

Contents

Overview 1

Using Aliases for Table Names 2

Combining Data from Multiple Tables 3

Combining Multiple Result Sets 18

Recommended Practices 20

Lab A: Querying Multiple Tables 21

Review 29

Module 5: Joining
Multiple Tables

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, BackOffice, MS-DOS, PowerPoint, Visual Studio, Windows, Windows Media, and
Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the
U.S.A. and/or other countries.

The names of companies, products, people, characters, and/or data mentioned herein are fictitious
and are in no way intended to represent any real individual, company, product, or event, unless
otherwise noted.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Project Lead: Cheryl Hoople
Instructional Designer: Cheryl Hoople
Technical Lead: LeRoy Tuttle
Program Manager: LeRoy Tuttle
Graphic Artist: Kimberly Jackson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Editorial Contributor: Elizabeth Reese
Copy Editor: Bill Jones (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Tools Specialist: Julie Challenger
Production Support: Lori Walker (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: Testing Testing 123
Classroom Automation: Lorrin Smith-Bates
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 5: Joining Multiple Tables iii

Instructor Notes
This module provides students with an overview of querying multiple tables by
using different types of joins, combining result sets by using the UNION
operator, and creating tables by using the SELECT INTO statement.

At the end of this module, students will be able to:

! Use aliases for table names.
! Combine data from two or more tables by using joins.
! Combine multiple result sets into one result set by using the

UNION operator.

Materials and Preparation
Required Materials
To teach this course, you need the following materials:

! Microsoft® PowerPoint® file 2071A_05.ppt.
! The C:\Moc\2071A\Demo\Ex_05.sql example, which contains all of the

example scripts from the module, unless otherwise noted in the module.

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials.
! Complete the lab.

Presentation:
60 Minutes

Lab:
45 Minutes

iv Module 5: Joining Multiple Tables

Module Strategy
Use the following strategy to present this module:

! Using Aliases for Table Names
Point out that users can assign aliases for table names within the scope of a
Transact-SQL statement. Note that using aliases for table names helps script
readability and facilitates complex join logic.

! Combining Data from Multiple Tables
Introduce the join operation and discuss in detail inner, outer, and cross
joins. The examples only focus on joining two tables by using a simplified
database, joindb, to teach these concepts.
Explain how to join multiple tables and a table to itself. Demonstrate
multiple and self-joins against the northwind database by using the
provided script.

! Combining Multiple Result Sets
Describe combining multiple result sets into one result set by using the
UNION operator.

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing
Microsoft Official Curriculum (MOC) courseware.

The lab in this module is dependent on the classroom configuration
that is specified in the Customization Information section at the end of the
Classroom Setup Guide for course 2071A, Querying Microsoft SQL Server
2000 with Transact-SQL.

Module Setup
The C:\Moc\2071A\Batches\2071A_JoinDB.sql script, which adds the joindb
database, is normally executed as part of the Classroom Setup. When you
customize the course, you must ensure that this script is executed so that the
examples in the module function correctly.

Lab Setup
There are no lab setup requirements that affect replication or customization.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Important

 Module 5: Joining Multiple Tables 1

Overview

! Using Aliases for Table Names

! Combining Data from Multiple Tables

! Combining Multiple Result Sets

This module provides students with an overview of querying multiple tables by
using different types of joins, combining result sets by using the UNION
operator, and creating tables by using the SELECT INTO statement.

After completing this module, you will be able to:

! Use aliases for table names.
! Combine data from two or more tables by using joins.
! Combine multiple result sets into one result set by using the

UNION operator.

Topic Objective
To introduce the topics that
this module covers.

Lead-in
In this module, you will learn
about joining multiple tables.

2 Module 5: Joining Multiple Tables

Using Aliases for Table Names

! Example 1 (without an alias name)

! Example 2 (with an alias name)
USE joindb
SELECT buyer_name, s.buyer_id, qty
FROM buyers AS b INNER JOIN sales AS s
ON b.buyer_id = s.buyer_id

GO

USE joindb
SELECT buyer_name, s.buyer_id, qty
FROM buyers AS b INNER JOIN sales AS s
ON b.buyer_id = s.buyer_id

GO

USE joindb
SELECT buyer_name, sales.buyer_id, qty
FROM buyers INNER JOIN sales
ON buyers.buyer_id = sales.buyer_id

GO

USE joindb
SELECT buyer_name, sales.buyer_id, qty
FROM buyers INNER JOIN sales
ON buyers.buyer_id = sales.buyer_id

GO

Using aliases for table names improves script readability, facilitates writing
complex joins, and simplifies the maintenance of Transact-SQL.

You can replace a long and complex fully qualified table name with a simple,
abbreviated alias name when writing scripts. You use an alias name in place of
the full table name.

SELECT * FROM server.database.schema.table AS table_alias

This example displays the names of buyers, buyer ID, and the quantity sold
from the buyers and sales tables. This query does not use alias names for the
tables in the JOIN syntax.

USE joindb
SELECT buyer_name, sales.buyer_id, qty
 FROM buyers
 INNER JOIN sales
 ON buyers.buyer_id = sales.buyer_id
GO

This example displays the names of buyers, buyer ID, and the quantity sold
from the buyers and sales tables. This query uses alias names for the tables in
the JOIN syntax.

USE joindb
SELECT buyer_name, s.buyer_id, qty
 FROM buyers AS b
 INNER JOIN sales AS s
 ON b.buyer_id = s.buyer_id
GO

Sometimes complex JOIN syntax and subqueries must use aliases for
table names. For example, aliases must be used when joining a table to itself.

Topic Objective
To describe how to use
aliases for table names.

Lead-in
Using aliases for table
names improves script
readability, facilitates writing
complex joins, and simplifies
the maintenance of
Transact-SQL.

Partial Syntax

Example 1

Example 2

Note

 Module 5: Joining Multiple Tables 3

Combining Data from Multiple Tables

! Introduction to Joins

! Using Inner Joins

! Using Outer Joins

! Using Cross Joins

! Joining More Than Two Tables

! Joining a Table to Itself

A join is an operation that allows you to query two or more tables to produce a
result set that incorporates rows and columns from each table. You join tables
on columns that are common to both tables.

