

Contents

Overview 1

SQL Query Analyzer 2

Using the Object Browser Tool in
SQL Query Analyzer 3

Using Templates in SQL Query Analyzer 5

Using the osql Utility 6

Executing Transact-SQL Statements 8

Recommended Practices 14

Lab A: Creating and Executing
Transact-SQL Scripts 15

Review 21

Module 2:
Using Transact-SQL
Querying Tools

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2000 Microsoft Corporation. All rights reserved.

Microsoft, BackOffice, MS-DOS, PowerPoint, Visual Studio, Windows, Windows Media, and
Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the
U.S.A. and/or other countries.

The names of companies, products, people, characters, and/or data mentioned herein are fictitious
and are in no way intended to represent any real individual, company, product, or event, unless
otherwise noted.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Project Lead: Cheryl Hoople
Instructional Designer: Cheryl Hoople
Technical Lead: LeRoy Tuttle
Program Manager: LeRoy Tuttle
Graphic Artist: Kimberly Jackson (Independent Contractor)
Editing Manager: Lynette Skinner
Editor: Wendy Cleary
Editorial Contributor: Elizabeth Reese
Copy Editor: Bill Jones (S&T Consulting)
Production Manager: Miracle Davis
Production Coordinator: Jenny Boe
Production Tools Specialist: Julie Challenger
Production Support: Lori Walker (S&T Consulting)
Test Manager: Sid Benavente
Courseware Testing: Testing Testing 123
Classroom Automation: Lorrin Smith-Bates
Creative Director, Media/Sim Services: David Mahlmann
Web Development Lead: Lisa Pease
CD Build Specialist: Julie Challenger
Online Support: David Myka (S&T Consulting)
Localization Manager: Rick Terek
Operations Coordinator: John Williams
Manufacturing Support: Laura King; Kathy Hershey
Lead Product Manager, Release Management: Bo Galford
Lead Product Manager: Margo Crandall
Group Manager, Courseware Infrastructure: David Bramble
Group Product Manager, Content Development: Dean Murray
General Manager: Robert Stewart

 Module 2: Using Transact-SQL Querying Tools iii

Instructor Notes
Microsoft® SQL Server� 2000 provides several querying tools that you can use
to execute Transact-SQL scripts. This module describes how to use SQL Query
Analyzer and the osql command-line utility and how to execute Transact-SQL
statements in various ways.

At the end of this module, you will be able to:

! Describe the basic functions of SQL Query Analyzer.
! Describe how to use the Object Browser tool in SQL Query Analyzer.
! Describe how to use the templates in SQL Query Analyzer.
! Describe how to use the osql command-line utility.
! Execute Transact-SQL statements in various ways.

Materials and Preparation
This section provides you with the required materials and preparation tasks that
are needed to teach this module.

Required Materials
To teach this module, you need the following materials:

! Microsoft PowerPoint® file 2071A_02.ppt.
! The C:\MOC\2071A\Demo\Ex_02.sql example file, which contains all of

the example scripts from the module, unless otherwise noted in the module.

Preparation Tasks
To prepare for this module, you should:

! Read all of the materials for this module.
! Complete the lab.

Presentation:
30 Minutes

Lab:
30 Minutes

iv Module 2: Using Transact-SQL Querying Tools

Module Strategy
Use the following strategy to present this module:

! SQL Server Query Analyzer
Introduce SQL Query Analyzer. Demonstrate the basic functions of SQL
Query Analyzer, pointing out that students can execute part or all of a query,
execute it into a grid, and create an execution plan. Point out that
SQL Query Analyzer automatically color-codes the syntax, that students can
have multiple query windows, and that students can execute parts of the
script.

! Using the Object Browser Tool in SQL Query Analyzer
Emphasize that students can use the Object Browser tool in SQL Query
Analyzer to locate and script objects and to eliminate many typing and
syntax errors.

! Using Templates in SQL Query Analyzer
Describe the purpose and use of the templates that SQL Query Analyzer
provides. Briefly demonstrate how to gain access to these templates and
show how the graphical interface works. Review the template parameter
definitions.

