

Contents

Overview 1

Retrieving Data by Using the
SELECT Statement 2

Filtering Data 8

Formatting Result Sets 20

How Queries Are Processed 28

How Queries Are Cached Automatically 29

Performance Considerations 31

Recommended Practices 32

Lab A: Retrieving Data and Manipulating
Result Sets 33

Review 45

Module 3:
Retrieving Data

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, BackOffice, MS-DOS, PowerPoint, Visual Studio, Windows, Windows Media, and
Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the
U.S.A. and/or other countries.

The names of companies, products, people, characters, and/or data mentioned herein are fictitious
and are in no way intended to represent any real individual, company, product, or event, unless
otherwise noted.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Project Lead: Cheryl Hoople
Instructional Designer: Cheryl Hoople
Technical Lead: LeRoy Tuttle
Program Manager: LeRoy Tuttle
Graphic Artist: Kimberly Jackson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Editorial Contributor: Elizabeth Reese
Copy Editor: Bill Jones (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Tools Specialist: Julie Challenger
Production Support: Lori Walker (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: Testing Testing 123
Classroom Automation: Lorrin Smith-Bates
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 3: Retrieving Data iii

Instructor Notes
This module provides students with the knowledge and skills to perform basic
queries by using the SELECT statement, which includes sorting data,
eliminating duplicates, and changing the format of the result set. The module
concludes with a description of how queries are processed.

At the end of this module, students will be able to:

! Retrieve data from tables by using the SELECT statement.
! Filter data by using different search conditions to use with the WHERE

clause.
! Format result sets.
! Describe how queries are processed.
! Describe performance considerations that affect retrieving data.

Materials and Preparation
Required Materials
To teach this module, you need the following materials:

! Microsoft® PowerPoint® file 2017A_03.ppt.
! The C:\MOC\2071A\Demo\Ex_03.sql example file, which contains all of

the example scripts from the module, unless otherwise noted in the module.

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials.
! Complete all demonstrations.
! Complete the labs.

Presentation:
45 Minutes

Labs:
45 Minutes

iv Module 3: Retrieving Data

Module Strategy
Use the following strategy to present this module:

! Retrieving Data by Using the SELECT Statement
Explain how to retrieve specific columns and rows by using the SELECT
statement and the WHERE clause.

! Filtering Data
Describe how to restrict the number of rows that are returned by using
search conditions in the WHERE clause. Discuss comparison and logical
operators, character strings, range of values, list of values, and unknown
values.

! Formatting Result Sets
Describe how to format the result set to improve readability by sorting data,
eliminating duplicate data, changing column names to aliases, and using
literals. Explain that these formatting options do not change the data, only
the presentation of it.

! How Queries Are Processed
Describe how queries are processed. Mention that all queries follow the
same process before they execute and that Microsoft SQL Server� 2000 can
store some of the processing for subsequent execution of the same query.
Then briefly describe the benefits of cached queries and the ways in which
queries can be cached.

! Performance Considerations
Discuss some of the issues that affect the performance of SQL Server when
you perform basic queries.

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing Microsoft
Official Curriculum (MOC) courseware.

The lab in this module is dependent on the classroom configuration
that is specified in the Customization Information section at the end of the
Classroom Setup Guide for course 2071A, Querying Microsoft SQL Server
2000 with Transact-SQL.

Lab Setup
There are no lab setup requirements that affect replication or customization.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Important

 Module 3: Retrieving Data 1

Overview

! Retrieving Data by Using the SELECT Statement

! Filtering Data

! Formatting Result Sets

! How Queries Are Processed

! Performance Considerations

This module provides students with the knowledge and skills to perform basic
queries by using the SELECT statement, which includes sorting data,
eliminating duplicates, and changing the format of the result set. The module
concludes with a description of how queries are processed.

At the end of this module, students will be able to:

! Retrieve data from tables by using the SELECT statement.
! Filter data by using different search conditions to use with the WHERE

clause.
! Format results sets.
! Describe how queries are processed.
! Describe performance considerations that affect retrieving data.

Slide Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
how to retrieve data by
using basic queries.

2 Module 3: Retrieving Data

Retrieving Data by Using the SELECT Statement

! Using the SELECT Statement

! Specifying Columns

! Using the WHERE Clause to Specify Rows

Before you can work with data, you must select the data that you want to
retrieve from your tables. You can use the SELECT statement to specify the
columns and rows of data that you want to retrieve from tables.

Slide Objective
To list the topics that the
following sections covers.

Lead-in
Retrieving data from tables
includes using the SELECT
statement, which involves
specifying columns
and rows.

 Module 3: Retrieving Data 3

Using the SELECT Statement

SELECT [ALL | DISTINCT] <select_list>
FROM {<table_source>} [,�n]
WHERE <search_condition>

SELECT [ALL | DISTINCT] <select_list>
FROM {<table_source>} [,�n]
WHERE <search_condition>

Partial Syntax

! Select List Specifies the Columns

! WHERE Clause Specifies the Rows

! FROM Clause Specifies the Table

Use the SELECT statement to retrieve data.

SELECT [ALL | DISTINCT] <select_list>
FROM {<table_source>} [,...n]
[WHERE <search_condition>]

Use the SELECT statement to specify the columns and rows that you want to be
returned from a table:

! The select list specifies the columns to be returned.
! The WHERE clause specifies the rows to return. When you use search

conditions in the WHERE clause, you can restrict the number of rows by
using comparison operators, character strings, and logical operators as
search conditions.

! The FROM clause specifies the table from which columns and rows
are returned.

Slide Objective
To discuss using the
SELECT statement to
retrieve data from a table.

Lead-in
Use the SELECT statement
to retrieve data.

Partial Syntax

4 Module 3: Retrieving Data

Specifying Columns

employeeidemployeeidemployeeid lastnamelastnamelastname firstnamefirstnamefirstname titletitletitle

11 DavolioDavolio NancyNancy Sales RepresentativeSales Representative

22 FullerFuller AndrewAndrew Vice President, SalesVice President, Sales

33 LeverlingLeverling JanetJanet Sales RepresentativeSales Representative

44 PeacockPeacock MargaretMargaret Sales RepresentativeSales Representative

55 BuchananBuchanan StevenSteven Sales ManagerSales Manager

66 SuyamaSuyama MichaelMichael Sales RepresentativeSales Representative

77 KingKing RobertRobert Sales RepresentativeSales Representative

88 CallahanCallahan LauraLaura Inside Sales CoordinatorInside Sales Coordinator

99 DodsworthDodsworth AnneAnne Sales RepresentativeSales Representative

USE northwind
SELECT employeeid, lastname, firstname, title
FROM employees
GO

USE northwind
SELECT employeeid, lastname, firstname, title
FROM employees
GO

You can retrieve particular columns from a table by listing them in the
select list.

The select list contains the columns, expressions, or keywords to select or the
local variable to assign. The options that can be used in the select list include:

<select_list> ::=

 { *
 | { table_name | view_name | table_alias }.*
 | { column_name | expression | IDENTITYCOL | ROWGUIDCOL }
 [[AS] column_alias]
 | column_alias = expression
 } [,...n]

When you specify columns to retrieve, consider the following facts
and guidelines:

! The select list retrieves and displays the columns in the specified order.
! Separate the column names with commas, except for the last column name.
! Avoid or minimize the use of an asterisk (*) in the select list. An asterisk is

used to retrieve all columns from a table.

