BackOffice, MS-DOS, PowerPoint, Visual Studio, Windows, Windows Media, and
Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the
U.S.A. and/or other countries.

The names of companies, products, people, characters, and/or data mentioned herein are fictitious
and are in no way intended to represent any real individual, company, product, or event, unless
otherwise noted.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Project Lead: Cheryl Hoople
Instructional Designer: Cheryl Hoople
Technical Lead: LeRoy Tuttle
Program Manager: LeRoy Tuttle
Graphic Artist: Kimberly Jackson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Editorial Contributor: Elizabeth Reese
Copy Editor: Bill Jones (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Tools Specialist: Julie Challenger
Production Support: Lori Walker (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: Testing Testing 123
Classroom Automation: Lorrin Smith-Bates
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 6: Working with Subqueries iii

Instructor Notes
This module presents advanced query techniques, which include nested and
correlated subqueries. It describes when and how to use a subquery and how to
use subqueries to break down and perform complex queries.

At the end of this module, you will be able to:

! Describe when and how to use a subquery.
! Use subqueries to break down and perform complex queries.

Materials and Preparation
Required Materials
To teach this course, you need the following materials:

! Microsoft® PowerPoint® file 2017A_06.ppt.
! The C:\Moc\Demo\Ex_06.sql example file, which contains all of the

example scripts from the module, unless otherwise noted in the module.

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials.
! Complete the lab.

Presentation:
45 Minutes

Lab:
30 Minutes

iv Module 6: Working with Subqueries

Module Strategy
Use the following strategy to present this module:

! Introduction to Subqueries
Define subqueries and present basic facts and guidelines related to using
them. Point out that subqueries may be less efficient than joins because
subqueries specify the order in which to retrieve data. Joins allow the query
optimizer in Microsoft SQL Server� 2000 to retrieve data in the most
efficient way.

! Using a Subquery as a Derived Table
Describe how a derived table is a special use of a subquery in a FROM
clause to which an alias or user-specified name refers. Explain when to use
it. Review the example.

! Using a Subquery as an Expression
Describe when and how to use a subquery as an expression. Review the
example.

! Using a Subquery to Correlate Data
Discuss how correlated queries are processed. Use the graphic to illustrate
how correlated subqueries are evaluated. Point out the difference between a
correlated subquery and a nested subquery. In a correlated subquery, the
inner query is evaluated repeatedly, once for each row of the outer query.
Describe how to use a subquery to correlated data by mimicking JOIN and
HAVING clauses. Review the examples.

! Using a Subquery with EXISTS and NOT EXISTS
Present the EXISTS and NOT EXISTS keywords in the context of their use
with correlated subqueries. Review the example.

 Module 6: Working with Subqueries v

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing
Microsoft Official Curriculum (MOC) courseware.

The lab in this module is dependent on the classroom configuration
that is specified in the Customization Information section at the end of the
Classroom Setup Guide for course 2071A, Querying Microsoft SQL Server
2000 with Transact-SQL.

Lab Setup
There are no lab setup requirements that affect replication or customization.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Important

 Module 6: Working with Subqueries 1

Overview

! Introduction to Subqueries

! Using a Subquery as a Derived Table

! Using a Subquery as an Expression

! Using a Subquery to Correlate Data

! Using the EXISTS and NOT EXISTS Clauses

This module presents advanced query techniques, which include nested and
correlated subqueries, and how they can be used to modify data. It describes
when and how to use a subquery and how to use subqueries to break down and
perform complex queries.

At the end of this module, you will be able to:

! Describe when and how to use a subquery.
! Use subqueries to break down and perform complex queries.

Slide Objective
To provide a brief overview
of the topics covered in
this module.

Lead-in
In this module, you will learn
about advanced query
techniques.

2 Module 6: Working with Subqueries

Introduction to Subqueries

! Why to Use Subqueries

To break down a complex query into a series of
logical steps

To answer a query that relies on the results of an
other query

! Why to Use Joins Rather Than Subqueries

SQL Server executes joins faster than subqueries

! How to Use Subqueries

A subquery is a SELECT statement nested inside a SELECT, INSERT,
UPDATE, or DELETE statement or inside another subquery. Often you can
rewrite subqueries as joins and use subqueries in place of an expression.

An expression is a combination of identifiers, values, and operators that
SQL Server evaluates to obtain a result.

Why to Use Subqueries
You use subqueries to break down a complex query into a series of logical steps
and, as a result, to solve a problem with a single statement. Subqueries are
useful when your query relies on the results of another query.

