

Contents

Overview 1

Listing the TOP n Values 2

Using Aggregate Functions 4

GROUP BY Fundamentals 8

Generating Aggregate Values Within
Result Sets 13

Using the COMPUTE and
COMPUTE BY Clauses 22

Recommended Practices 25

Lab A: Grouping and Summarizing Data 26

Review 40

Module 4: Grouping and
Summarizing Data

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, BackOffice, MS-DOS, PowerPoint, Visual Studio, Windows, Windows Media, and
Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the
U.S.A. and/or other countries.

The names of companies, products, people, characters, and/or data mentioned herein are fictitious
and are in no way intended to represent any real individual, company, product, or event, unless
otherwise noted.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Project Lead: Cheryl Hoople
Instructional Designer: Cheryl Hoople
Technical Lead: LeRoy Tuttle
Program Manager: LeRoy Tuttle
Graphic Artist: Kimberly Jackson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Editorial Contributor: Elizabeth Reese
Copy Editor: Bill Jones (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Tools Specialist: Julie Challenger
Production Support: Lori Walker (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: Testing Testing 123
Classroom Automation: Lorrin Smith-Bates
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 4: Grouping and Summarizing Data iii

Instructor Notes
This module provides students with the skills to group and summarize data by
using aggregate functions. These skills include using the GROUP BY and
HAVING clauses to summarize and group data and using the ROLLUP and
CUBE operators with the GROUPING function to group data and summarize
values for those groups. This module also introduces how to use the
COMPUTE and COMPUTE BY clauses to generate summary reports and to
list the TOP n values in a result set.

At the end of this module, students will be able to:

! Use the TOP n keyword to retrieve a list of the specified top values in
a table.

! Generate a single summary value by using aggregate functions.
! Organize summary data for a column by using aggregate functions with the

GROUP BY and HAVING clauses.
! Generate summary data for a table by using aggregate functions with the

GROUP BY clause and the ROLLUP or CUBE operator.
! Generate control-break reports by using the COMPUTE and COMPUTE

BY clauses.

Materials and Preparation
Required Materials
To teach this course, you need the following materials:

! Microsoft® PowerPoint® file 2071A_04.ppt.
! The C:\Moc\2071A\Demo\Ex_04.sql example file, which contains all of the

example scripts from the module, unless otherwise noted in the module.

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials.
! Complete all demonstrations.
! Complete the labs.

Presentation:
45 Minutes

Lab:
45 Minutes

iv Module 4: Grouping and Summarizing Data

Module Strategy
Use the following strategy to present this module:

! Listing the TOP n Values
Introduce using the TOP n keyword to list only the first n rows or n percent
of a result set. Although the TOP n keyword is not ANSI-standard, it is
useful, for example, to list a company's top selling products.

! Using Aggregate Functions
Discuss the use of aggregate functions in summarizing data. Encourage
caution in using aggregate functions with null values because the result sets
may not be representative of the data. Using aggregate functions is the basis
for the remaining topics that are presented in this module.

! GROUP BY Fundamentals
Explain the benefits of using aggregate functions with the GROUP BY
clause to organize rows into groups and to summarize those groups. The
HAVING clause is used with the GROUP BY clause to restrict the rows that
are returned. Use the graphic images to compare the use of the GROUP BY
and HAVING clauses.

! Generating Aggregate Values Within Result Sets
Introduce the use of the ROLLUP and CUBE operators to generate detail
and summary values in the result set. Both operators provide data in a
standard relational format that can be used for other applications.
Discuss how to use the GROUPING function to determine whether the
values in the result set are detail values or a summary. Point out that on
the slides, the NULLs that are displayed in the result sets represent
summary values.

! Using the COMPUTE and COMPUTE BY Clauses
Mention the COMPUTE and COMPUTE BY clauses within the context of
using these clauses to print basic reports or verify client results. Do not
spend too much time on these clauses, because they are not ANSI-standard
and they generate result sets in a non-relational format. Use the graphic
image to compare result sets when the COMPUTE and COMPUTE BY
clauses are used.

 Module 4: Grouping and Summarizing Data v

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing
Microsoft Official Curriculum (MOC) courseware.

The lab in this module is dependent on the classroom configuration
that is specified in the Customization Information section at the end of the
Classroom Setup Guide for course 2071A, Querying Microsoft SQL Server
2000 With Transact-SQL.

Module Setup
The C:\Moc\2071A\Batches\2071A_R04.sql script, which adds the orderhist
table to the Northwind database, is normally executed as part of the Classroom
Setup. When you customize the course, you must ensure that this script is
executed so that the examples in the module function correctly.

Lab Setup
There are no special setup requirements that affect this lab.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Important

 Module 4: Grouping and Summarizing Data 1

Overview

! Listing the TOP n Values

! Using Aggregate Functions

! GROUP BY Fundamentals

! Generating Aggregate Values Within Result Sets

! Using the COMPUTE and COMPUTE BY Clauses

You may want to group or summarize data when you retrieve it.

This module provides students with the skills to group and summarize data by
using aggregate functions. These skills include using the GROUP BY and
HAVING clauses to summarize and group data and using the ROLLUP and
CUBE operators with the GROUPING function to group data and summarize
values for those groups. This module also introduces how to use the
COMPUTE and COMPUTE BY clauses to generate summary reports and to
list the TOP n values in a result set.

After completing this module, you will be able to:

! Use the TOP n keyword to retrieve a list of the specified top values in
a table.

! Generate a single summary value by using aggregate functions.
! Organize summary data for a column by using aggregate functions with the

GROUP BY and HAVING clauses.
! Generate summary data for a table by using aggregate functions with the

GROUP BY clause and the ROLLUP or CUBE operator.
! Generate control-break reports by using the COMPUTE and

COMPUTE BY clauses.

Topic Objective
To provide a brief overview
of the topics covered in
this module.

Lead-in
You may want to group or
summarize data when you
retrieve it.

2 Module 4: Grouping and Summarizing Data

Listing the TOP n Values

! Lists Only the First n Rows of a Result Set
! Specifies the Range of Values in the ORDER BY Clause
! Returns Ties if WITH TIES Is Used

USE northwind
SELECT TOP 5 orderid, productid, quantity
FROM [order details]
ORDER BY quantity DESC

GO

USE northwind
SELECT TOP 5 orderid, productid, quantity
FROM [order details]
ORDER BY quantity DESC
GO

USE northwind
SELECT TOP 5 WITH TIES orderid, productid, quantity
FROM [order details]
ORDER BY quantity DESC

GO

USE northwind
SELECT TOP 5 WITH TIES orderid, productid, quantity
FROM [order details]
ORDER BY quantity DESC
GO

Example 1Example 1

Example 2Example 2

Use the TOP n keyword to list only the first n rows or n percent of a result set.
Although the TOP n keyword is not ANSI-standard, it is useful, for example, to
list a company�s top selling products.

When you use the TOP n or TOP n PERCENT keyword, consider the following
facts and guidelines:

! Specify the range of values in the ORDER BY clause. If you do not use an
ORDER BY clause, Microsoft® SQL Server� 2000 returns rows that satisfy
the WHERE clause in no particular order.

! Use an unsigned integer following the TOP keyword.
! If the TOP n PERCENT keyword yields a fractional row, SQL Server

rounds to the next integer value.
! Use the WITH TIES clause to include ties in your result set. Ties result

when two or more values are the same as the last row that is returned in the
ORDER BY clause. Your result set may therefore include any number
of rows.

