
Oracle9i New Features
for Administrators

Student Guide • Volume 2

D11318GC11
Edition 1.1
July 2001
D33453

Copyright © Oracle Corporation, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation.
It is provided under a license agreement containing restrictions on use and
disclosure and is also protected by copyright law. Reverse engineering of
the software is prohibited. If this documentation is delivered to a U.S.
Government Agency of the Department of Defense, then it is delivered with
Restricted Rights and the following legend is applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions
for commercial computer software and shall be deemed to be Restricted
Rights software under Federal law, as set forth in subparagraph (c)(1)(ii) of
DFARS 252.227-7013, Rights in Technical Data and Computer Software
(October 1988).

This material or any portion of it may not be copied in any form or by any
means without the express prior written permission of Oracle Corporation.
Any other copying is a violation of copyright law and may result in civil
and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within
the Department of Defense, then it is delivered with “Restricted Rights,” as
defined in FAR 52.227-14, Rights in Data-General, including Alternate III
(June 1987).

The information in this document is subject to change without notice. If you
find any problems in the documentation, please report them in writing to
Education Products, Oracle Corporation, 500 Oracle Parkway, Box SB-6,
Redwood Shores, CA 94065. Oracle Corporation does not warrant that this
document is error-free.

All references to Oracle and Oracle products are trademarks or registered
trademarks of Oracle Corporation.

All other products or company names are used for identification purposes
only, and may be trademarks of their respective owners.

Authors

David Austin
Ric van Dyke
Jean-Francois Verrier
Michael Möller
Lex de Haan

Technical
Contributors
and Reviewers

Harald van Breederode
Bruce Ernst
Lothar Flatz
Scott Gossett
Arturo Gutierrez
Merrill Holt
Magnus Isaksson
Martin Jensen
Sushil Kumar
Stefan Lindblad
Russ Lowenthal
Patricia McElroy
Sujatha Muthulingam
Peter Sharman
Sabine Teuber

Publisher

May Lonn Villareal

I Introduction
Overview I-2
Outline I-3
Migration I-5
iSQL*Plus I-6
Oracle9i Sample Schemas I-7
Five Sample Schemas I-8
Optional Schedule I-9
Student Preface I-10

1 Oracle Server Security
Objectives 1-2
Connecting as the DBA 1-3
Example Connects 1-4
Stricter Default Security 1-5
Secure Application Role 1-7
Example Application Role 1-8
Global Application Context 1-9
Managing Global Application Context 1-10
Global Application Context Function 1-11
Global Context Example 1-12
Fine-Grained Access Control Enhancements 1-13
Policy Groups 1-14
Partitioned Fine-Grained Access Control 1-15
Fine-Grained Audit 1-16
Fine-Grained Auditing Implementation 1-17
Fine-Grained Auditing Example 1-18
FGA Event Handler 1-19
Encryption Enhancements 1-20
Oracle Label Security 1-21
Oracle Login Server 1-22
Oracle Enterprise Login Assistant 1-23
Enterprise User Security Enhancements 1-24
Summary 1-25
Practice 1-1 Overview 1-26

2 General High Availability Technology
Objectives 2-2
Reducing Unplanned Downtime Overview 2-3
Minimal I/O Recovery 2-4
Fast-Start Time-Based Recovery Limit 2-7
Fast-Start Time-Based Recovery Limit Overview 2-8
Fast-Start Time-Based Recovery Limit 2-9
Changes to Previous Parameters 2-12
Changes to V$INSTANCE_RECOVERY 2-13
Oracle Flashback Overview 2-14
Oracle Flashback 2-15

Contents

iii

Oracle Flashback and Oracle LogMiner 2-19
Resumable Space Allocation Overview 2-20
Life Cycle for Resumable Space Allocation 2-21
Resumable Space Allocation Operations 2-23
Enable Session Resumable Space Allocation 2-24
DBMS_RESUMABLE Package 2-26
AFTER SUSPEND System Event 2-28
RESUMABLE System Privilege 2-30
DBA_RESUMABLE Dictionary View 2-31
Export/Import Enhancements (STATISTICS) 2-33
Export/Import Enhancements (TABLESPACES Mode) 2-34
Export/Import Enhancements (Resumable Space Allocation) 2-35
Export/Import Enhancements (Flashback) 2-36
Summary 2-37
Practice 2-1 Overview 2-38
Practice 2-2 Overview 2-39

3 Oracle9i LogMiner Enhancements
Objectives 3-2
LogMiner New Features 3-3
DDL Statement Support 3-5
Data Dictionary Access 3-7
Dictionary Information in the Redo Logs 3-8
Using an Online Data Dictionary 3-9
DDL Tracking in the Dictionary 3-10
Dictionary Staleness Detection 3-11
Skip Past Log Corruptions 3-12
Display Only Committed Transactions Information 3-13
Primary Key Information 3-14
LogMiner Restrictions 3-16
LogMiner Views 3-17
LogMiner Viewer 3-18
Summary 3-25
Practice 3-1 Overview 3-26

4 Backup and Recovery
Objectives 4-2
RMAN Manageability Enhancements 4-3
Persistent Configuration Parameters 4-4
Retention Policies 4-5
CONFIGURE RETENTION POLICY 4-6
Automatic Channel Allocation 4-7
CONFIGURE CHANNEL 4-8
CONFIGURE DEVICE TYPE ... PARALLELISM 4-11
CONFIGURE DEFAULT DEVICE TYPE 4-12

iv

CONFIGURE BACKUP COPIES 4-13
CONFIGURE EXCLUDE 4-14
CONFIGURE SNAPSHOT CONTROLFILE and CONFIGURE AUXNAME 4-15
CONFIGURE CONTROLFILE AUTOBACKUP 4-16
Long Term Backups 4-18
Mirrored Backups 4-19
Backup File Optimization 4-20
Restartable Backups 4-21
Archive Log Backup 4-22
Backupset Backup 4-23
Restore File Optimization and Restartable Restore 4-24
Recovery Manager Enterprise Manager Interface 4-25
RMAN Reliability Enhancements 4-26
Archive Log Failover and Automatic Log Switch 4-27
Backup Piece Failover 4-28
Block Media Recovery (BMR) 4-29
MTTR Reduction 4-30
Other BMR Benefits 4-31
Recovery Manager Interface 4-32
Trial Recovery 4-36
Miscellaneous RMAN Enhancements 4-40
REPORT OBSOLETE 4-41
REPORT NEED BACKUP 4-43
Command Unification 4-44
LIST Command Improvements 4-45
LIST Command New Syntax 4-46
New SHOW Command 4-49
CROSSCHECK Autolocate 4-51
Other RMAN Enhancements 4-53
Summary 4-54
Practice 4-1 Overview 4-55

5 Oracle9i Data Guard
Objectives 5-2
Oracle9i Data Guard Overview 5-4
Oracle9i Data Guard Architecture 5-6
Data Guard Broker and Data Guard Manager 5-7
Oracle9i Data Guard Broker 5-8
Oracle9i Data Guard Manager 5-10
No Data Loss and No Data Divergence Definitions 5-12
Data Availability Modes in Data Guard 5-13
Data Availability Mode Configuration Process 5-14
Data Availability Mode Configuration Matrix 5-16

v

Redo Log Reception Possibilities 5-17
Creating Standby Redo Logs 5-18
Setting a Failure Resolution Policy 5-19
Finishing Managed Recovery 5-20
Physical Standby Database Failover 5-21
Physical Standby Database Graceful Switchover 5-22
Database Switchover Steps 5-24
Automatic Recovery of Log Gaps 5-27
Automatic Recovery of Log Gaps Configuration 5-28
Archive Gaps Monitoring 5-29
Standby File Management 5-30
Background Managed Recovery Mode 5-31
Monitoring the Managed Recovery 5-32
Updating the Standby at a Lag 5-33
Parallel Recovery 5-34
Miscellaneous Enhancements 5-35
Summary 5-38

6 Database Resource Manager Enhancements
Objectives 6-2
Active Session Pool 6-3
Active Session Pool Mechanism 6-4
Active Session Pool Parameters 6-5
Setting the Active Session Pool 6-6
Maximum Estimated Execution Time 6-7
Automatic Consumer Group Switching 6-8
Undo Quota 6-9
Changing Undo Quota 6-10
Modified Views to Support Database Resource Manager Extensions 6-11
Modified Catalog Tables and Views 6-12
An Example Using Several Resource Allocation Methods 6-13
Oracle Supplied Plans 6-15
Summary 6-16

7 Online Operations
Objectives 7-2
Online Index Rebuild 7-3
Index-Organized Table High Availability Enhancements 7-6
Online Operations on IOTs Operations on Secondary Indexes 7-7
Online Operations on IOTs Online Update of Logical ROWIDs 7-8
Online Operations on IOTs Online Move 7-9
Online Table Redefinition 7-10
Online Table Redefinition Syntax 7-13

vi

Online Table Redefinition: Synchronization and Abort 7-15
Online Table Redefinition: Example 7-16
Online Table Redefinition Limitations 7-18
Online Analyze Validate 7-20
Quiesce Database Overview 7-21
Quiesce Database Benefits 7-23
Quiesce Database Syntax 7-24
Quiesce Database Limitations 7-25
Viewing the Quiesce State of an Instance 7-26
Server Parameter File (SPFILE) 7-27
What Is an SPFILE? 7-28
Creating a SPFILE 7-29
Viewing the Parameter Settings 7-30
Changing Parameter Values Within a SPFILE 7-31
STARTUP Command Behavior 7-32
Exporting a SPFILE 7-33
Example of an Exported SPFILE 7-34
Migrating to a SPFILE 7-35
Summary 7-36
Practice 7-1 Overview 7-37
Practice 7-2 Overview 7-38

8 Segment Management (Part I)
Objectives 8-2
Global Index Maintenance During Partition DDLs 8-3
Benefits of Maintaining Global Indexes During DDL 8-4
Maintaining Global Indexes During DDL 8-5
Update or Rebuild Global Indexes? 8-8
List Partitioning Overview and Benefits 8-9
List Partitioning Example 8-10
List Partitioning Pruning 8-11
ALTER TABLE ADD PARTITION 8-12
ALTER TABLE MERGE PARTITION 8-14
ALTER TABLE MODIFY PARTITION ADD VALUES 8-16
ALTER TABLE MODIFY PARTITION DROP VALUES 8-17
ALTER TABLE SPLIT PARTITION 8-19
List Partitioning Usage 8-21
Metadata API 8-23
Metadata API in Oracle9i 8-24
Metadata API in Oracle9i Browsing Example 8-25
Common Extraction, Transformation, and Loading (ETL) Process 8-26
Pipelined Data Transformation in Oracle9i 8-27
Overview of External Tables 8-28
Applications of External Tables 8-29
Example of Defining External Tables 8-30

vii

Querying External Tables 8-31
Data Dictionary Information for External Tables 8-32
Summary 8-33
Practice 8-1 Overview 8-34
Practice 8-2 Overview 8-35

9 Segment Management (Part II)
Objectives 9-2
Automatic Segment-Space Management 9-3
Automatic Segment-Space Management at Work 9-4
Creating an Automatic Space Management Segment 9-6
Creating an Automatic Space Management Segment: Example 9-7
Modifications to the DBMS_SPACE Package 9-8
Block Space Management 9-9
DBMS_REPAIR Package 9-10
DBMS_REPAIR and PCTFREE Implementation 9-11
Modifications to Dictionary Views 9-12
Compatibility and Migration 9-13
What Is a Bitmap Join Index? 9-15
Advantages and Disadvantages 9-16
Example With Three Tables 9-17
Data Dictionary and Bitmap Join Indexes 9-18
Bitmap Join Indexes Restrictions 9-19
Summary 9-20
Practice 9-1 Overview 9-21

10 Performance Improvements
Objectives 10-2
Identifying Unused Indexes 10-3
Enabling and Disabling Monitoring Index Usage 10-4
V$OBJECT_USAGE View 10-5
Skip Scanning of Indexes 10-7
Skip Scanning Example 10-8
Cursor Sharing Enhancements 10-17
CURSOR_SHARING Parameter 10-19
Cached Execution Plans 10-20
New View to Support Cached Execution Plans 10-21
New PLAN_HASH_VALUE Column in V$SQL 10-22
New First Rows Optimization 10-23
New Gathering Statistic Estimates 10-24
New GATHER AUTO Option 10-26
Optimizer Cost Model Enhancements 10-27
Gathering System Statistics 10-29
Gathering System Statistics Example 10-30

viii

Summary 10-32
Practice 10-1 Overview 10-33
Practice 10-2 Overview 10-34

11 Scalable Session State Management
Objectives 11-2
Oracle Shared Server Improvements 11-3
Connection Establishment: Direct Handoff 11-4
Common Event Model for Database and Network 11-5
Performance Manager Monitoring 11-6
External Procedure Agent Enhancements 11-7
Dedicated External Procedure Agents 11-8
Libraries for External Procedures 11-9
Example 11-10
Multithreaded HS Agent Architecture 11-12
Multithreaded HS Agent Threads 11-13
HS Agent Initialization Parameters 11-14
OCI Connection Pooling: Features 11-15
Usage Model 11-16
Steps Used for OCI Connection Pooling 11-17
Core Library Improvements 11-18
Summary 11-19

12 Real Application Clusters
Objectives 12-2
Real Application Clusters Overview 12-3
Benefits of Real Application Clusters 12-4
Global Cache Service 12-5
Dynamic Resource Remastering 12-6
Global Cache Service Resource Modes 12-7
Global Cache Service Resource Roles 12-8
Block Transfers 12-9
Block Transfer Examples 12-10
Consistent Read Block Transfer 12-12
Cache Fusion Block Transfer 12-13
Benefits of Cache Fusion 12-15
High Availability Features 12-16
Real Application Clusters Guard 12-17
Real Application Clusters Guard Architecture 12-18
Monitors and Failover 12-19
Shared Initialization Parameter File 12-20
Shared Server-Side Parameter File 12-21
SRVCTL Commands 12-22
Real Application Clusters and OEM 12-23

ix

OEM Instance Management Provisions 12-24
Background Processes 12-25
Initialization Parameters 12-26
Obsolete Global Cache Parameters 12-28
Summary 12-29

13 File Management
Objectives 13-2
Oracle-Managed Files Overview 13-3
Who Can Use Oracle-Managed Files? 13-4
New Dynamic Initialization Parameters 13-5
OMF Example 13-6
OMF File Names Structure 13-7
Managing OMF Control Files: Database Creation 13-9
Impact of OMF on CREATE CONTROLFILE Command 13-10
Managing OMF Redo Log Files 13-12
Managing OMF Tablespaces 13-13
OMF Examples 13-14
OMF and Standby Databases 13-15
Automatically Drop Non-OMF Data Files 13-16
Default Temporary Tablespace 13-17
Create Default Temporary Tablespace at Database Creation Time 13-19
Alter Default Temporary Tablespace 13-20
Restrictions on Default Temporary Tablespace 13-21
Summary 13-22
Practice 13-1 Overview 13-23
Practice 13-2 Overview 13-24

14 Tablespace Management
Objectives 14-2
Automatic Undo Management 14-3
Automatic Undo Management Concepts 14-4
Dynamic Extents Transfer 14-6
Specifying the Mode for Undo Space Management 14-7
Creating an Undo Tablespace at Database Creation Time 14-9
Creating an Undo Tablespace After Database Creation 14-10
Altering an Undo Tablespace 14-11
Dropping an Undo Tablespace 14-12
Switching Undo Tablespaces 14-13
Changing the Retention Period for Undo Information 14-15
Data Dictionary View to Support Automatic Undo Management 14-17
New Data Dictionary View to Support Automatic Undo Management 14-18
New Parameters to Support Automatic Undo Management: Summary 14-20
Multiple Block Size Support 14-21

x

Standard Block Size 14-22
Nonstandard Block Sizes 14-24
Creating a Nonstandard Block Size Tablespace 14-25
Multiple Block Sizing Rules 14-26
Summary 14-27
Practice 14-1 Overview 14-28
Practice 14-2 Overview 14-29

15 Memory Management
Objectives 15-2
Automated SQL Execution Memory Management 15-3
PGA Memory Management 15-4
Enabling Automated SQL Execution Memory Management 15-5
New Statistics and Columns 15-7
Example 15-9
New Views to Support SQL Execution Memory Management 15-10
Dynamic SGA 15-12
Unit of Allocation 15-13
Growing a Component’s SGA Memory Area 15-15
Dynamic Shared Pool 15-16
Dynamic Buffer Cache 15-17
New Buffer Cache Parameters 15-18
Deprecated Buffer Cache Parameters 15-19
Example Buffer Caches Setup 15-20
Dynamic Buffer Cache Advisory Parameter 15-21
New View to Support Buffer Cache Advisory 15-22
V$DB_CACHE_ADVICE Example 15-23
Summary 15-24

16 Enterprise Manager Enhancements
Objectives 16-2
New Console Look and Feel 16-3
Launching Enterprise Manager Console 16-4
Console Launched Standalone 16-5
Connections Using Management Server 16-6
Standalone Connection Benefits 16-7
Standalone Connection Restrictions 16-8
Standalone Repository 16-9
Enterprise Manager Support for Oracle9i Database Features 16-10
Creating the SPFILE 16-11
Creating a PFILE from SPFILE 16-12
Changing Parameters 16-13
Startup Using the SPFILE 16-14
Undo Tablespace Support 16-15
Undo Tab 16-16
Buffer Cache Size Advice View 16-17
Creating Default Temporary Tablespace 16-18

xi

Mean Time to Recovery 16-19
Backup and Recovery Enhancements 16-20
Advanced Queuing 16-21
HTML Database Reports 16-22
Database Configuration Report 16-23

User-Defined Events 16-24
User Defined Event Tests 16-25
Event Handler 16-27
Summary 16-28

17 SQL Enhancements
Objectives 17-2
SQL:1999 Enhancements Overview 17-3
SQL:1999 Joins 17-4
Cross Joins 17-5
Natural Joins 17-6
Natural Join Example 17-7
Equijoins and the USING Clause 17-8
USING Clause Example 17-9
Join Predicates and the ON Clause 17-10
Three-Way Joins with the ON Clause 17-11
Outer Joins 17-12
Outer Join Example 17-13
CASE Expression Enhancements 17-14
Simple CASE Expressions 17-15
Searched CASE Expressions 17-16
NULLIF and COALESCE 17-17
Scalar Subqueries 17-18
Scalar Subquery Example 17-19
Explicit Defaults 17-20
The MERGE Statement 17-21
Analytical Function Enhancements 17-22
WIDTH_BUCKET Function 17-24
WIDTH_BUCKET Example 17-25
Grouping Sets 17-26
Composite Columns 17-28
Concatenated Groupings 17-30
WITH Clause 17-31
WITH Clause Example 17-32
Constraint Enhancements 17-33
Explicit Index Control 17-34
Less Foreign Key Locking Overhead 17-35
Cached Primary Key Look Up 17-36
Constraints on Views 17-37
View Constraint Types 17-38

xii

Create Constrained Views 17-39
Constrained View Maintenance 17-40
Index Scans and Function-Based Indexes 17-41
SELECT ... FOR UPDATE WAIT 17-42
Multitable INSERT Statement 17-43
Multitable INSERT Syntax 17-44
LONG to LOB Migration 17-45
PL/SQL Support for LOB Migration 17-46
Restrictions on LOB Migration 17-47
Common SQL Parser 17-48
Native PL/SQL Execution 17-49
Summary 17-50
Practice 17-1 Overview 17-51
Practice 17-2 Overview 17-52

18 Globalization Support
Objectives 18-2
Globalization and NLS 18-3
New Time and Interval Data Types 18-4
New Time and Interval Data Type Example 18-5
TIMESTAMP Literals 18-6
INTERVAL Literals 18-7
Formatting NLS Variables 18-8
Using Time Zones 18-9
Application or Server Time Zone Handling 18-10
Datetime/Interval Arithmetic 18-11
Datetime Functions 18-12
Datetime Conversion Functions 18-13
Datetime Extract Function 18-14
Daylight Saving Time 18-15
Unicode 18-16
Unicode Encodings 18-17
Unicode Character Forms 18-18
Enhanced Unicode Support 18-19
Migration and Unicode Issues 18-21
New Unicode Character Sets 18-22
Choosing a Unicode Solution Scenario Unicode Database 18-23
Choosing a Unicode Solution Scenario Unicode Data Type 18-24
More Character Sets, Languages, and Territories 18-25
Enhanced Linguistic Sorting 18-26
New Linguistic Sorts 18-27
Byte and Character Semantics 18-29
Implicit Type Conversion for NCHAR Data Type 18-31
SQL*Loader Unicode Support 18-32
SQL*Loader for Unicode Sample Control File 18-33

xiii

xiv

Character Set Scanner 18-34
Common Character Conversion Problems 18-35
Character Set Scanner Operation 18-37
Character Set Scanner Command 18-38
Character Set Scanner Output 18-39
Character Conversion 18-42
Oracle Locale Builder 18-44
Locale Builder Examples 18-45
New or Modified Globalization Settings 18-46
Summary 18-47
Practice 18-1 Overview 18-48

19 Database Workspace Management
Objectives 19-2
What Is a Database Workspace? 19-3
How Does Workspace Manager Work 19-4
Workspace Manager Administrator Role 19-5
Version Enable a Table 19-6
Changes Due to Versioning 19-7
The History Option 19-9
Guidelines for Tables Participating in a Workspace 19-10
Disabling Workspace Participation for a Table 19-12
Workspace Savepoints 19-13
Create a Workspace 19-14
Assign Workspace: Associate a User 19-15
Rows in the Table 19-16
Assign Workspace: Grant Privileges 19-17
Assign Workspace: Set Locks 19-19
Freeze a Workspace 19-20
Roll Back a Workspace 19-21
Refresh a Workspace 19-22
Resolve Workspace Conflicts 19-23
Conflict Resolution Example: Check for Existence of Conflicts 19-24
Merge a Workspace 19-25
Import and Export Considerations 19-26
Enterprise Manager Interface 19-27
Workspace Metadata Views 19-29
Summary 19-31
Practice 19-1 Overview 19-32

20 Advanced Replication
Objectives 20-2
Extended Availability of Replication Environment 20-3
Add New Master Site Without Quiescing 20-4
SPECIFY_NEW_MASTERS 20-6

ADD_NEW_MASTERS 20-7
RESUME_PROPAGATION_TO_MDEF 20-9
Perform Import or Change-Based Recovery 20-10
PREPARE_INSTANTIATED_MASTER 20-11
When to Add New Masters Without Quiescing 20-12
Restrictions on Adding New Masters Without Quiescing 20-13
Row-Level System Change Numbers 20-14
Parallel Propagation and Row-Level SCNs 20-16
Constraint SCNs 20-17
Materialized View Fast Refresh Abilities 20-18
Explain Materialized View 20-20
MV_CAPABILITIES_TABLE 20-21
Multitier Materialized Views 20-22
Replication of Objects 20-24
Replicating Objects with Materialized Views 20-25
Monitoring and Managing Replication Environments 20-26
Job Queue Changes 20-27
LONG to LOB Migration 20-28
Changes for Related Oracle9i Features 20-29
Installation and Upgrade 20-30
Replication Support for Unicode 20-31
Summary 20-32

A Practices

B Solutions

xv

xvi

13
Copyright © Oracle Corporation, 2001. All rights reserved.

File Management

Oracle9i: New Features for Administrators 13-2

Copyright © Oracle Corporation, 2001. All rights reserved.13-2

Objectives

After completing this lesson, you should be able
to do the following:

• Understand the concept and benefits behind
Oracle-Managed Files (OMF)

• Create and manage OMF files

• Use SQL syntax to remove associated OS files
when removing a non-OMF tablespace from the
database

• Create and alter default temporary tablespaces

Oracle9i: New Features for Administrators 13-3

Copyright © Oracle Corporation, 2001. All rights reserved.13-3

Oracle-Managed Files Overview

• Oracle creates and deletes files as needed for
tablespaces, temp files, online logs, control files.

• You only specify the OS directory to be used for
each file type:
– Reduce corruption caused by administrators

– Reduce wasted disk space consumed by obsolete
files

– Simplify creation of test and development databases

– Make development of portable applications easier

• OMF and non-OMF files can coexist

Oracle-Managed Files Overview
The Oracle-Managed Files (OMF) goal is to simplify the administration of Oracle
databases by eliminating the need for administrators to manage the files composing an
Oracle database directly. Administrators specify operations in terms of database objects
rather than by file names. Oracle internally uses standard file system interfaces to create
and delete files as needed for tablespaces, temp files, online logs, and control files.
Administrators only specify the OS file system directory to be used for a particular type of
file. The Oracle server ensures that a unique file (an Oracle-managed file) is used and
deleted when no longer needed.

OMF has the following advantages:

• Reduces corruption caused by administrators specifying the wrong file

• Reduces wasted disk space consumed by obsolete files

• Simplifies creation of test and development databases

• Makes development of portable third-party tools easier because it eliminates the need
to put operating system-specific file names in SQL scripts.

Note: Using Oracle-Managed Files does not eliminate any existing functionality. Existing
databases are able to operate as they always have. New files can be created as managed
files while old ones are administered in the old way. Thus, a database can have a mixture of
Oracle-managed and unmanaged files.

Also, this feature does not affect the creation or naming of administrative files such as trace
files, audit files, alert files, and core files.

Oracle9i: New Features for Administrators 13-4

Copyright © Oracle Corporation, 2001. All rights reserved.13-4

Who Can Use Oracle-Managed Files?

• Low end databases

• Databases that are supported by the following:
– A logical volume manager that supports

striping/RAID and dynamically extensible logical
volumes

– A file system that provides large, extensible files

Who Can Use Oracle-Managed Files?

The OMF feature is not intended to ease administration of systems that use raw disks. This
feature provides better integration with operating system functionality for disk space
allocation. Because there is no operating system support for allocation of raw disks (it is
done manually), this feature cannot help. On the other hand, because OMF requires that you
use the operating system file system (unlike raw disks), you lose control over how files are
laid out on the disks, and thus, you lose some tuning ability.

Oracle9i: New Features for Administrators 13-5

Copyright © Oracle Corporation, 2001. All rights reserved.13-5

New Dynamic Initialization Parameters

• Default OS directory:
– DB_CREATE_FILE_DEST

• Control files and online log files:
– DB_CREATE_ONLINE_LOG_DEST_n

• Two basic OMF configurations:
– All files in one file system directory

– Data files and temp files separated from log files
and control files

New Initialization Parameters

The default file system directory is the location where Oracle creates database files (data
files, temp files, control files, and redo log files) when no file specification has been given
in a corresponding creation operation. The DBA defines this location with the
DB_CREATE_FILE_DEST initialization parameter.

Two basic OMF configurations are envisioned:

1. A single initialization parameter, DB_CREATE_FILE_DEST, is specified. This is
probably a low end database. All the data files, temp files, control files and online logs
are created in the same file system location.

2. DB_CREATE_FILE_DEST is set to give the default location for data files and temp
files. DB_CREATE_ONLINE_LOG_DEST_n is set to give the default locations for
online logs and control files. This configuration provides good separation of data files
and online logs, and optional Oracle multiplexing of online logs and control files
(DEST_1, DEST_2, …, DEST_5).

Note: Some operations already do not require a specific file creation to be supplied (For
example CREATE DATABASE). These operations have a port-specific default creation
location. The new initialization parameters provide a way to override that default.

Also, it is possible to dynamically modify the above parameters with ALTER SESSION or
ALTER SYSTEM commands.

Oracle9i: New Features for Administrators 13-6

Copyright © Oracle Corporation, 2001. All rights reserved.13-6

OMF Example

1. Setting the initialization parameters

2. Creating a database

Note: Every created data file and log file is 100 MB
by default, with auto extensibility set, with
unlimited size for data files

DB_CREATE_FILE_DEST = ’/u01/oradata/’
DB_CREATE_ONLINE_LOG_DEST_1 = ’/u02/oradata/’
DB_CREATE_ONLINE_LOG_DEST_2 = ’/u03/oradata/’

CREATE DATABASE;

OMF Example

Assume that you want to create a database where the data files and temp files are separated
from the online logs and control files. The online logs and control files are Oracle
multiplexed.

The DB_CREATE_FILE_DEST parameter sets the default file system directory for the
data files, and temp files (/u01/oradata). DB_CREATE_ONLINE_LOG_DEST_1 and
DB_CREATE_ONLINE_LOG_DEST_2 set the default file system directories for online
log and control file creation. Each online log and control file is multiplexed across the two
directories (/u02/oradata and /u03/oradata).

Once the initialization parameters are set, you can create the database with the CREATE
DATABASE statement.

Because a DATAFILE clause is not present and the DB_CREATE_FILE_DEST
initialization parameter is set, the system tablespace data file is created in the default file
system (/u01/oradata). The file is auto extensible with an initial size of 100 MB and
an unlimited maximum size. The file is an Oracle managed file.

Similarly, because a LOGFILE clause is not present, two online log groups are created.
Each log group has two members, with one member in the
DB_CREATE_ONLINE_LOG_DEST_1 location and the other member in the
DB_CREATE_ONLINE_LOG_DEST_2 location. The log files are created with a size of
100 MB. The log file members are Oracle-managed files.

Oracle9i: New Features for Administrators 13-7

Copyright © Oracle Corporation, 2001. All rights reserved.13-7

OMF File Names Structure

• OMF files comply with OFA
– Control files ora_%u.ctl

– Redo log files ora_%g_%u.log

– Data files ora_%t_%u.dbf

– Temporary data files ora_%t_%u.tmp

• You can manipulate existing OMF files like normal
files in SQL commands.

• In order to determine if a database file is OMF:
– Look at the alert.log file

– If the alert.log is no longer available, look at the
file name

OMF File Names Structure
OMF file names are accepted in SQL commands wherever a file name is used to identify an
existing file. That is why there is no additional flag in the data dictionary to make the
distinction between OMF and non-OMF files. Only the name can tell. For many commands
there is an alternate method for identifying the file (a file number, for example) so that the
name does not have to be typed.

If a statement that creates an Oracle-managed file finds an error or does not complete due to
some failure, then any Oracle-managed files created by the statement are automatically
deleted as part of the recovery of the error or failure. However, because of the large number
of potential errors that can occur with file systems and storage subsystems, there can be
situations where you must manually remove the files using operating system commands.
When an Oracle-managed file is created, its filename is written to the alert file. This
information can be used to find the file if it is necessary to manually remove the file.

On the above slide the meaning of the wildcard characters is the following:

• %u is an 8 character string that guarantees uniqueness

• %t is the tablespace name, truncated if necessary to fit into the maximum length file
name. The tablespace name is placed before the uniqueness string so that all data files
for a tablespace will appear next to each other in an alphabetic file listing

• %g is the log file group number

• "ora_" identifies the file as an Oracle-managed file

Oracle9i: New Features for Administrators 13-8

OMF File Names Structure (continued)
Note: The above discussion is based on Solaris systems, but on other platforms the names
should be similar, subject to the constraints of the platform’s naming rules. Undo files do
not have a special extension as with temp files; they are considered just like any other data
files.

Oracle9i: New Features for Administrators 13-9

Copyright © Oracle Corporation, 2001. All rights reserved.13-9

Managing OMF Control Files:
Database Creation

• If no CONTROL_FILES parameter is specified,
Oracle uses (in order of precedence):
– DB_CREATE_ONLINE_LOG_DEST_n

– DB_CREATE_FILE_DEST

• If none of the above are specified, the default
destination is used (non-OMF).

• After database creation, create a CONTROL_FILES
entry in the initialization parameter file (see Note)

• If there is a CONTROL_FILES parameter specified,
then the behavior is unchanged

Managing OMF Control Files

Here are the two cases:

• If the CONTROL_FILES initialization parameter is not set when the database is
created, a control file is created in each of the
DB_CREATE_ONLINE_LOG_DEST_n locations. If those parameters are not
specified, then Oracle tries to use the DB_CREATE_FILE_DEST parameter. If not
specified, then Oracle creates a non-OMF control file in the default directory
depending on the operating system used. If Oracle creates an OMF control file, you
are then required to add the CONTROL_FILES parameter, set to the generated file
names, in the initialization parameter file.

Note: If a persistent parameter file is used (new in Oracle9i), the CONTROL_FILES
parameter is automatically set and saved when the database is created.

• If the CONTROL_FILES parameter is set in the initialization parameter file, then
depending on the specified names (OMF format or not), the created control files can
be OMF or not.

Oracle9i: New Features for Administrators 13-10

Copyright © Oracle Corporation, 2001. All rights reserved.13-10

Impact of OMF on CREATE CONTROLFILE
Command

• If the DB_CREATE_…parameters are specified then the
created control file will be OMF.

• You must create a CONTROL_FILES entry in the
INIT.ORA file unless a server parameter file is used.

• You must supply filenames in the DATAFILE clause
even for existing OMFs.

• Depending on the [NO]RESETLOGS clause you must:
– Supply log file name if using NORESETLOGS

– Let Oracle create OMF redo logs if using RESETLOGS

Impact of OMF on CREATE CONTROLFILE Command

When you issue the CREATE CONTROLFILE statement, a control file is created (or
reused, if REUSE is specified) in the files specified by the CONTROL_FILES
initialization parameter. If the CONTROL_FILES parameter is not set, then the control file
is created in the default control file destinations. In order of precedence, the default
destination is:

• DB_CREATE_ONLINE_LOG_DEST_ n

• DB_CREATE_FILE_DEST, if no DB_CREATE_ONLINE_LOG_DEST_ n
specified

• If neither of the above parameters are specified, then the default location is used as in
previous versions (this is system dependent), and the control file is non-OMF.

If Oracle creates an OMF control file, and there is a server parameter file, then Oracle
creates a CONTROL_FILES initialization parameter for the server parameter file. If there
is no server parameter file, then you must create a CONTROL_FILES entry in the
INIT.ORA file. If the data files in the database are Oracle-managed files, then the Oracle
generated filenames for the files must be supplied in the DATAFILE clause of the
statement.

Oracle9i: New Features for Administrators 13-11

Impact of OMF on CREATE CONTROLFILE Command (continued)

If the online redo log files are Oracle-managed files, then the [NO]RESETLOGS keyword
determines what can be supplied in the LOGFILE clause:

• NORESETLOGS: The Oracle-generated filenames for the Oracle-managed online redo
log files must be supplied in the LOGFILE clause.

• RESETLOGS: The online redo log file names can be supplied as with the CREATE
DATABASEstatement.

Oracle9i: New Features for Administrators 13-12

Copyright © Oracle Corporation, 2001. All rights reserved.13-12

Managing OMF Redo Log Files

• You can add a complete group with the
ALTER DATABASE ADD LOGFILE command (no file
specification, init.ora parameters are used).

• You continue to add or remove individual
members by specifying full file names.

• If you drop a group, all the corresponding OMF
files are deleted at the OS level as well.

• Archived logs cannot be OMF files.

ALTER DATABASE ADD LOGFILE;

ALTER DATABASE ADD LOGFILE SIZE 10M;

Managing OMF Redo Log Files
You can use the ALTER DATABASE ADD LOGFILE statement to add a new group to
your current online redo log. The filename in the ADD LOGFILE clause is optional if you
are using Oracle-managed files. If a filename is not provided, then a redo log file is created
in the default log file destination. In order of precedence, the default destination is defined
as follows:

• If DB_CREATE_ONLINE_LOG_DEST_ n initialization parameters are specified,
then an Oracle-managed log file member is created in each directory specified in the
parameters (up to MAXLOGMEMBERS for the database)

• If the DB_CREATE_FILE_DEST initialization parameters specified, and no
DB_CREATE_ONLINE_LOG_DEST_ n initialization parameters are specified,
then an Oracle-managed log file member is created in the directory specified in the
parameter.

If a filename is not provided and you have not provided one of the initialization parameters
required for creating Oracle-managed files, then the statement returns an error. The default
size for an Oracle-managed log file is 100 MB but as the second example above shows, you
can override this default.

Online redo log file members continue to be added and dropped by specifying complete
filenames (they are considered as OMF or not depending on the files names).

Archiving of log files works as it does today using LOG_ARCHIVE_DEST_n and
LOG_ARCHIVE_FORMAT initialization parameters. The archived logs are not OMF.

Oracle9i: New Features for Administrators 13-13

Copyright © Oracle Corporation, 2001. All rights reserved.13-13

Managing OMF Tablespaces
• The CREATE TABLESPACE command has been

modified: DATAFILE clause no longer mandatory.

• By default, OMF files are 100 MB in size and set to
auto extend with unlimited size.

• When you drop a tablespace, all OMF files are also
deleted at the OS level.

• You can also add OMF files to a tablespace.

• The default file system directory can be
dynamically changed.

CREATE TABLESPACE TBS1 [DATAFILE SIZE 200M];

ALTER TABLESPACE TBS1 ADD DATAFILE;

ALTER SYSTEM SET DB_CREATE_FILE_DEST=’/oradata/’;

Managing OMF Tablespaces

The default storage for all future tablespace is the location specified by the
DB_CREATE_FILE_DEST initialization parameter. If not specified, an error is raised
during OMF tablespace creation.

The CREATE TABLESPACE command has been modified so that the DATAFILE clause
is no longer required. The data file is created in the file system specified by the
initialization parameter DB_CREATE_FILE_DEST.

By default, OMF data files are created with an initial size of 100 megabytes and they are
auto extensible with an unlimited maximum size. As shown in the first example above, you
can change those default values. The file names are internally generated and can be seen by
selecting the usual views. When the tablespace is dropped, the Oracle-managed files for the
tablespace are automatically removed.

Oracle does not automatically create a new data file. More space can be added to the
tablespace by adding another Oracle-managed data file. The ADD DATAFILE command
has been modified so that a file specification is no longer required. The default file system
can be changed dynamically by changing the DB_CREATE_FILE_DEST initialization
parameter using ALTER SYSTEM or ALTER SESSION commands. This does not change
any existing data files. It only affects future creations.

Note: Everything true for normal tablespaces is also true for [DEFAULT]TEMPORARY
and UNDO tablespaces. So CREATE TEMPORARY|UNDO TABLESPACE, and ALTER
TABLESPACE ADD TEMPFILE commands no more need a file specification.

Oracle9i: New Features for Administrators 13-14

Copyright © Oracle Corporation, 2001. All rights reserved.13-14

OMF Examples

SQL> create tablespace tbs02
2 datafile size 300m, size 300m;

SQL> alter database add logfile size 400m;

SQL> alter database recover datafile
2 ’ora_tbs1_2ixfh90q.dbf’;

SQL> alter table emp allocate extent
2 (datafile ’ora_tbs1_2ixfh90q.dbf’);

SQL> alter database create datafile
2 ’/u03/oradata/payroll/ora_tbs1_sd84oqy9.dbf’
3 as new;

OMF Examples

Here are some examples of OMF commands:

• The first example creates two OMF data files in the default directory but with
specified size.

• The second example adds an OMF log file to the default directory with a 400 MB
size.

• The third example recovers the specified OMF data file.

• The fourth example adds one extent to the table in the specified file.

• The last example creates a new OMF data file in the default data file destination. The
old OMF file, if it exists, will be deleted.

Note: The AS NEW clause can be given to create an Oracle-managed data file in the default
data file location. If the AS NEW clause is specified and the old file is an Oracle-managed
file then the old file is deleted.

It should not be necessary for an administrator to use this command because RMAN uses
this as a means of restoring a file when no backup exists. This would normally happen
when the file has been created since the last scheduled backup of the tablespace.

Oracle9i: New Features for Administrators 13-15

Copyright © Oracle Corporation, 2001. All rights reserved.13-15

OMF and Standby Databases

• New STANDBY_FILE_MANAGEMENT parameter
– AUTO: File adds on the primary are recreated on the

standby using the same file names
– MANUAL: Any OMF file adds on the primary are

reproduced on the standby with different names

• Path can be different depending on
DB_FILE_NAME_CONVERT

• DB_CREATE_FILE_DEST can be specified but only
relevant after Standby activation (future files) and
possibly when adding OMF data file on the primary

• Redo of tablespaces drop causes all
corresponding standby OMF files to be purged

OMF and Standby Databases
A new standby initialization parameter, STANDBY_FILE_MANAGEMENT, is added. Its
default value is FALSE and can have the following values:

• AUTO: A redo of a file add (OMF and non-OMF) will re-create the file with the same
name if it does not already exist. The file name conversion parameters are applied
first (if any). Also, other operations that add, remove or rename files will not be
allowed.

• MANUAL: Redo for a non-OMF file is handled as it is today: an entry is created in the
control file, but a file is not created. Redo for an OMF file add causes an OMF file
with a new name to be created in the standby’s default destination
(DB_CREATE_FILE_DEST). File name conversion parameters are not applied to the
file name.

Redo of a tablespace drop (from the primary site), causes the tablespace’s OMF files to be
purged. In this case, non-OMF files (if any) are not purged for compatibility reasons.

ACTIVATE STANDBY DATABASE, CLEAR LOGFILE, and OPEN RESETLOGS
create new OMF log files in the default destinations if there are any OMF log files in the
control file, and the control file is a standby.

Except for the above case, if the DB_CREATE_FILE_DEST parameter is specified in the
Standby INIT.ORA file file, Oracle uses it whenever you activate the standby. Oracle uses
this parameter to know where to create the files now and in the future.

Oracle9i: New Features for Administrators 13-16

Copyright © Oracle Corporation, 2001. All rights reserved.13-16

Automatically Drop Non-OMF Data Files

• A new option is added to the DROP TABLESPACE
command to delete the OS files associated with
the tablespace:

• A new option is added to the ALTER DATABASE
TEMPFILE DROP command to delete the
corresponding OS files:

• No specific redo is generated for OS files removal.

DROP TABLESPACE TBS1 INCLUDING CONTENTS
AND DATAFILES [CASCADE CONSTRAINTS];

ALTER DATABASE TEMPFILE ’…’
DROP INCLUDING DATAFILES;

Automatically Drop Non-OMF Data Files

The goal of this new feature is to simplify the administration of Oracle databases by
providing administrators with an option to automatically remove a tablespace’s operating
system files when removing the tablespace from the database. This is working even if the
tablespace does not contain OMF files.

Changes have been made to the DROP TABLESPACE and ALTER DATABASE
TEMPFILE commands in order to support this feature:

INCLUDING CONTENTS AND DATAFILES: Deletes the contents and operating system
files of the tablespace. A message is written to the alert log for each file deleted. The
command succeeds even if an operating system error prevents the deletion of a file. A
message describing the error is written to the alert log.

DROP INCLUDING DATAFILES: Drops the temp file from the database and deletes the
operating system file. The tablespace remains. A message iswritten to the alert log for each
file deleted. The command succeeds even if an operating system error prevents the deletion
of the file. A message describing the error is written to the alert log.

In addition, rollback of some operations that create operating system files will remove the
operating system files. This includes: ALTER TABLESPACE ADD DATAFILE, CREATE
TABLESPACE, and CREATE TEMPORARY TABLESPACE.

Note: No specific redo is generated for OS file removal. So, the removal of the operating
system file is not repeated in a standby database.

Oracle9i: New Features for Administrators 13-17

Copyright © Oracle Corporation, 2001. All rights reserved.13-17

Default Temporary Tablespace

• The Oracle9i default temporary tablespace feature
allows you to specify a database-wide default
temporary tablespace.

• The default temporary tablespace can be created
using the CREATE DATABASE or ALTER DATABASE
commands.

• When specified with the CREATE DATABASE
command, the default temporary tablespace is
locally managed and cannot be specified as
SYSTEM.

Default Temporary Tablespace

The default temporary tablespace feature specifies that a temporary tablespace is to be
created at database creation time. This tablespace is used as the default temporary
tablespace for users who are not otherwise assigned a temporary tablespace.

Users can be explicitly assigned a default temporary tablespace in the CREATE USER
statement. But if no temporary tablespace is specified, they default to using the SYSTEM
tablespace. It is not good practice to allow users to store even temporary data in the
SYSTEM tablespace. To avoid this problem, and to avoid the need to assign every user a
default temporary tablespace at CREATE USER time, you can use this feature.

Note: A default temporary tablespace can be locally or dictionary managed and can be
defined with the CREATE TEMPORARY TABLESPACE command or with the CREATE
TABLESPACE … TEMPORARYcommand.

Oracle9i: New Features for Administrators 13-18

Copyright © Oracle Corporation, 2001. All rights reserved.13-18

Default Temporary Tablespace

• If a default temporary tablespace is not defined at
database creation, the SYSTEM tablespace is the
default temporary tablespace and a warning in
ALERT.LOG is made.

• Users not explicitly assigned to a temporary
tablespace are assigned to the default temporary
tablespace.

• You can query the DATABASE_PROPERTIES view to
retrieve the current default temporary tablespace:

SQL> SELECT property_value
2 FROM database_properties
3 WHERE property_name =
4 ’DEFAULT_TEMP_TABLESPACE’;

Default Temporary Tablespace

Oracle strongly encourages the creation of a default temporary tablespace when creating the
database in order to move away from using the SYSTEM tablespace for temporary data.

Users can obtain the name of the current default temporary tablespace using the
DATABASE_PROPERTIES view. The PROPERTY_NAME column contains the value
"DEFAULT_TEMP_TABLESPACE" and the PROPERTY_VALUE column contains the
default temporary tablespace name.

Oracle9i: New Features for Administrators 13-19

Copyright © Oracle Corporation, 2001. All rights reserved.13-19

Create Default Temporary Tablespace
at Database Creation Time

CREATE DATABASE db1 CONTROLFILE REUSE
LOGFILE ’log1.log’ SIZE 10M
LOGFILE ’log2.log’ SIZE 10M
DATAFILE ’df1.dbf’ AUTOEXTEND ON

’df2.dbf’ AUTOEXTEND ON
NEXT 10M MAXSIZE UNLIMITED

DEFAULT TEMPORARY TABLESPACE dts1
TEMPFILE ’dts_1.f ’ SIZE 60M
EXTENT MANAGEMENT LOCAL UNIFORM SIZE 1M;

Create Default Temporary Tablespace at Database Creation Time
You can specify the DEFAULT TEMPORARY TABLESPACE clause of the CREATE
DATABASE command to create a default temporary tablespace for the database. Oracle
assigns to this temporary tablespace any users for whom you do not specify a different
temporary tablespace. If you do not specify this clause, the SYSTEM tablespace is the
default temporary tablespace.

You can also specify how you want this tablespace to be managed. In the above example, a
locally managed tablespace is used.

Note: The default temporary tablespace must have a standard block size.

Oracle9i: New Features for Administrators 13-20

Copyright © Oracle Corporation, 2001. All rights reserved.13-20

Alter Default Temporary Tablespace

• The ALTER DATABASE command has been
extended to allow changing the default temporary
tablespace:

SQL> ALTER DATABASE db1
2 DEFAULT TEMPORARY TABLESPACE dts2;

• Users using the old default temporary tablespace
are automatically reassigned to the new default
temporary tablespace

Alter Default Temporary Tablespace

When migrating from earlier versions of Oracle, the DBA is able to assign any temporary
tablespace, either dictionary or locally managed, as the default temporary tablespace using
the ALTER DATABASE command.

Note: When a user is explicitly assigned to the default temporary tablespace, this same user
is automatically assigned to the new default temporary tablespace whenever you change the
default temporary tablespace by using the ALTER DATABASE command.

Oracle9i: New Features for Administrators 13-21

Copyright © Oracle Corporation, 2001. All rights reserved.13-21

Restrictions on
Default Temporary Tablespace

• The default temporary tablespace cannot be
dropped until after a new default is made available.

• Altering the default temporary tablespace to a
permanent tablespace is not allowed (except for
SYSTEM tablespace).

• The default temporary tablespace cannot be taken
offline.

Restrictions on Default Temporary Tablespace

• Dropping a default temporary tablespace: Dropping the default temporary tablespace
is not allowed until after a new default is made available. TheALTER DATABASE
command must be used to change the default temporary tablespace to a new default.
The old default temporary tablespace is then dropped only after a new default
temporary tablespace is made available. Users assigned to the old default temporary
tablespace are automatically reassigned to the new default temporary tablespace

• Changing to a permanent type versus temporary type: Because a default temporary
tablespace must be either SYSTEM tablespace or a temporary type tablespace,
changing the default temporary tablespace to a permanent type is not allowed.

• Taking default temporary tablespace offline: Tablespaces are taken offline to make
that part of the database unavailable to other users (that is, an offline backup,
maintenance, or making a change to an application that uses the tablespace). Because
none of these situations apply to a temporary tablespace, taking a default temporary
tablespace offline is not allowed.

Oracle9i: New Features for Administrators 13-22

Copyright © Oracle Corporation, 2001. All rights reserved.13-22

Summary

In this lesson, you should have learned how to:

• Create and manage Oracle-Managed Files (OMF)
• Use the new INCLUDING clauses to remove files

at the OS level

• Assign a database wide default temporary
tablespace

Oracle9i: New Features for Administrators 13-23

Copyright © Oracle Corporation, 2001. All rights reserved.13-23

Practice 13-1 Overview

This practice covers the following topics:

• Creating and managing OMF and non-OMF files in
the same database

• Using the INCLUDING clause of the DROP
TABLESPACE command to remove non-OMF files

• Using the new db_create_file_dest
initialization parameter

Oracle9i: New Features for Administrators 13-24

Copyright © Oracle Corporation, 2001. All rights reserved.13-24

Practice 13-2 Overview

This practice covers the following topics:

• Assigning a default temporary tablespace to users
• Using the DATABASE_PROPERTIES view

14
Copyright © Oracle Corporation, 2001. All rights reserved.

Tablespace Management

Oracle9i: New Features for Administrators 14-2

Copyright © Oracle Corporation, 2001. All rights reserved.14-2

Objectives

After completing this lesson, you should be able
to do the following:

• Understand the concept of Automatic Undo
Management

• Create and maintain undo tablespaces

• Create and properly use multiple block sizes
within a database

Oracle9i: New Features for Administrators 14-3

Copyright © Oracle Corporation, 2001. All rights reserved.14-3

Automatic Undo Management

• Automatic Undo Management simplifies and
automates rollback segment management.

• You can manage rollback segments automatically
or manually by choosing a rollback mode.

• The mode is set with the UNDO_MANAGEMENT
initialization parameter with these values:
– AUTO: The instance manages rollback segments

automatically.
– MANUAL (default): You must create and manage

rollback segments manually.

Automatic Undo Management (AUM)

Every Oracle database must have a method of maintaining information that is used to roll
back, or undo, changes to the database. Such information consists of records of the actions
of transactions, primarily before they are committed. Oracle refers to these records
collectively as undo records.

When a rollback statement is issued, undo records are used to undo changes that were made
to the database by the uncommitted transaction. During instance recovery, undo records are
used to undo any uncommitted changes applied from the redo log to the data files. Undo
records provide read consistency by maintaining the before image of the data for users who
are accessing the data at the same time that another user is changing it.

Historically, Oracle has used rollback segments to store undo. Space management for these
rollback segments has proven to be quite complex. Oracle now offers another method of
storing undo that eliminates the complexities of managing rollback segment space, and
allows DBAs to exert control over how long undo is retained before being overwritten. This
method uses an undo tablespace.

You cannot use both methods in the same database instance, although for migration
purposes it is possible, for example, to create undo tablespaces in a database that is using
rollback segments, or to drop rollback segments in a database that is using undo
tablespaces.

Oracle9i: New Features for Administrators 14-4

Copyright © Oracle Corporation, 2001. All rights reserved.14-4

Automatic Undo Management Concepts

• Rollback data is managed by means of an undo
tablespace

• For each instance, you must allocate enough disk
space for the workload of the instance in the undo
tablespace versus allocating a number of rollback
segments in different sizes.

• The notion of a single SYSTEM rollback segment is
retained.
– Created automatically within the SYSTEM tablespace

– Automatically managed and cannot be taken offline

Automatic Undo Management Concepts

With this design, you allocate undo space in a single undo tablespace, instead of
maintaining a set of statically allocated rollback segments. For each Oracle instance, you
only have to allocate enough disk space for the workload in that instance in an undo
tablespace. You no longer need to decide on the different number and sizes of rollback
segments to create, and on how to assign transactions (of different sizes) strategically to
individual rollback segments.

Also, you don’t need to adjust the attributes of rollback segments, in order to juggle
between undo block contention and space utilization issues.

Oracle9i: New Features for Administrators 14-5

Copyright © Oracle Corporation, 2001. All rights reserved.14-5

Automatic Undo Management Concepts

• Rollback segments are still used but are internally
created and maintained, and are called undo segments.

• With automatic undo management, you cannot CREATE,
DROP, or ALTER undo segments.

• Undo segments have the same structure as normal
rollback segments but they:
– Support automatic creation

– Use a modified allocation policy compared to Oracle8i

– Support dynamic extents transfer

• SMON shrinks undo segments when needed.

Automatic Undo Management Concepts

An undo tablespace is organized as a uniform bitmapped tablespace. It is composed of one
or more files containing undo segments.

Each undo segment is assigned undo extents. The structure of these segments are internally
the same as Oracle8i rollback segments, except that they cannot be manipulated by means
of the rollback segment DDL statements. They are intentionally called undo segments here
so that they will not be confused with rollback segments.

SMON is mainly responsible to shrink undo segments in the following situations:

• SMON will perform a shrink every 12 hours to remove undo space from idled undo
segments

• SMON will be signaled by foreground processes to perform a shrink whenever they
detect space pressure; that is, it has to steal space from another undo segment.

AUM mode supports automatic creation of undo segments. When the first DML operation
in a transaction is executed, an undo segment is chosen. The AUM transaction-bind
algorithm first attempts to bind one transaction per undo segment. If such a segment cannot
be found, the system will attempt to online other undo segments in the current undo
tablespace. If none is available, a new undo segment is created and brought online. If none
of the above steps succeed (for example, an undo segment cannot be created because the
undo tablespace is out of space), the transaction-bind algorithm then retries using the
Oracle8i approach, find the least-used undo segment. In these cases, several transactions are
executed in the same undo segment.

Oracle9i: New Features for Administrators 14-6

Dynamic Extents Transfer

AUM mode supports dynamic transfer of undo space between undo segments. If an
executing transaction needs more undo space, space is reused either from the current undo
segment or through an extension (such as today). If none of these steps results in enough
free space for the transaction, inactive undo space is stolen from other undo segments. This
dynamic scheme allows space to be reused efficiently, so that users do not see any ORA-
30036 unless the undo tablespace is truly out of space.

Copyright © Oracle Corporation, 2001. All rights reserved.14-6

Dynamic Extents Transfer

US1

US2

US3

US4

E
X
T
E
N
T

US1

US2

US3

US4

E
X
T
E
N
T

US1

US2

US3

US4

Undo Tablespace

I
N
A
C
T
I
V
E

Reduce chances of ORA-30036

F
U
L
L

USn stands for undo segment number n

Oracle9i: New Features for Administrators 14-7

Copyright © Oracle Corporation, 2001. All rights reserved.14-7

Specifying the Mode for Undo Space
Management

• Starting in AUM mode:
– UNDO_MANAGEMENT = AUTO

– UNDO_TABLESPACE: Specifies a particular undo
tablespace to be used. If it does not exists an error is
raised. This parameter is dynamic.

– If AUM is chosen and no undo tablespace is specified,
Oracle9i uses the first available one. If none are
available, Oracle9i uses the SYSTEM rollback segment.

• Starting in Rollback Segment Undo (RBU) Mode:
– UNDO_MANAGEMENT = MANUAL (the default) or

– Leave old initialization file unchanged

Specifying the Mode for Undo Space Management
If you use the rollback segment method of managing undo space, you are said to be using
the rollback segment undo (RBU) scheme. If you use the undo tablespace method, you are
using the Automatic Undo Management (AUM) scheme. You determine whether to operate
in RBU or AUM mode at instance startup using the UNDO_MANAGEMENT initialization
parameter.

Starting an Instance in AUM Mode
The following initialization parameter setting causes the STARTUP command to start an
instance in AUM mode: UNDO_MANAGEMENT = AUTO. The default value for this
parameter is MANUAL.

When the instance starts up, it uses the undo tablespace specified by the
UNDO_TABLESPACE dynamic initialization parameter. For example:

UNDO_TABLESPACE = undotbs01

The undo tablespace (in this example, undotbs01) must have already been created as
explained in the next slides, or the STARTUP command will fail. If the
UNDO_TABLESPACE parameter is omitted, the first available undo tablespace in the
database is chosen. If there is no undo tablespace available, the instance starts, but uses the
SYSTEM rollback segment. This is not recommended in normal circumstances, and an
alert message is written to the alert file to warn the DBA that the system is running without
an undo tablespace.

Note: If the initialization parameter file contains parameters relating to RBU mode, they
are ignored.

Oracle9i: New Features for Administrators 14-8

Starting an Instance in Rollback Segment Undo (RBU) Mode
The following initialization parameter setting causes the STARTUP command to start an
instance in RBU mode: UNDO_MANAGEMENT = MANUAL

If the UNDO_MANAGEMENT initialization parameter is not specified, the instance starts in
RBU mode. If an UNDO_TABLESPACE initialization parameter is found, it is ignored. For
DBAs who want to run their databases in RBU mode, their existing initialization parameter
file can be used without any changes.