Slide Objective
To show how to select
columns within a table.

Lead-in
You can retrieve particular
columns from a table by
listing them in the select list.

Partial Syntax

 Module 3: Retrieving Data 5

This example retrieves the employeeid, lastname, firstname, and title columns
of all employees from the employees table.

USE northwind
SELECT employeeid, lastname, firstname, title
FROM employees
GO

employeeid lastname firstname title
1 Davolio Nancy Sales Representative
2 Fuller Andrew Vice President, Sales
3 Leverling Janet Sales Representative
4 Peacock Margaret Sales Representative
5 Buchanan Steven Sales Manager
6 Suyama Michael Sales Representative
7 King Robert Sales Representative
8 Callahan Laura Inside Sales Coordinator
9 Dodsworth Anne Sales Representative

(9 row(s) affected)

Example

Result

6 Module 3: Retrieving Data

Using the WHERE Clause to Specify Rows

employeeidemployeeidemployeeid lastnamelastnamelastname firstnamefirstnamefirstname titletitletitle

55 BuchananBuchanan StevenSteven Sales ManagerSales Manager

USE northwind
SELECT employeeid, lastname, firstname, title
FROM employees
WHERE employeeid = 5
GO

USE northwind
SELECT employeeid, lastname, firstname, title
FROM employees
WHERE employeeid = 5
GO

Using the WHERE clause, you can retrieve specific rows based on given search
conditions. The search conditions in the WHERE clause can contain an
unlimited list of predicates.

<search_condition> ::=
{ [NOT] <predicate> | (<search_condition>) }
[{AND | OR} [NOT] {<predicate> | (<search_condition>) }]
} [,...n]

The predicate placeholder lists the expressions that can be included in the
WHERE clause. The options that can be contained in a predicate include:

<predicate> ::=
{
expression { = | <> | > | >= | < | <= } expression
| string_expression [NOT] LIKE string_expression
[ESCAPE 'escape_character']
| expression [NOT] BETWEEN expression AND expression
| expression IS [NOT] NULL
| CONTAINS
({column | * }, '<contains_search_condition>')
| FREETEXT ({column | * }, 'freetext_string')
| expression [NOT] IN (subquery | expression [,...n])
| expression { = | <> | > | >= | < | <= }
{ALL | SOME | ANY} (subquery)
| EXISTS (subquery)
}

Slide Objective
To introduce how to
retrieve rows by using the
WHERE clause.

Lead-in
Using the WHERE clause,
you can retrieve specific
rows based on given
search conditions.

Delivery Tip
Compare the result set from
the previous slide to the one
in this slide.

Point out that using the
WHERE clause restricts
the number of rows that
are returned.

The syntax that is listed
here is found in the �Search
Condition (T-SQL)� topic in
SQL Server Books Online,
not in the �SELECT
statement� topic.

 Module 3: Retrieving Data 7

When you specify rows with the WHERE clause, consider the following facts
and guidelines:

! Place single quotation marks around all char, nchar, varchar, nvarchar,
text, datetime, and smalldatetime data.

! Use a WHERE clause to limit the number of rows that are returned when
you use the SELECT statement.

This example retrieves the employeeid, lastname, firstname, and title columns
from the employees table for the employee with an employeeid of 5.

USE northwind
SELECT employeeid, lastname, firstname, title
FROM employees
WHERE employeeid = 5
GO

employeeid lastname firstname title
5 Buchanan Steven Sales Manager

(1 row(s) affected)

Example

Result

8 Module 3: Retrieving Data

Filtering Data

! Using Comparison Operators

! Using String Comparisons

! Using Logical Operators

! Retrieving a Range of Values

! Using a List of Values as Search Criteria

! Retrieving Unknown Values

You sometimes want to limit the results that a query returns. You can limit the
results by specifying search conditions in a WHERE clause to filter data. There
is no limit to the number of search conditions that you can include in a
SELECT statement. The following table describes the type of filter and the
corresponding search condition that you can use to filter data.

Type of filter Search condition

Comparison operators =, >, <, >=, <=, and <>

String comparisons LIKE and NOT LIKE

Logical operators: combination of conditions AND, OR

Logical operator: negations NOT

Range of values BETWEEN and NOT BETWEEN

Lists of values IN and NOT IN

Unknown values IS NULL and IS NOT NULL

Slide Objective
To describe the different
types of search conditions to
use with the WHERE
clause.

Lead-in
You sometimes want to limit
the results that a query
returns.

 Module 3: Retrieving Data 9

Using Comparison Operators

USE northwind
SELECT lastname, city
FROM employees
WHERE country = 'USA�

GO

USE northwind
SELECT lastname, city
FROM employees
WHERE country = 'USA�

GO

lastnamelastnamelastname citycitycity

DavolioDavolio SeattleSeattle

FullerFuller TacomaTacoma

LeverlingLeverling KirklandKirkland

PeacockPeacock RedmondRedmond

CallahanCallahan SeattleSeattle

Example 1Example 1

Use comparison operators to compare the values in a table to a specified value
or expression. You also can use comparison operators to check for a condition.
Comparison operators compare columns or variables of compatible data types.
The comparison operators are listed in the following table.

Operator Description

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

Avoid the use of NOT in search conditions. They may slow data retrieval
because all rows in a table are evaluated.

Slide Objective
To show how to retrieve
subsets of rows by using
comparison operators.

Lead-in
Use comparison operators,
such as greater than (>),
less than (<), and equal to
(=) to select rows based
on comparisons.

Note

10 Module 3: Retrieving Data

This example retrieves the last name and city of employees who reside in the
United States from the employees table.

USE northwind
SELECT lastname, city
FROM employees
WHERE country = 'USA'
GO

lastname city
Davolio Seattle
Fuller Tacoma
Leverling Kirkland
Peacock Redmond
Callahan Seattle

(5 row(s) affected)

This example retrieves the orderid and customerid columns with order dates
that are older than 8/1/96 from the orders table.

USE northwind
SELECT orderid, customerid
FROM orders
WHERE orderdate < '8/1/96'
GO

orderid customerid
10248 VINET
10249 TOMSP
10250 HANAR
10251 VICTE
10252 SUPRD
10253 HANAR
. .
. .
. .
(22 row(s) affected)

Example 1

Result

Example 2

Result

 Module 3: Retrieving Data 11

Using String Comparisons

USE northwind
SELECT companyname
FROM customers
WHERE companyname LIKE '%Restaurant%�
GO

USE northwind
SELECT companyname
FROM customers
WHERE companyname LIKE '%Restaurant%�
GO

companynamecompanynamecompanyname

GROSELLA-RestauranteGROSELLA-Restaurante

Lonesome Pine RestaurantLonesome Pine Restaurant

Tortuga RestauranteTortuga Restaurante

You can use the LIKE search condition in combination with wildcard characters
to select rows by comparing character strings. When you use the LIKE search
condition, consider the following facts:

! All characters in the pattern string are significant, including leading and
trailing blank spaces.