You can use the WITH TIES clause only when an ORDER BY
clause exists.

Topic Objective
To describe how to list the
top n summary values.

Lead-in
Use the TOP n keyword to
list only the first n rows of a
result set.

Instructor Note
Appropriate indexes can
increase the efficiency of
sorts and groupings. This
course does not cover
indexing in detail; for more
information on indexing, see
course 2073A,
Programming a Microsoft
SQL Server 2000 Database.

Note

 Module 4: Grouping and Summarizing Data 3

This example uses the TOP n keyword to find the five products with the highest
quantities that are ordered in a single order. Tied values are excluded from the
result set.

USE northwind
SELECT TOP 5 orderid, productid, quantity
 FROM [order details]
 ORDER BY quantity DESC
GO

orderid productid quantity
10764 39 130
11072 64 130
10398 55 120
10451 55 120
10515 27 120

(5 row(s) affected)

This example uses the TOP n keyword and the WITH TIES clause to find the
five products with the highest quantities that are ordered in a single order. The
result set lists a total of 10 products, because additional rows with the same
values as the last row also are included. Compare the following result set to the
result set in Example 1.

USE northwind
SELECT TOP 5 WITH TIES orderid, productid, quantity
 FROM [order details]
 ORDER BY quantity DESC
GO

orderid productid quantity
10764 39 130
11072 64 130
10398 55 120
10451 55 120
10515 27 120
10595 61 120
10678 41 120
10711 53 120
10776 51 120
10894 75 120

(10 row(s) affected)

Example 1

Result

Example 2

Delivery Tip
Compare the following result
set to the result set in
Example 1.

Result

4 Module 4: Grouping and Summarizing Data

Using Aggregate Functions

Aggregate functionAggregate functionAggregate function DescriptionDescriptionDescription

AVGAVG Average of values in a numeric expressionAverage of values in a numeric expression

COUNTCOUNT Number of values in an expressionNumber of values in an expression

COUNT (*)COUNT (*) Number of selected rowsNumber of selected rows

MAXMAX Highest value in the expressionHighest value in the expression

MINMIN Lowest value in the expressionLowest value in the expression

SUMSUM Total values in a numeric expressionTotal values in a numeric expression

STDEVSTDEV Statistical deviation of all valuesStatistical deviation of all values

STDEVPSTDEVP Statistical deviation for the populationStatistical deviation for the population

VARVAR Statistical variance of all valuesStatistical variance of all values

VARPVARP Statistical variance of all values for the populationStatistical variance of all values for the population

Functions that calculate averages and sums are called aggregate functions.
When an aggregate function is executed, SQL Server summarizes values for an
entire table or for groups of columns within the table, producing a single value
for each set of rows for the specified columns:

! You can use aggregate functions with the SELECT statement or in
combination with the GROUP BY clause.

! With the exception of the COUNT(*) function, all aggregate functions
return a NULL if no rows satisfy the WHERE clause. The COUNT(*)
function returns a value of zero if no rows satisfy the WHERE clause.

Index frequently aggregated columns to improve query performance. For
example, if you aggregate frequently on the quantity column, indexing on the
quantity column improves aggregate operations.

The data type of a column determines the functions that you can use with
it. The following table describes the relationships between functions and
data types.

Topic Objective
To demonstrate the use of
aggregate functions for
producing summary data.

Lead-in
Use aggregate functions to
calculate column values and
to include those values in
your result set.

Tip

 Module 4: Grouping and Summarizing Data 5

Function Data type

COUNT COUNT is the only aggregate function that can be used on

columns with text, ntext, or image data types.

MIN and MAX You cannot use the MIN and MAX functions on columns with
bit data types.

SUM and AVG You can use only the SUM and AVG aggregate functions on
columns with int, smallint, tinyint, decimal, numeric, float,
real, money, and smallmoney data types.

 When you use the SUM or AVG function, SQL Server treats the
smallint or tinyint data types as an int data type value in your
result set.

SELECT [ALL | DISTINCT]
[TOP n [PERCENT] [WITH TIES]] <select_list>
[INTO new_table]
[FROM <table_sources>]
[WHERE <search_conditions>]
[[GROUP BY [ALL] group_by_expression [,�n]]
[HAVING <search_conditions>]
[WITH { CUBE | ROLLUP }]
]
[ORDER BY { column_name [ASC | DESC] } [,�n]]
[COMPUTE
{ { AVG | COUNT | MAX | MIN | SUM } (expression) } [,�n]
[BY expression [,�n]
]

This example calculates the average unit price of all products in the
products table.

USE northwind
SELECT AVG(unitprice)
 FROM products
GO

28.8663

(1 row(s) affected)

This example adds all rows in the quantity column in the order details table.

USE northwind
SELECT SUM(quantity)
 FROM [order details]
GO

51317

(1 row(s) affected)

Partial Syntax

Example 1

Result

Example 2

Result

6 Module 4: Grouping and Summarizing Data

Using Aggregate Functions with Null Values

! Most Aggregate Functions Ignore Null Values

! COUNT(*) Function Counts Rows with Null Values

USE northwind
SELECT COUNT (*)
FROM employees

GO

USE northwind
SELECT COUNT (*)
FROM employees

GO

USE northwind
SELECT COUNT(reportsto)
FROM employees

GO

USE northwind
SELECT COUNT(reportsto)
FROM employees

GO

Example 1Example 1

Example 2Example 2

Null values can cause aggregate functions to produce unexpected results. For
example, if you execute a SELECT statement that includes a COUNT function
on a column that contains 18 rows, two of which contain null values, your result
set returns a total of 16 rows. SQL Server ignores the two rows that contain
null values.

Therefore, use caution when using aggregate functions on columns that contain
null values, because the result set may not be representative of your data.
However, if you decide to use aggregate functions with null values, consider the
following facts:

! SQL Server aggregate functions, with the exception of the COUNT (*)
function, ignore null values in columns.

! The COUNT (*) function counts all rows, even if every column contains a
null value. For example, if you execute a SELECT statement that includes
the COUNT (*) function on a column that contains a total of 18 rows, two
of which contain null values, your result set returns a total of 18 rows.

This example lists the number of employees in the employees table.

USE northwind
SELECT COUNT(*)
 FROM employees
GO

9

(1 row(s) affected)

Topic Objective
To discuss the behavior
of null values when they
are used with
aggregate functions.

Lead-in
You may receive
unexpected results if you
use aggregate functions
with null values.

Example 1

Result

 Module 4: Grouping and Summarizing Data 7

This example lists the number of employees who do not have a null value in the
reportsto column in the employees table, indicating that a reporting manager is
defined for that employee.

USE northwind
SELECT COUNT(reportsto)
 FROM employees
GO

8

(1 row(s) affected)

Example 2

Result

8 Module 4: Grouping and Summarizing Data

GROUP BY Fundamentals

! Using the GROUP BY Clause

! Using the GROUP BY Clause with the HAVING Clause

By itself, an aggregate function produces a single summary value for all rows in
a column.

If you want to generate summary values for a column, use aggregate functions
with the GROUP BY clause. Use the HAVING clause with the GROUP BY
clause to restrict the groups of rows that are returned in the result set.

Using the GROUP BY clause does not guarantee a sort order. If you
want the results to be sorted, include the ORDER BY clause.

Topic Objective
To provide an overview of
the clauses that summarize
values for a column.

Lead-in
You typically use aggregate
functions in conjunction with
the GROUP BY and
HAVING clauses.