! Using the osql Command-line Utility
Describe when and how to use the osql command-line utility. If students ask
about the isql utility, point out that it is not included in this course because it
uses DB-Library to communicate with the server and does not support
Unicode data types.

! Executing Transact-SQL Statements
Familiarize students with the various ways that they can execute
Transact-SQL statements. These include dynamically constructing
statements, submitting batches, and running scripts. Where possible,
demonstrate these by using SQL Query Analyzer.

 Module 2: Using Transact-SQL Querying Tools v

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing
Microsoft Official Curriculum (MOC) courseware.

The lab in this module is dependent on the classroom configuration
that is specified in the Customization Information section at the end of the
Classroom Setup Guide for course 2071A, Querying Microsoft SQL Server
2000 with Transact-SQL.

Lab Setup
There are no lab setup requirements that affect replication or customization.

Lab Results
There are no configuration changes on student computers that affect replication
or customization.

Important

 Module 2: Using Transact-SQL Querying Tools 1

Overview

! SQL Query Analyzer

! Using the Object Browser Tool in SQL Query Analyzer

! Using Templates in SQL Query Analyzer

! Using the osql Utility

! Executing Transact-SQL Statements

Microsoft® SQL Server� 2000 provides several querying tools that you can use
to execute Transact-SQL scripts. This module describes how to use SQL Query
Analyzer and the osql command-line utility and how to execute Transact-SQL
statements in a number of different ways.

At the end of this module, you will be able to:

! Describe the basic functions of SQL Query Analyzer.
! Describe how to use the Object Browser tool in SQL Query Analyzer.
! Describe how to use the templates in SQL Query Analyzer.
! Describe how to use the osql command-line utility.
! Execute Transact-SQL statements in a various ways.

Slide Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
about some of the querying
tools that SQL Server
provides for executing
Transact-SQL scripts.

2 Module 2: Using Transact-SQL Querying Tools

SQL Query Analyzer

! Free-Form Text Editor

! Color-Coding of Transact-SQL Syntax

! Multiple Query Windows with Grid or Text Output

! Partial Script Execution

! Query Execution Information

You use SQL Query Analyzer in SQL Server to view query statements and
results graphically. You also can use it for writing, modifying, and saving
Transact-SQL scripts.

SQL Query Analyzer also provides tools for determining how SQL Server is
interpreting and working with a Transact-SQL statement.

SQL Query Analyzer includes:

! A free-form text editor. This editor has advanced text-editing capabilities
such as block indents, block comment or un-comment, and conversion to
upper- or lower-case.

! Color-coding. As you write a query, SQL Query Analyzer highlights
keywords, character strings, and other language elements, and you can
customize how they appear by using color-coding.

! Multiple query windows with grid or text output. Each query window has its
own connection to a SQL Server. You can view results in a text window or
in a grid.

! Partial script execution. This capability allows you to execute portions of a
script. When you can select portions of a script, SQL Server executes only
those portions.

! Query execution information. Query execution information includes such
things as client statistics, server trace information, and execution plan data.
You can use this information to help tune and troubleshoot your scripts.

Slide Objective
To introduce the SQL Query
Analyzer tool.

Lead-in
You use SQL Query
Analyzer in SQL Server to
view query statements and
results graphically.

Delivery Tip
Demonstrate SQL Query
Analyzer. Show students the
basic elements of the SQL
Query Analyzer window,
including the three ways to
execute a query, the syntax
color-coding, and opening
and saving a script.

 Module 2: Using Transact-SQL Querying Tools 3

Using the Object Browser Tool in SQL Query Analyzer

! The Object Browser Enables Navigation of the Tree
View of Objects in a Database

! Using the Object Browser, You Can:

Script objects

Execute stored procedures

Open tables

Alter objects in the database

Use Transact-SQL templates

You can use the Object Browser tool within SQL Query Analyzer to navigate
the tree view of objects in a database and drill down to a specific object. The
Object Browser also scripts objects, executes stored procedures, and allows you
to gain access to tables and views.