When you join tables, Microsoft® SQL Server� 2000 compares the values of
the specified columns row by row and then uses the comparison results to
combine the qualifying values into new rows.

There are three types of joins: inner joins, outer joins, and cross joins.
Additionally, you can join more than two tables by using a series of joins within
a SELECT statement, or you can join a table to itself by using a self-join.

Topic Objective
To explain the different
ways that you can combine
data from two or more
tables or result sets.

Lead-in
It is possible to combine
data from two or more
tables, even if the
tables reside in
different databases.

4 Module 5: Joining Multiple Tables

Introduction to Joins

! Selects Specific Columns from Multiple Tables

$ JOIN keyword specifies that tables are joined and how to
join them

$ ON keyword specifies join condition

! Queries Two or More Tables to Produce a Result Set

$ Use primary and foreign keys as join conditions

$ Use columns common to specified tables to join tables

You join tables to produce a single result set that incorporates rows and
columns from two or more tables.

SELECT column_name [, column_name �]
FROM {<table_source>} [,...n]
 <join_type> ::=
 [INNER | { { LEFT | RIGHT | FULL } [OUTER] }]
 [<join_hint>]
 JOIN
 <joined_table> ::=
 <table_source> <join_type> <table_source> ON <search_condition>
 | <table_source> CROSS JOIN <table_source>
 | <joined_table>

Selects Specific Columns from Multiple Tables
A join allows you to select columns from multiple tables by expanding on the
FROM clause of the SELECT statement. Two additional keywords are included
in the FROM clause�JOIN and ON:

! The JOIN keyword specifies which tables are to be joined and how to
join them.

! The ON keyword specifies which columns the tables have in common.

Topic Objective
To explain how joins
are implemented.

Lead-in
You join tables to produce a
single result set that
incorporates elements from
two or more tables.

Partial Syntax

Delivery Tip
Reference SQL Server
Books Online to show the
full SELECT statement and
to highlight the joins.

 Module 5: Joining Multiple Tables 5

Queries Two or More Tables to Produce a Result Set
A join allows you to query two or more tables to produce a single result set.
When you implement joins, consider the following facts and guidelines:

! Specify the join condition based on the primary and foreign keys.
! If a table has a composite primary key, you must reference the entire key in

the ON clause when you join tables.
! Use columns common to the specified tables to join the tables. These

columns should have the same or similar data types.
! Reference a table name if the column names of the joined tables are the

same. Qualify each column name by using the table_name.column_name
format.

! Limit the number of tables in a join because the more tables that you join,
the longer SQL Server takes to process your query.

! You can include a series of joins within a SELECT statement.

6 Module 5: Joining Multiple Tables

Using Inner Joins
USE joindb
SELECT buyer_name, sales.buyer_id, qty
FROM buyers INNER JOIN sales
ON buyers.buyer_id = sales.buyer_id
GO

USE joindb
SELECT buyer_name, sales.buyer_id, qty
FROM buyers INNER JOIN sales
ON buyers.buyer_id = sales.buyer_id
GO

sales

buyer_idbuyer_idbuyer_id prod_idprod_idprod_id qtyqtyqty

11

11

44

33

22

33

11

55

1515

55

3737

1111

44 22 10031003

buyers

buyer_namebuyer_namebuyer_name

Adam BarrAdam Barr

Sean ChaiSean Chai

Eva CoretsEva Corets

Erin O�MeliaErin O�Melia

buyer_idbuyer_idbuyer_id

11

22

33

44

Result

buyer_namebuyer_namebuyer_name

Adam BarrAdam Barr

Adam BarrAdam Barr

Erin O�MeliaErin O�Melia

Eva CoretsEva Corets

buyer_idbuyer_idbuyer_id qtyqtyqty

11

11

44

33

1515

55

3737

1111

Erin O�MeliaErin O�Melia 44 10031003

Example 1Example 1

Inner joins combine tables by comparing values in columns that are common to
both tables. SQL Server returns only rows that match the join conditions.

The examples in this module are from the joindb database�a database
created specifically for teaching the different types of joins. The joindb
database is included on the Student Materials compact disc.

Why to Use Inner Joins
Use inner joins to obtain information from two separate tables and combine that
information in one result set. When you use inner joins, consider the following
facts and guidelines:

! Inner joins are the SQL Server default. You can abbreviate the INNER
JOIN clause to JOIN.

! Specify the columns that you want to display in your result set by including
the qualified column names in the select list.

! Include a WHERE clause to restrict the rows that are returned in the
result set.

! Do not use a null value as a join condition because null values do not
evaluate equally with one another.

SQL Server does not guarantee an order in the result set unless one is
specified with an ORDER BY clause.

Topic Objective
To define and demonstrate
inner joins.

Lead-in
Use inner joins to combine
tables in which values in
compared columns
are equal.

Note

Delivery Tip
The examples on the slides
in this module are from the
joindb database�a
database created
specifically for teaching the
different types of joins. The
joindb database is included
on the Student Materials
compact disc.

Point out that SQL Server
does not guarantee an order
in the result set unless it is
specified with an ORDER
BY clause.

Note

 Module 5: Joining Multiple Tables 7

This example returns the buyer_name, buyer_id, and qty values for the buyers
who purchased products. Buyers who did not purchase any products are not
included in the result set. Buyers who bought more than one product are listed
for each purchase.

The buyer_id column from either table can be specified in the select list.

USE joindb
SELECT buyer_name, sales.buyer_id, qty
 FROM buyers
 INNER JOIN sales
 ON buyers.buyer_id = sales.buyer_id
GO

buyer_name buyer_id qty
Adam Barr 1 15
Adam Barr 1 5
Erin O'Melia 4 37
Eva Corets 3 11
Erin O'Melia 4 1003
(5 row(s) affected)

This example returns the names of products and the companies that supply the
products. Products without listed suppliers and suppliers without current
products are not included in the result set.

