

Oracle 8i: New Features for Administrators

Electronic Presentation

.....

30071GC11 Production 1.1 May 2000 M011240

Author	Copyright © Oracle Corporation, 2000. All rights reserved.		
Jean-Francois Verrier	This documentation contains proprietary information of Oracle Corporation. It is provided under a license agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse engineering of the software is prohibited. If this documentation is delivered to a U.S. Government Agency of the Department of Defense, then it is delivered with Restricted Rights and the following legend is applicable:		
Technical Contributor	Restricted Rights Legend		
and Reviewer	Use, duplication or disclosure by the Government is subject to restrictions for commercial computer software and shall be deemed to be Restricted Rights software under Federal law, as set forth in		
David Austin	subparagraph (c)(1)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer Software		
Christian Boure	(October 1988).		
Christian Burgevin	This material or any partian of it may not be capied in any form or by any means without the everyone		
Cyrille Drouard	This material or any portion of it may not be copied in any form or by any means without the express prior written permission of the Education Products group of Oracle Corporation. Any other copying is		
Bruce Ernst	a violation of copyright law and may result in civil and/or criminal penalties.		
Joel Goodman	If this descent statistics is delivered to a U.C. Operation and Assessment within the Department of		
Scott Gossett	If this documentation is delivered to a U.S. Government Agency not within the Department of Defense, then it is delivered with "Restricted Rights," as defined in FAR 52.227-14, Rights in Data-General, including Alternate III (June 1987).		
Patrick Jacob			
Dominique Jeunot			
Stefan Lindblad	The information in this document is subject to change without notice. If you find any problems in the documentation, please report them in writing to Worldwide Education Services, Oracle Corporation, 500Oracle Parkway, Box SB-6, Redwood Shores, CA 94065. Oracle Corporation does not warrant that this document is error-free.		
Howard Ostrow			
Richard Powell			
Hans Proetzl	Oragle is a registered trademark and all references to Oragle products are trademarks or registered		
Rick Pulliam Ulrike Schwinn	Oracle is a registered trademark and all references to Oracle products are trademarks or registered trademarks of Oracle Corporation.		
Mark Smith			
Etienne Tiphine	All other products or company names are used for identification purposes only, and may be		
Bram Van Der Vaus	trademarks of their respective owners.		
Nitin Vengurlekar			
Sergiusz Wolicki			
Anthony Woodell			
Publisher			
Janine Katter			

Introduction

After completing this course, you should be able to do the following:

- Describe the new features introduced in Oracle8i
- Describe the features of Java in the database
- Identify features added to the optimizer in Oracle8i

- Use summary management features
- Create and manage the different types of indexes supported by Oracle8i
- Describe the new features introduced in Oracle8*i* regarding partitioned tables and indexes

- Describe Oracle8*i* installation and migration
- Create and manage the different types of tablespace supported by Oracle8i
- Monitor long-running operations
- Deploy the database resource manager

- Identify new networking options offered by Net8
- Implement bounded recovery time
- Manage standby databases for automatic recovery and read-only access
- Use new archive logging options
- Describe the functionality of LogMiner

- Manage corrupt block detection and repair
- Describe the virtual database
- Create and manage roles and objects to support new Oracle Advanced Queuing features
- Use SQL*Plus to manage database startup, shutdown, and related activities

- Describe event triggers
- Identify Oracle8i national language support (NLS) features
- List new constraints capabilities

Suggested Course Schedule

Day	Lessons	Labs
1	1 - 3	3
	4	4
2	5 - 8	5,7
3	9 - 12	9,10,12
4	13-16	15

Java in the Database

Objectives

After completing this lesson, you should be able to do the following:

- Describe Oracle Java components
- Describe JServer installation
- Tune JServer
- Remove Java classes from the database

Java Overview

- Open, portable, productive language
- The language of Internet computing
- Oracle8*i* JServer
 - Enterprise class Java server
 - Java integrated with DB

- Java Database Connectivity (JDBC) and SQLJ access the database
- Can use Java anywhere that PL/SQL used
- Industry-standard components
- EJBs and CORBA built in
- Productive programming tools

Integrating Java into Oracle8*i*

Сору

Java Database Connectivity Drivers

SQLJ

- Enables SQL statements embedded in Java
- Generates Java with JDBC calls
- Is significantly more compact than JDBC
- Is easier to write and maintain
- Is a de facto standard

Oracle8*i* Java Components

- Can improve developer productivity
- Includes two programming models:
 - Enterprise JavaBeans (EJBs)
 - Common Object Request Broker Architecture (CORBA)

Development Tools

- Sun Java Development Kit
 - Basis of all Java development tools
 - Included with JServer
 - Command-line-driven tools
- Oracle JDeveloper 3.0
 - GUI-driven tool
 - Server-side Java development, deployment, and debugging
 - JDBC, SQLJ, EJB, and CORBA
 - Client-side database support as well

Installation Overview

- JServer installation is part of the typical Oracle software and database installation.
- JServer can be installed in one of three ways:
 - Select a minimal or typical install
 - Select the JServer option for custom installs
 - Run the initjvm.sql script for manual installs
- This course looks at the manual installation of JServer.

Preparing the Instance and Database Before Installing the JVM Classes

Before executing initjvm.sql, you should ensure the following:

- SHARED_POOL_SIZE = 50MB
- JAVA_POOL_SIZE = 20MB
- SYSTEM tablespace can grow to 160 MB (8.1.6) or to 105 MB (8.1.5)
- Rollback segment can grow to 50 MB

Installing the JVM Classes Using the initjvm.sql Script

- Located in \$ORACLE_HOME/javavm/install
- Creates database objects to support Java
- Installs initial Java classes with the CREATE OR REPLACE JAVA SYSTEM; command
- Creates database startup and shutdown triggers
- Configures JServer for CORBA and EJB
- Creates the dbms_java support package with the initdbj.sql script
- Creates various roles: JAVASYSPRIVS, JAVAUSERPRIVS, JAVADEBUGPRIVS
- Network configuration

2-14

Installation Verification

initjvm.sql checks for a successful install:

 Number of Java objects created is 8643 in 8.1.6 and 4023 in 8.1.5:

```
SQL> SELECT count(*)
2 FROM dba_objects
3 WHERE object_type LIKE 'JAVA%';
```

• Number of Java objects with an invalid status is 0:

```
SQL> SELECT count(*)
2 FROM dba_objects
3 WHERE object_type like `JAVA%' AND
4 status != `VALID';
```


Sizing Shared Pool for Java

- SHARED_POOL_SIZE
 - 8 KB per loaded class
 - 50 MB for loading large JAR files
- LARGE_POOL_SIZE
 - Used with MTS
 - Contains part of the UGA

Sizing Java Pool Memory

- Dedicated server:
 - Java pool stores the shared part of each Java class, which uses 4 to 8 KB for each class
 - UGA in PGA contains per-session Java state
- Multithreaded server:

2 - 17

- Stores the shared part of each Java class, which uses 4 to 8 KB for each class
- Some of the per-session Java state
- Up to 1 GB for EJB or CORBA
- Server-side compilation requires extra memory
- EJBs and CORBA require extra memory

Copyright © Oracle Corporation, 2000. All rights reserved.