Why to Use Joins Rather Than Subqueries
Often, a query that contains subqueries can be written as a join. Query
performance may be similar with a join and a subquery. The query optimizer
usually optimizes subqueries so that it uses the sample execution plan that a
semantically equivalent join would use. The difference is that a subquery may
require the query optimizer to perform additional steps, such as sorting, which
may influence the processing strategy.

Using joins typically allows the query optimizer to retrieve data in the most
efficient way. If a query does not require multiple steps, it may not be necessary
to use a subquery.

Slide Objective
To discuss whether to
use subqueries.

Lead-in
Subqueries are a series of
SELECT statements. Often,
you can rewrite subqueries
as joins.

 Module 6: Working with Subqueries 3

How to Use Subqueries
When you decide to use subqueries, consider the following facts and guidelines:

! You must enclose subqueries in parentheses.
! You can use a subquery in place of an expression as long as a single value

or list of values is returned. You can use a subquery that returns a multi-
column record set in place of a table or to perform the same function as a
join.

! You cannot use subqueries that retrieve columns that contain text and
image data types.

! You can have subqueries within subqueries, nesting up to 32 levels. The
limit varies based on available memory and the complexity of other
expressions in the query. Individual queries may not support nesting up to
32 levels.

Delivery Tip
Review each fact and
guideline to consider when
using subqueries.

4 Module 6: Working with Subqueries

Using a Subquery as a Derived Table

! Is a Recordset Within a Query That Functions as a Table

! Takes the Place of a Table in the FROM Clause

! Is Optimized with the Rest of the Query

USE northwind
SELECT T.orderid, T.customerid
FROM (SELECT orderid, customerid

FROM orders) AS T
GO

USE northwind
SELECT T.orderid, T.customerid
FROM (SELECT orderid, customerid

FROM orders) AS T
GO

You create a derived table by using a subquery in place of a table in a FROM
clause. A derived table is a special use of a subquery in a FROM clause to
which an alias or user-specified name refers. The result set of the subquery in
the FROM clause forms a table that the outer SELECT statement uses.

This example uses a subquery to create a derived table in the inner part of the
query that the outer part queries. The derived table itself is functionally
equivalent to the whole query, but it is separated for illustrative purposes.

USE northwind
SELECT T.orderid, T.customerid
 FROM (SELECT orderid, customerid
 FROM orders) AS T
GO

When used as a derived table, consider that a subquery:

! Is a recordset within a query that functions as a table.
! Takes the place of a table in the FROM clause.
! Is optimized with the rest of the query.

Slide Objective
To describe how to use a
subquery as a derived table.

Lead-in
You create a derived table
by using a subquery in place
of a table in a FROM clause.

Example

 Module 6: Working with Subqueries 5

Using a Subquery as an Expression

! Is Evaluated and Treated as an Expression

! Is Executed Once for the Query

USE pubs
SELECT title, price

,(SELECT AVG(price) FROM titles) AS average
,price-(SELECT AVG(price) FROM titles) AS difference

FROM titles
WHERE type='popular_comp'

GO

USE pubs
SELECT title, price

,(SELECT AVG(price) FROM titles) AS average
,price-(SELECT AVG(price) FROM titles) AS difference

FROM titles
WHERE type='popular_comp'

GO

In Transact-SQL, you can substitute a subquery wherever you use an
expression. The subquery must evaluate to a scalar value, or to a single column
list of values. Subqueries that return a list of values replace an expression in a
WHERE clause that contains the IN keyword.

When used as an expression, consider that a subquery:

! Is evaluated and treated as an expression. The query optimizer often
evaluates an expression as equivalent to a join connecting to a table that has
one row.

! Is executed once for the entire statement.

This example returns the price of a popular computer book, the average price of
all books, and the difference between the price of the book and the average
price of all books.

USE pubs
SELECT title, price
 ,(SELECT AVG(price) FROM titles) AS average
 ,price-(SELECT AVG(price) FROM titles) AS difference
 FROM titles
 WHERE type='popular_comp'
GO

Slide Objective
To describe how to use a
subquery as an expression.

Lead-in
You can substitute a
subquery wherever you use
an expression in SELECT,
UPDATE, INSERT, and
DELETE statements.

Delivery Tip
Point out that subqueries
that return a list of values
replace an expression in a
WHERE clause that
contains the IN keyword.

Example

6 Module 6: Working with Subqueries

$$$$ Using a Subquery to Correlate Data

! Evaluating a Correlated Subquery

! Mimicking a JOIN Clause

! Mimicking a HAVING Clause

You can use a correlated subquery as a dynamic expression that changes for
each row of an outer query.