Note: You should continue to use old parameters such as ROLLBACK_SEGMENTS,
TRANSACTIONS, TRANSACTIONS_PER_ROLLBACK_SEGMENT, and
MAX_ROLLBACK_SEGMENTS, as previously.

Oracle9i: New Features for Administrators 14-9

Copyright © Oracle Corporation, 2001. All rights reserved.14-9

Creating an Undo Tablespace at Database
Creation Time

• An undo tablespace can be created if the instance
is started in AUM mode.

• If you do not specify an UNDO TABLESPACE clause,
an undo tablespace with the name SYS_UNDOTBS
is created.
– Default file size: 10 MB, AUTOEXTEND ON

– Default file name: DBU1<ORACLE.SID>.dbf

SQL> CREATE DATABASE
2 UNDO TABLESPACE undotbs01
3 DATAFILE SIZE 50M;

Creating an Undo Tablespace at Database Creation Time

There are two methods of creating an undo tablespace. The first method creates the undo
tablespace when the CREATE DATABASE statement is issued. It is used when you are
creating a new database, and the instance is started in AUM mode (UNDO_MANAGEMENT
= AUTO). The second method is used with an existing database. It uses the CREATE
UNDO TABLESPACE statement. You cannot create database objects in an undo
tablespace. It is reserved for automatic-managed undo data only.

To create an undo tablespace using the CREATE DATABASE statement, use the UNDO
TABLESPACE clause. The above statement use the UNDO TABLESPACE clause in a
CREATE DATABASE statement, and the undo tablespace is named undotbs01.

If the undo tablespace cannot be created successfully during CREATE DATABASE, the
entire CREATE DATABASE operation fails. You must clean up the database files, correct
the error, and retry the CREATE DATABASE operation.

If the UNDO TABLESPACE clause is not specified and the CREATE DATABASE
statement is executed in AUM mode, a default undo tablespace is created with the name
SYS_UNDOTBS. This tablespace is allocated from the default set of files used by the
CREATE DATABASE statement and its attributes are determined by Oracle. The initial
size is 10 MB, and it is auto extensible. This method of creating an undo tablespace is only
recommended to users who do not have any specific requirements for allocation of undo
space.

Note: The example assumes that OMF files are used; no file name is specified.

Oracle9i: New Features for Administrators 14-10

Copyright © Oracle Corporation, 2001. All rights reserved.14-10

Creating an Undo Tablespace
After Database Creation

An undo tablespace:

• Can be specified at instance startup using the
UNDO_TABLESPACE dynamic parameter.

• Can only be used in the AUTOMATIC mode for storing
rollback information.

• Is of permanent, locally managed type, read-write, and
in logging mode.

SQL> CREATE UNDO TABLESPACE UNDOTBS1
2 DATAFILE ’UNDOTBS1.DBF’ SIZE 50M;

Creating an UndoTablespace After Database Creation
The CREATE UNDO TABLESPACE statement is the same as the CREATE TABLESPACE
statement, but the UNDO keyword is specified. Oracle determines most of the attributes of
the undo tablespace. You can specify only the DATAFILE clause.

An undo tablespace is a permanent, locally managed tablespace, read-write, and in logging
mode with default block size. Values for MINIMUM EXTENT and DEFAULT STORAGE are
system generated.

Note: One undo tablespace must be created per instance in the Real Application Clusters
environment. Also, an undo tablespace can be created with a non-default block size (see
later in this lesson).

Oracle9i: New Features for Administrators 14-11

Copyright © Oracle Corporation, 2001. All rights reserved.14-11

Altering an Undo Tablespace

• The ALTER TABLESPACE command can be used to
make changes to undo tablespaces.

• Most parameters are system managed.

• The following example adds another data file to
the undo tablespace:

SQL> ALTER TABLESPACE UNDOTBS_1
2 ADD DATAFILE ’UNDOTBS_2.DBF’
3 AUTOEXTEND ON;

Altering an Undo Tablespace
Undo tablespaces are altered using the ALTER TABLESPACE statement. However,
because most aspects of undo tablespaces are system managed, you need only be concerned
with the following actions:

• Adding or resizing a data file

• Renaming a data file

• Bringing a data file online or taking it offline

• Beginning or ending an open backup

If an undo tablespace runs out of space, or if you want to prevent it from doing so, you can
add more files to it or resize existing data files.

Oracle9i: New Features for Administrators 14-12

Copyright © Oracle Corporation, 2001. All rights reserved.14-12

Dropping an Undo Tablespace

• This command has an implicit INCLUDING CONTENTS
clause.

• An undo tablespace can only be dropped if not currently
used by any instance.

• Readers needing information from dropped undo
tablespaces may get ORA-1555 error messages.

SQL> DROP TABLESPACE UNDOTBS_2;

Dropping an Undo Tablespace
Use the DROP TABLESPACE statement to drop an undo tablespace. The above example
drops the undotbs_2 undo tablespace.

An undo tablespace can only be dropped if it is not currently used by any instance. If the
undo tablespace contains any outstanding transactions (for example, a transaction died but
has not yet been recovered), the DROP TABLESPACE statement fails. However, because
DROP TABLESPACE drops an undo tablespace even if it contains unexpired undo
information (within the retention period). You must be careful not to drop an undo
tablespace if undo information is needed by some existing queries because readers
accessing transactions residing in dropped undo tablespaces may result in ORA-1555, if
the snapshot is older than the DROP-SCN of the undo tablespace.

DROP TABLESPACE for undo tablespaces behaves like a
DROP TABLESPACE … INCLUDING CONTENTSstatement. All contents of the undo
tablespace are removed.

Note: If you are using OMF files, then the corresponding files also get removed. You can
enter: DROP TABLESPACE … INCLUDING CONTENTS AND DATAFILESin order
to removed the corresponding non-OMF files.

Oracle9i: New Features for Administrators 14-13

Copyright © Oracle Corporation, 2001. All rights reserved.14-13

Switching Undo Tablespaces

• Only one undo tablespace can be used by an
instance at a time.
– Except for a PENDING OFFLINE UNDO tablespace

• Switching is done by using the ALTER SYSTEM
command.

ALTER SYSTEM SET UNDO_TABLESPACE=undotbs02;

ALTER SYSTEM SET UNDO_TABLESPACE=’’;

Switching Undo Tablespaces

You can switch from using one undo tablespace to another. Because the
UNDO_TABLESPACE initialization parameter is a dynamic parameter, the ALTER
SYSTEM SET statement can be used to assign a new undo tablespace. The following
statement effectively switches to a new undo tablespace:

ALTER SYSTEM SET UNDO_TABLESPACE = undotbs02;

Assuming undotbs01 is the current undo tablespace, after this command successfully
executes, the instance uses undotbs02 in place of undotbs01 as its undo tablespace.

If any of the following conditions exist for the tablespace to which you are switching, an
error is reported and no switching occurs:

• The tablespace does not exist

• The tablespace is not an undo tablespace

• The tablespace is already being used by another instance

The database is online while the switch operation is performed, and user transactions can be
executed while this command is being executed. When the switch operation completes
successfully, all transactions started after the switch operation began are assigned to
transaction tables in the new undo tablespace.

Oracle9i: New Features for Administrators 14-14

Switching Undo Tablespaces (continued)

The switch operation does not wait for transactions in the old undo tablespace to commit. If
there are any pending transactions in the old undo tablespace, the old undo tablespace
enters into a PENDING OFFLINE mode (status). In this mode, existing transactions can
continue to execute, but undo records for new user transactions cannot be stored in this
undo tablespace.

An undo tablespace can exist in this PENDING OFFLINE mode, even after the switch
operation completes successfully. A PENDING OFFLINE undo tablespace cannot be
used by another instance, nor can it be dropped. Eventually, after all active transactions
have committed, the undo tablespace automatically goes from the PENDING OFFLINE
mode to the OFFLINE mode. From then on, the undo tablespace is available for other
instances.

Note: If the parameter value for UNDO_TABLESPACE is set to ’’ (two single quotes), the
current undo tablespace will be switched out without switching in any other undo
tablespace. This can be used, for example, to unassign an undo tablespace in the event that
you want to revert to RBU mode. The following example unassigns the current undo
tablespace:

SQL> ALTER SYSTEM SET UNDO_TABLESPACE = ’’;

Oracle9i: New Features for Administrators 14-15

Copyright © Oracle Corporation, 2001. All rights reserved.14-15

Changing the Retention Period for
Undo Information

• UNDO_RETENTION: The amount of rollback
information to retain if possible
– Dynamic initialization parameter

– Default value: 30 seconds

• ORA-1555 is still possible if an undo tablespace is
too small compared to the retention time

• Size the undo tablespace using this formula:

UndoSpace = UR * UPS + overhead

Changing the Retention Period for Undo Information

Committed undo information normally is lost when its undo space is overwritten by a
newer transaction. But for consistent read purposes, long-running queries may require old
undo information for undoing changes and producing older images of data blocks. The
UNDO_RETENTION initialization parameter provides a means of explicitly specifying the
amount of undo information to retain. With a proper setting, long-running queries are more
likely to complete without risk of receiving the snapshot too old error.

Retention is specified in units of seconds. It is persistent and can survive system crashes.
That is, undo generated before an instance crash, is retained until its retention time has
expired even across restarting the instance. When the instance is recovered, undo
information is retained based on the current setting of the UNDO_RETENTION
initialization parameter.

The UNDO_RETENTION parameter can be specified initially in the initialization parameter
file, used by the STARTUP process. The UNDO_RETENTION parameter value can also be
changed dynamically at any time using the ALTER SYSTEM command.

The effect of the UNDO_RETENTION parameter is immediate, but it can only be honored if
the current undo tablespace has enough space for the active transactions. If an active
transaction requires undo space and the undo tablespace does not have available space, the
system starts reusing unexpired undo space. Such action can potentially cause some queries
to fail with the snapshot too old error.

Note: If the UNDO_RETENTION initialization parameter is not specified, the default value
is 30 seconds.

Oracle9i: New Features for Administrators 14-16

Changing the Retention Period for Undo Information (continued)
Given a specific UNDO_RETENTION parameter setting and some system statistics, the
amount of undo space required to satisfy the undo retention requirement can be estimated
using the following formula:

UndoSpace = UR * UPS + overhead

where:

• UndoSpace = number of undo blocks

• UR = UNDO_RETENTIONin seconds

• UPS = undo blocks per second

• overhead = small overhead for metadata (transaction tables, bitmaps, and so on)

As an example, if UNDO_RETENTION(UR) is set to two hours, and the transaction rate
(UPS) is 200 undo blocks per second, with a 4 KB block size, the required undo space
(excluding the small overhead) is computed as follows:

(2 * 3600 * 200 * 4 KB) = 5.8 GB .

Such computation can be performed by using information in V$UNDOSTATview explained
in the next slides.

Oracle9i: New Features for Administrators 14-17

Copyright © Oracle Corporation, 2001. All rights reserved.14-17

Data Dictionary View to Support
Automatic Undo Management

• V$UNDOSTAT contains information about how
rollback segments are used by the current
instance.

• It is available for both MANUAL or AUTO mode.

• DBA_UNDO_EXTENTS shows the commit time for
each extent in the undo tablespace.

• You can still use the views V$ROLLSTAT and
V$TRANSACTION in AUM mode.

Data Dictionary View to Support Support Automatic Undo Management

The following views are available for obtaining undo space information:

• V$UNDOSTATcontains statistics for monitoring and tuning undo space. Use this view
to help estimate the amount of undo space required for the current workload. Oracle
also uses this information to help tune undo usage in the system. This view is
available in both the AUM and the RBU mode. Statistics are available for undo space
consumption, transaction concurrency, and length of queries in the instance. Each row
in the view contains statistics collected in the instance for a certain period of time.
The rows are in descending order by the BEGIN_TIME column value. Each row
belongs to the time interval (generally about 10 minutes) marked by (BEGIN_TIME,
END_TIME). Each column represents the data collected for the particular statistic in
that time interval. The first row of the view contains statistics for the (partial) current
time period, and his END_TIMEis moving. The view ultimately reflects 24-hours
before it is reset and begins the cycle again. Every time the instance is started, this
view is reset.

• V$ROLLSTAT for AUM mode, information reflects behavior of the undo segments in
the undo tablespace.

• V$TRANSACTIONcontains undo segment information.

• DBA_UNDO_EXTENTSshows the commit time for each extent in the undo
tablespace.

Oracle9i: New Features for Administrators 14-18

Copyright © Oracle Corporation, 2001. All rights reserved.14-18

New Data Dictionary View to Support
Automatic Undo Management

This V$UNDOSTAT example illustrates how undo
space is consumed in the system for the previous
24 hours from time 16:07.

End- Undo Txn Txn Query Exten SSTooOld
Time Blocks Concrcy Total Len Stolen Error
----- ------ ------- ------ ------ ------ --------
16:07 252 15 151 25 2 0
16:00 752 16 1467 150 0 0
15:50 873 21 1954 45 4 0
15:40 1187 45 3210 633 20 1
15:30 1120 28 2498 1202 5 0
15:20 882 22 2002 55 0 0
...

New Data Dictionary View to Support Automatic Undo Management
Here is the detail of some of the important columns found in the V$UNDOSTAT view:

• BEGIN_TIME /END_TIME: Indicates the beginning/end of a time interval marked.
The rows are ordered descending by END_TIME

• UNDOBLCKS: Represents the total number of undo blocks consumed. Used to obtain
consumption rate of undo blocks, and to estimate the size of the undo tablespace
needed to handle the workload of the system

• MAXCONCURRENCY: Represents the maximum number of transactions executed
concurrently. Used as a reference for users to understand the level of concurrency in
the current system

• TXNTOTAL: Shows the total number of transactions executed within the period

• MAXQUERYLEN: Represents the maximum length of queries executed in the
instances

• SSOLDERRCNT: Shows the number of snapshot too old errors that have occurred
within a period. You can use this statistic to decide whether or not the
UNDO_RETENTIONparameter is set properly given the size of the undo tablespace.
Increasing the UNDO_RETENTIONvalue can reduce the occurrence of this error.

Oracle9i: New Features for Administrators 14-19

Dictionary View to Support Automatic Undo Management (continued)
The example above illustrates the peak undo consumption happened at the interval of
(15:30, 15:40), 1187 undo blocks were consumed in 10 minutes (or about 2 blocks/second).
Also, the highest transaction concurrency occurred during that same period with 45
transactions executing at the same time. The longest query execution (1202 seconds) was
executed in the period (15:20, 15:30).

Oracle9i: New Features for Administrators 14-20

Copyright © Oracle Corporation, 2001. All rights reserved.14-20

New Parameters to Support
Automatic Undo Management: Summary

• UNDO_MANAGEMENT = {AUTO|MANUAL}

• UNDO_TABLESPACE: Specifies the undo tablespace
to be used

• UNDO_SUPPRESS_ERRORS = TRUE:
Suppresses errors while attempting to execute
manual operations while in AUTO mode

• UNDO_RETENTION: Controls the amount of
rollback information to retain

New Parameters to Support Automatic Undo Management: Summary
UNDO_SUPPRESS_ERRORS enables users to suppress errors while executing RBU
(rollback undo mode) operations (for example, ALTER ROLLBACK SEGMENT ONLINE)
in AUM (Automatic Undo Managed) mode. Setting this parameter enables users to use the
AUM feature before all application programs and scripts are converted to AUM mode. For
example, if you have a tool that uses SET TRANSACTION USE ROLLBACK SEGMENT
statement, you can add the statement "ALTER SESSION SET
UNDO_SUPPRESS_ERRORS=TRUE" to the tool to suppress the error (OER 30019).

If you want to run in AUM mode, ensure that your tools or applications are updated to run
in AUM mode.

Oracle9i: New Features for Administrators 14-21

Copyright © Oracle Corporation, 2001. All rights reserved.14-21

Multiple Block Size Support

• Oracle9i supports the creation of databases with
multiple block sizes.

• The benefits to this feature include:
– Ability to maximize I/O performance

– Ability to transport tablespaces between databases
with different block sizes

• A database can be created with a standard block
size and up to four nonstandard block sizes.

• Block sizes can have any power-of-two value
between 2 KB and 32 KB.

Multiple Block Size Support

Oracle9i supports the creation of databases with multiple block sizes. This feature is useful
in the following situations:

• When transporting a tablespace from an OLTP database to an enterprise data
warehouse. Oracle9i facilitates transport between databases of different block sizes.

• When you require the ability to locate objects in tablespaces of appropriate block size
in order to maximize I/O performance.

The block size of the SYSTEM tablespace is termed the standard block size. This is set
when the database is created. With Oracle9i you can specify up to four nonstandard block
sizes, in addition to a standard block size. In the initialization file, you can configure
subcaches within the buffer cache for each of these block sizes. Subcaches can also be
configured while an instance is running. You can create tablespaces having any of these
block sizes. The standard block size is used for the system tablespace and most other
tablespaces.

Oracle9i: New Features for Administrators 14-22

Copyright © Oracle Corporation, 2001. All rights reserved.14-22

Standard Block Size

• Set at database creation using the
DB_BLOCK_SIZE parameter; cannot be changed
without recreating the database

• Used for SYSTEM and TEMPORARY tablespaces

• DB_CACHE_SIZE specifies the size of the DEFAULT
buffer cache for standard block size:
– Minimum size = one granule (4 MB or 16 MB)

– Default value = 48 MB

Standard Block Size
The DB_BLOCK_SIZE initialization parameter specifies the standard block size for the
database. This block size is used for the SYSTEM tablespace, and for any temporary
tablespace. Unless specified otherwise, the standard block size is also used as the default
block size for a tablespace. Oracle can support up to four additional nonstandard block
sizes.

The most commonly used block size should be picked as the standard block size. In many
cases, this is the only block size that you need to specify. Typically, DB_BLOCK_SIZE is
set to either 4 KB or 8 KB. If not specified, the default data block size is operating system
specific and is generally adequate.

The block size cannot be changed after database creation, except by re-creating the
database.

The DB_CACHE_SIZE initialization parameter replaces the DB_BLOCK_BUFFERS
initialization parameter that was used in previous releases. The DB_CACHE_SIZE
parameter specifies the size of the cache of standard block size buffers, where the standard
block size is specified by DB_BLOCK_SIZE.

For backward compatibility the DB_BLOCK_BUFFERS parameter still works, but it
remains a static parameter and cannot be combined with any of the dynamic sizing
parameters.

Oracle9i: New Features for Administrators 14-23

Standard Block Size (continued)

Note: A granule is a unit of contiguous virtual memory allocation. The size of a granule
depends on the estimated total SGA size whose calculation is based on the value of the
parameter SGA_MAX_SIZE: 4 MB if estimated SGA size is < 128 MB, 16 MB otherwise
(for more details see later in this course).

Oracle9i: New Features for Administrators 14-24

Copyright © Oracle Corporation, 2001. All rights reserved.14-24

Nonstandard Block Sizes

• Configure additional caches with the following
dynamic parameters:
– DB_2K_CACHE_SIZE for 2K blocks

– DB_4K_CACHE_SIZE for 4K blocks

– DB_8K_CACHE_SIZE for 8K blocks

– DB_16K_CACHE_SIZE for 16K blocks

– DB_32K_CACHE_SIZE for 32K blocks

• DB_nK_CACHE_SIZE is not allowed
if nK is the standard block size

• Minimum size for each cache: one granule

Nonstandard Block Sizes

The buffer cache initialization parameters determine the size of the buffer cache component
of SGA. You use them to specify the sizes of caches for the various block sizes used by the
database. If you intend to use multiple block sizes in your database, you must have the
DB_CACHE_SIZE and at least one DB_nK_CACHE_SIZE parameter set. Each parameter
specifies the size of the buffer cache for the corresponding block size. The default value for
DB_nK_CACHE_SIZE parameters is 0. Do not set this parameter to zero if there are any
online tablespaces with an n KB block size.

Platform-specific block size restrictions apply. For example, you cannot set
DB_32K_CACHE_SIZE if the maximum block size on the platform is less than 32 KB.
Also, you cannot set DB_2K_CACHE_SIZE if the minimum block size is greater than 2
KB.

Note: These parameters cannot be used to size the cache for the standard block size. For
example, if the value of DB_BLOCK_SIZE is 2 KB, it is illegal to set
DB_2K_CACHE_SIZE. The size of the cache for the standard block size is always
determined from the value of DB_CACHE_SIZE.

Oracle9i: New Features for Administrators 14-25

Copyright © Oracle Corporation, 2001. All rights reserved.14-25

Creating a Nonstandard Block Size
Tablespace

SQL> CREATE TABLESPACE tbs_1
2 DATAFILE ’tbs_1.dbf’
3 SIZE 10M BLOCKSIZE 4K;

SQL> desc dba_tablespaces
Name Null? Type
------------------ -------- ------------
TABLESPACE_NAME NOT NULL VARCHAR2(30)
BLOCK_SIZE NOT NULL NUMBER
...

Creating a Nonstandard Block Size Tablespace
Use the BLOCKSIZE clause to specify a nonstandard block size for the tablespace. You
can specify the size in bytes or in kilobytes, using the “K” suffix.

In order to specify this clause, you must have the DB_CACHE_SIZE and at least one
DB_nK_CACHE_SIZE parameter set, and the integer you specify in this clause must
correspond with the setting of one DB_nK_CACHE_SIZE parameter setting.

Restriction: You cannot specify nonstandard block sizes for a temporary tablespace (that is,
if you also specify TEMPORARY) or if you intend to assign this tablespace as the temporary
tablespace for any users.

The first statement above creates a new tablespace called tbs_1 with the file
tbs_1.dbf having a block size of 4 KB. In order for this statement to succeed, the
buffers of size 4 KB must currently be configured in the buffer cache.

Note: A new column has been added to the *_TABLESPACES dictionary views in order to
reflect the corresponding block size used in a particular tablespace.

Oracle9i: New Features for Administrators 14-26

Copyright © Oracle Corporation, 2001. All rights reserved.14-26

Multiple Block Sizing Rules

• All partitions of a partitioned object must reside in
tablespaces of the same block size.

• All temporary tablespaces, including permanent
being used as default temporary tablespaces,
must be of standard block size.

• Index-organized table overflow and out-of-line
LOB segments can be stored in a tablespace with
a block size different from the base table.

Oracle9i: New Features for Administrators 14-27

Copyright © Oracle Corporation, 2001. All rights reserved.14-27

Summary

In this lesson, you should have learned how to:

• Create undo tablespaces with the UNDO
tablespace clause

• Use the BLOCKSIZE clause to create tablespaces
with different block sizes

Oracle9i: New Features for Administrators 14-28

Copyright © Oracle Corporation, 2001. All rights reserved.14-28

Practice 14-1 Overview

This practice covers the following topics:

• Creating a new undo tablespace and monitoring it

• Understanding the dynamic undo space transfer

• Switching undo tablespaces

Oracle9i: New Features for Administrators 14-29

Copyright © Oracle Corporation, 2001. All rights reserved.14-29

Practice 14-2 Overview

This practice covers the following topics:

• Transporting a tablespace into a database having
a different standard block size

• Using the new db_8k_cache_size initialization
parameter

Oracle9i: New Features for Administrators 14-30

15
Copyright © Oracle Corporation, 2001. All rights reserved.

Memory Management

Oracle9i: New Features for Administrators 15-2

15-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Set parameters to enable automatic and dynamic
sizing of SQL working areas

• Use new columns and views to gather information
regarding SQL execution memory management

• Describe the allocation and tracking of memory
behind a dynamic SGA

Oracle9i: New Features for Administrators 15-3

15-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Automated SQL Execution Memory
Management

• Simplifies and improves memory allocation

• The size of the SQL working areas can be
automatically and dynamically adjusted.

• Benefits include:
– Ease of memory tuning
– Reduction of time to tune memory
– Better throughput when a large number of users are

on the system
– Improved response time on queries

Automated SQL Execution Memory Management

The Automated SQL Execution Memory Management feature simplifies and improves the
way memory is allocated for SQL execution without shutting down the databases.

Benefits

Manageability: In Oracle8i, a DBA can control the maximum size of the working areas
using various parameters such as SORT_AREA_SIZE, HASH_AREA_SIZE,
BITMAP_MERGE_AREA_SIZE, and CREATE_BITMAP_AREA_SIZE, but these
parameter are difficult to set and tune. This feature releases the DBA from having to set the
various *_AREA_SIZE parameters. It provides automatic and dynamic memory tuning,
reducing the amount of time required to set and tune these parameters.

Performance: Because the parameters are automatically and dynamically adjusted, this
feature can compensate for low or high memory usage, along with controlling the
maximum amount of memory a query can use. In addition, memory-consuming operations
such as hash-join, sort, and so on, dynamically alter their memory profile to ensure the best
possible use of system memory and optimal system performance.

Usability: The above mentioned parameters can often waste PGA memory because more
memory is allocated than is needed. By reducing the amount of memory used, the memory
otherwise allocated can be better put to use by other queries.

Oracle9i: New Features for Administrators 15-4

15-4 Copyright © Oracle Corporation, 2001. All rights reserved.

PGA Memory Management

• PGA memory is classified to differentiate between
tunable and untunable memory:
– Tunable memory: Memory consumed by SQL

working areas

– Untunable memory: Remaining memory

• Sizes the tunable fraction of memory when
automatic mode is enabled

• Size of tunable portion allocated depends on an
overall PGA memory target

UNTUNABLE_MEMORY_SIZE + TUNABLE_MEMORY_SIZE <=
PGA_AGGREGATE_TARGET

PGA Memory Management

In order to define what part of the PGA memory was affected by the automatic tuning
operation, the PGA was classified to differentiate between tunable and untunable memory.
Tunable memory is the memory consumed by SQL working areas while untunable memory
is the rest. This feature concentrates on sizing the tunable fraction of the PGA memory
when the automatic mode is enabled. The size of the tunable portion allocated by an
instance depends on an overall PGA memory target explicitly set by the DBA. Under this
automatic mode the Oracle server tries to have:

UNTUNABLE_MEMORY_SIZE + TUNABLE_MEMORY_SIZE
<= PGA_AGGREGATE_TARGET

When the automatic mode is enabled, the Oracle server can only control the tunable
fraction of the PGA memory. If this memory accounts for a very small percentage of the
overall PGA memory, which is typically the case of OLTP workloads, it might be
impossible to enforce the above equation. In an OLTP system, tunable memory consumed
is a relatively limited (<1%) part of total PGA memory. Indeed, the tunable memory
probably represents a major fraction of the PGA memory only under DSS workloads. For
complex DSS workloads, the tunable memory accounts for most of the PGA memory
(>90%), and most of the memory used by the instance. In that context, managing the
tunable fraction is a very effective way to manage the overall PGA memory consumed by
the instance automatically.

Oracle9i: New Features for Administrators 15-5

15-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Enabling Automated SQL Execution
Memory Management

• Enabling automatic tuning requires the setting of
two parameters:
– PGA_AGGREGAGE_TARGET: A dynamic system

parameter
– WORKAREA_SIZE_POLICY: A dynamic session and

system level parameter, with two values:
– MANUAL: Tuning done using the %_AREA_SIZE

parameters
– AUTO: Tuning done automatically

Enabling the Automated SQL Execution Memory Management
PGA_AGGREGATE_TARGET: A new system level initialization parameter set to specify
the target aggregate amount of PGA memory available to the instance. This parameter is
only a target and can be dynamically modified at the instance level by the DBA.

There is not a default value, and the range of values is from 10 MB to 4000 GB.

It must be set to a value before WORKAREA_SIZE_POLICY is set to AUTO. If you forget
this, you get the following error:
ORA-04032: pga_aggregate_target must be set

before switching to auto mode

Oracle9i: New Features for Administrators 15-6

Enabling the Automated SQL Execution Memory Management (continued)
WORKAREA_SIZE_POLICY: A new session and system level initialization parameter,
which has two values that allow a user to select between automatic or manual tuning of
work area sizes.

• MANUAL: This mode is the default. Under the manual mode, tuning is done using the
existing %_AREA_SIZEparameters.

• AUTO: Under this mode, the work areas are sized to accomplish three goals:

– Tuned so overall size of the PGA memory never exceeds the value of
PGA_AGGREGATE_TARGET.

– Tunable memory allocated by a process is regulated so that a process never runs
out of memory.

– Memory should be allotted to work areas to optimize both throughput and
response time.

The default depends on the setting of PGA_AGGREGATE_TARGET. If set to a value, then
the default is AUTO. If not set, then the default is MANUAL.

Oracle9i: New Features for Administrators 15-7

15-7 Copyright © Oracle Corporation, 2001. All rights reserved.

New Statistics and Columns

• New statistics in V$SYSSTAT, V$SESSTAT, and
V$MYSTAT:

• New columns added to V$PROCESS
– PGA_ALLOC_MEM

– PGA_MAX_MEM

– PGA_USED_MEM

workarea memory allocated
workarea executions - optimal
workarea executions - onepass
workarea executions - multipass

New Statistics and Columns

New statistics and columns have been added to accommodate the automatic mode of
Automatic SQL Execution Management.

New Statistics in V$SYSSTAT, V$SESSTAT and V$MYSTAT are as follows:

• workarea memory allocated :
Total amount of PGA memory in KB dedicated to work areas allocated on behalf of a
given session (V$SESSTAT) or system (V$SYSTAT).

• workarea executions - optimal size :
The cumulative count of work areas which had an optimal size. For example: optimal
size is defined if the sort does not need to spill to disk.

• workarea executions - onepass :
The cumulative count of work areas using the one pass size. One pass is generally
used for big work areas where spilling to disk cannot be avoided.

• workarea executions - multipass :
The cumulative count of work areas running in more than one pass. This should be
avoided and is a symptom of a poorly tuned system.

Oracle9i: New Features for Administrators 15-8

New Statistics and Columns (continued)
New Columns in V$PROCESS are as follows:

• PGA_USED_MEM: PGA memory currently used by the process.

• PGA_ALLOC_MEM: PGA memory currently allocated by the process. Allocation
includes free PGA memory not yet released to the OS by the server process.

• PGA_MAX_MEM: Maximum PGA memory ever allocated by the process.

Oracle9i: New Features for Administrators 15-9

Example
In the example we used a PGA_AGGREGATE_TARGET of 10 MB and the
WORKAREA_POLICY_SIZE is set to AUTO.

The SUM(PGA_ALLOC_MEM) will thus remain near constant when Automated SQL
Execution Memory Management is enabled.

Note: The PGA_AGGREGATE_TARGET memory is not shared equally among the current
sessions. Memory is adjusted whenever a session makes use of the adjustable PGA areas
(sorting, bitmap creation, hash join). If sessions are created or destroyed, the memory is
redistributed.

15-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Example

SQL> SELECT name, value FROM v$sysstat
2 WHERE name LIKE ’%work area%’;

NAME VALUE
-------------------------------- -----
work area memory allocated 0
work area executions - optimal 1544
work area executions - onepass 11
work area executions - multipass 2

SQL> SELECT sum(pga_used_mem), sum(pga_alloc_mem)
2 , sum(pga_max_mem) FROM v$process;

SUM(PGA_USED_MEM) SUM(PGA_ALLOC_MEM) SUM(PGA_MAX_MEM)
----------------- ------------------ ----------------

9421418 10345058 22853922

Oracle9i: New Features for Administrators 15-10

15-10 Copyright © Oracle Corporation, 2001. All rights reserved.

New Views to Support
SQL Execution Memory Management

• New views have been created to display SQL
execution memory management information.
– V$SQL_WORKAREA: Displays information about work

areas used by SQL cursors.
– V$SQL_WORKAREA_ACTIVE: Displays an

instantaneous view of the work areas currently
allocated by the system.

– V$PGASTAT: Displays memory usage statistics.

New Views to Support SQL Execution Memory Management
These views are only populated if WORKAREA_SIZE_POLICY is set to AUTOMATIC.

Oracle9i: New Features for Administrators 15-11

15-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Example Use of V$SQL_WORKAREA

Example to find the top ten work areas requiring
the most cache memory.

SQL> SELECT *
2 FROM (SELECT workarea_address
3 , operation_type
4 policy
5 , estimated_optimal_size
6 FROM v$sql_workarea
7 ORDER BY estimated_optimal_size DESC)
8 WHERE ROWNUM <= 10;

Example Use of V$SQL_WORKAREA

The example above gives the following output:

WORKAREA OPERATION_TYPE POLICY ESTIMATED_OPTIMAL_SIZE
------ -------------------- -------- ----------------------
820DD4E8 GROUP BY (SORT) AUTO 2.9919E+10
821111C0 GROUP BY (SORT) AUTO 74752

: : :

The size is the calculated ideal size, less may have been allocated.

Oracle9i: New Features for Administrators 15-12

15-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Dynamic SGA

• Implements an infrastructure allowing SGA
configuration to change without shutting down the
instance

• Benefits include:
– The Oracle server can modify its physical address

space use to respond to the operating system’s use
of physical memory

– It provides an SGA that will grow and shrink
dynamically in response to a DBA command.

Dynamic SGA

Since its inception, the SGA has always been a static allocation of memory, which was
shared across all Oracle threads of execution. The size of memory is calculated based on
values in the init.ora parameter file. Once allocated, the amount of usable shared
memory could not grow or shrink. If a DBA wanted to increase the number of database
block buffers, the instance had to first be shut down, the initialization parameter file was
modified, and then the instance was restarted.

The dynamic SGA implements an infrastructure allowing the SGA configuration to change
while the instance is running. This allows the sizes of the buffer cache and shared pool to
be changed without shutting down the instance.

The dynamic SGA infrastructure allows limits to be set at run time on how much physical
memory will be used for the SGA. Conceivably, the buffer cache and shared pool could be
initially underconfigured and would grow and shrink depending upon their respective work
loads.

Additional buffer caches with different block sizes can be configured when importing or
creating tablespaces that use other block sizes.

Oracle9i: New Features for Administrators 15-13

15-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Unit of Allocation

• The unit of allocation is a granule.
– Contiguous virtual memory allocation
– Size based on SGA_MAX_SIZE

• SGA memory is shown in granules by SGA components.

• V$BUFFER_POOL displays allocation and deallocation.

Unit of Allocation

A granule is a unit of contiguous virtual memory allocation. The size of a granule depends
on the estimated total SGA size whose calculation is based on the value of the
SGA_MAX_SIZE parameter.

• 4 MB if estimated SGA size is < 128 MB

• 16 MB otherwise

The components (buffer cache and shared pool) are allowed to grow and shrink based on
granule boundaries. For each component granules are tracked and displayed by the
V$BUFFER_POOL view. The minimum SGA configuration is three granules (one granule
for the fixed SGA (includes redo buffers); one granule for the buffer cache; one granule for
the shared pool).

Oracle9i: New Features for Administrators 15-14

V$BUFFER_POOL Columns

Column Description
ID Buffer pool ID number
NAME Buffer pool name. Possible values: DEFAULT, KEEP, RECYCLE.

Note: Currently, KEEP and RECYCLE pools only exist for the
standard block size. All non-standard block size pools are DEFAULT.

BLOCK_SIZE Block size in bytes for buffers in this pool. Possible values: the
standard block size, the power of 2 non-standard block sizes, 2048,
4096, 8192, 16384, 32768.

RESIZE_STATE Current state of the resize operation
STATIC: not being resized
ALLOCATING: memory is being allocated (can be canceled by the
user)
ACTIVATING: new buffers are being created (user cannot cancel)
SHRINKING: buffers are being deleted (can be canceled by the user)

CURRENT_SIZE Present size of the sub-cache in megabytes
BUFFERS Current instantaneous number of buffers
TARGET_SIZE If a resize is in progress (state is not STATIC), records new target

size in megabytes. If the pool is STATIC, the value in this column is
the same as the current size of the pool.

TARGET_BUFFE
RS

If a resize is in progress, records new target size in terms of buffers.
Otherwise, the value in this column is the same as the current
number of buffers.

PREV_SIZE Previous buffer pool size. If the buffer pool has never been resized,
the previous size is zero.

PREV_BUFFERS Previous number of buffers in the buffer pool. Value is zero if the
buffer pool has never been resized.

LO_BNUM Obsolete column
HI_BNUM Obsolete column
LO_SETID Obsolete column
HI_SETID Obsolete column
SET_COUNT Obsolete column

Oracle9i: New Features for Administrators 15-15

Growing a Component’s SGA Memory Area

A DBA can grow a component’s SGA use by issuing an ALTER SYSTEM command to
modify the init.ora parameters value. Oracle takes the new size, rounds it up to the
nearest multiple of 16 MB (the granule size in this case) and adds or takes away granules to
meet the target size.

Adding a number of granules to a component (increasing the memory use of a component)
with an with an ALTER SYSTEM command will succeed if Oracle has enough free
granules to satisfy the request. Oracle does not start freeing another components granules
for adding. Instead, the database administrator must ensure the instance has enough free
granules to satisfy the increase of a component’s granule use. If the current amount of SGA
memory is less than SGA_MAX_SIZE, then Oracle is free to allocate more granules until
the SGA size reaches SGA_MAX_SIZE.

The Oracle server, which invokes the ALTER SYSTEM command reserves a set of
granules for the corresponding SGA component (init.ora parameter which defines the
component’s SGA use). After the reservation is complete, the foreground hands the
completion to the background process. The background process completes the operation by
taking the reserved granules and adding them to the component’s granule list. This is also
referred to as growing a components SGA memory area.

15-15 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL> ALTER SYSTEM SET SHARED_POOL_SIZE = 64M;
-- insufficient memory error message

SQL> ALTER SYSTEM SET DB_CACHE_SIZE = 64M;
SQL> ALTER SYSTEM SET SHARED_POOL_SIZE = 64M;
-- insufficient memory error message, check
-- V$BUFFER_POOL to see if shrink has completed

SQL> ALTER SYSTEM SET SHARED_POOL_SIZE = 64M;
Statement processed.

Growing a Component’s SGA Memory Area

Init.ora parameter values:
SGA_MAX_SIZE = 128M
DB_CACHE_SIZE = 96M
SHARED_POOL_SIZE = 32M

Oracle9i: New Features for Administrators 15-16

Dynamic Shared Pool

Prior to Oracle9i, the SGA was allocated once, when the instance was started. If the shared
pool could not find a large enough contiguous piece of memory, it signaled an error.

Example:

SQL> alter system set shared_pool_size = 128M;

alter system set shared_pool_size = 128M

*

ERROR at line 1:

ORA-02097: parameter cannot be modified because specified
value is invalid

ORA-04033: Insufficient memory to grow pool

15-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Dynamic Shared Pool

• The Shared pool can be dynamically resized to
grow or shrink using ALTER SYSTEM

• Allocation size has the following limits:
– Size must be an integer multiple of the granule size
– Total SGA size cannot exceed SGA_MAX_SIZE

SQL> ALTER SYSTEM SET SHARED_POOL_SIZE = 64M;

Oracle9i: New Features for Administrators 15-17

15-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Dynamic Buffer Cache

• The buffer cache can be dynamically resized to
grow or shrink using ALTER SYSTEM

• The allocation size has the following limits:
– Size must be an integer multiple of the granule size
– Total SGA size cannot exceed SGA_MAX_SIZE

– DB_CACHE_SIZE can never be set to zero

SQL> ALTER SYSTEM SET DB_CACHE_SIZE = 96M;

Oracle9i: New Features for Administrators 15-18

15-18 Copyright © Oracle Corporation, 2001. All rights reserved.

New Buffer Cache Parameters

• New parameters define cache sizes for primary
block size buffers:
– DB_CACHE_SIZE

– DB_KEEP_CACHE_SIZE

– DB_RECYCLE_CACHE_SIZE

• New parameters for the other block sizes
– DB_nK_CACHE_SIZE

n = 2, 4, 8, 16 or 32

New Buffer Cache Parameters

The buffer cache consists of independent subcaches for buffer pools and for multiple block
sizes. The DB_BLOCK_SIZE parameter determines the primary block size, which is used
for the SYSTEM tablespace. Three new parameters define the sizes of the caches for buffers
for the primary block size.

• DB_CACHE_SIZE

• DB_KEEP_CACHE_SIZE

• DB_RECYCLE_CACHE_SIZE

The new value of DB_CACHE_SIZErefers only to the size of the DEFAULTbuffer pool
versus total size of the DEFAULT, KEEP, and RECYCLEbuffer pools.

Multiple Block Size Parameters

If tablespaces with different block size are used, then buffers for the block size must be
allocated. You must not use the DB_nK_CACHE_SIZEparameter that matches the
DB_BLOCK_SIZEvalue.

Oracle9i: New Features for Administrators 15-19

15-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Deprecated Buffer Cache Parameters

If set, values are used and warning message issued:
• DB_BLOCK_BUFFERS

• BUFFER_POOL_KEEP

• BUFFER_POOL_RECYCLE

Deprecated Buffer Cache Parameters
The Buffer Cache size parameters DB_BLOCK_BUFFERS, BUFFER_POOL_KEEP, and
BUFFER_POOL_RECYCLE are deprecated, but have been maintained for backward
compatibility, and will be made obsolete in the future. If the parameters are set, their values
will be used, and a warning message will be made to encourage the user to migrate to the
new parameter scheme.

Prior to Oracle9i, the syntax for the BUFFER_POOL_SIZE parameter allowed the user to
optionally specify the number of LRU latches for the buffer pool in addition to the number
of buffers in the buffer pool. These latches were allocated out of the total number of latches
specified in DB_BLOCK_LRU_LATCHES. Since DB_BLOCK_LRU_LATCHES is now
obsolete, the specification of the number of LRU latches for the buffer pool, if provided, is
ignored and internally calculated.

These parameters will continue to be static parameters. Furthermore, these parameters
cannot be combined with the dynamic size parameters. Combining them in the same
parameter file produces an error.

Oracle9i: New Features for Administrators 15-20

15-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Example Buffer Caches Setup

DB_CACHE_SIZE = 48M

DB_KEEP_CACHE_SIZE = 24M

DB_RECYCLE_CACHE_SIZE = 12M

DB_2K_CACHE_SIZE = 24M

DB_8K_CACHE_SIZE = 96M

Total Buffer Cache = 204M

4K

2K

8K

4K

4K

...

...

...

...

...

Buffer Cache

Example of a Buffer Caches Setup

The Standard block size is 4K as default or specified using DB_BLOCK_SIZE.

This instance is setup with a KEEP and RECYCLE buffer for the standard block size. The
KEEP and RECYCLE can only be used with standard block size.

In addition there are block buffer caches for 2 Kb and 8 Kb block sizes.

The specified size for each buffer is rounded up to the nearest granule, in this example the
granule size is 4 Mb.

Oracle9i: New Features for Administrators 15-21

Dynamic Buffer Cache Advisory Parameter

The buffer cache advisory feature enables and disables statistics gathering for predicting
behavior with different cache sizes. The information provided by these statistics can help
DBA size the buffer cache optimally for a given workload.

The buffer cache advisory is enabled by means of the initialization parameter
DB_CACHE_ADVICE. It is a dynamic parameter by means of ALTER SYSTEM. Three
values (OFF, ON, READY) are available.

DB_CACHE_ADVICE Parameter Values:

• OFF: Advisory is turned off and the memory for the advisory is not allocated

• ON: Advisory is turned on and both cpu and memory overhead is incurred

• READY: Advisory is turned off but the memory for the advisory remains allocated.

Attempting to set the parameter to ON when it is in the OFFstate may lead to ORA-
4031: Inability to allocate from the shared pool . If the parameter is
in a READYstate it can be set to ONwithout error because the memory is already allocated.

15-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Dynamic Buffer Cache
Advisory Parameter

• Enables and disables statistics gathering for
predicting different cache size behavior

• Benefit:
– Information enables sizing the buffer cache

optimally for a given workload

• Enabled with DB_CACHE_ADVICE
– Dynamic by means of ALTER SYSTEM

– Three values available: OFF, ON, and READY

Oracle9i: New Features for Administrators 15-22

15-22 Copyright © Oracle Corporation, 2001. All rights reserved.

New View to Support Buffer Cache
Advisory

• V$DB_CACHE_ADVICE displays buffer cache
statistics gathered

• Rows predict the estimated number of physical
reads for different cache sizes

• Computes a physical read factor

New View to Support Buffer Cache Advisory

The buffer cache advisory information is collected and displayed through a new view,
V$DB_CACHE_ADVICE. The view contains different rows that predict the estimated
number of physical reads for different cache sizes. The rows also compute a physical read
factor, which is the ratio of the number of estimated reads to the number of reads actually
performed during the measurement interval by the real buffer cache.

V$DB_CACHE_ADVICE Columns

• ID : Buffer pool ID (Ranges from 1-8)

• NAME: Buffer pool name

• BLOCK_SIZE: Block size in bytes for buffers in this pool, possible values are the
standard block size, and the power of two nonstandard block sizes; 2048, 4096, 8192,
16384, 32768

• ADVICE_STATUS: Status of the advisory

• SIZE_FOR_ESTIMATE: Cache size for prediction (in megabytes)

• BUFFERS_FOR_ESTIMATE: Cache size for prediction (in terms of buffers)

• ESTD_PHYSICAL_READ_FACTOR: Physical read factor for this cache size; ratio of
number of estimated physical reads to the number of reads in the real cache. If there
are no physical reads into the real cache, the value of this column is NULL.

• ESTD_PHYSICAL_READS: Estimated number of physical reads for this cache size

Oracle9i: New Features for Administrators 15-23

15-23 Copyright © Oracle Corporation, 2001. All rights reserved.

V$DB_CACHE_ADVICE Example

SQL> SELECT name, block_size
2 , buffers_for_estimate
3 , estd_physical_read_factor
4 FROM v$db_cache_advice;

BUFFERS ESTD
BLOCK FOR PHYSICAL

NAME SIZE ESTIMATE READ_FACTOR
------- ---------- ---------- -----------
DEFAULT 4096 980 1
DEFAULT 4096 1078 .9777
DEFAULT 4096 1176 .9751
...

Example
The example above shows a sample output from V$DB_CACHE_ADVICE. To interpret this
you need to know the current number of buffers; in this example it is 983.

The first line of output shows that at 980 buffers you should expect to see the same number
of physical reads as we do now. If you increased the buffers to 1078, you should expect to
get 97% of the physical reads, or about a 3% reduction in physical reads.

The view also shows how many more reads will be done if the number of buffers is
reduced. You will have a total of 20 rows in the output showing buffer sizes from 10% to
200% of the current buffer.

Note: The output has been formatted.

Note: The OEM Console has a graphical display of this information

Oracle9i: New Features for Administrators 15-24

15-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Setup automatic tuning of work areas by using the
PGA_AGGREGATE_TARGET and
WORKAREA_SIZE_POLICY

• Dynamically modify the buffer caches and shared
pool sizes using ALTER SYSTEM command

• Enable and disable statistics gathering for
predicting different cache size behavior

• Monitor work area allocation with
V$DB_CACHE_ADVICE

16
Copyright © Oracle Corporation, 2001. All rights reserved.

Enterprise Manager Enhancements

Oracle9i: New Features for Administrators 16-2

16-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Describe the new look and feel of the Console

• Use the Console in standalone mode

• Explain Enterprise Manager functionality that
supports Oracle9i database features

• Generate HTML reports

• Create user-defined events

Oracle9i: New Features for Administrators 16-3

New Console Look and Feel

When user clicks on an item in the Navigator tree, the details of what has been selected
appear on the right-hand side of the console.

For example, when user clicks on Events in the Navigator tree on the left, the detail side
will show the Alerts, Registered, and History tabs, which contain details of Events for all
targets.

16-3 Copyright © Oracle Corporation, 2001. All rights reserved.

New Console Look and Feel

• Two pane, master/detail view of the environment

• Events, Jobs, and Groups functionality integrated in the
Navigator tree

• Database administration features fully integrated with
Console

Oracle9i: New Features for Administrators 16-4

Launching Enterprise Manager Console

When you launch the Console, choose between standalone or logging to the middle-tier
Oracle Management Server (OMS).

If the Management Server has not yet been installed nor configured, then you can launch
the Console standalone and connect directly to target databases to perform administrative
tasks such as deleting a table or creating a new database user. When launching standalone,
you can connect directly only to Oracle databases; no other types of targets are currently
supported for Oracle9i.

If the Management Server has been installed and configured, then you can launch the
Console by logging into that Management Server. By logging into a Management Server,
you have access to more comprehensive management capabilities.

Note: The choice between launching standalone or through the Oracle Management Server
is also available through other Enterprise Manager applications.

16-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Launching Enterprise Manager Console

Oracle9i: New Features for Administrators 16-5

16-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Console Launched Standalone

Console Launched Standalone

When you launch the Oracle9i Console in standalone mode, it looks something similar to
DBA Studio in release 2.1 or 2.2 but with more features and enhancements.

This is a screenshot of Console in standalone mode. The only targets in the navigator tree are
databases. You add databases to the navigator tree as follows:

Adding Databases to the Navigator Tree

1. Launch Console standalone.

2. Add the databases you wish to manage using the Add Database to Tree dialog box. This
dialog box appears automatically when you start the Console in standalone mode for
the first time. It is also available from the Navigator main menu. You can manually
enter the Net service names or add them from the local tnsnames.ora file.

There is no support for discovering nodes with Intelligent Agents when the Console is
launched standalone.

Oracle9i: New Features for Administrators 16-6

Connections Using Management Server

There are several types of discovered targets in the navigator tree (for example, databases,
HTTP Servers, Listeners, and so on) as well as Events, Jobs, and Reports. These additional
types of targets and functionality would not be available if the Console were launched
standalone; only connecting directly to databases is supported in standalone mode.

16-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Connections Using Management Server

Oracle9i: New Features for Administrators 16-7

16-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Standalone Connection Benefits

• Available out-of-the-box

• Does not require installation or configuration of
middle-tier Management Server

• Does not require installation of Intelligent Agent
on administered database

• Connect directly to managed target
(only supported for Oracle9i databases)

Standalone Connection Benefits

A Standalone connection allows a single user to use one or more applications without the
need of Oracle Management Server or Intelligent Agent. If you want to perform certain
administrative tasks that do not require the job, event, or group system, the standalone
Console can be used.

Oracle9i: New Features for Administrators 16-8

16-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Standalone Connection Restrictions

• Only supports direct administration of Oracle
databases; no management of other targets

• No access to Events, Jobs, and Groups

• Cannot share administrative information

• Cannot use Web-enabled applications

• No paging and e-mail blackouts

• Cannot store and access preferences

• Cannot use backup and data management tools

• Cannot customize, schedule, and publish reports

Standalone Connection Restrictions

If you need access to any features that are not available in Standalone mode, then you must
install and configure the middle-tier Management Server and launch the Console by
logging into the Management Server.

Note: As only databases are supported for Oracle9i, Management Pack for Oracle
Applications and Management Pack for SAP R/3 do not support Standalone mode.

Oracle9i: New Features for Administrators 16-9

Standalone Repository

Standalone repository is a single user database repository schema that stores management
information for the targets you are managing while using the Console in Standalone mode.

When launching the Console standalone and accessing certain Management Pack
applications (for example, Oracle Change Manager, Oracle SQL Analyze, Oracle Index
Tuning Wizard, Oracle Tablespace Map, and Oracle Expert) for the very first time, you will
be prompted to create a single-user database repository schema to store management
information for targets being managed. Once this standalone repository schema is created,
it can be used by all five applications listed above; each application does not require its own
standalone repository schema.

This single-user database repository schema is separate from the repository that is created
when you install and configure a Management Server. This single-user database repository
schema is for a single administrator and does not require a Management Server; while the
repository used by a Management Server is for multiple administrators and is required by
the middle tier. Furthermore, interaction, including migration or sharing of repository data,
between the “standalone repository schema” and the “Management Server repository” is
not supported. Database releases that support an Enterprise Manager release 9.0.1
standalone repository schema include:

• Enterprise Edition or standard edition, release 9.0.1

• Enterprise Edition or standard edition. release 8.1.7 and 8.1.6

• Enterprise Edition, release 8.0.6 (Objects Option must be installed and enabled)

16-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Standalone Repository

When launching Console standalone, some
functionality requires standalone repository.

Oracle9i: New Features for Administrators 16-10

Enterprise Manager Support for Oracle9i Database Features

The Console has been enhanced to support new features within the database management
system.

16-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Enterprise Manager Support for
Oracle9i Database Features

• Server managed parameter file (SPFILE)

• Automatic Undo Management

• Unicode

• Dynamic Memory Management and Buffer Cache
Sizing Advice

• Default temporary tablespace

• Multiple block sizes

• Mean Time to Recovery (MTTR)

• Backup and recovery enhancements

• Advanced Queuing

Oracle9i: New Features for Administrators 16-11

Creating the SPFILE
The SPFILE is initially created from the initialization parameter file. SYSDBA or SYSOPER
privileges are required to create an SPFILE.

1. Right-click on the Configuration folder under Instance and click Import spfile, or select
the Configuration folder and click Import spfile from the Object menu.

2. Enter the location of the PFILE. Use the Browse button to search for the files on the
database machine. Enter the name of the SPFILE you want to create. Both the PFILE
and the SPFILE must be located on the same machine as the database.

3. Click the OK button to create the SPFILE.

16-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating the SPFILE

Oracle9i: New Features for Administrators 16-12

Creating a PFILE from SPFILE

You can export an SPFILE to create a text initialization parameter file. This may be
necessary to modify the SPFILE, which is in binary format or create backups of the SPFILE.
SYSDBA or SYSOPER privileges are required to create an init.ora parameter file from
SPFILE.

1. Right-click on the Configuration folder under Instance and click Export spfile, or select
the Configuration folder and click Export spfile from the Object menu.

2. Enter the name and location for the PFILE you want to create. Use the Browse button to
search for the files on the database machine. Enter the name and location of the
SPFILE. Both the PFILE and the SPFILE must be located on the same machine as the
database.

3. Click the OK button to create the init.ora file.

16-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a PFILE from SPFILE

Oracle9i: New Features for Administrators 16-13

Changing Parameters

The All Parameters page lists all initialization parameters.

• For Oracle9i databases, you must be connected as SYSDBA to edit static initialization
parameters. To edit dynamic parameters, SYSDBA privileges are not required.

• For non-Oracle9i databases you must be connected as SYSDBA to edit all parameters.

Changing Running and Configured Parameters

Running Parameters show the parameters that are currently running. If you change a
dynamic parameter, the change is effected immediately. If the database is restarted, you start
up with the original parameter value because it has not been saved to the SPFILE. If you
change a static parameter, the changes are saved to a PFILE or SPFILE and take effect when
the database is restarted.

Configured parameters are stored in the server-side parameter file. If you change a dynamic
parameter, the changes are saved to an SPFILE and take place immediately.

16-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Changing Parameters

Oracle9i: New Features for Administrators 16-14

Startup Using the SPFILE

You can use the startup dialog to start the instance.

1. Right-click on the database folder and select startup, or select startup from the Object
menu.

2. If you want to startup the database using SPFILE, select the Use Configured Parameters
check box. Oracle reads the initialization parameters from a server parameter file in a
platform-specific default location.

3. If you want to use an init.ora file to start the database, deselect the Use Configured
Parameters check box and supply the init.ora file to start the database.

16-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Startup Using the SPFILE

Oracle9i: New Features for Administrators 16-15

Undo Tablespace

With Enterprise Manager, you can determine if a database is in Automatic Undo
Management mode. You specify whether or not the database is using rollback segments or
an undo tablespace in the init.ora file. You should also specify which tablespace is the
undo tablespace.

When you create a new tablespace, you can make it an undo tablespace by selecting the
Undo option button in the Create Tablespace dialog. For an undo tablespace, all storage
options are disabled because they are handled automatically.

In addition, in Instance Management a new Undo tab displays all details about the undo
tablespace including the name of the current undo tablespace and retention time. The
retention time is the time of the longest transaction or the farthest back you want to go with
the server flashback feature.

16-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Undo Tablespace Support

• Simplifies and automates the management of
rollback segments

• You have the choice of managing rollback
segments or having Oracle automatically manage
undo data in an undo tablespace.

• The rollback mode is set by the UNDO_MANAGEMENT
parameter.

• New “undo” clause in the Create Tablespace
dialog

• The Instance Management Undo tab displays all
details about the undo tablespace.

Oracle9i: New Features for Administrators 16-16

Creating an Undo Tablespace: Undo Tab

The Undo tab in Instance Management displays all details about the undo tablespace
including the name of the current undo tablespace and the retention time. The retention
time specifies the length of time to retain undo information. Committed undo information is
normally lost when the undo space is overwritten by newer transactions. For read
consistency purposes, if long running queries might require old undo information, the Undo
Retention field provides a means of specifying the amount of undo information to retain.

16-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Undo Tab

Oracle9i: New Features for Administrators 16-17

16-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Buffer Cache Size Advice View

Buffer Cache Size Advice View

You can view the Buffer Cache Size Advice information in Enterprise Manager as an
alternative to querying V$DB_CACHE_ADVICE. The Enterprise Manager display includes a
chart of the information which makes it much easier to view and interpret the data.