ORACLE

Check Java Pool Memory Usage

- Run the Java application
- Monitor the Java memory usage

SQL>	SELECT	*			
2	FROM	v\$sgastat			
3	3 WHERE name = 'java pool';				
POOL		NAME	BYTES		
java	pool	free memory	30261248		
java	pool	memory in use	19742720		
SQL>					

Limiting Java Session Memory Usage

JAVA_SOFT_SESSIONSPACE_LIMIT

- 1 MB default
- Only writes a warning message to a trace file
- JAVA_MAX_SESSIONSPACE_SIZE
 - 4 GB default
 - Ends the session with an out-of-memory error

Deinstallation Steps

- **1.** Run the script that removes the JVM:
 - In the ORACLE_HOME/rdbms/admin directory
 - In 8.1.5, utljavarm.sql
 - In 8.1.6, utljavrm.sql
- 2. Change JAVA_POOL_SIZE to 1 MB in 8.1.5 or to 0 in 8.1.6
- 3. Reduce SHARED_POOL_SIZE by tuning the shared pool
- 4. Remove references to GIOP and SGIOP from:
 - init.ora
 - listener.ora

Developing Java Stored Procedures

Step 1: Write the Java stored procedure Step 2: Load the Java program into Oracle8*i*:

- Use create java ddl
- Use the loadjava utility
- **Step 3: Publish the Java program to SQL:**
- Expose top-level Java entrypoint
- Map Java arguments and datatypes to SQL
- Set up appropriate user privileges
 Step 4: Call Java program from SQL or PL/SQL

Example: Publishing Java to SQL Create the Java class:

```
CREATE OR REPLACE JAVA SOURCE NAMED "Hello" AS
  public class Hello {
    static public String Msg(String tail) {
        return "Hello " + tail;
    }
  }
```

Publish the class to SQL:

```
CREATE OR REPLACE FUNCTION hello
( str VARCHAR2 )
RETURN VARCHAR2
AS
LANGUAGE JAVA NAME
'Hello.Msg (java.lang.String)
return java.lang.String';
```


Summary

You should now have a basic understanding of the Jserver functionalities.

In this lesson, you should have learned how to:

- Use the initjvm.sql script to load the initial Java classes
- Set instance configuration parameters to:
 - Size the Java pool
 - Limit Java session memory usage
- Tune and monitor the Java pool
- Deinstall JServer

Optimizer and Query Improvements

Objectives

After completing this lesson, you should be able to do the following:

- Describe the features of optimizer plan stability
- Describe the contents of the DBMS_STATS package
- Explain sharing cursor improvements
- Explain Top-N SQL queries
- Identify new SQL keywords for computing subtotals
- Identify new sort processing options

Optimizer Plan Stability

- Allows well-tuned applications to force the use of the desired SQL access path
- Consistent execution paths maintained through certain database changes
- Implemented using a stored outline consisting of hints

Factors Not Addressed by Outlines

- Degree of parallelism
- Predicate placement
- OR expansion
- Partition access
- Recursive queries
- *_ENABLED parameters
- Controlling the execution plan for third-party applications

Creating Stored Outlines

CREATE STORED OUTLINES parameter:

ALTER SESSION

SET CREATE_STORED_OUTLINES = train;

SELECT co.crs_id, ...

CREATE OUTLINE command:

```
CREATE OR REPLACE OUTLINE co_cl_join
FOR CATEGORY train
ON SELECT co.crs_id, ...
FROM courses co,
classes cl
WHERE co.crs_id = cl.crs_id;
```


Using Stored Outlines

• Set the USE_STORED_OUTLINES parameter to TRUE or to a category name.

ALTER	SESSION
SET	<pre>USE_STORED_OUTLINES = train;</pre>
SELECT	co.crs_id,

- Both CREATE_STORED_OUTLINES and USE_STORED_OUTLINES can be set at the instance or session level, but they are not init.ora parameters.
- V\$SQL contains the OUTLINE_CATEGORY column.

Outlines Security

- CREATE ANY OUTLINE: Needed by user to create outlines
- DROP ANY OUTLINE: Needed by user to drop outlines
- ALTER ANY OUTLINE: Needed by user to modify outlines
- No special privilege required to use an outline

Maintaining Stored Outlines

- Use OUTLN_PKG to:
 - Drop unused outlines
 - Drop categories of outlines
 - Rename categories
- Use Alter Outline to:
 - Rename an outline
 - Rebuild an outline
 - Change the category of an outline
- Stored outlines in tables in OUTLN schema

Moving Outlines Tables Example

EXP OUTLN/OUTLN TABLES = ('OL\$','OL\$HINTS')

DROP TABLE OL\$; DROP TABLE OL\$HINTS;

CREATE TABLESPACE outln_ts DATAFILE 'tspace.dat' SIZE 2MB;

ALTER USER OUTLN DEFAULT TABLESPACE outln_ts;

IMP OUTLN/OUTLN TABLES = ('OL\$','OL\$HINTS')

3-10

Sharing Cursors

- Text of SQL statements must be identical
- The only tolerated differences are literals, if CURSOR_SHARING is set to FORCE
- SQL statements must reference the same objects
- Bind variables in the SQL statements must match in name and data type
- The SQL statements must be optimized using the same optimization approach

Checking for Cursor Sharing

- CURSOR_SHARING is an init.ora parameter and is session- or system-modifiable. Possible values are:
 - FORCE
 - EXACT
- V\$ views showing system-generated bind variables:
 - V\$SQL
 - V\$SQL_BIND_DATA
 - V\$SQL_BIND_METADATA

DBMS_STATS Package

ORACLE

3-13

DBMS_STATS: Generating Statistics

The syntax is not complete on this example

Copyright © Oracle Corporation, 2000. All rights reserved.