Using the Object Browser, you can:

! Script objects.
The operations that the Object Browser supports vary, depending on the
type of object. For example, table objects can generate scripts containing
SELECT statements, data definition statements such as CREATE, or data
manipulation statements such as INSERT.

! Execute stored procedures.
When you execute a stored procedure that has a parameter, the Object
Browser prompts for values.

! Open tables.
The Object Browser displays query results separately. You can edit, insert,
or delete rows.

! Alter objects in the database.
You can view and edit objects in a database. The Object Browser displays
an ALTER statement for the selected object in the Editor pane. For
example, if the selected object is a stored procedure, the Object Browser
provides an ALTER PROCEDURE statement. You can use this ALTER
statement to specify the changes, and then execute it.

Slide Objective
To introduce the Object
Browser tool within SQL
Query Analyzer.

Lead-in
You can use the Object
Browser tool within SQL
Query Analyzer to navigate
the tree view of the objects
in a database and drill down
to a specific object.

4 Module 2: Using Transact-SQL Querying Tools

! Use Transact-SQL templates.
These templates contain Transact-SQL scripts that help you create objects in
the database. You can use these templates to:

• Create databases, tables, views, indexes, stored procedures, triggers,
statistics, and functions.

• Manage extended properties, linked servers, logon accounts, roles, and
users.

• Declare and use cursors.

• Customize scripts.

 Module 2: Using Transact-SQL Querying Tools 5

Using Templates in SQL Query Analyzer

! Templates

Are starting points for creating objects in a database

Contain parameters to help you customize scripts

! Format for Template Parameter Definitions

<parameter_name, data_type, value>

SQL Query Analyzer includes templates that you can use as starting points for
creating objects in a database.

SQL Server provides a variety of templates in the Templates\SQL Query
Analyzer directory. Among the templates provided are those that create
databases, tables, views, indexes, stored procedures, triggers, statistics, and
functions. Other templates in this directory help you manage extended
properties, linked servers, logins, roles, and users, and help you to declare and
use cursors.

The template scripts provided with SQL Query Analyzer contain parameters to
help you customize scripts. Template parameter definitions use this format:

<parameter_name, data_type, value>

The following table describes the format and template parameter definitions:

Format Template parameter definition

<parameter_name> Name of the parameter in the script

<data_type> Data type of the parameter

<value> Value that is to replace every occurrence of the parameter in
the script

You use a dialog box to insert values into the script. For example, when you
execute a function from Object Browser, the function that is written to the Edit
pane contains parameter definitions for any arguments in the function. You then
use the Replace Template Parameters dialog box to specify argument values.

Slide Objective
To describe how to use
templates in SQL Query
Analyzer.

Lead-in
SQL Query Analyzer
includes templates that you
can use as starting points
for creating objects in a
database.

Delivery Tip
Describe the purpose and
use of the templates that
SQL Query Analyzer
provides.

Briefly demonstrate how to
gain access to these
templates and show how the
graphical interface works.

Refer students to
SQL Server Books Online
for more information.

6 Module 2: Using Transact-SQL Querying Tools

Using the osql Utility

! Starting the osql Command-line Utility

! Using the Interactive Mode

! Using the Script Execution Mode

! Using Extended osql Scripting Commands

The osql utility is a command-line utility for ad hoc, interactive execution of
Transact-SQL statements and scripts. To use the osql command-line utility,
users must understand Transact-SQL and know how to execute scripts from a
command prompt.

The osql command-line utility uses SQL Server Open Database Connectivity
(ODBC) to communicate with the server and is subject to the restrictions and
behaviors of the ODBC application programming interface (API).

Starting the osql Command-line Utility
You start the osql command-line utility directly from the operating system with
the case-sensitive options listed below. You can call it from a batch file or from
a command prompt. A batch is a set of Transact-SQL statements that are
submitted together and executed as a group.

Using the Interactive Mode
The osql command-line utility accepts Transact-SQL statements and sends
them to SQL Server interactively. The results are formatted and displayed on
the screen.