How to Launch Buffer Cache Size Advice

1. Click the Memory tab under Instance > Configuration

2. Click on Buffer Cache Size Advice to see the advice for choosing the size of the buffer
cache

3. If the db_cache_advice initialization parameter has not been changed, a dialog box
appears prompting whether you want to change the db_cache_advice initialization
parameter. If Yes, the parameter will be changed.

How to Interpret the Graphical Display

As you move the mouse over the graphical display of Physical Reads versus Cache Size
there will be text helping you interpret the data. For example, “If you set cache size to 5 MB
the physical reads will increase by 2%.”

Oracle9i: New Features for Administrators 16-18

Creating Default Temporary Tablespace

Using Storage Management you can either create a new tablespace and set as the default
temporary tablespace or define an existing temporary tablespace as the default temporary.

• Under the Create Tablespace folder, select the Type as temporary. This enables the Set
as Default Temporary Tablespace check box.

• Select this check box to make this tablespace the Default temporary tablespace.

• You can also reassign the default temporary tablespace to another one.

• You cannot make the default temporary tablespace offline or make it permanent.

16-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Default Temporary Tablespace

Oracle9i: New Features for Administrators 16-19

16-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Mean Time to Recovery

Mean Time to Recovery

• Controls the time required to recover from an instance crash

• Specifies the maximum time you would like to spend to recover from an instance
crash

• When you specify a value for this field, the FAST_START_MTTR_TARGET
initialization parameter is changed automatically.

For example, you are running an e-commerce site and you want to recover from an instance
crash within five minutes. You know the downtime can only be say, five minutes of
unavailability. You would set the MTTR to be five minutes. The database then assures it
can recover in that time.

Note: If this field is set to a short time, it can have negative impact on database
performance.

Oracle9i: New Features for Administrators 16-20

Backup and Recovery Enhancements

To enhance the flexibility of the Backup and Recovery facility, the Job System supports an
RMAN-specific job task. You can simply input any RMAN script and submit it through the
Job system.

How to Enable RMAN Script in Pre-Oracle9i Agents

Add rman.tcl file into
$ORACLE_HOME/network/agent/jobs/oracle/rdbms/general directory.

16-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Backup and Recovery Enhancements

• RMAN scripts can be submitted and scheduled
through the Job system.

• RMAN Image Copy option support

• Requires Oracle9i Intelligent Agent

• Can be enabled in pre-Oracle9i Agents using
rman.tcl file

Oracle9i: New Features for Administrators 16-21

Advanced Queuing

Advanced Queuing support is provided by introducing a new topology map that displays
individual queues and their states on the database selected, including dblink status. You can
see where there are errors and drill down to additional diagnostic detail.

16-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Advanced Queuing

• Topology map displaying individual queues and
their states on the database selected

• View errors and drill down to diagnostic detail

• View schedule details and messages

Oracle9i: New Features for Administrators 16-22

HTML Database Reports

You can use report generation enhancements to generate fully formatted reports with just the
information you need.

You can generate complete database configuration properties reports, or reports that contain
only the properties of an object selected in the navigator tree.

When you launch report generation, the dialog menus that appear are appropriate to the
currently selected object in the Navigator tree.

These reports are available in Standalone mode.

16-22 Copyright © Oracle Corporation, 2001. All rights reserved.

HTML Database Reports

You can use report generation enhancements to
generate fully formatted reports. You can generate:

• Complete database configuration report

• Report of only the properties of an object selected
in the Navigator tree

• Report of object dependencies

Oracle9i: New Features for Administrators 16-23

16-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Configuration Report

Database Configuration Report

You can extract information from the database and save it in different formats (text,
HTML, or Comma-Separated Values). For example, you can save the Instance, Storage,
Schema information to an HTML file.

How to Generate an HTML Report

1. Highlight Database in the Navigator tree.

2. Click the Create Report icon in the toolbar, or right-click the database folder and click
Create Report, or select Create Report from the Object menu.

3. Specify the desired contents of the report.

4. Click OK to generate the report or click View to generate and immediately view the
report.

User-Defined SQL

Optionally, you can use user-defined SQL, to provide a SQL script to be added as an item
under the Report Contents User Defined category.

Note: Each user defined SQL statement must be <= 2 KB.

Oracle9i: New Features for Administrators 16-24

User-Defined Events

You use user-defined events to integrate any monitoring script with the Event System. The
Intelligent Agent will run any specified script that you may define to check for conditions
specific to your environment. This allows much flexibility and customization to the type of
event conditions monitored by the Intelligent Agent. This also extends the benefits of the
Event System (cooperative monitoring among different administrators, notifications,
history, and so on) to existing monitoring scripts.

The monitoring script itself should include the following:

• Logic to check the specific event condition or value of the monitored metric (for
example, the amount of free disk space)

• Logic to return the current value of the metric or status of the event and any
associated message

If the current value of the metric is returned, then in the Create Event UI, you must also
specify critical and warning thresholds against which the current value is compared.

Alternatively, the script can evaluate and return the status of the event (clear, critical,
warning, error) which is then propagated back and triggered accordingly.

The script itself can be written in any language, as long as the run-time requirements
needed by the Intelligent Agent to run the script are available on the monitored node.

16-24 Copyright © Oracle Corporation, 2001. All rights reserved.

User-Defined Events

• Used to integrate any event monitoring script
(in any language) with the Event System

• Allows customization of monitoring

• Extends the benefits of the Event System to
existing user-defined monitoring scripts

• Requires Oracle9i Intelligent Agent

Oracle9i: New Features for Administrators 16-25

User Defined Event Tests

Script: Specify the monitoring script. It can reside either on the monitored node or entered
directly into the Create Event UI.

If the script resides on the monitored node, enter the fully qualified name of the script to be
executed.

If the script is to be entered directly into the UI, enter the script commands. Alternatively,
you can use your favorite editor to enter the script and save it to a file, then load it into the
Create Event UI by means of the Browse button.

The Script Result

The script should return either the value of the monitored metric or the status of the event.

• Select Value if the script returns the value of the monitored metric.

• Select Event State if the script evaluates the event condition and returns an event
status: clear, critical, warning, error.

16-25 Copyright © Oracle Corporation, 2001. All rights reserved.

User Defined Event Tests

Oracle9i: New Features for Administrators 16-26

User Defined Event Tests

If Value is selected for Script Result, the following additional parameters are required to
determine how the event is evaluated:

• Operator: Specify the operator, Enterprise Manager should use to compare the
monitored metric value against the thresholds. Comparison operators include ==
(equal to), < (less than), > (greater than), <= (less than or equal to), >= (greater than
or equal to), != (not equal to).

• Critical Threshold: The value against which the monitored metric is compared. If the
comparison holds true, the event triggers at a Critical level.

• Warning Threshold: The value against which the monitored metric is compared. If
the comparison holds true, the event triggers at a Warning level.

• Occurrences Preceding Notification: The number of times the event condition holds
true before a notification is sent.

Override Node Credentials

Node credentials are required because the Intelligent Agent executes the script as the user
specified in the node credentials. Default preferred credentials for the target node is used
unless overridden in this field.

Refer to the online Help for more details.

Oracle9i: New Features for Administrators 16-27

Event Handler

The Event Handler allows further processing when an event triggers. Specifically, it allows
you to log event information to a file and/or execute any operating system command.

These two generic mechanisms provide much flexibility in allowing third-party integration.
Any third-party application can then parse the event log for further processing.

Additionally, if you have a trouble-ticketing system that has a command line interface, the
Event Handler can be used to execute the command required to open a trouble-ticket when
the event triggers.

16-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Event Handler

• Extends the Event System by allowing
customizable responses

• Allows the user to respond to a triggered event by
– Logging event information to a file and/or
– Executing any O/S command

• Allows integration of third-party systems
• Service inside OMS

– Takes advantage of OMS load-balancing and
scalability features

Oracle9i: New Features for Administrators 16-28

16-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Use the Console in Standalone mode

• Use Enterprise Manager functionality which
supports Oracle9i database features

• Generate HTML reports

• Use user-defined events

17
Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Enhancements

Oracle9i: New Features for Administrators 17-2

Copyright © Oracle Corporation, 2001. All rights reserved.17-2

Objectives

After completing this lesson, you should be able
to do the following:

• Use ISO/ANSI standard SQL syntax, such as
joins, CASE expressions, NULLIF, COALESCE, scalar
subqueries, MERGE, analytical functions

• Identify other SQL enhancements, such as
constraint enhancements and FOR UPDATE WAIT

• Use the enhancements to LOBs and PL/SQL

Oracle9i: New Features for Administrators 17-3

Copyright © Oracle Corporation, 2001. All rights reserved.17-3

SQL:1999 Enhancements Overview

The most important enhancements are:

• Full SQL:1999 join compliance
• Introduction of CASE expressions

• Introduction of scalar subqueries

• Support for explicit DEFAULT values

• The MERGE statement

• Additional analytical functions and grouping sets

• Naming query blocks with the WITH clause

SQL:1999 Enhancements Overview

Throughout this lesson the phrase “SQL:1999” refers to the SQL:1999 notations of both
ANSI and ISO/IEC standards, officially known as “ISO/IEC 9075-1:1999.”

SQL:1999 syntax compliance is important for the following reasons:

• Provides easier migration of third party applications without the need to modify existing
SQL code

• Provides ANSI/ISO standard functionality within the Oracle9i database

• Provides easier learning curve when moving from other database products to Oracle9i

Note: For more details about Oracle and the ANSI/ISO SQL standard, please refer to one of
the appendices of the Oracle9i SQL Reference.

Oracle9i: New Features for Administrators 17-4

Copyright © Oracle Corporation, 2001. All rights reserved.17-4

SQL:1999 Joins

• The join type is specified explicitly in the FROM
clause in SQL:1999 syntax.

• The join predicates can be specified in the ON
clause, separated from the WHERE clause.

• Join types:
– Cross joins

– Natural joins
– Equijoins and the USING clause

– Outer joins (full, left, right)

SQL:1999 Joins

In Oracle9i the full SQL:1999 join syntax is implemented. Before Oracle9i you could only
specify joins by listing multiple tables in the FROM clause (implicitly asking for a Cartesian
product) and then “fix” the result in the WHERE clause by specifying appropriate join
predicates. On top of that, you could specify a left or right outer join by adding the (+)
syntax to your join predicates.

In Oracle9i the join is specified where it should be: in the FROM clause. The new syntax is
easier to read and less error-prone, because you can separate the join predicates from the
other (nonjoin) predicates. The new outer join syntax is more powerful because it also
supports full outer joins.

Oracle9i: New Features for Administrators 17-5

Copyright © Oracle Corporation, 2001. All rights reserved.17-5

Cross Joins

Equivalent with the Cartesian product of two tables

SQL> select c.country_name
2 , r.region_name
3 from countries c
4 CROSS JOIN
5 regions r;

Cross Joins
The above example gives the same results as the following syntax
(note the absence of a WHERE clause):

SQL> select c.country_name
2 , r.region_name
3 from countries c
4 , regions r;

COUNTRY_NAME REGION_NAME
------------ -----------
Argentina Europe
Australia Europe
Belgium Europe
Brazil Europe
...
Argentina Americas
Australia Americas
Belgium Americas
Brazil Americas
...

Oracle9i: New Features for Administrators 17-6

Copyright © Oracle Corporation, 2001. All rights reserved.17-6

Natural Joins

• The natural join is an equijoin based on all
columns that have the same name.

• The join columns must contain compatible data.

• You cannot use an alias prefix (or table name)
for a join column:

ORA-25155: column used in NATURAL join
cannot have qualifier

Natural Joins

In Oracle9i you can join two tables based on columns that have matching data types and
names, by using the NATURAL JOIN syntax.

If two columns have the same name but different data types, then the NATURAL JOIN
syntax can cause an error, depending on the actual data; a typical error is “ORA-01722:
invalid number.”

If you use the SELECT * syntax, then the common columns appear only once in the result
set. In other words, the result set of a natural join does not have any ambiguous column
names.

As a consequence, you do not need to use any table aliases (or prefix columns with table
names) in your query. In fact, if you use an alias prefix (or table name) for a natural join
column, you get an ORA-25155 error message. An example follows on the next page.

Oracle9i: New Features for Administrators 17-7

Copyright © Oracle Corporation, 2001. All rights reserved.17-7

Natural Join Example

SQL> select department_id, location_id
2 , city, country_id
3 from departments NATURAL JOIN
4 locations;

DEPARTMENT_ID LOCATION_ID CITY COUNTRY
------------- ----------- ------------------- -------

10 1700 Seattle US
20 1800 Toronto CA
30 1700 Seattle US
40 2400 London UK
50 1500 South San Francisco US
60 1400 Southlake US
70 2700 Munich DE
80 2500 Oxford UK

...

Natural Join Example

In the above example the departments table is joined to the locations table by the
location_id column, which is the only common column.

Note: In this example, you are not allowed to use an alias to qualify the location_id
column. This is what happens:
SQL> select d.department_id, l.location_id
2 , l.city, l.country_id
3 from departments d NATURAL JOIN
4 locations l;

select d.department_id, l.location_id
*

ERROR at line 1:
ORA-25155: column used in NATURAL join cannot have qualifier

Oracle9i: New Features for Administrators 17-8

Copyright © Oracle Corporation, 2001. All rights reserved.17-8

Equijoins and the USING Clause

• Apart from the natural join, you can also create a
regular equijoin with the USING clause.

• Do not prefix columns referenced in the USING
clause with a qualifier:

• The NATURAL and USING keywords are mutually
exclusive.

ORA-25154: column part of USING clause
cannot have qualifier

Equijoins and the USING Clause

Natural joins unconditionally use all columns with matching names to join the tables. If two
tables have several column names in common but you only want to join them on one of
those matching columns, you can use the USING clause to specify only those columns that
should be used for an equijoin.

Just like natural joins, join columns referenced in a USING equijoin should not have a
qualifier (alias or table name) anywhere in the SQL statement. For example:
SQL> select l.city, d.department_name
2 from locations l JOIN
3 departments d USING (location_id)
4 where location_id = 1400;

is valid, but:
SQL> select l.city, d.department_name
2 from locations l JOIN
3 departments d USING (location_id)
4 where d.location_id = 1400;

is invalid because in the last line you have qualified location_id with a table alias.

Note: Both natural joins and equijoins with the USING clause do not allow join columns
that are collections or LOBs.

Oracle9i: New Features for Administrators 17-9

Copyright © Oracle Corporation, 2001. All rights reserved.17-9

USING Clause Example

EMPLOYEE_ID LAST_NAME LOCATION_ID
----------- ------------------ -----------

100 King 1700
101 Kochhar 1700
102 De Haan 1700
103 Hunold 1400
104 Ernst 1400

SQL> select e.employee_id, e.last_name
2 , d.location_id
3 from employees e JOIN
4 departments d USING (department_id)
5 where rownum < 6;

Oracle9i: New Features for Administrators 17-10

Copyright © Oracle Corporation, 2001. All rights reserved.17-10

Join Predicates and the ON Clause

• Used to separate join predicates from the other
predicates

• The ON clause allows any predicate, including the
usage of subqueries and logical operators.

SQL> select e.employee_id, e.last_name
2 , d.department_id, d.location_id
3 from employees e JOIN
4 departments d ON
5 (e.department_id = d.department_id)
6 where e.manager_id = 102;

Join Predicates and the ON Clause

You can use the ON clause for any join to separate the join predicates from the nonjoin
predicates. This makes your SQL code easier to understand:

SQL> select e.employee_id, e.last_name
2 , d.department_id, d.location_id
3 from employees e JOIN
4 departments d ON
5 (e.department_id = d.department_id)
6 where e.manager_id = 102;

EMPLOYEE_ID LAST_NAME DEPARTMENT_ID LOCATION_ID
----------- --------- ------------- -----------

103 Hunold 60 1400

Oracle9i: New Features for Administrators 17-11

Copyright © Oracle Corporation, 2001. All rights reserved.17-11

Three-Way Joins with the ON Clause

SQL> select d.department_name
2 , l.city, c.country_name
3 from departments d
4 JOIN locations l ON
5 (d.location_id = l.location_id)
6 JOIN countries c ON
7 (l.country_id = c.country_id)
8 where c.region_id = 1;

Three-Way Joins with the ON Clause

In SQL:1999 compliant syntax, you can join multiple tables in a certain order by repeating
ON clauses.

In the above example the departments and locations tables are joined first. The
corresponding join predicate (on line 5) can only reference columns in those two tables; the
second join predicate (on line 7) can reference columns from all three tables.

Note that the only nonjoin predicate is specified (on line 8) in the WHERE clause. Note also
that although the SQL statement suggests a certain join ordering, the Oracle optimizer
decides about the actual join order to be used at execution time.

The result of the above example is:

DEPARTMENT_NAME CITY COUNTRY_NAME
---------------- ------ --------------
Human Resources London United Kingdom
Public Relations Munich Germany
Sales Oxford United Kingdom

Oracle9i: New Features for Administrators 17-12

Copyright © Oracle Corporation, 2001. All rights reserved.17-12

Outer Joins

• Outer join types: LEFT, RIGHT, and FULL

• More powerful and readable than the (+) operator

1

3

2

P1

P3

P2

PROD TYPE

D2

D4

D3

2

4

3

TYPE DESCR

3P4

Outer Joins

Oracle has supported outer joins using the (+) syntax, for several versions. At the time this
syntax was added to Oracle SQL, there was no ISO/ANSI standard for outer joins yet.

The (+) syntax is difficult to read, and it is also easy to make mistakes: if you forget to add
one (+) string in your statement, you disable the outer join functionality. Moreover, the (+)
syntax only allows a single sided (left or right) outer join.

Outer Join Types

Suppose you have two tables: one with products (P) and one with product types (T).

To explain the concept of outer join types, suppose that these two tables are populated as
above; note that you have one product (P1) with a nonexisting type (1) and also a type (4)
without any corresponding products.

On the next page you see the differences between the three outer join types, using these two
tables.

Oracle9i: New Features for Administrators 17-13

Copyright © Oracle Corporation, 2001. All rights reserved.17-13

Outer Join Example

SQL> select p.prod, p.type
2 , t.type, t.descr
3 from p {LEFT|RIGHT|FULL} OUTER JOIN
4 t ON (p.type = t.type);

P1

PROD TYPE

D2

D4

D3

2

4

3

TYPE DESCR

D33

2

3

1

P2

P3

P4 3

LEFT

RIGHT

Outer Join Example

On the third line of the above statement, you must choose one of the three outer join types.

• The LEFT outer join retrieves the first four rows.

• The RIGHT outer join retrieves the last four rows.

• The FULL outer join retrieves all five rows.

Note: The keyword OUTER is optional; the keywords LEFT, RIGHT, and FULL implicitly
assume an outer join.

Oracle9i: New Features for Administrators 17-14

Copyright © Oracle Corporation, 2001. All rights reserved.17-14

CASE Expression Enhancements

SQL:1999 has four CASE expression types:

• Simple CASE expression

• Searched CASE expression

• NULLIF

• COALESCE

CASE Expression Enhancements

The SQL:1999 standard has four types of CASE expressions:

• Simple CASE expression

• Searched CASE expression

• NULLIF

• COALESCE

The simple CASE expression was already available in Oracle8i. The other three types are
new in Oracle9i.

Note: The CASE expression is also supported in PL/SQL. For more information please
refer to Oracle9i New Features for Developers.

Oracle9i: New Features for Administrators 17-15

Copyright © Oracle Corporation, 2001. All rights reserved.17-15

Simple CASE Expressions

• Similar to the DECODE function

• Search and replace values within an expression

SQL> select e.last_name
2 , (CASE extract(year from e.hire_date)
3 WHEN 1996 THEN ’ 5 years of service’
4 WHEN 1991 THEN ’10 years of service’
5 WHEN 1986 THEN ’15 years of service’
6 ELSE ’ maybe next year!’
7 END) as "Awards for 2001"
8 from employees e;

Simple CASE Expressions

In a simple CASE expression, each WHEN clause is followed by a literal value; in the
example above you see the numbers 1996, 1991, and 1986. These literal values are
compared with the CASE expression outcome for each selected row.

Note that the example also uses the ANSI/ISO standard EXTRACT(datetime) function
to derive the four digit year from the hire_date column. The alternative expression would
be:

TO_NUMBER(TO_CHAR(E.HIRE_DATE,’yyyy’))

Oracle9i: New Features for Administrators 17-16

Copyright © Oracle Corporation, 2001. All rights reserved.17-16

Searched CASE Expressions

• Similar to an IF…THEN…ELSE construct

• Conditionally search and replace values within
expressions

SQL> select e.first_name, e.last_name, e.job_id
2 , (CASE
3 WHEN e.job_id LIKE ’AD%’ THEN ’10%’
4 WHEN e.job_id LIKE ’IT%’ THEN ’15%’
5 WHEN e.first_name = ’Lex’ THEN ’18%’
6 ELSE ’ 0%’
7 END) as "Raise"
8 from employees e;

Searched CASE Expressions

With a searched CASE expression, you can conditionally search and replace values; each
WHEN clause is followed by a predicate. Each WHEN clause can have a different predicate,
and you can use logical operators to combine multiple predicates.

Also note that in a searched CASE expression, the CASE clause is not followed by any
expression but immediately by the first WHEN clause.

Oracle9i: New Features for Administrators 17-17

Copyright © Oracle Corporation, 2001. All rights reserved.17-17

NULLIF and COALESCE

NULLIF(expr1,expr2) Ø
CASE WHEN expr1 = expr2

THEN NULL
ELSE expr1

END

COALESCE(expr1,expr2,expr3,…) Ø
CASE WHEN expr1 IS NOT NULL

THEN expr1
ELSE COALESCE(expr2, expr3,…)

END

NULLIF and COALESCE

This slide introduces two new functions that are related to CASE expressions; the
ANSI/ISO standard actually calls them “CASE abbreviations.”

The double arrows in the slide denote the concept of “logical equivalence”; that is, you can
use the CASE expressions as alternative formulations, regardless of the actual expressions
you specify as arguments.

• The NULLIF function returns NULL if the first argument is equal to the second;
otherwise, the value of the first argument is returned.

• The COALESCE function is a generalization of the NVL function; it accepts any
number of arguments (two or more) and returns the first NOT NULL argument. If all
expressions evaluate to NULL, the COALESCE function returns a NULL value.

The logical equivalence for the COALESCE function above is only true for three or more
arguments. This logical equivalence is missing:

COALESCE(expr1,expr2) Ø
CASE WHEN expr1 IS NOT NULL THEN expr1 ELSE expr2 END

As you can see, this is exactly the same as NVL(expr1,expr2).

The NULLIF function is useful in cases where a column contains coded default values. For
example, if you have a default department 99 (with some application dependent meaning)
and you want to treat the rows with that value as if they contained a NULL value when
grouping, you can use a construct like NULLIF(d.department_id,99).

Oracle9i: New Features for Administrators 17-18

Copyright © Oracle Corporation, 2001. All rights reserved.17-18

Scalar Subqueries

• Return one row with one column value

• Limited support in Oracle8i

• In Oracle9i they are allowed in any place where a
scalar expression can be used.

• The data type of the return value must match the
value being selected in the subquery.

Scalar Subqueries

A scalar subquery is a single row subquery that selects only one expression. If a scalar
subquery returns more than one row, an error is returned. If a scalar subquery returns no
rows, the result of the scalar subquery is replaced by a NULL value.

Scalar subqueries are not supported in:

• Default values for column

• Returning clauses

• Hash expressions for clusters

• Function-based index expressions

• Check constraints on columns

• WHEN condition of triggers

• GROUP BY clauses

Note: The usage of scalar subqueries in the SET clause of an UPDATE statement and in the
VALUES list of an INSERT statement was already supported in Oracle8i.

Oracle9i: New Features for Administrators 17-19

Copyright © Oracle Corporation, 2001. All rights reserved.17-19

Scalar Subquery Example

SQL> select d.department_name
2 , (select count(*)
3 from employees e
4 where e.department_id =
5 d.department_id) as empcount
6 from departments d;

Scalar Subquery Example

The results of the above example are as follows:

DEPARTMENT_NAME EMPCOUNT
---------------- --------
Administration 1
Marketing 2
Purchasing 6
Human Resources 1
Shipping 45
IT 5
Public Relations 1
Sales 35
Executive 3
Finance 6
Accounting 2
...

Oracle9i: New Features for Administrators 17-20

Copyright © Oracle Corporation, 2001. All rights reserved.17-20

Explicit Defaults

SQL> insert into employees
2 (employee_id, first_name, department_id)
3 values (1, ’Scott’, DEFAULT);

SQL> update employees
2 set department_id = DEFAULT
3 where department_id = 10;

Explicit Defaults
You can use the DEFAULT keyword in SQL statements to reference the default value that is
stored with a column definition in the data dictionary.

You can leave out the DEFAULT keyword for insert statements, although it increases
readability; you need it for update statements if you want to update a column to the default
value.

DEFAULT provides extra flexibility because you can change the default value in the data
dictionary, without the need to change your SQL statements.

Oracle9i: New Features for Administrators 17-21

Copyright © Oracle Corporation, 2001. All rights reserved.17-21

The MERGE Statement

Also informally known as “upsert”

• Perform an update if the row exists; otherwise,
do an insert

• Important in Data Warehousing applications

• Better performance; fewer statements and source
table scans needed

MERGE INTO t1
USING t2 ON (join_predicate)

WHEN MATCHED THEN UPDATE SET ...
WHEN NOT MATCHED THEN INSERT(...) VALUES(...)

The MERGE Statement

Suppose t1 is a large table and t2 is a smaller table with rows that need to be inserted into
t1 conditionally.

Each row from t2 is checked for a matching row in t1 by evaluating the join condition
specified by the ON clause:

• If there is a match, the row in t1 is updated using the UPDATE SET clause

• Otherwise, rows are inserted as specified by the INSERT clause

Note that you can only use the MERGE statement with two tables; that is, you cannot merge
a row unless it is already part of a table. However, the source table (t2 in the example
above) could be an external table.

Oracle9i: New Features for Administrators 17-22

Copyright © Oracle Corporation, 2001. All rights reserved.17-22

Analytical Function Enhancements

• Inverse percentile functions:
– PERCENTILE_CONT

– PERCENTILE_DISC

• What-if rank and distribution functions:
– RANK, DENSE_RANK

– PERCENT_RANK, CUME_DIST

• FIRST and LAST aggregate functions

• WIDTH_BUCKET function

• Grouping sets

Analytical Function Enhancements
You can use inverse percentile functions to find the data that corresponds to a specified
percentile value. The PERCENTILE_DISC function works with discrete values; the
PERCENTILE_CONT function uses linear interpolation. For more details and examples,
refer to the Oracle9i SQL Reference.

With what-if rank and distribution functions you can find out what rank or percentile value
a hypothetical value would have if it were added to an existing data set.

You can use the FIRST and LAST functions to specify sorted aggregate groups and return
the first or last value of each group.

The WIDTH_BUCKET function returns the histogram bucket in which a certain input value
would fall, given a certain histogram specification.

Grouping sets are extensions to the GROUP BY clause that you can use to determine which
result set rows are subtotals, and to specify the exact level of aggregation for a given
subtotal.

All these analytical function enhancements provide significantly better query performance,
in particular for ROLAP products such as Oracle Express. You can perform complex data
analysis with much clearer and more concise SQL code; tasks which in the past required
multiple SQL statements (or the use of procedural languages) can now be expressed using
single SQL statements.

The syntax leverages existing aggregate functions, such as SUM and AVG, so that these
well-understood keywords can be used in extended ways.

Oracle9i: New Features for Administrators 17-23

What-if Rank and Distribution Functions

In certain applications, such as financial planning, you may want to know how a data value
would rank if it is added to a data set. For instance, a new employee is hired at a salary of
$100,000; where would his salary rank compared to the other salaries in the company?

The hypothetical rank and distribution functions support this form of what-if analysis. They
return the rank or percentile value which a row would get if the row was hypothetically
inserted into an existing set of rows.

The hypothetical functions can calculate RANK, DENSE_RANK, PERCENT_RANK, and
CUME_DIST. They use a WITHIN GROUP clause containing an ORDER BY specification.

Note: The RANK and DENSE_RANK functions are already available with Oracle8i, but in
Oracle9i they are enhanced to accept additional arguments for what-if analysis.

First and Last Aggregate Values
You can use FIRST and LAST aggregate functions to specify an order within the
aggregated groups and then return the first or last row of each group.

While an equivalent query can be created using a join or subquery, the SQL syntax is
cumbersome and performance can be inefficient. The FIRST and LAST functions do this
work with simpler SQL syntax and greater performance.

Oracle9i: New Features for Administrators 17-24

Copyright © Oracle Corporation, 2001. All rights reserved.17-24

WIDTH_BUCKET(input_expression,
low_boundary, high_boundary,
bucket_count)

WIDTH_BUCKET Function

Returns the bucket number to which the result
of an expression is assigned after it is evaluated

WIDTH_BUCKET Function

For any given expression, the WIDTH_BUCKET function returns the bucket number to
which the result of this expression is assigned after it is evaluated.

You can generate equiwidth histograms with this function. Equiwidth histograms divide
data sets into buckets with an equal interval size.

You provide the input expression, the minimum boundary value, the maximum boundary
value, and the number of buckets.

Note: If you ask for (n) buckets, you actually get (n + 2) buckets; the two additional
buckets will hold any values below the low boundary value or above the high boundary
value.

Oracle9i: New Features for Administrators 17-25

Copyright © Oracle Corporation, 2001. All rights reserved.17-25

WIDTH_BUCKET Example

0 1 2 3 4 5 6

3000 5000 7000 9000 11000 13000

SQL> select last_name, salary,

2 WIDTH_BUCKET(salary,3000,13000,5)
3 from employees;

WIDTH_BUCKET Example
Salaries less than 3000 are placed in bucket 0; salaries greater than 13000 are placed in
bucket 6. The other salaries are placed in buckets 1 to 5, depending on the salary value.

LAST_NAME SALARY WIDTH_BUCKET
--------------- ------ ------------
King 24000 6
Kochhar 17000 6
De Haan 17000 6
Hunold 9000 4
Ernst 6000 2
Austin 4800 1
Pataballa 4800 1
Lorentz 4200 1
Greenberg 12000 5
Faviet 9000 4
Sciarra 7700 3
Popp 6900 2
Raphaely 11000 5
Khoo 3100 1
Baida 2900 0
...

Oracle9i: New Features for Administrators 17-26

Copyright © Oracle Corporation, 2001. All rights reserved.17-26

Grouping Sets

• Superset of GROUP BY {ROLLUP|CUBE}

• Produces a single result set, which is equivalent to
a UNION ALL approach

SQL> select time_id, channel_id, prod_id
2 , sum(amount_sold) as amount
3 from sales
4 where ...
5 group by GROUPING SETS
6 ((time_id, channel_id, prod_id)
7 ,(time_id, channel_id)
8 ,(channel_id, prod_id)
9);

Grouping Sets

A grouping set is a set of groupings that you want the system to perform, in order to apply
aggregate functions on those groupings. This is done in the GROUP BY clause.

In Oracle8i the CUBE and ROLLUP enhancements to the GROUP BY clause were
introduced; grouping sets in Oracle9i add more flexibility.

Without the enhancements in Oracle9i, you need multiple queries combined together with
UNION ALL to achieve these tasks. A multiquery approach is inefficient, because it
requires multiple scans of the same data. Grouping sets allow the optimizer to choose better
plans, resulting in better query performance.

The GROUPING SET clause allows you to identify exactly the groups you are interested in.
For example, GROUP BY CUBE (a,b,c) produces eight groupings in total; but maybe
you are only interested in three of those eight groupings.

In the example, you specify three groupings (on lines 6, 7, and 8):

• (time_id, channel_id, prod_id)
This results in aggregate information per day per channel per product

• (time_id, channel_id)
This results in aggregate information per day per channel

• (channel_id, prod_id)
This results is aggregate information per channel per product

Oracle9i: New Features for Administrators 17-27

Copyright © Oracle Corporation, 2001. All rights reserved.17-27

TIME_ID CHAN PROD_ID AMOUNT
--------- ---- ------- ------
08-DEC-99 I 20 112
08-DEC-99 I 45 79
08-DEC-99 S 20 42
08-DEC-99 S 45 1422
09-DEC-99 I 20 168
09-DEC-99 T 20 70

08-DEC-99 I 191
08-DEC-99 S 1464
09-DEC-99 I 168
09-DEC-99 T 70

I 20 280
I 45 79
S 20 42
S 45 1422
T 20 70

Day, channel, and product

Day and channel

Channel and product

Grouping Sets

Grouping Sets (continued)

You can read the first five rows of the result above as follows:

• On December 8, through internet sales, product 20 was sold for an amount of 112

The second section (rows 7, 8, 9, and 10) is interpreted as:

• On December 8, through internet sales, the total amount was 191 (112 + 79)

• On December 8, through direct sales, the total amount was 1464 (42 + 1422)

• On December 9, through internet sales, the total amount was 168

• On December 9, through telesales, the total amount was 70

The last five rows should be interpreted as:

• Through internet sales, product 20 was sold for a total of 280 (112 + 168)

• Through internet sales, product 45 was sold for a total of 79

• Through direct sales, product 20 was sold for a total of 42

• Through direct sales, product 45 was sold for a total of 1422

• Through telesales, product 20 was sold for a total of 70

Oracle9i: New Features for Administrators 17-28

Copyright © Oracle Corporation, 2001. All rights reserved.17-28

SQL> select ...
2 from sales
3 where ...
4 group by rollup
5 (prod_id,(channel_id, time_id));

Composite Columns

Treat a group of columns as a unit:

• GROUP BY ROLLUP (a,b,c) gives four groupings

• GROUP BY ROLLUP (a,(b,c)) gives three groupings

Composite Columns

A composite column is a collection of columns that are treated as a unit during the
computation of groupings. With CUBE and ROLLUP, you do not have full control over the
aggregation levels. For example, the following statement:
SQL> select ...
2 from sales
3 where ...
4 group by rollup(prod_id, channel_id, time_id);

would result in computing four groupings:

• (product, channel, time)
• (product, channel)
• (product)
• (grand total)

However, the example in the slide above results in only three groups:

• (product, channel, time)
• (product)
• (grand total)

Oracle9i: New Features for Administrators 17-29

Copyright © Oracle Corporation, 2001. All rights reserved.17-29

PROD_ID C TIME_ID AMOUNT
------- - --------- ------

20 C 02-DEC-99 14
20 I 01-DEC-99 266

20 280

45 C 01-DEC-99 79
45 C 02-DEC-99 4187
45 S 01-DEC-99 316
45 T 01-DEC-99 790
45 T 02-DEC-99 158

45 5530

5810 Grand total

Total for product 20

Total for product 45

Totals per product/channel/time

Totals per product/channel/time

Composite Columns

Composite Columns (continued)

This slide shows the results for the example query on the previous page. As you can see, the
result shows groupings for:

• (product, channel, time)
• (product)
• (grand total)

Oracle9i: New Features for Administrators 17-30

Copyright © Oracle Corporation, 2001. All rights reserved.17-30

Concatenated Groupings

• Produce cross-products of multiple groupings

• Concatenated groupings are specified by listing
multiple grouping sets, cubes, and rollups

SQL> select prod_id, channel_id, time_id
2 , sum(amount_sold)
3 from sales
4 where ...
5 GROUP BY prod_id
6 , cube(channel_id)
7 , rollup(time_id);

Concatenated Groupings

Concatenated groupings offer a concise way to generate useful combinations of groupings.
Groupings specified with concatenated groupings yield the cross-product of groupings from
each grouping set. The cross-product operation enables even a small number of
concatenated groupings to generate a large number of final groups. The concatenated
groupings are specified by listing multiple grouping sets, cubes, rollups, and separating
them with commas.

The example on the slide results in the following groupings: (product, channel, time),
(product, channel), (product, time), and (product).

Oracle9i: New Features for Administrators 17-31

Copyright © Oracle Corporation, 2001. All rights reserved.17-31

• Name a query block in a SELECT statement to
reference it more than once within a query

• The WITH clause can hold multiple query blocks,
separated by commas.

• Resolved as in-line views or temporary tables

WITH Clause

WITH Clause

Using the WITH clause, you can reuse the same query block when it is expensive to
evaluate the query block and it occurs more than once within a complex query.

You can use the WITH clause to define a query block before using it in a query. This can
improve performance, and it certainly improves readability and maintainability of your
SQL statements; using the WITH clause, you can isolate the business question from the data
gathering.

A query name is visible to all WITH element query blocks (including their subquery blocks)
defined after it and the main query block itself (including its subquery blocks).

A query name can be the same as some persistent table name or query name in the WITH
list of another query block. If this happens, the parser searches for the right definition inside
out (in terms of query block nesting). The inner-most query name definition is used for
resolution. This is similar to the C programming language, in which a local variable has
priority when its name is the same as some global variable.

The WITH clause is internally resolved as an in-line view or a temporary table; the cost-
based optimizer chooses the appropriate resolution.

Oracle9i: New Features for Administrators 17-32

Copyright © Oracle Corporation, 2001. All rights reserved.17-32

SQL> WITH summary as (
2 select d.department_name
3 , sum(e.salary) as dept_total
4 from employees e, departments d
5 where e.department_id = d.department_id
6 group by d.department_name)
7 select department_name, dept_total
8 from summary
9 where dept_total >
10 (select sum(dept_total) * 1/8
11 from summary)
12 order by dept_total desc;

WITH Clause Example

WITH Clause Example
The query on the slide retrieves all departments whose total salary cost is above 1/8 the
total salary cost of the whole company.

Alternative Formulation
Without using the WITH clause, the query would typically look like:

SQL> select d.department_name
2 , sum(e.salary) as dept_total
3 from employees e, departments d
4 where e.department_id = d.department_id
5 group by d.department_name
6 having sum(e.salary) >
7 (select sum(e.salary) * 1/8
8 from employees e, departments d
9 where e.department_id = d.department_id)
10 order by sum(e.salary) desc;

Using the WITH clause, you can materialize the query block that does the GROUP BY, thus
avoiding summarizing the department total cost more than once.

Oracle9i: New Features for Administrators 17-33

Copyright © Oracle Corporation, 2001. All rights reserved.17-33

Constraint Enhancements

• Explicit index control

• Less foreign key locking overhead

• Cached primary key lookup

• Primary keys and foreign keys on views

Constraint Enhancements

These four constraint enhancements are discussed in more detail in the following pages.

Oracle9i: New Features for Administrators 17-34

Copyright © Oracle Corporation, 2001. All rights reserved.17-34

Explicit Index Control

SQL> create table employees
2 (employee_id number(6)
3 constraint emp_pk
4 primary key USING INDEX
5 (CREATE INDEX emp_pk
6 ON employees(employee_id))
7 , first_name varchar2(15)
8 , ...);

ALTER TABLE table_name
{DROP|DISABLE} CONSTRAINT constraint_name ...
{DROP|KEEP} INDEX

Explicit Index Control
In the above example the CREATE INDEX clause is used in the CREATE TABLE statement
to create an index for the primary key constraint explicitly. The full CREATE INDEX
syntax can be used, including the parallel and partition clauses, to make index creation
more efficient.

You can specify a CREATE INDEX clause in a similar way for UNIQUE constraints.

When dropping or disabling (primary or unique) constraints, you can explicitly specify
whether you want the associated index to be dropped. By default, unique indexes that are
implicitly created during the creation of primary and unique keys are dropped when the
constraints are dropped.

Oracle9i: New Features for Administrators 17-35

Copyright © Oracle Corporation, 2001. All rights reserved.17-35

Less Foreign Key Locking Overhead

If a foreign key column is unindexed:

• A table-level share lock is still needed when doing
an update or delete on the primary key

• However, the lock is released immediately after
obtaining it

Less Foreign Key Locking Overhead

A table-level share lock is placed on unindexed foreign keys when doing an update or
delete on the primary key. However, this lock is released immediately after obtaining it. If
multiple primary keys are updated or deleted, the lock is obtained and released once per
row. The obtaining and releasing of the shared lock are coded as follows:

• Get a savepoint

• Obtain a share lock

• Rollback to savepoint when needed

The share lock has only one purpose, to check whether you have pending transactions
against any rows. If that is the case, the share lock request would fail because of exclusive
row locks.

Oracle9i: New Features for Administrators 17-36

Copyright © Oracle Corporation, 2001. All rights reserved.17-36

Cached Primary Key Look Up

• Primary key values are cached:
– Reduced primary key lookup time

– Faster foreign key creation

• Only done for multirow DML statements

Cached Primary Key Look Up

The look up of matching primary keys at the time of foreign key insertion takes time. In
Oracle9i the first 256 primary key values can be cached, so the addition of multiple foreign
keys becomes significantly faster.

The cache is only set for the second row processed; this avoids the overhead of setting up a
cache for single row DML statements.

Oracle9i: New Features for Administrators 17-37

Copyright © Oracle Corporation, 2001. All rights reserved.17-37

Constraints on Views

• Constraints help to identify cubes;
this is a problem with views in Oracle8i.

• Constraints on views enable:
– DW applications to identify view-based cubes

– Additional query rewrites for materialized views
based on views

• Constraints on views are only declarative;
only table constraints are enforced.

Constraints on Views

Data warehouse applications recognize multidimensional cubes by identifying referential
integrity constraints in the data dictionary. However, this does not work in an environment
where you have views on top of your fact and dimension tables. In such environments,
applications cannot identify the cubes properly.

By allowing constraint definitions on views in Oracle9i, you can propagate base table
constraints to the views thereby allowing applications to recognize the cubes.

View constraint definitions are declarative in nature; therefore, DML operations on views
are subject to the constraints defined on the underlying base tables.

Defining constraints on base tables is necessary, not only for data correctness and
cleanliness, but also for materialized view query rewrite purposes.

Oracle9i: New Features for Administrators 17-38

Copyright © Oracle Corporation, 2001. All rights reserved.17-38

View Constraint Types

• The following constraint types are supported:
– Primary key

– Unique

– Referential integrity: Tables can reference view
constraints and vice versa

• Supported constraint states:
– DISABLE NOVALIDATE only

– RELY or NORELY both allowed

View Constraint Types

Oracle9i supports the following constraints on views: primary key, unique, and foreign key
constraints. A regular table can reference a primary (or unique) key constraint defined on a
view, and a view can reference a constraint defined on a table.

Check constraints are not supported. Note that views have a WITH CHECK OPTION clause
that has the same semantics of check constraints.

NOT NULL constraints on views are not supported explicitly, as they are propagated
implicitly from the base table constraints.

Given that view constraints are declarative, DISABLE NOVALIDATE is the only valid state
for a view constraint. You can also choose between a RELY or NORELY state, which affects
query rewrites. A view constraint in RELY state allows query rewrites to occur when the
integrity level is set to TRUSTED mode.

Because view constraints are purely declarative, there are some more restrictions:

• No deferrability status allowed

• No physical attributes allowed, such as the USING INDEX clause

• No ON DELETE actions for foreign key constraints

• No EXCEPTIONS INTO clause

Oracle9i: New Features for Administrators 17-39

Copyright © Oracle Corporation, 2001. All rights reserved.17-39

Create Constrained Views

SQL> create view d10_employees
2 (id, first_name, last_name, email,
3 CONSTRAINT pk_d10e
4 PRIMARY KEY (id)
5 RELY DISABLE NOVALIDATE
6) as
7 select employee_id, first_name
8 , last_name, email
9 from employees
10 where department_id = 10;

View Constraints Example

As you can see in the above example, the syntax for defining view constraints using the
CREATE VIEW statement is quite similar to defining constraints on tables using the
CREATE TABLE...AS SELECT (CTAS) statement. However, unlike the CTAS command,
which does not allow referential integrity constraints, the CREATE VIEW statement
supports such constraint definitions.

As for tables, you can also define a view constraint at the column level (in-line) or at the
view level (as shown in the above example.)

Note: For each view constraint you must specify [RELY|NORELY] DISABLE NOVALIDATE.
Otherwise, you get an error message.

Oracle9i: New Features for Administrators 17-40

Copyright © Oracle Corporation, 2001. All rights reserved.17-40

Constrained View Maintenance

SQL> alter view d10_employees
2 ADD CONSTRAINT u_d10e
3 unique(email) RELY DISABLE NOVALIDATE;

SQL> alter view d10_employees
2 DROP CONSTRAINT pk_d10e;

SQL> alter view d10_employees
2 MODIFY CONSTRAINT u_d10e NORELY;

SQL> drop view d10_employees
2 CASCADE CONSTRAINTS;

Constrained View Maintenance

You cannot drop a unique or primary key constraint if it is part of a referential integrity
constraint on views, even if the referential integrity constraint is in NORELY DISABLE
NOVALIDATE mode.

You cannot change the state of a unique or primary key constraint on a view from RELY to
NORELY if it is part of a RELY referential integrity constraint, without also dropping the
foreign key or changing its state from RELY to NORELY.

The ALTER VIEW clause checks if the view is valid before processing a constraint
definition.

Because a view constraint can be referenced by other table or view constraints, Oracle9i
provides the CASCADE CONSTRAINTS clause for the DROP VIEW command.

The CASCADE CONSTRAINTS option drops all referential integrity constraints that refer
to primary and unique keys in the dropped view. If you omit this clause, and such
referential integrity constraints exist, you get an error message.

Oracle9i: New Features for Administrators 17-41

Copyright © Oracle Corporation, 2001. All rights reserved.17-41

Index Scans and Function-Based Indexes

• B*-tree indexes do not contain NULL entries;
therefore, index scans are sometimes impossible.

• All built-in operators know whether their result is
guaranteed to be NOT NULL when their inputs are
NOT NULL.

• This knowledge allows CBO to use index-only
scans on function-based indexes.

Index Scans and Function-Based Indexes

In prior releases, index-only scans could be done only when an indexed column was known
to be NOT NULL; expressions could not be marked NOT NULL. This meant that function-
based indexes could not be used for index-only scans unless the query somehow disallowed
NULL values in the indexed expressions.

The deduction of NULL values in expressions based on the underlying columns in Oracle9i
allows queries to do index-only scans on function-based indexes. All built-in operators
know whether their result is guaranteed to be NOT NULL when all their inputs are NOT
NULL.

Example
SQL> create index sal_comm_idx
2 on employees (salary * (1 + commission_pct));

Consider the follwing query:
SQL> select salary * (1 + commission_pct)
2 from employees;

This query can do an index-only scan on the function-based index when both salary and
commission_pct columns are defined as NOT NULL.

Oracle9i: New Features for Administrators 17-42

Copyright © Oracle Corporation, 2001. All rights reserved.17-42

SELECT ... FOR UPDATE WAIT

• You can specify how long to wait if the rows being
selected are locked.

• If NOWAIT is specified the behavior is still the
same.

SELECT ... FROM ... WHERE ...
[FOR UPDATE [NOWAIT|WAIT n]]

SELECT ... FOR UPDATE WAIT

In prior releases the SELECT … FOR UPDATE statement has only two alternatives when
the rows being selected are already locked: wait for the lock to be released or return
immediately with an error message. Another alternative has been added in Oracle9i so that
you can specify the time interval to wait before returning with the error.

An integer can be specified after the WAIT keyword to indicate the number of seconds to
wait for a lock.

This feature prevents the indefinite waits on locked rows and allows more control on the
wait time for locks in applications.

The typical workaround probably used by many programmers so far has been to execute a
SELECT ... FOR UPDATE NOWAIT, upon failure followed by a short sleep (for example,
three seconds) followed by a second attempt to lock the rows. This can now be achieved in
a single statement.

Oracle9i: New Features for Administrators 17-43

Copyright © Oracle Corporation, 2001. All rights reserved.17-43

Multitable INSERT Statement

• Allows you to insert rows into multiple tables as
part of a single DML statement

• Two types: conditional and unconditional

• Can be used to transfer data from one or more
source tables to a set of target tables

• Can be used to refresh materialized views

• Performance improvement: no materialization and
repeated scan costs on the source tables

Multitable INSERT Statement

The multitable INSERT statement inserts rows in one or more tables, derived from the
evaluation of a subquery.

There are two forms of the multitable INSERT statement. For the unconditional form, an
INTO clause list is executed once for each row returned by the subquery. For the
conditional form, the INTO clause entries are preceded by WHEN clauses that determine
whether the corresponding INTO clause should be executed or not.

Note: The multitable INSERT statement can be executed in parallel and used with the
direct load mechanism.

Oracle9i: New Features for Administrators 17-44

Copyright © Oracle Corporation, 2001. All rights reserved.17-44

Multitable INSERT Syntax

INSERT ALL INTO t1 [VALUES(...)]
INTO t2 [VALUES(...)]
...

SELECT ...

INSERT {ALL|FIRST}
WHEN c1 THEN INTO t1 [VALUES(...)]
WHEN c2 THEN INTO t2 [VALUES(...)]
...
[ELSE INTO t3 [VALUES(...)]]

SELECT ...

Multitable INSERT Syntax

The INTO target can be any table expression that is legal for a regular INSERT INTO ...
SELECT statement; however, aliases cannot be used. The same table can be specified as the
target for multiple INTO clauses.

An INTO clause also provides the value of the row to be inserted using a VALUES clause.
You can use any valid expression in the VALUES clause, but you can only refer to columns
returned by the select list of the subquery. If the VALUES clause is omitted, the select list of
the subquery provides the values to be inserted. If a column list is given, each column in the
list is assigned a corresponding value from the VALUES clause or the subquery. If no
column list is given, the computed row must provide values for all columns in the target
table.

The first INSERT ALL command (without a WHEN predicate) is an unconditional
multitable INSERT statement.

When you use the INSERT ALL syntax with multiple WHEN clauses, it is possible that rows
are inserted into multiple tables for each row returning from the SELECT clause and none
for others, depending on the outcome of the WHEN predicates.

When you use the INSERT FIRST syntax, only the first matching INTO clause is
executed. This means that although you can insert into different tables, each row resulting
from the SELECT clause can only lead to an insert into one of them. Note also that the
INSERT FIRST syntax supports an optional ELSE clause.

Oracle9i: New Features for Administrators 17-45

Copyright © Oracle Corporation, 2001. All rights reserved.17-45

LONG to LOB Migration

• ALTER TABLE has been enhanced:
– Modify LONG column to CLOB

– Modify LONG RAW column to BLOB

• During conversion the space required for both the
LONG and LOB data must be available

• Most SQL functions and operators that accept
VARCHAR2 accept CLOB as well

• SQL functions that accept RAW accept BLOB too

• LOB columns in partitioned index-organized tables
and in function-based indexes

LONG to LOB Migration

Oracle8i introduced the TO_LOB() operator to copy LONG to LOB. You can use this
operator in CREATE TABLE ... AS SELECT and INSERT INTO ... SELECT statements to
copy existing data from a LONG into a LOB column.

Oracle9i LONG to LOB Migration

LOB migration is made even simpler: You can use the ALTER TABLE command to change
a LONG to a LOB. Default values can be specified for the LOB column, and a LOB storage
clause can be specified for storing the LOB segment. The NOT NULL constraints of the old
LONG column are maintained for the new LOB column. Other ALTER TABLE commands
are not allowed within the same command.

Note: With the ALTER TABLE … MODIFY command you can only modify a LONG or
LONG RAW column to a LOB column. It will not modify a VARCHAR or a RAW column.

The ALTER TABLE ... MODIFY command temporarily doubles the space requirements.
During the migration, the redo changes for the table are logged only if the table has logging
on. The redo changes for the column being converted from LONG to LOB are logged only if
the storage characteristics of the LOB indicate LOGGING.

You can now create LOB columns in partitioned index-organized tables, and function-based
indexes can be created on LOB columns too.

Oracle9i: New Features for Administrators 17-46

Copyright © Oracle Corporation, 2001. All rights reserved.17-46

PL/SQL Support for LOB Migration

• All standard package functions that accepted LONG
now accept CLOB as well.

• All predefined functions accepting LONG RAW now
accept BLOB as well.

• Implicit conversion for LOB to VARCHAR and RAW
and vice versa

• You can define and bind LOB columns as VARCHAR
and RAW.

Oracle9i: New Features for Administrators 17-47

Copyright © Oracle Corporation, 2001. All rights reserved.17-47

Restrictions on LOB Migration

• LOB columns are not allowed in clustered tables.

• Materialized views on the table being migrated
must be rebuilt manually.

• No LOB support in UPDATE OF trigger clauses

• If a view has an INSTEAD OF trigger you cannot
specify strings for INSERT/UPDATE of LOB
columns.

• Indexes must be rebuilt manually; domain indexes
on LONG columns must be dropped before
migration.

Restrictions on LOB Migration

LOB columns are not allowed in clustered tables, whereas LONG columns are allowed. So if
a table is a part of a cluster, a LONG or LONG RAW column cannot be changed to LOB.

If a table is replicated or has materialized views, and you migrate a column from LONG to
LOB, then all the replicas must be manually migrated too.

LOB columns are not allowed in the UPDATE OF list in the update triggers. Hence triggers
that were intended to update LONG columns become invalid after the column is migrated to
a LOB and are not recompiled. Also, if a view with a LOB column has an INSTEAD OF
trigger which attempts to INSERT/UPDATE into the LOB, the trigger fails because implicit
conversion from LOB is not allowed in INSTEAD OF triggers.

All indexes (including function-based and domain indexes) must be manually rebuilt. The
ALTER TABLE ... MODIFY command acts like a MOVE command, and therefore does not
convert the indexes. Domain indexes for the LOB column must be dropped before altering a
LONG column to LOB.

Domain indexes on the LONG columns must be dropped before migration.

Oracle9i: New Features for Administrators 17-48

Copyright © Oracle Corporation, 2001. All rights reserved.17-48

Common SQL Parser

• Reduces duplication of SQL analysis

• Allows PL/SQL to pick up new SQL features as
they are implemented in the RDBMS

• Some consequences:
– Wrap files expose static SQL statement text

– PLS error messages become ORA error messages

Common SQL Parser

The common SQL parser replaces PL/SQL’s compile-time analysis of a static SQL
statements with analysis using a SQL component shared with the RDBMS. This reduces
duplication of SQL analysis, allowing PL/SQL to pick up new SQL features as they are
implemented in the RDBMS and eliminating bugs due to differences in SQL analysis
between SQL and PL/SQL.

PL/SQL Wrap Files

Prior to Oracle9i wrap files exposed column and variable names and string literals
occurring in PL/SQL program units, but not entire static SQL statements. In Oracle9i wrap
files expose the text of static SQL statements.

Error Messages

Several error messages raised during static SQL statement analysis change from PLS errors
to ORA errors. The common SQL parser raises errors during SQL compilation that PL/SQL
analysis did not catch in Oracle8i. This allows earlier detection of static SQL statement
errors.

Oracle9i: New Features for Administrators 17-49

Copyright © Oracle Corporation, 2001. All rights reserved.17-49

Native PL/SQL Execution

• Faster execution of PL/SQL programs by
generating native C code instead of byte code

• Performance improvements:
– Eliminate byte code interpretation overhead

– Faster control flow in native code

– Compiled code corresponding to a PL/SQL program
is mapped to a PGA as opposed to SGA

– PL/SQL without SQL references is 2 to 10 times
faster

Native PL/SQL Execution

A PL/SQL program is compiled to native code in two phases: the program is translated to C
code which is subsequently compiled to native code. For PL/SQL fixed packages, the
compiled code is statically linked to the Oracle executable whereas for end-user PL/SQL
programs, the compiled code is dynamically linked to an Oracle process.

Control flow is much faster in native code than in interpreted code, because jumps are label
based in C code. Function calls to targets in the same compilation unit are mapped to C
function calls. The cost of setting up a frame is also cheaper because the primary memory
for the frame is allocated from the C stack as opposed to the PGA in the case of MCODE.
Exception handling is also much faster in native code because exceptions are implemented
as jumps to switch statements containing the exception handler code. There is no run-time
overhead associated with looking up an exception handler table as in the case of MCODE
based exception handling.

The compiled code corresponding to a PL/SQL program is mapped into the PGA as
opposed to the SGA into which the MCODE is loaded. This should result in less contention
for SGA and thus better scalability. Also in the case of large PL/SQL programs, the startup
time should be faster on demand paged systems. The MCODE is loaded in its entirety into
SGA.

The constant pool is also mapped into the PGA as constant data. The constant pool items
(such as string literals) can be arbitrarily long as the PGA is paged by the operating system.
Similarly, the handle segment need not be paged in the case of native compilation. PL/SQL
execution is 2 to 10 times faster; however, it does not speed up SQL execution.

Oracle9i: New Features for Administrators 17-50

Copyright © Oracle Corporation, 2001. All rights reserved.17-50

Summary

In this lesson, you should have learned how to:

• Use ISO/ANSI standard SQL syntax for
joins, CASE expressions, NULLIF, COALESCE,
scalar subqueries, MERGE, analytical functions

• Identify other SQL enhancements, such as:
– Constraint enhancements
– FOR UPDATE WAIT

– Constraints on views

– LOB enhancements

– Common SQL parser and native PL/SQL execution

Oracle9i: New Features for Administrators 17-51

Practice 17-1 Overview

This practice concentrates on using the ANSI/ISO SQL:1999 standard enhancements in
Oracle9i.