Note

 Module 4: Grouping and Summarizing Data 9

Using the GROUP BY Clause
USE northwind
SELECT productid, orderid

,quantity
FROM orderhist
GO

USE northwind
SELECT productid, orderid

,quantity
FROM orderhist

GO

USE northwind
SELECT productid

,SUM(quantity) AS total_quantity
FROM orderhist
GROUP BY productid

GO

USE northwind
SELECT productid

,SUM(quantity) AS total_quantity
FROM orderhist
GROUP BY productid

GO

productidproductidproductid total_quantitytotal_quantitytotal_quantity

11 1515

22 3535

33 4545

productidproductidproductid orderidorderidorderid quantityquantityquantity

11 11 55

11 11 1010

22 11 1010

22 22 2525

33 11 1515

33 22 3030

productidproductidproductid total_quantitytotal_quantitytotal_quantity

22 3535

Only rows that
satisfy the WHERE
clause are grouped

USE northwind
SELECT productid

,SUM(quantity) AS total_quantity
FROM orderhist
WHERE productid = 2
GROUP BY productid

GO

USE northwind
SELECT productid

,SUM(quantity) AS total_quantity
FROM orderhist
WHERE productid = 2
GROUP BY productid

GO

Use the GROUP BY clause on columns or expressions to organize rows into
groups and to summarize those groups. For example, use the GROUP BY
clause to determine the quantity of each product that was ordered for all orders.

When you use the GROUP BY clause, consider the following facts
and guidelines:

! SQL Server produces a column of values for each defined group.
! SQL Server returns only single rows for each group that you specify; it does

not return detail information.
! All columns that are specified in the GROUP BY clause must be included in

the select list.
! If you include a WHERE clause, SQL Server groups only the rows that

satisfy the WHERE clause conditions.
! You can have up to 8,060 bytes in the column list of the GROUP BY clause.
! Do not use the GROUP BY clause on columns that contain multiple null

values because the null values are processed as a group.
! Use the ALL keyword with the GROUP BY clause to display all rows with

null values in the aggregate columns, regardless of whether the rows satisfy
the WHERE clause.

The orderhist table is specifically created for the examples in this
module. The Ordhist.sql script, which is included on the Student Materials
compact disc, can be executed to add this table to the Northwind database.

Topic Objective
To explain how to use the
GROUP BY clause to
summarize data.

Lead-in
Use the GROUP BY clause
on columns or expressions
to organize rows into
groups and to summarize
those groups.

Delivery Tip
The orderhist table is
specifically created for the
examples in this module.
This is also included in
 the Student Materials
compact disc.

Compare the result sets in
the slide. The table on the
left lists all of the rows in the
orderhist table.

The table on the top right
uses the GROUP BY clause
to group all productid
column data and present the
total quantity that is ordered
for each group.

The table on the bottom
right uses the GROUP BY
clause and the WHERE
clause to further restrict the
number of rows returned.

Note

10 Module 4: Grouping and Summarizing Data

This example returns information about orders from the orderhist table. The
query groups and lists each product ID and calculates the total quantity ordered.
The total quantity is calculated with the SUM aggregate function and displays
one value for each product in the result set.

USE northwind
SELECT productid, SUM(quantity) AS total_quantity
 FROM orderhist
 GROUP BY productid
GO

productid total_quantity
1 15
2 35
3 45

(3 row(s) affected)

This example adds a WHERE clause to the query in Example 1. This query
restricts the rows to product ID 2 and then groups these rows and calculates the
total quantity ordered. Compare this result set to that in Example 1.

USE northwind
SELECT productid, SUM(quantity) AS total_quantity
 FROM orderhist
 WHERE productid = 2
 GROUP BY productid
GO

productid total_quantity
2 35

(1 row(s) affected)

This example returns information about orders from the order details table.
This query groups and lists each product ID and then calculates the total
quantity ordered. The total quantity is calculated with the SUM aggregate
function and displays one value for each product in the result set. This example
does not include a WHERE clause and, therefore, returns a total for each
product ID.

USE northwind
SELECT productid, SUM(quantity) AS total_quantity
 FROM [order details]
 GROUP BY productid
GO

productid total_quantity
61 603
3 328
32 297
.
.
.
(77 row(s) affected)

Example 1

Result

Example 2

Result

Example 3

Result

 Module 4: Grouping and Summarizing Data 11

Using the GROUP BY Clause with the HAVING Clause

USE northwind
SELECT productid, orderid

,quantity
FROM orderhist
GO

USE northwind
SELECT productid, orderid

,quantity
FROM orderhist
GO

USE northwind
SELECT productid, SUM(quantity)

AS total_quantity
FROM orderhist
GROUP BY productid
HAVING SUM(quantity)>=30

GO

USE northwind
SELECT productid, SUM(quantity)

AS total_quantity
FROM orderhist
GROUP BY productid
HAVING SUM(quantity)>=30

GO

productidproductidproductid total_quantitytotal_quantitytotal_quantity

22 3535

33 4545

productidproductidproductid orderidorderidorderid quantityquantityquantity

11 11 55

11 11 1010

22 11 1010

22 22 2525

33 11 1515

33 22 3030

Use the HAVING clause on columns or expressions to set conditions on the
groups included in a result set. The HAVING clause sets conditions on the
GROUP BY clause in much the same way that the WHERE clause interacts
with the SELECT statement.

When you use the HAVING clause, consider the following facts and guidelines:

! Use the HAVING clause only with the GROUP BY clause to restrict the
grouping. Using the HAVING clause without the GROUP BY clause is not
meaningful.

! You can have up to 128 conditions in a HAVING clause. When you have
multiple conditions, you must combine them with logical operators (AND,
OR, or NOT).

! You can reference any of the columns that appear in the select list.
! Do not use the ALL keyword with the HAVING clause because the

HAVING clause overrides the ALL keyword and returns groups that satisfy
only the HAVING clause.

Topic Objective
To explain how to use the
HAVING clause to
summarize data further,
based on groups.

Lead-in
You can use the HAVING
clause to set conditions on
groups to include in a
result set.

Delivery Tip
Point out the search
condition defined in the
HAVING clause in the
example in the slide.

The table on the right
groups all productid
column data but presents
only the total quantity that is
ordered for the groups that
meet the HAVING clause
search condition.

12 Module 4: Grouping and Summarizing Data

This example lists each group of products from the orderhist table that has
orders of 30 or more units.

USE northwind
SELECT productid, SUM(quantity) AS total_quantity
 FROM orderhist
 GROUP BY productid
 HAVING SUM(quantity) >=30
GO

productid total_quantity
2 35
3 45

(2 row(s) affected)

This example lists the product ID and quantity for products that have orders for
more than 1,200 units.

USE northwind
 SELECT productid, SUM(quantity) AS total_quantity
 FROM [order details]
 GROUP BY productid
 HAVING SUM(quantity) > 1200
GO

productid total_quantity
59 1496
56 1263
60 1577
31 1397

(4 row(s) affected)

Example 1

Result

Example 2

Result

 Module 4: Grouping and Summarizing Data 13

Generating Aggregate Values Within Result Sets

! Using the GROUP BY Clause with the ROLLUP Operator

! Using the GROUP BY Clause with the CUBE Operator

! Using the GROUPING Function

Use the GROUP BY clause with the ROLLUP and CUBE operators to generate
aggregate values within result sets. The ROLLUP or CUBE operators can be
useful for cross-referencing information within a table without having to write
additional scripts.