! LIKE can be used only with data of the char, nchar, varchar, nvarchar, or
datetime data types.

Types of Wildcard Characters
Use the following four wildcard characters to form your character string
search criteria.

Wildcard Description

% Any string of zero or more characters

_ Any single character

[] Any single character within the specified range or set

[^] Any single character not within the specified range or set

Slide Objective
To show how to retrieve
rows by using the LIKE
search condition in
combination with
wildcard characters.

Lead-in
You can use the LIKE
search condition to select
rows by comparing
character strings.

12 Module 3: Retrieving Data

Examples of the Use of Wildcard Characters
The following table lists examples of the use of wildcards with the LIKE
search condition.

Expression Returns

LIKE 'BR%' Every name beginning with the letters BR
LIKE 'Br%' Every name beginning with the letters Br
LIKE '%een' Every name ending with the letters een
LIKE '%en%' Every name containing the letters en
LIKE '_en' Every three-letter name ending in the letters en
LIKE '[CK]%' Every name beginning with the letter C or K
LIKE '[S-V]ing' Every four-letter name ending in the letters ing and beginning

with any single letter from S to V
LIKE 'M[^c]%' Every name beginning with the letter M that does not have the

letter c as the second letter

This example retrieves companies from the customers table that have the word
restaurant in their company names.

USE northwind
SELECT companyname
FROM customers
WHERE companyname LIKE '%Restaurant%'
GO

companyname
GROSELLA-Restaurante
Lonesome Pine Restaurant
Tortuga Restaurante

(3 row(s) affected)

Example

Result

 Module 3: Retrieving Data 13

Using Logical Operators

USE northwind
SELECT productid, productname, supplierid, unitprice
FROM products
WHERE (productname LIKE 'T%' OR productid = 46)
AND (unitprice > 16.00)

GO

USE northwind
SELECT productid, productname, supplierid, unitprice
FROM products
WHERE (productname LIKE 'T%' OR productid = 46)
AND (unitprice > 16.00)

GO

productidproductidproductid productnameproductnameproductname supplieridsupplieridsupplierid unitpriceunitpriceunitprice

1414 TofuTofu 66 23.2523.25
2929 Thüringer RostbratwurstThüringer Rostbratwurst 1212 123.79123.79
6262 Tarte au sucreTarte au sucre 2929 49.349.3

Example 1Example 1

Use the logical operators AND, OR, and NOT to combine a series of
expressions and to refine query processing. The results of a query may
vary depending on the grouping of expressions and the order of the
search conditions.

When you use logical operators, consider the following guidelines:

! Use the AND operator to retrieve rows that meet all of the search criteria.
! Use the OR operator to retrieve rows that meet any of the search criteria.
! Use the NOT operator to negate the expression that follows the operator.

Using Parentheses
Use parentheses when you have two or more expressions as the search criteria.
Using parentheses allows you to:

! Group expressions.
! Change the order of evaluation.
! Make expressions more readable.

Order of Search Conditions
When you use more than one logical operator in a statement, consider the
following facts:

! Microsoft® SQL Server� 2000 evaluates the NOT operator first, followed
by the AND operator and then the OR operator.

! The precedence order is from left to right if all operators in an expression
are of the same level.

Slide Objective
To show how to combine
several expressions by
using logical operators.

Lead-in
You may want to limit the
number of rows that
SQL Server returns when
you execute a query. To do
so, use logical operators to
combine two or more
expressions.

14 Module 3: Retrieving Data

The following example retrieves all products with product names that begin
with the letter T or have a product identification number of 46, and that have a
price greater than $16.00.

USE northwind
SELECT productid, productname, supplierid, unitprice
 FROM products
 WHERE (productname LIKE 'T%' OR productid = 46)
 AND (unitprice > 16.00)
GO

productid productname supplierid unitprice
14 Tofu 6 23.25
29 Thüringer Rostbratwurst 12 123.79
62 Tarte au sucre 29 49.3

(3 row(s) affected)

The following example retrieves products with product names that begin with
the letter T or that have a product identification number of 46 and a price
greater than $16.00. Compare the query in Example 1 to that in Example 2.
Notice that because the expressions are grouped differently, the queries are
processed differently and return different result sets.

USE northwind
SELECT productid, productname, supplierid, unitprice
 FROM products
 WHERE (productname LIKE 'T%')
 OR (productid = 46 AND unitprice > 16.00)
GO

productid productname supplierid unitprice
54 Tourtière 25 7.45
62 Tarte au sucre 29 49.3
23 Tunnbröd 9 9
19 Teatime Chocolate Biscuits 8 9.2
14 Tofu 6 23.25
29 Thüringer Rostbratwurst 12 123.79

(6 row(s) affected)

Example 1

Delivery Tip
Compare the queries in
Example 1 and Example 2.
Point out that the
expressions are grouped
differently and, therefore,
produce different result sets.

Result

Example 2

Result

 Module 3: Retrieving Data 15

Retrieving a Range of Values

USE northwind
SELECT productname, unitprice
FROM products
WHERE unitprice BETWEEN 10 AND 20
GO

USE northwind
SELECT productname, unitprice
FROM products
WHERE unitprice BETWEEN 10 AND 20
GO

productnameproductnameproductname unitpriceunitpriceunitprice

ChaiChai 1818

ChangChang 1919

Aniseed SyrupAniseed Syrup 1010

Genen ShouyuGenen Shouyu 15.515.5

PavlovaPavlova 17.4517.45

Sir Rodney�s SconesSir Rodney�s Scones 1010

�� ��

Example 1Example 1

Use the BETWEEN search condition in the WHERE clause to retrieve rows
that are within a specified range of values. When you use the BETWEEN
search condition, consider the following facts and guidelines:

! SQL Server includes the end values in the result set.
! Use the BETWEEN search condition rather than an expression that includes

the AND operator with two comparison operators (> = x AND < = y).
However, to search for an exclusive range in which the returned rows do not
contain the end values, use an expression that includes the AND operator
with two comparison operators (> x AND < y).

! Use the NOT BETWEEN search condition to retrieve rows outside of
the specified range. Be aware that using NOT conditions may slow data
retrieval.

Slide Objective
To show how to retrieve
data by using the
BETWEEN search
condition.

Lead-in
To retrieve rows that are
between a range of values,
use the BETWEEN
search condition.

16 Module 3: Retrieving Data

This example retrieves the product name and unit price of all products with a
unit price between $10.00 and $20.00. Notice that the result set includes the
end values.

USE northwind
SELECT productname, unitprice
FROM products
WHERE unitprice BETWEEN 10 AND 20
GO

productname unitprice
Chai 18
Chang 19
Aniseed Syrup 10
Genen Shouyu 15.5
Pavlova 17.45
Sir Rodney's Scones 10
.
.
.
(29 row(s) affected)

This example retrieves the product name and unit price of all products with
a unit price between $10 and $20. Notice that the result set excludes the
end values.