The query processor performs the subquery for each row in the outer query, one
row at a time, which is in turn evaluated as an expression for that row and
passed to the outer query. The correlated subquery is effectively a JOIN
between the dynamically executed subquery and the row from the outer query.

You can typically rewrite a query in a number of ways and still obtain the same
results. Correlated subqueries break down complex queries into two or more
simple, related queries.

You can easily recognize correlated subqueries. A column from a table
inside the subquery is compared to a column from a table outside the subquery.

Slide Objective
To describe how to use a
subquery to correlate data.

Lead-in
A correlated subquery can
be used as a dynamic
expression that changes for
each row of an outer query.

Tip

 Module 6: Working with Subqueries 7

Evaluating a Correlated Subquery

Back to Step 1Back to Step 1

USE northwind
SELECT orderid, customerid
FROM orders AS or1
WHERE 20 < (SELECT quantity

FROM [order details] AS od
WHERE or1.orderid = od.orderid
AND od.productid = 23)

GO

USE northwind
SELECT orderid, customerid
FROM orders AS or1
WHERE 20 < (SELECT quantity

FROM [order details] AS od
WHERE or1.orderid = od.orderid
AND od.productid = 23)

GO

Outer query passes column
values to the inner query

Outer query passes column Outer query passes column
values to the inner queryvalues to the inner query

Inner query uses that value to
satisfy the inner query

Inner query uses that value to Inner query uses that value to
satisfy the inner querysatisfy the inner query

Inner query returns a value
back to the outer query

Inner query returns a value Inner query returns a value
back to the outer queryback to the outer query

The process is repeated for the
next row of the outer query

The process is repeated for the The process is repeated for the
next row of the outer querynext row of the outer query

Example 1Example 1

When you create a correlated subquery, the inner subqueries are evaluated
repeatedly, once for each row of the outer query:

! SQL Server executes the inner query for each row that the outer
query selects.

! SQL Server compares the results of the subquery to the results outside the
subquery.

This example returns a list of customers who ordered more than 20 pieces of
product number 23.

USE northwind
SELECT orderid, customerid
 FROM orders AS or1
 WHERE 20 < (SELECT quantity
 FROM [order details] AS od
 WHERE or1.orderid = od.orderid
 AND od.productid = 23)
GO

orderid customerid
10337 FRANK
10348 WANDK
10396 FRANK
10402 ERNSH
10462 CONSH
.
.
.
(11 row(s) affected)

Slide Objective
To discuss how correlated
subqueries are processed.

Lead-in
When you create a
correlated subquery, the
inner subqueries are
evaluated repeatedly,
once for each row of the
outer query.

Delivery Tip
Compare correlated
subqueries to
nested subqueries.

Example 1

Result

8 Module 6: Working with Subqueries

Correlated subqueries return a single value or a list of values for each row
specified by the FROM clause of the outer query. The following steps describe
how the correlated subquery is evaluated in example 1:

1. The outer query passes a column value to the inner query.
The column value that the outer query passes to the inner query is the
orderid. The outer query passes the first orderid in the orders table to the
inner query.

2. The inner query uses the values that the outer query passes.
Each orderid in the orders table is evaluated to determine whether an
identical orderid is found in the order details table. If the first orderid
matches an orderid in the order details table and that orderid purchased
product number 23, then the inner query returns that orderid to the
outer query.

3. The inner query returns a value back to the outer query.
The WHERE clause of the outer query further evaluates the orderid that
purchased product number 23 to determine whether the quantity ordered
exceeds 20.

4. The process is repeated for the next row of the outer query.
The outer query passes the second orderid in the orders table to the inner
query, and SQL Server repeats the evaluation process for that row.

This example returns a list of products and the largest order ever placed for
each product in the order details table. Notice that this correlated subquery
references the same table as the outer query; the optimizer will generally treat
this as a self-join.

USE northwind
SELECT DISTINCT productid, quantity
 FROM [order details] AS ord1
 WHERE quantity = (SELECT MAX(quantity)
 FROM [order details] AS ord2
 WHERE ord1.productid = ord2.productid)
GO

productid quantity
50 40
67 40
4 50
9 50
11 50
.
.
.
(77 row(s) affected)

Example 2

Result

 Module 6: Working with Subqueries 9

Mimicking a JOIN Clause

! Correlated Subqueries Can Produce the Same Result as
a JOIN Clause

! Joins Let the Query Optimizer Determine How to
Correlate Data Most Efficiently

USE pubs
SELECT DISTINCT t1.type
FROM titles AS t1
WHERE t1.type IN

(SELECT t2.type
FROM titles AS t2
WHERE t1.pub_id <> t2.pub_id)

GO

USE pubs
SELECT DISTINCT t1.type
FROM titles AS t1
WHERE t1.type IN

(SELECT t2.type
FROM titles AS t2
WHERE t1.pub_id <> t2.pub_id)

GO

Example 1Example 1

You can use a correlated subquery to produce the same results as a JOIN, for
example, selecting data from a table referenced in the outer query.