Copyright © Oracle Corporation, 2001. All rights reserved.17-51

Practice 17-1 Overview

This practice covers the following topics:

• ANSI/ISO SQL:1999 standard joins
• The WIDTH_BUCKET function

• CASE expressions

• Scalar subqueries

Oracle9i: New Features for Administrators 17-52

Practice 17-2 Overview

This practice covers the other Oracle9i enhancements, that are not part of the ANSI/ISO
SQL:1999 standard.

Copyright © Oracle Corporation, 2001. All rights reserved.17-52

Practice 17-2 Overview

This practice covers the following topics:

• Explicit constraint index control

• Less foreign key locking overhead

• SELECT ... FOR UPDATE [WAIT n]

18
Copyright © Oracle Corporation, 2001. All rights reserved.

Globalization Support

Formerly National Language Support

Oracle9i: New Features for Administrators 18-2

Copyright © Oracle Corporation, 2001. All rights reserved.18-2

Objectives

After completing this lesson, you should be able to
do the following:

• Describe and use the new date and time data types

• Describe the Unicode enhancements

• List the enhanced sorting functionality

• Use the Character Set Scanner

• Explain the new byte and character semantics

• Use the Locale Builder

Objectives

Describe and use the new date and time data types:
Time zones, their use for globalization, Daylight Saving Time, and the corresponding new
SQL functions.

Understand the Unicode enhancements:
The new Unicode character sets, National Character Set limitations, Unicode character
implementations, and SQL*Loader enhancements.

Use the Character Set Scanner:
Identify character conversion problems, Database summary report, and Individual
Exception Reports.

Use the Locale Builder:
User defined Locales, and manipulating existing NLS locale data.

Oracle9i: New Features for Administrators 18-3

Copyright © Oracle Corporation, 2001. All rights reserved.18-3

Globalization and NLS

• Globalization support is the new name for
National Language Support (NLS)

• NLS still used in the names of views and variables

Globalization Support

The term Globalization Support is now used in preference to National Language Support to
reflect the much broader application of the features in the Oracle RDBMS. NLS originally
only covered language setting.

Globalization Support is not a product; it is a database feature. It is a suite of features that
you use to develop multilingual applications that can be accessed and run anywhere in the
world simultaneously, without modification, rendering content in the native user’s language
and locale preferences.

The abbreviation NLS is still used as part of the name of the parameters and functions.

Oracle9i: New Features for Administrators 18-4

Copyright © Oracle Corporation, 2001. All rights reserved.18-4

New Time and Interval Data Types

There are five new data types:
• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

• TIMESTAMP WITH LOCAL TIME ZONE

• INTERVAL YEAR TO MONTH

• INTERVAL DAY TO SECOND

New Date and Time Data Type
The new time and date data types store both date and time, like the DATE data type, but
with fractional seconds, up to 9 digits precision, and time zone information.

TIMESTAMP stores a date and time. You optionally specify the precision of fractional
seconds, the default is 6 digits, maximum 9. For example:

CREATE TABLE … (occurred_at TIMESTAMP(4))

TIMESTAMP WITH TIME ZONE includes the time zone the time component refers to.
This is stored in extra bytes. You might think of this as an “absolute” time. You specify
precision as with TIMESTAMP, for example:

CREATE TABLE … (entry_time TIMESTAMP(2) WITH TIME ZONE)

TIMESTAMP WITH LOCAL TIME ZONE normalizes the time to the database time zone.
You thus cannot see which time zone the date was entered with, but it will be recalculated
and displayed in the correct time zone of the client retrieving the data. You can think of this
as a “relative” time. An example:
CREATE TABLE … (mail_sent TIMESTAMP WITH LOCAL TIME ZONE)

Oracle9i: New Features for Administrators 18-5

Copyright © Oracle Corporation, 2001. All rights reserved.18-5

New Time and Interval Data Type
Example

SQL> CREATE TABLE happenings
2 (occurred_at TIMESTAMP(4)
3 -- Absolute, non-globalized timestamp
4 ,entry_time TIMESTAMP(2) WITH TIME ZONE
5 -- Absolute, globalized timestamp
6 ,mail_sent TIMESTAMP WITH LOCAL TIME ZONE
7 -- Relative, globalised
8 ,guarantee INTERVAL YEAR(1) TO MONTH
9 -- Maximum is 9 years 11 months
10 ,workhours INTERVAL DAY(0) TO SECOND(0)
11 -- Maximum is 23:59:59s
12);

New Interval Data Type

The interval time types are used to store a length of time, as opposed to a point in time.

INTERVAL YEAR TO MONTH allows intervals to be specified in (years, months).
You specify the number of digits to give to the year component, for example:
SQL> CREATE TABLE … (guarantee INTERVAL YEAR(1) TO MONTH);

Default precision is 2, and the maximum is 9. Specifying 0 disables the year component.

INTERVAL DAY TO SECOND allows intervals to be specified in (days, hours, minutes,
seconds). You can specify the number of digits to allow in the day (default 2, maximum 9,
and zero disables the field) and precision of fractional seconds, for example:
SQL> CREATE TABLE … (workhours INTERVAL DAY(0) TO SECOND(0),

2 holidays INTERVAL DAY(2) TO SECOND(0)) ;

Oracle9i: New Features for Administrators 18-6

Copyright © Oracle Corporation, 2001. All rights reserved.18-6

TIMESTAMP Literals

SQL> INSERT INTO happenings
2 (occurred_at,entry_time,mail_sent) VALUES
3 (’21-MAY-01 12:23:45.87’ -- Fractional secs
4 ,’22-MAY-01 08:50:12 AM GMT’ -- Named timezone
5 ,’23-MAY-01 05:00:00 PM’ -- Client timezone
6);

SQL> ALTER SESSION SET
2 nls_timestamp_tz_format = ’DDMMYYHH24MISSFF TZH’;

SQL> INSERT INTO happenings(entry_time)
2 VALUES (’24050110061578 +3’);

SQL> INSERT INTO happenings(entry_time)
2 VALUES (TIMESTAMP ’2001-05-25 18.30.26.12345’
3 AT TIME ZONE ’Europe/London’);

TIMESTAMP Literals

The format of entering timestamps is controlled by the corresponding NLS timestamp
format mask, with optional fractional seconds and an optional time zone field. The latter
can be entered as a named time zone, or as an offset, for example: ’-3:00’.

Alternatively you can use the following format:

TIMESTAMP ’YYYY-MM-DD HH24:MI:SS.FF’ AT TIME ZONE <tz spec>

That is, the keyword TIMESTAMP is followed by a string, where the format is fixed as
shown above. The AT TIME ZONE is optional.

When specifying the time zone, there is a difference between entering it with an offset or
entering it with a region name. This is stored as part of the value. This is reflected when
selecting from TIMESTAMP WITH TIME ZONE. If it was defined with an offset, then it
does not show as a region, even if the format calls for one.

Entering a TIMESTAMP WITH LOCAL TIME ZONE is identical to entering a TIMESTAMP.

Oracle9i: New Features for Administrators 18-7

Copyright © Oracle Corporation, 2001. All rights reserved.18-7

INTERVAL Literals

SQL> UPDATE happenings SET
2 guarantee = INTERVAL ’1-6’ YEAR TO MONTH
3 , workhours = INTERVAL ’08:00’ HOUR TO MINUTE
4 , mail_sent = mail_sent +
5 INTERVAL ’1000’ MINUTE;

INTERVAL Literals

The interval has the INTERVAL keyword followed by the literal text string that specifies
the amount and ends with the interval type keywords.

INTERVAL ’<year>-<month>’ YEAR TO MONTH

INTERVAL ’<day> <hr>:<min>:<sec>.<fraction>’ DAY TO SECOND

Note the hyphen in the YEAR TO MONTH and the space between DAY and HOUR. The field
value can be too large, if it can be converted into a higher field.

You can abbreviate the literal and omit corresponding fields as shown in the examples.

More Examples
INTERVAL ’1 2:3:4.5’ DAY TO SECOND
One day, two hours, three minutes, four and a half seconds.

INTERVAL ’1’ YEAR + INTERVAL ’1’ DAY
One year and one day.

Oracle9i: New Features for Administrators 18-8

Copyright © Oracle Corporation, 2001. All rights reserved.18-8

Formatting NLS Variables

• NLS_TIMESTAMP_FORMAT

Default: ’DD-MON-RR HH.MI.SSXFF AM’

• NLS_TIMESTAMP_TZ_FORMAT

Default: ’DD-MON-RR HH.MI.SSXFF AM TZR’

NLS Formatting Variables

The new data types have their own formatting variables. The default value is shown. As
with other formatting masks these apply to input and output, whether entered by the user or
in PL/SQL code.

The time zone field values are formatted either numerically with TZH or TZM for hour and
minute respectively, or TZR for a region name. Specifying TZR in the formatting mask still
allows numeric entry. When formatting for display with TZR it show only a region, if a
region was entered. If specified with TZD, the string indicates if daylight saving (summer
time) is in effect.

The format mask for timestamp includes FF for fractional second. You cannot specify the
width of the field, only its presence or absence. Specifying FFFF does not specify four
digits, but the fractional seconds field is repeated twice on output. The X specifies the radix
separator.

Oracle9i: New Features for Administrators 18-9

Copyright © Oracle Corporation, 2001. All rights reserved.18-9

Using Time Zones

• The database operates in a time zone:
– Defined at CREATE DATABASE time

– Can be altered with ALTER DATABASE

– Current value given by DBTIMEZONE

• The session operates in a time zone:
– Defined with ORA_SDTZ environment variable

– Can be altered with
ALTER SESSION SET TIME_ZONE

– Current value given by SESSIONTIMEZONE

• TIMESTAMP WITH LOCAL TIME ZONE
adjusts for time zones

Using the Time Zones

The time zone information is for applications that operate in several time zones
simultaneously; for example, mail programs.

The client session takes its local time zone from the ’ORA_SDTZ’ environment variable
which can have values ’OS_TZ’ (use operating system time zone), ’DB_TZ’ (use time
zone of database, effectively negates the function of LOCAL TIME ZONE), or a specified
offset or named time zone. The local time zone of the session can be altered with

ALTER SESSION SET TIME_ZONE=
{<tz name>|<offset value>|DBTIMEZONE|SESSIONTIMEZONE}

The time zone of the client is included in the time value that is stored in a TIMESTAMP
WITH TIME ZONE column if not specified. In other words, if you do not specify a time
zone in your date time literal, an implicit conversion is made from DATE or TIMESTAMP
to TIMESTAMP WITH TIME ZONE, and thus adding the client time zone.

Oracle9i: New Features for Administrators 18-10

Copyright © Oracle Corporation, 2001. All rights reserved.18-10

Application or Server Time Zone Handling

Database
- 01

1-AUG-1998
11:05:10.96 +3

Client
+ 03

1-AUG-1998
14:05:10.96 +3

Client
+ 06

1-AUG-1998
14:05:10.96 +3

1-AUG-1998
10:05:10.96

1-AUG-1998
14:05:10.96

1-AUG-1998
17:05:10.96

WITH LOCAL
TIMEZONE

WITH
TIMEZONE

Local time

Local
time zone

Application Based Time Zone Handling
The TIMESTAMP WITH TIME ZONE data type stores the time zone offset with the time.
The application code can examine this field and perform application specific conversion or
adjustment.

This is shown by the upper row. The time was entered by client 1. Client 2’s application
may adjust the time value with the data and session time zone for display or sorting
purposes.

You can determine the time zone offset of column data by using either of the following:
SQL> SELECT TO_CHAR(tsz,’TZH’) HR, TO_CHAR(tsz,’TZM’) MI
2 FROM happenings;

SQL> SELECT EXTRACT(TIMEZONE_REGION FROM tsz) FROM happenings;

Server Based Time Zone Handling
The TIMESTAMP WITH LOCAL TIME ZONE data type stores times in the database with
the same time zone as the database is defined with. The times are adjusted, when displayed
at a client, to be in the client’s local time zone. Clients in different time zones therefore see
different results when selecting from this data type. Inside the database the time is stored in
the database time zone.

The second row shows the same time entered by client 1. Note the return value for client 2.

No Time Zone
The TIMESTAMP data type stores the time value and does not make any adjustments.

Oracle9i: New Features for Administrators 18-11

Copyright © Oracle Corporation, 2001. All rights reserved.18-11

Datetime/Interval Arithmetic

All the sensible manipulations are supported

• You can add or subtract an interval from a
timestamp or date

• You can add or subtract intervals from each other

• You can multiply or scale an interval

• You can subtract dates to yield an interval

Date/Time Arithmetic

You can perform arithmetic on date and time variables and interval types. Any sensible
combination works. If you use a number in a date time expression, this is converted to a
DATE type and coerce the expression result into a DATE type (possibly loosing precision).
To avoid this, explicitly specify an INTERVAL type. Consider the following:

SQL> SELECT entry_time, entry_time + 4,
2 entry_time + INTERVAL ’4’ DAY
3 FROM happenings;

Returns for each expression, respectively:

The original value: 22-MAY-01 08:50:12.87000 PM PST
4 days later, but result in DATE: 22-MAY-01 08:50:12
As above, but in TIMESTAMP: 22-MAY-01 08:50:12.87000000 PM PST

You loose both fractional precision and time zone information in the second case.
Possible errors if you attempt impossible calculations include:
ORA-30081: invalid data type for datetime/interval arithmetic

which may be an indication of an unexpected conversion.
ORA-30087: Adding two datetime values is not allowed

when trying to add two datetime values. Subtraction is supported.

Note: Oracle8i already supported adding or subtracting an interval literal from a date.

Oracle9i: New Features for Administrators 18-12

Copyright © Oracle Corporation, 2001. All rights reserved.18-12

To get current session time and database time
for all datetime data types

Datetime Functions

CURRENT_DATE Session date and time (DATE)
CURRENT_TIMESTAMP Session date and time

(TIMESTAMP WITH TIME ZONE)
LOCALTIMESTAMP Session date and time

(TIMESTAMP)
SYSTIMESTAMP Server date and time

(TIMESTAMP WITH TIME ZONE)
DBTIMEZONE Server time zone (VARCHAR2)
SESSIONTIMEZONE Session time zone (VARCHAR)

SYSDATE Server date and time (DATE)

Get Information Functions
CURRENT_DATE: Returns the current date and time in the session time zone, in a value in
the Gregorian calendar of data type DATE, which means without fractional seconds.

LOCALTIMESTAMP: Returns the same value, but in TIMESTAMP data type, that is, with
fractional seconds.

CURRENT_TIMESTAMP: Returns the same value as LOCALTIMESTAMP but in the
TIMESTAMP WITH TIME ZONE data type, and thus includes the session time zone.

SYSTIMESTAMP: Returns date and time of the server in TIMESTAMP data type.

By contrast, the SYSDATE function is the server system date and time, without time zone
adjustment.

DBTIMEZONE: Returns the value of the database time zone. The return type is a time zone
offset or a time zone region name, depending on how you defined the database time zone.

SESSIONTIMEZONE: Returns the value of the current session’s time zone. The return
type is a time zone offset or a time zone region name, depending on how you specified the
session time zone value in the most recent ALTER SESSION statement.

Examples
SQL> SELECT DBTIMEZONE, SESSIONTIMEZONE FROM DUAL;

SQL> SELECT LOCALTIMESTAMP - SYSTIMESTAMP FROM DUAL;

Oracle9i: New Features for Administrators 18-13

Copyright © Oracle Corporation, 2001. All rights reserved.18-13

Datetime Conversion Functions

Function: From: To:

TO_DSINTERVAL String INTERVAL DAY TO SECOND
TO_YMINTERVAL String INTERVAL YEAR TO MONTH
TO_TIMESTAMP String TIMESTAMP
TO_TIMESTAMP_TZ String TIMESTAMP WITH TIME ZONE
FROM_TZ TIMESTAMP TIMESTAMP WITH TIME ZONE

TO_CHAR, TO_NCHAR All date and time types to character;
extended for new formats

Conversion functions
TO_DSINTERVAL: Converts a string to an INTERVAL DAY TO SECOND data type.

TO_YMINTERVAL: Converts a string to an INTERVAL YEAR TO MONTH data type.

TO_TIMESTAMP: Converts a string to a TIMESTAMP data type.

TO_TIMESTAMP_TZ: Converts a string to a TIMESTAMP WITH TIME ZONE data type.

FROM_TZ: Converts a TIMESTAMP value to a TIMESTAMP WITH TIME ZONE value
with a specified time zone.

TZ_OFFSET: Returns the time zone offset of the value entered, and adjusts the return
value on the date the statement is executed (that is, Daylight Saving Time)

The TO_CHAR function is extended to support the new datetime and interval types and
converts these into a character string with the default or specified format mask. There is
also a TO_NCHAR function where the result is in the national character set.

Examples
SQL> SELECT hire_date,
2 hire_date + TO_YMINTERVAL(’01-02’) "14 months"
3 FROM employees;

SQL> SELECT TO_TIMESTAMP_TZ(’1999-12-01 11:00:00 -8:00’,
2 ’YYYY-MM-DD HH:MI:SS TZH:TZM’)
3 FROM dual;

Oracle9i: New Features for Administrators 18-14

Copyright © Oracle Corporation, 2001. All rights reserved.18-14

Datetime Extract Function

Gets appropriate field from datetime or interval data
type, and returns a NUMBER value

SQL> SELECT EXTRACT(YEAR FROM ’07-MAR-1998’)
2 FROM dual;

EXTRACT

1998

Extract functions
EXTRACT returns the value as a NUMBER of a specified datetime field from a datetime or
interval value expression.

You can extract YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, TIMEZONE_HOUR,
TIMEZONE_MINUTE, TIMEZONE_REGION, and TIMEZONE_ABBR (abbreviation). The
value must contain the field; for example, you cannot extract SECOND from a INTERVAL
YEAR TO MONTH.

When you extract a TIMEZONE_REGION or TIMEZONE_ABBR, the value returned is a
string containing the appropriate time zone name or abbreviation. When you extract any of
the other values, the value returned is in the Gregorian calendar format. When extracting
from a datetime with a time zone value, the value returned is in Coordinated Universal
Time, formerly Greenwich Mean Time (UTC).
SQL> SELECT EXTRACT(YEAR FROM DATE ’1998-03-07’)
2 FROM DUAL;

Oracle9i: New Features for Administrators 18-15

Copyright © Oracle Corporation, 2001. All rights reserved.18-15

Daylight Saving Time

• Daylight Saving Time (DST) in named regions
– List of named regions in V$TIMEZONE_NAMES

– Not all regions have DST

• Arithmetic on TIMESTAMP WITH TIME ZONE
adjusts for DST:
– The skipped and inserted hour is skipped

or counted twice, respectively.

– The skipped hour cannot be stored.

– The inserted hour has to be specified in timezone
if it is the first or second occurrence.

Daylight Saving in Regions

Some localities have defined Daylight Saving Time (DST) (also known as Summer Time)
for a period of the year, where the clocks are advanced by one hour. The dates and times
this occurs is different from place to place, and not consistent in a time zone. Therefore
there are many named regions for a given time zone. ’+01:00’, ’CET’ and ’Poland’
all refer to the same time zone, but treatment of DST varies.

When adding or subtracting INTERVAL from TIMESTAMP WITH TIME ZONE values, the
Daylight Saving Hour in spring and autumn, respectively, is compensated for. This only
works where the time zone was entered as a named region, not a hour and minute offset.

The format mask ’TZD’ in NLS_TIMESTAMP_TZ_FORMAT will show if the time is in
DST or not.

Result for Special Cases

Inserting invalid values (the skipped hour in springtime) will insert it as a standard time,
that is, ignoring daylight saving rules.

If the ERROR_ON_OVERLAP_TIME session variable is set to TRUE, however, an error is
raised. You set it to TRUE or FALSE with ALTER SESSION.

Oracle9i: New Features for Administrators 18-16

Copyright © Oracle Corporation, 2001. All rights reserved.18-16

Unicode

• Contains all major living scripts and supports
legacy data

• Develop, deploy, and host multiple languages
in a single instance

• Enable worldwide interchange of data

• Conforms to International Standards

What Is Unicode?

Unicode is a universal character encoding scheme that you use to store information from
any major language using a single character set. Unicode provides a unique code value for
every character, regardless of the platform, program, or language.

Oracle started supporting Unicode as a database character set in Oracle7. In Oracle9i,
Unicode support has been expanded so that you can find the right solution for your
globalization needs. Oracle9i supports Unicode 3.0, the third version of the Unicode
Standard. For more information about the Unicode Standard Version 3.0, see The Unicode
Standard Version 3.0, published by Addison-Wesley, or on
http://www.unicode.com

Unicode specifies both which characters are encoded, and several different methods to
represent these in binary. The list of defined characters is independent of the method to
encode the binary numbers, which is only of interest when exchanging data. This is why
there are several Unicode character sets in Oracle9i, one for each binary encoding format,
although the list of which characters are represented is the same. There is the varying width
byte method, and the fixed-length two bytes and four byte methods. Lastly there is a
method to extend the first two methods with surrogate pairs.

Oracle9i: New Features for Administrators 18-17

Copyright © Oracle Corporation, 2001. All rights reserved.18-17

Unicode Encodings

C3 91

74

63

EE AA 9E

F0 9D 84 9E

C3 B6

D0

64

0063

00E1

0074

A89E

0064

00F6

0424

D834 DD1E

á

t

c

ö

d

Surrogate
Pair

UTF-8 UTF-16

A4

UTF-16 Encoding

This is the 16-bit encoding of Unicode. It is a fixed-width multibyte encoding in which the
character codes 0x00 through 0x7F have the same meaning as ASCII. One Unicode
character is 2-bytes in this encoding. Characters from both European and Asian scripts are
represented in 2 bytes.

UTF-8 Encoding

This is the 8-bit encoding of Unicode. It is a variable-width multibyte encoding in which
the character codes 0x00 through 0x7F have the same meaning as ASCII. One Unicode
character can be 1-byte, 2-bytes, or 3-bytes in this encoding. Characters from the European
scripts are represented in either 1 or 2 bytes, while characters from most Asian scripts are
represented in 3 bytes.

Surrogate Pairs

You can extend Unicode to encode more than 1 million characters. These extended
characters are called surrogate pairs. Surrogate pairs are designed to allow representation of
characters in future extensions of the Unicode Standard. Surrogate pairs require 4 bytes in
UTF-8 and UTF-16. There are no such currently assigned characters in the current version
of the standard, but it is widely expected that such characters will be introduced in the near
future. One current proposal would assign Western Musical Symbols, like the treble clef
shown above, in the surrogate area.

UCS-2 is a subset of UTF-16. UTF-16 differs from UCS-2 in that it can access additional
encodings with the use of surrogate pairs.

Oracle9i: New Features for Administrators 18-18

Copyright © Oracle Corporation, 2001. All rights reserved.18-18

Unicode Character Forms

• Unicode also defines some character forms,
irrespective of the encoding used
– Composed

– Decomposed

• The SQL functions COMPOSE and DECOMPOSE
perform this action.

Composed Versus Decomposed
Characters which have diacritical marks, such as ’ö' , can either be represented as two
characters, the base character followed by the mark (or this example as an 'o' and '¨') or
as a single character. The visual output and the intended lexical meaning is the same
character, but they store differently. This is due to the legacy character sets all being
representable in Unicode. This is true in all Unicode character sets. Unicode character sets
only differ in which binary bytes are used; the repertoire of characters is the same.

Comparisons should use the decomposed format consistently. Either strings are always
stored in decomposed format, or an extra conversion must be done.

Examples
SQL> SELECT COMPOSE(’o’||UNISTR(’\0308’))
2 FROM DUAL;

CO
--
Ö

SQL> SELECT DECOMPOSE('Châteaux')
2 FROM DUAL;

DECOMPOSE

Cha^teaux

Oracle9i: New Features for Administrators 18-19

Copyright © Oracle Corporation, 2001. All rights reserved.18-19

Enhanced Unicode Support

• More Unicode character sets

• Hexadecimal character specification possible
with UNISTR function

• Character set choice for National Character Set is
limited to Unicode character sets. This can affect
migration of databases.

• Also supported in database character set

More Unicode Character Sets

The Oracle Unicode now supports the fixed-width character encoding. This enables easier
loading of multinational data.

UNISTR Function

UNISTR converts a string to a Unicode string. In the string you can specify the
hexadecimal character number (not the byte representation) of “difficult” characters.
SQL> SELECT UNISTR(’M\00b2’)
2 FROM DUAL;

National Character Set Choices

The National Character Set can only contain Unicode character sets. This is a change to
previous versions. You can now declare both varying width and fixed width character sets,
but they must be one of the Unicode character sets. The current implementation restricts the
National Character Set to either UTF8 or AL16UTF16 only. This is covered more in the
section on the Character Set Scanner.

Oracle9i: New Features for Administrators 18-20

Oracle9i Unicode Globalization Design

Future schema design should put all character strings, which may contain language specific
information, in the data types NCHAR, NVARCHAR2 and NCLOB, where they can utilize the
full character set of Unicode. The DATABASE CHARACTER SET needs only to be a
character set that is compliant with the operating system, to refer to data dictionary objects,
and filenames. For performance this should be a fixed width one byte character set.

The previous style of having the varying-width Unicode character set as the DATABASE
CHARACTER SET is still supported, both for new and migrated databases.

Oracle9i: New Features for Administrators 18-21

Copyright © Oracle Corporation, 2001. All rights reserved.18-21

Migration and Unicode Issues

• Unicode conversion

• Conversion required during migration

Conversion to Unicode for National Character Set

An Oracle8i database with a non-Unicode character set in National Character Set has to
convert the National Character Set to a Unicode character set. The Character Set Scanner
should be used prior to migration to identify any potential problems to identify any
conversion problems. These are no different to the other character conversion problems.
The migration utility has a facility to do the conversion of NCHAR, NVARCHAR2 and
NCLOB without use of export or import. Using export and import is also supported,
particularly if the database is migrated using these facilities.

See the Oracle9i Migration Manual for details.

Oracle9i: New Features for Administrators 18-22

Copyright © Oracle Corporation, 2001. All rights reserved.18-22

New Unicode Character Sets

• Two new Unicode character sets:
– AL16UTF16

– AL32UTF8

• Existing character set:
– UTF8

– UTFE

• Desupported character set:
– AL24UTFFSS

Unicode Character Sets

AL16UTF16 is the fixed width two-byte character set of Unicode. Surrogate pairs are not
supported, as they are not ratified in the Unicode standard at this time, but these will
occupy 4 bytes. It can only be used in the National Character Set. This is also sometimes
referred to as UTF16 or UCS-2. Even though this uses more storage for English text
compared to the UTF8 based sets, processing is faster because it is fixed size.

AL32UTF8 is an enhanced version of UTF8. It strictly implements the UTF-8 standard.
When defining new databases AL32UTF8 should be used instead of UTF8 if this is
required as the Database Character Set.

UTF8 is still supported, in order to allow migration of databases from Oracle8i or earlier
versions. UTFE is still supported, as it is an EBCDIC based variant of UTF8 for use on
platforms where EBCDIC is the operating system character set.

AL24UTFFSS is desupported in Oracle9i. This is similar to UTF8 but contains fewer
characters and is based on an old Unicode standard.

Space Tradeoffs

Your choice of different Unicode character sets affects the space usage. Storing non-
English European strings occupy two bytes; Far East characters occupy three bytes in the
varying width character set. In the fixed width every character occupies two bytes. So the
proportion of Asian characters is influential. Using a non-Unicode 8 bit character set limits
the repertoire of characters, but all characters occupy one byte.

Oracle9i: New Features for Administrators 18-23

Copyright © Oracle Corporation, 2001. All rights reserved.18-23

Choosing a Unicode Solution Scenario
Unicode Database

Scenario

• Current character set: WE8ISO8859P1

• Will need to expand language requirements
beyond the current capacity. The database
contains existing PL/SQL code.

Solution

• Database Character Set: AL32UTF8

• National Character Set: Default

Scenario

The current database is configured for character set WE8ISO8859P1. The database will
need to expand language requirements beyond the current character set. Also the database
contains PL/SQL code for existing applications.

Considerations

The need to support additional languages requires a change at the database or column level.
Adding SQL NCHAR data type columns to tables would require significant code changes.
Migrating to a Unicode database character set would require few changes to existing code.

Solution

Choose AL32UTF8 as the database character set.

Oracle9i: New Features for Administrators 18-24

Copyright © Oracle Corporation, 2001. All rights reserved.18-24

Choosing a Unicode Solution Scenario
Unicode Data Type

Scenario

• Current character set: JA16EUC (Japanese)

• Need support for additional Asian and Western
European Languages in the form of customer
names and addresses.

Solution

• Database Character Set: JA16EUC

• National Character Set: AL16UTF16

Scenario

The current database is configured for character set JA16EUC (Japanese). Access to
additional Asian and Western European languages is needed.

Considerations
Only customer names and addresses require Unicode support. Using NCHAR columns meet
the requirement without migrating the entire database.

JA16EUC is a variable width 16-bit character set. Moving text data to NCHAR datatypes in
UTF-16 would save space by storing data in two bytes; also this would improve
performance by using a fixed-width character set.

Solution

Choose AL16UTF16, the default for Unicode storage for the National Character Set. Leave
the database character set at JA16EUC.

Oracle9i: New Features for Administrators 18-25

Copyright © Oracle Corporation, 2001. All rights reserved.18-25

More Character Sets, Languages,
and Territories

Character Set
BLT8ISO8859P13

CEL8ISO8859P14

CL8ISOIR111

CL8KOI8U

WE8EBCDIC924

WE8EBCDIC1047E

ZHS32GB18030

Language
Assamese
Bangla
Gujarati
Kannada
Malayalam
Marathi
Oriya
Punjabi
Telugu

Territory
Chile
Colombia
Costa Rica
El Salvador
Guatemala
Macedonia
Nicaragua
Panama
Peru
Puerto Rico
Venezuela
Yugoslavia

Character Sets
BLT8ISO8859P13 ISO 8859-13 Baltic character set
CEL8ISO8859P14 ISO 8859-14 Celtic character set
CL8ISOIR111 SOIR111 Cyrillic character set
CL8KOI8U KOI8 Ukrainian Cyrillic character set
WE8EBCDIC924
WE8EBCDIC1047E
ZHS32GB18030

These new character sets are primarily intended to support more client locales, as a
Unicode database can store all characters.

Languages

The language definition includes: Language of message (Note; a language definition does
not necessarily imply that the message files have been translated), date names, and default
sorting order.

Territories

The Territory definition includes: Default formatting of numbers and dates, currency
symbols, calendar settings.

Extending Definitions

Defining new or modifying new character sets, languages and territories can be done easier
in the Locale builder, covered later in this lesson.

Oracle9i: New Features for Administrators 18-26

Copyright © Oracle Corporation, 2001. All rights reserved.18-26

Enhanced Linguistic Sorting

The sorting now uses four-level sorting:

• Enables more complex sorting rules

• New sorting definitions added, which utilize three
levels

• Result of sort of the old definitions unchanged

• User can refine sorting rules by defining the fourth
level

Enhanced Linguistic Sorting

The Oracle server sorts characters by converting each character into its sorting value (see
NLSSORT function), and then sorting on that. Versions prior to Oracle9i generated two
numbers per character. If the first number, the major sorting value, is the same for a pair of
characters, then the second value, the minor, value was compared. Oracle9i has up to four
sorting values per character, so that the lower levels are used if the first two levels are
identical. Defining a sort is thus the list of characters and their sorting values. The
characters are defined in Unicode code points, so that the sort can be applied to all
character sets, there being an implicit conversion to Unicode.

There are also some additional entries that define character swapping, character expansion
and contraction which modifies the basic sorting in some languages.

You specify which sort to use, as before, with NLS_SORT. Sort definitions from before
Oracle9i have not changed, to maintain compatibility. There are new sort definitions that
utilize the more complex sorting tables.

If you want to refine the sort even further, you can define your own sorts, using the Locale
Builder.

Oracle9i: New Features for Administrators 18-27

Copyright © Oracle Corporation, 2001. All rights reserved.18-27

New Linguistic Sorts

• GENERIC_M

• SPANISH_M

• FRENCH_M

• CANADIAN_M

• DANISH_M

• BIG5

• HKSCS

• GBK

• THAI_M

• SCHINESE_STROKE_M

• SCHINESE_PINYIN_M

• TCHINESE_RADICAL_M

• TCHINESE_STROKE_M

• JAPANESE_M

• KOREAN_M

• SCHINESE_RADICAL_M

Multilinguistic Sorting

It is not possible to make a generic multilingual sort, as letters sort differently in different
languages. In a given single-language sort, characters that are not part of the language are
often not sorted. For example, when sorting in Chinese, any Arabic strings are not sorted.
The multilinguistic sort has a defined basic sorting order for all characters, which is used
for the characters outside this language.

New Sorts
• GENERIC_M: Generic sorting order which is based on ISO14651 and Unicode

canonical equivalence rules but excluding compatible equivalence rules

These other new sort definitions use the ISO standard 14651 as the basic sorting, but
otherwise sort correctly for the language. In addition they implement more special language
specific sorting rules.

• CANADIAN_M: Canadian French sort supports reverse secondary, special expanding
characters

• CYRILLIC_M : Cyrillic sort

• DANISH_M: Danish sort supports sorting lower case characters before upper case
characters

• FRENCH_M: French sort supports reverse sort for accented characters

Oracle9i: New Features for Administrators 18-28

New Sorts (continued)
• JAPANESE_M: Japanese sort supports SJIS character set order and EUC characters

which are not included in SJIS

• KOREAN_M: Korean sort: Hangul characters are based on Unicode binary order.
Hanja characters based on pronunciation order. All Hangul characters are before
Hanja characters

• SPANISH_M: Traditional Spanish sort supports special contracting characters

• THAI_M : Thai sort supports swap characters for some vowels and consonants

• SCHINESE_STROKE_M: Simplified Chinese sort uses number of strokes as primary
order and radical as secondary order

• SCHINESE_PINYIN_M: Simplified Chinese PinYin sorting order

• TCHINESE_RADICAL_M: Traditional Chinese sort based on radical as primary
order and number of strokes order as secondary order

• TCHINESE_STROKE_M: Traditional Chinese sort uses number of strokes as primary
order and radical as secondary order

• SCHINESE_RADICAL_M: Simplified Chinese sort based on radical as primary order
and number of strokes order as secondary order

Oracle9i: New Features for Administrators 18-29

Copyright © Oracle Corporation, 2001. All rights reserved.18-29

Byte and Character Semantics

• Length specification can be byte or character:
– When defining column

– Values in SQL function

• Byte or character semantics is an attribute of the
column, stored in data dictionary

• Can be specified for CHAR and VARCHAR2:

– With column

– As a session default by setting
NLS_LENGTH_SEMANTICS

• NCHAR and NVARCHAR2 are always character
semantics.

Byte and Character Semantics
The default sizing of character data types (CHAR, VARCHAR2, and LONG) are in bytes by
default. CHAR(10) in a table definition means 10 bytes not 10 characters. For a single-
byte character set encodings the character and byte length are the same. However, multi-
byte character set encodings do not correspond to the bytes, making sizing the column more
difficult.

Explicitly setting NLS_LENGTH_SEMANTICS to CHAR, either as an environment variable
for the client, or in an ALTER SESSION statement, enables the new character length
semantics. Alternatively you can specify the semantic mode in the column definition, for
example:
SQL> CREATE TABLE semantic
2 (bytewide CHAR(10 BYTE)
3 ,charwide CHAR(10 CHAR)
4);

NLS_LENGTH_SEMANTICS has no effect on tables owned by SYS or SYSTEM. These are
always treated with byte semantics.

Oracle9i: New Features for Administrators 18-30

Character-Length Semantics: Data Dictionary
The USER_TAB_COLUMNS and USER_IND_COLUMNS data dictionary tables have been
extended to show which semantics have been used in the table (and dependant index)
definition.

This also applies to the DBA_* and ALL_* version of the above views.

The CHAR_LENGTH column computes the maximum character length that can be
accommodated.The CHAR_USED column indicates with the value ’B’ or ’C’ whether the
column was created with byte or character length semantics, respectively.
SQL> SELECT column_name, data_length,
2 char_length, char_used
3 FROM user_tab_columns
4 WHERE table_name = ’STRINGS’;

SQL> SELECT column_name,
2 char_length, char_used
3 FROM user_ind_columns
4 WHERE table_name = ’STRINGS’;

Oracle9i: New Features for Administrators 18-31

Copyright © Oracle Corporation, 2001. All rights reserved.18-31

Implicit Type Conversion for
NCHAR Data Type

• SQL functions that take CHAR/VARCHAR2 as
arguments also take NCHAR/NVARCHAR2 as
arguments.

• You can use the TO_NCHAR function instead of
TO_CHAR for output in NCHAR/NVARCHAR2 data
type.

New Implicit Character Data Type Conversion
SQL functions that require a character string now accept either CHAR, NCHAR, VARCHAR2,
or NVARCHAR2.

Implicit conversion in assignments is also supported. This reduces the need for the
TRANSLATE(…USING…)function.

Prior to Oracle9i you had to explicitly specify a text string as being database or national by
omitting or prefixing the string with an N (example: N'National'), respectively.
Assigning a database string to a national data type or vice versa failed. The implicit
conversion hides the need.

The advantage of the implicit conversions is that you can convert existing data from using
CHARto NCHARcolumns and only need some minimal change in application code.

The disadvantage is that an unintended conversion may alter the string if some characters are
not convertible.

Explicit Conversion
You can still perform explicit conversion, by using the TRANSLATE (… USING …)
function, or the new TO_NCHARfunction where you would use TO_CHAR.

Oracle9i: New Features for Administrators 18-32

Copyright © Oracle Corporation, 2001. All rights reserved.18-32

SQL*Loader Unicode Support

• Can load UTF-16 data:
– Character-length semantics

– Byte ordering

• Character- and byte-length semantics

SQL*Loader Unicode Support

SQL*Loader is now able to process data files with UTF-16, sometimes called UCS-2,
data.The control file specifies character length in characters, not in bytes, for this character
set. You specify whether the byte ordering is big- or little-endian. The default is the same as
the platform SQL*Loader is running on.

To load UCS-2 or UTF16 data, you add two clauses in the control file:

• CHARACTERSET UTF16

• BYTEORDER {BIG|LITTLE } ENDIAN

The CHARACTERSETkeyword is not required if loading into NCHAR, NVARCHAR2, or
NCLOBcolumns, and the National Character Set is AL16UTF16.

String lengths of CHAR, VARCHAR2and LOBcharacter data can be specified in characters
instead of bytes by adding the clause:

• LENGTH SEMANTICS CHAR

The default is taken from the environment NLS_LENGTH_SEMANTICS.

Oracle9i: New Features for Administrators 18-33

Example

The above is an example of a SQL*Loader control file used to load rows containing data in
the UTF-16 character set in little-endian format, into a table defined like this:
SQL> CREATE TABLE test_emp
2 (empno NUMBER(5)
3 ,ename NVARCHAR2(30)
4 ,job NVARCHAR2(10)
5 ,emgrname NVARCHAR2(20)
6 ,raw_data RAW(200)) ;

In this example, the character set of the SQL*Loader data file TEST.DAT is UTF-16. The
integer external and character data in the file and the length field for the VARCHAR field are
byte swapped if SQL*Loader is running on a system which is is big endian).

The lengths of the various character fields (INTEGER EXTERNAL(4), CHAR(10),
VARCHARC(2,10), and VARCHAR(20)) are interpreted in characters because of the
character set choice. For example, for the ENAME field 20 bytes will be read, as 10 characters
in the file are specified, even though the column has room for 30. The length of the
VARCHARC length field is read as 2 UTF-16 characters (4 bytes), and is the length in
characters. The maximum length of the VARCHARC field is 10 characters. The length of the
VARCHAR field will be read as a SMALLINT from the data file and is interpreted as a length
in characters. The length value bytes for the VARCHAR field will likewise be byte swapped if
SQL*Loader is running on a system which is big endian. The RAW data will be read as 200
bytes and no byte swapping will be done on that data.

Copyright © Oracle Corporation, 2001. All rights reserved.18-33

LOAD DATA
CHARACTERSET UTF16
BYTEORDER LITTLE ENDIAN
INFILE TEST.DAT
TRUNCATE
INTO TABLE TEST_EMP (
EMPNO INTEGER EXTERNAL(4),
ENAME CHAR(10),
JOB VARCHARC(2,10),
EMGRNAME VARCHAR (20),
RAW_DATA RAW(200)

)

SQL*Loader for Unicode
Sample Control File

Oracle9i: New Features for Administrators 18-34

Copyright © Oracle Corporation, 2001. All rights reserved.18-34

Character Set Scanner

• Used before converting database character sets

• Scans database character data for problems

• Does not convert data in the database

• Scans for any character conversion, not limited to
Unicode

• Output is a report of potential conversion faults.

• Available since Oracle8i Release 3 (8.1.7)

Character Set Scanner

This is a utility to scan all the character data and the related column definitions in the
database, to identify data loss if the data is converted to a new character set. It does not alter
any character data.

When converting the character data in the database to a different character set, or
redeclaring the character set you should:

• Run the Character Set Scanner

• Correct the problems it finds, or find another solution than character set conversion

• Do the conversion

The version of the Character Set Scanner must match the database version. A version for
Release 8.1.7 is distributed with the Oracle8i Release 8.1.7 database. Versions for earlier
Oracle8i releases can be requested for backport through Oracle Support Services.

Further Reading

The Character Set Scanner is described in detail in a separate chapter in the Globalization
Support Guide.

Oracle9i: New Features for Administrators 18-35

Copyright © Oracle Corporation, 2001. All rights reserved.18-35

Common Character Conversion Problems

• Data truncation

• Data loss or data corruption

• Character set mismatch

Data Truncation

New byte codes for existing characters may or may not fit into the current columns. For
example, migrating from WE8ISO8859P1, a single-byte character set, to AL32UFT8, a
multibyte variable-width character set, some characters will translate into two byte
characters. If the migration is performed prior to fixing the column width, the data will be
truncated.

Data Loss or Data Corruption

If the source and target character sets are not compatible (subset/superset), characters may
be replaced with another character during conversion. For example:
Character Set A Character Set B
--------------- ---------------

¼���������������"
ä a
© ?

Character Set Mismatch

If the database character set does not match the usage of the character strings, there is a
mismatch, or a erroneous declaration. For example, a database with character set
US7ASCII can receive data from a Chinese Windows NT client with NLS_LANG set to
SIMPLIFIED CHINESE_CHINA.US7ASCII. Because both the client and database
character sets are set to US7ASCII, no conversion is performed on the data between the
client and server; however, the data is handled differently on each side.

Oracle9i: New Features for Administrators 18-36

Character Set Mismatch (continued)

This can lead to two data inconsistency problems. First, the server will treat these characters
as single-byte USC7ASCII characters, hence all SQL string manipulation functions such as
SUBSTR or LENGTH will be based on single bytes rather than (two-byte) characters. Second,
when the database is migrated to another character set, for example, UTF8, character codes
are converted as if they were in US7ASCII. Each of the two bytes of a ZHS16GBK character
will be converted separately, yielding garbage values in UTF8.

The Character Set Scanner cannot directly detect character mismatch situations.

Oracle9i: New Features for Administrators 18-37

Copyright © Oracle Corporation, 2001. All rights reserved.18-37

Character Set Scanner Operation

• Checks all CHAR, VARCHAR2, LONG, CLOB, NCHAR,
NVARCHAR2, and NCLOB data

– Done for specified table, user or whole database

– Parallel operation

• Checks if:
– Characters change codes

– Characters are representable in new set

– Length of new strings exceeds column definition

• Outputs report:
– Three text files

Operation Mode

The table, user, and whole database modes limit what to scan. Parallellization is very
simple. You specify how many scanning processes you want started simultaneously. Each
process scan one table.

Check of All Character Data

There are two types of character data in the database: user data, and data dictionary data,
such as the names of tables and columns, PL/SQL code, and view definitions. Only in the
full database scan are data dictionary character strings checked. The data dictionary
information such as columns lengths, is checked in all modes, for the scanned objects.

If the database contains data that is not part of the declared character sets, that is, there is a
mismatch situation as described earlier, then either correct the situation, or force the
Character Set Scanner to interpret the data in the correct character set by using the
FROMCHAR parameter for the tables concerned.

Output
The output is in three text files. The log parameter is used to give the path and file name;
the scanner generates files with extensions .out, .txt, and .err . The default name is
scan.

Oracle9i: New Features for Administrators 18-38

Copyright © Oracle Corporation, 2001. All rights reserved.18-38

Character Set Scanner Command

• Utility name is csscan

• Command-line interface

• Interactive prompts

$ csscan system/manager FULL=y TOCHAR=utf8

ARRAY=102400 PROCESS=5

$ csscan system/manager PARFILE=filename

Character Set Scanner Command

The command line used to invoke the Character Set Scanner is similar to that used by other
Oracle utilities. To get the list of all program parameters, use:
$ csscan help=y

The essential parameters are:
• USERID: Standard username/password[@alias] connect string to the database;

the user must have DBA privileges.
• FULL : If Y, scan the entire database. FULL is exclusive to USERand TABLE.

• USER: Owner of tables to scan (Only if FULL=N)

• TABLE: Names of tables to scan in (table1,table2,...) format

• TOCHAR: Target CHARcharacter set name; the test conversion of CHAR, VARCHAR2,
LONGand CLOBdata will be performed to this character set.

• PROCESS: Number of processes to read from database

• ARRAY: Size of fetch array

Optional parameters:
• LOG: Name and path of the three output files.

• TONCHAR: Target character set of NCHAR, NVARCHARand NCLOBdata

• PARFILE : Parameter file that contains all parameters

Oracle9i: New Features for Administrators 18-39

Copyright © Oracle Corporation, 2001. All rights reserved.18-39

Character Set Scanner Output

• scan.out: A copy of the screen log

• scan.txt: Database Scanner summary
– Parameters used
– Size of tablespaces
– Amount of data scanned
– List of all table and columns which contain data

with problems

• scan.err: Errors
– List of rows that have problems

– Unconvertible characters
– Exceed column length

scan.out

Character Set Scanner: Release 9.0.1.0.0 – Production
(c) Copyright 2000 Oracle Corporation. All rights reserved.

Connected to:
Oracle9i Enterprise Edition Release 9.0.1.0.0 – Production

Enumerating tables to scan...

. process 1 scanning OE.CUSTOMERS

. process 1 scanning OE.WAREHOUSES

. process 1 scanning OE.ORDERS

. process 1 scanning OE.PRODUCT_INFORMATION

. process 1 scanning OE.PRODUCT_DESCRIPTIONS

Creating Database Scan Summary Report...

Creating Individual Exception Report...

Scanner terminated successfully.

Oracle9i: New Features for Administrators 18-40

scan.txt

Database Scan Summary Report

Time Started : 2001-07-15 23:12:16
Time Completed: 2001-07-15 23:12:18

Process ID Time Started Time Completed
---------- -------------------- --------------------

1 2001-07-15 23:12:16 2001-07-15 23:12:17
---------- -------------------- --------------------

[Database Size]

Tablespace Used(MB) Free(MB) Total(MB)
----------------------- -------- ---------- ----------
SYSTEM 266,000 8,000 274,000
USERS 1,000 19,000 20,000
TEMP ,000 20,000 20,000
COMSCHEME 3,000 7,000 10,000
----------------------- -------- ---------- ----------
Total 302,000 122,000 424,000

[Database Scan Parameters]

Parameter Value
------------------------------ -----------------------
Scan type User tables
User name oe
Scan CHAR data? YES
Current database character set WE8MSWIN1252
New database character set we8iso8859p1
Scan NCHAR data? YES
Current NCHAR character set WE8MSWIN1252
New NCHAR character set utf8
Array fetch buffer size 100000
Number of processes 1
------------------------------ ------------------------

[Scan Summary]

Some character type application data are not
convertible to the new character set

[Application Data Conversion Summary]

Datatype Changeless Convertible Exceptional Total
------------- ---------- ----------- ----------- ------
VARCHAR2 4.790 0 0 4.790
CHAR 319 0 0 319
LONG
CLOB
NVARCHAR2 380 287 1 668
NCHAR
NCLOB
------------- ---------- ----------- ----------- ------
Total 5.489 287 1 5.777

Oracle9i: New Features for Administrators 18-41

scan.txt (continued)
[Distribution of Convertible Data per Table]
USER.TABLE Convertible Exceptional
-------------------------------------- ----------- -----------
OE.PRODUCT_DESCRIPTIONS 287 1

[Distribution of Convertible Data per Column]

USER.TABLE|COLUMN Convertible Exceptional
-------------------------------------- ----------- -----------
OE.PRODUCT_DESCRIPTIONS|TRANSLATED_NAME 16 1
OE.PRODUCT_DESCRIPTIONS|TRANSLATED_DESCRIPTION 271 0
-------------------------------------- ----------- -----------
[Indexes to be Rebuilt]

USER.INDEX on USER.TABLE(COLUMN)

OE.PROD_NAME_IX on OE.PRODUCT_DESCRIPTIONS(TRANSLATED_NAME)

scan.err

Database Scan Individual Exception Report
[Database Scan Parameters]

Parameter Value
------------------------------ ------
(omitted here)
[Application data individual exceptions]

User : OE
Table : PRODUCT_DESCRIPTIONS
Column: TRANSLATED_NAME
Type : NVARCHAR2(50)
Number of Exceptions : 1
Max Post Conversion Data Size: 51

ROWID Exception Type Size Cell Data ...
------------------ ------------------ ----- ----------------
AAAGFaAAIAAAAEvAAi exceed column size 51 Blåbærgrød ...
------------------ ------------------ ----- ----------------

The three reports have been slightly edited to fit and for clarity.

Conclusion from these reports: An Export and Import is required, because some data has to
be converted. Also one row will not fit. Either the column can be made longer, or you can
edit the character data (as it is a description field, it can perhaps be abbreviated).

Oracle9i: New Features for Administrators 18-42

Copyright © Oracle Corporation, 2001. All rights reserved.18-42

Character Conversion

• This step is done separately.

• Use one of the following:
– Full Export and Import (recommended)

– ALTER DATABASE, if no characters change codes

– A combination of the two; doing export and import
on the few tables that contain changing character
codes, and an ALTER DATABASE

The Character Conversion

The character conversion process is done after you have considered the output of the
Character Set Scanner. The choice of how to perform the conversion are the same as in
previous versions of the server, and are made after the Character Set Scanner has
completed. They are briefly summarized here.

Export and Import

This is the recommended way to convert a database character set. While this is a lengthy
process, it has some other beneficial reorganization of the database (index rebuild,
compacting deleted space, and so forth). You still have to be aware of column size changes,
as reported by the Character Set Scanner.

• Export the database.

• Recreate the database with the new character sets.

• Create the tables which require longer columns.

• Import the data (IGNORE=YES to import into tables created in previous step).

Oracle9i: New Features for Administrators 18-43

ALTER DATABASE [NATIONAL] CHARACTER SET

This is a faster alternative, if the Character Set Scanner has confirmed that no characters
change their code. In addition, check the Globalization Support Guide if the change is
permissible, that is, if the new character set is a superset of the current character set.

The ALTER DATABASE CHARACTER SET command is sometimes used to change the
declaration to reflect the true character set of data previously entered, that is, to correct a
mis-match situation described earlier. Discussion of this situation is outside the scope of
this lesson.

Combination Export/Import and ALTER DATABASE

This reduces the time needed for export and import, if the amount of data that needs
converting is a small part of the database.

• Export the tables with contentious data.

• Truncate those tables.

• ALTER DATABASE … CHARACTER SET …

• Import the table data again.

Oracle9i: New Features for Administrators 18-44

Copyright © Oracle Corporation, 2001. All rights reserved.18-44

Oracle Locale Builder

A GUI based tool to build your own locale:

• Language

• Territory

• Character set

• Collation

• Does not include building own message files

Expanded Locale Coverage and User Definable Locales

Oracle9i provides a large number of locales. If you need another locale, or make an
adjustment to an existing locale, then you can do so using the Locale Builder. Viewing the
definitions in the current supplied locales gives you an accurate and easy-to-read
description of it, without having to understand the formatting of the .NLT files.

The globalization definitions are stored in files in
$ORACLE_HOME/ocommon/nls/admin/data with extensions .NLT (readable
source text) and .NLB (translated binary) and are read by the server. You use the Locale
Builder to view and modify these. You can also create your own.

Starting the Locale Builder
Start the executable lbuilder. It is located in
$ORACLE_HOME/ocommon/nls/lbuilder.

Further Reading

The Locale Builder is fully documented in the Globalization Support Guide, chapter 11.

Oracle9i: New Features for Administrators 18-45

Copyright © Oracle Corporation, 2001. All rights reserved.18-45

Locale Builder Examples

• Default sorting order of a language

• Default date formatting of a territory

• Conversion of characters between character sets

• Collation order of a language

Default Sorting Order
Setting a language (using the NLS_LANG environment variable) the value of NLS_SORT,
among others, is set to a corresponding value at client start up. This can be altered, thus
avoiding the need to perform an explicit ALTER SESSION SET NLS_SORT=value
after starting the client. Other language subordinate values can also be altered.

Default Date Formatting
Setting a territory will similarly set NLS_DATE_FORMAT to a corresponding value. You
can use the Local Builder to define your own format to be applied for the territory.

Character Definitions, Conversion

When the server has to convert characters between client and server, and the source
character is not available in the destination set, you can define what the replacement
character is to be, either the default or the specific replacement character can be defined in
the character set. For example, you can define that 'ä' be replaced by 'a' instead of '?'
in a variation of the US7ASCII character set.

Collation

In the sorting order (collation) defined above, you choose which sorting order to apply. For
a collation you can define precisely how to sort the characters.

Oracle9i: New Features for Administrators 18-46

Copyright © Oracle Corporation, 2001. All rights reserved.18-46

New or Modified Globalization Settings

• Do not alter the supplied files, preferably.

• Create new definitions, based on the supplied
files.

• Generate binary files on each platform using
lxinst

• Use the new definitions

New or Modified Globalization Settings

The recommendation is to define new definitions, rather than altering the existing ones. For
example you call the modified language DUTCH EXT, if it is a variation of the default
DUTCH, rather than modifying the existing language. You have to define a numeric
identification for your new language. It is recommended you name the files in the same
convention.

It is recommended that you save your modifications into a new file, and thus create your
own named language, territory, character set or collation, rather than into the existing file,
thus altering the Oracle-supplied globalization definitions.

Generation of NLB files
After all changes have been made, you must generate the binary .NLB version of the .NLT
file. This can be done in the Locale Builder, if it is the same platform, otherwise you must
copy the .NLT file to the target system, and use the lxinst utility to compile them. This
will also update the lxboot-file, so you must have an appropriate backup of the NLS files
before making changes. You need to restart the instance for the new files to become
effective.

Using the New or Modified Globalization Settings

You select your new language with the same methods. In the example above, you use the
environment variable NLS_LANG="DUTCH EXT_NETHERLANDS.WE8ISO8859P1",
or ALTER SESSION SET NLS_LANGUAGE=’DUTCH EXT’; The quotation marks are
necessary here, because the name contains a space.

Oracle9i: New Features for Administrators 18-47

Copyright © Oracle Corporation, 2001. All rights reserved.18-47

Summary

In this lesson, you should have learned about:

• The new time and date data types

• Unicode enhancements

• New localization definitions

• The Character Set Scanner

• The Locale Builder

Oracle9i: New Features for Administrators 18-48

Copyright © Oracle Corporation, 2001. All rights reserved.18-48

Practice 18-1 Overview

This practice covers the following topics:

• Creating and manipulating timestamp data
between time zones

• Displaying and altering the client time zone

19
Copyright © Oracle Corporation, 2001. All rights reserved.

Database Workspace Management

Oracle9i: New Features for Administrators 19-2

19-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able
to do the following:

• Identify the Workspace Manager role

• Version enable a table

• Disable workspace participation for a table

• Create and assign a workspace

• Understand Import and Export considerations

Oracle9i: New Features for Administrators 19-3

19-3 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is a Database Workspace?

A shared, transactionally consistent view of
database tables, that:

• Captures changes to version-enabled tables
as new row versions within the workspace

• Makes versions invisible outside the workspace
until explicitly merged with the parent workspace

• Changes made to a table that is not version
enabled are made directly to the table

Workspaces

A workspace is a virtual environment that provides a transactionally consistent snapshot of
the entire database. One or more users can share this environment to version data in the
database.

The unit of versioning is the table. When a user in a workspace updates a row in a version-
enabled table, a new version of the row is created. Versions are only accessible within the
workspace until explicitly merged with the parent workspace. This also applies to inserts
and deletes made within a workspace to a version-enabled table.

There can be one or more versions of a row in a workspace from one or more version-
enabled tables. The current or active version of a row in a workspace refers to the version
of a row to which changes are currently being made.