Use the GO statement to execute Transact-SQL statements in the input buffer.
Use the QUIT or EXIT statement to exit the osql command-line utility.

Using the Script Execution Mode
Users submit an osql batch specifying a single Transact-SQL statement to
execute or pointing the utility to a text file that contains Transact-SQL
statements to execute. The output is usually directed to a text file, but the output
also can be displayed in the command prompt window.

Slide Objective
To introduce the osql utility.

Lead-in
The osql utility is a
command line utility for
querying SQL Server.

For Your Information
The isql utility is not
covered in this course
because it uses DB-Library
to communicate with the
server and does not support
Unicode data types.

 Module 2: Using Transact-SQL Querying Tools 7

osql [-S server_name] [-E] [-U login_id] [-P password]
[-i input_file] [-o output_file] [-?]

Parameters in osql statements are case sensitive.

Remember that the dash (-) or forward slash (/) character can precede
arguments. The following table describes the most commonly used arguments.

Argument Description

-S server_name Specifies the SQL Server to which to connect. The server_name is

the name of the server computer on the network. This option is
required if you execute osql from a remote computer on
the network.

-E Uses a trusted connection instead of requesting a password.
-U login_id Is the user login ID. Login IDs are case sensitive. If neither the -U

or -P option is used, SQL Server uses the currently logged in user
account and will not prompt for a password.

-P password Is a user-specified password. If the -P option is not used, osql
prompts for a password. If the -P option is used at the end of the
command prompt without any password, osql uses the default
password (NULL). Passwords are case sensitive. If neither the -U
or -P option is used, SQL Server uses the currently logged in user
account and will not prompt for a password.

-i input_file Identifies the file that contains a batch of Transact-SQL statements
or stored procedures. The less than (<) symbol can be used in
place of -i.

-o output_file Identifies the file that receives output from osql. The greater than
(>) symbol can be used in place of -o. If the input file is Unicode,
the output file will be Unicode if -o is specified. If the input file is
not Unicode, the output file is OEM.

-? Displays the syntax summary of osql switches.

Using Extended osql Scripting Commands
The osql command-line utility can also process commands that are not
Transact-SQL statements. The osql command-line utility only recognizes these
commands when they occur at the beginning of a line or immediately following
the osql prompt. It disregards all subsequent statements on the same line.

The following table describes these additional commands.

Command Description

GO Executes all statements entered after the last GO

RESET Clears any statements that you have entered

ED Calls the editor

!! command Executes an operating-system command

QUIT or EXIT() Exits from osql

CTRL+C Ends a query without exiting from osql

Partial Syntax

Note

Delivery Tip
Mention that the dash (-) or
forward slash (/) character
can precede arguments.

For more information on
arguments, refer students to
SQL Server Books Online,
search topic �osql utility�.

8 Module 2: Using Transact-SQL Querying Tools

$$$$ Executing Transact-SQL Statements

! Dynamically Constructing Statements

! Using Batches

! Using Scripts

You can execute Transact-SQL statements in a variety of ways by:

! Dynamically constructing statements at run-time.
! Using batches to group statements that should be run together.
! Using scripts to save batches to a file for later use.

Slide Objective
To provide an overview of
the ways to execute
Transact-SQL statements.

Lead-in
You can execute Transact-
SQL statements in a variety
of ways.

 Module 2: Using Transact-SQL Querying Tools 9

Dynamically Constructing Statements

! Use EXECUTE with String Literals and Variables

! Use When You Must Assign the Value of the Variable
at Execution Time

USE library
DECLARE @dbname varchar(30), @tblname varchar(30)
SET @dbname = 'northwind'
SET @tblname = 'products'

EXECUTE
('USE ' + @dbname + ' SELECT * FROM �+ @tblname)
GO

USE library
DECLARE @dbname varchar(30), @tblname varchar(30)
SET @dbname = 'northwind'
SET @tblname = 'products'

EXECUTE
('USE ' + @dbname + ' SELECT * FROM �+ @tblname)
GO

Example 1Example 1

You can build statements dynamically so that they are constructed at the same
time that a script is executed.