You usually can rephrase correlated subqueries as joins. Using joins
rather than correlated subqueries allows the query optimizer to determine the
most efficient way to correlate the data.

This example uses a correlated subquery to find the types of books published by
more than one publisher. To prevent ambiguity, aliases are required to
distinguish the two different roles in which the titles table appears.

USE pubs
SELECT DISTINCT t1.type
 FROM titles AS t1
 WHERE t1.type IN
 (SELECT t2.type
 FROM titles AS t2
 WHERE t1.pub_id <> t2.pub_id)
GO

Type
business
psychology

(2 row(s) affected)

Slide Objective
To describe how to use a
correlated subquery to
mimic a JOIN.

Lead-in
You can use a correlated
subquery to produce the
same results as a JOIN.

Delivery Tip
The key to understanding
correlated subquery syntax
is understanding the use of
table aliases. The table
aliases show you which
tables are correlated.

Note

Example 1

Result

10 Module 6: Working with Subqueries

This example returns the same results as example 1 by using a self-join instead
of a correlated subquery.

USE pubs
SELECT DISTINCT t1.type
 FROM titles AS t1
 INNER JOIN titles AS t2
 ON t1.type = t2.type
 WHERE t1.pub_id <> t2.pub_id
GO

Example 2

Delivery Tip
Use SQL Query Analyzer to
execute both JOIN
examples and show the
different execution plans.

 Module 6: Working with Subqueries 11

Mimicking a HAVING Clause

! Subquery with the Same Result As a HAVING Clause

! Using a HAVING Clause Without a Subquery

USE pubs
SELECT t1.type, t1.title, t1.price
FROM titles AS t1
WHERE t1.price > (SELECT AVG(t2.price) FROM titles AS t2

WHERE t1.type = t2.type)
GO

USE pubs
SELECT t1.type, t1.title, t1.price
FROM titles AS t1
WHERE t1.price > (SELECT AVG(t2.price) FROM titles AS t2

WHERE t1.type = t2.type)
GO

USE pubs
SELECT t1.type, t1.title, t1.price
FROM titles AS t1
INNER JOIN titles AS t2 ON t1.type = t2.type
GROUP BY t1.type, t1.title, t1.price
HAVING t1.price > AVG(t2.price)

GO

USE pubs
SELECT t1.type, t1.title, t1.price
FROM titles AS t1
INNER JOIN titles AS t2 ON t1.type = t2.type
GROUP BY t1.type, t1.title, t1.price
HAVING t1.price > AVG(t2.price)

GO

Example 1Example 1

Example 2Example 2

You can use a correlated subquery to produce the same results as a query that
uses the HAVING clause.

This example finds all titles that have a price greater than the average price for
books of the same type. For each possible value of t1, SQL Server evaluates the
subquery and includes the row in the results if the price value of that row is
greater than the calculated average. It is not necessary to group by type
explicitly, because the rows for which average price is calculated are restricted
by the WHERE clause in the subquery.

USE pubs
SELECT t1.type, t1.title, t1.price
 FROM titles AS t1
 WHERE t1.price > (SELECT AVG(t2.price)
 FROM titles AS t2
 WHERE t1.type = t2.type)
GO

Resulttype title
Business The Busy Executive�s Database Guide
Business Straight Talk About Computers
mod_cook Silicon Valley Gastronomic Treats
popular_comp But Is It User Friendly?
Psychology Computer Phobic AND Non-Phobic

Individuals: Behavior Variations
Psychology Prolonged Data Deprivation: Four Case

Studies
trad_cook Onions, Leeks, and Garlic: Cooking

Secrets of the Mediterranean

(7 row(s) affected)

Slide Objective
To describe how to mimic a
HAVING clause.

Lead-in
You can use a correlated
subquery to produce the
same results as a query that
uses the HAVING clause.

Example 1

Delivery Tip
Use SQL Query Analyzer to
execute both examples and
verify that they produce the
same results.

12 Module 6: Working with Subqueries

This example produces the same result set as example 1, but uses a self-join
with GROUP BY and HAVING clauses.