Tables which are not version enabled will be changed like normal regardless of which
workspace a user might be in. Access to any table is still controlled by the privileges a user
has, not which workspace a user is in.

It is possible to create workspaces and not version enable any tables, and it is possible to
version enable tables and not create any workspaces. But doing either of these provides no
additional capabilities to the database. To fully use this feature you must do both. Certainly
there will be instances where the application may be viewing and or modifying both
version-enabled and non-version-enabled tables.

Oracle9i: New Features for Administrators 19-4

19-4 Copyright © Oracle Corporation, 2001. All rights reserved.

How Does Workspace Manager Work

• Automatically installed with Oracle9i

• Allows for version enabling tables by running a
packaged procedure

• Automatically versions only changed rows

• Provides mechanism to identify and resolve
conflicts

• Merges changes with parent or discard changes

Versioning

By using Database Workspace Manager you can selectively version enable some or all
tables in an existing database.

Once a table is version enabled, changes to any row in that table are only viewable to the
workspace in which the change was made. The changes to tables within a workspace are
done with conventional short transaction mechanisms. All DML and DCL is available
while in a workspace.

DDL is not supported on version-enabled tables. If necessary you can disable versioning,
perform any DDL needed, then version enable the table again. You will lose any versioned
rows when you disable versioning.

The changes to a row are stored in the same table. When version-enabled, new columns are
added to the table to allow for multiple version of each row. So the growth of the table
depends on how many versions of each row are created.

Eventually the different versions of the row will either be merged into any parent
workspace (and ultimately the LIVE workspace) or discarded. Conflicts are automatically
detected and must be resolved before a merge can take place.

Oracle9i: New Features for Administrators 19-5

19-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Workspace Manager Administrator Role

• Oracle Installer automatically installs Workspace
Manager and creates the WM_ADMIN_ROLE.

• The WM_ADMIN_ROLE role has all Workspace
Manager privileges.

• By default, the DBA role is granted the
WM_ADMIN_ROLE.

• The DBA can grant privileges or can grant the
WM_ADMIN_ROLE role to one or more users to grant
the privileges.

Workspace Manager Administrator Role
The WM_ADMIN_ROLE role has all Workspace Manager privileges with the grant option.

By default, the DBA role is granted the WM_ADMIN_ROLE.

Decide which users should be granted which privileges. Then, either the DBA can grant the
privileges, or the DBA can grant the WM_ADMIN_ROLE role to one or more selected users
and these users can grant the privileges.

Oracle9i: New Features for Administrators 19-6

19-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Version Enable a Table

DBMS_WM.ENABLEVERSIONING(’EMPLOYEES’)

EMPLOYEES:
Base table before
versioning

EMPLOYEES_LT:
Renamed base table
with new columns

EMPLOYEES:
view with INSTEAD
OF triggers

UPDATE employees
SET ...

RENAME…

Workspace Enabling a Table
The example on the slide version enables the EMPLOYEES table. ENABLEVERSIONING
performs the following tasks:

• Augments the table with four workspace metadata columns to store the following data:

– VERSION: The row version ID

– LTLOCK: The lock status

– DELSTATUS: The delete status

– NEXTVER: The next row version ID

• Renames the table by adding the suffix _LT to the table name

• Creates a view with the same name as the original table

• Creates INSTEAD OF triggers on the view for insert, update, and delete of versioned
rows. Once version-enabled, all rows in the table can support multiple versions of data.

When the view is accessed, it uses the workspace metadata to show only the row versions
relevant to the current workspace of the user. The workspace infrastructure is not visible to
the end-users.

Oracle9i: New Features for Administrators 19-7

19-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Changes Due to Versioning

• A new table <table_name>_AUX for conflicts

• Index changes:
– The PK index is changed
– New index <table_name>_PKI$

– New index <table_name>_TI$

– New PK index AUX_<table_name> on the
<table_name>_AUX table

• Several views, most for internal use only

Changes Due to Versioning

Tables

Not only is the base table changed as already described, also a new table is added with the
name of <table_name>_AUX. This table maintains information about rows that have
been synchronized after conflicts have been resolved. Its size is therefore directly
dependent on the number of conflicts that get resolved.

Indexes

The primary key is changed and three indexes are created when ENABLEVERSIONING is
executed on a table:

• The primary key has the VERSION column added, if history is enabled (the
VIEW_WO_OVERWRITE/VIEW_W_OVERWRITE options) then the CREATETIME
column is also added.

• <table_name>_PKI$: This is a nonunique index that is the original primary key
index without the version column. This is needed because several workspace
operations do queries on the <table_name>_LT without the version column. For
any given primary key, the number of index entries equal the number of versions
where this primary key row has been versioned.

Oracle9i: New Features for Administrators 19-8

Changes Due to Versioning (continued)

Indexes (continued)

• <table_name>_TI$: This is nonunique index created to support history. It is
made up of these two columns: CREATETIME, RETIRETIME . It is needed for
support of the <table_name>_HIST view. For any given primary key, the
number of index entries equal the number of versions where this primary key row has
been versioned, because each version of the row will have distinct CREATETIME,
RETIRETIME values if the table was versioned with VIEW_W_OVERWRITEoption.
If the table was versioned with VIEW_WO_OVERWRITE, the number of index entries
will be the number of DML changes made to this primary key because in this case
every DML operation is captured as a distinct row with its own CREATETIME,
RETIRETIME.

• Also a primary key is created on the <table_name>_AUX table. The index is
named AUX_<table_name>. This is relatively small index with the number of
entries dependent on the number of conflicts resolved.

Views

There are several views created when a table is version enabled. Most are used internally
by the procedures and functions of the DBMS_WM package. Some of the views created are:

• Conflict view, each having a name in the form <table_name>_CONF.

• Difference view, each having a name in the form <table_name>_DIFF.

• Lock view, each having a name in the form <table_name>_LOCK.

• History view (if history tracking is enabled), each having a name in the form
<table_name>_HIST.

• Multiworkspace view, each having a name in the form <table_name>_MW.

Note: Because of these changes and additions, the length of the table name that is being
version enable is limited to 25 characters. If you try to version enable a table with a longer
name, you will get: ORA-20136: table names are limited to 25 characters.

Oracle9i: New Features for Administrators 19-9

19-9 Copyright © Oracle Corporation, 2001. All rights reserved.

The History Option

• Optionally, the history of versions of rows can be
tracked.

• Parameter of the ENABLEVERSIONING procedure

• Possible values:
– NONE: No tracking, the default

– VIEW_W_OVERWRITE: Most recent only

– VIEW_WO_OVERWRITE: All modifications

DBMS_WM.ENABLEVERSIONING
(’employees’,’VIEW_WO_OVERWRITE’)

The History Option
This option tracks modifications to table_name using a view named
<table_name>_HIST. It must be set to one of the following values:

• NONE: No modifications to the table are tracked. This is the default.

• VIEW_W_OVERWRITE: Shows only the most recent modification, subsequent
changes to a row in the same version, overwrite earlier changes.

• VIEW_WO_OVERWRITE: Shows all modifications, subsequent changes to a row in
the same version, do not overwrite earlier changes.

If history is enabled, then two more columns are added to the <table_name>_LT table:

• CREATETIME: Date and time this version of the row was created

• RETIRETIME : Date and time this version of the row was replace by another in the
same workspace.

Oracle9i: New Features for Administrators 19-10

19-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Tables Participating
in a Workspace

• A version-enabled table must have a primary key.

• A table can be version enabled by the table owner
or by a user with WM_ADMIN_ROLE.

• Tables owned by SYS cannot be version enabled.

• Referential integrity constraints are supported on
version-enabled tables.

• Triggers are supported on version-enabled tables
with some restrictions.

Guidelines for Tables Participating in a Workspace

Referential Integrity Constraints

Version-enabled tables can have referential integrity constraints, including constraints with
the CASCADE and RESTRICT options; however, the following considerations and
restrictions apply:

• If the parent table in a referential integrity relationship is version enabled, the child
table must be version enabled also. The child table is the one on which the constraint
is defined.

• Referential integrity constraints cannot be added when a table is version enabled; they
must be defined before a table is version enabled.

• A child table in a referential integrity relationship is allowed to be version enabled
without the parent table being version enabled.

• A version-enabled table cannot be both a child and a parent in a referential integrity
relationship, unless it is a self-referential constraint.

Oracle9i: New Features for Administrators 19-11

Guidelines for Tables Participating in a Workspace (continued)

Triggers

Version-enabled tables can have triggers defined; however, the following considerations
and restrictions apply:

• The triggers must be defined before the table is version enabled.

• Only row level triggers are supported. Statement level triggers are not supported.

• Only whole row triggers are supported, that is, before and after update triggers for
specific columns are not supported.

• Triggers on nested table columns are not supported.

• The only call-out supported is to PL/SQL procedures. That is, the ACTION_TYPE
must be PL/SQL.

• Any triggers that are not supported for version-enabled tables are deactivated when
versioning is enabled, and are activated when versioning is disabled.

Oracle9i: New Features for Administrators 19-12

19-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Disabling Workspace Participation
for a Table

• Reverses workspace enabling:

• It can be done by the table owner or by a user with
the WM_ADMIN_ROLE.

• Workspace hierarchy and savepoints remain.

• The latest version of each row in LIVE workspace
remains.

• The optional FORCE argument allows the user to
disable versioning on a table even if workspaces
have modified data in the table.

DBMS_WM.DISABLEVERSIONING(’employees’)

Disabling Workspace Participation for a Table
The DISABLEVERSIONING procedure is used to reverse the effect of the
ENABLEVERSIONING procedure. It deletes the Workspace Manager infrastructure for
versioning of rows, but does not affect any user data in the LIVE workspace. The
workspace hierarchy and any savepoints still exist, but all rows are the same as in the LIVE
workspace. If there are multiple versions of a row in the table for which versioning is
disabled, only the most recent version of the row is kept.

The example on the slides disables versioning on the employees table.

Oracle9i: New Features for Administrators 19-13

19-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Workspace Savepoints

• The concept of a savepoint in the Workspace
environment is similar to that of other savepoints.

• They are two types of savepoints:
– Explicit savepoints are created to roll back changes

in workspaces

– Implicit savepoints are created automatically
whenever a new workspace is created

• The savepoint takes no space, but can cause more
versions of a row to be created.

Savepoints

Savepoints are used in similar ways to save points used in transactional operations. One of
the main differences is that once a savepoint is created any row modified after the creation
of the savepoint will cause a new version of the row to be stored in the table.

Like transactional savepoints they can be used for rollback. Unlike transitional ones, the
user does have access to the data before and after the savepoint.

When calculating the amount of space that might be needed you must consider the
following: each row could be potentially duplicated in the table for each workspace in the
database and for each savepoint within a workspace.

For example, if a database has five workspaces created and each workspace has three
savepoints within them, then for each version-enabled table that could be 15 copies of each
row. This should be extreme because it is unlikely that each workspace is going to modify
every row in the table for each savepoint.

The activities that the developer or user can do with savepoints include: Create, Go to
savepoint, Go to date, Alter, Compare difference, and Delete.

Savepoint are not covered in detail in this course.

Oracle9i: New Features for Administrators 19-14

19-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Create a Workspace

• Create a workspace named EMP10:

• A new workspace is a child of the current workspace.

• It creates implicit savepoint in the current workspace.

DBMS_WM.CREATEWORKSPACE(’EMP10’)

Workspace
EMP10

LIVE workspace

Create a Workspace
If the session has not explicitly entered a workspace, it is in the LIVE database workspace,
and the new workspace is a child of the LIVE workspace.

This procedure does not implicitly go to the workspace created. To go to the workspace,
use the GOTOWORKSPACE procedure.

An implicit savepoint is created in the current version of the current workspace when a new
workspace is created. This allows the child workspace to have a transactionally consistent
view of the database. The current version for which the savepoint is created does not have
to be the latest version in the current workspace

An exception is raised if a workspace already exists or the user does not have the privilege
to create a workspace.

Workspace names are case sensitive.

Oracle9i: New Features for Administrators 19-15

19-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Assign Workspace: Associate a User

• At login, the user is placed in the LIVE workspace.

• The GOTOWORKSPACE procedure moves the current
user session to the destination workspace.

• To include the user in the EMP10 workspace:

• All subsequent modifications to data by the user
take place on the latest versions in the EMP10
workspace.

DBMS_WM.GOTOWORKSPACE(’EMP10’)

Assign Workspace
By using the GOTOWORKSPACE procedure current user is then “in” the named workspace.
From this point on all changes to version-enabled tables are only viewable in the named
workspace. A user must have the ACCESS_WORKSPACE privilege for the named
workspace or the ACCESS_ANY_WORKSPACE system privilege.

Because many operations are prohibited when any users are in the workspace, it is often
convenient to go to the LIVE workspace before performing operations on created
workspaces.

To go to the LIVE database, specify workspace as LIVE.

For example:
SQL> EXECUTE DBMS_WM.GOTOWORKSPACE (’LIVE’);

To see which workspace your session is currently in, use the GETWORKSPACE function,
for example:
SQL> SELECT DBMS_WM.GETWORKSPACE FROM DUAL;

GETWORKSPACE

EMP10

Oracle9i: New Features for Administrators 19-16

19-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Rows in the Table

Workspaces

LIVE

1 101 ABC
2 102 DEF

1 101 ABC
2 102 DEF
1 107 ABC
2 102 GHI
1 122 ABC
2 201 DEF

Before After

Table A_LT Table A_LT

EMP10 EMP15

Rows in the Table

In this example you have a version-enabled table with two rows. There are two workspaces
created under the LIVE workspace, named EMP10 and EMP15.

Then a user in the EMP10 workspace does an update on the two rows in the table, and so
does a user in workspace EMP15.

Now each workspace has its own version of each row. The net effect is that there are now
three copies of each row in the table. One for the LIVE workspace and one each for the
EMP10 and EMP15 workspaces.

The table here has been simplified for the discussion. It doesn’t show the extra columns that
are added by the versioning of the table.

Oracle9i: New Features for Administrators 19-17

19-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Assign Workspace: Grant Privileges

• Workspace privileges: ACCESS, CREATE, REMOVE,
MERGE, and ROLLBACK

• Privileges in the form of priv_WORKSPACE allow the
user to affect a specified workspace.

• Privileges in the form:
priv_ANY_WORKSPACE
allow the user to affect
any workspace.

GRANTWORKSPACEPRIV
(’ACCESS_WORKSPACE,

MERGE_WORKSPACE’,
’EMP10’,
’SMITH’,
’YES’);

Workspace Privileges

Workspace Manager implements a set of privileges in addition to standard Oracle database
privileges. There are two types of privileges:

• Workspace-level privileges have names in the form priv_WORKSPACE. They allow
the user to affect a specified workspace.

• System-level privileges have names in the form priv_ANY_WORKSPACE. They
allow the user to affect any workspace.

Each privilege can be granted with or without the grant option. The grant option allows the
user to which the privilege is granted to grant the privilege to other users.

The example in the slide enables user Smith to access the EMP10 workspace and merge
changes in that workspace, and allows Smith to grant the two specified privileges on
EMP10 to other users.

Oracle9i: New Features for Administrators 19-18

Workspace Privileges (continued)

The following are the available privileges for working with workspaces.

To grant most of the above, the GRANTWORKSPACEPRIV procedure is used. This grants
workspace-level privileges to users and roles. These are the above privileges without the
“any” in the name. The grant_option parameter enables the grantee to then grant the
specified privileges to other users and roles.
DBMS_WM.GrantWorkspacePriv(
priv_types IN VARCHAR2
,workspace IN VARCHAR2
,grantee IN VARCHAR2
[,grant_option IN VARCHAR2 DEFAULT ’NO’]
[,auto_commit IN BOOLEAN DEFAULT TRUE]);

For the system privileges, the ones with the “any” in the name, the GRANTSYSTEMPRIV
procedure is used:
DBMS_WM.GrantSystemPriv(

priv_types IN VARCHAR2
,grantee IN VARCHAR2
[,grant_option IN VARCHAR2 DEFAULT ’NO’]
[,auto_commit IN BOOLEAN DEFAULT TRUE]);

The AUTO_COMMIT parameter functions in the following way: if TRUE (the default),
causes the operation to be executed as an autonomous regular transaction that will be
committed when it finishes. If FALSE,causes the operation to be executed as part of the
caller's open regular transaction (if one exists). If there is no open regular transaction, the
operation is executed in a new regular transaction. In either case, the caller is responsible
for committing the transaction.

Privilege Description
ACCESS_WORKSPACE Allows the user to go to a specified workspace. ACCESS_WORKSPACE

or ACCESS_ANY_WORKSPACE privilege is needed for all other
privileges.

ACCESS_ANY_WORKSPACE Allows the user to go to any workspace. ACCESS_WORKSPACE or
ACCESS_ANY_WORKSPACE privilege is needed for all other privileges.

CREATE_WORKSPACE Allows the user to create a child workspace in a specified workspace.
CREATE_ANY_WORKSPACE Allows the user to create a child workspace in any workspace.
REMOVE_WORKSPACE Allows the user to remove a specified workspace.
REMOVE_ANY_WORKSPACE Allows the user to remove any workspace.
MERGE_WORKSPACE Allows the user to merge the changes in a specified workspace to its

parent workspace.
MERGE_ANY_WORKSPACE Allows the user to merge the changes in any workspace to its parent

workspace.
ROLLBACK_WORKSPACE Allows the user to roll back the changes in a specified workspace.
ROLLBACK_ANY_WORKSPACE Allows the user to roll back the changes in any workspace.

Oracle9i: New Features for Administrators 19-19

19-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Assign Workspace: Set Locks

• Shared locking on for EMP10 workspace:

DBMS_WM.LOCKROWS
(’EMP10’,’EMPLOYEES’,’DEPARTMENT_ID = 30’,’S’)

SELECT DBMS_WM.GETLOCKMODE FROM DUAL;

DBMS_WM.SETWORKSPACELOCKMODEON(’EMP10’,’S’,TRUE)

DBMS_WM.SETLOCKINGON (’E’)

• Locks the row in employees table as shared where
DEPARTMENT_ID=30 in EMP10

• Displays the locking mode in effect for the session:

• Sets session override to exclusive locking:

Locks
Workspace Manager locks eliminate row conflicts between a parent and child workspace.
Locking is enabled at a session level and is a session property independent of the
workspace that the session is in. When locking is enabled for a session, it locks rows in all
workspaces in which it participates. Locking activities include:

• SetLockingOn or SetLockingOff sets locking for the session

• SetWorkspaceLockModeOn or SetWorkspaceLockModeOff is the default
mode for workspace row-level locking. If OFF, it enables access to versioned rows in
the specified workspace and to corresponding rows in the parent workspace.

• GetLockMode returns the locking mode for the parent and child workspace.

• LockRows or UnlockRows specifies access to versioned rows in a specified table
and to corresponding rows in the parent workspace. Either used to proactively lock
rows before they are updated or automatically locks row after it is updated be a SQL
statement.

In addition to locks provided by conventional Oracle short transactions (transactions
without workspaces), Workspace Manager provides two types of version locks:

• Exclusive locks are similar to short transaction locks in that once an exclusive lock
has been placed on a record, no other user in the database can change the record
except for the session that locked it.

• Shared locks ensure that only users in the workspace in which the row was locked are
allowed to modify it.

Oracle9i: New Features for Administrators 19-20

19-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Freeze a Workspace

• Specifies the access allowed to the workspace:
– NO_ACCESS is the default

– READ_ONLY for all workspace users

– 1WRITER enables a single writer, all readers

– WM_ONLY is for workspace operations

• Examples:

UnFreezeWorkSpace(’EMP10’)

FreezeWorkspace(’EMP10’,’READ_ONLY’)

Freeze a Workspace

A workspace can be frozen or not frozen. If a workspace is frozen, no changes can be made
to data in version-enabled tables, and access to the workspace is restricted.

To make a workspace frozen, use the FreezeWorkspace procedure. To make a frozen
workspace not frozen, use the UnfreezeWorkspace procedure.

In addition, some procedures automatically freeze one or more workspaces.

WM_ONLY allows workspace operations such as merge, rollback, refresh, and others.

Oracle9i: New Features for Administrators 19-21

19-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Roll Back a Workspace

• Discards all changes made in the workspace, a
table or after a specified savepoint; the workspace
structure is not affected.

• Examples: Roll back all workspace changes, roll
back changes since a savepoint, and roll back all
changes to a table

DBMS_WM.RollbackWorkspace(’EMP10’)

DBMS_WM.RollbackToSP(’EMP10’,’SAVEPOINT1’)

DBMS_WM.RollbackTable(’EMP10’,’HR.EMPLOYEES’)

Roll Back a Workspace

Rolling back a workspace involves deleting either all changes made in the workspace or all
changes made since an explicit savepoint.

Before rolling back to a savepoint:

• Remove any implicit savepoints created since the specified savepoint by merging or
removing the descendent workspaces that caused the implicit savepoints to be created.

• Remove all active users.

Rolling back a workspace leaves behind the workspace structure for future use; only the
data in the workspace is deleted. To completely remove a workspace, use the
RemoveWorkspace procedure.

Oracle9i: New Features for Administrators 19-22

19-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Refresh a Workspace

• Applies all changes made in the parent to the child
since the child was created or last refreshed

• Refresh changes made to a single table:

• Refresh all workspace changes:

• Before refreshing a table:
Regular (nonworkspace) transactions must be
committed and conflicts must be resolved.

DBMS_WM.RefreshTable
(’EMP10’,’EMPLOYEES’,’DEPARTMENT_ID = 30’)

DBMS_WM.RefreshWorkspace(’EMP10’)

Refresh a Workspace
The first example refreshes EMP10 by applying changes made to the EMPLOYEES table
where DEPARTMENT_ID = 30 in its parent workspace.

The second example refreshes EMP10 by applying changes made in its parent workspace.

Oracle9i: New Features for Administrators 19-23

19-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Resolve Workspace Conflicts

• Conflict: The same row is changed in two or more
workspaces.

• Conflicts are detected when a workspace merge or
refresh operation is attempted.

• Conflicts must be resolved before merge or
refresh operations succeed.

• Resolve conflicts by choosing a row value from:
– BASE

– CHILD

– PARENT

Resolve Workspace Conflicts

Rows that are changed in the child and parent workspace or in two peer workspaces can
lead to data conflicts. Conflicts are discovered during a merge or refresh operation:

• During a merge operation, the changes in a child workspace are incorporated in its
parent workspace.

• During a refresh operation, changes made in the parent workspace are incorporated in
the child workspace

Conflicts are presented to the user in conflict views, with one conflict view per table. The
conflict view lists the primary key of the rows in conflict and also the column values of the
rows in the two workspaces that form the conflict.

Conflicts have to be resolved by using the ResolveConflicts procedure. During this
procedure the user chooses the row value from the base, child, or parent table.

When there are no conflicts between the parent and child workspaces, the data in the two
workspaces can be merged.

Conflicts must be resolved before a MergeWorkspace or RefreshWorkspace
operation can be performed.

Oracle9i: New Features for Administrators 19-24

19-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Conflict Resolution Example:
Check for Existence of Conflicts

• Check for conflicts between child and parent:

• View conflicts in EMPLOYEES table:

DBMS_WM.SetConflictWorkspace(’EMP10_focus_2’)

SELECT * FROM employees_conf;

Conflict Resolution Example: Check for Existence of Conflicts

The general process to check for the existence of conflicts is as follows:

SetConflictWorkspace: The example checks for any conflicts between child
workspace, EMP10_FOCUS_2, and its parent workspace, EMP10, and activates a view for
every version-enabled table where the view name is <table_name>_CONF.

The query on the screen shows the conflicts for that table.

Oracle9i: New Features for Administrators 19-25

19-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Merge a Workspace

• Applies changes in a child workspace or table to its
parent workspace or table.

• Merge either entire workspace, table, or specific rows

• Conflicts must be resolved first.

• MergeTable can roll back to initial workspace state.

• MergeWorkspace can remove the workspace.

EXEC DBMS_WM.MERGEWORKSPACE(’EMP10’,
REMOVE_WORKSPACE=>TRUE);

Merge a Workspace
Merging a workspace applies changes made in a workspace to its parent workspace and
optionally removes it. While a merge is in progress the child workspace is frozen in
NO_ACCESS mode and the parent workspace is frozen in READ_ONLY mode.

MERGEWORSPACE has the following parameters:

• WORKSPACE: Name of the workspace. The name is case sensitive.

• CREATE_SAVEPOINT: A Boolean value (TRUE or FALSE). TRUE creates an
implicit savepoint in the parent workspace before the merge operation. FALSE (the
default) does not create an implicit savepoint in the parent workspace before the merge
operation.

• REMOVE_WORKSPACE: A Boolean value (TRUE or FALSE). TRUE removes
workspace after the merge operation. FALSE (the default) does not remove workspace
after the merge operation; the workspace continues to exist.

• AUTO_COMMIT: A Boolean value (TRUE or FALSE). TRUE (the default) causes the
operation to be executed as an autonomous regular transaction that will be committed
when it finishes. FALSE causes the operation to be executed as part of the caller’s open
regular transaction (if one exists). If there is no open regular transaction, the operation
is executed in a new regular transaction. In either case, the caller is responsible for
committing the transaction.

If there are conflicts between the workspace being merged and its parent workspace, the
merge operation fails and the user must manually resolve conflicts using the
<table_name>_CONF view.

Oracle9i: New Features for Administrators 19-26

19-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Import and Export Considerations

• A database with version-enabled tables can be exported
only if the database being imported into does not have
any version-enabled tables or workspaces.

• Only database-wide import and export operations are
supported for version-enabled databases.

• For an import operation, you must specify IGNORE=Y.

• The FROMUSER and TOUSER import options are not
supported with version-enabled databases.

EXPORT

IMPORT

Import and Export Considerations

Standard Oracle database import and export operations can be performed on version-
enabled databases; however, the following considerations and restrictions apply:

• A database with version-enabled tables can be exported to another Oracle database
only if the other database has Workspace Manager installed and does not currently
have any version-enabled tables or workspaces (that is, other than the LIVE
workspace).

• Only database-wide import and export operations are supported for version-enabled
databases. No other export modes (such as schema, table, partition, and workspace)
are supported.

• For an import operation, you must specify IGNORE=Y.

• The FROMUSER and TOUSER capabilities of the Oracle9i Import utility are not
supported with version-enabled databases.

Oracle9i: New Features for Administrators 19-27

19-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Enterprise Manager Interface

Enterprise Manger

Database Workspace Manager is integrated in with Oracle’s Enterprise Manager (OEM)
Console. While connected to a database, you will see a folder called Workspace
Management that can be expanded to see two subfolders: Version Enabled Tables and
Workspaces.

The OEM Version Enabled tables subfolder allows you to view table status and set tables as
version-enabled.

Oracle9i: New Features for Administrators 19-28

Enterprise Manager (continued)

The OEM Workspaces folder allows you to:

• Create and view workspace hierarchies and attributes. In the slide four workspaces
have been created with variations on the live data for what-if cost cutting analysis. The
AGGRESSIVE workspace is currently selected.

• Set and view workspace access modes. The user access modes for a workspace are:

– No access, is the default

– Read only

– Single writer, allowing all other users to read

– Workspace operations only, such as merge and rollback

• Set and view Savepoints

– Implicit savepoint created by the system when child workspace is created

– Explicit savepoint created by a user

• Roll back changes since last explicit savepoint

• Resolve differences between any two workspaces or between two savepoints in a
workspace

• Refresh an entire workspace, a table, or rows with data from the parent workspace.
Refreshing a workspace may not succeed if there are conflicts.

• Merge all changes made in the workspace or changes made to a specific table.

• Set Privileges to access, create, delete, rollback and merge workspaces.

Oracle9i: New Features for Administrators 19-29

19-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Workspace Metadata Views

• Metadata views hold information about:
– Version-enabled tables

– Workspaces

– Savepoints

– Users, privileges

– Locks, conflicts

• Views are read-only to users.

• Views are used to administer the Workspace
environment and diagnose problems.

Workspace Metadata Views

Workspace Manager creates and maintains metadata views to hold information that helps to
manage the workspace environment and diagnose problems. These views are read-only to
users.

Views that span the whole workspace environment are:

• [DBA|USER|ALL]_WM_VERSIONED_TABLEScontain information about
version-enabled tables.

• [USER|ALL]_WM_MODIFIED_TABLES contain information about version-
enabled tables that have been modified.

• [DBA|USER|ALL]_WORKSPACEScontain information about the workspaces a
user owns or can access.

• [DBA|USER|ALL]_WORKSPACE_SAVEPOINTS,
[DBA|USER|ALL]_WORKSPACE_PRIVScontain information about users’
privileges.

• USER_WM_PRIVScontains information about the current user has in each
workspace.

• ROLE_WM_PRIVScontains information about privileges that all roles granted to the
current user have in each workspace.

Oracle9i: New Features for Administrators 19-30

Workspace Metadata Views (continued)

Views that span the whole workspace environment (continued):

• [USER|ALL]_WM_LOCKED_TABLEScontains information about locks placed in
the current workspace on rows in version-enabled tables.

• DBA_WORKSPACE_USERScontains information about user information for
workspaces other than LIVE .

• [USER|ALL]_WM_RIC_INFO contains referential integrity constraints.

• [USER|ALL]_WM_TAB_TRIGGERScontains information about triggers defined
on version-enabled tables.

• ALL_VERSION_HVIEWcontains information about the version hierarchy.

Oracle9i: New Features for Administrators 19-31

19-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Identify the Workspace Manager role

• Version enable a table

• Disable workspace participation for a table

• Create and assign a workspace

• Understand Import and Export considerations

Oracle9i: New Features for Administrators 19-32

19-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 19-1 Overview

This practice covers the following topics:

• Version enabling a table

• Creating workspaces

• Using workspaces to make changes and view
these changes

• Merging and dropping workspaces

• Version disabling a table

20
Copyright © Oracle Corporation, 2001. All rights reserved.

Advanced Replication

Oracle9i: New Features for Administrators 20-2

20-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Add a new master site without quiescing

• Decide when to use row-level system change
numbers

• Use new materialized view fast refresh abilities

• List which object-relational constructs can be
replicated

• Configure job queue initialization parameters

• List miscellaneous Oracle9i changes

Oracle9i: New Features for Administrators 20-3

20-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Extended Availability of Replication
Environment

You can add new masters to the replication group
without impacting end users:

• The replication group does not have to be
quiesced

• Users can continue to execute DML on the existing
masters

• Implemented using a multistep procedure

Extended Availability of Replication Environment

Some operations in a replication environment require you to quiesce (stop all replication
activity in) the related replicated groups. This can be a slow process if there are deferred
transactions in the replication queues because you have to propagate these before you can
quiesce the master group. Quiescing also prevents data manipulation language (DML)
statements on the tables in the master group until you activate the group again.

Recent releases have reduced the number of operations that require quiescing. In Oracle9i,
you can now add databases to a master group without impacting your end users. Unlike in
previous releases, your users can continue to execute DML on the replicated tables while
you configure a new master site.

Oracle9i: New Features for Administrators 20-4

20-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Add New Master Site Without Quiescing

SPECIFY_NEW_MASTERS

ADD_NEW_MASTERS

Export

RESUME_PROPAGATION_TO_MDEF

Import

PREPARE_INSTANTIATED_MASTER

Perform SCN-
based recovery

Master
definition

site

New
master

site

1

2

Adding a New Master Site Without Quiescing

Use the following steps to add new masters without quiescing the existing master sites:

1. Specify your intention to add one or more new masters in an existing replication
group with a new master definition site procedural call, SPECIFY_NEW_MASTERS.
The new sites to be created are added to the view DBA_REPSITES_NEW. If you
specify no new master sites, all sites previously listed in DBA_REPSITES_NEW will
be removed.

2. After specifying all replication group extensions with SPECIFY_NEW_MASTERS,
you then invoke a new master definition site procedural call, ADD_NEW_MASTERS,
which does the following:

– Adds new masters to the replication catalog at all existing masters and at all
new masters to be instantiated with table-level export/import

– Adds replicated objects to the replication catalog at new masters to be
instantiated with table-level export/import

– Disables, either partially or completely, propagation to each new master at each
existing master, including the master definition site

– Returns, to the calling session, the system change number (SCN) to which the
new masters should be instantiated

Oracle9i: New Features for Administrators 20-5

20-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Add New Master Site Without Quiescing

SPECIFY_NEW_MASTERS

ADD_NEW_MASTERS

Export

RESUME_PROPAGATION_TO_MDEF

Import

PREPARE_INSTANTIATED_MASTER

Perform SCN-
based recovery

Master
definition

site

New
master

site

1

5

3a

3b

4a 4b

2

Adding a New Master Site Without Quiescing (continued)
3. If you are using change-based recovery to instantiate all new masters, skip to step 4b.

Otherwise, perform the next two operations:

a. Perform a full database or table level export, specifying the SCN obtained in step
2 for the FLASHBACK_SCN export parameter.

b. Call RESUME_PROPAGATION_TO_MDEF to indicate that the export has
finished.

4. At each new master site, instantiate the database using one of the following two steps:

a. Import the data.

b. Perform change-based recovery to the SCN obtained in step 2.

5. After the database is instantiated, make sure that the correct database links exist
between the new masters sites and the master definition site. If you are using the full
export/import method for change-based recovery to add new masters, execute the
PREPARE_INSTANTIATED_MASTER procedure to set the appropriate
global_name for the new master and to remove (clear) the deferred transactions
and error log from the new master site. For sites being added with object-level
export/import, verify that all requests in the DBA_REPCATLOG view have completed
successfully before executing PREPARE_INSTANTIATED_MASTER. In addition to
the activities already described, the PREPARE_INSTANTIATED_MASTER
procedure enables propagation of deferred transactions between all of your master
sites.

Oracle9i: New Features for Administrators 20-6

20-6 Copyright © Oracle Corporation, 2001. All rights reserved.

SPECIFY_NEW_MASTERS

BEGIN

DBMS_REPCAT.SPECIFY_NEW_MASTERS (

gname => ’HR_REP_GRP’,

master_list =>

’HR_GERMANY.ACME.COM,HR_RUSSIA.ACME.COM’);

END;

/

SELECT gname, dblink, master_status

FROM dba_repsites_new;

SPECIFY_NEW_MASTERS

Use SPECIFY_NEW_MASTERS, a new routine in DBMS_REPCAT, to specify the master
sites you intend to add to an existing replication group. This routine is called on the master
definition site for the given replication group. The routine replaces any masters in the local
DBA_REPSITES_NEW view for the given replication group with the list of masters
specified.

In the example above, the routine is used to identify two new masters sites, HR_RUSSIA
and HR_GERMANY, to be added to the replication group HR_REP_GRP. This query shows
the results after executing the PL/SQL in the example:

SQL> SELECT gname, dblink, master_status
2 FROM dba_repsites_new;

GNAME DBLINK MASTER_STATUS
------------- ------------------- -------------
HR_REP_GRP HR_GERMANY.ACME.COM READY
HR_REP_GRP HR_RUSSIA.ACME.COM READY

The replication group HR_REP_GRP maintains the READY status, so DML operations are
still allowed on the tables within this replication group.

Note: If master_list is empty, all masters for the given replication group will be
removed from the DBA_REPSITES_NEW view.

Oracle9i: New Features for Administrators 20-7

20-7 Copyright © Oracle Corporation, 2001. All rights reserved.

ADD_NEW_MASTERS

VARIABLE masterdef_flashback_scn VARCHAR2(15);
VARIABLE extension_id VARCHAR2(32);
BEGIN
DBMS_REPCAT.ADD_NEW_MASTERS (
export_required => TRUE,
available_master_list => NULL,
masterdef_flashback_scn =>
:masterdef_flashback_scn,

extension_id => :extension_id,
break_trans_to_masterdef => TRUE,
break_trans_to_new_masters => TRUE,
percentage_for_catchup_new => 60,
cycle_seconds_new => 300);

END;

ADD_NEW_MASTERS

The code in this example instantiates the new master site with the following options:

• Export/import is being used for at least one new master site
(export_required => TRUE)

• Instantiate all new masters using either full export/import (if export_required is
TRUE) or change-based recovery (available_master_list => NULL)

• Allow existing masters to propagate their deferred transactions to the master
definition site for replication groups that are not adding master sites
(break_trans_to_masterdef => TRUE)

• Allow existing masters to continue to propagate deferred transactions to the new
master sites for replication groups that are not adding master sites
(break_trans_to_new_masters => TRUE)

• Use 60 percent of propagation resources to catch up to new masters
(percentage_for_catchup_new => 60)

• Allow a maximum of five minutes for extended replication groups to be propagated to
new masters before switching to the unaffected replication group
(cycle_seconds_new => 300)

Oracle9i: New Features for Administrators 20-8

20-8 Copyright © Oracle Corporation, 2001. All rights reserved.

ADD_NEW_MASTERS

PRINT masterdef_flashback_scn

MASTERDEF_FLASHBACK_SCN

3456871

$ exp system/manager FILE=fulldb_orc1.dmp
FULL=y DIRECT=n GRANTS=y ROWS=y COMPRESS=y
INDEXES=y CONSTRAINTS=y STATISTICS=compute
LOG=export.log FLASHBACK_SCN=’3456871’

ADD_NEW_MASTERS (continued)

You use the SQL*Plus masterdef_flashback_scn bind variable to display the SCN
provided in the return variable after the procedure has executed, as shown in the example
above. You can also view this SCN value by querying the DBA_REPSITES_NEW and
DBA_REPEXTENSIONS data dictionary views:

SQL> SELECT flashback_scn
2 FROM dba_repextensions;

FLASHBACK_SCN

3456871

Using this information, you can perform an export consistent with this SCN by including
the FLASHBACK_SCN option:
$ exp system/manager FILE=fulldb_orc1.dmp FULL=y DIRECT=n
GRANTS=y ROWS=y COMPRESS=y INDEXES=y CONSTRAINTS=y
STATISTICS=compute LOG=export.log FLASHBACK_SCN=’3456871’

Oracle9i: New Features for Administrators 20-9

20-9 Copyright © Oracle Corporation, 2001. All rights reserved.

RESUME_PROPAGATION_TO_MDEF

DBMS_REPCAT.RESUME_PROPAGATION_TO_MDEF (
extension_id =>
’75AFDBD77CD83C4EE034080020CAFF6B’);

SELECT extension_id
FROM dba_repsites_new;

EXTENSION_ID

75AFDBD77CD83C4EE034080020CAFF6B

RESUME_PROPAGATION_TO_MDEF

This procedure indicates that export has finished and that propagation to the master
definition site, for both extended and unaffected replication groups existing at master sites,
can be enabled. The EXTENSION_ID argument identifies the current pending request to
add master databases to a master group without quiesce. You can find the value for
EXTENSION_ID by querying the DBA_REPSITES_NEW and DBA_REPEXTENSIONS
data dictionary views.
SQL> SELECT extension_id, dblink, master_status
2 FROM dba_repsites_new;

EXTENSION_ID DBLINK MASTER_STATUS
-------------------------------- ---------- -------------
75AFDBD77CD83C4EE034080020CAFF6B REP3.WORLD READY

Oracle9i: New Features for Administrators 20-10

20-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Perform Import or Change-Based
Recovery

$ imp system/manager FILE=fulldb_orc1.dmp
FULL=y BUFFER=30720 IGNORE=y GRANTS=y ROWS=y
DESTROY=y COMMIT=y LOG=import.log

SQL> RECOVER DATABASE UNTIL CHANGE 3456871;

RMAN> run {
2> SET UNTIL SCN = 3456871;
3> DUPLICATE TARGET DATABASE TO hr_russia
4> NOFILENAMECHECK;
5> }

Perform Import or Change-based Recovery

Perform import or change-based recovery at each new master site. If you are using
export/import, then complete the import of the database you exported at each new master
site that is being added with the database export/import.

The following is an example of a full database import statement:
$ imp system/manager FILE=fulldb_orc1.dmp FULL=y BUFFER=30720
IGNORE=y GRANTS=y ROWS=y DESTROY=y COMMIT=y LOG=import.log

If you are using change-based recovery, then perform the recovery using the SCN returned
by the MASTERDEF_FLASHBACK_SCN parameter. You can also query the
DBA_REPEXTENSIONS data dictionary view for the MASTERDEF_FLASHBACK_SCN
value.

You can perform a change-based recovery in one of the following ways:

• Issue a SQL*Plus RECOVER command similar to the one shown in the example. See
the Oracle9i User-Managed Backup and Recovery Guide for instructions.

• Use the Recovery Manager (RMAN) DUPLICATE command like the one shown in
the example. See the Oracle9i Recovery Manager Reference Guide for instructions.

Oracle9i: New Features for Administrators 20-11

20-11 Copyright © Oracle Corporation, 2001. All rights reserved.

PREPARE_INSTANTIATED_MASTER

• If you are using the full import or change-based
recovery techniques, then:
– Set JOB_QUEUE_PROCESSES = 0 in new master’s

parameter file.

– Ensure that the new master has the correct
global_name.

– Create database links to the master definition site.

• Execute the PREPARE_INSTANTIATED_MASTER
procedure.

DBMS_REPCAT.PREPARE_INSTANTIATED_MASTER (
extension_id => :ext_id);

PREPARE_INSTANTIATED_MASTER

This procedure enables the propagation of deferred transactions from other prepared master
sites and existing master sites to the invocation master site. It also enables propagation of
deferred transactions from the invocation master site to the other prepared new master sites
and existing master sites.

Before executing this procedure, you must perform the following steps if you are using
either the full database import or change-based recovery techniques:

• Set JOB_QUEUE_PROCESSES = 0 in the new master’s parameter initialization file.
This must be done before the import or change-based recovery is performed.

• Ensure that the new master has the correct global_name, which must be the same
name you specified when invoking DBMS_REPCAT.SPECIFY_NEW_MASTERS at
the master definition site. Use the ALTER DATABASE RENAME GLOBAL_NAME
command to change the global name if necessary.

• Create database links to the master definition site for the replication administrator’s
account.

When you execute the PREPARE_INSTANTIATED_MASTER procedure, the
EXTENSION_ID argument is required. This argument identifies the current pending
request to add master databases to a master group without quiesce. You can find the value
for EXTENSION_ID by querying the DBA_REPSITES_NEW and
DBA_REPEXTENSIONS data dictionary views.

Oracle9i: New Features for Administrators 20-12

20-12 Copyright © Oracle Corporation, 2001. All rights reserved.

When to Add New Masters Without
Quiescing

• You want to perform data manipulation language
(DML) operations on replicated tables while the
new master sites are being added.

• Each existing master site has enough free space
to store a large unpropagated deferred transaction
queue while the master sites are being added.

• You have a stable connection to the new master
site, or your database meets the requirements for
using Export/Import or SCN-based recovery.

• Your system does not meet any of the restrictions
identified later.

When to Add New Master Sites without Quiescing

As your replication environment expands, you may need to add new master sites to a
master group. You can either add new master sites to a master group that is running
normally or to a master group that is quiesced. If the master group is not quiesced, then
users can perform data manipulation language (DML) operations on the data while the new
master sites are being added. However, more administrative actions are required when
adding new master sites if the master group is not quiesced.

When you add new master sites without quiescing the replication group, propagation of
deferred transactions to the new master site is partially or completely disabled while the
new master sites are being added. Therefore, make sure each existing master site has
enough free space to store the largest unpropagated deferred transaction queue that you may
encounter.

When using full database export/import and change-based recovery to add all of the
replication groups at the master definition site to the new master sites, the following
conditions apply:

• The new master sites cannot have any existing replication groups.

• The master definition site cannot have any materialized view groups.

• The master definition site must be the same for all of the master groups.

• The new master site must include all of the replication groups in the master definition
site when the extension process is complete.

Oracle9i: New Features for Administrators 20-13

20-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Restrictions on Adding New Masters
Without Quiescing

ADD_NEW_MASTERS restrictions:

• Synchronous replication is not supported.

• The master definition site cannot be relocated for
any replication group being extended.

• The connection qualifier for all master group
database links must be the same.

• The option to use serial or parallel propagation is
only available when queue is disabled.

• Serial propagation is only supported when queue
propagation is completely disabled.

• All master sites must use the Oracle9i release.

Restrictions on Adding Masters without Quiescing
Restrictions on using the ADD_NEW_MASTERS routine include:

• Asynchronous replication, but not synchronous replication, is supported.

• If a replication group is being extended, the master definition site cannot be relocated.

• All database links for the affected master group must have the same connection
qualifier or not use any connection qualifier.

• Parallel propagation (parallelism set to 1 or greater), but not serial propagation
(parallelism equal to zero), is supported when queue propagation is not completely
disabled. Both parallel and serial propagation are supported when queue propagation
is completely disabled through procedure arguments.

• Once you begin adding a set of masters to replication groups with the same master
definition site, you must wait until the new masters have been added before you can
add another set of master sites to any of the affected master groups.

• The COMPATIBLE initialization parameter for all affected master sites must be set to
“9.0” or higher.

If you need to remove the changes you made to a particular master site by the
SPECIFY_NEW_MASTERS and ADD_NEW_MASTERS procedures, you should use the
UNDO_ADD_NEW_MASTERS_REQUEST procedure.

Oracle9i: New Features for Administrators 20-14

20-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Row-Level System Change Numbers

• Dependent SCN is used to determine
dependencies for parallel propagation.

• The default is to calculate the dependent SCN at
the data block level.

• In Oracle9i, the dependencies can be narrowed to
the row level.

Row-Level System Change Numbers

When Advanced Replication enables parallel propagation, dependent SCNs are used to
determine dependencies based on constraint definitions. In older releases, and as the default
in Oracle9i, dependent SCNs are calculated at the block level. That is, every entry on a
block is considered to have the same SCN, regardless of when the entry actually changed.
This can result in false dependencies being defined for parallel propagation.

By allowing you to implement row level SCNs, Oracle9i can narrow dependencies from the
block level to the row level. This reduces the number of false dependencies for parallel
propagation which, in turn, can improve the replication throughput because more
transactions can be streamed in parallel.

Oracle9i: New Features for Administrators 20-15

20-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Features of Row-Level SCNs

• A table can be created so that the commit SCN is stored
in the head piece of each table row.

• Each row has an SCN that:
– Requires six bytes of additional storage per row

– Is greater than or equal to the commit time of the last
transaction that modified the row

– Represents the cleanout time of the last transaction for
each row

– Is updated during delayed block clean out

CREATE TABLE master_rep … ROWDEPENDENCIES;

Features of Row-Level SCNs
The CREATE TABLE statement syntax includes a clause to control whether the table uses
row-level SCNs:

CREATE TABLE ... [NO]ROWDEPENDENCIES

CREATE CLUSTER ... [NO]ROWDEPENDENCIES

The row-level dependency feature and, therefore, the use of row level SCNs, applies only to
tables and clusters that are created with the ROWDEPENDENCIES options. By default,
segments are created without row-level SCNs. You cannot use the ALTER TABLE
command to change between dependent and row-level SCNs in an existing segment.

When you use row-level SCNs, each row:

• Requires an additional six bytes to store the SCN information in the row header

• Contains an SCN that represents the clean out time of the last transaction for that row,
that is, a commit time no earlier than the last transaction that modified the row

• Is updated with the row level SCN when the delayed block clean out occurs for a
transaction

Oracle9i: New Features for Administrators 20-16

20-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Parallel Propagation and Row-Level SCNs

• When using parallel propagation, Oracle9i orders the
execution of dependent transactions to preserve data
integrity.

• The order of the transactions is determined by the
SCN.

• More granular propagation occurs when you use row-
level SCNs because rows can be ordered
independently rather than based on a more generic,
block-dependent SCN.

Parallel Propagation and Row-Level SCNs

If you use row-level SCNs, you can maintain for each row that last commit time of the
changes made to that row. Therefore, two rows changed by different transactions on the
same block can have different row-level SCNs (depending of course on the commit times
of those transactions), whereas the dependent SCN for parallel propagation would have
been computed solely based on the block state. Using the fine-grained row level SCNs to
calculate dependent SCNs can enable better dependency tracking between transactions in
the replication queue.

Oracle9i: New Features for Administrators 20-17

20-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Constraint SCNs

• When constraints exist on a table, they create
additional replication dependencies for the table.

• Constraint SCNs represent the highest commit SCN of
all transactions that a particular row depends on.
– Index entries for unique constraints
– Referential constraints

• Using constraint SCNs helps to reduce false
dependencies which can occur when using the default
dependent SCN calculation method.

• Constraint SCNs are activated automatically when the
table is defined with row level SCNs and require an
extra six bytes of storage on each index leaf block.

Constraint SCNs

A constraint SCN is the SCN that is larger than the commit times of all the transactions that
a particular row operation depends on due to unique or referential integrity constraints. For
example, if there is a unique index on a table, a successful row insertion is dependent on all
the previously committed transactions that deleted the given unique key. The constraint
SCN captures this dependency.

By default, a dependency SCN is computed using the last committed transaction in a block.
Dependent SCNs can cause false dependencies to be tracked. For example, the insertion of
a single key into an index leaf block will depend on all other transactions that commit in the
same block, including the insertion of other keys.

False dependencies add unnecessary overhead when the rows from the table are replicated
because unrelated row changes are also checked for the constraint dependencies. Constraint
SCNs allow more exact tracking of when changes were made and which dependencies
really need to be checked. Constraint SCNs are automatically activated when a table is
defined with the ROWDEPENDENCIES option (or it is created in a cluster defined with this
option). They add an extra six bytes of header information in each leaf block of any index
defined on the table.

Oracle9i: New Features for Administrators 20-18

New Materialized View Fast Refresh Abilities

In older releases, if your materialized view (MV) contained a join subquery without a unique
key constraint on the inner table, you could not update the MV with a fast refresh. This
meant that you could not perform fast refreshes on your MV if it included a many-to-many
join between the outer and inner tables. In Oracle9i, your MVs with subqueries can be fast
refreshable even if the relation between the outer table and the inner table is many to many.
You must store the join column in the materialized view log to enable this capability, as in
the following statement:
SQL> CREATE MATERIALIZED VIEW LOG
2 ON oe.customers (customer_id);

Primary key (PK) MVs containing UNION or OR set operators can be both fast refreshable
and updatable in Oracle9i. However, because the changes are propagated based on row
changes identified by the PK, it is necessary that a given row can only be derived from one
table. This ensures that local updates are applied to the correct base table. Thus, the set
operators must be over an identical list of columns in the SELECT clause, based on the same
table.

20-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Materialized View Fast Refresh Abilities

In Oracle9i, fast refresh ability is extended to support:

• Subqueries with many-to-many relationships
between the outer table and the inner table

• Subqueries that contain UNION or OR set
operators, with some limitations

CREATE MATERIALIZED VIEW LOG
ON oe.customers (customer_id);

Oracle9i: New Features for Administrators 20-19

Fast Refresh Example
The statement creates the OE.ORDERS materialized view. The query selects all orders that
are associated with the account manager whose ID number is 30, as well as all orders for
customers who have a credit limit greater than 50.

To make this MV fast refreshable, you would have to create a materialized view log and
enable filtering on the CUSTOMER_ID column of the OE.CUSTOMERS table as shown in the
earlier example. Otherwise, the materialized view is fast refreshable because the UNION
operates on the same columns (all of them) from the same table, OE.ORDERS.

20-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Fast Refresh Example

CREATE MATERIALIZED VIEW oe.orders REFRESH FAST AS
SELECT * FROM oe.orders@dbs1.acme.com o
WHERE EXISTS
(SELECT * FROM oe.customers@dbs1.acme.com c
WHERE o.customer_id = c.customer_id
AND c.credit_limit > 50)

UNION
SELECT * FROM oe.orders@dbs1.acme.com o
WHERE EXISTS
(SELECT * FROM oe.customers@dbs1.acme.com c
WHERE o.customer_id = c.customer_id
AND c.account_mgr_id = 30);

Oracle9i: New Features for Administrators 20-20

20-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Explain Materialized View

• Sometimes it can be difficult to determine why a
materialized view cannot fast refresh.

• The DBMS_MVIEW.EXPLAIN_MVIEW procedure:
– Populates the MV_CAPABILITIES_TABLE

– Explains why an existing or proposed materialized
view is not fast refreshable

• The MV_CAPABILITIES_TABLE contains:

– The capabilities of the MV

– Whether or not each capability is possible

– Why a capability is not possible

Explain Materialized View

In previous releases, it could be difficult to determine which of several restrictions was
preventing you from performing a fast refresh.

In Oracle9i, you can determine why a materialized view or query is not fast refreshable by
executing the DBMS_MVIEW.EXPLAIN_MVIEW procedure to populate the
MV_CAPABILITIES_TABLE table. You then query MV_CAPABILITIES_TABLE to see
the refresh capabilities for your MV. The POSSIBLE column indicates whether you can
perform the operation for each option listed in the CAPABILITY_NAME column:

REFRESH: Can do at least complete refresh

REFRESH_FROM_LOG_AFTER_INSERT: Can do fast refresh from an MV log or change
capture table at least when change operations are restricted to INSERT

REFRESH_FROM_LOG_AFTER_ANY: Can do fast refresh from an MV log or change
capture table after any combination of changes, INSERT, UPDATE, or DELETE

REWRITE: Can do at least full text match rewrite

REWRITE_PARTIAL_TEXT_MATCH: Can do at least full and partial text match rewrite

REWRITE_GENERAL: Can do all forms of rewrite

Oracle9i: New Features for Administrators 20-21

20-21 Copyright © Oracle Corporation, 2001. All rights reserved.

MV_CAPABILITIES_TABLE

Name Null? Type
------------------------ ----- --------------
STATEMENT_ID VARCHAR2(30)
MVOWNER VARCHAR2(30)
MVNAME VARCHAR2(30)
CAPABILITY_NAME VARCHAR2(30)
POSSIBLE CHAR(1)
RELATED_TEXT VARCHAR2(2000)
RELATED_NUM NUMBER
MSGNO NUMBER(38)
MSGTXT VARCHAR2(2000)
SEQ NUMBER

MV_CAPABILITIES_TABLE

The MV_CAPABILITIES_TABLE table is created from the utlxmv.sql script. The
examples show the execution of the EXPLAIN_MVIEW procedure and a subsequent query
against the contents of the MV_CAPABILITIES_TABLE table.

For example, to determine the capabilities of the oe.orders materialized view, enter:
SQL> EXECUTE DBMS_MVIEW.EXPLAIN_MVIEW (’oe.orders’);

SQL> SELECT capability_name, possible
2 , related_txt, msgtxt
3 FROM mv_capabilities_table;

Oracle9i: New Features for Administrators 20-22

20-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Multitier Materialized Views

Master table Master table

Master updatable MV

Level 2 updatable MV

Master updatable MV

Level 2 updatable MV Level 2 updatable MV

Level N updatable MV Level N updatable MV

Multitier Materialized Views

You use the multitier materialized view (MV) feature to create an MV based on another
MV rather than on a base table. Oracle9i supports the creation of both read-only and
updatable multitier materialized views.

Multitier updatable MVs are useful in scenarios where you do not need or want a complete
instantiation of a table at every site because you do not need to see all the data or you may
not have the storage capacity. Also, if you have limited network bandwidth, you may want
to limit the amount of data transmitted between sites. Multitier MVs let you use lower
bandwidth networks because you do not need to refresh from the master site each time.

For example, suppose a company is structured with three levels: international, national, and
local offices. Many nodes at both the national and local office level are required. A possible
solution for such a company would be to setup a master site at the headquarters office site,
an updatable MV at each national subsidiary, and another updatable MV at each local
office, based on the MV at the national level office.

In the graphic, the level one MVs are labeled “Master updatable MV.” A materialized view
at any level can be a master MV and can have one or more MVs based on it. However, only
an updatable master MV can have an updatable materialized view based on it. Because the
level one updatable MV, or master MV, acts like a master for the level two updatable MV,
a receiver user must be created at the level one updatable MV site. Similarly, a database
link must be created between the propagator at the level two site to the receiver at the level
one site.

Oracle9i: New Features for Administrators 20-23

20-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Multitier Materialized Views

CREATE MATERIALIZED VIEW regional_orders
REFRESH FAST FOR UPDATE

AS SELECT * FROM oe.orders@hq.acme.com
WHERE EXISTS

(SELECT customer_id
FROM oe.customers@hq.acme.com c
WHERE c.cust_address.postal_code = ’19555’);

CREATE MATERIALIZED VIEW my_orders
REFRESH FAST FOR UPDATE

AS SELECT * FROM oe.regional_orders@reg1.acme.com
WHERE sales_rep_id = 205;

Creating Multitier Materialized Views

This example shows the commands used to create a level one materialized view,
REGIONAL_ORDERS, and a level two materialized view, MY_ORDERS, based on
REGIONAL_ORDERS.

The level one MV, created in the first statement, is based on the OE.ORDERS master table
at headquarters, HQ.ACME.COM. The MV is created at the regional office
REG1.ACME.COM and contains only orders whose postal code is 19555. The MVs at the
regional office are in the headquarters MV group.