To build a statement dynamically, use the EXECUTE statement with a series of
string literals and variables that are resolved at execution time.

Dynamically constructed statements are useful when you want the value of the
variable to be assigned when the statement executes. For example, you can
create a dynamic statement that performs the same action on a series of
database objects.

EXECUTE ({@str_var | 'tsql_string'} + [{@str_var | 'tsql_string'}...])}

Consider the following facts about the EXECUTE statement:

! The EXECUTE statement executes statements composed of character
strings within a Transact-SQL batch. Because these are string literals, be
sure that you add spaces in the appropriate places in order to ensure proper
concatenation.

! The EXECUTE statement can include a string literal, a string local variable,
or a concatenation of both.

! All items within the EXECUTE string must consist of character data; you
must convert all numeric data before you use the EXECUTE statement.

! You cannot use functions to build the string for execution in the EXECUTE
statement.

! You can create any valid Transact-SQL statements dynamically,
including functions.

! You can nest EXECUTE statements.
! Variables and temporary tables that are created dynamically last only as

long as it takes for the statement to execute.

Slide Objective
To introduce students to
the dynamic execution
of statements.

Lead-in
You can build statements
dynamically so that they are
constructed at the same
time that a script
is executed.

Syntax

10 Module 2: Using Transact-SQL Querying Tools

This example demonstrates how a dynamically executed statement is used to
specify a database context different than that in which you are currently and
then to select all the columns and rows from a specified table. In this example,
the change of the database context to the northwind database lasts only for the
duration of the query. The current database context is unchanged.

Using a stored procedure, the user could pass the database and table
information into the statement as parameters and then query a specific table
within a database.

USE library
DECLARE @dbname varchar(30), @tablename varchar(30)
SET @dbname = 'northwind'
SET @tablename = 'products'

EXECUTE
 ('USE ' + @dbname + ' SELECT productname FROM ' +
@tablename)
GO

productname
Chai
Chang
Aniseed Syrup

This example demonstrates how a dynamically executed statement can be used
to change a database option for the duration of the statement. The following
statement does not return a count of the number of rows affected.

USE northwind
EXECUTE ('SET NOCOUNT ON '+ 'SELECT lastname, reportsto FROM
employees WHERE reportsto IS NULL')
GO

lastname reportsto
Fuller NULL

Example 1

Result

Example 2

Result

 Module 2: Using Transact-SQL Querying Tools 11

Using Batches

! One or More Transact-SQL Statements
Submitted Together

! Defining a Batch with the GO Statement
! How SQL Server Processes Batches
! Statements That You Cannot Combine in a Batch

CREATE PROCEDURE
CREATE VIEW
CREATE TRIGGER
CREATE RULE
CREATE DEFAULT

You can also submit one or more statements in a batch.

One or More Transact-SQL Statements Submitted Together
A batch is a set of Transact-SQL statements that are submitted together and
executed as a group. Batches can be run interactively or as part of a script. A
script can include more than one batch of Transact-SQL statements.

Defining a Batch with the GO Statement
Use a GO statement to signal the end of a batch. GO is not a universally
accepted Transact-SQL statement; it is a statement accepted only by
SQL Query Analyzer and the osql utility. Applications based on the ODBC or
OLE DB APIs generate a syntax error if they attempt to execute a GO
statement.

How SQL Server Processes Batches
SQL Server optimizes, compiles, and executes the statements in a batch
together. However, the statements do not necessarily execute as a recoverable
unit of work.

The scope of user-defined variables is limited to a batch, so a variable cannot be
referenced after a GO statement.

If a syntax error exists in a batch, none of the statements in that batch
executes. Execution begins with the next batch.

Slide Objective
To introduce students to
using batches.

Lead-in
A batch is a set of Transact-
SQL statements that are
submitted together and
executed as a group.