USE northwind
SELECT productname, unitprice
FROM products
WHERE (unitprice > 10)
 AND (unitprice < 20)
GO

productname unitprice
Chai 18
Chang 19
Genen Shouyu 15.5
Pavlova 17.45
.
.
.
(25 row(s) affected)

Example 1

Result

Example 2

Result

 Module 3: Retrieving Data 17

Using a List of Values as Search Criteria

USE northwind
SELECT companyname, country
FROM suppliers
WHERE country IN ('Japan', 'Italy')

GO

USE northwind
SELECT companyname, country
FROM suppliers
WHERE country IN ('Japan', 'Italy')

GO

companynamecompanynamecompanyname countrycountrycountry

Tokyo TradersTokyo Traders JapanJapan

Mayumi�sMayumi�s JapanJapan

Formaggi Fortini s.r.l.Formaggi Fortini s.r.l. ItalyItaly

Pasta Buttini s.r.l.Pasta Buttini s.r.l. ItalyItaly

Example 1Example 1

Use the IN search condition in the WHERE clause to retrieve rows that match a
specified list of values. When you use the IN search condition, consider the
following guidelines:

! Use either the IN search condition or a series of comparison expressions that
are connected with an OR operator�SQL Server resolves them in the same
way, returning identical result sets.

! Do not include a null value in the search condition. A null value in the
search condition list evaluates to the expression, = NULL. This may return
unpredicted result sets.

! Use the NOT IN search condition to retrieve rows that are not in your
specified list of values. Be aware that using NOT conditions may slow data
retrieval.

This example produces a list of companies from the suppliers table that are
located in Japan or Italy.

USE northwind
SELECT companyname, country
FROM suppliers
WHERE country IN ('Japan', 'Italy')
GO

companyname country
Tokyo Traders Japan
Mayumi's Japan
Formaggi Fortini s.r.l. Italy
Pasta Buttini s.r.l. Italy

(4 row(s) affected)

Slide Objective
To show how to retrieve
rows by using the IN
search condition.

Lead-in
You may want to retrieve
rows that match a specified
list of values. To do so, use
the IN search condition in
the WHERE clause.

Delivery Tip
Point out that SQL Server
resolves Examples 1 and 2
in the same way, returning
the same result set.
Example 1 uses the IN
search operator, while
Example 2 uses two equal
to (=) operators that are
connected with the
OR operator.

Example 1

Result

18 Module 3: Retrieving Data

This example also produces a list of companies from the suppliers table that
are located in Japan or Italy. Notice that rather than using the IN search
condition, two expressions that use the comparison operator are joined by the
OR operator. The result set is identical to the result set in Example 1.

USE northwind
SELECT companyname, country
FROM suppliers
WHERE country = 'Japan' OR country = 'Italy'
GO

companyname country
Tokyo Traders Japan
Mayumi's Japan
Formaggi Fortini s.r.l. Italy
Pasta Buttini s.r.l. Italy

(4 row(s) affected)

Example 2

Result

 Module 3: Retrieving Data 19

Retrieving Unknown Values

USE northwind
SELECT companyname, fax
FROM suppliers
WHERE fax IS NULL
GO

USE northwind
SELECT companyname, fax
FROM suppliers
WHERE fax IS NULL
GO

companynamecompanynamecompanyname faxfaxfax

Exotic LiquidsExotic Liquids NULLNULL

New Orleans Cajun DelightsNew Orleans Cajun Delights NULLNULL

Tokyo TradersTokyo Traders NULLNULL

Cooperativa de Quesos �Las Cabras�Cooperativa de Quesos �Las Cabras� NULLNULL

�� ��

A column has a null value if no value is entered during data entry and no
default values are defined for that column. A null value is not the same as
entries with a zero (a numerical value) or a blank (a character value).

Use the IS NULL search condition to retrieve rows in which information is
missing from a specified column. When you retrieve rows that contain
unknown values, consider the following facts and guidelines:

! Null values fail all comparisons because they do not evaluate equally with
one another.

! You define whether columns allow null values in the CREATE TABLE
statement.

! Use the IS NOT NULL search condition to retrieve rows that have known
values in the specified columns.

This example retrieves a list of companies from the suppliers table for which
the fax column contains a null value.

USE northwind
SELECT companyname, fax
FROM suppliers
WHERE fax IS NULL
GO

companyname fax
Exotic Liquids NULL
New Orleans Cajun Delights NULL
Tokyo Traders NULL
Cooperativa de Quesos �Las Cabras� NULL
.
.
.
(16 row(s) affected)

Slide Objective
To show how to retrieve
rows that contain
unknown values.

Lead-in
You can retrieve rows that
contain unknown values by
specifying IS NULL in the
WHERE clause.

Example

Result

20 Module 3: Retrieving Data

Formatting Result Sets

! Sorting Data

! Eliminating Duplicate Rows

! Changing Column Names

! Using Literals

You can improve the readability of a result set by sorting the order in which the
result set is listed, eliminating any duplicate rows, changing column names to
column aliases, or using literals to replace result set values. These formatting
options do not change the data, only the presentation of it.

Slide Objective
To show how to
format result sets.

Lead-in
To make your result sets
more readable, you can sort
data, eliminate duplicate
rows, change column
names, or use literals.

 Module 3: Retrieving Data 21

Sorting Data

USE northwind
SELECT productid, productname, categoryid, unitprice
FROM products
ORDER BY categoryid, unitprice DESC

GO

USE northwind
SELECT productid, productname, categoryid, unitprice
FROM products
ORDER BY categoryid, unitprice DESC

GO

productidproductidproductid productnameproductnameproductname categoryidcategoryidcategoryid unitpriceunitpriceunitprice

3838 Cote de BlayeCote de Blaye 11 263.5000263.5000
4343 Ipoh CoffeeIpoh Coffee 11 46.000046.0000
22 ChangChang 11 19.000019.0000
�� �� �� ��
6363 Vegie-spreadVegie-spread 22 43.900043.9000
88 Northwoods Cranberry SauceNorthwoods Cranberry Sauce 22 40.000040.0000
6161 Sirop d'érableSirop d'érable 22 28.500028.5000
�� �� �� ��

Example 1Example 1

Use the ORDER BY clause to sort rows in the result set in ascending (ASC) or
descending (DESC) order. When you use the ORDER BY clause, consider the
following facts and guidelines:

! The sort order is specified when SQL Server is installed. Execute the
sp_helpsort system stored procedure to determine the sort order that was
defined for the database during installation.

! SQL Server does not guarantee an order in the result set unless the order is
specified with an ORDER BY clause.

! SQL Server sorts in ascending order by default.
! Columns that are included in the ORDER BY clause do not have to appear

in the select list.
! Columns that are specified in the ORDER BY clause cannot exceed

8060 bytes.
! You can sort by column names, computed values, or expressions.
! You can refer to columns by their positions in the select list in the ORDER

BY clause. The columns are evaluated in the same way and return the same
result set.

! Do not use an ORDER BY clause on text or image columns.

Using appropriate indexes can make ORDER BY sorts more efficient.

Slide Objective
To show how to use the
ORDER BY clause.

Lead-in
After deciding which
columns and rows to
retrieve, you can sort the
order of the result set by
using the ORDER BY
clause.

Delivery Tip
Compare the specified
columns in the ORDER BY
clauses of Example 1 and
Example 2. In Example 2,
the specified columns in the
ORDER BY clause are
replaced with their
respective positions in the
select list. The result sets of
Example 1 and Example 2
are identical.