When you use the ROLLUP or CUBE operators, use the GROUPING function
to identify the detail and summary values in the result set.

Topic Objective
To provide an overview of
summarizing values for a
table by using the ROLLUP
and CUBE operators.

Lead-in
Use the GROUP BY clause
with the ROLLUP and
CUBE operators to generate
aggregate values within
result sets. If you do so, you
most likely use the
GROUPING function to
interpret the result set.

14 Module 4: Grouping and Summarizing Data

Using the GROUP BY Clause with the ROLLUP Operator

Description

USE northwind
SELECT productid, orderid, SUM(quantity) AS total_quantity
FROM orderhist
GROUP BY productid, orderid
WITH ROLLUP
ORDER BY productid, orderid

GO

USE northwind
SELECT productid, orderid, SUM(quantity) AS total_quantity
FROM orderhist
GROUP BY productid, orderid
WITH ROLLUP
ORDER BY productid, orderid

GO

productidproductidproductid orderidorderidorderid total_quantitytotal_quantitytotal_quantity

NULLNULL NULLNULL 9595

11 NULLNULL 1515

11 11 55

11 22 1010

22 NULLNULL 3535

22 11 1010

22 22 2525

33 NULLNULL 4545

33 11 1515

33 22 3030

Grand totalGrand total

Summarizes only rows for productid 1Summarizes only rows for productid 1

Detail value for productid 1, orderid 1Detail value for productid 1, orderid 1

Detail value for productid 1, orderid 2Detail value for productid 1, orderid 2

Summarizes only rows for productid 2Summarizes only rows for productid 2

Detail value for productid 2, orderid 1Detail value for productid 2, orderid 1

Summarizes only rows for productid 3Summarizes only rows for productid 3

Detail value for productid 3, orderid 1Detail value for productid 3, orderid 1

Detail value for productid 3, orderid 2Detail value for productid 3, orderid 2

Use the GROUP BY clause with the ROLLUP operator to summarize group
values. The GROUP BY clause with the ROLLUP operator provides data in a
standard relational format.

For example, you could generate a result set that includes the quantity that is
ordered for each product for each order, the total quantity that is ordered for
each product, and the grand total of all products.

When you use the GROUP BY clause with the ROLLUP operator, consider the
following facts and guidelines:

! SQL Server processes data from right to left, along the list of columns that
are specified in the GROUP BY clause. SQL Server then applies the
aggregate function to each group.

! SQL Server adds a row to the result set that displays cumulative aggregates,
such as a running sum or a running average. These cumulate aggregates are
indicated with a NULL in the result set.

! You can have up to 10 grouping expressions when you use the
ROLLUP operator.

! You cannot use the ALL keyword with the ROLLUP operator.
! When you use the ROLLUP operator, ensure that the columns that follow

the GROUP BY clause have a relationship that is meaningful in your
business environment.

Topic Objective
To explain how to use the
ROLLUP operator to
summarize data in a table.

Lead-in
Use the ROLLUP operator
to summarize data in
a table.

Delivery Tip
Point out that the NULLs in
the example on the slide
indicate that those particular
rows are created only
as a result of the
ROLLUP operator.

 Module 4: Grouping and Summarizing Data 15

This example lists all rows from the orderhist table and summary quantity
values for each product.

USE northwind
SELECT productid, orderid, SUM(quantity) AS total_quantity
 FROM orderhist
 GROUP BY productid, orderid
 WITH ROLLUP
 ORDER BY productid, orderid
GO

productid orderid total_quantity
NULL NULL 95
1 NULL 15
1 1 5
1 2 10
2 NULL 35
2 1 10
2 2 25
3 NULL 45
3 1 15
3 2 30

(10 row(s) affected)

This example returns information about orders from the order details table.
This query contains a SELECT statement with a GROUP BY clause without the
ROLLUP operator. The example returns a list of the total quantity that is
ordered for each product on each order, for orders with an orderid less
than 10250.

USE northwind
SELECT orderid, productid, SUM(quantity) AS total_quantity
 FROM [order details]
 WHERE orderid < 10250
 GROUP BY orderid, productid
 ORDER BY orderid, productid
GO

orderid productid total_quantity
10248 11 12
10248 42 10
10248 72 5
10249 14 9
10249 51 40

(5 row(s) affected)

Example 1

Delivery Tip
The examples in this topic
build on one another so that
students can understand
how ROLLUP builds upon
GROUP BY.

Result

Example 2

Result

16 Module 4: Grouping and Summarizing Data

This example adds the ROLLUP operator to the statement in Example 2. The
result set includes the total quantity for:

! Each product for each order (also returned by the GROUP BY clause
without the ROLLUP operator).

! All products for each order.
! All products for all orders (grand total).

Notice in the result set that the row that contains NULL in both the productid
and orderid columns represents the grand total quantity for all orders for all
products. The rows that contain NULL in the productid column represent the
total quantity of a product for the order in the orderid column.

USE northwind
SELECT orderid, productid, SUM(quantity) AS total_quantity
 FROM [order details]
 WHERE orderid < 10250
 GROUP BY orderid, productid
 WITH ROLLUP
 ORDER BY orderid, productid
GO

orderid productid total_quantity
NULL NULL 76
10248 NULL 27
10248 11 12
10248 42 10
10248 72 5
10249 NULL 49
10249 14 9
10249 51 40

(8 row(s) affected)

Example 3

Result

 Module 4: Grouping and Summarizing Data 17

Using the GROUP BY Clause with the CUBE Operator

The CUBE operator
produces two
more summary
values than the
ROLLUP operator

USE northwind
SELECT productid, orderid, SUM(quantity) AS total_quantity
FROM orderhist
GROUP BY productid, orderid
WITH CUBE
ORDER BY productid, orderid

GO

USE northwind
SELECT productid, orderid, SUM(quantity) AS total_quantity
FROM orderhist
GROUP BY productid, orderid
WITH CUBE
ORDER BY productid, orderid

GO

Description
Grand totalGrand total

Summarizes all rows for orderid 1Summarizes all rows for orderid 1

Summarizes all rows for orderid 2Summarizes all rows for orderid 2

Summarizes only rows for productid 1Summarizes only rows for productid 1

Detail value for productid 1, orderid 1Detail value for productid 1, orderid 1

Detail value for productid 1, orderid 2Detail value for productid 1, orderid 2

Summarizes only rows for productid 2Summarizes only rows for productid 2

Detail value for productid 2, orderid 1Detail value for productid 2, orderid 1

Detail value for productid 2, orderid 2Detail value for productid 2, orderid 2

Summarizes only rows for productid 3Summarizes only rows for productid 3

Detail value for productid 3, orderid 1Detail value for productid 3, orderid 1

Detail value for productid 3, orderid 2Detail value for productid 3, orderid 2

productidproductidproductid orderidorderidorderid total_quantitytotal_quantitytotal_quantity

NULLNULL NULLNULL 9595

NULLNULL 11 3030

NULLNULL 22 6565

11 NULLNULL 1515

11 11 55

11 22 1010

22 NULLNULL 3535

22 11 1010

22 22 2525

33 NULLNULL 4545

33 11 1515

33 22 3030

Use the GROUP BY clause with the CUBE operator to create and summarize
all possible combinations of groups based on the GROUP BY clause. Use the
GROUP BY clause with the ROLLUP operator to provide data in a standard
relational format.