The second statement creates a level two MV based on the MV at the regional office,
REG1.ACME.COM, containing only orders for postal code 19555. Additionally, this MV
restricts the data to show only those orders assigned to the salesperson with the ID number
205.

Oracle9i: New Features for Administrators 20-24

20-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Replication of Objects

Oracle9i gives you the ability to replicate the
following:

• Tables with:
– Object columns

– Collection type columns (nested tables, VARRAYs)

– REF columns

• Object tables

• Object views and INSTEAD OF triggers

• Index types, operators, and domain indexes

Replication of Objects

The replication of objects is a new feature of Oracle9i. Multimaster replication treats an
object table like a regular relational table except that it preserves the object identifier (OID)
of the object table (EOID) and the OID for each row.

For object views, any type information for VARRAYs, nested tables, and object types
involved in the view definition, must be replicated explicitly.

You cannot specify alternate key columns for a replicated object table in the following
circumstances:

• If the OID is system-generated because replication uses this OID column as the key

• If the OID is user-defined because replication uses the underlying primary key as the
key

Note: When you replicate tables with nested tables, the storage tables of the nested tables
are automatically replicated. You cannot explicitly replicate the storage tables themselves.

Oracle9i: New Features for Administrators 20-25

20-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Replicating Objects with
Materialized Views

• Materialized Views for Oracle9i now allow you to
replicate:
– Column objects

– Object views

– REF columns

– Collection columns

• To support replication of object tables, the materialized
view logs can now record the object identifier (OID).

• All user-defined types required for MV creation must
exist at the MV site prior to creation of the MV.

Replicating Objects with Materialized Views

All of the object types which can be replicated using multimaster replication can also be
replicated using materialized views.

Some new terminology for materialized views in Oracle9i:

• Materialized views created on tables which contain column-level objects are called
Object-Relational materialized views.

• Materialized views created on object tables are called Object materialized views.

• Object materialized views created on relational tables (similar to Object Views),
which are known as Derived Object materialized views, are not supported in the first
release of Oracle9i.

The Materialized View Log construct has been updated to support objects. Object-relational
materialized view logs will track either the ROWID or primary key of the master table.
The primary key can consist of scalar object attributes. If you are creating an object
materialized view (created against an object table), the MV log must also log the OID for
each row. This is specified with the clause WITH OBJECT ID. The WITH OBJECT ID
clause can be in addition to the primary key or ROWID.
SQL> CREATE MATERIALIZED VIEW LOG ON obj_table
2 WITH OBJECT ID, PRIMARY KEY;

Oracle9i: New Features for Administrators 20-26

20-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Monitoring and Managing Replication
Environments

• New dynamic performance views for Oracle9i
replication environments:
– V$MVREFRESH

– V$REPLPROP

– V$REPLQUEUE

• Enhancements to the Replication Management
tool in Oracle9i include:
– Reporting capabilities

– Redesigned Deployment Template Wizard

– Redesigned Template Script Generation Wizard

Performance Monitoring in Replication Environments

The following dynamic performance views are new for performance monitoring in Oracle9i
replication environments:

V$MVREFRESH: Contains information about local materialized views that are currently
being refreshed. This information is visible only on the materialized view site.

V$REPLPROP: Contains information about the parallel propagation currently in progress at
the replication site

V$REPLQUEUE: Contains statistics about the deferred transactions queue

In addition, columns related to performance monitoring are included in the DEFSCHEDULE
data dictionary view in Oracle9i.

Replication Management Tool
The Replication Management tool in Oracle9i has been enhanced with the following
features:

• Reporting capabilities

• Redesigned Deployment Template Wizard and Template Script Generation Wizard
(formerly called the Offline Instantiation Wizard)

Oracle9i: New Features for Administrators 20-27

20-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Job Queue Changes

• The JOB_QUEUE_INTERVAL parameter is obsolete.

• The SNP background process is obsolete.

• JOB_QUEUE_PROCESSES determines the maximum
number of processes (J000, J001, …) that can be
started.
– Support for multiple child processes

– Less overhead than in previous releases

• You can dynamically alter the number of job queue
processes used by the database.

Job Queue Changes
Job queue processes process requests created by DBMS_JOB. Replication automatically
creates jobs to handle tasks such as asynchronous data propagation at scheduled intervals
and purging the deferred transaction queue.

The SNP process has been retired and replaced with a single-parent family of processes that
work similarly to the parallel query family of processes. The head of the family is called the
Coordinator, Job Queue (CJQ0). The child processes are named Jnnn where nnn starts at
000 and increments by 1.

If the JOB_QUEUE_PROCESSES initialization parameter is greater than 0, the CJQ0
process remains active, scanning the job queue for available work, so the
JOB_QUEUE_INTERVAL process is no longer needed. When CJQ0 finds work waiting to
be done, it starts more Jnnn processes automatically, up to the limit specified by the
initialization parameter JOB_QUEUE_PROCESSES. When a Jnnn process finishes
execution of a job, it polls for another job to execute. If there are no jobs selected for
execution, it enters an idle state, but wakes up periodically to poll again. If, after a
predetermined number of tries, it still finds no jobs to execute, it terminates.

You can dynamically change the value of JOB_QUEUE_PROCESSES with a command
such as the following:
SQL> ALTER SYSTEM SET JOB_QUEUE_PROCESSES = 12;

For more information, refer to the Oracle9i: Databases Administrator’s Guide and the
Oracle9i: Replication Management API Reference guide.

Oracle9i: New Features for Administrators 20-28

20-28 Copyright © Oracle Corporation, 2001. All rights reserved.

LONG to LOB Migration

• The ALTER TABLE command allows you to modify:
– A LONG column to a CLOB

– A LONG_RAW column to a BLOB
• Applications that perform DML on tables with migrated

LONG columns do not have to be modified.

• Converting LONG columns to LOB columns means the
data can now be replicated.
– May increase bandwidth requirements

– Tables at remote sites have to be regenerated
– Materialized Views defined on a LOB migrated table have

to be manually rebuilt

LONG to LOB Migration

In Oracle9i, you can use the ALTER TABLE command to change a LONG data type to a
LOB data type or a LONG RAW data type to a BLOB data type.

The migration of a LONG column to a LOB column using the ALTER TABLE command on
a replicated table cannot itself be replicated. This is because the LONG column has not been
maintained by replication and may not be synchronized between sites. Once the LONG data
has been synchronized between sites, then the modification of the LONG to the LOB column
can be performed using replication’s administrative engine. If a table you change this way is
replicated, or has materialized views, you need to regenerate the replicated tables at the
remote sites manually.

Because the converted LONG data can now be replicated, this may increase network
bandwidth requirements, and you need to be aware of the impact this change may have for
your replication system.

Oracle9i: New Features for Administrators 20-29

20-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Changes for Related Oracle9i Features

• The term snapshot is deprecated.
– The name is no longer used in Oracle9i

documentation.

– The terms materialized view and mview have
replaced the term in the documentation and the
data dictionary.

– SQL syntax currently retains the term snapshot for
backwards compatibility.

• Support for new date and time data types

Changes Related to Oracle9i Features

Over the past few releases, the term snapshot, the original name, has been used
synonymously with materialized view. In Oracle9i, the old name has been dropped from
documentation, view names, procedure names, and so on. You will find the term
materialized view, used in text, or the term mview, used in names of views, packages, and
procedures, in place of the term snapshot. For example, the name of the package previously
known as DBMS_SNAPSHOT has changed to DBMS_MVIEW. For backwards compatibility,
SQL commands in this release retain the keyword SNAPSHOT.

A number of new data types to support date, time, and intervals between two date and time
stamps, are introduced in Oracle9i. Advanced replication supports these data types but their
long names cannot be handled. Consequently, you need to use the abbreviations defined
below when using the replication management API:

• TSTZ for Timestamp with Time Zone

• TSLTZ for Timestamp with Local Time Zone

• IYM for Interval Year to Month

• IDS for Interval Day to Second

Oracle9i: New Features for Administrators 20-30

20-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Installation and Upgrade

• Check the Replication section of the
README_rdbms.htm file for special instructions on
using the new Oracle9i features of Advanced
Replication.

• The script catrep.sql is called from
catproc.sql in Oracle9i.

• If upgrading to Oracle9i and your existing
database uses National Character Set columns,
additional steps may be needed during the
upgrade to Oracle9i.

Installation and Upgrade

Before upgrading to Oracle9i, you should check for any special preparatory instructions
documented in the section on Replication in the README file provided with the release.
($ORACLE_HOME/rdbms/doc/README_rdbms.htm)

After upgrading to Oracle9i, it is no longer necessary to run the CATREP.SQL script as in
previous versions. CATREP.SQL is now executed as part of CATPROC.SQL script and
no longer requires special handling after the upgrade.

The next page shows the recommended upgrades based on compatibility of various
globalization support character sets, including Unicode. This, and similar information
about upgrading with different column length semantics, is discussed in more detail in the
Oracle9i: Replication manual.

Oracle9i: New Features for Administrators 20-31

20-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Replication Support for Unicode

Yes< 9.0 (in fixed width)>= 9.0 (in Unicode)

No< 9.0 (in variable width)>= 9.0 (in Unicode)

Yes< 9.0 (fixed or variable)< 9.0 (fixed or variable)

Yes>= 9.0 (in Unicode)>= 9.0 (in Unicode)

Replication
recommended?

Database 2
with NCHAR and
NVARCHAR2 columns

Database 1
with NCHAR and
NVARCHAR2 columns

Replication Support for Globalization Support Character Sets

Unicode is a universal encoded character set that enables you to store information from any
language using a single character set. Unicode provides a unique code value for every
character, regardless of the platform, program, or language. Unicode is supported in both
multimaster and materialized view replication environments.

In Oracle9i, all columns specified as NCHAR or NVARCHAR2 data type are stored in
Unicode format.

For both master sites and materialized view sites, replication is possible in an environment
with different releases of Oracle using an NCHAR or NVARCHAR2 data type.

However, replication is not recommended when one of the replication sites is a release prior
to Oracle9i and uses a variable width character set because, in this case, there is a
possibility of data loss. The Oracle server does not detect an error when you set up
replication between the two sites, but data loss may occur later. If data loss occurs, then an
error is raised.

Oracle9i: New Features for Administrators 20-32

20-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Increase availability by adding new master site
without quiescing

• Implement row level system change numbers

• Enable materialized view fast refresh abilities

• Create multitier materialized views

• Configure job queues with Oracle9i initialization
parameters

Oracle9i: New Features for Administrators A-1

A
Practices

Oracle9i: New Features for Administrators A-2

Oracle9i: New Features for Administrators A-3

Practice 1-1: Security

Your instructor will give you the account details of your UNIX account (telnet login) and the SID
of your instance.

1. Establish a command window (telnet) on your UNIX account. Connect to your instance in

privileged mode, without any knowledge of any Oracle account.

2. Start up the instance. The parameter file you must use lies in your $HOME/ADMIN/PFILE

directory. Specifying the init file is optional, because there is a link from the default init file
name and location to your file.

3. Check that the remote_login_passwordfile parameter is set to exclusive, and

the orapwd file exists (located in $ORACLE_HOME/dbs). Create a substitute DBA user,
DBA2 using a password identification. Give the DBA2 privileged operator rights.

4. Start SQL*Plus and connect as the new user on one line. Stop and start the instance to test the

privilege.

5. Windows version: Start SQL*Plus on the client (not the UNIX server) and connect as the

new user. You can use either of the Windows based SQL*Plus, the SQL*Plus worksheet, or
the command line version of SQL*Plus. Verify that shutting down the instance requires a
privileged login, and that the DBA2 user only has SYSOPER rights.
Note: Starting the instance would require a local copy of the parameter file in this
configuration; SPFILE useage comes in a later chapter.

 UNIX version: Log in to the unprivileged UNIX account, which is not part of the DBA

group. Start SQL*Plus and connect as the new user. Verify that shutting down the instance
requires a privileged login, and that the DBA2 user only has SYSOPER rights.

Oracle9i: New Features for Administrators A-4

Practice 2-1: Using Flashback

1. Connected as SYSTEM under SQL*Plus, ensure that you are in Automatic Undo
Management mode. Then create a simple table T1 with only one NUMBER column called C.

2. Set the UNDO_RETENTION parameter to one hour. Determine the date and time of the

system; then, using the DBMS_FLASHBACK package, determine the current SCN.

3. Wait for at least five minutes and then insert two different values inside table T1 (1 and 2 for

example), and determine again the date, time, and current SCN as in the previous step.

4. Enable Flashback at the date and time calculated in step 2 and select data from table T1.

Explain what you see on your screen.

5. Still connected in the same session under SYSTEM, try to insert a new row into table T1.

What happens and why? Try to fix the problem without disconnecting from the current
session, and insert a third row (for example: value 3).

6. Now, enable Flashback at the date and time calculated in step 3. Then select data from table

T1. What happens, why, and what could have happened?

7. How would you get around the above possible problem?

8. Connected as SYSDBA, try to enable Flashback. What happens?

9. Connected as SYSTEM, drop table T1.

Oracle9i: New Features for Administrators A-5

Practice 2-2: Use of Resumable Space Allocation and Import

1. Connected as SYSTEM under SQL*Plus, create a new dictionary managed tablespace called

TEST1 with one 200 KB data file. Then, create a table TEST in tablespace TEST1 as a
select of the PRODUCT_INFORMATION table of the OE schema.

2. Now, export the TEST table using the Export utility.

3. Drop tablespace TEST1 and its contents and re-create it but this time with only one 80 KB

data file. Once done, create again the TEST table inside tablespace TEST1 with the same
structure as TEST in step 1 but without the corresponding rows (create only the structure of
the TEST table).

4. Import the table TEST by using the generated dump file from step 2.

For this, use the Import utility with the following new parameters:
• RESUMABLE=YES
• RESUMABLE_NAME="TEST"
• RESUMABLE_TIMEOUT=60

What happens and why?

5. Do steps 3 and 4 again in the previous session. Create a separate session connected as

SYSDBA, and before the timeout is reached during the import phase in the first session,
query the dba_resumable view, and identify the problem. Wait for the timeout period to
expire and query again the dba_resumable view. What is your conclusion?

6. From the second session, create a simple AFTER SUSPEND ON DATABASE trigger called

ADD_SPACE that resizes the unique TEST1 tablespace data file to 10 KB.

7. From the first session, execute steps 3 and 4 again. What happens and why?

8. From the second session, recreate the ADD_SPACE trigger with a 2 MB file size increase

instead of 10 KB.

9. From the first session, repeat steps 3 and 4. What happens and why?

10. Connected as SYSDBA, drop tablespace TEST1 and its data file as well as the add_space

trigger.

Oracle9i: New Features for Administrators A-6

Practice 3-1: LogMiner Enhancements

1. Prepare for using LogMiner by creating a flat file dictionary file called dictionary.ora.

Check your UTL_FILE_DIR parameter and use the same directory.

2. Switch logfiles and note the current logfile name and the current time. This is the redo you

will analyze.

3. Do some user activity. Create a table consisting of a few rows and columns selected from

HR.EMPLOYEES (for example ID, last name, and salary in department 30). Add an extra
column to EMP30. Update the new column with values. Roll back that update and do another
update which you commit. Drop the table. Note the time.

4. Initialize LogMiner with the current redo file. Start mining between the two time points noted

above.

5. Display the committed changes made by user HR on segment EMP30.

6. End the LogMiner session.

Oracle9i: New Features for Administrators A-7

Practice 4-1: Backup and Recovery

1. Set the database into ARCHIVELOG mode, while in MOUNT mode. Enable automatic

archiving to the $HOME/ORADATA/ARCHIVE1 directory. Edit the parameter file as needed.

2. Create a tablespace, RMANTEST, of size 75 KB. Put this in the same directory as your other

tablespaces. Exit SQL*Plus.

3. Start RMAN and connect to the database. Do not use a recovery catalog. Use the show all

command to see the current configuration settings.

4. Configure a channel for back up, set the file location to your home directory, and use

<SID>_%U.bak for the file name. Configure the snapshot control file to be written to your
home directory as well. Keep the default name.

5. Back up your database. Exit from RMAN.

6. As SYSTEM/MANAGER in SQL*Plus make a copy of the HR.EMPLOYEES table in the

RMANTEST tablespace calling the table EMP. Note how many rows are in the new table.

7. Connect as a privileged user and shut down the instance. Exit from SQL*Plus.

8. Rename the data file of the RMANTEST tablespace, simulating data file loss.

9. Log in to SQL*Plus and attempt to start the instance. Exit SQL*Plus.

10. Start RMAN, connect without a recovery catalog, and do a restore of the missing data file.

Exit RMAN.

11. Use SQL*Plus to do a test recovery.

12. Because the test shows no errors, do the recovery. Test by examining the row count of the

EMP table.

13. Clean up by dropping the tablespace including the data file.

Oracle9i: New Features for Administrators A-8

Practice 7-1: Online Operations

1. Log in as SYSTEM and create a table EMP30 in the HR schema, which consists of all the

columns of all employees in department 30 from the EMPLOYEES table. Add a primary key
to the EMPLOYEE_ID column.

The new company standard is that all key columns will now have the suffix of “_KEY” not
“_ID” and all these key columns must be the first set of columns, with primary key always
first. (The order of the key columns following the PK is not important.)
The LAST_NAME column must be in upper case. There is a new column FULL_NAME which
consists of the first name, a space, and then the last name. Here the last name must be in the
same case as it was in the original employee table. The table must be partitioned on
EMPLOYEE_KEY with three partitions; the high values for each are 116, 118, and
MAXVALUE. To keep things simple do not worry about any other constraints that are on the
original table. This redefinition of the table must be done online, without loss of data.

2. Create the interim table for the redefinition including above changes. Call it INT_EMP30

and it must be in the HR schema.

3. Verify that EMP30 can be redefined, then execute the redefinition.

4. Check that the work was completed as expected.

5. Clean up and drop the tables:

SQL> DROP TABLE HR.EMP30;
SQL> DROP TABLE HR.INT_EMP30;

Oracle9i: New Features for Administrators A-9

Practice 7-2: New Parameter File

1. Start up the instance with the supplied text parameter file.

2. Now create the SPFILE from the PFILE used to start up the instance.

3. Shut down the instance and restart using the SPFILE. Again, examine the SPFILE

parameter.

4. Examine the OPEN_CURSORS parameter and increase it with 50, but only change the

SPFILE and add a comment of “Test Run 1.” Check to see that the change has only happened
in the SPFILE.

5. In preparation for removing the SPFILE create a PFILE from the current SPFILE. Then shut

down the instance, remove the SPFILE and delete the SPFILE. Restart the instance using the
newly created PFILE.

Oracle9i: New Features for Administrators A-10

Practice 8-1: Creating an External Table

1. Connected as SYSTEM under SQL*Plus, create a copy of the OE.ORDER_ITEMS table

(only the first ten rows) in the SYSTEM schema.

2. Create an Oracle directory called EXT_TABLES pointing to your

$HOME/STUDENT/LABS/ O/S directory (specify full path!). Then, create an external table
called ORDER_ITEMS_EXT mapping to the previously created ORDER_ITEMS table. Use
the two precreated files, order_items1.dat and order_items2.dat, stored in your
$HOME/STUDENT/LABS directory as the LOCATION for the external table. Once done,
verify that you can select from the created external table.

3. Use the two new dictionary views, DBA_EXTERNAL_TABLES and

DBA_EXTERNAL_LOCATIONS, to verify the various characteristics of the newly created
external table.

4. If you don’t know the exact syntax you should use to create an external table, you can use

SQL*Loader as follows.
Under the precreated $HOME/STUDENT/LABS directory, you should find the two data files
used in the previous steps plus a SQL*Loader control file called order_items.ctl. View
the contents of the SQL*Loader control file. As you can see, it describes the ORDER_ITEMS
table structure.

5. Execute the SQL*Loader utility under the SYSTEM account with the order_items.ctl

control file as parameter. Use also the brand new external_table parameter with the
GENERATE_ONLY value. This will generate the various external table commands inside the
SQL*Loader log file.

6. Look at the generated SQL*Loader log file.

7. Connected as SYSTEM, drop the tables ORDER_ITEMS_EXT, ORDER_ITEMS and then
drop directory EXT_TABLES.

Oracle9i: New Features for Administrators A-11

Practice 8-2: Creating a List-Partitioned Table

1. Connected as SYSTEM under SQL*Plus, create the list partitioned table SALES_LIST using

the lab_08_01.sql script.

2. Use the DBA_PART_TABLES and DBA_TAB_PARTITIONS dictionary views to identify

the SALES_LIST table characteristics.

3. Reconstitute the complete CREATE TABLE SALES_LIST command using only the data

dictionary.

4. Execute the lab_08_02.sql script in order to insert some rows into the SALES_LIST

table. What happens and why?

5. Analyze table SALES_LIST with the COMPUTE STATISTICS option and then create the

PLAN_TABLE into the SYSTEM account. Once done, explain the following statements (you
should use the explain.sql script to print the result of each explain plan command):

SQL> select * from sales_list;
SQL> select * from sales_list where sales_state = ’a’;
SQL> select * from sales_list where sales_state in (’a’,’e’);
SQL> select * from sales_list where sales_state = ’a’
 2 or sales_state = ’d’;
SQL> select * from sales_list where sales_state > ’e’;
SQL> select * from sales_list where sales_state < ’e’;

For each of the above statements, give your interpretation of the generated execution plans.

6. How would you prove that the Oracle server really performed partition pruning in the above

six cases?

7. Connected as SYSTEM, and drop the sales_list table.

Oracle9i: New Features for Administrators A-12

Practice 9-1: Using Automatic Free Space Management Segments

1. Connected as SYSTEM under SQL*Plus, create a new tablespace called BITMAP_SEGS with

the following characteristics:
• One 5 MB data file
• Locally managed with uniform extents sizes of 100 KB
• Containing only automatic free space management segments

Then, query the DBA_TABLESPACES view in order to identify the different characteristics
of each tablespace.

2. Drop the already existing TEST table and create a new table called TEST in the

BITMAP_SEGS tablespace. This table should only have one NUMBER column called C, and
only one extent. Verify the size of the newly created extent.

3. Execute the lab_09_01.sql script in order to insert rows into the TEST table. Once done,

determine the number of rows stored in each block of the table.

4. Delete all rows of the TEST table having C < 70. Then, commit your changes. Once done,

determine the number of rows stored in each block of the table. What do you observe?

5. Although this step is optional, it is recommended that you do it in order to be sure of the lab’s

result. Connect as SYSDBA and fix the data blocks bimap status of the test table by using the
SEGMENT_FIX_STATUS procedure of the DBMS_REPAIR package. Connect again as
SYSTEM and execute the lab_09_02.sql script in order to insert back rows into the
TEST table. Once done, determine and note the number of rows stored in each block of the
table. What do you observe?

6. Create a new tablespace called USERS2 with only one 5 MB data file and with manual

segment space management set. Create a new table called TEST1 with the same structure as
the TEST table but stored in the USERS2 tablespace. Then edit the lab_09_01.sql script
and change all occurrence of the word “TEST” to the word “TEST1.” Save the edited script
and execute it. Once done, determine the number of rows stored in each block of the table.
What do you observe?

7. Repeat step 4 but this time for the TEST1 table instead of the TEST table. What do you

observe?

8. Edit the lab_09_02.sql script and change all occurrences of the word “TEST” to the

word “TEST1.” Save the edited script and execute it. Once done, determine the number of
rows stored in each block of the table. What is your conclusion?

9. Connected as SYSTEM, drop the BITMAP_SEGS and USERS2 tablespaces. Remove also

their corresponding data files.

Oracle9i: New Features for Administrators A-13

Practice 10-1: Monitoring Indexes

1. The goal of this lab is to explain how to monitor index usage.
 First of all connect as user HR under SQL*Plus.

2. Create the PLAN_TABLE table using the utlxplan.sql script located under
$ORACLE_HOME/rdbms/admin.

3. Create the EMP table as a simple select from the EMPLOYEES table.

4. Create the IEMAIL index on the EMAIL column of the EMP table.

5. Use the V$OBJECT_USAGE view in order to determine if there are indexes currently

monitored in the HR account.

6. Monitor IEMAIL index usage.

7. Verify that the IEMAIL index is being monitored.

8. Connected as SYSDBA, try to verify that IEMAIL is being monitored. What is your

conclusion?

9. Connect again under the HR account and delete all rows of the EMP table. Do not commit or

roll back your changes.

10. Verify if the index was considered as being used by the previous command. Then roll back

your changes and verify again the usage status of the IEMAIL index. What is your
conclusion?

11. Execute a select statement against the EMP table that uses the IEMAIL index. Then verify

the usage status of the IEMAIL index. What is your conclusion?

12. Verify that the contents of the V$OBJECT_USAGE view persist across an instance crash.

13. Drop the EMP table and analyze the impact on the monitored index. What is the

consequence?

14. Re-create the same objects as in previous steps and activate monitoring usage again on the

IEMAIL index.

15. Use the EXPLAIN PLAN command to analyze the query you executed in step 11. Again

analyze monitoring usage on the IEMAIL index. What is your conclusion?

16. Turn off monitoring usage on the IEMAIL index and look at the V$OBJECT_USAGE view.

What is your conclusion?

Oracle9i: New Features for Administrators A-14

17. Drop the IEMAIL index and verify that the corresponding entry in the V$OBJECT_USAGE
view has been deleted.

18. Re-create the IEMAIL index and activate its monitoring usage again. Then reexecute the

query from step 11.

19. Turn off monitoring usage on the IEMAIL index, then activate it again. What are the

consequences on the V$OBJECT_USAGE view?

 In the previous step, the MONITORING and USED columns were set to YES. Turning

monitoring off updates only the MONITORING flag. Activating monitoring again resets both
columns.

20. Connected as HR, drop the EMP table and the PLAN_TABLE table.

Oracle9i: New Features for Administrators A-15

Practice 10-2: Cursor Sharing Enhancements

1. The goal of this lab is to explain the usage of the new cursor sharing optimization.
 Create the PLAN_TABLE under the SYSTEM account. Then, create a simple table T under

the SYSTEM user in the USERS tablespace. It is enough to create a table with only one
column (C) of NUMBER data type. Once done, insert the same value (1111111111111111)
many times into this table. Once done, commit your modification (in order to insert the data
you should use the lab_09_01.sql script located in your LABS directory). The idea is to
generate data skew in the table.

2. In order to generate data skew in the table, insert a last row with a completely different value
(222222222222222) from the previous ones. Commit this modification also. You are now
left with an unbalanced repartition of the rows inside the T table.

3. Create a simple index called IT on the C column of the T table in the USERS tablespace.
Then, gather statistics for table T with the dbms_stats.gather_table_stats
procedure.

4. Explain the following query with the two different values residing inside the T table:
SQL> select count(*) from t where c = ...;

 What is your conclusion?

5. Change the value of the CURSOR_SHARING initialization parameter for your session so

that it uses the new possible value: SIMILAR. Once done, flush the contents of the shared
pool.

6. Now, execute the same select statement as in step 4 with the two different values.

7. Identify in the shared pool the corresponding SQL texts generated for the execution of the
two statements above. What happened and why?

8. In order for the optimizer to possibly find data skew in the T table, gather table statistics
again and also generate a histogram with 75 buckets for column C. After that, flush the
shared pool again.

9. Repeat steps 6 and 7. What is your conclusion?

10. How would you prove that two different optimizer plans were used by the Oracle server to
execute the previous two queries?

11. Connect as SYSTEM, and drop table T.

Oracle9i: New Features for Administrators A-16

Practice 13-1: Create OMF and Non-OMF Files in the Same Database

1. Under your HOME directory, create two new subdirectories called OMF1 and OMF2

respectively. Then connect as SYSDBA under SQL*Plus.

2. Try to create tablespace OMF1 with the following command:

 SQL> CREATE TABLESPACE omf1 DATAFILE SIZE 10M AUTOEXTEND OFF;

 What happens and why?

3. How would you modify your environment to allow the previous command to create OMF

files in the $HOME/OMF1 directory?
Create tablespace OMF1 and verify that an OMF file was created in the $HOME/OMF1
directory.

4. Now, change the DB_CREATE_FILE_DEST value to point to $HOME/OMF2 directory.

Then drop tablespace OMF1. What happens?

5. How would you verify all this?

6. Create the same OMF1 tablespace again and verify that the Oracle server creates the

corresponding OMF file in the $HOME/OMF2 directory.

7. In order to demonstrate how you can migrate an OMF file to a non-OMF file:

• Take the OMF1 tablespace offline
• Make an O/S copy of the created OMF file in the same directory. Call it omf1.dbf
• Use the appropriate ALTER TABLESPACE command in order to rename the OMF data

file to the newly created file
• Bring the OMF1 tablespace back online

 What happens and why?

8. How would you drop tablespace OMF1, including its data file, at the O/S level?

Oracle9i: New Features for Administrators A-17

Practice 13-2: Using the Default Temporary Tablespace Assignment

1. Switch the database default temporary tablespace to SYSTEM. How would you determine the

current default temporary tablespace used in your database?

2. Create a user without assigning a temporary tablespace. Then, verify that this user was

automatically assigned the previous default temporary tablespace.

3. Now, change the default temporary tablespace for your database to the TEMP tablespace and

verify that the previously created user inherits the new database default temporary tablespace.

4. Create a tablespace called DEF1. Make sure that this tablespace is dictionary managed with a

file size of 10 MB. Once done, make it the database default temporary tablespace. What
happens and why?

Answer: Because the DEF1 tablespace is not defined as TEMPORARY, it is not possible to
use it as the database default temporary tablespace.

5. How would you modify this situation in order to make the DEF1 tablespace the database

default temporary tablespace?

6. Once tablespace DEF1 is the database default temporary tablespace, how would you drop

tablespace DEF1?

Oracle9i: New Features for Administrators A-18

Practice 14-1: Maintaining Automatic Undo Management Tablespaces

1. Connected as SYSTEM under SQL*Plus, execute the lab_14_01.sql script in order to

create some tables into the SYSTEM account. It is assumed that the USERS tablespace
exists and has at least 1 MB free space. After executing the script, change the retention
period of your instance to one hour.

2. Create a new undo tablespace called UNDO02 containing only one 60 KB data file. What

happens and why?

3. Repeat the previous step but this time with a data file size of 80 KB instead of 60 KB.

4. Determine how many undo segments are currently created. Also, determine their current

status. Then, change the active undo tablespace to be the UNDO02 tablesapce. Once done,
try to delete the SYSTEM.T table. What happens and why?

5. Now switch back to the UNDO1 tablespace as the active undo tablespace. Then drop and re-

create the UNDO02 tablespace but this time with a 400 KB data file. Once done, determine
the number of undo segments and their statuses. What is your conclusion?

6. Change the active undo tablespace to be the UNDO02 tablespace. Then, look at the undo

segments statuses. What happened?

7. Execute the lab_14_02.sql script in order to delete rows as well as creating and
populating one additional table in the SYSTEM schema. This is done to get assigned to a
transaction table in the UNDO02 tablespace. Using V$TRANSACTION, check to which
transaction table you were assigned. Once done, commit your changes.

8. Determine the number of extents used by each undo segment in both undo tablespaces

(UNDO02, and UNDO1). What do you observe?

9. Delete table T1 and find out which transaction table was assigned to this new transaction.

Once done, try to delete table T3. What happens and why?

10. Reexecute the query you used in step 8. What is your conclusion?

11. Commit your modifications. Then, check the number of rows currently stored inside table

T3. Once done, insert one new row inside table T3 and do not commit your modification.

12. From a second session connected as SYSTEM, switch the active undo tablespace to UNDO1,

and then look at all undo segment statuses. What is your conclusion?

13. From the first session, commit your changes.

14. Still in the first session, check the undo segments status many times during five minutes.

Once done, drop tablespace UNDO02 and its datafile. What are your conclusions?

Oracle9i: New Features for Administrators A-19

15. Connected as SYSTEM, drop the tables T, T1, T2, and T3.

Oracle9i: New Features for Administrators A-20

Practice 14-2: Transporting a Tablespace with Nondefault Block Size

1. Connected as SYSDBA under SQL*Plus, determine the default block size used for this

database and also the various parameters used to configure the buffer cache of this instance.

2. Drop tablespace TEST1, including its data files, if it already exists. Determine what is inside

the $HOME/STUDENT/LABS directory. Then, copy the test1.dbf file into the
$HOME/ORADATA/u04 directory. Also, drop the SYSTEM.T table.

3. Try to plug the TEST1 tablespace using the plug.dmp export dump file. What happens and

why?

4. How would you get around this problem?

5. After fixing the problem, plug in tablespace TEST1 using the same procedure as in step 3.

6. Verify that you can access table SYSTEM.T and look at the DBA_TABLESPACES view to

see the characteristics of the plugged tablespace TEST1.

7. Connected as SYSDBA, drop tablespace TEST1 including its data file.

Oracle9i: New Features for Administrators A-21

Practice 17-1: ANSI/ISO SQL:1999

1. With the natural join, you do not need to specify any join predicate or join columns. What

happens if you apply the natural join to two tables that do not have any common column
names?

 Think about this first, then connect to the HR schema, and try the following statement:

 SQL> select * from regions NATURAL JOIN jobs;

2. What is the difference between the cross join and the natural join, if two tables do not have

any column names in common? Change NATURAL into CROSS in the previous example and
compare the results.

3. Write a six-table join by using the USING and ON syntax, to show the last name, department

name, city, and region name for all employees reporting to Steven King.

4. Look at the example of the WIDTH_BUCKET function (on page 17-25):

SQL> select last_name, salary
 2 , WIDTH_BUCKET(salary,3000,13000,5)
 3 from employees;

 Rewrite this query as a searched CASE statement.

5. Write a query to retrieve the average salary, excluding any employees that have a salary of
2500; try to find a solution without a WHERE clause, using the NULLIF function.

6. Write a single query, using scalar subqueries, to return the current system date if you have
more employees than jobs.

Oracle9i: New Features for Administrators A-22

Practice 17-2: Other SQL Enhancements

1. Look at the JOB_HISTORY table, and check the primary key constraint and the associated

index. Drop the primary key constraint, and make sure that the associated index is not
dropped. Restore the original situation by creating the primary key constraint.

For the remaining steps of this practice, you need two SQL*Plus sessions connected to the
HR schema (referred to as session A and session B respecively).

2. a. Make sure that you don’t have an index on the department_id column of the

EMPLOYEES table.

b. From session A, delete any department from the DEPARTMENTS table without issuing a
commit; to avoid foreign key violations, choose a department without employees. Save
the delete statement, because you will need it again in the next exercise.

c. From the same session A, query v$locked_object (joined with the user_objects

view to display the object name) to see which locks are held by your session. In Oracle8i
you would see at least an additional shared lock on the EMPLOYEES table, because you
do not have an index on the foreign key column. Save the query for the next exercise.

d. From session B, try to update any employee; as you see, this is possible. Save this update

statement in a script file too.

e. Roll back the changes you made in both sessions (but stay connected.)

3. To show that the shared lock is needed, you repeat the previous exercise in the opposite

order. You can use the three SQL statements you saved during the previous exercise.

a. From session B, update any employee; do not commit.

b. From session B, query the data dictionary for locks; note that you have an exclusive row
lock on the EMPLOYEES table.

c. From session A, try to delete the same department again.

Now you are unable to delete any department, because the exclusive row lock in session
B causes the shared lock request from session A to wait.

d. Roll back the changes you made in both sessions (but stay connected.)

4. From session A, update the salary of any employee without issuing a commit; then, try to

select the same row for update from the other session. First try the default FOR UPDATE
clause; then, try to specify a wait time of five seconds.

Roll back the changes you made.

Oracle9i: New Features for Administrators A-23

Practice 18-1: Globalization Support

1. Log on as user HR. Create a table TIMES, with the following four columns:

• Column TS, data type TIMESTAMP
• Column TSZ, data type TIMESTAMP WITH TIME ZONE
• Column TLZ, data type TIMESTAMP WITH LOCAL TIME ZONE
• Column OLDTIME, data type DATE

2. Check your database timezone. Check and possibly adjust your session timezone to be

‘Europe/London.’

3. Determine the hour offset for this region.

4. Insert a row that populates all columns in the table. For the time component use one quarter

of a second after 10 a.m. Specify the CET timezone where appropiate.

5. Alter your session timezone to be ‘America/LosAngeles’ and display the values. Explain

what you see.

6. Drop the TIMES table.

Oracle9i: New Features for Administrators A-24

Practice 19-1: Workspaces

1. Connected as SYSDBA under SQL*Plus, create a user called WM_DEVELOPER.

2. Grant CONNECT, RESOURCE roles to WM_DEVELOPER. Also directly grant the CREATE

TABLE privilege to WM_DEVELOPER.

3. Grant the WM-specific privileges (with grant_option = YES) to WM_DEVELOPER.

Specifically:
ACCESS_ANY_WORKSPACE, MERGE_ANY_WORKSPACE, CREATE_ANY_WORKSPACE,
REMOVE_ANY_WORKSPACE, and ROLLBACK_ANY_WORKSPACE.

4. Connected as WM_DEVELOPER, create a table for the annual marketing budget for several

cola (soft drink) markets in a given geography (such as a city or a state). Each row will
contain budget data for a specific cola.

Note: This table does not reflect recommended database design. For example, a manager ID
should be used, not a name. It is deliberately oversimplified for purposes of illustration.
Budget is in Millions. In order to help you create this table, simply execute the
lab_19_01.sql script located in your LABS directory.

5. Version-enable the table. Specify the hist option of VIEW_WO_OVERWRITE so that the

COLA_MARKETING_BUDGET_HIST view contains complete history information. Once
done, populate the table with some rows using the lab_19_02.sql script locate in your
LABS directory.

6. Now create workspaces for the following scenario: a major marketing focus in the cola_b

area. Managers and budget amounts for each market can change, but the total marketing
budget cannot grow. The B_focus_1 scenario features a manager with more expensive
plans (which means more money taken from other areas’ budgets). The B_focus_2
scenario features a manager with less expensive plans (which means less money taken from
other areas’ budgets). Two workspaces (B_focus_1 and B_focus_2) are created as child
workspaces of the LIVE database workspace.

7. Enter the B_focus_1 workspace and change the cola_b manager to Beasley and raise the

cola_b budget amount by 1.5 to bring it to 3.0. Reduce all other area budget amounts by
0.5 to stay within the overall budget. In order to make the previous changes, you can use the
lab_19_03.sql script.

8. Enter the B_focus_2 workspace and change the cola_b manager to Burton and raise the

cola_b budget amount by 0.5 to bring it to 2.0. Reduce only the cola_d amount by 0.5 to
stay within the overall budget. You can use the lab_19_04.sql script in order to make
the changes. Once done, select every column from the COLA_MARKETING_BUDGET table.

9. Assume that you have decided to adopt the scenario of the B_focus_2 workspace using

that workspace’s current values; Go to the LIVE workspace, and remove the B_focus_1
workspace. Once done, apply changes in the second workspace to the LIVE database

Oracle9i: New Features for Administrators A-25

workspace. Note that the workspace is removed by default after MergeWorkspace. Once
done, select every column from the COLA_MARKETING_BUDGET table.

10. Disable versioning on the table because you are finished testing scenarios. Also, users with

version-enabled tables cannot be dropped, in case you want to drop the WM_DEVELOPER
user. Set the force parameter to TRUE if you want to force the disabling even if changes
were made in a non-LIVE workspace. Also, remove the B_focus_2 workspace.

11. Connected as SYSDBA, drop user WM_DEVELOPER.

Oracle9i: New Features for Administrators A-26

Oracle9i: New Features for Administrators B-1

B
Solutions

Oracle9i: New Features for Administrators B-2

Oracle9i: New Features for Administrators B-3

Practice 1-1 Solution: Security

Your instructor will give you the account details of your UNIX account (telnet login) and the SID
of your instance.

1. Establish a command window (telnet) on your UNIX account. Connect to your instance in

privileged mode, without any knowledge of any Oracle account.

$# Logged into an account in the DBA group
$ sqlplus
SQL*Plus: Release 9.0.1.0.0 – Production
(c) Copyright 2000 Oracle Corporation. All rights reserved.

Enter user-name: / AS SYSDBA
Connected to an idle instance.

2. Start up the instance. The parameter file you must use lies in your $HOME/ADMIN/PFILE

directory. Specifying the init file is optional, because there is a link from the default init file
name and location to your file.

SQL> STARTUP PFILE=$HOME/ADMIN/PFILE/initU01.ora
ORACLE instance started.

Total System Global Area 93094040 bytes
Fixed Size 278680 bytes
Variable Size 58720256 bytes
Database Buffers 33554432 bytes
Redo Buffers 540672 bytes
Database mounted.
Database opened.

3. Check that the remote_login_passwordfile parameter is set to exclusive, and

the orapwd file exists (located in $ORACLE_HOME/dbs). Create a substitute DBA user,
DBA2 using a password identification. Give the DBA2 privileged operator rights.

SQL> SHOW PARAMETER remote_login
NAME TYPE VALUE
---------------------------- -------- ---------
remote_login_passwordfile string EXCLUSIVE

SQL> HOST ls $ORACLE_HOME/dbs

orapwdU01

SQL> CREATE USER dba2 IDENTIFIED BY dba2;
User created.

SQL> GRANT CONNECT, SYSOPER TO dba2;
Grant succeeded.

Oracle9i: New Features for Administrators B-4

4. Start SQL*Plus and connect as the new user on one line. Stop and start the instance to test the
privilege.

$ sqlplus "dba2/dba2 as sysoper"
Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 – Production

SQL> SHUTDOWN IMMEDIATE
Database closed.

SQL> STARTUP PFILE=$HOME/ADMIN/PFILE/initU01.ora
ORACLE instance started.
Total System Global Area 93094040 bytes ...

Note: As you are logged into a DBA account, it does not matter what you type as the user and
password name, as long as you add as sysdba to the connection string. Anything other than
above would yield an error for an account not in the DBA-group, or a network connection, as
shown below.

5. Windows version: Start SQL*Plus on the client (not the UNIX server) and connect as the

new user. You can use either of the Windows based SQL*Plus, the SQL*Plus worksheet, or
the command line version of SQL*Plus. Verify that shutting down the instance requires a
privileged login, and that the DBA2 user only has SYSOPER rights.
Note: Starting the instance would require a local copy of the parameter file in this
configuration; SPFILE useage comes in a later chapter.

C:\temp>sqlplus dba2/dba2@sun_U01
SQL*Plus: Release 9.0.1.0.0 - Production
Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 – Production

SQL> SHUTDOWN IMMEDIATE
ORA-01031: insufficient privileges

SQL> CONNECT dba2/dba2@sun_U01 AS SYSDBA
ERROR: ORA-01031: insufficient privileges

SQL> CONNECT dba2/dba2@sun_U01 AS SYSOPER
Connected.

SQL> SHUTDOWN IMMEDIATE
Database closed.
Database dismounted.
ORACLE instance shut down.

Oracle9i: New Features for Administrators B-5

5. UNIX version: Log in to the unprivileged UNIX account, which is not part of the DBA
group. Start SQL*Plus and connect as the new user. Verify that shutting down the instance
requires a privileged login, and that the DBA2 user only has SYSOPER rights.

$ sqlplus dba2/dba2
SQL*Plus: Release 9.0.1.0.0 - Production
Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 – Production

SQL> SHUTDOWN IMMEDIATE
ORA-01031: insufficient privileges

SQL> CONNECT dba2/dba2@sun_U01 AS SYSDBA
ERROR: ORA-01031: insufficient privileges

SQL> CONNECT dba2/dba2@sun_U01 AS SYSOPER
Connected.

SQL> SHUTDOWN IMMEDIATE
Database closed.
Database dismounted.
ORACLE instance shut down.

Oracle9i: New Features for Administrators B-6

Practice 2-1 Solution: Using Flashback

1. Connected as SYSTEM under SQL*Plus, ensure that you are in Automatic Undo
Management mode. Then create a simple table T1 with only one NUMBER column called C.

$ sqlplus system/manager
SQL*Plus: Release 9.0.1.0.0 – Production
Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 – Production

SQL> show parameter undo

NAME TYPE VALUE
------------------------------------ ----------- ----------
undo_management string AUTO
undo_retention integer 900
undo_suppress_errors boolean FALSE
undo_tablespace string UNDO1

SQL> create table t1(c number);
Table created.

2. Set the UNDO_RETENTION parameter to one hour. Determine the date and time of the

system; then, using the DBMS_FLASHBACK package, determine the current SCN.

SQL> alter system set undo_retention = 3600;
System altered.

SQL> select to_char(sysdate,'DD-MON-YYYY:HH24:MI:SS') from dual;

TO_CHAR(SYSDATE,'DD-

26-JUL-2001:05:32:56

SQL> select dbms_flashback.get_system_change_number from dual;

GET_SYSTEM_CHANGE_NUMBER

 205050

3. Wait for at least five minutes and then insert two different values inside table T1 (1 and 2 for

example), and determine again the date, time, and current SCN as in the previous step.

SQL> insert into t1 values(1);
1 row created.

SQL> insert into t1 values(2);
1 row created.

SQL> commit;
Commit complete.

SQL> select to_char(sysdate,'DD-MON-YYYY:HH24:MI:SS') from dual;

TO_CHAR(SYSDATE,'DD-

Oracle9i: New Features for Administrators B-7

26-JUL-2001:05:33:17

SQL> select dbms_flashback.get_system_change_number from dual;

GET_SYSTEM_CHANGE_NUMBER

 205056

4. Enable Flashback at the date and time calculated in step 2 and select data from table T1.

Explain what you see on your screen.

Answer: Although table T1 currently contains two rows, the date and time calculated at step
2 correspond to the time where T1 was empty. Thus, after enabling Flashback at that time, a
SELECT * FROM T1 will return no rows. If you did not wait five minutes before inserting
T1 rows in step 3, you might see the current result (both rows) due to the SCN/timestamp
mapping.

SQL> execute dbms_flashback.enable_at_time(-
> TO_TIMESTAMP(’26-JUL-2001:05:32:56’, ’DD-MON-YYYY:HH24:MI:SS’));
PL/SQL procedure successfully completed.

SQL> select * from t1;
no rows selected

-- Or:

 C

 1
 2

5. Still connected in the same session under SYSTEM, try to insert a new row into table T1.

What happens and why? Try to fix the problem without disconnecting from the current
session, and insert a third row (for example: value 3).

Answer: Because your session is still in Flashback mode, it is not possible to modify data. In
order to insert a new row into table T1, you need to first disable Flashback.

SQL> insert into t1 values(3);
insert into t1 values(3)
 *
ERROR at line 1:
ORA-08182: operation not supported while in Flashback mode

SQL> commit;
Commit complete.

SQL> insert into t1 values(3);
insert into t1 values(3)
*
ERROR at line 1:
ORA-08182: operation not supported while in Flashback mode

Oracle9i: New Features for Administrators B-8

SQL> execute dbms_flashback.disable;
PL/SQL procedure successfully completed.

SQL> insert into t1 values(3);
1 row created.

SQL> commit;
Commit complete.

6. Now, enable Flashback at the date and time calculated in step 3. Then select data from table

T1. What happens, why, and what could have happened?

Answer: You may see two possible outcomes from the select statement. This depends on the
time to SCN correspondence SMON keeps track in the smon_scn_time table.
Generally, you will observe that each time interval is about five minutes. Thus, depending on
the time you selected in previous steps, it is possible that there are more than five minutes
between the time you created table T1 and the time you committed the inserts. If this is the
case, you should now see the two inserted rows from step 3. If it is not the case, you should
see no row selected.

SQL> execute dbms_flashback.enable_at_time(-
> TO_TIMESTAMP(’26-JUL-2001:05:33:17’, ’DD-MON-YYYY:HH24:MI:SS’));
PL/SQL procedure successfully completed.

SQL> select * from t1;

 C

 1
 2

-- Or:

no rows selected

7. How would you get around the above possible problem?

Answer: Using SCNs instead of times is probably the best solution in this case because date
and time is only precise at five minutes. Thus, in order to be sure to see the two inserted
rows, you should enable Flashback using the SCN calculated in step 3.

SQL> execute dbms_flashback.enable_at_system_change_number(205056);
BEGIN dbms_flashback.enable_at_system_change_number(205056); END;
*
ERROR at line 1:
ORA-08184: attempting to re-enable Flashback while in Flashback mode
ORA-06512: at "SYS.DBMS_FLASHBACK", line 0
ORA-06512: at line 1

SQL> execute dbms_flashback.disable;
PL/SQL procedure successfully completed.

SQL> execute dbms_flashback.enable_at_system_change_number(205056);

Oracle9i: New Features for Administrators B-9

PL/SQL procedure successfully completed.

SQL> select * from t1;

 C

 1
 2

SQL> execute dbms_flashback.disable;
PL/SQL procedure successfully completed.

8. Connected as SYSDBA, try to enable Flashback. What happens?

Answer: It is not possible to enable Flashback under user SYS.

SQL> connect / as sysdba;
Connected.

SQL> execute dbms_flashback.enable_at_time(-
> TO_TIMESTAMP(’26-JUL-2001:05:33:17’, ’DD-MON-YYYY:HH24:MI:SS’));
BEGIN dbms_flashback.enable_at_time(’26-JUL-2001:05:33:17’); END;
*
ERROR at line 1:
ORA-08185: Flashback not supported for user SYS
ORA-06512: at "SYS.DBMS_FLASHBACK", line 0
ORA-06512: at line 1

9. Connected as SYSTEM, drop table T1.

SQL> connect system/manager;
Connected.

SQL> drop table t1;
Table dropped.

Oracle9i: New Features for Administrators B-10

Practice 2-2 Solution: Use of Resumable Space Allocation and Import

1. Connected as SYSTEM under SQL*Plus, create a new dictionary managed tablespace called

TEST1 with one 200 KB data file. Then, create a table TEST in tablespace TEST1 as a
select of the PRODUCT_INFORMATION table of the OE schema.

$ sqlplus system/manager
SQL*Plus: Release 9.0.1.0.0 – Production
Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 – Production

SQL> create tablespace test1 datafile '$HOME/ORADATA/u04/test1.dbf'
 2 size 200K extent management dictionary;
Tablespace created.

SQL> create table test tablespace test1
 2 as select * from oe.product_information;
Table created.

2. Now, export the TEST table using the Export utility.

SQL> host exp system/manager tables=TEST
Export: Release 9.0.1.0.0 – Production
Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 – Production

Export done in US7ASCII character set and AL16UTF16 NCHAR character set
server uses WE8ISO8859P1 character set (possible charset conversion)

About to export specified tables via Conventional Path ...
. . exporting table TEST 288 rows exported
Export terminated successfully without warnings.

3. Drop tablespace TEST1 and its contents and re-create it but this time with only one 80 KB

data file. Once done, create again the TEST table inside tablespace TEST1 with the same
structure as TEST in step 1 but without the corresponding rows (create only the structure of
the TEST table).

SQL> drop tablespace test1 including contents and datafiles;
Tablespace dropped.

SQL> create tablespace test1
 2 datafile '$HOME/ORADATA/u04/test1.dbf' size 80K
 3 extent management dictionary;
Tablespace created.

SQL> create table test (product_id number(6,0),
 2 product_name varchar2(50), product_description varchar2(2000),
 3 category_id number(2,0), weight_class number(1,0),
 4 warranty_period interval year(2) to month,
 5 supplier_id number(6,0), product_status varchar2(20),
 6 list_price number(8,2), min_price number(8,2),
 7 catalog_url varchar2(50))
 8 tablespace test1;
Table created.

Oracle9i: New Features for Administrators B-11

4. Import the table TEST by using the generated dump file from step 2. For this, use the Import

utility with the following new parameters:
• RESUMABLE=YES
• RESUMABLE_NAME="TEST"
• RESUMABLE_TIMEOUT=60

What happens and why?

Answer: Because the size of the TEST1 tablespace is not big enough to fit the imported
rows, Oracle fails to allocate a new extent for the TEST table during the import. This would
have immediately blocked the import process if you had not used the two new parameters
above. Here, because of the timeout sets, Oracle waits for 60 seconds before signaling the
error. Because this error was not fixed during the period, the import process stops after a
while.

SQL> host imp system/manager file=expdat.dmp tables=test ignore=yes -
> RESUMABLE=YES RESUMABLE_NAME="TEST" RESUMABLE_TIMEOUT=60
Import: Release 9.0.1.0.0 – Production
Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 – Production

Export file created by EXPORT:V09.00.01 via conventional path
import done in US7ASCII character set and AL16UTF16 NCHAR character set
import server uses WE8ISO8859P1 character set (possible charset
conversion)
. importing SYSTEM's objects into SYSTEM
. . importing table "TEST"
IMP-00058: ORACLE error 30032 encountered
ORA-30032: the suspended (resumable) statement has timed out
ORA-01653: unable to extend table SYSTEM.TEST by 8 in tablespace TEST1
IMP-00028: partial import of previous table rolled back:
 163 rows rolled back
Import terminated successfully with warnings.

5. Do steps 3 and 4 again in the previous session. Create a separate session connected as

SYSDBA, and before the timeout is reached during the import phase in the first session,
query the dba_resumable view, and identify the problem. Wait for the timeout period to
expire and query again the dba_resumable view. What is your conclusion?

Answer: After the timeout period expired, the error message listed in the dba_resumable
view is automatically purged.

SQL> drop tablespace test1 including contents and datafiles;
Tablespace dropped.

SQL> create tablespace test1
 2 datafile '$HOME/ORADATA/u04/test1.dbf' size 80K
 3 extent management dictionary;
Tablespace created.

SQL> create table test (product_id number(6,0),
 2 product_name varchar2(50), product_description varchar2(2000),
 3 category_id number(2,0), weight_class number(1,0),

Oracle9i: New Features for Administrators B-12

 4 warranty_period interval year(2) to month,
 5 supplier_id number(6,0), product_status varchar2(20),
 6 list_price number(8,2), min_price number(8,2),
 7 catalog_url varchar2(50))
 8 tablespace test1;
Table created.

SQL> host imp system/manager file=expdat.dmp tables=test ignore=yes -
> RESUMABLE=YES RESUMABLE_NAME="TEST" RESUMABLE_TIMEOUT=60
Import: Release 9.0.1.0.0 – Production
Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 – Production

Export file created by EXPORT:V09.00.01 via conventional path
import done in US7ASCII character set and AL16UTF16 NCHAR character set
import server uses WE8ISO8859P1 character set (possible charset
conversion)
. importing SYSTEM's objects into SYSTEM
. . importing table "TEST"

-- From a separate session:

$ sqlplus /nolog
SQL*Plus: Release 9.0.1.0.0 – Production

SQL> connect / as sysdba;
Connected.

SQL> select name,resume_time,error_msg from dba_resumable;

NAME RESUME_TIME ERROR_MSG
------ ----------- ------------------------------------
TEST ORA-01653: unable to extend table
 SYSTEM.TEST by 8 in tablespace TEST1

SQL> /
no rows selected

6. From the second session, create a simple AFTER SUSPEND ON DATABASE trigger called

ADD_SPACE that resizes the unique TEST1 tablespace data file to 10 KB.

SQL> create or replace trigger add_space
 2 after suspend on database
 3 DECLARE
 4 PRAGMA AUTONOMOUS_TRANSACTION;
 5 BEGIN
 6 execute immediate
 7 'alter database datafile ''$HOME/ORADATA/u04/test1.dbf''
 8 resize 10K';
 9 END;
 10 /
Trigger created.

7. From the first session, execute steps 3 and 4 again. What happens and why?

Oracle9i: New Features for Administrators B-13

Answer: The main difference with the previous step is that the trigger was fired
automatically but did not fix the problem because 10 KB was not enough to accommodate the
import. Thus, the import aborted as well.

SQL> drop tablespace test1 including contents and datafiles;
Tablespace dropped.

SQL> create tablespace test1
 2 datafile ’$HOME/ORADATA/u04/test1.dbf’ size 80K
 3 extent management dictionary;
Tablespace created.

SQL> create table test (product_id number(6,0),
 2 product_name varchar2(50), product_description varchar2(2000),
 3 category_id number(2,0), weight_class number(1,0),
 4 warranty_period interval year(2) to month,
 5 supplier_id number(6,0), product_status varchar2(20),
 6 list_price number(8,2), min_price number(8,2),
 7 catalog_url varchar2(50))
 8 tablespace test1;
Table created.

SQL> host imp system/manager file=expdat.dmp tables=test ignore=yes -
> RESUMABLE=YES RESUMABLE_NAME="TEST" RESUMABLE_TIMEOUT=60
Import: Release 9.0.1.0.0 – Production
Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 – Production

Export file created by EXPORT:V09.00.01 via conventional path
import done in US7ASCII character set and AL16UTF16 NCHAR character set
import server uses WE8ISO8859P1 character set (possible charset
conversion)
. importing SYSTEM's objects into SYSTEM
. . importing table "TEST"
IMP-00058: ORACLE error 604 encountered
ORA-00604: error occurred at recursive SQL level 1
ORA-03297: file contains used data beyond requested RESIZE value
ORA-06512: at line 4
ORA-01653: unable to extend table SYSTEM.TEST by 8 in tablespace TEST1
IMP-00028: partial import of previous table rolled back:
 163 rows rolled back
Import terminated successfully with warnings.