ORACLE

Copying Statistics Between Databases

Example: Copying Statistics

DBMS_STATS.EXPORT_TABLE_STATS(
'TRAIN',		— Schema			
'COURSES',		— Table name			
NULL,	4	— No partitions			
'STATS',		— Statistics table name			
'CRS 980501',	4	ID for statistics			
TRUE);	4	Index statistics			

Monitoring Tables

Sort Performance Improvements

- More predictable sort performance
- Implicit use of direct writes
- Sort-related init.ora parameters obsolete:
 - SORT_DIRECT_WRITES
 - SORT_WRITE_BUFFERS
 - SORT_WRITE_BUFFER_SIZE
 - SORT_READ_FAC
- New init.ora parameter: SORT_MULTIBLOCK_READ_COUNT

Top-N SQL

- Views and in-line views now allow ordering
- Sorts only the required number of rows

SELECT	*		
FROM	(SELECT	class_id,
			crs_id,
			start_date
		FROM	classes
		ORDER	R BY start_date DESC)
WHERE	R	OWNUM < 2	10

ROLLUP Operation

SELECT type, status, SUM(days)

FROM classes

GROUP BY ROLLUP(type, status);

TYPE	STAT	SUM(DAYS)
IDL	AVAI	72
•••		
S/EC	ERRO	195
S/EC	FULL	2
S/EC	MOVE	312
S/EC	SENT	136
S/EC		5394
		18760
3-23		Copyright © Oracle Cor

Copyright © Oracle Corporation, 2000. All rights reserved.

CUBE Operation

SELECTtype, status, SUM(days)FROMclassesGROUPBYCUBE(type, status)ORDERBYtype, status;

TYPE	STAT	SUM(DAYS)
IDL	AVAI	72
S/EC	SENT	136
S/EC		5394
	AVA	I 294
	BOO	к 8034
• • •		
	MOV	E 521
	SEN	т 366
		18760

ROLLUP totals

CUBE totals

Summary

In this lesson, you should have learned the following:

- Stored outlines ensure that execution plans stay consistent
- The DBMS_STATS package can manipulate statistics to affect execution plans
- CURSOR_SHARING extends cursor sharing
- Top-N SQL queries allow sort in in-line views
- ROLLUP and CUBE keywords compute subtotals
- New sort processing options improve sort performance

Practice 3 Overview

- Creating statistics tables
- Exporting data dictionary statistics
- Creating categories
- Using outline categories in SQL statements
- Importing data dictionary statistics
- Droping statistics tables

Summary Management

Objectives

After completing this lesson, you should be able to explain how to build and manage:

- Materialized views for Oracle Summaries
- Dimensions

What Is Summary Management ?

- Create predefined summary tables using materialized view in Oracle8*i*
- Application queries use summary segments for improved performance
 - No need to change application queries
 - User queries reference base tables
 - Oracle optimizer rewrites the query
 - Access materialized views
- Refresh materialized views as needed

What Is a Materialized View ?

A materialized view:

- Is an instantiation of a SQL statement
- Has its data stored in tables, offering:
 - Space management options
 - Use of indexes and partitions
- Used for:
 - Data warehouses
 - Distributed computing

Materialized View Example

ORACLE

Build Methods

- BUILD DEFERRED: MV created but not populated
- BUILD IMMEDIATE: MV created and populated
- ON PREBUILT TABLE: MV created over existing table

Refresh Triggering Events

- ON DEMAND: Manual
- ON COMMIT: On transaction commit
- Schedule: At regular intervals

Materialized Views: Manual Refresh

Refresh specific materialized views

DBMS_MVIEW.REFRESH('SF_SALES', PARALLELISM => 10);

Materialized views based on one or more base tables

Copyright © Oracle Corporation, 2000. All rights reserved.

DBMS_MVIEW.REFRESH_DEPENDENT
('SALES');

• All materialized views due for refresh

DBMS_MVIEW.REFRESH_ALL_MVIEWS;

4-8

Refresh Methods

- COMPLETE
- FAST OF INCREMENTAL
 - Using materialized view logs
 - Using direct loader log: ALL_SUMDELTA
- FORCE
- NEVER

General Restrictions on Fast Refresh

- No views in the FROM list
- No nonrepeating expressions like SYSDATE and ROWNUM
- No RAW or LONG RAW columns
- No having or connect by clauses
- Only AND equijoin predicates
- No subqueries, inline views, or set functions like UNION or MINUS

Restrictions on Fast Refresh on Materialized Views with Joins Only

- No GROUP BY clauses or aggregates
- If outer joins, then unique constraints must exist on the join columns of the inner join table
- Rowids of all the tables must be in the SELECT list
- Rowids materialized view logs for all tables
- FAST refreshable after DML or direct load

Restrictions on Fast Refresh on MVs with Single-Table Aggregates

- They can only have a single table
- SELECT list must contain all groupings
- They cannot have a WHERE clause
- COUNT(*) must be present
- They cannot have a MIN or MAX function
- INCLUDING NEW VALUES MV logs on all tables with all referenced MV columns
- If AVG(expr) or SUM(expr) is specified, then you must have COUNT(expr)

Restrictions on Fast Refresh on MVs with Joins and Aggregates

- The WHERE clause can contain inner equijoins only
- FAST refreshable after direct load only
- Can have only the ON DEMAND option

Considering a Materialized View as Fresh

red. ORACLE

4-14

Privileges and Materialized Views

- CREATE MATERIALIZED VIEW
- CREATE ANY MATERIALIZED VIEW
- QUERY REWRITE
- GLOBAL QUERY REWRITE
- CREATE TABLE
- CREATE INDEX
- CREATE VIEW

4-15

Materialized Views: Data Dictionary

- ALL_REFRESH_DEPENDENCIES
- DBA_MVIEW_AGGREGATES
- DBA_MVIEW_ANALYSIS
- DBA_MVIEW_DETAIL_RELATIONS
- DBA_MVIEW_JOINS
- DBA_MVIEW_KEYS
- DBA_MVIEWS (New in 8.1.6)

4-16

Cost-Based Query Rewrite Process

4-17
Enabling Query Rewrite

To enable query rewrite you should:

- Flag individual MVs for query rewrite
- Set QUERY_REWRITE_ENABLED to TRUE
- Set OPTIMIZER_MODE to
 - ALL_ROWS
 - FIRST_ROWS
 - CHOOSE if statistics are generated
- Avoid the NOREWRITE hint in the query

4-18

When Does Oracle Rewrite a Query?

- Query rewrite must be enabled for the session
- The rewrite integrity level must allow the use of the MV
- Either all or part of the result requested by the query must be obtainable from the MV
 - View-Based MV (New in 8.1.6)
 - CUBE/ROLLUP rewrite (New in 8.1.6)
 - Complex Materialized Views
 - Date Folding (New in 8.1.6)

Did Query Rewrite Occur?