When you use the GROUP BY clause with CUBE operator, consider the
following facts and guidelines:

! If you have n columns or expressions in the GROUP BY clause,
SQL Server returns 2n-1 possible combinations in the result set.

! The NULLs in the result set indicate that those particular rows are created as
a result of the CUBE operator.

! You can include up to 10 grouping expressions when you use the
CUBE operator.

! You cannot use the ALL keyword with the CUBE operator.
! When you use the CUBE operator, ensure that the columns that follow

the GROUP BY clause have a relationship that is meaningful in your
business environment.

Topic Objective
To explain how to use the
CUBE operator to
summarize data in a table.

Lead-in
The CUBE operator differs
from the ROLLUP operator
in that it creates all possible
combinations of groups
based on the GROUP BY
clause and then applies
aggregate functions.

Delivery Tip
Point out that the NULLs in
the result set in the example
on the slide indicate that
those particular rows are
created as a result of the
CUBE operator.

18 Module 4: Grouping and Summarizing Data

This example returns a result that provides the quantity for each product for
each order, total quantity for all products for each order, total quantity for each
product for all orders, and a grand total quantity for all products for all orders.

USE northwind
SELECT productid, orderid, SUM(quantity) AS total_quantity
 FROM orderhist
 GROUP BY productid, orderid
 WITH CUBE
 ORDER BY productid, orderid
GO

productid orderid total_quantity
NULL NULL 95
NULL 1 30
NULL 2 65
1 NULL 15
1 1 5
1 2 10
2 NULL 35
2 1 10
2 2 25
3 NULL 45
3 1 15
3 2 30

(12 row(s) affected)

Example

Result

 Module 4: Grouping and Summarizing Data 19

Using the GROUPING Function

1 represents summary values
in the preceding column

0 represents detail values in
the preceding column

95
30
65
15
5
10
35
10
25
45
15
30

SELECT productid, GROUPING (productid)
,orderid, GROUPING (orderid)
,SUM(quantity) AS total_quantity

FROM orderhist
GROUP BY productid, orderid
WITH CUBE
ORDER BY productid, orderid

GO

SELECT productid, GROUPING (productid)
,orderid, GROUPING (orderid)
,SUM(quantity) AS total_quantity

FROM orderhist
GROUP BY productid, orderid
WITH CUBE
ORDER BY productid, orderid

GO
productidproductid

NULL
NULL
NULL

1
1
1
2
2
2
3
3
3

1
1
1
0
0
0
0
0
0
0
0
0

orderidorderid
NULL

1
2

NULL
1
2

NULL
1
2

NULL
1
2

1
0
0
1
0
0
1
0
0
1
0
0

total_quantitytotal_quantity

Use the GROUPING function with either the ROLLUP or CUBE operator to
distinguish between the detail and summary values in your result set. Using the
GROUPING function helps to determine whether the NULLs that appear in
your result set are actual null values in the base tables or whether the ROLLUP
or CUBE operator generated the row.

When you use the GROUPING function, consider the following facts
and guidelines:

! SQL Server produces new columns in the result set for each column that is
specified in the GROUPING function.

! SQL Server returns a value of 1 to represent ROLLUP or CUBE summary
values in the result set.

! SQL Server returns a value of 0 to represent detail values in the result set.
! You can specify the GROUPING function only on columns that exist in the

GROUP BY clause.
! Use the GROUPING function to assist in referencing your result sets

programmatically.

Topic Objective
To explain how the
GROUPING function works.

Lead-in
Use the GROUPING
function with either the
ROLLUP or CUBE operator
to distinguish between the
detail and summary values
in your result set.

Delivery Tip
Point out that the result set
in the example on the slide
is similar to that in the
previous slide with one
important exception: the
GROUPING function is used
and two extra columns are
included in the result set.
The 1 represents summary
values, and the 0 represents
detail values in the
preceding column.

20 Module 4: Grouping and Summarizing Data

This example returns a result that provides the quantity for each product for
each order, total quantity for all products for each order, total quantity for each
product for all orders, and a grand total quantity for all products for all orders.
The GROUPING function distinguishes the rows in the result set that the
CUBE operator generates.

USE northwind
SELECT productid, GROUPING (productid)
 ,orderid, GROUPING (orderid)
 ,SUM(quantity) AS total_quantity
 FROM orderhist
 GROUP BY productid, orderid
 WITH CUBE
 ORDER BY productid, orderid
GO

productid orderid total_quantity
NULL 1 NULL 1 95
NULL 1 1 0 30
NULL 1 2 0 65
1 0 NULL 1 15
1 0 1 0 5
1 0 2 0 10
2 0 NULL 1 35
2 0 1 0 10
2 0 2 0 25
3 0 NULL 1 45
3 0 1 0 15
3 0 2 0 30

(12 row(s) affected)

Example 1

Result

 Module 4: Grouping and Summarizing Data 21

This example uses the GROUPING function on the productid and orderid
columns that are listed in the GROUP BY clause. The result set has an
additional column after the productid and orderid columns. The GROUPING
function returns a 1 when the values in that particular column have been
grouped together by the CUBE operator. The result set includes the total
quantity for each product for each order, each product for all orders, all
products for each order, and the grand total quantity for all products for
all orders.

Notice in the result set that the rows that contain NULL in both the productid
and the orderid columns represent the grand total quantity of all products for
all orders. Rows that contain NULL in the productid column represent the total
quantity for all products for each order. Rows that contain NULL in the orderid
column represent the total quantity for a product for all orders.

USE northwind
SELECT orderid, GROUPING(orderid), productid
 ,GROUPING(productid), SUM(quantity) AS total_quantity
 FROM [order details]
 WHERE orderid < 10250
 GROUP BY orderid, productid
 WITH CUBE
 ORDER BY orderid, productid
GO

orderid productid total_quantity
NULL 1 NULL 1 76
NULL 1 11 0 12
NULL 1 14 0 9
NULL 1 42 0 10
NULL 1 51 0 40
NULL 1 72 0 5
10248 0 NULL 1 27
10248 0 11 0 12
10248 0 42 0 10
10248 0 72 0 5
10249 0 NULL 1 49
10249 0 14 0 9
10249 0 51 0 40

(13 row(s) affected)

Example 2

Result

22 Module 4: Grouping and Summarizing Data

Using the COMPUTE and COMPUTE BY Clauses
COMPUTE BYCOMPUTE

USE northwind
SELECT productid, orderid, quantity
FROM orderhist
ORDER BY productid, orderid
COMPUTE SUM(quantity) BY productid
COMPUTE SUM(quantity)

GO

USE northwind
SELECT productid, orderid, quantity
FROM orderhist
ORDER BY productid, orderid
COMPUTE SUM(quantity) BY productid
COMPUTE SUM(quantity)

GO

USE northwind
SELECT productid, orderid

,quantity
FROM orderhist
ORDER BY productid, orderid
COMPUTE SUM(quantity)
GO

USE northwind
SELECT productid, orderid

,quantity
FROM orderhist
ORDER BY productid, orderid
COMPUTE SUM(quantity)
GO

productidproductidproductid orderidorderidorderid quantityquantityquantity

11 11 55

11 22 1010

22 11 1010

22 22 2525

33 11 1515

33 22 3030

sumsum 9595

productidproductidproductid orderidorderidorderid quantityquantityquantity

11 11 55

11 22 1010

sumsum 1515

22 11 1010

22 22 2525

sumsum 3535

33 11 1515

33 22 3030

sumsum 4545

sumsum 9595

The COMPUTE and COMPUTE BY clauses generate extra summary rows of
data in a non-relational format that is not ANSI-standard. While it is useful for
viewing, the output is not well suited for generating result sets to use with
other applications.