USE northwind
SELECT productname, companyname
 FROM products
 INNER JOIN suppliers
 ON products.supplierid = suppliers.supplierid
GO

productname companyname
Chai Exotic Liquids
Chang Exotic Liquids
Aniseed Syrup Exotic Liquids
Chef Anton's Cajun Seasoning New Orleans Cajun Delights
.
.
.
(77 row(s) affected)

This example returns the names of customers who placed orders after 1/1/98.
Notice that a WHERE clause is used to restrict the rows that are returned in the
result set.

USE northwind
SELECT DISTINCT companyname, orderdate
FROM orders INNER JOIN customers
ON orders.customerid = customers.customerid
WHERE orderdate > '1/1/98'
GO

Example 1

Delivery Tip
Point out that the buyer_id
column from either table
can be referenced in the
select list.

Result

Example 2

Result

Example 3

8 Module 5: Joining Multiple Tables

companyname orderdate
Alfreds Futterkiste 1998-01-15 00:00:00.000
Alfreds Futterkiste 1998-03-16 00:00:00.000
Alfreds Futterkiste 1998-04-09 00:00:00.000
Ana Trujillo Emparedados y helados 1998-03-04 00:00:00.000
.
.
.
(264 row(s) affected)

This example returns the title number of all books currently checked out and the
member number of the borrower from the copy and loan tables in the library
database. Both the copy and loan tables have a composite primary key
consisting of the isbn and copy_no columns. When joining these tables, you
must specify both columns as join conditions because they uniquely identify a
particular copy of a book.

USE library
SELECT copy.title_no, loan.member_no
 FROM copy
 INNER JOIN loan
 ON copy.isbn = loan.isbn
 AND copy.copy_no = loan.copy_no
 WHERE copy.on_loan = 'Y'
GO

title_no member_no
1 325
1 351
2 390
2 416
.
.
.
(2000 row(s) affected)

Result

Example 4

Delivery Tip
This example uses the
library database, because
the northwind database
does not have two tables
with composite primary keys
that relate to one another.

Result

 Module 5: Joining Multiple Tables 9

Using Outer Joins
USE joindb
SELECT buyer_name, sales.buyer_id, qty
FROM buyers LEFT OUTER JOIN sales
ON buyers.buyer_id = sales.buyer_id

GO

USE joindb
SELECT buyer_name, sales.buyer_id, qty
FROM buyers LEFT OUTER JOIN sales
ON buyers.buyer_id = sales.buyer_id

GO
sales

buyer_idbuyer_idbuyer_id prod_idprod_idprod_id qtyqtyqty

11

11

44

33

22

33

11

55

1515

55

3737

1111

44 22 10031003

buyers

buyer_namebuyer_namebuyer_name

Adam BarrAdam Barr

Sean ChaiSean Chai

Eva CoretsEva Corets

Erin O�MeliaErin O�Melia

buyer_idbuyer_idbuyer_id

11

22

33

44 Result

buyer_namebuyer_namebuyer_name

Adam BarrAdam Barr

Adam BarrAdam Barr

Erin O�MeliaErin O�Melia

Eva CoretsEva Corets

buyer_idbuyer_idbuyer_id qtyqtyqty

11

11

44

33

1515

55

3737

1111

Erin O�MeliaErin O�Melia 44 10031003

Sean ChaiSean Chai NULLNULL NULLNULL

Example 1Example 1

Left or right outer joins combine rows from two tables that match the join
condition, plus any unmatched rows of either the left or right table as specified
in the JOIN clause. Rows that do not match the join condition display NULL in
the result set. You also can use full outer joins to display all rows in the joined
tables, regardless of whether the tables have any matching values.

Why to Use Left or Right Outer Joins
Use left or right outer joins when you require a complete list of data that is
stored in one of the joined tables in addition to the information that matches the
join condition. When you use left or right outer joins, consider the following
facts and guidelines:

! SQL Server returns only unique rows when you use left or right outer joins.
! Use a left outer join to display all rows from the first-named table (the table

on the left of the expression). If you reverse the order in which the tables are
listed in the FROM clause, the statement yields the same result as a right
outer join.

! Use a right outer join to display all rows from the second-named table (the
table on the right of the expression). If you reverse the order in which the
tables are listed in the FROM clause, the statement yields the same result as
a left outer join.

! You can abbreviate the LEFT OUTER JOIN or RIGHT OUTER JOIN
clause as LEFT JOIN or RIGHT JOIN.

! You can use outer joins between two tables only.

Topic Objective
To define outer joins and
describe the three types.

Lead-in
By using left, right, or full
outer joins, you can include
rows that do not match your
join condition in a result set.

Delivery Tip
Point out the null values on
the slide for Sean Chai.
Rows that do not match the
join condition display NULL
in the result set.

Delivery Tip
Ask: What would you
change in the slide example
query to yield the same
result with a RIGHT OUTER
JOIN clause?

Answer: Reverse the order
of the tables in the FROM
clause and use the RIGHT
OUTER JOIN clause.

Delivery Tip
Always use the ANSI
SQL-92 join syntax, with
ANSI_NULLS set to ON.

10 Module 5: Joining Multiple Tables

This example returns the buyer_name, buyer_id, and qty values for all
buyers and their purchases. Notice that the buyers who did not purchase any
products are listed in the result set, but null values appear in the buyer_id and
qty columns.

USE joindb
SELECT buyer_name, sales.buyer_id, qty
 FROM buyers
 LEFT OUTER JOIN sales
 ON buyers.buyer_id = sales.buyer_id
GO

buyer_name buyer_id qty
Adam Barr 1 15
Adam Barr 1 5
Erin O'Melia 4 37
Eva Corets 3 11
Erin O'Melia 4 1003
Sean Chai NULL NULL

(6 row(s) affected)

The sort order of the result set can be different because the ORDER BY
clause is not used in the example.

This example displays all customers with order dates. By using a left outer join,
you retrieve one row for each customer and additional rows if the customer has
placed multiple orders. NULL in the orderdate column is returned in the result
set for customers who have not placed an order. Notice the NULL entries for
customers FISSA and Paris Spécialités.