Execute query

SELECT

```
s.zip, p.product_type, sum(s.amount)
FROM sales s, product p
WHERE s.prod_id = p.prod_id
GROUP BY s.zip, p.prod_type;
```

Examine execution plan

OPERATION	NAME
SELECT STATEMENT	
TABLE ACCESS FULL	SALES_SUMMARY

Types of Query Rewrite: Exact Match Example

Application Query

SELECT month, prod_id, sum(quantity) AS sumqty, count(quantity) AS cntqty FROM time t,sales s,product p WHERE p.prod_id=s.prod_id and t.saledate=s.saledate GROUP BY prod_id, month;

SUMSALES Query Definition

Copyright © Oracle Corporation, 2000. All rights reserved.

Types of Query Rewrite: Aggregation to All Example

SELECT month, sum(quantity) AS sumqty FROM time t, sales s WHERE t.saledate=s.saledate GROUP BY month HAVING sum(quantity) > 5000;

Application Query

SELECT month, prod_id, sum(quantity) AS sumqty
FROM time t,sales s,product p
WHERE p.prod_id=s.prod_id and t.saledate=s.saledate
GROUP BY prod_id, month;

SUMSALES Query Definition

Copyright © Oracle Corporation, 2000. All rights reserved.

Types of Query Rewrite: Rollup Example

SELECT year, prodid
sum(quantity) AS sumqty
FROM time t,sales s, product p
WHERE p.prod_id=s.prod_id
and t.saledate=s.saledate
GROUP BY prod_id, year;

REWRITE REWRITE

SELECT year, prod_id, sum(sumqty) FROM sumsales s, (SELECT DISTINCT month, year FROM time) v WHERE v.month=s.month GROUP BY prod_id, year;

Application Query

SELECT month, prod_id, sum(quantity) AS sumqty
FROM time t,sales s,product p
WHERE p.prod_id=s.prod_id and t.saledate=s.saledate
GROUP BY prod_id, month;

SUMSALES Query Definition

Copyright © Oracle Corporation, 2000. All rights reserved.

Types of Query Rewrite: Join Back Example

Application Query

SELECT month, prod_id, sum(quantity) AS sumqty
FROM time t,sales s,product p
WHERE p.prod_id=s.prod_id and t.saledate=s.saledate
GROUP BY prod_id, month;

SUMSALES Query Definition

Copyright © Oracle Corporation, 2000. All rights reserved.

About Dimensions

- Dimensions are data dictionary structures that define hierarchies based on existing columns
- Dimensions are optional but highly recommended because they:
 - Enable additional query rewrites without the use of constraints
 - Help document hierarchies
 - Can be used by OLAP tools

Dimensions and Hierarchies

Copyright © Oracle Corporation, 2000. All rights reserved.

Dimension: Example

SELECT * FROM time;

SDATE	MONTH	MONTH_NAM	QUARTER	YEAR	
01-JAN-98	1	January	1	1998	
02-JAN-98	1	January	1	1998	
03-JAN-98	1	January	1	1998	
04-JAN-98	1	January	1	1998	
• • •					
30-DEC-98	12	December	4	1998	
31-DEC-98	12	December	4	1998	

Dimension: Example

Defining Dimensions and Hierarchies

CREATE DIMENSION time dim LEVEL sdate IS time.sdate LEVEL month IS time.month LEVEL qtr IS time.quarter LEVEL yr IS time.year HIERARCHY calendar_rollup (sdate CHILD OF month CHILD OF qtr CHILD OF yr) ATTRIBUTE month DETERMINES month name;

Dimensions Based on Multiple Tables

- Data dictionary objects
- Columns from one or more tables
- Keys and attributes correspond to columns
- All attributes and keys for one level must belong to one table

Dimensions with Multiple Hierarchies

Verifying Relationships in a Dimension

- Check hierarchical, attribute, and join relationships
- Updates MVIEW\$_EXCEPTIONS with type of relationship and ROWIDs of violating rows

Dimensions: Data Dictionary

- DBA_DIMENSIONS
- DBA_DIM_LEVELS
- DBA_DIM_LEVEL_KEY
- DBA_DIM_ATTRIBUTES
- DBA_DIM_HIERARCHIES
- DBA_DIM_CHILD_OF
- DBA_DIM_JOIN_KEY

Summary Advisor

Copyright © Oracle Corporation, 2000. All rights reserved.

ORACLE

Utilization of Existing Summaries

Workload requests (WORK\$_IDEAL_MVIEW)

Materialized view usage (WORK\$_MVIEW_USAGE)

DBMS_OLAP.EVALUATE_UTILIZATION_W;

Cost-benefit for each materialized view (MVIEW\$_EVALUATIONS)

Obtaining Summary Recommendations

Viewing Recommendations

SELECT recommended_action, mview_name
FROM mview\$_recommendations;

RECOMMENDED_ACTION	MVIEW_NAME
RETAIN	SALES_SUMRY
DROP	COMM_SUMRY
RETAIN	BRAND_SUMRY
• • •	
CREATE	

Estimating Storage Requirements

Summary

In this lesson, you should have learned the following:

- Materialized views significantly improve query execution:
 - Data is stored and manually or automatically refreshed synchronously or asynchronously
 - Summarized data is stored and used in combination with dimensions and hierarchies
 - The query is automatically rewritten by the optimizer

Summary

- Query rewriting can be enabled or disabled:
 - At the instance level
 - At the session level
 - At the statement level
 - At the object level

Summary

- A summary advisor helps to:
 - Collect summary usage statistics
 - Provide recommendations to create, retain, or drop summaries
 - Provide space estimation for possible new summaries
- Utilities such as SQL*Loader, Export, and Import support this new feature

Practice 4 Overview

- Creating materialized views
- Enabling query rewrites for materialized views
- Comparing resource consumption of queries against base tables and materialized views
- Investigating storage requirements for materialized views

Indexes and Index-Organized Tables

Objectives

After completing this lesson, you should be able to do the following:

- Describe bitmap indexes improvements
- Describe a function-based index
- Build an index online
- Compute index statistics
- Describe an index-organized table (IOT)
- Explain logical ROWIDs
- Create multiple indexes on an IOT
- Explain how to partition an IOT

Bitmap Index

Copyright © Oracle Corporation, 2000. All rights reserved.