Note

12 Module 2: Using Transact-SQL Querying Tools

Statements That You Cannot Combine in a Batch
You must execute certain object creation statements in their own batches within
a script, because of the way that the object creation statements are defined.
These object creation statements are indicated by a pattern�an object
definition header, followed by the AS keyword with one or more definition
statements, and concluded by a GO command.

You must execute these statements in separate batches:

! CREATE PROCEDURE
! CREATE VIEW
! CREATE TRIGGER
! CREATE RULE AS
! CREATE DEFAULT

This example shows statements would fail as executed as part of a single batch,
because the query improperly combines statements that cannot be combined in
a batch. You must insert a GO statement before each CREATE VIEW
statement to execute this statement correctly.

CREATE DATABASE ...
CREATE TABLE ...
CREATE VIEW ...
CREATE VIEW ...
GO

This example groups the statements used in Example 1 into proper batches so
that they execute correctly.

CREATE DATABASE ...
CREATE TABLE ...
GO

CREATE VIEW ...
GO

CREATE VIEW ...
GO

Delivery Tip
Describe and compare each
example.

Example 1

Example 2

 Module 2: Using Transact-SQL Querying Tools 13

Using Scripts

! A Script Is One or More Transact-SQL Statements Saved
as a File Using the .sql Extension

! Scripts:

Contain saved statements

Can be written using any text editor

Can recreate database objects or execute statements
repeatedly

Execute in SQL Query Analyzer or in the osql utility

Scripts are one of the most common ways to execute Transact-SQL statements.
They are one or more Transact-SQL statements that are saved as a file.

You can write and save scripts in SQL Query Analyzer or in any text editor
such as Notepad. Save the script file with the .sql file name extension.

Saved scripts are very useful when you want to recreate databases or data
objects, or when you must use a set of statements repeatedly.

You can open and execute the script file in SQL Query Analyzer or use the osql
utility (or another query tool).

Slide Objective
To introduce using scripts to
execute Transact-SQL
statements.

Lead-in
Scripts are one of the most
common ways to execute
Transact-SQL statements.

14 Module 2: Using Transact-SQL Querying Tools

Recommended Practices

Use SQL Query Analyzer to Work Graphically and InteractivelyUse SQL Query Analyzer to Work Graphically and Interactively

Use the Object Browser to Locate and Script ObjectsUse the Object Browser to Locate and Script Objects

Use the osql Command-line Utility for Batch Files and SchedulingUse the osql Command-line Utility for Batch Files and Scheduling

Save Commonly Used Transact-SQL Scripts to FilesSave Commonly Used Transact-SQL Scripts to Files

Use Templates as Starting Points to Create ObjectsUse Templates as Starting Points to Create Objects

The following recommended practices should help you use Transact-SQL
querying tools:

! Use SQL Query Analyzer when you want to work graphically and
interactively. You can use multiple connections to SQL Server and cut and
paste between windows, while leveraging the color-coding of syntax and the
scripting ability of the Object Browser tool.

! Use the Object Browser tool to locate and script table and column names
and to create error-free scripts that alter objects and modify data.

! Use templates in SQL Query Analyzer as starting points for creating objects
in a database.

! Use the osql command-line utility for batch files and for the execution of
repetitive tasks. Additional scripting features with the osql command-line
utility environment can benefit automation and maintenance tasks.

! Save commonly used Transact-SQL scripts to files. These files effectively
constitute a library of reusable scripts for consistency and future use.

Additional information on the following topics is available in SQL Server
Books Online.

Topic Search for

Using SQL Query Analyzer �Overview of SQL Query Analyzer�

Using the osql utility �osql utility�

Slide Objective
To present recommended
practices for using Transact-
SQL querying tools.

Lead-in
These recommended
practices should help you
use Transact-SQL querying
tools.

 Module 2: Using Transact-SQL Querying Tools 15

Lab A: Creating and Executing Transact-SQL Scripts

Objectives
After completing this lab, you will be able to:

! Write basic SELECT statements that return ordered and limited result sets.
! Modify and execute a script by using the osql utility.