Tip

22 Module 3: Retrieving Data

This example retrieves the product identification, product name, category, and
unit price of each product from the products table. By default, the result set is
ordered by category in ascending order, and within each category the rows are
ordered by unit price in descending order.

USE northwind
SELECT productid, productname, categoryid, unitprice
 FROM products
 ORDER BY categoryid, unitprice DESC
GO

productid productname categoryid unitprice
38 Côte de Blaye 1 263.5000
43 Ipoh Coffee 1 46.0000
2 Chang 1 19.0000
1 Chai 1 18.0000
35 Steeleye Stout 1 18.0000
39 Chartreuse verte 1 18.0000
76 Lakkalikööri 1 18.0000
70 Outback Lager 1 15.0000
34 Sasquatch Ale 1 14.0000
67 Laughing Lumberjack Lager 1 14.0000
75 Rhönbräu Klosterbier 1 7.7500
24 Guaraná Fantástica 1 4.5000
63 Vegie-spread 2 43.9000
8 Northwoods Cranberry Sauce 2 40.0000
61 Sirop d'érable 2 28.5000
6 Grandma's Boysenberry Spread 2 25.0000
.
.
.
(77 row(s) affected)

This example is similar to Example 1. The only difference is that the numbers
that follow the ORDER BY clause indicate the position of columns in the select
list. SQL Server resolves both queries in the same way, returning the same
result set.

USE northwind
SELECT productid, productname, categoryid, unitprice
 FROM products
 ORDER BY 3, 4 DESC
GO

Example 1

Result

Example 2

 Module 3: Retrieving Data 23

Eliminating Duplicate Rows

USE northwind
SELECT DISTINCT country
FROM suppliers
ORDER BY country

GO

USE northwind
SELECT DISTINCT country
FROM suppliers
ORDER BY country

GO

countrycountrycountry
AustraliaAustralia
BrazilBrazil
CanadaCanada
DenmarkDenmark
FinlandFinland
FranceFrance
GermanyGermany
ItalyItaly
JapanJapan
NetherlandsNetherlands
NorwayNorway
SingaporeSingapore
SpainSpain
SwedenSweden
UKUK
USAUSA

Example 1Example 1

If you require a list of unique values, use the DISTINCT clause to eliminate
duplicate rows in the result set. When you use the DISTINCT clause, consider
the following facts:

! All rows that meet the search condition that is specified in the SELECT
statement are returned in the result set unless you have specified the
DISTINCT clause.

! The combination of values in the select list determines distinctiveness.
! Rows that contain any unique combination of values are retrieved and

returned in the result set.
! The DISTINCT clause sorts the result set in random order unless you have

included an ORDER BY clause.
! If you specify a DISTINCT clause, the ORDER BY clause must include the

columns listed in the result set.

This example retrieves all rows from the suppliers table but displays each
country name only once.

USE northwind
SELECT DISTINCT country
 FROM suppliers
 ORDER BY country
GO

Slide Objective
To show how to eliminate
duplicate rows by using the
DISTINCT search condition.

Lead-in
To eliminate duplicate rows
from the result set, specify
the DISTINCT clause in the
SELECT statement.

Delivery Tip
Execute a query similar to
that in the slide without
using the DISTINCT clause.

Have students compare
the number of rows that
are returned.

Example 1

24 Module 3: Retrieving Data

country
Australia
Brazil
Canada
Denmark
Finland
France
Germany
Italy
Japan
Netherlands
Norway
Singapore
Spain
Sweden
UK
USA

(16 row(s) affected)

This example does not specify the DISTINCT clause. All rows from the
suppliers table are retrieved and listed in descending order. Notice that each
instance of a country is displayed.

USE northwind
SELECT country
 FROM suppliers
 ORDER BY country
GO

country
Australia
Australia
Brazil
Canada
Canada
Denmark
Finland
France
France
France
Germany
Germany
Germany
Italy
Italy
Japan
Japan
Netherlands
Norway
Singapore
Spain
.
.
.
(29 row(s) affected)

Result

Example 2

Result

 Module 3: Retrieving Data 25

Changing Column Names

USE northwind
SELECT firstname AS First, lastname AS Last

,employeeid AS 'Employee ID:'
FROM employees
GO

USE northwind
SELECT firstname AS First, lastname AS Last

,employeeid AS 'Employee ID:'
FROM employees
GO

FirstFirstFirst LastLastLast Employee ID:Employee ID:Employee ID:

NancyNancy DavolioDavolio 11
AndrewAndrew FullerFuller 22
JanetJanet LeverlingLeverling 33
MargaretMargaret PeacockPeacock 44
StevenSteven BuchananBuchanan 55
MichaelMichael SuyamaSuyama 66
RobertRobert KingKing 77
LauraLaura CallahanCallahan 88
AnneAnne DodsworthDodsworth 99

Create more readable column names by using the AS keyword to replace
default column names with aliases in the select list.

SELECT column_name | expression AS column_heading
FROM table_name

When you change column names, consider the following facts and guidelines:

! By default, the result set displays the column names that are designated in
the CREATE TABLE statement.

! Include single quotation marks for column names that contain blank spaces
or that do not conform to SQL Server object naming conventions.

! You can create column aliases for computed columns that contain functions
or string literals.

! You can include up to 128 characters in a column alias.

Slide Objective
To show how you can
change column names for
readability.

Lead-in
Use aliases to change
column names and to
make your result sets
more readable.

Partial Syntax

26 Module 3: Retrieving Data

This example retrieves a list of employees from the employees table. The
specified column aliases replace the firstname, lastname, and employeeid
columns. Notice that the Employee ID: alias is enclosed in single quotation
marks because it contains a blank space.

USE northwind
SELECT firstname AS First, lastname AS Last
 ,employeeid AS 'Employee ID:'
FROM employees
GO

First Last Employee ID:
Nancy Davolio 1
Andrew Fuller 2
Janet Leverling 3
Margaret Peacock 4
Steven Buchanan 5
Michael Suyama 6
Robert King 7
Laura Callahan 8
Anne Dodsworth 9

(9 row(s) affected)

Example

Result

 Module 3: Retrieving Data 27

Using Literals

USE northwind
SELECT firstname, lastname,

'Identification number:', employeeid
FROM employees
GO

USE northwind
SELECT firstname, lastname,

'Identification number:', employeeid
FROM employees
GO

FirstFirstFirst LastLastLast Employee ID:Employee ID:Employee ID:

NancyNancy DavolioDavolio Identification Number: 1Identification Number: 1
AndrewAndrew FullerFuller
JanetJanet LeverlingLeverling
MargaretMargaret PeacockPeacock
StevenSteven BuchananBuchanan
MichaelMichael SuyamaSuyama
RobertRobert KingKing
LauraLaura CallahanCallahan
AnneAnne DodsworthDodsworth

Identification Number: 2Identification Number: 2
Identification Number: 3Identification Number: 3
Identification Number: 4Identification Number: 4
Identification Number: 5Identification Number: 5
Identification Number: 6Identification Number: 6
Identification Number: 7Identification Number: 7
Identification Number: 8Identification Number: 8
Identification Number: 9Identification Number: 9

Literals are letters, numerals, or symbols that are used as specific values in
a result set. You can include literals in the select list to make result sets
more readable.