USE northwind
SELECT companyname, customers.customerid, orderdate
 FROM customers
 LEFT OUTER JOIN orders
 ON customers.customerid = orders.customerid
GO

companyname customerid orderdate
Vins et alcools Chevalier VINIT 1996-07-04 00:00.0
Toms Spezialitaten TOMSP 1996-07-05 00:00.0
Hanari Carnes HANAR 1996-07-08 00:00.0
Victuailles en stock VICTE 1996-07-08 00:00.0
.
.
.
FISSA Fabrica Inter. Salichichas S.A. FISSA NULL
Paris specialities PARIS NULL

(832 row(s) affected)

Example 1

Result

Note

Example 2

Result

 Module 5: Joining Multiple Tables 11

Using Cross Joins
USE joindb
SELECT buyer_name, qty
FROM buyers
CROSS JOIN sales
GO

USE joindb
SELECT buyer_name, qty
FROM buyers
CROSS JOIN sales
GO

Result

buyer_namebuyer_namebuyer_name

Adam BarrAdam Barr

Adam BarrAdam Barr

Adam BarrAdam Barr

Adam BarrAdam Barr

qtyqtyqty

1515

55

3737

1111

Adam BarrAdam Barr 10031003

Sean ChaiSean Chai 1515

Sean ChaiSean Chai 55

Sean ChaiSean Chai 3737

Sean ChaiSean Chai 1111

Sean ChaiSean Chai 10031003

Eva CoretsEva Corets 1515
......

sales

buyer_idbuyer_idbuyer_id prod_idprod_idprod_id qtyqtyqty

11

11

44

33

22

33

11

55

1515

55

3737

1111

44 22 10031003

buyers

buyer_idbuyer_idbuyer_id

11

22

33

44

buyer_namebuyer_namebuyer_name

Adam BarrAdam Barr

Sean ChaiSean Chai

Eva CoretsEva Corets

Erin O�MeliaErin O�Melia

Example 1Example 1

Cross joins display every combination of all rows in the joined tables. A
common column is not required to use cross joins.

Why to Use Cross Joins
While cross joins are rarely used on a normalized database, you can use them to
generate test data for a database or lists of all possible combinations for
checklists or business templates.

When you use cross joins, SQL Server produces a Cartesian product in which
the number of rows in the result set is equal to the number of rows in the first
table, multiplied by the number of rows in the second table. For example, if
there are 8 rows in one table and 9 rows in the other table, SQL Server returns a
total of 72 rows.

This example lists all possible combinations of the values in the
buyers.buyer_name and sales.qty columns.

USE joindb
SELECT buyer_name, qty
 FROM buyers
 CROSS JOIN sales
GO

Topic Objective
To show how cross joins
work and describe the
result set.

Lead-in
Use cross joins to display all
possible row combinations
of the selected columns in
the joined tables.

Delivery Tip
Point out that the ON
keyword and associated
column list is not used in the
SELECT statement because
cross joins return all
possible row combinations
from each specified table.

A common column is not
required to use cross joins.

Example 1

12 Module 5: Joining Multiple Tables

buyer_name qty
Adam Barr 15
Adam Barr 5
Adam Barr 37
Adam Barr 11
Adam Barr 1003
Sean Chai 15
Sean Chai 5
.
.
.
(20 row(s) affected)

This example displays a cross join between the shippers and suppliers
tables that is useful for listing all of the possible ways that suppliers can ship
their products.

The use of a cross join displays all possible row combinations between these
two tables. The shippers table has 3 rows, and the suppliers table has 29 rows.
The result set contains 87 rows.

USE northwind
SELECT suppliers.companyname, shippers.companyname
 FROM suppliers
 CROSS JOIN shippers
GO

companyname companyname
Aux joyeux ecclésiastiques Speedy Express
Bigfoot Breweries Speedy Express
Cooperativa de Quesos 'Las Cabras' Speedy Express
Escargots Nouveaux Speedy Express
.
.
.
Aux joyeux ecclésiastiques United Package
Bigfoot Breweries United Package
Cooperativa de Quesos 'Las Cabras' United Package
Escargots Nouveaux United Package
.
.
.
Aux joyeux ecclésiastiques Federal Shipping
Bigfoot Breweries Federal Shipping
Cooperativa de Quesos 'Las Cabras' Federal Shipping
Escargots Nouveaux Federal Shipping
.
.
.
(87 row(s) affected)

Result

Example 2

Delivery Tip
Execute this query and
explain that this example is
useful for listing all of the
possible ways that suppliers
can ship their products.

Result

 Module 5: Joining Multiple Tables 13

Joining More Than Two Tables
SELECT buyer_name, prod_name, qty
FROM buyers
INNER JOIN sales
ON buyers.buyer_id = sales.buyer_id

INNER JOIN produce
ON sales.prod_id = produce.prod_id

GO

SELECT buyer_name, prod_name, qty
FROM buyers
INNER JOIN sales
ON buyers.buyer_id = sales.buyer_id

INNER JOIN produce
ON sales.prod_id = produce.prod_id

GO
produce

prod_idprod_idprod_id prod_nameprod_nameprod_name
11

22

33

44

ApplesApples
PearsPears

OrangesOranges

BananasBananas

55 PeachesPeaches

buyers
buyer_idbuyer_idbuyer_id

11
22

33

44

buyer_namebuyer_namebuyer_name
Adam BarrAdam Barr
Sean ChaiSean Chai

Eva CoretsEva Corets

Erin O�MeliaErin O�Melia

sales
buyer_idbuyer_idbuyer_id

11
11

33

44

prod_idprod_idprod_id
22

33

11

55

22 22

qtyqtyqty
1515
55

3737

1111

10031003
Result
buyer_namebuyer_namebuyer_name

Erin O�MeliaErin O�Melia

Adam BarrAdam Barr

Erin O�MeliaErin O�Melia

Adam BarrAdam Barr

Eva CoretsEva Corets

prod_nameprod_nameprod_name

ApplesApples

PearsPears

PearsPears

OrangesOranges

PeachesPeaches

qtyqtyqty

3737

1515

10031003

55

1111

Example 1Example 1

It is possible to join any number of tables. Any table that is referenced in a join
operation can be joined to another table by a common column.