Bitmap Index Improvements

- Bitmaps are compressed in bitmap indexes
- Compression/decompression algorithm has been improved:
 - DML is more feasible (smaller bitmaps)
 - Allows bitmaps of higher cardinality than in Oracle 7.3
- Bitmap indexes can be partitioned (local index only)

Function-Based Indexes (B*tree or Bitmap)

Dramatically improves query performance

CREATE INDEX sales_city_margin_idx ON sales(city_name ASC, (revenue - cost) DESC));

Queries using expressions can use the index

SELECT city_name, ordid, (revenue - cost) AS MARGIN FROM sales ORDER BY city_name ASC, margin DESC;

Rebuilding Indexes Online

- Rebuilding indexes and index-organized tables can be done with minimal table locking
- Helps achieve goal of 7 x 24 availability
- Consistency is maintained in the new index while DML is performed on base table
- Works for indexes on columns and the primary structure for index-organized tables

The Rebuilding Indexes Online Process

- Processing occurs in three stages:
 - Prepare
 - Build
 - Merge
- Can run in parallel; is not restartable
- This operation may take a significant amount of space; possibly more than double the space of the existing index

Rebuilding Indexes Online: Examples

CREATE INDEX ord_idx ON orders(ord_id) ONLINE;

ALTER INDEX ord_idx REBUILD ONLINE;

ALTER TABLE iot_ord MOVE ONLINE;

5-10

Coalescing Free Space in Indexes

Computing Statistics on Indexes

- The COMPUTE STATISTICS clause has been added to the CREATE INDEX and ALTER INDEX REBUILD commands
- Requests generation of statistics when an index is created
- If the index is composite, statistics are for the leading column only

B*Tree Key Compression

B*Tree Key Compression Maintenance

- ALTER TABLE MOVE COMPRESS [n]
- ALTER INDEX REBUILD NOCOMPRESS
- CREATE INDEX
- CREATE TABLE
- PARTITION MAINTENANCE
- DBA_IND_PARTITIONS
- DBA_INDEXES

Copyright © Oracle Corporation, 2000. All rights reserved.

5-14

Row Overflow in IOTs

- You can store nonkey columns in an overflow area
- You can specify:
 - The overflow tablespace
 - A threshold size for overflow rows
 - The column name where the row is split
- UTLCHN1.SQL (new in 8.1.5) or DBMS_IOT.BUILD_CHAIN_ROWS_TABLE to store chained rows

5-15

Example: Index-Organized Tables

ALTER SESSION SET NLS_DATE_FORMAT=`DD-MON-YYYY';

```
SQL> CREATE TABLE ord over iot
(id NUMBER, odate DATE, amount number,
notes VARCHAR2(1000),
PRIMARY KEY(id, odate))
     ORGANIZATION INDEX INCLUDING amount
     PCTTHRESHOLD 20
     OVERFLOW TABLESPACE all overflow
PARTITION BY RANGE(odate)
(PARTITION p1 VALUES LESS THAN (`01-FEB-1998')
 TABLESPACE q1,
 PARTITION p2 VALUES LESS THAN (MAXVALUE)
 TABLESPACE q2);
```


Dictionary Views

<pre>select table_name, tablespace_name, iot_name, iot_type from dba_tables;</pre>					
TABLE_NAME	TABLESPACE_NAME	IOT_NAME	IOT_TYPE		
SALES			IOT		
SYS_IOT_OVER_2268	USER_DATA	SALES	IOT_OVERFLOW		
<pre>select index_name,index_type,tablespace_name,table_name from dba_indexes; INDEX_NAME INDEX_TYPE TABLESPACE TABLE_NAME</pre>					
SYS_IOT_TOP_2268	IOT - TO	OP INDX	SALES		
<pre>select segment_name,tablespace_name,segment_type from dba_segments;</pre>					
SEGMENT_NAME	TABLESPACE	SEGMENT_T	YPE		
SYS_IOT_OVER_2268	USER_DATA	TABLE			
SYS_IOT_TOP_2268	INDX	INDEX			

Copyright © Oracle Corporation, 2000. All rights reserved.

5-17

Dictionary Views

<pre>select table_name, tablespace_name, iot_name, iot_type from dba_tables;</pre>					
TABLE_NAME	TABLESPACE_NAME	IOT_NAME	IOT_TYPE		
SALES			IOT		
SYS_IOT_OVER_2268	USER_DATA	SALES	IOT_OVERFLOW		
<pre>select index_name,index_type,tablespace_name,table_name from dba_indexes; INDEX_NAME INDEX_TYPE TABLESPACE TABLE_NAME</pre>					
SYS_IOT_TOP_2268	IOT - T(OP INDX	SALES		
<pre>select segment_name,tablespace_name,segment_type from dba_segments;</pre>					
SEGMENT_NAME	TABLESPACE	SEGMENT_T	YPE		
SYS_IOT_OVER_2268	USER_DATA	TABLE			
SYS_IOT_TOP_2268	INDX	INDEX			

Copyright © Oracle Corporation, 2000. All rights reserved.

5-18

Restrictions on Index-Organized Tables

- Must have a primary key
- Cannot use unique constraints
- Cannot be clustered
- Cannot contain LONG columns
- Distribution and replication not supported

Restrictions on Index-Organized Tables

- Cannot create an IOT of object types
- An IOT can contain columns of LOB and nested table types, but only if the table is not partitioned
- IOTs must be reorganized using the MOVE clause of the ALTER TABLE command
- Use UTLEXPT1.SQL to create the EXCEPTIONS table

Logical ROWIDs

- Provide fastest access to rows in index-organized tables
- Based on the primary key value of a row and an optional "guess"
- Accessed via the Universal ROWID (JROWID) datatype
- PL/SQL includes UROWID support
- Used to create secondary indexes on indexorganized tables

Multiple Indexes on Index-Organized Tables

- An IOT can have additional indexes
- The index contains a key value and a logical ROWID
- Cannot be bitmap Indexes
- Cannot be reversed
- Cannot use the NOSORT option

Summary

In this lesson, you should have learned the following:

- Bitmap index performance has been improved
- Function-based indexes can now be created
- Indexes can be rebuilt online
- Index statistics can be gathered as the index is created
- Logical ROWIDs point to rows in IOTs
- IOTs can have secondary indexes

Copyright © Oracle Corporation, 2000. All rights reserved.

Practice 5 Overview

This practice covers the following topics:

- Collecting statistics while creating an index
- Creating a function-based index
- Creating an index-organized table
- Creating a secondary index on an indexorganized table

LOBs

Copyright © Oracle Corporation, 2000. All rights reserved.