SELECT column_name | 'string literal' [, column_name | 'string_literal'...]
FROM table_name

This example retrieves a list of employees from the employees table. Notice
that the Identification number: character string precedes the employeeid
column in the result set.

USE northwind
SELECT firstname, lastname
 ,'Identification number:', employeeid
FROM employees
GO

firstname lastname employeeid
Nancy Davolio Identification number: 1
Andrew Fuller Identification number: 2
Janet Leverling Identification number: 3
Margaret Peacock Identification number: 4
Steven Buchanan Identification number: 5
Michael Suyama Identification number: 6
Robert King Identification number: 7
Laura Callahan Identification number: 8
Anne Dodsworth Identification number: 9

(9 row(s) affected)

Slide Objective
To show how using literals
in the SELECT statement
makes result sets
more readable.

Lead-in
You can make result set
values more readable by
using literals.

Partial Syntax

Example

Result

28 Module 3: Retrieving Data

How Queries Are Processed
Uncached Queries (Ad Hoc)

Cached Queries

ExecuteExecuteCompileCompileOptimizeOptimizeResolveResolveParseParse

First Execution

ExecuteExecuteCompileCompileOptimizeOptimizeResolveResolveParseParse

Subsequent Execution ExecuteExecuteProcedure
Cache

Procedure
Cache

All queries follow the same process before they are executed. SQL Server can
store some of the processing for subsequent execution of the same query.

Uncached Queries (Ad Hoc)
All queries are parsed, resolved, optimized, and compiled before they
are executed.

Process Description

Parse Checks syntax for accuracy.

Resolve Validates that the names of the objects are present; determines object
ownership permission.

Optimize Determines the indexes to use and the join strategies.

Compile Translates the query into an executable form.

Execute Submits compiled requests for processing.

Cached Queries
To improve performance, SQL Server can save compiled query plans for reuse.
Query plans are optimized instructions on how to process queries and access the
data. The query plans are stored in the procedure cache, a temporary storage
location for the currently executing version of a specific query.

Slide Objective
To describe how queries
are processed.

Lead-in
All queries follow the
same process before
they are executed.

Views are reduced
(resolved) to a single
statement. The statement
referencing the view is
merged with the view
definition, creating one
SELECT statement.

 Module 3: Retrieving Data 29

How Queries Are Cached Automatically

! Ad Hoc Batches

! Auto-Parameterization

USE northwind
SELECT * FROM products WHERE unitprice = $12.5
SELECT * FROM products WHERE unitprice = 12.5
SELECT * FROM products WHERE unitprice = $12.5
GO

USE northwind
SELECT * FROM products WHERE unitprice = $12.5
SELECT * FROM products WHERE unitprice = 12.5
SELECT * FROM products WHERE unitprice = $12.5
GO

USE library
SELECT * FROM member WHERE member_no = 7890
SELECT * FROM member WHERE member_no = 1234
SELECT * FROM member WHERE member_no = 7890
GO

USE library
SELECT * FROM member WHERE member_no = 7890
SELECT * FROM member WHERE member_no = 1234
SELECT * FROM member WHERE member_no = 7890
GO

Cached queries are saved in an area of memory called the procedure cache.
Query definitions are cached automatically under two conditions�ad hoc
batches and auto-parameterization. Automatic caching cannot be specified
directly.

Ad Hoc Batches
SQL Server caches the plans from ad hoc batches. If a subsequent batch
matches the text of the first batch, SQL Server uses the cached plan. This plan
is limited to exact textual matches.

The same query plan would be used for the first and third statements. The
second statement would use a different query plan.

USE northwind
SELECT * FROM products WHERE unitprice = $12.5
SELECT * FROM products WHERE unitprice = 12.5
SELECT * FROM products WHERE unitprice = $12.5
GO

Auto-Parameterization
SQL Server attempts to determine the constants that are actually parameters and
makes them into parameters automatically. If successful, later queries that
follow the same template can use the same plan.

Slide Objective
To describe how
SQL Server caches queries
automatically.

Lead-in
Queries are cached
automatically under two
conditions.

Example 1

Delivery Tip
For an exact textual match,
both the data and the data
type must match. In this
example, �$12.5� is passed
as a monetary data type,
while �12.5" is passed as a
floating point data type.

30 Module 3: Retrieving Data

Auto-parameterization uses the same query plan for all three of the following
statements.

USE library
SELECT * FROM member WHERE member_no = 7890
SELECT * FROM member WHERE member_no = 1234
SELECT * FROM member WHERE member_no = 7890
GO

Example 2

 Module 3: Retrieving Data 31

Performance Considerations

! Not Search Conditions May Slow Data Retrieval

! LIKE Search Conditions Slow Data Retrieval

! Exact Matches or Ranges May Speed Data Retrieval

! ORDER BY Clause May Slow Data Retrieval

You should consider some of the issues that affect the performance of
SQL Server when you perform basic queries:

! Use positive rather than negative search conditions. Negative search
conditions�such as NOT BETWEEN, NOT IN, and IS NOT NULL�may
slow data retrieval because all rows are evaluated.

! Avoid using the LIKE search condition if you can write a more
specific query. Data retrieval may be slower when you use the LIKE
search condition.

! Use exact matches or ranges as search conditions when possible. Again,
specific queries perform better.

! Data retrieval may decrease if you use the ORDER BY clause because
SQL Server must determine and sort the result set before it returns the first
row.

Slide Objective
To discuss the performance
considerations for
performing basic queries.

Lead-in
Consider some of the issues
that affect the performance
of SQL Server when you
perform basic queries.

32 Module 3: Retrieving Data

Recommended Practices

Use the DISTINCT Clause to Eliminate Duplicate Rows
in the Result Set
Use the DISTINCT Clause to Eliminate Duplicate Rows
in the Result Set

Improve the Readability of a Result Set by Changing
Column Names or by Using Literals
Improve the Readability of a Result Set by Changing
Column Names or by Using Literals

Place a Comma Before the First Column Name
in a Muli-Line Column List
Place a Comma Before the First Column Name
in a Muli-Line Column List

The following recommended practices should help you perform basic queries:

! Use the DISTINCT clause to eliminate duplicate rows in result sets. All
rows that meet the search conditions that are specified in the SELECT
statement are returned in the result set unless you use the DISTINCT clause.

! Improve the readability of result sets by changing column names to column
aliases or using literals to replace result set values. These formatting options
change the presentation of the data, not the data itself.

! Place a comma before the first column name in a multiline column list. This
style allows you to comment out or cut and paste single lines easily. For
example, use the following style:
USE northwind
SELECT firstname AS First
 ,lastname AS Last
 ,employeeid AS 'Employee ID:'
FROM employees
GO

Additional information on the following topics is available in SQL Server
Books Online.

Topic Search on

Using character strings �pattern matching�

Sorting result sets �sort order�

Slide Objective
To list the recommended
practices for performing
basic queries.

Lead-in
The following recommended
practices should help you
perform basic queries.

 Module 3: Retrieving Data 33

Lab A: Retrieving Data and Manipulating Result Sets

Objectives
After completing this lab, you will be able to:

! Perform queries on databases by using the SELECT statement.
! Sort the data and eliminate duplicate values in a result set.
! Format the result set by using column aliases and literals.