USE pubs
SELECT t1.type, t1.title, t1.price
 FROM titles AS t1
 INNER JOIN titles AS t2
 ON t1.type = t2.type
 GROUP BY t1.type, t1.title, t1.price
 HAVING t1.price > AVG(t2.price)
GO

You can write correlated subqueries that produce the same results as a
JOIN or HAVING clause, but the query processor may not implement them in
the same manner.

Example 2

Note

 Module 6: Working with Subqueries 13

Using the EXISTS and NOT EXISTS Clauses

! Use with Correlated Subqueries
! Determine Whether Data Exists in a List of Values
! SQL Server Process
Outer query tests for the existence of rows
Inner query returns TRUE or FALSE
No data is produced

USE northwind
SELECT lastname, employeeid
FROM employees AS e
WHERE EXISTS (SELECT * FROM orders AS o

WHERE e.employeeid = o.employeeid
AND o.orderdate = '9/5/97')

GO

USE northwind
SELECT lastname, employeeid
FROM employees AS e
WHERE EXISTS (SELECT * FROM orders AS o

WHERE e.employeeid = o.employeeid
AND o.orderdate = '9/5/97')

GO

Example 1Example 1

You can use the EXISTS and NOT EXISTS operators to determine whether
data exists in a list of values.

Use with Correlated Subqueries
Use the EXISTS and NOT EXISTS operators with correlated subqueries to
restrict the result set of an outer query to rows that satisfy the subquery. The
EXISTS and NOT EXISTS operators return TRUE or FALSE, based on
whether rows are returned for subqueries.

Determine Whether Data Exists in a List of Values
When a subquery is introduced with the EXISTS operator, SQL Server tests
whether data that matches the subquery exists. No rows are actually retrieved.
SQL Server terminates the retrieval of rows when it knows that at least one row
satisfies the WHERE condition in the subquery.

SQL Server Process
When SQL Server processes subqueries that use the EXISTS or
NOT EXISTS operator:

! The outer query tests for the existence of rows that the subquery returns.
! The subquery returns either a TRUE or FALSE value based on the given

condition in the query.
! The subquery does not produce any data.

Slide Objective
To discuss how the EXISTS
and NOT EXISTS operators
are used with correlated
subqueries.

Lead-in
You can use the EXISTS
and NOT EXISTS operators
to determine whether data
exists in a list of values.

14 Module 6: Working with Subqueries

WHERE [NOT] EXISTS (subquery)

This example uses a correlated subquery with an EXISTS operator in the
WHERE clause to return a list of employees who took orders on 4/10/2000.

USE northwind
SELECT lastname, employeeid
 FROM employees AS e
 WHERE EXISTS (SELECT * FROM orders AS o
 WHERE e.employeeid = o.employeeid
 AND o.orderdate = '9/5/1997')
GO

lastname employeeid
Peacock 4
King 7

(2 row(s) affected)

This example returns the same result set as example 1 and shows that you could
use a join operation rather than a correlated subquery. Note that the query needs
the DISTINCT keyword to return only a single row for each employee.

USE northwind
SELECT DISTINCT lastname, e.employeeid
 FROM orders AS o
 INNER JOIN employees AS e
 ON o.employeeid = e.employeeid
 WHERE o.orderdate = '9/5/1997'
GO

lastname employeeid
Peacock 4
King 7

(2 row(s) affected)

Partial Syntax

Example 1

Delivery Tip
Execute these two
examples with STATISTICS
TIME set ON to compare
the processing time.

Result

Example 2

Result

 Module 6: Working with Subqueries 15

Recommended Practices

Use Subqueries to Break Down a Complex QueryUse Subqueries to Break Down a Complex Query

Use Table Name Aliases for Correlated SubqueriesUse Table Name Aliases for Correlated Subqueries

Use the INSERT�SELECT Statement to Add Rows from
Other Sources to an Existing Table
Use the INSERT�SELECT Statement to Add Rows from
Other Sources to an Existing Table

Use the EXISTS Operator Instead of the IN OperatorUse the EXISTS Operator Instead of the IN Operator

The following recommended practices should help you perform
advanced queries:

! Use subqueries to break down a complex query. You can solve a problem
with a single statement by using subqueries. Subqueries are useful when
your query relies on the results of another query.

! Use table name aliases for correlated subqueries. SQL Server requires that
aliases be used to reference the ambiguous table names in order to
distinguish between the inner and outer tables.

! Use the INSERT�SELECT statement to add rows from other sources to an
existing table. Using the INSERT�SELECT statement is more efficient
than writing multiple, single-row INSERT statements.

! Use the EXISTS operator instead of the IN operator wherever possible so
that it is not necessary to retrieve the full result set of the subquery.

Additional information on the following topics is available in SQL Server
Books Online.