8. From the second session, recreate the ADD_SPACE trigger with a 2 MB file size increase

instead of 10 KB.

SQL> create or replace trigger add_space
 2 after suspend on database
 3 DECLARE
 4 PRAGMA AUTONOMOUS_TRANSACTION;
 5 BEGIN
 6 execute immediate
 7 'alter database datafile ''$HOME/ORADATA/u04/test1.dbf''
 8 resize 2M';
 9 END;
 10 /

Oracle9i: New Features for Administrators B-14

Trigger created.

9. From the first session, repeat steps 3 and 4. What happens and why?

Answer: Now the trigger is able to fix the problem by sufficiently raising the data file size in
order to allow the import process to proceed without having problems.

SQL> drop tablespace test1 including contents and datafiles;
Tablespace dropped.

SQL> create tablespace test1
 2 datafile ’$HOME/ORADATA/u04/test1.dbf’ size 80K
 3 extent management dictionary;
Tablespace created.

SQL> create table test (product_id number(6,0),
 2 product_name varchar2(50), product_description varchar2(2000),
 3 category_id number(2,0), weight_class number(1,0),
 4 warranty_period interval year(2) to month,
 5 supplier_id number(6,0), product_status varchar2(20),
 6 list_price number(8,2), min_price number(8,2),
 7 catalog_url varchar2(50))
 8 tablespace test1;
Table created.

SQL> host imp system/manager file=expdat.dmp tables=test ignore=yes -
> RESUMABLE=YES RESUMABLE_NAME="TEST" RESUMABLE_TIMEOUT=60
Import: Release 9.0.1.0.0 – Production
Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 – Production

Export file created by EXPORT:V09.00.01 via conventional path
import done in US7ASCII character set and AL16UTF16 NCHAR character set
import server uses WE8ISO8859P1 character set (possible charset
conversion)
. importing SYSTEM's objects into SYSTEM
. . importing table "TEST" 288 rows imported
Import terminated successfully without warnings.

10. Connected as SYSDBA, drop tablespace TEST1 and its data file as well as the add_space

trigger.

SQL> connect / as sysdba;
Connected.

SQL> drop tablespace test1 including contents and datafiles;
Tablespace dropped.

SQL> drop trigger add_space;
Trigger dropped.

Oracle9i: New Features for Administrators B-15

Practice 3-1 Solution: LogMiner Enhancements

1. Prepare for using LogMiner by creating a flat file dictionary file called dictionary.ora.

Check your UTL_FILE_DIR parameter and use the same directory.

SQL> CONNECT / AS SYSDBA
Connected.

SQL> SHOW PARAMETER utl

NAME TYPE VALUE
---------------------- ----------- ----------------------------
utl_file_dir string /oracourse/user/st01/ORADATA

SQL> EXECUTE dbms_logmnr_d.build –
> (DICTIONARY_FILENAME => 'dictionary.ora', -
> DICTIONARY_LOCATION => '/oracourse/user/st01/ORADATA', -
> OPTIONS => dbms_logmnr_d.store_in_flat_file);
PL/SQL procedure successfully completed.

The name of the directory will be different for your site.

2. Switch logfiles and note the current logfile name and the current time. This is the redo you

will analyze.

SQL> ALTER SYSTEM SWITCH LOGFILE;

SQL> SELECT member FROM v$logfile, v$log
 2 WHERE v$logfile.group# = v$log.group#
 3 AND v$log.status = 'CURRENT';

MEMBER
--
/oracourse/user/st01/ORADATA/u03/log_01_01_u01.rdo

SQL> SELECT CURRENT_TIMESTAMP FROM DUAL;

CURRENT_TIMESTAMP

03-JUL-01 11.57.38.654612 AM +02:00

The name of the directory will be different for your site.

3. Do some user activity. Create a table consisting of a few rows and columns selected from

HR.EMPLOYEES (for example ID, last name, and salary in department 30). Add an extra
column to EMP30. Update the new column with values. Roll back that update and do another
update which you commit. Drop the table. Note the time.

SQL> CREATE TABLE emp30 AS
 2 SELECT employee_id,last_name,salary FROM employees
 3 WHERE department_id = 30 ;
Table created.

SQL> ALTER TABLE emp30 ADD (new_salary NUMBER(8,2));

Oracle9i: New Features for Administrators B-16

Table altered.

SQL> UPDATE emp30 SET new_salary = salary * 1.5;
6 rows updated.

SQL> ROLLBACK;
Rollback complete.

SQL> UPDATE emp30 SET new_salary = salary * 1.2;
6 rows updated.

SQL> COMMIT;
Commit complete.

SQL> DROP TABLE emp30;
Table dropped.

SQL> SELECT CURRENT_TIMESTAMP FROM DUAL;

CURRENT_TIMESTAMP

03-JUL-01 12.07.34.111612 AM +02:00

4. Initialize LogMiner with the current redo file. Start mining between the two time points noted

above.

SQL> CONNECT / AS SYSDBA
Connected.

SQL> EXECUTE dbms_logmnr.add_logfile (-
> LOGFILENAME => -
> ’/oracourse/user/st01/ORADATA/u03/log_01_01_u01.rdo’, -
> OPTIONS => dbms_logmnr.new)
PL/SQL procedure successfully completed.

SQL> EXECUTE dbms_logmnr.start_logmnr (-
> DICTFILENAME => ’/oracourse/user/st01/ORADATA/dictionary.ora’, -
> STARTTIME => TO_DATE(’03-JUL-01 11:57:38’,’DD_MON-RR HH24:MI:SS’),-
> ENDTIME => TO_DATE(’03-JUL-01 12:07:34’,’DD_MON-RR HH24:MI:SS’),-
> OPTIONS =>
dbms_logmnr.ddl_dict_tracking+dbms_logmnr.committed_data_only)
PL/SQL procedure successfully completed.

The name of the directory will be different for your site.

Oracle9i: New Features for Administrators B-17

5. Display the committed changes made by user HR on segment EMP30.

SQL> SELECT timestamp, username, operation, sql_redo, sql_undo
 2 FROM v$logmnr_contents
 3 WHERE username=’HR’
 4 AND (seg_name = ’EMP30’ OR seg_name IS NULL);

TIMESTAMP USERNAME OPERATION
------------------------ -------- --------------------------------
SQL_REDO SQL_UNDO
--------------------------------- --------------------------------
03-JUL-01 11:58:11 HR START
set transaction read write;

03-JUL-01 11:58:11 HR DDL
CREATE TABLE emp30 AS (Note: null for UNDO)
SELECT employee_id,last_name,
salary FROM employees
WHERE department_id = 30;

03-JUL-01 11:58:11 HR COMMIT
commit;

03-JUL-01 12:01:23 HR DDL
ALTER TABLE emp30 ADD (Note: null for UNDO)
(new_salary NUMBER(8,2));

03-JUL-01 12:03:05 HR UPDATE
update "HR"."EMP30" set update "HR"."EMP30" set
"NEW_SALARY" = ’16500’ where "NEW_SALARY" = NULL where
"NEW_SALARY" IS NULL and ROWID "NEW_SALARY" = ’16500’ and ROWID
= ’AAABnFAAEAAALkUAAA’; = ’AAABnFAAEAAALkUAAA’;

03-JUL-01 12:05:58 HR DDL
DROP TABLE emp30; (Note: null for UNDO)

The listing is much reduced and formatted. There should be about 45 rows.

6. End the LogMiner session.

SQL> EXECUTE dbms_logmnr.end_logmnr
PL/SQL procedure successfully completed.

Oracle9i: New Features for Administrators B-18

Practice 4-1 Solution: Backup and Recovery

1. Set the database into ARCHIVELOG mode, while in MOUNT mode. Enable automatic

archiving to the $HOME/ORADATA/ARCHIVE1 directory. Edit the parameter file as needed.

SQL> CONNECT / AS SYSDBA
Connected.

SQL> SELECT NAME,LOG_MODE FROM V$DATABASE;
NAME LOG_MODE
--------- ------------
DB01 NOARCHIVELOG

SQL> SHUTDOWN IMMEDIATE
Database shutdown.

SQL> STARTUP PFILE=$HOME/ADMIN/PFILE/initU01.ora
ORACLE instance started.

SQL> ALTER DATABASE ARCHIVELOG;
Database altered.

SQL> ALTER DATABASE OPEN;
Database altered.

SQL> SHOW PARAMETER LOG_ARCHIVE_DEST_1
log_archive_dest_1 string location=/databases/ed27/ORADATA/ARCHIVE1

SQL> SHOW PARAMETER LOG_ARCHIVE_START
log_archive_start boolean TRUE

2. Create a tablespace, RMANTEST, of size 75 KB. Put this in the same directory as your other

tablespaces. Exit SQL*Plus.

SQL> CREATE TABLESPACE rmantest DATAFILE
 2 ’/databases/ed27/ORADATA/u01/rmantest_01.dbf’ SIZE 75K;
Tablespace created.

SQL> EXIT

3. Start RMAN and connect to the database. Do not use a recovery catalog. Use the show all

command to see the current configuration settings.

$ rman target /
Recovery Manager: Release 9.0.1.0.0 – Production
connected to target database: ED27 (DBID=868643342)

RMAN> show all;

RMAN configuration parameters are:
CONFIGURE RETENTION POLICY TO REDUNDANCY 1;
CONFIGURE BACKUP OPTIMIZATION OFF;
CONFIGURE DEFAULT DEVICE TYPE TO DISK;
CONFIGURE CONTROLFILE AUTOBACKUP OFF;

Oracle9i: New Features for Administrators B-19

CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO ’%F’;
CONFIGURE DEVICE TYPE DISK PARALLELISM 1;
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 1;
CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE DISK TO 1;
CONFIGURE MAXSETSIZE TO UNLIMITED;
CONFIGURE SNAPSHOT CONTROLFILE NAME TO
’/databases/oracle9i/dbs/snapcf_ed27.f’;

4. Configure a channel for back up, set the file location to your home directory, and use

<SID>_%U.bak for the file name. Configure the snapshot control file to be written to your
home directory as well. Keep the default name.

RMAN> CONFIGURE CHANNEL 1 DEVICE TYPE DISK FORMAT
 ’/databases/ed27/ed27_%U.bak’;

old RMAN configuration parameters:
CONFIGURE CHANNEL 1 DEVICE TYPE DISK FORMAT ’’;
new RMAN configuration parameters:
CONFIGURE CHANNEL 1 DEVICE TYPE DISK FORMAT ’/databases/ed27/ed27_%U’;
new RMAN configuration parameters are successfully stored

RMAN> CONFIGURE SNAPSHOT CONTROLFILE NAME TO
’/databases/ed27/snapcf_ed27.f’;

snapshot controlfile name set to: /databases/ed27/snapcf_ed27.f
new RMAN configuration parameters are successfully stored

5. Back up your database. Exit from RMAN.

RMAN> backup database;

Starting backup at 02-JUL-01
allocated channel: ORA_DISK_1
channel ORA_DISK_1: sid=8 devtype=DISK
channel ORA_DISK_1: starting full datafile backupset
channel ORA_DISK_1: specifying datafile(s) in backupset
including current controlfile in backupset
input datafile fno=00001 name=/databases/ed27/ORADATA/u01/system01.dbf
input datafile fno=00002 name=/databases/ed27/ORADATA/u01/undotbs01.dbf
input datafile fno=00005 name=/databases/ed27/ORADATA/u01/example01.dbf
...
input datafile fno=00010 name=/databases/ed27/ORADATA/u01/rmantest_01.dbf
channel ORA_DISK_1: starting piece 1 at 02-JUL-01
channel ORA_DISK_1: finished piece 1 at 02-JUL-01 with 2 copies
piece handle=/databases/ed27/ed27_0ccopgm9_1_1.bak comment=NONE
piece handle=/databases/ed27/ed27_0ccopgm9_1_2.bak comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:01:18
Finished backup at 02-JUL-01

RMAN> EXIT

6. As SYSTEM/MANAGER in SQL*Plus make a copy of the HR.EMPLOYEES table in the

RMANTEST tablespace calling the table EMP. Note how many rows are in the new table.

Oracle9i: New Features for Administrators B-20

SQL> CONNECT system/manager
Connected.

SQL> CREATE TABLE emp TABLESPACE rmantest
 2 AS (SELECT * FROM hr.employees);
Table created.

SQL> select count(*) from emp;
 COUNT(*)

 107

7. Connect as a privileged user and shut down the instance. Exit from SQL*Plus.

SQL> connect / as sysdba
Connected.

SQL> shutdown immediate
Database closed.
Database dismounted.
ORACLE instance shut down.

SQL> EXIT

8. Rename the data file of the RMANTEST tablespace, simulating data file loss.

$ cd $HOME/ORADATA/u01/
$ ls rmantest*
rmantest_01.dbf
$ mv rmantest_01.dbf rmantest_01.bad

9. Log in to SQL*Plus and attempt to start the instance. Exit SQL*Plus.

$ sqlplus "/ as sysdba"
SQL*Plus: Release 9.0.1.0.0 – Production
Connected to an idle instance.

SQL> startup
ORACLE instance started.

Total System Global Area 21790412 bytes
Fixed Size 278220 bytes
Variable Size 16777216 bytes
Database Buffers 4194304 bytes
Redo Buffers 540672 bytes
Database mounted.
ORA-01157: cannot identify/lock data file 10 - see DBWR trace file
ORA-01110: data file 10: 'databases/ed27/ORADATA/u01/rmantest_01.dbf'

SQL> EXIT

10. Start RMAN, connect without a recovery catalog, and do a restore of the missing data file.

Exit RMAN.

Oracle9i: New Features for Administrators B-21

$ rman target /
Recovery Manager: Release 9.0.1.0.0 – Production
connected to target database: ED27 (DBID=868643342)

RMAN> RESTORE DATAFILE 'databases/ed27/ORADATA/u01/rmantest_01.dbf';
Starting restore at 02-JUL-01

using target database controlfile instead of recovery catalog
allocated channel: ORA_DISK_1
channel ORA_DISK_1: sid=10 devtype=DISK
channel ORA_DISK_1: starting datafile backupset restore
channel ORA_DISK_1: specifying datafile(s) to restore from backup set
restoring datafile 00010 to databases/ed27/ORADATA/u01/rmantest_01.dbf
channel ORA_DISK_1: restored backup piece 1
piece handle=/databases/ed27/ed27_0ccopgm9_1_1.bak tag=null params=NULL
channel ORA_DISK_1: restore complete
Finished restore at 02-JUL-01

RMAN> EXIT

11. Use SQL*Plus to do a test recovery.

SQL> CONNECT / as sysdba
Connected.

SQL> RECOVER DATABASE TEST;
ORA-10574: Test recovery did not corrupt any data block
ORA-10573: Test recovery tested redo from change 492498 to 492507
ORA-10572: Test recovery canceled due to errors
ORA-10585: Test recovery can not apply redo
 that may modify control file

12. Because the test shows no errors, do the recovery. Test by examining the row count of the

EMP table.

SQL> RECOVER DATABASE;
Media recovery complete.

SQL> ALTER DATABASE OPEN;
Database altered.

SQL> SELECT COUNT(*) FROM system.emp;

 COUNT(*)

 107

Oracle9i: New Features for Administrators B-22

13. Clean up by dropping the tablespace including the data file.

SQL> DROP TABLESPACE rmantest INCLUDING CONTENTS;
Tablespace dropped.

SQL> host rm –i /databases/ed27/ORADATA/u01/rmantest_01*

Oracle9i: New Features for Administrators B-23

Practice 7-1 Solution: Online Operations

1. Log in as SYSTEM and create a table EMP30 in the HR schema, which consists of all the

columns of all employees in department 30 from the EMPLOYEES table. Add a primary key
to the EMPLOYEE_ID column.

SQL> CONNECT System/manager
Connected.

SQL> CREATE TABLE hr.emp30 AS
 2 SELECT * FROM hr.employees WHERE department_id = 30;
Table created.

SQL> ALTER TABLE hr.emp30 ADD PRIMARY KEY (employee_id);
Table altered.

The new company standard is that all key columns will now have the suffix of “_KEY” not
“_ID” and all these key columns must be the first set of columns, with primary key always
first. (The order of the key columns following the PK is not important.)
The LAST_NAME column must be in upper case. There is a new column FULL_NAME which
consists of the first name, a space, and then the last name. Here the last name must be in the
same case as it was in the original employee table. The table must be partitioned on
EMPLOYEE_KEY with three partitions; the high values for each are 116, 118, and
MAXVALUE. To keep things simple do not worry about any other constraints that are on the
original table. This redefinition of the table must be done online, without loss of data.

2. Create the interim table for the redefinition including above changes. Call it INT_EMP30

and it must be in the HR schema.

SQL> CREATE TABLE hr.int_emp30 (
 2 employee_key NUMBER(6) PRIMARY KEY,
 3 job_key VARCHAR2(10),
 4 manager_key NUMBER(6),
 5 department_key NUMBER(4),
 6 first_name VARCHAR2(20),
 7 last_name VARCHAR2(25),
 8 full_name VARCHAR2(50),
 9 email VARCHAR2(25),
 10 phone_number VARCHAR2(20),
 11 hire_date DATE,
 12 salary NUMBER(8,2),
 13 commission_pct NUMBER(2,2))
 14 PARTITION BY RANGE(employee_key) (
 15 PARTITION emp116 VALUES LESS THAN (116)
 16 TABLESPACE sample,
 17 PARTITION emp118 VALUES LESS THAN (118)
 18 TABLESPACE sample,
 19 PARTITION empmax VALUES LESS THAN (MAXVALUE)
 20 TABLESPACE sample);
Table created.

Oracle9i: New Features for Administrators B-24

3. Verify that EMP30 can be redefined, then execute the redefinition.

SQL> EXECUTE DBMS_REDEFINITION.CAN_REDEF_TABLE(’HR’,’EMP30’);
PL/SQL procedure successfully completed.

SQL> EXECUTE DBMS_REDEFINITION.START_REDEF_TABLE(-
> ’HR’, ’EMP30’, ’INT_EMP30’, -
> ’EMPLOYEE_ID EMPLOYEE_KEY, -
> JOB_ID JOB_KEY, -
> MANAGER_ID MANAGER_KEY, -
> DEPARTMENT_ID DEPARTMENT_KEY, -
> FIRST_NAME FIRST_NAME, -
> UPPER(LAST_NAME) LAST_NAME, -
> FIRST_NAME||CHR(32)||LAST_NAME FULL_NAME, -
> EMAIL EMAIL, -
> PHONE_NUMBER PHONE_NUMBER, -
> HIRE_DATE HIRE_DATE, -
> SALARY SALARY, -
> COMMISSION_PCT COMMISSION_PCT’);
PL/SQL procedure successfully completed.

SQL> EXECUTE –
> DBMS_REDEFINITION.FINISH_REDEF_TABLE('HR','EMP30','INT_EMP30');
PL/SQL procedure successfully completed.

4. Check that the work was completed as expected.

SQL> DESCRIBE hr.emp30
 Name Null? Type
 ----------------------------------- -------- --------------
 EMPLOYEE_KEY NOT NULL NUMBER(6)
 JOB_KEY VARCHAR2(10)
 MANAGER_KEY NUMBER(6)
 DEPARTMENT_KEY NUMBER(4)
 FIRST_NAME VARCHAR2(20)
 LAST_NAME VARCHAR2(25)
 FULL_NAME VARCHAR2(50)
 EMAIL VARCHAR2(25)
 PHONE_NUMBER VARCHAR2(20)
 HIRE_DATE DATE
 SALARY NUMBER(8,2)
 COMMISSION_PCT NUMBER(2,2)

SQL> DESCRIBE hr.int_emp30
 Name Null? Type
 ----------------------------------- -------- --------------
 EMPLOYEE_ID NOT NULL NUMBER(6)
 FIRST_NAME VARCHAR2(20)
 LAST_NAME NOT NULL VARCHAR2(25)
 EMAIL NOT NULL VARCHAR2(25)
 PHONE_NUMBER VARCHAR2(20)
 HIRE_DATE NOT NULL DATE
 JOB_ID NOT NULL VARCHAR2(10)
 SALARY NUMBER(8,2)
 COMMISSION_PCT NUMBER(2,2)
 MANAGER_ID NUMBER(6)

Oracle9i: New Features for Administrators B-25

 DEPARTMENT_ID NUMBER(4)

5. Clean up and drop the tables:

SQL> DROP TABLE HR.EMP30;
SQL> DROP TABLE HR.INT_EMP30;

Oracle9i: New Features for Administrators B-26

Practice 7-2 Solution: New Parameter File

1. Start up the instance with the supplied text parameter file.

SQL> STARTUP PFILE=$HOME/ADMIN/PFILE/init.ora
ORACLE instance started.

Total System Global Area 21790412 bytes
Fixed Size 278220 bytes
Variable Size 16777216 bytes
Database Buffers 4194304 bytes
Redo Buffers 540672 bytes
Database mounted.
Database opened.

SQL> SHOW PARAMETER spfile

NAME TYPE VALUE
------------------- ----------- -------------
spfile string

2. Now create the SPFILE from the PFILE used to start up the instance.

SQL> create spfile from pfile=’$HOME/ADMIN/PFILE/init.ora’;
File created.

3. Shut down the instance and restart using the SPFILE. Again, examine the SPFILE

parameter.

SQL> SHUTDOWN IMMEDIATE
Database closed.
Database dismounted.
ORACLE instance shut down.

SQL> STARTUP
ORACLE instance started.

Total System Global Area 21790412 bytes
Fixed Size 278220 bytes
Variable Size 16777216 bytes
Database Buffers 4194304 bytes
Redo Buffers 540672 bytes
Database mounted.
Database opened.

SQL> show parameter spfile

NAME TYPE VALUE
------------------- ----------- -----------------
spfile string ?/dbs/spfile@.ora

Oracle9i: New Features for Administrators B-27

4. Examine the OPEN_CURSORS parameter and increase it with 50, but only change the
SPFILE and add a comment of “Test Run 1.” Check to see that the change has only happened
in the SPFILE.

SQL> SHOW PARAMETER open_cursors

NAME TYPE VALUE
----------------------- ----------- -----
open_cursors integer 350

SQL> ALTER SYSTEM SET open_cursors=400
 2 COMMENT=’Test Run 1’ SCOPE=SPFILE;
System altered.

SQL> SHOW PARAMETER open_cursors

NAME TYPE VALUE
----------------------- ----------- -----
open_cursors integer 350

SQL> SELECT name,value,update_comment
 2 FROM v$spparameter
 3 WHERE name = ’open_cursors’;

NAME VALUE UPDATE_COMMENT
------------------ -------------------- --------------
open_cursors 400 Test Run 1

5. In preparation for removing the SPFILE create a PFILE from the current SPFILE. Then shut

down the instance, remove the SPFILE and delete the SPFILE. Restart the instance using the
newly created PFILE.

SQL> CREATE PFILE=’$HOME/ADMIN/PFILE/mypfile.ora’ FROM SPFILE;
File created.

SQL> SHUTDOWN IMMEDIATE
Database closed.
Database dismounted.
ORACLE instance shut down.

SQL> host rm $ORACLE_HOME/dbs/spfileed27.ora

SQL> STARTUP PFILE=$HOME/ADMIN/PFILE/mypfile.ora
ORACLE instance started.

Total System Global Area 21790412 bytes
Fixed Size 278220 bytes
Variable Size 16777216 bytes
Database Buffers 4194304 bytes
Redo Buffers 540672 bytes
Database mounted.
Database opened.

Oracle9i: New Features for Administrators B-28

Practice 8-1 Solution: Creating an External Table

1. Connected as SYSTEM under SQL*Plus, create a copy of the OE.ORDER_ITEMS table

(only the first ten rows) in the SYSTEM schema.

$ sqlplus system/manager
SQL*Plus: Release 9.0.1.0.0 – Production
Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 – Production

SQL> create table order_items as
 2 select * from oe.order_items where rownum < 11;
Table created.

SQL> select * from order_items;

 ORDER_ID LINE_ITEM_ID PRODUCT_ID UNIT_PRICE QUANTITY
---------- ------------ ---------- ---------- ----------
 2355 1 2289 46 200
 2356 1 2264 199.1 38
 2357 1 2211 3.3 140
 2358 1 1781 226.6 9
 2359 1 2337 270.6 1
 2360 1 2058 23 29
 2361 1 2289 46 180
 2362 1 2289 48 200
 2363 1 2264 199.1 9
 2364 1 1910 14 6
10 rows selected.

2. Create an Oracle directory called EXT_TABLES pointing to your

$HOME/STUDENT/LABS/ O/S directory (specify full path!). Then, create an external table
called ORDER_ITEMS_EXT mapping to the previously created ORDER_ITEMS table. Use
the two precreated files, order_items1.dat and order_items2.dat, stored in your
$HOME/STUDENT/LABS directory as the LOCATION for the external table. Once done,
verify that you can select from the created external table.

SQL> CREATE OR REPLACE DIRECTORY ext_tables
 2 AS '/databases/ed25/9iNFDBA/STUDENT/LABS/';
Directory created.

SQL> create table order_items_ext
 2 (order_id number(12), line_item_id number(3) ,
 3 product_id number(6) , unit_price number(8,2) ,
 4 quantity number(8))
 5 organization external
 6 (type oracle_loader
 7 default directory ext_tables
 8 access parameters (records delimited by newline
 9 fields terminated by ',')
 10 location ('order_items1.dat','order_items2.dat'));
Table created.

SQL> select * from order_items_ext;

Oracle9i: New Features for Administrators B-29

 ORDER_ID LINE_ITEM_ID PRODUCT_ID UNIT_PRICE QUANTITY
---------- ------------ ---------- ---------- ----------
 2355 1 2289 46 200
 2355 2 2264 50 100
 2356 1 2264 100 10
 2356 2 2264 110 20
 2356 3 2264 120 30

3. Use the two new dictionary views, DBA_EXTERNAL_TABLES and

DBA_EXTERNAL_LOCATIONS, to verify the various characteristics of the newly created
external table.

SQL> select owner,table_name,type_name,default_directory_name
 2 from dba_external_tables;

OWNER TABLE_NAME
------------------------------ ------------------------------
TYPE_NAME DEFAULT_DIRECTORY_NAME
------------------------------ ------------------------------
SYSTEM ORDER_ITEMS_EXT
ORACLE_LOADER EXT_TABLES

SQL> select location from dba_external_locations;

LOCATION

order_items1.dat
order_items2.dat

4. If you don’t know the exact syntax you should use to create an external table, you can use

SQL*Loader as follows.
Under the precreated $HOME/STUDENT/LABS directory, you should find the two data files
used in the previous steps plus a SQL*Loader control file called order_items.ctl. View
the contents of the SQL*Loader control file. As you can see, it describes the ORDER_ITEMS
table structure.

$ cd $HOME/STUDENT/LABS
$ ls
order_items.ctl order_items1.dat order_items2.dat
$ more order_items.ctl
LOAD DATA
INFILE ’$HOME/STUDENT/LABS/order_items1.dat’
INTO TABLE order_items
FIELDS TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’
(ORDER_ID,LINE_ITEM_ID,PRODUCT_ID,UNIT_PRICE,QUANTITY)

5. Execute the SQL*Loader utility under the SYSTEM account with the order_items.ctl

control file as parameter. Use also the brand new external_table parameter with the
GENERATE_ONLY value. This will generate the various external table commands inside the
SQL*Loader log file.

$ sqlplus system/manager
SQL*Plus: Release 9.0.1.0.0 – Production

Oracle9i: New Features for Administrators B-30

Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 – Production

SQL> host sqlldr system/manager control= order_items.ctl –
> log=order_items.log external_table=GENERATE_ONLY
SQL*Loader: Release 9.0.1.0.0 – Production

6. Look at the generated SQL*Loader log file.

SQL> host vi order_items.log
"order_items.log" 106 lines, 2975 characters
SQL*Loader: Release 9.0.1.0.0 – Production

Control File: order_items.ctl
Data File: /databases/ed25/DIR/order_items1.dat
Bad File: order_items1.bad
Discard File: none specified (Allow all discards)
Number to load: ALL
Number to skip: 0
Errors allowed: 50
Continuation: none specified
Path used: External Table

Table ORDER_ITEMS, loaded from every logical record.
Insert option in effect for this table: INSERT

Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------
ORDER_ID FIRST * , O(") CHARACTER
LINE_ITEM_ID NEXT * , O(") CHARACTER
PRODUCT_ID NEXT * , O(") CHARACTER
UNIT_PRICE NEXT * , O(") CHARACTER
QUANTITY NEXT * , O(") CHARACTER

CREATE DIRECTORY statements needed for one or more data files

CREATE DIRECTORY SYS_SQLLDR_XT_TMPDIR_00000 AS '/databases/ed25/DIR/'

CREATE TABLE statement for external table:

CREATE TABLE SYS_SQLLDR_X_EXT
(
 ORDER_ID NUMBER(12),
 LINE_ITEM_ID NUMBER(3),
 PRODUCT_ID NUMBER(6),
 UNIT_PRICE NUMBER(8,2),
 QUANTITY NUMBER(8)
)
ORGANIZATION external
(
 TYPE oracle_loader
 DEFAULT DIRECTORY SYS_SQLLDR_XT_TMPDIR_00000
 ACCESS PARAMETERS
 (
 RECORDS DELIMITED BY NEWLINE
 BADFILE 'order_items1.bad'
 FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"' LDRTRIM

Oracle9i: New Features for Administrators B-31

 (
 ORDER_ID CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY ’"’,
 LINE_ITEM_ID CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY ’"’,
 PRODUCT_ID CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY ’"’,
 UNIT_PRICE CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY ’"’,
 QUANTITY CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY ’"’
)
)
 location
 (
 ’order_items1.dat’
)
)REJECT LIMIT UNLIMITED

INSERT statements used to load internal tables:

INSERT /*+ append */ INTO ORDER_ITEMS
(
 ORDER_ID,
 LINE_ITEM_ID,
 PRODUCT_ID,
 UNIT_PRICE,
 QUANTITY
)
SELECT
 ORDER_ID,
 LINE_ITEM_ID,
 PRODUCT_ID,
 UNIT_PRICE,
 QUANTITY
FROM SYS_SQLLDR_X_EXT

statements to cleanup objects created by previous statements:

DROP TABLE SYS_SQLLDR_X_EXT
DROP DIRECTORY SYS_SQLLDR_XT_TMPDIR_00000

Run began on Wed Jul 04 07:15:57 2001
:q

7. Connected as SYSTEM, drop the tables ORDER_ITEMS_EXT, ORDER_ITEMS and then
drop directory EXT_TABLES.

SQL> connect system/manager
Connected.

SQL> drop table order_items_ext;
Table dropped.

SQL> drop table order_items;
Table dropped.

Oracle9i: New Features for Administrators B-32

SQL> drop directory ext_tables;
Directory dropped.

Oracle9i: New Features for Administrators B-33

Practice 8-2 Solution: Creating a List-Partitioned Table

1. Connected as SYSTEM under SQL*Plus, create the list partitioned table SALES_LIST using

the lab_08_01.sql script.

$ sqlplus system/manager
SQL*Plus: Release 9.0.1.0.0 – Production
Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 – Production

SQL> connect system/manager
Connected.

SQL> CREATE TABLE sales_list
 2 (salesman_id NUMBER(5)
 3 , salesman_name VARCHAR2(30)
 4 , sales_state VARCHAR2(20)
 5 , sales_amount NUMBER(10)
 6 , sales_date DATE
 7)
 8 PARTITION BY LIST(sales_state)
 9 (PARTITION sales_west VALUES ('a','b')
 10 , PARTITION sales_east VALUES ('e','f')
 11 , PARTITION sales_central VALUES ('c','d')
 12);
Table created.

2. Use the DBA_PART_TABLES and DBA_TAB_PARTITIONS dictionary views to identify

the SALES_LIST table characteristics.

SQL> col tab_name format a10
SQL> col part_type format a10
SQL> col part_count format 99999
SQL> col key_count format 99999
SQL> col def_init format a10
SQL> col def_next format a10
SQL> col def_pctincr format a10

SQL> select table_name tab_name,
 2 partitioning_type part_type,
 3 partition_count part_count,
 4 partitioning_key_count key_count,
 5 def_initial_extent def_init,
 6 def_next_extent def_next,
 7 def_pct_increase def_pctincr
 8 from user_part_tables
 9 where table_name = 'SALES_LIST';

TAB_NAME PART_TYPE PART_COUNT KEY_COUNT DEF_INIT DEF_NEXT DEF_PCTINC
---------- --------- ---------- --------- -------- -------- ----------
SALES_LIST LIST 3 1 DEFAULT DEFAULT DEFAULT

SQL> col table_name format a12
SQL> col partition_name format a20
SQL> col tablespace_name format a20
SQL> col high_value format a19

Oracle9i: New Features for Administrators B-34

SQL> select table_name, partition_name, high_value, tablespace_name
 2 from user_tab_partitions
 3 where table_name=’SALES_LIST’
 4 order by table_name,partition_name;

TABLE_NAME PARTITION_NAME HIGH_VALUE TABLESPACE_NAME
------------ ------------------ ----------------- ---------------
SALES_LIST SALES_CENTRAL ’c’, ’d’ SYSTEM
SALES_LIST SALES_EAST ’e’, ’f’ SYSTEM
SALES_LIST SALES_WEST ’a’, ’b’ SYSTEM

3. Reconstitute the complete CREATE TABLE SALES_LIST command using only the data

dictionary.

SQL> set long 4000
SQL> set pagesize 50

SQL> SELECT dbms_metadata.get_ddl(’TABLE’, ’SALES_LIST’) from dual;

DBMS_METADATA.GET_DDL(’TABLE’,’SALES_LIST’)

 CREATE TABLE "SYSTEM"."SALES_LIST"
 ("SALESMAN_ID" NUMBER(5,0),
 "SALESMAN_NAME" VARCHAR2(30),
 "SALES_STATE" VARCHAR2(20),
 "SALES_AMOUNT" NUMBER(10,0),
 "SALES_DATE" DATE
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255
 STORAGE(BUFFER_POOL DEFAULT)
 TABLESPACE "SYSTEM"
 PARTITION BY LIST ("SALES_STATE")
 (PARTITION "SALES_WEST" VALUES (’a’,’b’)
 PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255
 STORAGE(INITIAL 12288 NEXT 12288 MINEXTENTS 1 MAXEXTENTS 249
 PCTINCREASE 50
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM"
,
 PARTITION "SALES_EAST" VALUES (’e’,’f’)
 PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255
 STORAGE(INITIAL 12288 NEXT 12288 MINEXTENTS 1 MAXEXTENTS 249
 PCTINCREASE 50
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM"
,
 PARTITION "SALES_CENTRAL" VALUES (’c’,’d’)
 PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255
 STORAGE(INITIAL 12288 NEXT 12288 MINEXTENTS 1 MAXEXTENTS 249
 PCTINCREASE 50
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM"
)

4. Execute the lab_08_02.sql script in order to insert some rows into the SALES_LIST

table. What happens and why?

Oracle9i: New Features for Administrators B-35

Answer: The first three rows are correctly inserted into the table whereas the last one is
rejected because the inserted partition key ‘g’ does not map to any partition.

SQL> insert into sales_list values
 2 (10, ’JFV’, ’a’, 100, ’05-JAN-2001’);
1 row created.

SQL> insert into sales_list values
 2 (21, ’MH’, ’f’, 150, ’15-JAN-2001’);
1 row created.

SQL> insert into sales_list values
 2 (32, ’Clement’, ’c’, 250, ’20-JAN-2001’);
1 row created.

SQL> commit;
Commit complete.

SQL> insert into sales_list values
 2 (44, ’Lois’, ’g’, 130, ’28-JAN-2001’);
insert into sales_list values
 *
ERROR at line 1:
ORA-14400: inserted partition key does not map to any partition

5. Analyze table SALES_LIST with the COMPUTE STATISTICS option and then create the

PLAN_TABLE into the SYSTEM account. Once done, explain the following statements (you
should use the explain.sql script to print the result of each explain plan command):

SQL> select * from sales_list;
SQL> select * from sales_list where sales_state = ’a’;
SQL> select * from sales_list where sales_state in (’a’,’e’);
SQL> select * from sales_list where sales_state = ’a’
 2 or sales_state = ’d’;
SQL> select * from sales_list where sales_state > ’e’;
SQL> select * from sales_list where sales_state < ’e’;

For each of the above statements, give your interpretation of the generated execution plans.

 Answer: The Oracle server also uses partition pruning with a list-partitioned table such as

SALES_LIST. The explain plan interpretation is the same as with previous partitioning
methods.

 The last one is probably the most difficult one to understand. The plan shows a PARTITION
LIST(ALL) operation, which seems to imply a full scan of the complete table. In fact, a full
scan is not done because only two partitions (the first one and the last one) verify the
predicate (sales_state < ’e’). Thus, the Oracle server scans those two partitions only.

SQL> analyze table sales_list compute statistics;
Table analyzed.

SQL> @$ORACLE_HOME/rdbms/admin/utlxplan.sql
Table created.

Oracle9i: New Features for Administrators B-36

SQL> explain plan for
 2 select * from sales_list;
Explained.

SQL> @./LABS/explain

RESULT

0 SELECT STATEMENT Optimizer=CHOOSE Card=3
1 PARTITION LIST(ALL)[1 --> 3]
2 TABLE ACCESS(FULL) OF ’SALES_LIST’[1 --> 3] Card=3

SQL> truncate table plan_table;
Table truncated.

SQL> explain plan for
 2 select * from sales_list where sales_state=’a’;
Explained.

SQL> @./LABS/explain

RESULT

0 SELECT STATEMENT Optimizer=CHOOSE Card=1
1 TABLE ACCESS(FULL) OF ’SALES_LIST’[1 --> 1] Card=1

SQL> truncate table plan_table;
Table truncated.

SQL> explain plan for
 2 select * from sales_list where sales_state in (’a’,’e’);
Explained.

SQL> @./LABS/explain

RESULT

0 SELECT STATEMENT Optimizer=CHOOSE Card=2
1 PARTITION LIST(INLIST)[KEY(INLIST) --> KEY(INLIST)]
2 TABLE ACCESS(FULL) OF ’SALES_LIST’[KEY(INLIST) --> KEY(INLIST)]
 Card=2

SQL> truncate table plan_table;
Table truncated.

SQL> explain plan for
 2 select * from sales_list where sales_state = ’a’ or sales_state=’d’;
Explained.

SQL> @./LABS/explain

RESULT

0 SELECT STATEMENT Optimizer=CHOOSE Card=2
1 PARTITION LIST(INLIST)[KEY(INLIST) --> KEY(INLIST)]
2 TABLE ACCESS(FULL) OF ’SALES_LIST’[KEY(INLIST) --> KEY(INLIST)]
 Card=2

Oracle9i: New Features for Administrators B-37

SQL> truncate table plan_table;
Table truncated.

SQL> explain plan for
 2 select * from sales_list where sales_state > ’e’;
Explained.

SQL> @./LABS/explain

RESULT

0 SELECT STATEMENT Optimizer=CHOOSE Card=1
1 TABLE ACCESS(FULL) OF ’SALES_LIST’[2 --> 2] Card=1

SQL> truncate table plan_table;
Table truncated.

SQL> explain plan for
 2 select * from sales_list where sales_state < ’e’;
Explained.

SQL> @./LABS/explain

RESULT

0 SELECT STATEMENT Optimizer=CHOOSE Card=3
1 PARTITION LIST(ALL)[LAST --> LAST]
2 TABLE ACCESS(FULL) OF ’SALES_LIST’[LAST --> LAST] Card=3

6. How would you prove that the Oracle server really performed partition pruning in the above

six cases?

Answer: Execute the above six SELECT statements with AUTOTRACE on. For each
statement, this gives you the number of db block gets executed by Oracle. Depending on
the statement, you should see the differences. This way, you can see that the last statement
only impacts two partitions out of three.

SQL> set autotrace on statistics
SQL> select * from sales_list;

SALESMAN_ID SALESMAN SALES_STATE SALES_AMOUNT SALES_DAT
----------- -------- -------------------- ------------ ---------
 10 JFV a 100 05-JAN-01
 21 MH f 150 15-JAN-01
 32 Clement c 250 20-JAN-01

Statistics
--
 0 recursive calls
 6 db block gets
 3 consistent gets
 0 physical reads
 0 redo size
 806 bytes sent via SQL*Net to client

Oracle9i: New Features for Administrators B-38

 519 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 3 rows processed

SQL> select * from sales_list where sales_state = ’a’;

SALESMAN_ID SALESMAN SALES_STATE SALES_AMOUNT SALES_DAT
----------- -------- -------------------- ------------ ---------
 10 JFV a 100 05-JAN-01

Statistics
--
 0 recursive calls
 2 db block gets
 1 consistent gets
 0 physical reads
 0 redo size
 657 bytes sent via SQL*Net to client
 519 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 1 rows processed

SQL> select * from sales_list where sales_state in (’a’,’e’);

SALESMAN_ID SALESMAN SALES_STATE SALES_AMOUNT SALES_DAT
----------- -------- -------------------- ------------ ---------
 10 JFV a 100 05-JAN-01

Statistics
--
 0 recursive calls
 4 db block gets
 2 consistent gets
 0 physical reads
 0 redo size
 657 bytes sent via SQL*Net to client
 519 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 2 sorts (memory)
 0 sorts (disk)
 1 rows processed

SQL> select * from sales_list where sales_state = ’a’
 2 or sales_state = ’d’;

SALESMAN_ID SALESMAN SALES_STATE SALES_AMOUNT SALES_DAT
----------- -------- -------------------- ------------ ---------
 10 JFV a 100 05-JAN-01

Statistics
--
 0 recursive calls
 4 db block gets

Oracle9i: New Features for Administrators B-39

 2 consistent gets
 0 physical reads
 0 redo size
 657 bytes sent via SQL*Net to client
 519 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 2 sorts (memory)
 0 sorts (disk)
 1 rows processed

SQL> select * from sales_list where sales_state > ’e’;

SALESMAN_ID SALESMAN SALES_STATE SALES_AMOUNT SALES_DAT
----------- -------- -------------------- ------------ ---------
 21 MH f 150 15-JAN-01

Statistics
--
 0 recursive calls
 2 db block gets
 1 consistent gets
 0 physical reads
 0 redo size
 657 bytes sent via SQL*Net to client
 519 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 1 rows processed

SQL> select * from sales_list where sales_state < ’e’;

SALESMAN_ID SALESMAN SALES_STATE SALES_AMOUNT SALES_DAT
----------- -------- -------------------- ------------ ---------
 10 JFV a 100 05-JAN-01
 32 Clement c 250 20-JAN-01

Statistics
--
 0 recursive calls
 4 db block gets
 2 consistent gets
 0 physical reads
 0 redo size
 734 bytes sent via SQL*Net to client
 519 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 1 sorts (memory)
 0 sorts (disk)
 2 rows processed

7. Connected as SYSTEM, and drop the sales_list table.

SQL> connect system/manager
Connected.

Oracle9i: New Features for Administrators B-40

SQL> drop table sales_list;
Table dropped.

Oracle9i: New Features for Administrators B-41

Practice 9-1 Solution: Using Automatic Free Space Management Segments

1. Connected as SYSTEM under SQL*Plus, create a new tablespace called BITMAP_SEGS with

the following characteristics:
• One 5 MB data file
• Locally managed with uniform extents sizes of 100 KB
• Containing only automatic free space management segments

Then, query the DBA_TABLESPACES view in order to identify the different characteristics
of each tablespace.

$ sqlplus system/manager
SQL*Plus: Release 9.0.1.0.0 – Production
Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 – Production

SQL> create tablespace bitmap_segs
 2 datafile '$HOME/ORADATA/u04/bitmap_segs01.dbf' size 5M
 3 extent management local uniform size 100K
 4 segment space management auto;
Tablespace created.

SQL> col tablespace_name format a12

SQL> select tablespace_name, block_size, initial_extent,
 2 contents, extent_management, allocation_type,
 3 segment_space_management
 4 from dba_tablespaces;

TS_NAME BLOCK_SIZE INITIAL_EXTENT CONTENTS EXTENT_MAN ALLOCATIO SEGMEN
------- ---------- -------------- --------- ---------- --------- ------
SYSTEM 4096 12288 PERMANENT DICTIONARY USER MANUAL
UNDO1 4096 65536 UNDO LOCAL SYSTEM MANUAL
INDX 4096 65536 PERMANENT LOCAL SYSTEM MANUAL
TEMP 4096 1048576 TEMPORARY LOCAL UNIFORM MANUAL
TOOLS 4096 65536 PERMANENT LOCAL SYSTEM MANUAL
USERS 4096 65536 PERMANENT LOCAL SYSTEM MANUAL
DRSYS 4096 20480 PERMANENT DICTIONARY USER MANUAL
SAMPLE 4096 20480 PERMANENT DICTIONARY USER MANUAL
CWMLITE 4096 20480 PERMANENT DICTIONARY USER MANUAL
BITMAP_SEGS 4096 102400 PERMANENT LOCAL UNIFORM AUTO

10 rows selected.

2. Drop the already existing TEST table and create a new table called TEST in the

BITMAP_SEGS tablespace. This table should only have one NUMBER column called C, and
only one extent. Verify the size of the newly created extent.

SQL> drop table test;

SQL> create table test(c number)
 2 storage (minextents 1)
 3 tablespace bitmap_segs;
Table created.

SQL> select extent_id,block_id,blocks

Oracle9i: New Features for Administrators B-42

 2 from dba_extents where segment_name=’TEST’;

 EXTENT_ID BLOCK_ID BLOCKS
---------- ---------- ----------
 0 17 25

3. Execute the lab_09_01.sql script in order to insert rows into the TEST table. Once done,

determine the number of rows stored in each block of the table.

SQL> begin
 2 for b in 1..21 loop
 3 for i in 1..324 loop
 4 insert into test values(i);
 5 end loop;
 6 end loop;
 7 end;
 8 /
PL/SQL procedure successfully completed.

SQL> commit;
Commit complete.

SQL> select DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid), count(*)
 2 from test
 3 group by DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid);

DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID) COUNT(*)
------------------------------------ ----------
 21 324
 22 324
 23 324
 24 324
 25 324
 26 324
 27 324
 28 324
 29 324
 30 324
 31 324
 32 324
 33 324
 34 324
 35 324
 36 324
 37 324
 38 324
 39 324
 40 324
 41 324
21 rows selected.

4. Delete all rows of the TEST table having C < 70. Then, commit your changes. Once done,

determine the number of rows stored in each block of the table. What do you observe?

Oracle9i: New Features for Administrators B-43

Answer: The delete operation deletes almost 30% of the rows stored originally in each data
block of the TEST table. Nevertheless, the number of blocks containing rows is still the same
as in step 3.

SQL> delete test where c < 70;
1449 rows deleted.

SQL> commit;
Commit complete.

SQL> select DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid), count(*)
 2 from test
 3 group by DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid);

DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID) COUNT(*)
------------------------------------ ----------
 21 255
 22 255
 23 255
 24 255
 25 255
 26 255
 27 255
 28 255
 29 255
 30 255
 31 255
 32 255
 33 255
 34 255
 35 255
 36 255
 37 255
 38 255
 39 255
 40 255
 41 255
21 rows selected.

5. Although this step is optional, it is recommended that you do it in order to be sure of the lab’s

result. Connect as SYSDBA and fix the data blocks bimap status of the test table by using the
SEGMENT_FIX_STATUS procedure of the DBMS_REPAIR package. Connect again as
SYSTEM and execute the lab_09_02.sql script in order to insert back rows into the
TEST table. Once done, determine and note the number of rows stored in each block of the
table. What do you observe?

Answer: You are now back to almost the same situation as in step 3. That is, the number of
blocks containing rows is the same as in step 3.

SQL> connect / as sysdba;
Connected.

SQL> execute dbms_repair.segment_fix_status(’SYSTEM’,’TEST’);
PL/SQL procedure successfully completed.

Oracle9i: New Features for Administrators B-44

SQL> connect system/manager
Connected.

SQL> begin
 2 for b in 1..21 loop
 3 for i in 1..65 loop
 4 insert into test values(i);
 5 end loop;
 6 end loop;
 7 end;
 8 /
PL/SQL procedure successfully completed.

SQL> commit;
Commit complete.

SQL> select DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid), count(*)
 2 from test
 3 group by DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid);

DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID) COUNT(*)
------------------------------------ ----------
 21 324
 22 324
 23 324
 24 324
 25 324
 26 324
 27 324
 28 324
 29 324
 30 324
 31 324
 32 324
 33 255
 34 324
 35 324
 36 324
 37 324
 38 324
 39 324
 40 324
 41 309
21 rows selected.

6. Create a new tablespace called USERS2 with only one 5 MB data file and with manual

segment space management set. Create a new table called TEST1 with the same structure as
the TEST table but stored in the USERS2 tablespace. Then edit the lab_09_01.sql script
and change all occurrence of the word “TEST” to the word “TEST1.” Save the edited script
and execute it. Once done, determine the number of rows stored in each block of the table.
What do you observe?

Answer: The situation is almost the same as in step 3. That is, the number of blocks
containing data is 21 and the number of rows per block is 325. The difference between the

Oracle9i: New Features for Administrators B-45

number of rows per block is due to the fact that the USERS2 tablespace is a normal one, not
defined for handling automatic free space management segments.

SQL> create tablespace users2
 2 datafile ’$HOME/ORADATA/u04/users2_01.dbf’ size 5M;
Tablespace created.

SQL> create table test1(c number)
 2 storage (minextents 1)
 3 tablespace users2;
Table created.

SQL> begin
 2 for b in 1..21 loop
 3 for i in 1..324 loop
 4 insert into test1 values(i);
 5 end loop;
 6 end loop;
 7 end;
 8 /
PL/SQL procedure successfully completed.

SQL> commit;
Commit complete.

SQL> select DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid), count(*)
 2 from test1
 3 group by DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid);

DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID) COUNT(*)
------------------------------------ ----------
 34 325
 35 325
 36 325
 37 325
 38 325
 39 325
 40 325
 41 325
 42 325
 43 325
 44 325
 45 325
 46 325
 47 325
 48 325
 49 325
 50 325
 51 325
 52 325
 53 325
 54 304
21 rows selected.

7. Repeat step 4 but this time for the TEST1 table instead of the TEST table. What do you

observe?

Oracle9i: New Features for Administrators B-46

Answer: Same observation as in step 4.

SQL> delete test1 where c<70;
1449 rows deleted.

SQL> commit;
Commit complete.

SQL> select DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid), count(*)
 2 from test1
 3 group by DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid);

DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID) COUNT(*)
------------------------------------ ----------
 34 255
 35 255
 36 255
 37 255
 38 255
 39 255
 40 255
 41 255
 42 255
 43 255
 44 255
 45 255
 46 255
 47 255
 48 255
 49 255
 50 255
 51 255
 52 255
 53 255
 54 255
21 rows selected.

8. Edit the lab_09_02.sql script and change all occurrences of the word “TEST” to the

word “TEST1.” Save the edited script and execute it. Once done, determine the number of
rows stored in each block of the table. What is your conclusion?

Answer: The number of blocks grew from 21 to 25. This is due to the fact that the TEST1
table is managed by free lists. When it was defined, TEST1 inherited a PCTUSED value of
40%, and due to the previous delete operation on the TEST1 table, the newly inserted rows
are not reinserted into the previous blocks, which was the case for the TEST table which is
managed with bitmaps. Thus, because the PCTUSED is not reached after the delete, the insert
operation is using new blocks to store the data. This is a waste of space inside the segment.

SQL> begin
 2 for b in 1..21 loop
 3 for i in 1..65 loop
 4 insert into test1 values(i);

Oracle9i: New Features for Administrators B-47

 5 end loop;
 6 end loop;
 7 end;
 8 /
PL/SQL procedure successfully completed.

SQL> commit;
Commit complete.

SQL> select DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid), count(*)
 2 from test1
 3 group by DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid);

DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID) COUNT(*)
------------------------------------ ----------
 34 255
 35 255
 36 255
 37 255
 38 255
 39 255
 40 255
 41 255
 42 255
 43 255
 44 255
 45 255
 46 255
 47 255
 48 255
 49 255
 50 255
 51 255
 52 255
 53 255
 54 325
 55 325
 56 325
 57 325
 58 320
25 rows selected.

9. Connected as SYSTEM, drop the BITMAP_SEGS and USERS2 tablespaces. Remove also

their corresponding data files.

SQL> connect system/manager
Connected.

SQL> drop tablespace bitmap_segs including contents and datafiles;
Tablespace dropped.

SQL> drop tablespace users2 including contents and datafiles;
Tablespace dropped.

Oracle9i: New Features for Administrators B-48

Practice 10-1 Solution: Monitoring Indexes

1. The goal of this lab is to explain how to monitor index usage.

First of all connect as user HR under SQL*Plus.

$ sqlplus hr/hr
SQL*Plus: Release 9.0.1.0.0 – Production
Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 – Production

2. Create the PLAN_TABLE table using the utlxplan.sql script located under
$ORACLE_HOME/rdbms/admin.

SQL> @$ORACLE_HOME/rdbms/admin/utlxplan
Table created.

3. Create the EMP table as a simple select from the EMPLOYEES table.

SQL> create table emp as select * from employees;
Table created.

4. Create the IEMAIL index on the EMAIL column of the EMP table.

SQL> create index iemail on emp(email);
Index created.

5. Use the V$OBJECT_USAGE view in order to determine if there are indexes currently

monitored in the HR account.

SQL> select * from v$object_usage;
no rows selected

6. Monitor IEMAIL index usage.

SQL> alter index iemail monitoring usage;
Index altered.

7. Verify that the IEMAIL index is being monitored.

SQL> select * from v$object_usage;

INDEX_NAME TABLE_NAME MON USE
------------------- ------------------- --- ---
START_MONITORING END_MONITORING
------------------- -------------------
IEMAIL EMP YES NO
07/04/2001 06:27:29

8. Connected as SYSDBA, try to verify that IEMAIL is being monitored. What is your

conclusion?

Oracle9i: New Features for Administrators B-49

Answer: V$OBJECT_USAGE shows you only monitored indexes pertaining to the connected
account from where the query was executed.

SQL> connect / as sysdba;
Connected.

SQL> select * from v$object_usage;
no rows selected

9. Connect again under the HR account and delete all rows of the EMP table. Do not commit or

roll back your changes.

SQL> connect hr/hr
Connected.

SQL> delete emp;
107 rows deleted.

10. Verify if the index was considered as being used by the previous command. Then roll back

your changes and verify again the usage status of the IEMAIL index. What is your
conclusion?

Answer: The monitoring usage functionality is not concerned by DML statements executed
against the monitored indexes.

SQL> select * from v$object_usage;

INDEX_NAME TABLE_NAME MON USE
------------------- ------------------- --- ---
START_MONITORING END_MONITORING
------------------- -------------------
IEMAIL EMP YES NO
07/04/2001 06:27:29

SQL> rollback;
Rollback complete.

SQL> select * from v$object_usage;

INDEX_NAME TABLE_NAME MON USE
------------------- ------------------- --- ---
START_MONITORING END_MONITORING
------------------- -------------------
IEMAIL EMP YES NO
07/04/2001 06:27:29

11. Execute a select statement against the EMP table that uses the IEMAIL index. Then verify

the usage status of the IEMAIL index. What is your conclusion?

Answer: The monitoring usage functionality takes into account queries executed against
monitored indexes.

Oracle9i: New Features for Administrators B-50

SQL> select /*+ INDEX(EMP IEMAIL) */ count(*) from emp;

 COUNT(*)

 107

SQL> select * from v$object_usage;

INDEX_NAME TABLE_NAME MON USE
------------------- ------------------- --- ---
START_MONITORING END_MONITORING
------------------- -------------------
IEMAIL EMP YES YES
07/04/2001 06:27:29

12. Verify that the contents of the V$OBJECT_USAGE view persist across an instance crash.

SQL> connect / as sysdba;
Connected.

SQL> shutdown abort;
ORACLE instance shut down.

SQL> startup pfile=$HOME/ADMIN/PFILE/initjfv.ora;
ORACLE instance started.

Total System Global Area 25991956 bytes
Fixed Size 285460 bytes
Variable Size 20971520 bytes
Database Buffers 4194304 bytes
Redo Buffers 540672 bytes
Database mounted.
Database opened.

SQL> connect hr/hr
Connected.

SQL> select * from v$object_usage;

INDEX_NAME TABLE_NAME MON USE
------------------- ------------------- --- ---
START_MONITORING END_MONITORING
------------------- -------------------
IEMAIL EMP YES YES
07/04/2001 06:27:29

13. Drop the EMP table and analyze the impact on the monitored index. What is the

consequence?

Answer: Because you dropped the EMP table, you implicitly dropped the IEMAIL index.
The corresponding entry in V$OBJECT_USAGE view is also deleted.

SQL> drop table emp;
Table dropped.