Why to Join More Than Two Tables
Use multiple joins to obtain related information from multiple tables. When you
join more than two tables, consider the following facts and guidelines:

! You must have one or more tables with foreign key relationships to each of
the tables that you want to join.

! You must have a JOIN clause for each column that is part of a
composite key.

! Include a WHERE clause to limit the number of rows that are returned.

This example returns the buyer_name, prod_name, and qty columns from
the buyers, sales and produce tables. The buyer_id column is common to
both the buyers and sales tables and is used to join these two tables. The
prod_id column is common to both the sales and produce tables and is used to
join the produce table to the result of the join between buyers and sales.

USE joindb
SELECT buyer_name, prod_name, qty
 FROM buyers
 INNER JOIN sales
 ON buyers.buyer_id = sales.buyer_id
 INNER JOIN produce
 ON sales.prod_id = produce.prod_id
GO

Topic Objective
To explain how to join more
than two tables.

Lead-in
Until now, we�ve looked at
joining only two tables. It is
possible, however, to join
more than two tables.

Delivery Tip
The first join is between the
buyers and sales tables.
The second join is
between the sales and
produce tables.

Emphasize that any table
referenced in a join
operation can be joined
to another table by a
common column.

Example 1

14 Module 5: Joining Multiple Tables

buyer_name prod_name qty
Erin O'Melia Apples 37
Adam Barr Pears 15
Erin O'Melia Pears 1003
Adam Barr Oranges 5
Eva Corets Peaches 11

(5 row(s) affected)

This example displays information from the orders and products tables by
using the order details table as a link. For example, if you want a list of
products that are ordered each day, you need information from both the orders
and products tables. An order can consist of many products, and a product can
have many orders.

To retrieve information from both the orders and products tables, you can use
an inner join through the order details table. Even though you are not
retrieving any columns from the order details table, you must include this table
as part of the inner join in order to relate the orders table to the products table.
In this example, the orderid column is common to both the orders and order
details tables, and the productid column is common to both the order details
and products tables.

USE northwind
SELECT orderdate, productname
 FROM orders AS O
 INNER JOIN [order details] AS OD
 ON O.orderid = OD.orderid
 INNER JOIN products AS P
 ON OD.productid = P.productid
 WHERE orderdate = '7/8/96'

orderdate productname
1996-07-08 Jack's New England Clam Chowder
1996-07-08 Manjimup Dried Apples
1996-07-08 Louisiana Fiery Hot Pepper Sauce
1996-07-08 Gustaf's Knakebrod
1996-07-08 Ravioli Angelo
1996-07-08 Louisiana Fiery Hot Pepper Sauce

(6 row(s) affected)

Result

Example 2

Result

 Module 5: Joining Multiple Tables 15

Joining a Table to Itself
USE joindb
SELECT a.buyer_id AS buyer1, a.prod_id

,b.buyer_id AS buyer2
FROM sales AS a
JOIN sales AS b
ON a.prod_id = b.prod_id

WHERE a.buyer_id > b.buyer_id
GO

USE joindb
SELECT a.buyer_id AS buyer1, a.prod_id

,b.buyer_id AS buyer2
FROM sales AS a
JOIN sales AS b
ON a.prod_id = b.prod_id

WHERE a.buyer_id > b.buyer_id
GO

sales b

buyer_idbuyer_idbuyer_id prod_idprod_idprod_id qtyqtyqty

11

11

44

33

22

33

11

55

1515

55

3737

1111

44 22 10031003

sales a

buyer_idbuyer_idbuyer_id prod_idprod_idprod_id qtyqtyqty

11

11

44

33

22

33

11

55

1515

55

3737

1111

44 22 10031003

Result

buyer1buyer1buyer1

44
prod_idprod_idprod_id buyer2buyer2buyer2

22 11

Example 3Example 3

If you want to find rows that have values in common with other rows in the
same table, you can use a self-join to join a table to another instance of itself.

Why to Use Self-Joins
While self-joins rarely are used on a normalized database, you can use them to
reduce the number of queries that you execute when you compare values of
different columns of the same table. When you use self-joins, consider the
following guidelines:

! You must specify table aliases to reference two copies of the table.
Remember that table aliases are different from column aliases. Table aliases
are designated as the table name followed by the alias.

! When you create self-joins, each row matches itself and pairs are repeated,
resulting in duplicate rows. Use a WHERE clause to eliminate these
duplicate rows.

This example displays a list of all buyers who purchased the same products.
Notice that the first and third rows of the result set are rows where buyer1
matches itself. The fourth and seventh rows are rows where buyer4 matches
itself. The second and sixth rows are rows that mirror one another.

USE joindb
SELECT a.buyer_id AS buyer1, a.prod_id, b.buyer_id AS buyer2
 FROM sales AS a
 INNER JOIN sales AS b
 ON a.prod_id = b.prod_id
GO

Topic Objective
To explain a self-join.

Lead-in
Although joins are used
most commonly to combine
multiple tables, you can use
a self-join to join a table to
itself as well.

Delivery Tip
The slide example shows
the desired result when a
table is joined to itself. Use
the series of examples in
the student workbook to
teach joining a table to itself.

Example 1

Delivery Tip
Point out the duplicates
where the rows match
themselves (Rows 1, 3, 4,
and 7). Use a WHERE
clause with the not equal to
(<>) operator to eliminate
this type of duplicate.

16 Module 5: Joining Multiple Tables

buyer1 prod_id buyer2
1 2 1
4 2 1
1 3 1
4 1 4
3 5 3
1 2 4
4 2 4

(7 row(s) affected)

This example displays a list of buyers who all purchased the same products, but
it eliminates duplicate rows, such as buyer1 matching itself and buyer4
matching itself.

Compare the result sets of Examples 1 and 2. Notice that by using a WHERE
clause with the not equal to (<>) operator, the duplicate rows are eliminated.
However, duplicate rows that are mirror images of one another are still returned
in the result set.