For example, you may want to use COMPUTE and COMPUTE BY to print
basic reports quickly or to verify results of applications that you are writing.
However, other tools, such as Crystal Reports or Microsoft Access, offer richer
reporting capabilities.

If you use the COMPUTE and COMPUTE BY clauses, consider the
following facts:

! You cannot include text, ntext, or image data types in a COMPUTE or
COMPUTE BY clause.

! You cannot adjust the format of your result set. For example, if you use the
SUM aggregate function, SQL Server displays the word sum in your result
set. You cannot change it to read summary.

Generating a Report with Detail and Summary Values for a Column
The COMPUTE clause produces detailed rows and a single aggregate value for
a column. When you use the COMPUTE clause, consider the following facts
and guidelines:

! You can use multiple COMPUTE clauses with the COMPUTE BY clause in
a single statement.

! SQL Server requires that you specify the same columns in the COMPUTE
clause that are listed in the select list.

! Do not use the SELECT INTO statement in the same statement as a
COMPUTE clause because statements that include COMPUTE do not
generate relational output.

Topic Objective
To explain the purpose of
using the COMPUTE and
COMPUTE BY clauses.

Lead-in
While the COMPUTE and
COMPUTE BY clauses are
not ANSI-standard, you may
want to use them to print
basic reports or to verify
results of applications that
you are writing.

Delivery Tip
These clauses are not
recommended for building
applications. However,
they can be useful for
testing applications.

 Module 4: Grouping and Summarizing Data 23

This example lists each row in the orderhist table and generates a grand total
for all products that are ordered.

USE northwind
SELECT productid, orderid, quantity
 FROM orderhist
 ORDER BY productid, orderid
 COMPUTE SUM(quantity)
GO

productid orderid total_quantity
1 1 5
1 2 10
2 1 10
2 2 25
3 1 15
3 2 30

 sum
 ==========
 95
7 row(s) affected
Generating a Report with Detail and Summary Values for Subset
of Groups
The COMPUTE BY clause generates detail rows and multiple summary values.
Summary values are generated when column values change. Use COMPUTE
BY for data that is easily categorized. When you use the COMPUTE BY
clause, consider the following facts and guidelines:

! You should use an ORDER BY clause with the COMPUTE BY clause so
that rows are grouped together.

! Specify the column names after the COMPUTE BY clause to determine
which summary values that SQL Server generates.

! The columns listed after the COMPUTE BY clause must be identical to or a
subset of those that are listed after the ORDER BY clause. They must be
listed in the same order (left-to-right), start with the same expression, and
not skip any expressions.

Example 1

Result

24 Module 4: Grouping and Summarizing Data

This example lists each row in the orderhist table, generates a total that is
ordered for each product, and a grand total of all products that are ordered.

USE northwind
SELECT productid, orderid, quantity
 FROM orderhist
 ORDER BY productid, orderid
 COMPUTE SUM(quantity) BY productid
 COMPUTE SUM(quantity)
GO

productid orderid total_quantity
1 1 5
1 2 10

 sum
 ==========
 15

2 1 10
2 2 25

 sum
 ==========
 35

3 1 15
3 2 30

 sum
 ==========
 45

 sum
 ==========
 95
10 row(s) affected

Example 2

Result

 Module 4: Grouping and Summarizing Data 25

Recommended Practices

Avoid Using the COMPUTE or COMPUTE BY ClauseAvoid Using the COMPUTE or COMPUTE BY Clause

Index Frequently Aggregated ColumnsIndex Frequently Aggregated Columns

Avoid Using Aggregate Functions with Null ValuesAvoid Using Aggregate Functions with Null Values

Use the ORDER BY Clause to Guarantee a Sort OrderUse the ORDER BY Clause to Guarantee a Sort Order

Use the ROLLUP Operator Instead of the CUBE OperatorUse the ROLLUP Operator Instead of the CUBE Operator

When you use clauses and operators to summarize data, consider the following
recommended practices:

! Index frequently aggregated columns to improve query performance. For
example, adding the quantity column to an index improves aggregate
operations, such as those in the examples in this module, even when you use
the ROLLUP operator.

! Avoid using aggregate functions with columns that contain null values
because the result set may not be representative of your data.

! Use the ORDER BY clause to guarantee a sort order in the result set. If
you do not use the ORDER BY clause, SQL Server does not guarantee a
sort order.

! Use the ROLLUP operator whenever possible because it is more efficient
than the CUBE operator. The ROLLUP operator is efficient because it
summarizes data as the detail data is processed. The CUBE operator can
be resource intensive because of the large number of calculations that
it performs.

! Use the COMPUTE or COMPUTE BY clause because it is useful for
viewing and printing result sets to test your applications. However, because
they generate extra summary rows of data in a non-relational format, the
output is not well suited for production databases.

Additional information on the following topics is available in SQL Server
Books Online.

Topic Search on

Summarizing calculations �aggregate system functions�

Topic Objective
To list the recommended
practices for summarizing
data.

Lead-in
To get the most out of using
clauses and operators to
summarize data, you should
consider these
recommended practices.

Instructor Note
This course does not cover
indexing in detail. For more
information on indexing, see
course 2073A,
Programming a Microsoft
SQL Server 2000 Database.

26 Module 4: Grouping and Summarizing Data

Lab A: Grouping and Summarizing Data

Objectives
After completing this lab, you will be able to:

! Use the GROUP BY and HAVING clauses to summarize data by groups.
! Use the ROLLUP and CUBE operators and GROUPING function to

generate summary data.
! Use the COMPUTE and COMPUTE BY clauses to generate control-break

reports, grand totals, and averages.

Prerequisites
Before working on this lab, you must have:

! Script files for this lab, which are located in C:\Moc\2071A\Labfiles\L04.
! Answer files for this lab, which are located in

C:\Moc\2071A\Labfiles\L04\Answers.

Lab Setup
None.

For More Information
If you require help in executing files, search Microsoft® SQL Server� 2000
Query Analyzer Help for �Execute a query�.

Other resources that you can use include:

! The Northwind database schema.
! SQL Server Books Online.

Topic Objective
To prepare students for
the lab.

Lead-in
In these exercises, you will
group and summarize data
by using aggregate
functions with the GROUP
BY, HAVING, COMPUTE,
and COMPUTE BY clauses
and the ROLLUP and
CUBE operators.

Explain the lab objectives.

 Module 4: Grouping and Summarizing Data 27

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 45 minutes

28 Module 4: Grouping and Summarizing Data

Exercise 1
Using the TOP n Keyword

In this exercise, you will use the TOP n keyword and the WITH TIES clause to
return the top number or percent of rows from a result set.
C:\Moc\2071A\Labfiles\L04\Answers contains completed scripts for this
exercise.

! To use the TOP n keyword to list the top rows of a result set
In this procedure, you will modify a script so that it returns the first ten rows of
a query. Answer_TopN1.sql is a completed script for this procedure.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password Password

2. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Microsoft Windows® Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Windows 2000 local
group, Administrators. All members of this group are automatically mapped
to the SQL Server sysadmin role.

3. In the DB list, click northwind.
4. Open and review the C:\Moc\2071A\Labfiles\L04\TopN.sql script, which is

a query that calculates the total sale amount for each order in the order
details table, and returns the results in descending order.