Prerequisites
Before working on this lab, you must have:

! Script files for this lab, which are located in C:\Moc\2071A\Labfiles\L03.
! Answer files for this lab, which are located in

C:\Moc\2071A\Labfiles\L03\Answers.
! The library database installed.

Lab Setup
None.

For More Information
If you require help in executing files, search Microsoft® SQL Server� 2000
Query Analyzer Help for �Execute a query�.

Other resources that you can use include:

! The library database schema.
! SQL Server Books Online.

Slide Objective
To introduce the lab.

Lead-in
In this lab, you will query
SQL Server databases by
using the SELECT
statement and then format
the result sets.

Explain the lab objectives.

34 Module 3: Retrieving Data

Scenario
The organization of the classroom is meant to simulate a worldwide trading
firm named Northwind Traders. Its fictitious domain name is nwtraders.msft.
The primary DNS server for nwtraders.msft is the instructor computer, which
has an Internet Protocol (IP) address of 192.168.x.200 (where x is the assigned
classroom number). The name of the instructor computer is London.

The following table provides the user name, computer name, and the IP address
for each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 45 minutes

 Module 3: Retrieving Data 35

Exercise 1
Retrieving Data

In this exercise, you will select specific data from tables in the library database.
C:\Moc\2071A\Labfiles\L03\Answers contains completed scripts for this
exercise.

! To select specific columns
In this procedure, you will write and execute a SELECT statement that retrieves
the title and title_no columns from the title table.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password Password

2. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Microsoft Windows® Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Windows 2000 local
group, Administrators. All members of this group are automatically mapped
to the SQL Server sysadmin role.

3. In the DB list, click library.
4. Write and execute a SELECT statement that retrieves the title and title_no

columns from the title table. Answer_Columns.sql is a completed script for
this step.
USE library
SELECT title, title_no
 FROM title
GO

5. Save the SELECT statement as ANSI text with an .sql file name extension.
6. Save the result set with an .rpt file name extension.

Your result should look similar to the following partial result set.

Title title_no
Last of the Mohicans 1
The Village Watch-Tower 2
Self Help; Conduct & Perseverance 3
Songs of a Savoyard 4
.
.
.
.
(50 row(s) affected)

Result

36 Module 3: Retrieving Data

! To select rows by using a comparison operator
In this procedure, you will write and execute a SELECT statement that retrieves
data from specific rows by using a WHERE clause with a comparison operator.
Answer_Comparison.sql is a completed script for this procedure.
• Write and execute a SELECT statement that retrieves the title of title

number 10 from the title table.
You can execute the sp_help system stored procedure for the title table to
find the correct column names.
USE library
SELECT title
 FROM title
 WHERE title_no = 10
GO

Your result should look similar to the following result set.

title
The Night-Born
(1 row(s) affected)

! To select rows by using a range
In this procedure, you will write and execute a SELECT statement that retrieves
data from specific rows by using a WHERE clause with a range.
Answer_Range.sql is a completed script for this procedure.
• Write and execute a SELECT statement that retrieves the member numbers

and assessed fines from the loanhist table for all members who have had
fines between $8.00 and $9.00.
You can execute the sp_help system stored procedure for the loanhist table
to find the correct column names.
USE library
SELECT member_no, fine_assessed
 FROM loanhist
 WHERE (fine_assessed BETWEEN $8.00 AND $9.00)
GO

Your result should look similar to the following partial result set. The number
of rows returned may vary.

member_no fine_assessed
7399 9
7399 9
7399 9
7399 9
. .
. .
. .
(312 row(s) affected)

Result

Result

 Module 3: Retrieving Data 37

! To select rows by using a list of values
In this procedure, you will write and execute a SELECT statement that retrieves
data from specific rows by using a WHERE clause that contains a list of values.
Answer_InList.sql is a completed script for this procedure.
• Write and execute a SELECT statement that retrieves the title number and

author from the title table for all books authored by Charles Dickens or
Jane Austen. Use the IN operator as part of the SELECT statement.
USE library
SELECT author, title_no
 FROM title
 WHERE author IN ('Charles Dickens','Jane Austen')
GO

Your result should look similar to the following result set.

author title_no
Jane Austen 27
Charles Dickens 30
Charles Dickens 31
Jane Austen 41
Jane Austen 43

(5 row(s) affected)

! To select rows by using a character string comparison
In this procedure, you will write and execute a SELECT statement that
retrieves data from specific rows that contain a character string similar to
another character string. Answer_String.sql is a completed script for this
procedure.
• Write and execute a SELECT statement that retrieves the title number and

title from the title table for all rows that contain the character string
�adventures� in the title. Use the LIKE operator in your query.
USE library
SELECT title_no, title
 FROM title
 WHERE title LIKE ('%Adventures%')
GO

Your result should look similar to the following result set.

title_no title
26 The Adventures of Robin Hood
44 Adventures of Huckleberry Finn

(2 row(s) affected)

Result

Result

38 Module 3: Retrieving Data

! To select rows that contain null values
In this procedure, you will write and execute a SELECT statement that retrieves
data from specific rows by using a WHERE clause that searches for null values.
Answer_IsNull.sql is a completed script for this procedure.
• Write and execute a SELECT statement that retrieves the member number,

assessed fine, and fine that is paid for loans that have unpaid fines from the
loanhist table. Retrieve rows that have fines entered in the fine_assessed
column and that have null values for the fine_paid column.
USE library
SELECT member_no, fine_assessed, fine_paid
 FROM loanhist
 WHERE (fine_assessed IS NOT NULL) AND (fine_paid IS NULL)
GO

Your result should look similar to the following result set. The number of rows
returned may vary.

member_no fine_assessed fine_paid
4645 5.0000 NULL
4240 .0000 NULL
3821 1.0000 NULL
3389 9.0000 NULL
.
.
.
(1118 row(s) affected)

Result

 Module 3: Retrieving Data 39

Exercise 2
Manipulating Result Sets

In this exercise, you will write and execute queries that change the way that the
data is displayed in the result set. You will use the DISTINCT keyword to
eliminate duplicate rows and the ORDER BY keyword to sort the result set.
Additionally, you will change the column names and presentation of data in
result sets by using aliases and literals.

C:\Moc\2071A\Labfiles\L03\Answers contains completed scripts for this
exercise.

! To eliminate duplicate rows from the result set
In this procedure, you will write and execute a query on the adult table that
returns only unique combinations of cities and states in your result set.
Answer_Duplicates.sql is a completed script for this procedure.
• Write and execute a query that retrieves all of the unique pairs of cities and

states from the adult table. You should receive only one row in the result set
for each city and state pair.
USE library
SELECT DISTINCT city, state
 FROM adult
GO

Your result should look similar to the following partial result set.

City state
Salt Lake City UT
Atlanta GA
Tallahassee FL
Washington DC
.
.
.
(23 row(s) affected)
! To sort data
In this procedure, you will write and execute a query that retrieves the titles
from the title table and lists them in alphabetical order. Answer_Sort.sql is a
completed script for this procedure.
• Write and execute a query that retrieves a sorted list of all titles from the

title table.
USE library
SELECT title
 FROM title
 ORDER BY title
GO

Result

40 Module 3: Retrieving Data

Your result should look similar to the following partial result set.