Objectives

After completing this lesson, you should be able to:

- Define LOBs from a DBA perspective
- Understand Temporary LOBs

Hierarchy of Attribute Types

LOB Overview

- LOB storage:
 - Unstructured data
 - Binary or character
 - Size to 4 GB
 - Special storage
 - Special concurrency
- Storage method:
 - Internal, in the database
 - External, in the operating system

ORACLE

Contrasting LONG and LOB Data Types

LONG, LONG RAW	LOB	
Single column per table	Multiple columns per table	
Up to 2 gigabytes	Up to 4 gigabytes	
SELECT returns data	SELECT INTO returns locator	
Data always stored in-line	Data stored in-line or out-of-line	
Cannot be an object attribute	Can be an object attribute	
Cannot be partitioned	Can be partitioned	
Cannot be used in IOTs	Can be used in IOTs	
No replication	Can be replicated	
Sequential access to chunks	Random access to chunks	
Limited PL/SQL support	Extensive PL/SQL support	

Characteristics of a LOB

Program with LOB locator

```
DECLARE
  jobloc BLOB;
BEGIN
  SELECT description INTO jobloc
  FROM job_table
  WHERE title=`Analyst';
END;
```

Two distinct parts of a LOB:

- Locator is a pointer to the LOB
- Value is the actual data

Internal LOB Storage

- LOB value can be stored:
- In-line
 - Stored with the other row data
 - Only if 4000 bytes or less
- Out-of-line
 - Stored in a separate segment
 - LOB index segment accesses LOB values
 - LOB data segment stores LOB values

Internal LOBs use copy semantics

Chunks

Chunk

Program

PL/SQL with DBMS_LOB, Java, OCI, or other LOB API

- Contiguous set of blocks
- Number of bytes for I/O
- LOB index points to chunk using:
 - Internal LOB ID
 - Chunk starting address
- Also used for versioning

Internal LOB Read Consistency

Copyright © Oracle Corporation, 2000. All rights reserved.

ORACLE

- CHUNK: Use a multiple of chunk size when:
 - Setting INITIAL and NEXT extent sizes
 - Manipulating LOBs
- Use the same chunk size for database I/O and network traffic
- The chunk size can be queried using an OCI or DBMS_LOB function

- PCTVERSION: Set depending on LOB access: Zero if read-only
- Low if:
 - Updates and reads not concurrent
 - Written once and then read-only
- High if:
 - Large queries
 - Heavy write and read activity

6-11

- CACHE, NOCACHE, and CACHE READS options
 - Use CACHE if reads and updates are frequent
 - Use NOCACHE if never modified
 - Avoids DB buffer cache
 - Out-of-line LOB redo in chunk sizes
 - Use CACHE READ if modified occasionally
- LOGGING / NOLOGGING: Use NOLOGGING when recovery is not required

Copyright © Oracle Corporation, 2000. All rights reserved.

- DISABLE STORAGE IN ROW improves performance when other columns are frequently read without the LOB value
- ENABLE STORAGE IN ROW:
 - Moved out of line when size > 4000 bytes
 - Improves performance when small LOBs are frequently read with rows
 - Hurts performance of full table scans that do not access LOB value

Temporary LOBs

- Nonpersistent, internal LOBs
- Transient workspace for LOB manipulation
- No rollback or redo logging generated
- Manipulated using DBMS_LOB or other APIs
- Exist for the session, transaction, or call
- Monitored via the data dictionary
- To create a temporary LOB:

```
DBMS_LOB.CREATETEMPORARY(v_lob_loc, true,
DBMS_LOB.TRANSACTION);
```

Copyright © Oracle Corporation, 2000. All rights reserved.

LOB Data Dictionary Views

- DBA_LOBS
- DBA_SEGMENTS
- DBA_INDEXES
- V\$TEMPORARY_LOBS
- V\$SORT_USAGE

LOB APIs

- SQL DML manipulates the entire LOB value
- For more extensive manipulation, use DBMS_LOB or other API
- DBMS_LOB package:
 - Created via dbmslob.sql and prvtlob.plb
 - Two types of procedures:
 - Mutators modify LOBs
 - Observers read LOBs and return properties
- Similar capabilities in precompilers, OCI, OO4O, and Java

Summary

In this lesson, you should have learned the following:

- With Oracle8*i*, users can define LOB data.
- Temporary LOBs can speed up LOBs manipulation.

Practice 6 Overview

This practice covers the following topics:

- Creating tables containing LOBs
- Inserting into tables containing LOBs
- Reading LOBs by using DBMS_LOB
- Querying data dictionary LOBs information
- Creating temporary LOBs
- Querying data dictionary Temporary LOBs information

Partitioning Improvements

Objectives

After completing this lesson, you should be able to do the following:

- Revise the general partitioning concepts
- Implement range, hash, and composite partitioning
- Explain ENABLE/DISABLE ROW MOVEMENT
- Explain the new partition pruning capabilities
- Describe partition-wise join
- Review partition maintenance operations
- Explain automatic parallel execution

Partitioning Methods

Three partitioning methods are available:

- Range
- Hash
- Composite

Range partitioning

Hash partitioning

Composite partitioning

ORACLE

Copyright © Oracle Corporation, 2000. All rights reserved.

Range Partitioning Example

1) The partition key is week_no.

³ Physical attributes can be set per partition.

Copyright © Oracle Corporation, 2000. All rights reserved.

ORACLE

Hash Partitioning Overview

- Easy to implement
- Enables better performance for PDML and partition-wise join
- Inserts rows into partitions automatically based on hash of partition key
- Supports «hash» local indexes
- Does not support «hash» global indexes

ORACLE

Hash Partitioning Example 1

CREATE TABLE product

(id NUMBER(5),

name VARCHAR2(30),

amount NUMBER(5))

STORAGE (INITIAL 10M)

PARTITION BY HASH(id) PARTITIONS 16

STORE IN (ts1,ts2,ts3,ts4);

Hash Partitioning Example 2

CREATE TABLE product

(id NUMBER(5),

name VARCHAR2(30),

amount NUMBER(5))

STORAGE (INITIAL 10M)

PARTITION BY HASH(id)

(PARTITION p1 TABLESPACE h1,

PARTITION p2 TABLESPACE h2);

Copyright © Oracle Corporation, 2000. All rights reserved.
Composite Partitioned Table: Overview

- Ideal for both historical data and data placement
- Provides high availability and manageability, like range partitioning
- Improves performance for parallel DML and supports partition-wise joins
- Allows more granular partition elimination
- Supports composite local indexes
- Does not support composite global indexes

Composite Partitioning Example 1

ALTER SESSION SET NLS_DATE_FORMAT=`DD-MON-YYYY';

CREATE TABLE orders(
ordid NUMBER,						
orderdate DATE,						
productid NUMBER,						
quantity NUMBER)						
PARTITION BY RANGE(orderdate)						
SUBPARTITION BY HASH (productid) SUBPARTITIONS 8						
STORE IN (ts1,ts2,ts3,ts4,ts5,ts6,ts7,ts8)						
(PARTITION q1 VALUES LESS THAN(`01-APR-1998'),						
PARTITION q2 VALUES LESS THAN($`01-JUL-1998'$),						
PARTITION q3 VALUES LESS THAN(`01-OCT-1998'),						
PARTITION q4 VALUES LESS THAN(MAXVALUE));						