5. Modify the query described in step 4 so that the query returns the first ten
rows.
USE northwind
 SELECT TOP 10
 orderid
 ,(unitprice * quantity) AS totalsale
 FROM [order details]
 ORDER BY (unitprice * quantity) DESC
GO

6. Execute the query to verify that it returns ten rows.

 Module 4: Grouping and Summarizing Data 29

Your result will look similar to the following result set.

orderid totalsale
10865 15810.0000
10981 15810.0000
10353 10540.0000
10417 10540.0000
10889 10540.0000
10424 10329.2000
10897 9903.2000
10372 8432.0000
10540 7905.0000
10816 7905.0000

(10 row(s) affected)
! To list the top values of a result set using the TOP n keyword
In this procedure, you will use the TOP n keyword to list the top values of a
result set. Answer_TopN2.sql is a completed script for this procedure.
1. Modify the query described in step 5 of the previous procedure to return the

top ten products (including ties) having the highest total quantity.
USE northwind
 SELECT TOP 10 WITH TIES
 orderid
 ,(unitprice * quantity) AS totalsale
 FROM [order details]
 ORDER BY (unitprice * quantity) DESC
GO

2. Execute the query to verify that it returns eleven rows.

Result

30 Module 4: Grouping and Summarizing Data

Your result will look similar to the following result set.

orderid totalsale
10865 15810.0000
10981 15810.0000
10353 10540.0000
10417 10540.0000
10889 10540.0000
10424 10329.2000
10897 9903.2000
10372 8432.0000
10540 7905.0000
10816 7905.0000
10817 7905.0000

(11 row(s) affected)

3. Why were more rows returned from the query that asked for the top 10
values that included ties?
The TOP 10 operator specifies that only the first ten rows should be
returned. The TOP 10 WITH TIES operator specifies that all rows
with values that are in the list of the top 10 values should be returned,
regardless of how many rows that might be.
__

__

Result

 Module 4: Grouping and Summarizing Data 31

Exercise 2
Using the GROUP BY and HAVING Clauses

In this exercise, you will use the GROUP BY and HAVING clauses to
summarize data from the Northwind database.
C:\Moc\2071A\Labfiles\L04\Answers contains completed scripts for this
exercise.

! To use the GROUP BY clause to summarize data
In this procedure, you will open a script that contains a query that includes the
GROUP BY clause. Then you will modify the query to obtain different results.
1. Open and review the C:\Moc\2071A\Labfiles\L04\Groupby.sql script,

which is a query that calculates the total quantity of items ordered for two
different categories of items in the order details table.

2. Execute the query to review the results.

Your result will look similar to the following result set.

categoryid total_quantity
1 9532
2 5298

(2 row(s) affected)
! To calculate the total quantity for each category
Answer_Groupby1.sql is a completed script for this procedure.
1. Modify the script from step 1 of the previous procedure to summarize the

quantity by category for all products, regardless of category.
USE northwind
SELECT categoryid, SUM(quantity) AS total_quantity
 FROM [order details] AS od
 INNER JOIN products AS p
 ON od.productid = p.productid
 GROUP BY categoryid
GO

2. Execute the query to review the results.

Your result will look similar to the following result set.

categoryid total_quantity
1h 9532
2 5298
3 7906
4 9149
5 4562
6 4199
7 2990
8 7681

(8 row(s) affected)

Result

Result

32 Module 4: Grouping and Summarizing Data

! To calculate the total quantity for each order
In this procedure, you will calculate the total quantity for each order.
Answer_Groupby2.sql is a completed script for this procedure.
1. Modify the script from step 1 of the previous procedure to summarize the

quantity by orderid for all products, regardless of category.
USE northwind
SELECT orderid, SUM(quantity) AS total_quantity
 FROM [order details] AS od
 INNER JOIN products AS p
 ON od.productid = p.productid
 GROUP BY orderid
GO

2. Execute the query to review the results.

Your result will look similar to the following partial result set.

ordered total_quantity
10248 27
10249 49
10250 60
.
.
.
11075 42
11076 50
11077 72

(830 row(s) affected)

Result

 Module 4: Grouping and Summarizing Data 33

! To calculate the number of orders with more than 250 units ordered
In this procedure, you will calculate the number of orders with more than 250
units ordered. Answer_Groupby3.sql is a completed script for this procedure.
1. Modify the script from step 1 of the previous procedure to summarize the

quantity by orderid for all products, regardless of category, and only return
orders that had more than 250 units ordered.
USE northwind
SELECT orderid, SUM(quantity) AS total_quantity
 FROM [order details] AS od
 INNER JOIN products AS p
 ON od.productid = p.productid
 GROUP BY orderid
 HAVING SUM(quantity) > 250
GO

2. Execute the query to review the results.

Your result will look similar to the following result set.

ordered total_quantity
10515 286
10612 263
10658 255
10678 280
10847 288
10895 346
10990 256
11030 330

(8 row(s) affected)

Result

34 Module 4: Grouping and Summarizing Data

Exercise 3
Using the ROLLUP and CUBE Operators

In this exercise, you will use the ROLLUP and CUBE operators to generate
summary data. You also will use the GROUPING function to determine the
result rows that are summaries. C:\Moc\2071A\Labfiles\L04\Answers contains
completed scripts for this exercise.

! To use the ROLLUP operator to generate summary results
In this procedure, you will use the ROLLUP operator with the GROUP BY and
HAVING clauses to generate summary results. Answer_Rollup1.sql is a
completed script for this procedure.
1. Open and review the C:\Moc\2071A\Labfiles\L04\Rollup.sql script, which

is a query that summarizes the quantity of items that were ordered by
productid and ordered, and performs a rollup calculation.

2. Modify the query from step 1 to limit the result to product number 50 by
using a WHERE clause, and then execute the query.
USE northwind
SELECT productid, orderid, SUM(quantity) AS total_quantity
 FROM [order details]
 WHERE productid = 50
 GROUP BY productid, orderid
 WITH ROLLUP
 ORDER BY productid, orderid
GO

3. Execute the query to review the results. Make note of the rows that have
null values.

Your result will look similar to the following result set.

productid orderid total_quantity
NULL NULL 235
50 NULL 235
50 10350 15
50 10383 15
50 10429 40
50 10465 25
50 10637 25
50 10729 40
50 10751 20
50 10920 24
50 10948 9
50 11072 22

(12 row(s) affected)

Result

 Module 4: Grouping and Summarizing Data 35

1. What is the significance of the null values in the productid and orderid
columns?
The null values in a row indicate that the value in the total_quantity
column for that row is the sum of all of the total_quantity values
without grouping on the column that has the null value.
For example, the total_quantity value in the row where productid and
orderid are both null is the sum of all of the total_quantity values in the
table.
__

__

! To use the CUBE operator to generate summary results
In this procedure, you will use the CUBE operator and the GROUPING
function to distinguish between summary and detail rows in the result set.
Answer_Cube1.sql is a completed script for this procedure.
1. Open and review the C:\Moc\2071A\Labfiles\L04\Rollup.sql script, which

is a query that summarizes the quantity of items that were ordered by
productid and ordered, and performs a rollup calculation.