Prerequisites
Before working on this lab, you must have:

! Script files for this lab, which are located in C:\Moc\2071A\Labfiles\L02.
! Answer files for this lab, which are located in

C:\Moc\2071A\Labfiles\L02\Answers.

For More Information
If you require help in executing files, search SQL Query Analyzer Help for
�Execute a query�.

Other resources that you can use include:

! The Northwind database schema.
! Microsoft® SQL Server� Books Online.

Scenario
The organization of the classroom is meant to simulate that of a worldwide
trading firm named Northwind Traders. Its fictitious domain name is
nwtraders.msft. The primary DNS server for nwtraders.msft is the instructor
computer, which has an Internet Protocol (IP) address of 192.168.x.200 (where
x is the assigned classroom number). The name of the instructor computer is
London.

Slide Objective
To introduce the lab.

Lead-in
In this lab, you will create a
Transact-SQL script, save it,
and then execute it in SQL
Query Analyzer and through
the osql utility.

Explain the lab objectives.

16 Module 2: Using Transact-SQL Querying Tools

The following table provides the user name, computer name, and IP address for
each student computer in the fictitious nwtraders.msft domain. Find the user
name for your computer, and make a note of it.

User name Computer name IP address

SQLAdmin1 Vancouver 192.168.x.1

SQLAdmin2 Denver 192.168.x.2

SQLAdmin3 Perth 192.168.x.3

SQLAdmin4 Brisbane 192.168.x.4

SQLAdmin5 Lisbon 192.168.x.5

SQLAdmin6 Bonn 192.168.x.6

SQLAdmin7 Lima 192.168.x.7

SQLAdmin8 Santiago 192.168.x.8

SQLAdmin9 Bangalore 192.168.x.9

SQLAdmin10 Singapore 192.168.x.10

SQLAdmin11 Casablanca 192.168.x.11

SQLAdmin12 Tunis 192.168.x.12

SQLAdmin13 Acapulco 192.168.x.13

SQLAdmin14 Miami 192.168.x.14

SQLAdmin15 Auckland 192.168.x.15

SQLAdmin16 Suva 192.168.x.16

SQLAdmin17 Stockholm 192.168.x.17

SQLAdmin18 Moscow 192.168.x.18

SQLAdmin19 Caracas 192.168.x.19

SQLAdmin20 Montevideo 192.168.x.20

SQLAdmin21 Manila 192.168.x.21

SQLAdmin22 Tokyo 192.168.x.22

SQLAdmin23 Khartoum 192.168.x.23

SQLAdmin24 Nairobi 192.168.x.24

Estimated time to complete this lab: 30 minutes

 Module 2: Using Transact-SQL Querying Tools 17

Exercise 1
Writing Basic SELECT Statements

In this exercise, you will write various statements that return rows from the
products table in the Northwind database.
C:\Moc\2071A\Labfiles\L02\Answers contains completed scripts for this
exercise.

! To write a SELECT statement that returns ordered data
In this procedure, you will write a statement that returns all the rows and
columns from the products table and sorts the results in ascending order by the
productname column. Answer_Ordered.sql is a completed script for this
procedure.
1. Log on to the NWTraders classroom domain by using the information in

the following table.

Option Value

User name SQLAdminx (where x corresponds to your computer name as

designated in the nwtraders.msft classroom domain)

Password password

2. Open SQL Query Analyzer and, if requested, log in to the (local) server
with Microsoft Windows® Authentication.
You have permission to log in to and administer SQL Server because you
are logged as SQLAdminx, which is a member of the Windows 2000 local
group, Administrators. All members of this group are automatically mapped
to the SQL Server sysadmin role.