USE joindb
SELECT a.buyer_id AS buyer1, a.prod_id, b.buyer_id AS buyer2
 FROM sales AS a
 INNER JOIN sales AS b
 ON a.prod_id = b.prod_id
 WHERE a.buyer_id <> b.buyer_id
GO

buyer1 prod_id buyer2
4 2 1
1 2 4

(2 row(s) affected)

This example displays a list of buyers who all purchased the same products.

Notice that when the WHERE clause includes the greater than (>) operator, all
duplicate rows are eliminated.

USE joindb
SELECT a.buyer_id AS buyer1, a.prod_id, b.buyer_id AS buyer2
 FROM sales AS a
 INNER JOIN sales AS b
 ON a.prod_id = b.prod_id
 WHERE a.buyer_id > b. buyer_id
GO

buyer1 prod_id buyer2
4 2 1

(1 row(s) affected)

Result

Example 2

Delivery Tip
Point out that the example
will not eliminate duplicate
rows that are mirror images
of one another.

Result

Example 3

Delivery Tip
Point out that using the
WHERE clause with the
greater than (>) or less than
(<) operator eliminates the
duplicates in Example 2.

Result

 Module 5: Joining Multiple Tables 17

This example displays pairs of employees who have the same job title. When
the WHERE clause includes the less than (<) operator, rows that match
themselves and duplicate rows are eliminated.

USE northwind
SELECT a.employeeid, LEFT(a.lastname,10) AS name
 ,LEFT(a.title,10) AS title
 ,b.employeeid, LEFT(b.lastname,10) AS name
 ,LEFT(b.title,10) AS title
 FROM employees AS a
 INNER JOIN employees AS b
 ON a.title = b.title
 WHERE a.employeeid < b.employeeid
GO

employeeid

Name

title

employeeid

name

title

1 Davolio Sales Repr 3 Leverling Sales Repr
1 Davolio Sales Repr 4 Peacock Sales Repr
1 Davolio Sales Repr 6 Suyama Sales Repr
1 Davolio Sales Repr 7 King Sales Repr
1 Davolio Sales Repr 9 Dodsworth Sales Repr
3 Leverling Sales Repr 4 Peacock Sales Repr
3 Leverling Sales Repr 6 Suyama Sales Repr
3 Leverling Sales Repr 7 King Sales Repr
3 Leverling Sales Repr 9 Dodsworth Sales Repr
4 Peacock Sales Repr 6 Suyama Sales Repr
4 Peacock Sales Repr 7 King Sales Repr
4 Peacock Sales Repr 9 Dodsworth Sales Repr
6 Suyama Sales Repr 7 King Sales Repr
6 Suyama Sales Repr 9 Dodsworth Sales Repr
7 King Sales Repr 9 Dodsworth Sales Repr

15 row(s) affected)

Example 4

Result

18 Module 5: Joining Multiple Tables

Combining Multiple Result Sets

! Use the UNION Operator to Create a Single Result Set
from Multiple Queries

! Each Query Must Have:
$ Similar data types
$ Same number of columns
$ Same column order in select list

USE northwind
SELECT (firstname + ' ' + lastname) AS name

,city, postalcode
FROM employees

UNION
SELECT companyname, city, postalcode
FROM customers

GO

USE northwind
SELECT (firstname + ' ' + lastname) AS name

,city, postalcode
FROM employees

UNION
SELECT companyname, city, postalcode
FROM customers

GO

The UNION operator combines the result of two or more SELECT statements
into a single result set.

Use the UNION operator when the data that you want to retrieve resides in
different locations and cannot be accessed with a single query. When you use
the UNION operator, consider the following facts and guidelines:

! SQL Server requires that the referenced tables have similar data types, the
same number of columns, and the same column order in the select list of
each query.

! SQL Server removes duplicate rows in the result set. However, if you use
the ALL option, all rows (including duplicates) are included in the result set.

! You must specify the column names in the first SELECT statement.
Therefore, if you want to define new column headings for the result set, you
must create the column aliases in the first SELECT statement.

! If you want the entire result set to be returned in a specific order, you must
specify a sort order by including an ORDER BY clause within the UNION
statement. Otherwise, the result set may not be returned in the order that
you want.

! You may experience better performance if you break a complex query
into multiple SELECT statements and then use the UNION operator to
combine them.

select_statement UNION [ALL] select_statement

Topic Objective
To explain the purpose
and function of the
UNION operator.

Lead-in
You can combine the results
of two or more SELECT
statements into a single
result set by using the
UNION operator.

Key Point
When you use the UNION
operator, the referenced
tables must have similar
data types, the same
number of columns, and the
same column order in the
select list of each query.

Syntax

 Module 5: Joining Multiple Tables 19

This example combines two result sets. The first result set returns the name,
city, and postal code of each customer from the customers table. The second
result set returns the name, city, and postal code of each employee from the
employees table. When you use the UNION operator to combine these result
sets, notice that the column alias from the first select list is returned.

USE northwind
SELECT (firstname + ' ' + lastname) AS name, city, postalcode
 FROM employees
UNION
SELECT companyname, city, postalcode
 FROM customers
GO

name city postalcode
Alfreds Futterkiste Berlin 12209
Ana Trujillo Emparedados y helados México D.F. 05021
Antonio Moreno Taquería México D.F. 05023
Around the Horn London WA1 1DP
B's Beverages London EC2 5NT
.
.
.
Andrew Fuller Tacoma 98401
Robert King London RG 19SP
Janet Leverling Kirkland 98033
Anne Dodsworth London WG2 7LT

(100 row(s) affected)

Example

Delivery Tip
Demonstrate this example
by using
SQL Query Analyzer.

Result

Delivery Tip
Ask: In the result set, why
are the customers listed
before the employees, as
the syntax would imply?

Answer: SQL Server does
not guarantee a particular
order unless one is specified
with an ORDER BY clause.

20 Module 5: Joining Multiple Tables

Recommended Practices

Join Tables on Primary and Foreign KeysJoin Tables on Primary and Foreign Keys

Reference All Columns of Composite Primary Key in the ON
Clause When Composite Key Relates Tables
Reference All Columns of Composite Primary Key in the ON
Clause When Composite Key Relates Tables

Limit the Number of Tables in a JoinLimit the Number of Tables in a Join

The following recommended practices should help you perform queries:

! Join tables on primary and foreign keys.
! Reference all columns of a composite primary key in the ON clause when a

composite key relates tables.
! Limit the number of tables in a join because the more tables that you join,

the longer SQL Server takes to process your query.