Topic Search on

Using subqueries �creating subqueries�

Correlating tables �using table aliases�

 �creating table aliases�

Using a subquery instead of an
expression

�subqueries used in place of an expression�

Slide Objective
To list the recommended
practices for data retrieval
and modification.

Lead-in
The following recommended
practices should help you
perform advanced queries.

16 Module 6: Working with Subqueries

Lab A: Working with Subqueries

Objectives
After completing this lab, you will be able to:

! Use a subquery as a derived table.
! Use a subquery as an expression.
! Use a subquery to correlate data.

Prerequisites
Before working on this lab, you must have:

! Script files for this lab, which are located in C:\Moc\2071A\Labfiles\L06.
! Answer files for this lab, which are located in

C:\Moc\2071A\Labfiles\L06\Answers.
! The library database installed.

Lab Setup
None.

For More Information
If you require help in executing files, search SQL Query Analyzer Help for
�Execute a query�.

Other resources that you can use include:

! The library database schema.
! SQL Server Books Online.

Slide Objective
To introduce the lab.

Lead-in
In this lab, you will write and
execute subqueries used as
an expression, a join, and to
correlate data.

Explain the lab objectives.

 Module 6: Working with Subqueries 17

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 30 minutes

18 Module 6: Working with Subqueries

Exercise 1
Using a Subquery as a Derived Table

In this exercise, you will write a query that uses a derived table and joins the
derived table to another table. You will also separate the query into individual
steps to show how a derived table is processed.
C:\Moc\2071A\Labfiles\L06\Answers contains completed scripts for this
exercise.

! To execute a query that uses a derived table
In this procedure, you will write and execute a query that uses a derived table
and returns the juvenile.adult_member_no column and the number of
juveniles for each adult member who has more than three juvenile members.
Answer_DerivedTab.sql is a completed script for this procedure.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password Password

2. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Microsoft Windows® Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Windows 2000 local
group, Administrators. All members of this group are automatically mapped
to the SQL Server sysadmin role.

3. In the DB list, click library.
4. Type the following query that uses a derived table.

USE Library
SELECT d.adult_member_no, a.expr_date, d.No_Of_Children
 FROM adult AS a
 INNER JOIN (
 SELECT adult_member_no, COUNT(*) AS No_Of_Children
 FROM juvenile
 GROUP BY adult_member_no
 HAVING COUNT(*) > 3
) AS d
 ON a.member_no = d.adult_member_no
GO

5. Execute the query to verify that it returns the desired results.

 Module 6: Working with Subqueries 19

Your result will look similar to the following result set. The number of rows
returned may vary.

adult_member_no expr_date No_Of_Children
1 2000-06-22 12:43:51.800 4
3 2000-06-24 12:43:51.800 4
67 2000-06-27 12:43:51.800 4

(28 row(s) affected)

When you answer questions later in this exercise, remember that this is
the result set of the original derived table query.

! To write the derived table query as two separate queries
In this procedure, you will rewrite and execute the previous query as two
separate queries to show how the query that uses a derived table is processed.
1. Type the following query that returns the adult_member_no column data,

calculates the number of children that each adult member has, and returns
only the rows containing adult members that have more than three children
from the juvenile table.
USE Library
SELECT adult_member_no, COUNT(*) AS No_Of_Children
 FROM juvenile
 GROUP BY adult_member_no
 HAVING COUNT(*) > 3
GO

2. Execute the query to verify that it returns the desired results.

Your result will look similar to the following result set. The number of rows
returned may vary.
adult_member_no No_Of_Children
1 4
3 4
5 4

(248 row(s) affected)

3. Compare the results of the query in step 1 of this procedure and the original
derived table query from the previous procedure.
What are the similarities between the two results?
Both queries return 248 rows in the result set. Both queries also return
the adult_member_no and No_Of_Children columns.
__

__

Result

Note

Result

20 Module 6: Working with Subqueries

4. Type the following query that retrieves the expr_date column data from the
adult table.
USE library
SELECT a.expr_date
 FROM adult AS a
GO

5. Execute the query to verify that it returns the desired results.

Your result will look similar to the following result set.
expr_date
2000-06-22 12:43:51.800
2000-06-24 12:43:51.800
2000-06-26 12:43:51.800

(5000 row(s) affected)

6. Compare the results of the query in step 4 of this procedure and the original
derived table query.
What are the similarities between the two results?
Both queries return the expr_date column.
__

What are the differences between the two results?
The preceding query returns 5000 rows, while the query using the
derived table only returns 248 rows.
__

__

! To rewrite the derived table query by using a join
In this procedure, you will rewrite and execute the original derived table query
as a join of two separate queries to show that you can obtain the same results as
using a derived table.
1. Type the following query.