Title
A Tale of Two Cities
Adventures of Huckleberry Finn
Ballads of a Bohemian
Candide
.
.
.
(50 row(s) affected)
! To compute data, return computed values, and use a column alias
In this exercise, you will write and execute a query that returns the
member_no, isbn, and fine_assessed columns from the loanhist table of all
archived loans with a non-null value in the fine_assessed column. Then, you
will create a new column in the result set that contains the computed value of
the fine_assessed column multiplied by two, and you will use a column alias
named double fine.
Answer_Computed.sql is a completed script for this procedure.
1. Write and execute a query that retrieves the member_no, isbn, and

fine_assessed columns from the loanhist table of all archived loans a non-
null value in the fine_assessed column.

2. Create a computed column that contains the value of the fine_assessed
column multiplied by two.

3. Use the column alias �double fine� for the computed column. Enclose the
column alias within single quotation marks because it does not conform to
the SQL Server object naming conventions.
USE library
SELECT member_no, isbn, fine_assessed
 ,(fine_assessed * 2) AS 'double fine'
 FROM loanhist
 WHERE (fine_assessed IS NOT NULL)
GO

Your result should look similar to the following result set. The number of rows
returned may vary.

member_no isbn fine_assessed double fine
7399 101 9.0000 18.0000
6709 102 9.0000 18.0000
.
.
.
(1300 row(s) affected)

Result

Result

 Module 3: Retrieving Data 41

! To format the result set of a column by using string functions
In this procedure, you will write and execute a query that lists all members in
the member table with the last name Anderson. Format the result set in
lowercase characters and display a single column of e-mail names that consists
of the member�s first name, middle initial, and first two letters of the last name.
Answer_Formatting.sql is a completed script for this procedure.
1. Write and execute a query that generates a single column that contains the

firstname, middleinitial, and lastname columns from the member table
for all members with the last name Anderson.

2. Use the column alias email_name.
3. Modify the query to return a list of e-mail names with the member�s first

name, middle initial, and first two letters of the last name in lowercase
characters. Use the SUBSTRING function to retrieve part of a string
column. Use the LOWER function to return the result in lowercase
characters. Use the addition (+) operator to concatenate the
character strings.
USE library
SELECT LOWER(firstname + middleinitial
 +SUBSTRING(lastname, 1, 2)) AS email_name
 FROM member
 WHERE lastname = �anderson�
GO

Your result should look similar to the following partial result set. The number
of rows returned may vary.

email_name
Amyaan
Angelaaan
Brianaan
Clairaan
.
.
.
(390 row(s) affected)

Result

42 Module 3: Retrieving Data

! To format the result set of a column by using literals
In this procedure, you will format the result set of a query for readability by
using the CONVERT function and string literals. Answer_Literals.sql is a
completed script for this procedure.
1. Write and execute a query that retrieves the title and title_no columns

from the title table. Your result set should be a single column with the
following format:
The title is: Poems, title number 7

This query returns a single column based on an expression that concatenates
four elements:

• The title is: string constant

• title.title column

• title number string constant

• title.title_no column
2. Use the CONVERT function to format the title.title_no column and the

addition (+) operator to concatenate the character strings.
USE library
SELECT �The title is: � + title + �, title number � +
 CONVERT(char(6),title_no)
FROM title
GO

Your result should look similar to the following partial result set.

The title is: Last of the Mohicans, title number 1
The title is: The Village Watch-Tower, title number 2
The title is: Self Help; Conduct & Perseverance, title number 3
The title is: Songs of a Savoyard, title number 4
The title is: Fall of the House of Usher, title number 5
.
.
.
(50 row(s) affected)

Result

 Module 3: Retrieving Data 43

Exercise 3
Using System Functions

In this exercise, you will gather system information by using system functions.
C:\Moc\2071A\Labfiles\L03\Answers contains completed scripts for this
exercise.

! To determine the server process ID
In this procedure, you will observe current server activity and determine the
activity that your session is generating. Answer_SPID.sql is a completed script
for this procedure.
1. Execute the sp_who system stored procedure.

SQL Server displays all activity that is occurring on the server.
2. To determine which activity is yours, execute the following statement:

SELECT @@spid
GO

The server process ID (spid) number of your process is returned in
the results.

3. Execute the sp_who system stored procedure again, using your spid number
as an additional parameter. (In the following statement, n represents your
spid number.)
EXEC sp_who n
GO

The activity related to your spid is displayed.

! To retrieve environmental information
In this procedure, you will determine which version of SQL Server that you are
running and you will retrieve connection, database context, and server
information. You will perform these tasks by using system functions.
Answer_Environment.sql is a completed script for this procedure.
1. Execute the following statement:

SELECT @@version
GO

2. Execute the following statement:

SELECT USER_NAME(), DB_NAME(), @@servername
GO

44 Module 3: Retrieving Data

! To retrieve metadata
In this procedure, you will execute several queries to return the metadata from
specific database objects by using information schema views. Remember that
information_schema is a predefined database user that is the owner of the
information schema views. Answer_Metadata.sql is a completed script for this
procedure.
1. Execute the following statement to return a list of all the user-defined tables

in a database:
USE library
SELECT *
 FROM information_schema.tables
 WHERE table_type = 'base table'
GO

2. Execute the following statement to return the primary key and foreign key

columns for the orders table:
SELECT *
 FROM information_schema.key_column_usage
 WHERE table_name = 'orders'
GO

What column has a primary key defined on it?
orderid
__

__

 Module 3: Retrieving Data 45

Review

! Retrieving Data by Using the SELECT Statement

! Filtering Data

! Formatting Result Sets

! How Queries Are Processed

! Performance Considerations

You are the database administrator for a health care plan. The physicians table
was created with the following statement:

CREATE TABLE dbo.physicians (
physician_no int IDENTITY (100, 2) NOT NULL ,
f_name varchar (25) NOT NULL ,
l_name varchar (25) NOT NULL ,
street varchar (50) NULL ,
city varchar (255) NULL ,
state varchar (255) NULL ,
postal_code varchar (7) NULL ,
co_pay money NOT NULL CONSTRAINT phys_co_pay DEFAULT (10)
)

1. How would you retrieve information about physicians who have practices in
the states of New York (NY), Washington (WA), Virginia (VA), or
California (CA)?
Write a SELECT statement with a WHERE clause of the
following type:

WHERE state = 'NY' OR state = 'WA' OR state = �

Or, use a WHERE clause that includes the IN keyword:

WHERE state in ('NY', 'WA', 'VA', 'CA')

__

__

Slide Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

Use this scenario to answer
these questions and review
module topics.

Ask students whether
they need clarification on
any topic.

46 Module 3: Retrieving Data

2. How can you generate a list of states that does not include any duplicate
states in the result set?
Use the DISTINCT keyword as part of the SELECT statement.
__

__

3. How can you generate a column in your result set that lists the co_pay value
plus a service charge of $5.00 for each physician, and then alias this column
as Amt_Due?
Use a computed column in the select list. Use an alias for the column
name �Amt_Due� = (co_pay + 5)
__

__