Additional information on the following topics is available in SQL Server
Books Online.

Topic Search on

Working with joins �join fundamentals�

 �using multiple tables�

Topic Objective
To list the recommended
practices for data retrieval
and modification.

Lead-in
The following recommended
practices should help you
perform advanced queries.

 Module 5: Joining Multiple Tables 21

Lab A: Querying Multiple Tables

Objectives
After completing this lab, you will be able to:

! Join tables by using different join types.
! Combine result sets by using the UNION operator.

Prerequisites
Before working on this lab, you must have:

! Answer files for this lab, which are located in
C:\Moc\2071A\Labfiles\L05\Answers.

! The library database installed.

Lab Setup
None.

For More Information
If you require help in executing files, search SQL Query Analyzer Help for
�Execute a query�.

Other resources that you can use include:

! The library database schema.
! Microsoft® SQL Server� Books Online.

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will you will
perform different types of
joins to combine data from
multiple tables.

Explain the lab objectives.

22 Module 5: Joining Multiple Tables

Scenario
The organization of the classroom is meant to simulate a worldwide trading
firm named Northwind Traders. Its fictitious domain name is nwtraders.msft.
The primary DNS server for nwtraders.msft is the instructor computer, which
has an Internet Protocol (IP) address of 192.168.x.200 (where x is the assigned
classroom number). The name of the instructor computer is London.

The following table provides the user name, computer name, and the IP address
for each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 45 minutes

 Module 5: Joining Multiple Tables 23

Exercise 1
Joining Tables

In this exercise, you will write and execute queries that join tables in the
library database. C:\Moc\2071A\Labfiles\L05\Answers contains completed
scripts for this exercise.

! To create a mailing list by using a join
In this procedure, you will create a mailing list of library members that includes
the members� full names and complete address information.
Answer_Mailing.sql is a completed script for this procedure.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password Password

2. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Microsoft Windows® Authentication.
You have permission to log in to and administer SQL Server 2000 because
you are logged as SQLAdminx, which is a member of the Windows 2000
local group, Administrators. All members of this group are automatically
mapped to the SQL Server sysadmin role.

3. In the DB list, click library.
4. Write a query on the member and adult tables that returns the firstname,

middleinitial, lastname, street, city, state, and zip values. Concatenate the
firstname, middleinitial and lastname columns into one string and alias
the column as name.
USE library
SELECT firstname +' '+ middleinitial +' '+ lastname AS name
 ,street, city, state, zip
 FROM member
 INNER JOIN adult
 ON member.member_no = adult.member_no
GO

5. Execute the query to verify that it returns the desired results.

Your result will look similar to the following partial result set.

name street city state zip
Amy A Anderson Bowery Estates Montgomery AL 36100
Brian A Anderson Dogwood Drive Sacramento CA 94203
Daniel A Anderson Fir Street Washington DC 20510-0001
Eva A Anderson The Highlands Atlanta GA 30026
Gary A Anderson James Road Springfield IL 62700
.
.
.
5000 row(s) affected

Result

24 Module 5: Joining Multiple Tables

! To join several tables and order the results
In this procedure, you will write and execute a query on the title, item, and
copy tables that returns the isbn, copy_no, on_loan, title, translation, and
cover, and values for rows in the copy table with an ISBN of 1 (one), 500
(five hundred), or 1000 (one thousand). Order the results by the isbn column.
Answer_Serveral.sql is a completed script for this procedure.
1. Write the select list of the query. Qualify the name of each column with a

table alias of at least two characters (for example, ti.title_no for
title.title_no).

2. Write a FROM clause that creates a inner join between the title and copy
tables on the title_no columns. Set up the table aliases in the FROM clause
that you used in the select list.

3. Add a second INNER JOIN clause to create a join between the item and
copy tables on the isbn columns.

4. Compose a WHERE clause to restrict the rows that are retrieved from the
copy table to those with an ISBN of 1 (one), 500 (five hundred), or 1000
(one thousand).

5. Write the ORDER BY clause to sort the result by ISBN.
6. Execute the script.

USE library
SELECT co.isbn, co.copy_no, co.on_loan
 ,ti.title, it.translation, it.cover
 FROM copy co
 INNER JOIN title AS ti
 ON co.title_no = ti.title_no
 INNER JOIN item AS it
 ON co.isbn = it.isbn
 WHERE co.isbn IN (1, 500, 1000)
 ORDER BY co.isbn
GO

7. Execute the query to verify that it returns the desired results.

Your result will look similar to the following partial result set.

isbn copy_no on_loan title translation cover
1 1 N Last of the Mohicans ARABIC HARDBACK
1 2 N Last of the Mohicans ARABIC HARDBACK
1 3 N Last of the Mohicans ARABIC HARDBACK
1 4 N Last of the Mohicans ARABIC HARDBACK
.
.
.
(30 row(s) affected)

Result

 Module 5: Joining Multiple Tables 25

! To join multiple tables by using an outer join
In this procedure, you will write and execute a query to retrieve the
member�s full name and member_no from the member table and the isbn
and log_date values from the reservation table for member numbers
250, 341, and 1675. Order the results by member_no. You should show
information for these members, even if they have no books on reserve.
Answer_LeftOuter.sql is a completed script for this procedure.
1. Write the select list of the query:

a. Create the name column by concatenating the lastname, firstname, and
middleinitial for each member.

b. Create the date column by converting the log_date to the char(8)
data type.

2. Write a FROM clause that creates an left outer join between the member
and reservation tables on the member_no columns.