3. In the DB list, click northwind.
4. Type and execute a SELECT statement that returns all the rows and

columns from the products table and sorts the results in ascending order by
the productname column.
You can execute the sp_help system stored procedure on the products table
to find the correct column names.
SELECT * FROM products ORDER BY productname

5. Click the Execute Mode to Results in Grid toolbar button.
6. Execute the statement again.

18 Module 2: Using Transact-SQL Querying Tools

! To write a SELECT statement that returns limited data
In this procedure, you will write a statement that retrieves products from a
specific category. Answer_Limited.sql is a completed script for this procedure.
• Type and execute a SELECT statement that retrieves all products in

category (categoryid) 4 from the products table.
You can execute the sp_help system stored procedure on the products table
to find the correct column names.
SELECT * FROM products WHERE categoryid = 4
GO

To see more information about the SELECT statement (as well as any
Transact-SQL statement and system table), select the SELECT keyword in the
query window, right-click the SELECT keyword, and then click
Transact-SQL Help. Double-click SELECT: clauses.

Tip

 Module 2: Using Transact-SQL Querying Tools 19

Exercise 2
Modifying a Script File

In this exercise, you will modify, save, and execute a simple script file.
C:\Moc\2071A\Labfiles\L02\Answers contains completed scripts for this
exercise.

! To modify a script file
In this procedure, you will execute a script that contains errors. By using the
error information that is returned, you will make changes to the script so that it
executes correctly. Then, you will save and execute the script.
1. Open C:\Moc\2071A\Labfiles\L02\MyScript.sql, review, and then execute

it. You will get errors when you run this file. These errors are intentional.
Answer_MyScript.sql is a completed script for this procedure.

2. Type block comment keywords around the lines of the script name and
description.
/*
 MYSCRIPT.SQL

 This script queries the customer table and
 returns a list of customer numbers and their
 last names.
 This script should be run in the northwind database.
*/

3. Add a statement that specifies that the script will run in the context of the

Northwind database.
USE northwind

4. Include end of batch markers (GO statements) in the proper areas of the

script. Only two additional batch markers are needed.
SELECT cust_no, lname FROM sample1
SELECT CompanyName FROM customers
GO

5. Save the script and then execute it.
6. Minimize SQL Query Analyzer.

20 Module 2: Using Transact-SQL Querying Tools

Exercise 3
Execute a Script Using the osql Utility

In this exercise, you will use the osql command-line utility to execute the script
that you created in exercise 2.

! To display the osql command-line utility arguments
In this procedure, you will display the osql command-line utility arguments.
Open a command prompt window.
1. Type the following command to display the osql command-line arguments.

osql -?

2. Review the arguments.

! To execute a script file by using the osql utility
In this procedure, you will execute a script file by using the osql utility. The -E
argument specifies that a trusted connection should be made to SQL Server.
1. Open a command prompt window.
2. Type the following command to execute

C:\Moc\2071A\Labfiles\L02\MyScript.sql. Make sure that the path is
correct.
osql -E -i "C:\MOC\2071A\labfiles\L02\MyScript.sql"

If the -S argument is not used to specify the SQL Server to which the
osql utility connects, then the osql utility connects to the local SQL Server
by default.

3. Verify that the results are the same as those obtained in exercise 2.

Note

 Module 2: Using Transact-SQL Querying Tools 21

Review

! SQL Server Query Analyzer

! Using the Object Browser Tool in SQL Query Analyzer

! Using Templates in SQL Query Analyzer

! Using the osql Utility

! Executing Transact-SQL Statements

1. What is the best querying tool to use within a batch file to capture the results
of a query in a text file? Why?
It is best to use the osql command-line utility to execute the query and
save the results to a text file by using the command-line option�o
filename.txt parameter.
It is also possible to use appropriate command-line options with the
SQL Query Analyzer.
__

__

2. What is the best way to create and use Transact-SQL statements for future
re-use?
Use the Object Browser tool to script Transact-SQL statements directly
from objects and from other templates. It is also possible to save a
Transact-SQL script to a file for later modification and use.
__

__

3. How does a Transact-SQL batch differ from a Transact-SQL script?
A Transact-SQL batch is a series of statements delineated by a GO
statement that will be parsed and executed all at once.
A Transact-SQL script is a file that contains one or more batches to be
processed.
__

__

Slide Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

THIS PAGE INTENTIONALLY LEFT BLANK