ORACLE

Composite Partitioning Example 2

Table-level and partition-level default attributes:

```
CREATE TABLE orders (
    ordid NUMBER,
    orderdate DATE,
    prodid NUMBER)
PARTITION BY RANGE (orderdate)
    SUBPARTITION BY HASH(prodid) SUBPARTITIONS 8
    STORE in (tsl,ts2,ts3,ts4)
(PARTITION p1 VALUES LESS THAN (`01-APR-1998') PCTFREE 40,
    PARTITION p2 VALUES LESS THAN (`01-JUL-1998')
    STORE IN (ts5,ts6,ts7,ts8),
    PARTITION p3 VALUES LESS THAN (`01-OCT-1998')
    (SUBPARTITION S1, SUBPARTITION S2),
    PARTITION p4 VALUES LESS THAN (MAXVALUE) SUBPARTITIONS 6);
```

7-10

Partition and Subpartition Extended Table Names

SELECT * FROM ORDERS PARTITION(Q1) ;

- Names for subpartitions and partitions must be unique within the table or index
- Extended table names can be used in all DML statements.

Updatable Partition Keys

A partitioned table can be created or altered to allow row movement between partitions:

ALTER TABLE sales ENABLE ROW MOVEMENT;

- This clause can only be applied to partitioned tables.
- Disabled is the default behavior.

Equipartitioning

S R	Hash(C1,n3)	Range(C2,n4)	Composite Range(C2,n4)/ Hash(C1,n3)
Hash(C1,n1)	n1=n3		n1=n3
Range(C2,n2)		n2=n4	n2=n4
Composite Range(C2,n2)/ Hash(C1,n1)	n1=n3	n2=n4	n2=n4 or n1=n3

Partitioning_Method(Partition_key,Number_of_fragments)

ORACLE

Partitioned Indexes for Scalable Access

- Indexes can be partitioned, delivering improvements in:
 - Manageability
 - Availability
 - Performance and scalability
 - Enables parallel index scans
 - Choices in index configuration:
 - Local prefixed index
 - Local nonprefixed index
 - Global prefixed index
 - Global nonpartitioned index
 - Flexibility to suit a variety of access patterns, index sizes

ORACLE

7-14

Composite Partitioned Indexes

 Composite partitioned indexes are always local and stored to the table subpartition by default.

CREATE INDEX order_ind

ON orders(orderdate, productid) LOCAL;

- If required, tablespaces can be specified at either the index or index subpartition levels.
- Range partitioned global indexes on composite partitioned tables are supported.

Partition Pruning

7-17

Statistics Collection for Partitioned Objects

- You can gather object-, partition- or subpartitionlevel statistics.
- There are GLOBAL or NON-GLOBAL statistics.
- DBMS_STATS gather global statistics at any level for tables only.
- ANALYZE cannot gather global statistics.
- The ANALYZE statement merges statistics from one level to obtain statistics at a higher level.
- It is not possible to gather global histograms.
- it is not possible to gather global statistics for indexes.

DBMS_STATS and ANALYZE Examples

CALL DBMS_STATS.GATHER_TABLE_STATS(

ownname => `o816', tabname => `sales',

partname => `feb97', granularity => `partition');

ANALYZE TABLE sales PARTITION (feb97) COMPUTE STATISTICS;

ANALYZE INDEX isales SUBPARTITION (s1) COMPUTE STATISTICS;

ANALYZE TABLE sales PARTITION (feb97) VALIDATE STRUCTURE INTO INVALID_ROWS;

Data Dictionary Views

- DBA_PART_TABLES
- DBA_TAB_PARTITIONS
- DBA_PART_KEY_COLUMNS
- DBA_TABLES
- DBA_OBJECTS
- DBA_IND_PARTITIONS
- DBA_PART_INDEXES
- DBA_PART_HISTOGRAMS

- DBA _TAB_SUBPARTITIONS
- DBA _SUBPART_KEY_COLUMNS
- DBA_PART_COL_STATISTICS
- DBA_SUBPART_COL_STATISTICS
- DBA_SUBPART_HISTOGRAMS
- DBA_IND_SUBPARTITIONS
- DBA_SEGMENTS

- SYS_Pn: Partition name
- sys_subpn: Subpartition name

Copyright © Oracle Corporation, 2000. All rights reserved.

7-24

Maintenance Operations for Table Partitions

Operation	Range	Hash*	Composite*	
Adding partitions	ADD PARTITION		•ADD PARTITION* •MODIFY PARTITION ADD SUBPARTITION*	
Coalescing partitions		COALESCE PARTITION*	MODIFY PARTITION COALESCE SUBPARTITION*	
Dropping partitions	DROP PARTITION		DROP PARTITION	
Exchanging partitions	EXCHANGE P	ARTITION	•EXCHANGE PARTITION** •EXCHANGE SUBPARTITION*	
Merging partitions*	MERGE PARTITIONS*		MERGE PARTITIONS*	
Modifying default attributes of partitions	MODIFY DEFAULT ATTRIBUTES		•MODIFY DEFAULT ATTRIBUTES •MODIFY DEFAULT ATTRIBUTES FOR PARTITION*	
Modifying real attributes of partitions	MODIFY PARTITION		•MODIFY PARTITION •MODIFY SUBPARTITION*	
Moving partitions	MOVE PARTITION		MOVE SUBPARTITION*	
Renaming partitions	RENAME PARTITION		•RENAME PARTITION •RENAME SUBPARTITION*	
Splitting partitions	SPLIT PARTITION	SPLIT PARTITION		
Truncating partitions	TRUNCATE PARTITION		•TRUNCATE PARTITION •TRUNCATE SUBPARTITION*	

7-26

Maintenance Operations for Index Partitions

Operation	Туре	Range	Hash*	Composite*
Dropping partitions	Global	DROP PARTITION		
	Local	n/a	n/a	n/a
Modifying default attributes of partitions	Global	MODIFY DEFAULT ATTRIBUTES		
	Local	MODIFY DEFAULT ATTRIBUTES	MODIFY DEFAULT ATTRIBUTES	•MODIFY DEFAULT ATTRIBUTES
				•MODIFY DEFAULT ATTRIBUTES FOR PARTITION*
Modifying real attributes of partitions	Global	MODIFY PARTITION		
	Local	MODIFY PARTITION	MODIFY PARTITION	•MODIFY PARTITION •MODIFY SUBPARTITION*
Rebuilding partitions	Global	REBUILD PARTITION		
	Local	REBUILD PARTITION	REBUILD PARTITION	REBUILD SUBPARTITION*
Renaming partitions	Global	REBUILD PARTITION		
	Local	REBUILD PARTITION	RENAME PARTITION	RENAME SUBPARTITION*
Splitting partitions	Global	SPLIT PARTITION		
	Local	n/a	n/a	n/a

Data Manipulation Language (DML) Partition and Subpartition Locks

Additional levels of locking hierarchy:

SQL*Loader and Partitioned Objects

- You can load a partitioned table through the conventional path.
- You can sequentially load a partitioned table through the direct path.
- You can parallel load a single table partition through the direct path.