3. Compose a WHERE clause to retrieve member numbers 250, 341, and 1675
from the member table.

4. Write the ORDER BY clause to sort the result by the member numbers.
USE library
SELECT me.member_no
 ,me.lastname + ', ' + me.firstname + ' '
 + me.middleinitial AS name
 ,re.isbn
 ,CONVERT(char(8),re.log_date,1) AS date
 FROM member AS me
 LEFT OUTER JOIN reservation AS re
 ON me.member_no = re.member_no
 WHERE me.member_no IN (250, 341, 1675)
 ORDER BY me.member_no
GO

5. Execute the query to verify that it returns the desired results.
Which members have no books on reserve?
250 and 1675
__

__

Your results will look similar to the following partial result set.

member_no Name isbn Date
250 Hightower, Michael A NULL NULL
341 Martin, Brian A 43 11/21/98
341 Martin, Brian A 330 11/21/98
341 Martin, Brian A 617 11/21/98
341 Martin, Brian A 904 11/21/98
1675 LaBrie, Joshua B NULL NULL

6 row(s) affected)

Result

26 Module 5: Joining Multiple Tables

Exercise 2
Using the UNION Operator to Combine Result Sets

In this exercise, you will produce a single result set by using the UNION
operator to concatenate the results of two similar SELECT statements.
C:\Moc\2071A\Labfiles\L05\Answers contains completed scripts for this
exercise.

! To determine which members living in Arizona have more than two
children with library cards

In this procedure, you will determine which members living in Arizona have
more than two children with library cards. Answer_Union1.sql is a completed
script for this procedure.
1. Write a SELECT statement that returns member_no and the number of

juvenile records that each member has in a calculated field called numkids.
Only return records for library members living in Arizona that have more
than two kids.
USE library
SELECT a.member_no
 ,count(*) AS numkids
 FROM juvenile AS j
 INNER JOIN adult AS a
 ON j.adult_member_no = a.member_no
 WHERE a.state = 'AZ'
 GROUP BY a.member_no
 HAVING COUNT(*) > 2
GO

2. Execute the query to verify that it returns the desired results. Note how
many rows are returned.

3. Do not erase the query.

! To determine which members living in California have more than three
children with library cards

In this procedure, you will determine which members living in California have
more than three children with library cards. Answer_Union2.sql is a completed
script for this procedure.
1. Press CTRL+N, and create a new query window.
2. Copy the query from the first procedure of this exercise and paste it into the

new query window.

 Module 5: Joining Multiple Tables 27

3. Modify the query in step 2 such so that it only returns records for library
members living in California that have more than three children with library
cards.
USE library
SELECT a.member_no
 ,count(*) AS numkids
 FROM juvenile AS j
 INNER JOIN adult AS a
 ON j.adult_member_no = a.member_no
 WHERE a.state = 'CA'
 GROUP BY a.member_no
 HAVING COUNT(*) > 3
GO

4. Execute the query to verify that it returns the desired results. Note how
many rows are returned.

! To combine the result sets of separate queries
In this procedure, you will combine the result sets of separate queries.
Answer_Union3.sql is a completed script for this procedure.
1. Press CTRL+N, and create a new query window.
2. Copy the query from the first procedure of this exercise and paste it into the

new window.
3. Add the UNION statement on a new line at the end of the query.

28 Module 5: Joining Multiple Tables

4. Copy the query from the second procedure of this exercise and paste it into
the new window on the line following the UNION statement that you add in
step 3 in this procedure.
USE library
SELECT a.member_no
 ,count(*) AS numkids
 FROM juvenile AS j
 INNER JOIN adult AS a
 ON j.adult_member_no = a.member_no
 WHERE a.state = 'AZ'
 GROUP BY a.member_no
 HAVING COUNT(*) > 2
UNION
SELECT a.member_no
 ,count(*) AS numkids
 FROM juvenile AS j
 INNER JOIN adult AS a
 ON j.adult_member_no = a.member_no
 WHERE a.state = 'CA'
 GROUP BY a.member_no
 HAVING COUNT(*) > 3
GO

5. Execute the query to verify that it returns the desired results. Note how
many rows are returned.
How does the number of rows that this query returns compare to the number
of rows that the queries in the first two procedures return?
The UNION statement combines the result sets of the first two queries
into a single records set. The number of rows that the last procedure
returns should equal the sum of the rows returned by the first two
procedures.
__

__

 Module 5: Joining Multiple Tables 29

Review

! Using Aliases for Table Names

! Combining Data from Multiple Tables

! Combining Multiple Result Sets

The Duluth Mutual Life health care organization has a database that tracks
information about doctors and their patients. The database includes the
following tables.

Doctor table
Column Data type and constraints

doc_id char(9), PRIMARY KEY

fname char(20)

lname char(25)

specialty char(25)

phone char(10)

Patient table
Column Data type and constraints

pat_id char(9), PRIMARY KEY

fname char(20)

lname char(25)

insurance_company char(25)

phone char(10)

Casefile table
Column Data type and constraints

admission_date datetime, PRIMARY KEY (composite)

pat_id char(9), PRIMARY KEY (composite),
FOREIGN KEY to patient.pat_id

doc_id char(9), FOREIGN KEY to doctor.doc_id

diagnosis varchar(150)

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

30 Module 5: Joining Multiple Tables

Based on this table structure, answer the following questions.

1. How can you generate a list of patient names and hospital
admission dates?
Join the patient table to the casefile table on the pat_id column.
__

__

2. How can you generate a list of patient names for a particular doctor?
You must join all three tables. The relationship between doctor and
patient is a many-to-many relationship. Even though you only want
information from the doctor and patient tables, you must also use the
casefile table, because this table relates doctor to patient. Join the
doctor table to the casefile table on doc_id and then join the patient
table to the casefile table on pat_id. Use a WHERE clause to limit the
results for a particular doctor.
__

__

3. How can you produce a list of pairs of doctors who have the same specialty?
Join the doctor table to itself. Join the two copies of the table on the
specialty column. Restrict the results to rows where doc_id does not
match. Be sure to eliminate mirror image pairs by using a greater than
(>) operator in the WHERE clause.
__

__

4. How can you produce a single list of names and phone numbers for both
doctors and patients?
Write a query that retrieves name and phone number information from
the doctor table. Write a second query that retrieves similar
information from the patient table. Use the UNION operator to
combine the queries.
__

__