Oracle9i: New Features for Administrators B-51

SQL> select * from v$object_usage;
no rows selected

14. Re-create the same objects as in previous steps and activate monitoring usage again on the

IEMAIL index.

SQL> create table emp as select * from employees;
Table created.

SQL> create index iemail on emp(email);
Index created.

SQL> select * from v$object_usage;
no rows selected

SQL> alter index iemail monitoring usage;
Index altered.

SQL> select * from v$object_usage;

INDEX_NAME TABLE_NAME MON USE
------------------- ------------------- --- ---
START_MONITORING END_MONITORING
------------------- -------------------
IEMAIL EMP YES NO
07/04/2001 06:33:19

15. Use the EXPLAIN PLAN command to analyze the query you executed in step 11. Again

analyze monitoring usage on the IEMAIL index. What is your conclusion?

Answer: The USED flag in the V$OBJECT_USAGE view is positioned to YES at queries
parse time.

SQL> explain plan for
 2 select /*+ INDEX(EMP IEMAIL) */ count(*) from emp;
Explained.

SQL> select operation,options,object_name from plan_table;

OPERATION OPTIONS OBJECT_NAME
----------------- ---------- ------------------------------
SELECT STATEMENT
SORT AGGREGATE
INDEX FULL SCAN IEMAIL

SQL> select * from v$object_usage;

INDEX_NAME TABLE_NAME MON USE
------------------- ------------------- --- ---
START_MONITORING END_MONITORING
------------------- -------------------
IEMAIL EMP YES YES
07/04/2001 06:33:19

Oracle9i: New Features for Administrators B-52

16. Turn off monitoring usage on the IEMAIL index and look at the V$OBJECT_USAGE view.
What is your conclusion?

Answer: Based on the results of step 13, a monitoring entry in the V$OBJECT_USAGE view
is only deleted after the drop of the corresponding index. Turning off monitoring just updates
the MONITORING flag.

SQL> alter index iemail nomonitoring usage;
Index altered.

SQL> select * from v$object_usage;

INDEX_NAME TABLE_NAME MON USE
------------------- ------------------- --- ---
START_MONITORING END_MONITORING
------------------- -------------------
IEMAIL EMP NO YES
07/04/2001 06:33:19 07/04/2001 06:34:30

17. Drop the IEMAIL index and verify that the corresponding entry in the V$OBJECT_USAGE

view has been deleted.

SQL> drop index iemail;
Index dropped.

SQL> select * from v$object_usage;
no rows selected

18. Re-create the IEMAIL index and activate its monitoring usage again. Then reexecute the

query from step 11.

SQL> create index iemail on emp(email);
Index created.

SQL> alter index iemail monitoring usage;
Index altered.

SQL> select * from v$object_usage;

INDEX_NAME TABLE_NAME MON USE
------------------- ------------------- --- ---
START_MONITORING END_MONITORING
------------------- -------------------
IEMAIL EMP YES NO
07/04/2001 06:39:03

SQL> select /*+ INDEX(EMP IEMAIL) */ count(*) from emp;

 COUNT(*)

 107

SQL> select * from v$object_usage;

Oracle9i: New Features for Administrators B-53

INDEX_NAME TABLE_NAME MON USE
------------------- ------------------- --- ---
START_MONITORING END_MONITORING
------------------- -------------------
IEMAIL EMP YES YES
07/04/2001 06:39:03

19. Turn off monitoring usage on the IEMAIL index, then activate it again. What are the

consequences on the V$OBJECT_USAGE view?

In the previous step, the MONITORING and USED columns were set to YES. Turning
monitoring off updates only the MONITORING flag. Activating monitoring again resets both
columns.

SQL> alter index iemail nomonitoring usage;
Index altered.

SQL> select * from v$object_usage;

INDEX_NAME TABLE_NAME MON USE
------------------- ------------------- --- ---
START_MONITORING END_MONITORING
------------------- -------------------
IEMAIL EMP NO YES
07/04/2001 06:39:03 07/04/2001 06:39:50

SQL> alter index iemail monitoring usage;
Index altered.

SQL> select * from v$object_usage;

INDEX_NAME TABLE_NAME MON USE
------------------- ------------------- --- ---
START_MONITORING END_MONITORING
------------------- -------------------
IEMAIL EMP YES NO
07/04/2001 06:40:14

20. Connected as HR, drop the EMP table and the PLAN_TABLE table.

SQL> connect hr/hr
Connected.

SQL> drop table emp;
Table dropped.

SQL> drop table plan_table;
Table dropped.

Oracle9i: New Features for Administrators B-54

Practice 10-2 Solution: Cursor Sharing Enhancements

1. The goal of this lab is to explain the usage of the new cursor sharing optimization.

Create the PLAN_TABLE under the SYSTEM account. Then, create a simple table T under
the SYSTEM user in the USERS tablespace. It is enough to create a table with only one
column (C) of NUMBER data type. Once done, insert the same value (1111111111111111)
many times into this table. Once done, commit your modification (in order to insert the data
you should use the lab_09_01.sql script located in your LABS directory). The idea is to
generate data skew in the table.

SQL> connect system/manager
Connected.

SQL> @$ORACLE_HOME/rdbms/admin/utlxplan.sql
Table created.

SQL> create table t(c number) tablespace users;
Table created.

SQL> insert into t values(1111111111111111);
1 row created.

SQL> commit;
Commit complete.

SQL> insert into t select * from t;
1 row created.

SQL> / (2 rows created.)
SQL> / (4 rows created.)
SQL> / (8 rows created.)
SQL> / (16 rows created.)
SQL> / (32 rows created.)
SQL> / (64 rows created.)
SQL> / (128 rows created.)
SQL> / (256 rows created.)
SQL> / (512 rows created.)
SQL> / (1024 rows created.)
SQL> / (2048 rows created.)
SQL> / (4096 rows created.)
SQL> / (8192 rows created.)
SQL> / (16384 rows created.)
SQL> / (32768 rows created.)

SQL> commit;
Commit complete.

2. In order to generate data skew in the table, insert a last row with a completely different value
(222222222222222) from the previous ones. Commit this modification also. You are now
left with an unbalanced repartition of the rows inside the T table.

SQL> insert into t values(222222222222222);
1 row created.

Oracle9i: New Features for Administrators B-55

SQL> commit;
Commit complete.

3. Create a simple index called IT on the C column of the T table in the USERS tablespace.
Then, gather statistics for table T with the dbms_stats.gather_table_stats
procedure.

SQL> create index it on t(c) tablespace users;
Index created.

SQL> execute dbms_stats.gather_table_stats(USER, ’T’, cascade => true);
PL/SQL procedure successfully completed.

4. Explain the following query with the two different values residing inside the T table:
SQL> select count(*) from t where c = ...;
What is your conclusion?

 Answer: It appears that the Oracle server uses the same access paths for both values. This is

the expected behavior as no histograms were generated so far.

SQL> explain plan for
 2 select count(*) from t where c = 222222222222222;
Explained.

SQL> select operation,options from plan_table;

OPERATION OPTIONS
------------------ -------------------------------
SELECT STATEMENT
SORT AGGREGATE
TABLE ACCESS FULL

SQL> truncate table plan_table;
Table truncated.

SQL> explain plan for
 2 select count(*) from t where c = 1111111111111111;
Explained.

SQL> select operation,options from plan_table;

OPERATION OPTIONS
------------------ ---------
SELECT STATEMENT
SORT AGGREGATE
TABLE ACCESS FULL

5. Change the value of the CURSOR_SHARING initialization parameter for your session so that
it uses the new possible value: SIMILAR. Once done, flush the contents of the shared pool.

SQL> alter session set cursor_sharing = similar;

Oracle9i: New Features for Administrators B-56

Session altered.

SQL> alter system flush shared_pool;
System altered.

6. Now, execute the same select statement as in step 4 with the two different values.

SQL> select count(*) from t where c = 222222222222222;

 COUNT(*)

 1

SQL> select count(*) from t where c = 1111111111111111;

 COUNT(*)

 65536

7. Identify in the shared pool the corresponding SQL texts generated for the execution of the
two statements above. What happened and why?

Answer: Using the SIMILAR value for the CURSOR_SHARING parameter instructs the
Oracle server to share the two cursors if the generated optimizer plans are guaranteed to be
similar for both queries. As you have seen before, the Oracle server uses the same optimizer
plan for both queries, and thus it is safe to share the same cursor for both statements. The
sharing is possible because the Oracle server replaced the two different literals with the same
system-generated bind variable.

SQL> select sql_text
 2 from v$sql
 2 where sql_text like ’%count(*) from t%’;

SQL_TEXT

select count(*) from t where c=:"SYS_B_0"

8. In order for the optimizer to possibly find data skew in the T table, gather table statistics
again and also generate a histogram with 75 buckets for column C. After that, flush the shared
pool again.

SQL> execute dbms_stats.gather_table_stats(USER, ’T’, cascade => true, -
> method_opt => ’for all columns size 75’);
PL/SQL procedure successfully completed.

SQL> alter system flush shared_pool;
System altered.

9. Repeat steps 6 and 7. What is your conclusion?

Oracle9i: New Features for Administrators B-57

Answer: Now that you have generated histogram statistics, you can clearly see that the
Oracle server uses two different child cursors in order to execute the two different queries.
The Oracle server is now able to identify data skew in table T, and thus generates two
different optimizer plans. This prevents cursor sharing. Note that nevertheless the Oracle
server replaced both literals with system-generated bind variables. This is because you used
SIMILAR as opposed to EXACT for the CURSOR_SHARING parameter.

SQL> select count(*) from t where c = 222222222222222;

 COUNT(*)

 1

SQL> select count(*) from t where c = 1111111111111111;

 COUNT(*)

 65536

SQL> select sql_text,literal_hash_value
 2 from v$sql
 3 where sql_text like ’%count(*) from t%’;

SQL_TEXT LITERAL_HASH_VALUE
-- ------------------
select count(*) from t where c=:"SYS_B_0" 2806080606
select count(*) from t where c=:"SYS_B_0" 3912347465

10. How would you prove that two different optimizer plans were used by the Oracle server to
execute the previous two queries?

Answer: Using the new V$SQL_PLAN view as shown below.

SQL> col object_name format a5
SQL> col operation format a16
SQL> col options format a15

SQL> select address,hash_value,child_number,
 2 operation,options,object_name
 3 from v$sql_plan
 4 where (address,hash_value) in
 5 (select address,hash_value
 6 from v$sql
 7 where sql_text like ’%count(*) from t%’);

 CHILD_
ADDRESS HASH_VALUE NUMBER OPERATION OPTIONS OBJECT_NAME
-------- ---------- ------ ---------------- ------------ -----------
80AFB7D4 1195701597 1 SELECT STATEMENT
80AFB7D4 1195701597 1 SORT AGGREGATE
80AFB7D4 1195701597 1 TABLE ACCESS FULL T
80AFB7D4 1195701597 0 SELECT STATEMENT
80AFB7D4 1195701597 0 SORT AGGREGATE
80AFB7D4 1195701597 0 INDEX RANGE SCAN IT

Oracle9i: New Features for Administrators B-58

6 rows selected.

11. Connect as SYSTEM, and drop table T.

SQL> connect system/manager
Connected.

SQL> drop table t;
Table dropped.

Oracle9i: New Features for Administrators B-59

Practice 13-1 Solution: Create OMF and Non-OMF Files in the Same Database

1. Under your HOME directory, create two new subdirectories called OMF1 and OMF2

respectively. Then connect as SYSDBA under SQL*Plus.

$ mkdir OMF1
$ mkdir OMF2
$ sqlplus /nolog
SQL*Plus: Release 9.0.1.0.0 - Production

SQL> connect / as sysdba;
Connected.

2. Try to create tablespace OMF1 with the following command:

 SQL> CREATE TABLESPACE omf1 DATAFILE SIZE 10M AUTOEXTEND OFF;

 What happens and why?

Answer: It is not possible to use this OMF syntax as the DB_CREATE_FILE_DEST
initialization parameter is NULL.

SQL> show parameter db_create_file_dest

NAME TYPE VALUE
------------------------------- ----------- ------------------------
db_create_file_dest string

SQL> CREATE TABLESPACE omf1 DATAFILE SIZE 10M AUTOEXTEND OFF;
CREATE TABLESPACE omf1 DATAFILE SIZE 10M AUTOEXTEND OFF
 *
ERROR at line 1:
ORA-02236: invalid file name

3. How would you modify your environment to allow the previous command to create OMF

files in the $HOME/OMF1 directory?
Create tablespace OMF1 and verify that an OMF file was created in the $HOME/OMF1
directory.

Answer: In order to allow an OMF specification to work, you must at least modify the
DB_CREATE_FILE_DEST parameter. To answer the question, you must assign it the
’$HOME/OMF1/’ value.

SQL> alter session set db_create_file_dest=’$HOME/OMF1/’;
Session altered.

SQL> CREATE TABLESPACE omf1 DATAFILE SIZE 10M AUTOEXTEND OFF;
Tablespace created.

SQL> host ls ./OMF1

Oracle9i: New Features for Administrators B-60

ora_omf1_xcp6rg84.dbf

4. Now, change the DB_CREATE_FILE_DEST value to point to $HOME/OMF2 directory.

Then drop tablespace OMF1. What happens?

Answer: Because OMF1 was defined as containing OMF files, the Oracle server drops the
created OMF files. This does not depend on the OMF directory specified by the
DB_CREATE_FILE_DEST parameter.

SQL> alter session set db_create_file_dest=’$HOME/OMF2/’;
Session altered.

SQL> drop tablespace omf1;
Tablespace dropped.

SQL> host ls ./OMF1

5. How would you verify all this?

Answer: Look at the alert.log file for this instance.

SQL> host vi $HOME/ADMIN/BDUMP/alert*
"./dump/alert_ed25.log" 888 lines, 33868 characters
Mon Jul 02 09:19:18 2001
ORA-1119 signalled during: CREATE TABLESPACE omf1 DATAFILE SIZE 10M
AUTOEXTE...
Fri Jul 06 01:44:46 2001
CREATE TABLESPACE omf1 DATAFILE SIZE 10M AUTOEXTEND OFF
Fri Jul 06 01:44:47 2001
Created Oracle managed file /databases/ed25/OMF1/ora_omf1_xcp6rg84.dbf
Completed: CREATE TABLESPACE omf1 DATAFILE SIZE 10M AUTOEXTE
Fri Jul 06 01:45:45 2001
drop tablespace omf1
Fri Jul 06 01:45:45 2001
Deleted Oracle managed file /databases/ed25/OMF1/ora_omf_xcp6rg84.dbf
Completed: drop tablespace omf1

6. Create the same OMF1 tablespace again and verify that the Oracle server creates the

corresponding OMF file in the $HOME/OMF2 directory.

SQL> CREATE TABLESPACE omf1 DATAFILE SIZE 10M AUTOEXTEND OFF;
Tablespace created.

SQL> host ls ./OMF2
ora_omf1_xcp6xrvr.dbf

7. In order to demonstrate how you can migrate an OMF file to a non-OMF file:

• Take the OMF1 tablespace offline
• Make an O/S copy of the created OMF file in the same directory. Call it omf1.dbf

Oracle9i: New Features for Administrators B-61

• Use the appropriate ALTER TABLESPACE command in order to rename the OMF data
file to the newly created file

• Bring the OMF1 tablespace back online

 What happens and why?

Answer: When you rename an OMF data file, the Oracle server automatically deletes the old
OMF copy. This is important to realize, especially if you intended to use the old version as a
backup.

SQL> alter tablespace omf1 offline;
Tablespace altered.

SQL> host cp ./OMF2/ora_omf1_xcp6xrvr.dbf ./OMF2/omf1.dbf

SQL> host ls ./OMF2
ora_omf1_xcp6xrvr.dbf omf1.dbf

SQL> alter tablespace omf1 rename datafile
 2 ’$HOME/OMF2/ora_omf1_xcp6xrvr.dbf’
 3 to ’$HOME/OMF2/omf1.dbf’;
Tablespace altered.

SQL> host ls ./OMF2
omf1.dbf

SQL> alter tablespace omf1 online;
Tablespace altered.

8. How would you drop tablespace OMF1, including its data file, at the O/S level?

Answer: By using the AND DATAFILES clause of the DROP TABLESPACE command. This
is because tablespace OMF1 contains at least one non-OMF data file.

SQL> DROP TABLESPACE omf1 INCLUDING CONTENTS AND DATAFILES
 2 CASCADE CONSTRAINTS;
Tablespace dropped.

SQL> host ls ./OMF2

Oracle9i: New Features for Administrators B-62

Practice 13-2 Solution: Using the Default Temporary Tablespace Assignment

1. Switch the database default temporary tablespace to SYSTEM. How would you determine the

current default temporary tablespace used in your database?

Answer: By looking at the PROPERTY_VALUE column of the DATABASE_PROPERTIES
view for the property name ’DEFAULT_TEMP_TABLESPACE’.

SQL> alter database default temporary tablespace system;
Database altered.

SQL> SELECT PROPERTY_VALUE
 2 FROM DATABASE_PROPERTIES
 3 WHERE PROPERTY_NAME= ’DEFAULT_TEMP_TABLESPACE’;

PROPERTY_VALUE

SYSTEM

2. Create a user without assigning a temporary tablespace. Then, verify that this user was

automatically assigned the previous default temporary tablespace.

SQL> create user jfv identified by jfv
 2 default tablespace sample;
User created.

SQL> select temporary_tablespace from dba_users where username=’JFV’;

TEMPORARY_TABLESPACE

SYSTEM

3. Now, change the default temporary tablespace for your database to the TEMP tablespace and

verify that the previously created user inherits the new database default temporary tablespace.

SQL> alter database default temporary tablespace temp;
Database altered.

SQL> select temporary_tablespace from dba_users where username=’JFV’;

TEMPORARY_TABLESPACE

TEMP

4. Create a tablespace called DEF1. Make sure that this tablespace is dictionary managed with a

file size of 10 MB. Once done, make it the database default temporary tablespace. What
happens and why?

Answer: Because the DEF1 tablespace is not defined as TEMPORARY, it is not possible to
use it as the database default temporary tablespace.

Oracle9i: New Features for Administrators B-63

SQL> CREATE TABLESPACE def1
 2 DATAFILE ’$HOME/ORADATA/u04/def1.dbf’ SIZE 10M
 3 EXTENT MANAGEMENT DICTIONARY;
Tablespace created.

SQL> alter database default temporary tablespace def1;
alter database default temporary tablespace def1
*
ERROR at line 1:
ORA-12902: default temporary tablespace must be SYSTEM
 or of TEMPORARY type

5. How would you modify this situation in order to make the DEF1 tablespace the database

default temporary tablespace?

SQL> alter tablespace def1 temporary;
Tablespace altered.

SQL> alter database default temporary tablespace def1;
Database altered.

6. Once tablespace DEF1 is the database default temporary tablespace, how would you drop

tablespace DEF1?

SQL> alter tablespace def1 offline;
alter tablespace def1 offline
*
ERROR at line 1:
ORA-12905: default temporary tablespace cannot be brought OFFLINE

SQL> drop tablespace def1;
drop tablespace def1
*
ERROR at line 1:
ORA-12906: cannot drop default temporary tablespace

SQL> alter database default temporary tablespace temp;
Database altered.

SQL> drop tablespace def1;
Tablespace dropped.

Oracle9i: New Features for Administrators B-64

Practice 14-1 Solution: Maintaining Automatic Undo Management Tablespaces

1. Connected as SYSTEM under SQL*Plus, execute the lab_14_01.sql script in order to

create some tables into the SYSTEM account. It is assumed that the USERS tablespace exists
and has at least 1 MB free space. After executing the script, change the retention period of
your instance to one hour.

$ sqlplus system/manager
SQL*Plus: Release 9.0.1.0.0 – Production
Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 – Production

SQL> drop table t;
SQL> drop table t1;
SQL> drop table t2;
SQL> drop table t3;

SQL> create table t(c varchar2(50)) tablespace users;
Table created.

SQL> insert into t
 2 values('aaa');
1 row created.

SQL> commit;
Commit complete.

SQL> insert into t select * from t;
1 row created.

SQL> / (2 rows created.)
SQL> / (4 rows created.)
SQL> / (8 rows created.)
SQL> / (16 rows created.)
SQL> / (32 rows created.)
SQL> / (64 rows created.)

SQL> commit;
Commit complete.

SQL> create table t1 tablespace users as select * from t;
Table created.

SQL> create table t2 tablespace users as select * from t;
Table created.

SQL> alter system set undo_retention=3600;
System altered.

2. Create a new undo tablespace called UNDO02 containing only one 60 KB data file. What

happens and why?

Answer: 60 KB seems to be too small for the Oracle server to create this undo tablespace.
Remember that an undo tablespace is managed with bitmaps and that at least one undo
segment containing two extents must be created.

Oracle9i: New Features for Administrators B-65

SQL> create undo tablespace undo02
 2 datafile ’$HOME/ORADATA/u04/undo02_01.dbf’ size 60K;
create undo tablespace undo02
*
ERROR at line 1:
ORA-03214: File Size specified is smaller than minimum required

3. Repeat the previous step but this time with a data file size of 80 KB instead of 60 KB.

SQL> create undo tablespace undo02
 2 datafile ’$HOME/ORADATA/u04/undo02_01.dbf’ size 80K;
Tablespace created.

4. Determine how many undo segments are currently created. Also, determine their current

status. Then, change the active undo tablespace to be the UNDO02 tablesapce. Once done, try
to delete the SYSTEM.T table. What happens and why?

Answer: The Oracle server was able to create the 80 KB undo tablespace. Nevertheless, no
undo segment was created in this undo tablespace. This means that the UNDO02 tablespace is
still too small to create an undo segment. This is verified when trying to delete the
SYSTEM.T table. Because it is impossible to create an undo segment in the undo tablespace
UNDO02, the Oracle server tries to use the SYSTEM rollback segment which results in an
error message as table SYSTEM.T does not reside in the SYSTEM tablespace.

SQL> select tablespace_name,segment_name,status
 2 from dba_rollback_segs;

TABLESPACE_NAME SEGMENT_NAME STATUS
------------------------------ --------------- -------
SYSTEM SYSTEM ONLINE
UNDO1 _SYSSMU1$ ONLINE
UNDO1 _SYSSMU2$ ONLINE
UNDO1 _SYSSMU3$ ONLINE
UNDO1 _SYSSMU4$ ONLINE
UNDO1 _SYSSMU5$ ONLINE
UNDO1 _SYSSMU6$ ONLINE
UNDO1 _SYSSMU7$ ONLINE
UNDO1 _SYSSMU8$ ONLINE

9 rows selected.

SQL> alter system set undo_tablespace=undo02;
System altered.

SQL> delete t;
delete t
 *
ERROR at line 1:
ORA-01552: cannot use system rollback segment
 for non-system tablespace ’USERS’

Oracle9i: New Features for Administrators B-66

5. Now switch back to the UNDO1 tablespace as the active undo tablespace. Then drop and re-
create the UNDO02 tablespace but this time with a 400 KB data file. Once done, determine
the number of undo segments and their statuses. What is your conclusion?

Answer: This time, the Oracle server is able to create two additional undo segments in the
UNDO02 tablespace. Nevertheless, these two undo segments cannot be used because the
active undo tablespace is UNDO1. That is why the two newly created undo segments show an
OFFLINE status.

SQL> alter system set undo_tablespace=UNDO1;
System altered.

SQL> drop tablespace undo02 including contents and datafiles;
Tablespace dropped.

SQL> create undo tablespace undo02
 2 datafile ’$HOME/ORADATA/u04/undo02_01.dbf ’ size 400K;
Tablespace created.

SQL> select tablespace_name,segment_name,status
 2 from dba_rollback_segs;

TABLESPACE_NAME SEGMENT_NAME STATUS
------------------------------ --------------- -------
SYSTEM SYSTEM ONLINE
UNDO1 _SYSSMU1$ ONLINE
UNDO1 _SYSSMU2$ ONLINE
UNDO1 _SYSSMU3$ ONLINE
UNDO1 _SYSSMU4$ ONLINE
UNDO1 _SYSSMU5$ ONLINE
UNDO1 _SYSSMU6$ ONLINE
UNDO1 _SYSSMU7$ ONLINE
UNDO1 _SYSSMU8$ ONLINE
UNDO02 _SYSSMU9$ OFFLINE
UNDO02 _SYSSMU10$ OFFLINE

11 rows selected.

6. Change the active undo tablespace to be the UNDO02 tablespace. Then, look at the undo

segments statuses. What happened?

Answer: By switching the undo tablespace to UNDO02, all undo segments residing in the
UNDO1 tablespace were offline. Whereas the ones residing in the UNDO02 tablespace were
online. Note the SYSTEM rollback segment is always ONLINE and cannot be offline.

SQL> alter system set undo_tablespace=undo02;
System altered.

SQL> select tablespace_name,segment_name,status
 2 from dba_rollback_segs;

TABLESPACE_NAME SEGMENT_NAME STATUS
------------------------------ --------------- -------

Oracle9i: New Features for Administrators B-67

SYSTEM SYSTEM ONLINE
UNDO1 _SYSSMU1$ OFFLINE
UNDO1 _SYSSMU2$ OFFLINE
UNDO1 _SYSSMU3$ OFFLINE
UNDO1 _SYSSMU4$ OFFLINE
UNDO1 _SYSSMU5$ OFFLINE
UNDO1 _SYSSMU6$ OFFLINE
UNDO1 _SYSSMU7$ OFFLINE
UNDO1 _SYSSMU8$ OFFLINE
UNDO02 _SYSSMU9$ ONLINE
UNDO02 _SYSSMU10$ ONLINE

11 rows selected.

7. Execute the lab_14_02.sql script in order to delete rows as well as creating and
populating one additional table in the SYSTEM schema. This is done to get assigned to a
transaction table in the UNDO02 tablespace. Using V$TRANSACTION, check to which
transaction table you were assigned. Once done, commit your changes.

SQL> delete t;
128 rows deleted.

SQL> delete t2;
128 rows deleted.

SQL> create table t3(c varchar2(50)) tablespace users;
Table created.

SQL> insert into t3 values
 2 (’aaa’);
1 row created.

SQL> insert into t3 select * from t3;
1 row created.

SQL> / (2 rows created.)
SQL> / (4 rows created.)
SQL> / (8 rows created.)
SQL> / (16 rows created.)
SQL> / (32 rows created.)
SQL> / (64 rows created.)
SQL> / (128 rows created.)
SQL> / (256 rows created.)
SQL> / (512 rows created.)
SQL> / (1024 rows created.)
SQL> / (2048 rows created.)
SQL> / (4096 rows created.)
SQL> / (8192 rows created.)

SQL> /
insert into t3 select * from t3
*
ERROR at line 1:
ORA-30036: unable to extend segment by 16 in undo tablespace ’UNDO02’

Oracle9i: New Features for Administrators B-68

SQL> select xidusn from v$transaction;

 XIDUSN

 10

SQL> commit;
Commit complete.

8. Determine the number of extents used by each undo segment in both undo tablespaces

(UNDO02, and UNDO1). What do you observe?

Answer: It appears that the previous transaction (step 7) was assigned to one particular undo
segment (_SYSSMU10$) in the active undo tablespace UNDO02. Also, all undo segments in
tablespace UNDO02 have two extents only, except for _SYSSMU10$ which now contains
three extents.

SQL> col segment_name format a15

SQL> select segment_name,tablespace_name,sum(blocks),count(*)
 2 from dba_extents
 3 where tablespace_name in (’UNDO02’,’UNDO1’)
 4 group by segment_name, tablespace_name;

SEGMENT_NAME TABLESPACE_NAME SUM(BLOCKS) COUNT(*)
--------------- --------------- ----------- --------
_SYSSMU1$ UNDO1 47 3
_SYSSMU10$ UNDO02 47 3
_SYSSMU2$ UNDO1 31 2
_SYSSMU3$ UNDO1 31 2
_SYSSMU4$ UNDO1 31 2
_SYSSMU5$ UNDO1 31 2
_SYSSMU6$ UNDO1 31 2
_SYSSMU7$ UNDO1 47 3
_SYSSMU8$ UNDO1 31 2
_SYSSMU9$ UNDO02 31 2

10 rows selected.

9. Delete table T1 and find out which transaction table was assigned to this new transaction.

Once done, try to delete table T3. What happens and why?

Answer: The active undo tablespace is still UNTO02. This tablespace is quite small.
Although it is possible to delete the small table T1, Oracle fails to delete the bigger table T3.
You may have noticed that each new transaction is assigned to a different undo segment.

SQL> delete t1;
128 rows deleted.

SQL> select xidusn from v$transaction;

 XIDUSN

Oracle9i: New Features for Administrators B-69

 9

SQL> delete t3;
delete t3
 *
ERROR at line 1:
ORA-30036: unable to extend segment by 16 in undo tablespace ’UNDO02’

10. Reexecute the query you used in step 8. What is your conclusion?

Answer: You executed another transaction in the second undo segment (_SYSSMU09$).
What is remarkable here, compared to previous releases, is that the Oracle server was able to
reclaim one extent from undo segment _SYSSMU10$. Although the transaction failed to
allocate another extent in the UNDO02 tablespace, this proves that the Oracle server first tried
to reuse unused extents in other undo segments. This new behavior potentially reduces the
chance of getting errors during DML executions.

SQL> select segment_name,tablespace_name,sum(blocks),count(*)
 2 from dba_extents
 3 where tablespace_name in (’UNDO02’,’UNDO1’)
 4 group by segment_name, tablespace_name;

SEGMENT_NAME TABLESPACE_NAME SUM(BLOCKS) COUNT(*)
--------------- --------------- ----------- --------
_SYSSMU1$ UNDO1 47 3
_SYSSMU10$ UNDO02 31 2
_SYSSMU2$ UNDO1 31 2
_SYSSMU3$ UNDO1 31 2
_SYSSMU4$ UNDO1 31 2
_SYSSMU5$ UNDO1 31 2
_SYSSMU6$ UNDO1 31 2
_SYSSMU7$ UNDO1 47 3
_SYSSMU8$ UNDO1 31 2
_SYSSMU9$ UNDO02 47 3

10 rows selected.

11. Commit your modifications. Then, check the number of rows currently stored inside table

T3. Once done, insert one new row inside table T3 and do not commit your modification.

SQL> commit;
Commit complete.

SQL> select count(*) from t3;

 COUNT(*)

 16384

SQL> insert into t3 values(’bbbbb’);
1 row created.

SQL> select count(*) from t3;

Oracle9i: New Features for Administrators B-70

 COUNT(*)

 16385

12. From a second session connected as SYSTEM, switch the active undo tablespace to UNDO1,

and then look at all undo segment statuses. What is your conclusion?

Answer: Because _SYSSMU9$ still has an active transaction (the one from the first session),
this undo segment is still online while _SYSSMU10$ was offline by the switch operation.
Note also that all the other undo segments residing in the UNDO1 tablespace are now online.

$ sqlplus system/manager
SQL*Plus: Release 9.0.1.0.0 – Production
Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 – Production

SQL> alter system set undo_tablespace=UNDO1;
System altered.

SQL> col segment_name format a15

SQL> select tablespace_name,segment_name,status
 2 from dba_rollback_segs;

TABLESPACE_NAME SEGMENT_NAME STATUS
-------------------- --------------- -------
SYSTEM SYSTEM ONLINE
UNDO1 _SYSSMU1$ ONLINE
UNDO1 _SYSSMU2$ ONLINE
UNDO1 _SYSSMU3$ ONLINE
UNDO1 _SYSSMU4$ ONLINE
UNDO1 _SYSSMU5$ ONLINE
UNDO1 _SYSSMU6$ ONLINE
UNDO1 _SYSSMU7$ ONLINE
UNDO1 _SYSSMU8$ ONLINE
UNDO02 _SYSSMU9$ OFFLINE
UNDO02 _SYSSMU10$ ONLINE

11 rows selected.

13. From the first session, commit your changes.

SQL> commit;
Commit complete.

14. Still in the first session, check the undo segments status many times during five minutes.

Once done, drop tablespace UNDO02 and its datafile. What are your conclusions?

Answer: One undo segment in the UNDO02 tablespace is still online initially; after a while, it
is automatically taken OFFLINE.

SQL> select tablespace_name,segment_name,status
 2 from dba_rollback_segs;

Oracle9i: New Features for Administrators B-71

TABLESPACE_NAME SEGMENT_NAME STATUS
-------------------- --------------- -------
SYSTEM SYSTEM ONLINE
UNDO1 _SYSSMU1$ ONLINE
UNDO1 _SYSSMU2$ ONLINE
UNDO1 _SYSSMU3$ ONLINE
UNDO1 _SYSSMU4$ ONLINE
UNDO1 _SYSSMU5$ ONLINE
UNDO1 _SYSSMU6$ ONLINE
UNDO1 _SYSSMU7$ ONLINE
UNDO1 _SYSSMU8$ ONLINE
UNDO02 _SYSSMU9$ OFFLINE
UNDO02 _SYSSMU10$ ONLINE

11 rows selected.

SQL> /

TABLESPACE_NAME SEGMENT_NAME STATUS
-------------------- --------------- -------
SYSTEM SYSTEM ONLINE
UNDO1 _SYSSMU1$ ONLINE
UNDO1 _SYSSMU2$ ONLINE
UNDO1 _SYSSMU3$ ONLINE
UNDO1 _SYSSMU4$ ONLINE
UNDO1 _SYSSMU5$ ONLINE
UNDO1 _SYSSMU6$ ONLINE
UNDO1 _SYSSMU7$ ONLINE
UNDO1 _SYSSMU8$ ONLINE
UNDO02 _SYSSMU9$ OFFLINE
UNDO02 _SYSSMU10$ OFFLINE

11 rows selected.

SQL> drop tablespace undo02 including contents and datafiles;
Tablespace dropped.

15. Connected as SYSTEM, drop the tables T, T1, T2, and T3.

SQL> drop table t;
Table dropped.

SQL> drop table t1;
Table dropped.

SQL> drop table t2;
Table dropped.

SQL> drop table t3;
Table dropped.

Oracle9i: New Features for Administrators B-72

Practice 14-2 Solution: Transporting a Tablespace with Nondefault Block Size

1. Connected as SYSDBA under SQL*Plus, determine the default block size used for this

database and also the various parameters used to configure the buffer cache of this instance.

$ sqlplus /nolog
SQL*Plus: Release 9.0.1.0.0 – Production

SQL> connect / as sysdba;
Connected.

SQL> show parameter db_block_size

NAME TYPE VALUE
------------------------------------ ----------- ---------
db_block_size integer 4096

SQL> show parameter cache

NAME TYPE VALUE
------------------------------------ ----------- ---------
db_16k_cache_size big integer 0
db_2k_cache_size big integer 0
db_32k_cache_size big integer 0
db_4k_cache_size big integer 0
db_8k_cache_size big integer 0
db_cache_advice string OFF
db_cache_size big integer 4194304
db_keep_cache_size big integer 0
db_recycle_cache_size big integer 0
object_cache_max_size_percent integer 10
object_cache_optimal_size integer 102400
session_cached_cursors integer 0

2. Drop tablespace TEST1, including its data files, if it already exists. Determine what is inside

the $HOME/STUDENT/LABS directory. Then, copy the test1.dbf file into the
$HOME/ORADATA/u04 directory. Also, drop the SYSTEM.T table.

SQL> drop tablespace test1 including contents and datafiles
 2 cascade constraints;
Tablespace dropped.

SQL> host ls -l $HOME/STUDENT/LABS
total …
…
-rw-r--r-- 1 ed25 dba 4096 Jul 03 12:18 plug.dmp
-rw-r----- 1 ed25 dba 212992 Jul 03 12:18 test1.dbf

SQL> host cp $HOME/STUDENT/LABS/test1.dbf $HOME/ORADATA/u04

SQL> drop table SYSTEM.T;
Table dropped.

Oracle9i: New Features for Administrators B-73

3. Try to plug the TEST1 tablespace using the plug.dmp export dump file. What happens and
why?

Answer: The Oracle server is not able to plug this tablespace into the instance as no 8 KB
buffer cache is currently configured.

SQL> host imp userid=\’/ as sysdba\’ file=$HOME/STUDENT/LABS/plug.dmp -
> transport_tablespace=y datafiles=$HOME/ORADATA/u04/test1.dbf
Import: Release 9.0.1.0.0 – Production
Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 – Production

Export file created by EXPORT:V09.00.01 via conventional path
About to import transportable tablespace(s) metadata...
import done in US7ASCII character set and AL16UTF16 NCHAR character set
import server uses WE8ISO8859P1 character set (possible charset
conversion)
. importing SYS's objects into SYS
IMP-00017: following statement failed with ORACLE error 29339:
 "BEGIN
sys.dbms_plugts.beginImpTablespace('TEST1',9,'SYS',1,0,8192,14,2057"
 "12,1,249,5,5,0,50,1,0,0,3707708581,1,0,205636,NULL,0,0,NULL,NULL);
END;"
IMP-00003: ORACLE error 29339 encountered
ORA-29339: tablespace block size 8192 does not match configured block
sizes
ORA-06512: at "SYS.DBMS_PLUGTS", line 1378
ORA-06512: at line 1
IMP-00000: Import terminated unsuccessfully

4. How would you get around this problem?

Answer: Shut down the instance and start it up with an 8 KB buffer cache configured. That
is, edit your initialization parameter file and add the following line:
db_8k_cache_size=4194304 . Once done, start up the instance again.

SQL> shutdown immediate;
Database closed.
Database dismounted.
ORACLE instance shut down.

SQL> startup pfile=$HOME/ADMIN/PFILE/init8K.ora
ORACLE instance started.

Total System Global Area 25991956 bytes
Fixed Size 285460 bytes
Variable Size 16777216 bytes
Database Buffers 8388608 bytes
Redo Buffers 540672 bytes
Database mounted.
Database opened.

SQL> show parameter cache

NAME TYPE VALUE

Oracle9i: New Features for Administrators B-74

------------------------------------ ----------- -----------
db_16k_cache_size big integer 0
db_2k_cache_size big integer 0
db_32k_cache_size big integer 0
db_4k_cache_size big integer 0
db_8k_cache_size big integer 4194304
db_cache_advice string OFF
db_cache_size big integer 4194304
db_keep_cache_size big integer 0
db_recycle_cache_size big integer 0
object_cache_max_size_percent integer 10
object_cache_optimal_size integer 102400
session_cached_cursors integer 0

5. After fixing the problem, plug in tablespace TEST1 using the same procedure as in step 3.

SQL> host imp userid=\’/ as sysdba\’ file=$HOME/STUDENT/LABS/plug.dmp -
> transport_tablespace=y datafiles=$HOME/ORADATA/u04/test1.dbf
Import: Release 9.0.1.0.0 – Production
Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 – Production

Export file created by EXPORT:V09.00.01 via conventional path
About to import transportable tablespace(s) metadata...
import done in US7ASCII character set and AL16UTF16 NCHAR character set
import server uses WE8ISO8859P1 character set (possible charset
conversion)
. importing SYS's objects into SYS
. importing SYSTEM's objects into SYSTEM
. . importing table "T"
Import terminated successfully without warnings.

6. Verify that you can access table SYSTEM.T and look at the DBA_TABLESPACES view to

see the characteristics of the plugged tablespace TEST1.

SQL> select count(*) from system.t;

 COUNT(*)

 512

SQL> select tablespace_name,block_size from dba_tablespaces;

TABLESPACE_NAME BLOCK_SIZE
------------------------- ----------
SYSTEM 4096
RBS 4096
INDX 4096
TEMP 4096
TOOLS 4096
USERS 4096
DRSYS 4096
SAMPLE 4096
CWMLITE 4096
TEST1 8192

Oracle9i: New Features for Administrators B-75

10 rows selected.

7. Connected as SYSDBA, drop tablespace TEST1 including its data file.

SQL> drop tablespace test1 including contents and datafiles
 2 cascade constraints;
Tablespace dropped.

Oracle9i: New Features for Administrators B-76

Practice 17-1 Solution: ANSI/ISO SQL:1999

1. With the natural join, you do not need to specify any join predicate or join columns. What

happens if you apply the natural join to two tables that do not have any common column
names?

 Think about this first, then connect to the HR schema, and try the following statement:

SQL> select *
 2 from regions
 3 natural join
 4 jobs;

REGION_ID REGION_NAME JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
--------- ----------- ------- ---------- ---------- ----------
 1 Europe AD_PRES President 20000 40000
 1 Europe AD_VP ...

76 rows selected.

 Answer: You get the Cartesian product of those two tables.

2. What is the difference between the cross join and the natural join, if two tables do not have

any column names in common? Change NATURAL into CROSS in the previous example and
compare the results.

 Answer: There is no difference.

3. Write a six-table join by using the USING and ON syntax, to show the last name, department

name, city, and region name for all employees reporting to Steven King.

SQL> select e.last_name
 2 , d.department_name
 3 , l.city
 4 , r.region_name
 5 from employees e JOIN
 6 departments d USING (department_id) JOIN
 7 locations l USING (location_id) JOIN
 8 countries c USING (country_id) JOIN
 9 regions r USING (region_id) JOIN
 10 employees m ON (e.manager_id = m.employee_id)
 11 where m.first_name = ’Steven’
 12 and m.last_name = ’King’;

LAST_NAME DEPARTMENT_NAME CITY REGION_NAME
-------------- --------------- -------------------- -----------
Kochhar Executive Seattle Americas
De Haan Executive Seattle Americas
Raphaely Purchasing Seattle Americas
Weiss Shipping South San Francisco Americas
Fripp Shipping South San Francisco Americas
Kaufling Shipping South San Francisco Americas
Vollman Shipping South San Francisco Americas

Oracle9i: New Features for Administrators B-77

Mourgos Shipping South San Francisco Americas
Russell Sales Oxford Europe
Partners Sales Oxford Europe
Errazuriz Sales Oxford Europe
Cambrault Sales Oxford Europe
Zlotkey Sales Oxford Europe
Hartstein Marketing Toronto Americas

14 rows selected.

4. Look at the example of the WIDTH_BUCKET function (on page 17-25):

SQL> select last_name, salary
 2 , WIDTH_BUCKET(salary,3000,13000,5)
 3 from employees;

 Rewrite this query as a searched CASE statement.

SQL> select last_name, salary
 2 , (case when salary < 3000 then 0
 3 when salary < 5000 then 1
 4 when salary < 7000 then 2
 5 when salary < 9000 then 3
 6 when salary < 11000 then 4
 7 when salary < 13000 then 5
 8 else 6
 9 end) as bucket
 10 from employees;

LAST_NAME SALARY BUCKET
-------------------- ------ ------
King 24000 6
Kochhar 17000 6
De Haan 17000 6
Hunold 9000 4
Ernst 6000 2
Austin 4800 1
...

107 rows selected.

5. Write a query to retrieve the average salary, excluding any employees that have a salary of
2500; try to find a solution without a WHERE clause, using the NULLIF function.

SQL> select avg(nullif(salary,2500))
 2 from employees;

AVG(NULLIF(SALARY,2500))

 6697.0297

1 row selected.

Oracle9i: New Features for Administrators B-78

6. Write a single query, using scalar subqueries, to return the current system date if you have
more employees than jobs.

SQL> select sysdate from dual
 2 where (select count(*) from employees) >
 3 (select count(*) from jobs);

SYSDATE

03-JUL-2001

1 row selected.

Oracle9i: New Features for Administrators B-79

Practice 17-2 Solution: Other SQL Enhancements

1. Look at the JOB_HISTORY table, and check the primary key constraint and the associated

index. Drop the primary key constraint, and make sure that the associated index is not
dropped. Restore the original situation by creating the primary key constraint.

For the remaining steps of this practice, you need two SQL*Plus sessions connected to the
HR schema (referred to as session A and session B respecively).

2. a. Make sure that you don’t have an index on the department_id column of the

EMPLOYEES table.

SQL> select index_name
 2 from user_ind_columns
 3 where table_name = ’EMPLOYEES’
 4 and column_name = ’DEPARTMENT_ID’;

INDEX_NAME

EMP_DEPARTMENT_IX

1 row selected.

SQL> drop index EMP_DEPARTMENT_IX;
Index dropped.

b. From session A, delete any department from the DEPARTMENTS table without issuing a

commit; to avoid foreign key violations, choose a department without employees. Save
the delete statement, because you will need it again in the next exercise.

SQL> delete from departments -- In session A
 2 where department_id = 250;
1 row deleted.

SQL> save delete_parent

c. From the same session A, query v$locked_object (joined with the user_objects

view to display the object name) to see which locks are held by your session. In Oracle8i
you would see at least an additional shared lock on the EMPLOYEES table, because you
do not have an index on the foreign key column. Save the query for the next exercise.

SQL> select object_name -- In session A
 2 , decode(locked_mode
 3 ,0,’None’
 4 ,1,’NULL’
 5 ,2,’SS’
 6 ,3,’SX’
 7 ,4,’S’
 8 ,5,’SSX’
 9 ,6,’X’
 10 ,null) as lmode
 11 from v$locked_object natural join

Oracle9i: New Features for Administrators B-80

 12 user_objects
 13 where oracle_username = USER;

OBJECT_NAME LMODE
--------------------------------- -----
DEPARTMENTS SX

1 row selected.

SQL> save user_locks

d. From session B, try to update any employee; as you see, this is possible. Save this update

statement in a script file too.

SQL> update employees -- In session B
 2 set salary = salary + 1
 3 where employees_id = 102;
1 row updated.

SQL> save update_child

e. Roll back the changes you made in both sessions (but stay connected.)

SQL> rollback; -- In sessions A and B
Rollback complete.

3. To show that the shared lock is needed, you repeat the previous exercise in the opposite

order. You can use the three SQL statements you saved during the previous exercise.

a. From session B, update any employee; do not commit.

SQL> @update_child -- In session B
1 row updated.

b. From session B, query the data dictionary for locks; note that you have an exclusive row

lock on the EMPLOYEES table.

SQL> @user_locks -- In session B

OBJECT_NAME LMODE
----------- -----
EMPLOYEES SX

1 row selected.

c. From session A, try to delete the same department again.

SQL> @delete_parent -- In session A

Oracle9i: New Features for Administrators B-81

Now you are unable to delete any department, because the exclusive row lock in session
B causes the shared lock request from session A to wait.

d. Roll back the changes you made in both sessions (but stay connected.)

SQL> rollback; -- In sessions A and B
Rollback complete.

4. From session A, update the salary of any employee without issuing a commit; then, try to

select the same row for update from the other session. First try the default FOR UPDATE
clause; then, try to specify a wait time of five seconds.

SQL> @update_child -- In session A
1 row updated.

SQL> select * from empoyees -- In session B
 2 where employee_id = 102
 3 for update;

SQL> select * from empoyees -- In session B
 2 where employee_id = 102
 3 for update wait 5;

Roll back the changes you made.

SQL> rollback; -- In session A
Rollback complete.

Oracle9i: New Features for Administrators B-82

Practice 18-1 Solution: Globalization Support

1. Log on as user HR. Create a table TIMES, with the following four columns:

• Column TS, data type TIMESTAMP
• Column TSZ, data type TIMESTAMP WITH TIME ZONE
• Column TLZ, data type TIMESTAMP WITH LOCAL TIME ZONE
• Column OLDTIME, data type DATE

SQL> CONNECT hr/hr
Connected.

SQL> CREATE TABLE times (
 2 ts TIMESTAMP
 3 , tsz TIMESTAMP WITH TIME ZONE
 4 , tlz TIMESTAMP WITH LOCAL TIME ZONE
 5 , oldtime DATE);
Table created.

2. Check your database timezone. Check and possibly adjust your session timezone to be

‘Europe/London.’

SQL> SELECT DBTIMEZONE, SESSIONTIMEZONE
 2 FROM DUAL;

DBTIMEZONE SESSIONTIMEZONE
---------- ---------------
-08:00 -01:00

SQL> ALTER SESSION SET TIME_ZONE=’Europe/London’;
Session altered.

SQL> SELECT DBTIMEZONE, SESSIONTIMEZONE FROM DUAL;

DBTIMEZONE SESSIONTIMEZONE
---------- ---------------
-08:00 Europe/London

3. Determine the hour offset for this region.

SQL> SELECT TZ_OFFSET(’Europe/London’)
 2 FROM DUAL;

TZ_OFFSET

+01:00

(Result may vary, depending on Daylight Saving Time)

4. Insert a row that populates all columns in the table. For the time component use one quarter

of a second after 10 a.m. Specify the CET timezone where appropiate.

SQL> INSERT INTO times VALUES
 (’21-MAY-01 10:00:00.25 AM’

Oracle9i: New Features for Administrators B-83

 , ’21-MAY-01 10:00:00.25 AM CET’
 , ’21-MAY-01 10:00:00.25 AM’
 , ’21-MAY-01’);

5. Alter your session timezone to be ‘America/LosAngeles’ and display the values. Explain

what you see.

SQL> ALTER SESSION SET TIME_ZONE=’America/Los_Angeles’;
Session altered.

SQL> SELECT * FROM times;
TS TSZ
--------------------------------- ------------------------------
TLZ OLDTIME
--------------------------------- ---------
21-MAY-01 10.00.00.250000 AM 21-MAY-01 10.00.00.250000 AM CET
21-MAY-01 02.00.00.250000 AM 21-MAY-01

Answer: The TLZ column value has changed, because you are seeing the time from a
(simulated) different client.

6. Drop the TIMES table.

SQL> DROP TABLE times;
Table dropped.

Oracle9i: New Features for Administrators B-84

Practice 19-1 Solution: Workspaces

1. Connected as SYSDBA under SQL*Plus, create a user called WM_DEVELOPER.

$ sqlplus /nolog
SQL*Plus: Release 9.0.1.0.0 – Production

SQL> connect / as sysdba;
Connected.

SQL> CREATE USER wm_developer IDENTIFIED BY wm_developer;
User created.

2. Grant CONNECT, RESOURCE roles to WM_DEVELOPER. Also directly grant the CREATE

TABLE privilege to WM_DEVELOPER.

SQL> GRANT connect, resource to wm_developer;
Grant succeeded.

SQL> GRANT create table to wm_developer;
Grant succeeded.

3. Grant the WM-specific privileges (with grant_option = YES) to WM_DEVELOPER.

Specifically:
ACCESS_ANY_WORKSPACE, MERGE_ANY_WORKSPACE, CREATE_ANY_WORKSPACE,
REMOVE_ANY_WORKSPACE, and ROLLBACK_ANY_WORKSPACE.

SQL> EXECUTE DBMS_WM.GrantSystemPriv -
> ('ACCESS_ANY_WORKSPACE,-
> MERGE_ANY_WORKSPACE, CREATE_ANY_WORKSPACE,-
> REMOVE_ANY_WORKSPACE, ROLLBACK_ANY_WORKSPACE' -
> , 'wm_developer'
> , 'YES');
PL/SQL procedure successfully completed.

4. Connected as WM_DEVELOPER, create a table for the annual marketing budget for several

cola (soft drink) markets in a given geography (such as a city or a state). Each row will
contain budget data for a specific cola.

Note: This table does not reflect recommended database design. For example, a manager ID
should be used, not a name. It is deliberately oversimplified for purposes of illustration.
Budget is in Millions. In order to help you create this table, simply execute the
lab_19_01.sql script located in your LABS directory.

SQL> CONNECT wm_developer/wm_developer
Connected.

SQL> CREATE TABLE cola_marketing_budget (
 2 mkt_id NUMBER PRIMARY KEY,
 3 mkt_name VARCHAR2(32),
 4 manager VARCHAR2(32),
 5 budget NUMBER

Oracle9i: New Features for Administrators B-85

 6);
Table created.

5. Version-enable the table. Specify the hist option of VIEW_WO_OVERWRITE so that the

COLA_MARKETING_BUDGET_HIST view contains complete history information. Once
done, populate the table with some rows using the lab_19_02.sql script locate in your
LABS directory.

SQL> EXECUTE DBMS_WM.EnableVersioning –
> ('cola_marketing_budget', 'VIEW_WO_OVERWRITE');
PL/SQL procedure successfully completed.

SQL> INSERT INTO cola_marketing_budget VALUES
 2 (1, 'cola_a', 'Alvarez', 2.0);
1 row created.

SQL> INSERT INTO cola_marketing_budget VALUES
 2 (2, 'cola_b', 'Baker', 1.5);
1 row created.

SQL> INSERT INTO cola_marketing_budget VALUES
 2 (3, 'cola_c', 'Chen', 1.5);
1 row created.

SQL> INSERT INTO cola_marketing_budget VALUES
 2 (4, 'cola_d', 'Davis', 3.5);
1 row created.

SQL> COMMIT;
Commit complete.

6. Now create workspaces for the following scenario: a major marketing focus in the cola_b

area. Managers and budget amounts for each market can change, but the total marketing
budget cannot grow. The B_focus_1 scenario features a manager with more expensive
plans (which means more money taken from other areas’ budgets). The B_focus_2
scenario features a manager with less expensive plans (which means less money taken from
other areas’ budgets). Two workspaces (B_focus_1 and B_focus_2) are created as child
workspaces of the LIVE database workspace.

SQL> EXECUTE DBMS_WM.CreateWorkspace (’B_focus_1’);
PL/SQL procedure successfully completed.

SQL> EXECUTE DBMS_WM.CreateWorkspace (’B_focus_2’);
PL/SQL procedure successfully completed.

7. Enter the B_focus_1 workspace and change the cola_b manager to Beasley and raise the

cola_b budget amount by 1.5 to bring it to 3.0. Reduce all other area budget amounts by
0.5 to stay within the overall budget. In order to make the previous changes, you can use the
lab_19_03.sql script.

SQL> EXECUTE DBMS_WM.GotoWorkspace (’B_focus_1’);
PL/SQL procedure successfully completed.

Oracle9i: New Features for Administrators B-86

SQL> UPDATE cola_marketing_budget
 2 SET manager = ’Beasley’
 3 , budget = 3
 4 WHERE mkt_name = ’cola_b’;
1 row updated.

SQL> UPDATE cola_marketing_budget
 2 SET budget = budget – 0.5
 2 WHERE mkt_name <> 'cola_b';
3 rows updated.

SQL> COMMIT;
Commit complete.

8. Enter the B_focus_2 workspace and change the cola_b manager to Burton and raise the

cola_b budget amount by 0.5 to bring it to 2.0. Reduce only the cola_d amount by 0.5 to
stay within the overall budget. You can use the lab_19_04.sql script in order to make
the changes. Once done, select every column from the COLA_MARKETING_BUDGET table.

SQL> EXECUTE DBMS_WM.GotoWorkspace ('B_focus_2');
PL/SQL procedure successfully completed.

SQL> UPDATE cola_marketing_budget
 2 SET manager = 'Burton'
 3 , budget = budget + 0.5
 4 WHERE mkt_name = 'cola_b';
1 row updated.

SQL> UPDATE cola_marketing_budget
 2 SET budget = budget – 0.5
 3 WHERE mkt_name = 'cola_d';
1 row updated.

SQL> COMMIT;
Commit complete.

SQL> SELECT * FROM cola_marketing_budget;

MKT_ID MKT_NAME MANAGER BUDGET
------ -------- -------- ------
 1 cola_a Alvarez 2
 3 cola_c Chen 1.5
 2 cola_b Burton 2
 4 cola_d Davis 3

9. Assume that you have decided to adopt the scenario of the B_focus_2 workspace using

that workspace’s current values; Go to the LIVE workspace, and remove the B_focus_1
workspace. Once done, apply changes in the second workspace to the LIVE database
workspace. Note that the workspace is removed by default after MergeWorkspace. Once
done, select every column from the COLA_MARKETING_BUDGET table.

SQL> EXECUTE DBMS_WM.GotoWorkspace (’LIVE’);
PL/SQL procedure successfully completed.

Oracle9i: New Features for Administrators B-87

SQL> EXECUTE DBMS_WM.RemoveWorkspace (’B_focus_1’);
PL/SQL procedure successfully completed.

SQL> EXECUTE DBMS_WM.MergeWorkspace (’B_focus_2’);
PL/SQL procedure successfully completed.

SQL> SELECT * FROM cola_marketing_budget;

MKT_ID MKT_NAME MANAGER BUDGET
------ -------- -------- ------
 1 cola_a Alvarez 2
 3 cola_c Chen 1.5
 2 cola_b Burton 2
 4 cola_d Davis 3

10. Disable versioning on the table because you are finished testing scenarios. Also, users with

version-enabled tables cannot be dropped, in case you want to drop the WM_DEVELOPER
user. Set the force parameter to TRUE if you want to force the disabling even if changes
were made in a non-LIVE workspace. Also, remove the B_focus_2 workspace.

SQL> EXECUTE DBMS_WM.DisableVersioning(’cola_marketing_budget’, TRUE);
PL/SQL procedure successfully completed.

SQL> EXECUTE DBMS_WM.RemoveWorkspace (’B_focus_2’);
PL/SQL procedure successfully completed.

11. Connected as SYSDBA, drop user WM_DEVELOPER.

SQL> connect / as sysdba
Connected.

SQL> drop user wm_developer cascade;
User dropped.

Oracle9i: New Features for Administrators B-88