USE Library
SELECT j.adult_member_no, a.expr_date
 ,COUNT(*) AS No_Of_Children
 FROM adult AS a
 INNER JOIN juvenile AS j
 ON a.member_no = j.adult_member_no
 GROUP BY adult_member_no, expr_date
 HAVING COUNT(*) > 3
GO

2. Execute the query to verify that it returns the desired results.

Result

 Module 6: Working with Subqueries 21

Your result will look similar to the following result set. The number of rows
returned may vary.
adult_member_no expr_date No_Of_Children
1 2000-06-22 12:43:51.800 4
3 2000-06-24 12:43:51.800 4
5 2000-06-27 12:43:51.800 4

(248 row(s) affected)

3. Compare the results of the query in step 1 of this procedure and the results
of the original derived table query.
Do both queries return the same results?
Yes.
__

__

Result

22 Module 6: Working with Subqueries

Exercise 2
Using a Subquery as an Expression

In this exercise, you will write queries that use single values and multiple
values to restrict the result sets of the outer query and to combine multiple
processing steps into one SELECT statement.
C:\Moc\2071A\Labfiles\L06\Answers contains completed scripts for this
exercise.

! To use a single-value subquery
In this procedure, you will write and execute a query that returns
member.firstname, member.lastname, loanhist.isbn, and loanhist.fine_paid
for members who have paid the highest recorded fines for all books.
Answer_Highpay.sql is a completed script for this procedure.
1. Type a query that returns the largest recorded value in the

loanhist.fine_paid column.
USE Library
SELECT MAX(fine_paid)
 FROM loanhist
GO

2. Execute the query to verify that it returns the desired results.

Your result will look similar to the following result set.
8.0000

(1 row(s) affected)

Warning: Null value is eliminated by an aggregate or
other SET operation.

! To use a single-value subquery as part of a search condition
In this procedure, you will use a single-value subquery as part of a search
condition.
1. Write a query that joins the member and loanhist tables and returns the

firstname, lastname, isbn, and fine_paid for each row.
2. Use the query from step 1 of the previous procedure as selection criteria in

the WHERE clause to return only those rows from the join in which the fine
that is paid equals the largest value that was ever recorded for all books.

3. Include the DISTINCT keyword in your query to eliminate entries for
members who have paid this fine on several occasions.
USE library
SELECT DISTINCT firstname, lastname, isbn, fine_paid
 FROM member AS m
 INNER JOIN loanhist AS lh
 ON m.member_no = lh.member_no
 WHERE lh.fine_paid = (SELECT MAX(fine_paid) FROM loanhist)
GO

Result

 Module 6: Working with Subqueries 23

4. Execute the query to verify that it returns the desired results.
Your result will look similar to the following result set. The number of rows
returned may vary.
Firstname lastname isbn fine_paid
Michael Nash 883 8.0000
Robert Rothenberg 330 8.0000

(2 row(s) affected)

Warning: Null value is eliminated by an aggregate or other
SET operation.

! To use a query to make a list of values
In this procedure, you will write and execute a query on the title, loan, and
reservation tables that returns four columns: title_no, title, isbn, and Total
Reserved. The Total Reserved column is the per-isbn (book) count of books
on reserve with more than 50 reservations and less than five copies of the book.
Group the results by title_no, title, and isbn. Answer_SubqIn.sql is a
completed script for this procedure.
1. Write a query that returns the isbn numbers of books from the reservations

table that have more than fifty reservations.
USE library
SELECT isbn
 FROM reservation
 GROUP BY isbn
 HAVING COUNT(*)> 50
GO

2. Execute the query to verify that it returns the desired results.

Your result will look similar to the following partial result set. The number
of rows returned may vary.
Isbn
1
43
246
288
330
.
.
.
(11 row(s) affected)

Result

Result

24 Module 6: Working with Subqueries

! To use a multiple-value subquery
1. Write an outer query that returns the title_no, title, isbn, and Total

Reserved columns in which the Total Reserved column is the number of
records for each group of title_no, title, and isbn. To do this:
a. Restrict the rows that form the groups in the outer query by specifying

books that have less than five copies.
b. Use the IN keyword as part of the WHERE clause against the list of

values generated by the query in step 1 of the previous procedure.
USE Library
SELECT t.title_no, title, l.isbn
 ,count(*) AS 'Total Reserved'
 FROM title AS t
 INNER JOIN loan AS l
 ON t.title_no = l.title_no
 INNER JOIN reservation AS r
 ON r.isbn = l.isbn
 WHERE r.isbn IN
 (SELECT isbn
 FROM reservation
 GROUP BY isbn
 HAVING COUNT(*)> 50)
 AND l.copy_no < 5
 GROUP BY t.title_no, title, l.isbn
GO