2. Modify the query from step 1 to use the CUBE operator instead of the
ROLLUP operator. Also, use the GROUPING function on the productid
and orderid columns to distinguish between summary and detail rows in the
result set, and then execute the query.
USE northwind
SELECT productid
 ,GROUPING(productid)
 ,orderid
 ,GROUPING(orderid)
 ,SUM(quantity) AS total_quantity
 FROM [order details]
 WHERE productid = 50
 GROUP BY productid, orderid
 WITH CUBE
 ORDER BY productid, orderid
GO

3. Execute the query to review the results.

36 Module 4: Grouping and Summarizing Data

Your result will look similar to the following result set.
productid orderid total_quantity
NULL 1 NULL 1 235
NULL 1 10350 0 15
NULL 1 10383 0 15
NULL 1 10429 0 40
NULL 1 10465 0 25
NULL 1 10637 0 25
NULL 1 10729 0 40
NULL 1 10751 0 20
NULL 1 10920 0 24
NULL 1 10948 0 9
NULL 1 11072 0 22
50 0 NULL 1 235
50 0 10350 0 15
50 0 10383 0 15
50 0 10429 0 40
50 0 10465 0 25
50 0 10637 0 25
50 0 10729 0 40
50 0 10751 0 20
50 0 10920 0 24
50 0 10948 0 9
50 0 11072 0 22

(22 row(s) affected)

Which rows are summaries?
The rows with the number 1 in a GROUPING function column.
__

__

Which rows are summaries by product? By order?
If a number 1 is present in the column generated by the GROUPING
function for the productid column, the row is a summary by order. The
productid for that row is NULL because it is a summary row rather
than a detail row that contains a NULL. The row with a number 1 in
the orderid GROUPING column is a summary row for product number
50. The row with a number 1 in both GROUPING columns is a
grand total.
__

__

Result

 Module 4: Grouping and Summarizing Data 37

Exercise 4
Using the COMPUTE and COMPUTE BY Clauses

In this exercise, you will use the COMPUTE and COMPUTE BY clauses to
generate control-break reports and end-of-report totals and averages.

C:\Moc\2071A\Labfiles\L04\Answers contains completed scripts for this
exercise.

! To use the COMPUTE clause to generate reports
In this procedure, you will modify an existing query by adding the COMPUTE
and COMPUTE BY clauses to generate subtotals and grand totals.
Answer_Compute1.sql is a completed script for this procedure.
1. Open and review the C:\Moc\2071A\Labfiles\L04\Compute.sql script,

which is a query that returns the orderid and quantity ordered for all orders
with an orderid > 11070.

2. Modify the query from step 1 to generate a grand total for the quantity
column using the COMPUTE clause.
USE northwind
SELECT orderid, quantity
 FROM [order details]
 WHERE orderid >= 11070
 COMPUTE SUM(quantity)
GO

3. Execute the query to review the results.

Your result will look similar to the following partial result set.

ordered quantity
11070 40
11070 20
11070 30
.
.
.
11077 24
11077 4
11077 1

 Sum
 ==========
 543

(45 row(s) affected)

Result

38 Module 4: Grouping and Summarizing Data

! To use the COMPUTE BY clause to generate reports
In this procedure, you will modify an existing query by using the COMPUTE
BY clause to generate grand totals. Answer_Compute2.sql is a completed script
for this procedure.
1. Open and review the C:\Moc\2071A\Labfiles\L04\Compute.sql script,

which is a query that returns the orderid and quantity ordered for all orders
with an orderid > 11070.

2. Modify the query from step 1 to generate a control-break report that
provides the total quantity for order numbers 11075 and 11076.
USE northwind
 SELECT orderid, quantity
 FROM [order details]
 WHERE orderid in (11075, 11076)
 ORDER BY orderid
 COMPUTE SUM(quantity) BY orderid
GO

3. Execute the query to review the results.

Your result will look similar to the following result set.

ordered quantity
11075 10
11075 30
11075 2
 Sum
 ==========
 42

11076 20
11076 20
11076 10
 Sum
 ==========
 50

(8 row(s) affected)

Result

 Module 4: Grouping and Summarizing Data 39

! To add total quantity and average quantity to the end of the control-
break report

In this procedure, you will add total quantity and average quantity to the end of
the control-break report. Answer_Compute3.sql is a completed script for this
procedure.
1. Modify the query from step 1 of the previous procedure to add total quantity

and average quantity to the end of the control-break report.
USE northwind
SELECT orderid, quantity
 FROM [order details]
 WHERE orderid in (11075, 11076)
 ORDER BY orderid
 COMPUTE SUM(quantity) BY orderid
 COMPUTE SUM(quantity)
 COMPUTE AVG(quantity)
GO

2. Execute the query to review the results.

Your result will look similar to the following result set. Notice that this result
set is similar to that of step 3 of the previous procedure, with the addition of
end-of-report totals (total quantity and average quantity).

orderid quantity
11075 10
11075 30
11075 2
 Sum
 ==========
 42

11076 20
11076 20
11076 10
 Sum
 ==========
 50

 Sum
 ==========
 92

 Avg
 ==========
 15

(10 row(s) affected

Result

40 Module 4: Grouping and Summarizing Data

Review

! Listing the TOP n Values

! Using Aggregate Functions

! GROUP BY Fundamentals

! Generating Aggregate Values Within Result Sets

! Using the COMPUTE and COMPUTE BY Clauses

1. An employee in the marketing department has asked you to provide
summary data for product sales. She needs all breakfast cereals summarized
by type (hot, cold, or low-fat), manufacturer, and size of the store where the
product was sold (small, medium, or large). Assuming that a single table
holds all this information, what clauses or operators might you use with the
SELECT statement? Why?
The GROUP BY clause with the CUBE operator is the best answer.
The GROUP BY and HAVING clauses provide only one level of
summaries (or groups).
The ROLLUP operator provides summaries for one category.
The CUBE operator provides summaries for multiple categories.
You also could use the COMPUTE or COMPUTE BY clauses to
generate basic reports.
__

__

2. Your manager has asked you to deliver a file that includes all of the data
from Question 1 to another development group that is responsible for report
generation and graphing tools. Would using the COMPUTE and
COMPUTE BY clauses be appropriate for this task? Why or why not?
No. The COMPUTE and COMPUTE BY clauses generate extra
summary rows of data in a non-relational format. While it is useful for
viewing, the output is not well suited for generating result sets to use
with other applications. You could use the GROUP BY clause and the
CUBE or ROLLUP operator to provide data in a standard relational
format that other clients can use easily.
__

__

Topic Objective
To reinforce module
objectives by reviewing
important topics.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

Use these questions to
review module topics.

Ask students whether they
have any questions.

 Module 4: Grouping and Summarizing Data 41

3. You are reviewing the results of a SELECT statement that used the GROUP
BY clause and the CUBE operator. You see null values in the result set, and
you know that null values are allowed in the tables that the SELECT
statement uses. How can you distinguish between detail rows and summary
rows with null values?
Use the GROUPING function on the columns that allow null values. A
value of 1 appears in the column generated by the GROUPING
function if that row is a summary row.
__

__

4. You need to provide a list of the top 100 products, as well as the products
that are in the bottom five percent of sales. Can you use the SELECT TOP n
[PERCENT] statement to answer each question? Are there other ways to
answer the questions?
Yes, you can use the SELECT TOP n [PERCENT] statement to answer
each question. The first question would be answered with the SELECT
TOP 100...ORDER BY...DESC statement so that the items with the
highest quantity sold would be at the top of the list.
The second question would be answered with the SELECT TOP 5
PERCENT...ORDER BY...ASC statement so that the items with the
lowest quantity sold would be at the top of the list.
__

__

THIS PAGE INTENTIONALLY LEFT BLANK