2. Execute the query to verify that it returns the desired results.

Your result will look similar to the following partial result set. The number of
rows returned may vary.

title_no Title isbn Total Reserved
1 Last of the Mohicans 1 197
25 The Black Tulip 246 196
33 The First 100,000 Prime Numbers 330 196
.
.
.
8 row(s) affected)

Result

 Module 6: Working with Subqueries 25

Exercise 3
Using a Subquery to Correlate Data

In this exercise, you will write queries that use correlated subqueries to restrict
the result set of the outer query and to combine multiple processing steps into
one SELECT statement. C:\Moc\2071A\Labfiles\L06\Answers contains
completed scripts for this exercise.

! To use a correlated subquery
In this procedure, you will create a query that uses a correlated subquery to
calculate a value, based on data from the outer query, and then uses that value
as part of a comparison. You will query the member and loanhist tables to
return a list of library members who have fines that total more than $5.00. A
correlated subquery calculates the fines for each member. Answer_Fineof5.sql
is a completed script for this procedure.

You also can write this query with a join and a GROUP BY or HAVING
clause instead of a correlated subquery. Answer_Finejoin.sql is a completed
script for this alternate solution.

1. Write a query that returns the member_no and lastname columns of the
member table, by using a table alias for the member table.
USE Library
SELECT member_no, lastname
 FROM member AS m
GO

2. Execute the query to verify that it returns the desired results.
3. Write a query that calculates the total fines for each member as recorded in

the loanhist table. To do this:
a. Use an alias for the loanhist table.
b. Correlate the member.member_no column of the outer query to the

loanhist.member_no column of the inner query in a subquery.
c. Use a comparison operator in the WHERE clause of the outer query to

select those members who have fines that total more than $5.00.
USE library
SELECT member_no, lastname
 FROM member AS m
 WHERE 5 < (SELECT SUM(fine_assessed)
 FROM loanhist AS lh
 WHERE m.member_no = lh.member_no)
GO

4. Execute the query to verify that it returns the desired results.

Note

26 Module 6: Working with Subqueries

Your result will look similar to the following partial result set. The number
of rows returned may vary.
member_no lastname
204 Graff
372 Miksovsky
1054 Miksovsky
1094 O'Brian
.
.
.
(41 row(s) affected)

Warning: Null value is eliminated by an aggregate or other
SET operation.

Result

 Module 6: Working with Subqueries 27

Review

! Introduction to Subqueries

! Using a Subquery as a Derived Table

! Using a Subquery as an Expression

! Using a Subquery to Correlate Data

! Using the EXISTS and NOT EXISTS Clauses

Ask students whether they need clarification on any topic. The Duluth Mutual
Life health care organization has a database that tracks information about
doctors and their patients. The database includes the following tables.

Doctor table
Column Data type and constraints

doc_id char(9), PRIMARY KEY

fname char(20)

lname char(25)

specialty char(25)

phone char(10)

Patient table
Column Data type and constraints

pat_id char(9), PRIMARY KEY

fname char(20)

lname char(25)

insurance_company char(25)

phone char(10)

Slide Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

Use this scenario to answer
these questions and review
module topics.

28 Module 6: Working with Subqueries

Casefile table
Column Data type and constraints

admission_date datetime, PRIMARY KEY (composite)

pat_id char(9), PRIMARY KEY (composite),
FOREIGN KEY to patient.pat_id

doc_id char(9), FOREIGN KEY to doctor.doc_id

diagnosis varchar(150)

Based on this table structure, answer the following questions.

1. How, with a single query, can you produce a list of all cases that were
admitted on the first chronological date in the database?
Use a single-value subquery with the MIN function to determine the
oldest date of admission. Compare the result of the subquery to the
admission date for each case with the WHERE clause.
__

__

2. You want to know the total number of hospital admissions, listed by patient
name. How can you determine this? What are the advantages or
disadvantages of your method?
You could write a SELECT statement with a correlated subquery
that calculates the total admissions for each patient by using the
COUNT function.
SELECT pat_id, pat_name
 ,(SELECT count(*) FROM casefile C WHERE C.pat_id =
P.pat_id)
FROM patient AS P

This could also be done by using a join with the GROUP BY clause and
the COUNT function. The subquery method might be less efficient than
the GROUP BY method, but it is logically clearer.
__

__

__