Automated Parallel Query Tuning

- Instance level:
 - PARALLEL_AUTOMATIC_TUNING=TRUE sets intelligent defaults for all parallel query initialization parameters
 - Reduces tuning complexity in most cases
 - Hand tuning by sophisticated high-end users is still possible
- Table/index level:

Automatic allocation of parallel query slaves across instances

Controlling Parallel Query Execution

- Allocation of parallel query slaves can be controlled with:
 - New initialization parameters:

PARALLEL_ADAPTIVE_MULTI_USER

PARALLEL_THREADS_PER_CPU

- Database resource manager
- Parallel query uses large pool for messages; increase large pool and decrease shared pool as needed

Enabling Parallel DML/DDL/QUERY

The ALTER SESSION statement enables parallel mode

• QUERY only starting with 8.1.6

Dynamic Performance Views

- V\$PX_PROCESS
- V\$PX_PROCESS_SYSSTAT
- V\$PX_SESSION
- V\$PX_SESSTAT

Summary

In this lesson, you should have learned the following:

- Large tables and indexes can be partitioned into smaller, more manageable pieces.
- Partitioning can improve performance.
- Partitioning can provide higher data availability.
- Maintenance operations can be applied to a smaller subset of data.
- Automatic parallel execution eases tuning

Practice 7 Overview

This practice covers the following topics:

- Creating partitioned tables :
 - Range
 - Hash
 - Composite
- Enabling row movement
- Creating local and global indexes
- Querying data dictionary partitions information
- Manipulating partitions
- Pruning partitions
- Enabling PDML (Optional)

Oracle Universal Installer: Migration and Upgrade

Objectives

After completing this lesson, you should be able to do the following:

- List the features of the Oracle Universal Installer
- Learn how to migrate an Oracle7 database to Oracle8i
- Learn how to upgrade an Oracle8 database to Oracle8i

Oracle Universal Installer

- Java-based
- Inventory directories
- Multiple Oracle Homes support
- NLS support
- Configuration tools integration
- Web installs
- Logging
- Silent installations
- Optimal Flexible Architecture (OFA)

Migration or Upgrade?

Migration Methods

- Migration utility
- Oracle Data Migration Assistant
- Export/import
- Copying data

Common Migration Problems

- Running out of space
- Quiesce and disable symmetric replication
- No recovery needed
- No Save Undo
- No outstanding distributed transactions
- No role or user named MIGRATE or OUTLN
- Prepare the SYSTEM rollback segment
- PCTINCREASE around 50% in SYSTEM
- Ensure that SYS and SYSTEM have the SYSTEM tablespace as default and temporary
- AUD\$ is inside the SYSTEM tablespase

8-10

Common Migration Problems

- init.ora parameters
- Remember control files location, database character set, and SYSDBA and SYSOPER users
- Making backups
- Duration of migration
- Avoiding ROWIDs problem
- Compatibility
- Invalid objects and lost statistics
- Read-only tablespace issues
- Preventing large restores
- Testing

8-12

Migration Steps

- Install Oracle8i software in a NEW home.
- Run migprep from Oracle8*i* to transfer migration files in the Oracle7 home (only on UNIX).
- Shut down the Oracle7 database cleanly and make a complete backup.
- Run migration from the Oracle8*i* home.
- Copy convSID.dbf (generated file) into Oracle8i home.
- Delete control files.
- Start up nomount and covert database.
- Open resetlogs the database.
- Execute U0703040.SQL.

8-14

Migration Parameters

Identify the parameters you need for the migration utility:

- PFILE
- CHECK_ONLY
- DBNAME
- NO_SPACE_CHECK
- NEW_DBNAME
- MULTIPLIER
- SPOOL

ORACLE

Export/Import

- **1. Export from the source database.**
- 2. Install Oracle8 software.
- 3. Prepare the Oracle8*i* database.
- 4. Import into the target database.

Upgrading from 8.0 to 8.1

Old Release	Upgrade Path
8.0.4S	Use the following steps:
8.0.1	1. Upgrade to release 8.0.5
8.0.2	2. Upgrade to 8.1
8.0.3, 8.0.4, 8.0.5, 8.0.6	Upgrade to 8.1.6 or 8.1.5
8.1.5	directly
8.1.3	1. Upgrade to 8.1.5
8.1.4	2. Upgrade to 8.1.6
8.1.1	No upgrade path
8.1.2	

Direct Manual Upgrades

- Ensure that there is no OUTLN user or role.
- Ensure there is enough space in the SYSTEM tablespace.
- Ensure there are enough rollback segments.
- Make a backup.
- Install 8*i* software in a new home.
- Move and modify your init.ora file.
- Set your environment to identify the Oracle8*i* database.
- Start up your Oracle8*i* instance.
- Run the appropriate upgrade script.
- Upgrade specific components.

8-19

Data Migration Assistant

- Seamless migration from the selected versions of Oracle 7.1, 7.2, 7.3, and 8.0 to Oracle8*i*, version 8.1
- Restrictions:
 - Parallel server migrations
 - No raw devices

Summary

In this lesson, you should have learned the following:

- The Universal Installer presents a standard interface across all platforms.
- The Database Configuration Assistant provides:
 - Custom or automatic installation based on hardware discovery
 - Pretuned starter databases and sample schemas
 - Scripted, silent mode installs

Summary

- You can use one of three methods to migrate based on:
 - Resources available
 - User needs
- Creating a migration plan is essential.
- The Data Migration Assistant can help with migrations and with upgrades from Oracle8 to Oracle8*i*.

Tablespace Management

Objectives

After completing this lesson, you should be able to do the following:

- Manage locally managed tablespaces
- Manage transportable tablespaces
- Use read-only tablespace enhancements

Locally Managed Tablespaces Overview

- Better space management
 - Uniform extent sizes
 - Reduced data dictionary access
- Reduced fragmentation
- Better management of temporary space
- More reliability

Features of Locally Managed Tablespaces

- Bitmaps are stored within files.
- Locally and dictionary-managed tablespaces can coexist.
- The SYSTEM tablespace cannot be locally managed.

File header	Space file header	Bitmap blocks	Data blocks	Bitmap blocks
----------------	-------------------------	------------------	----------------	------------------

Permanent Locally Managed Tablespaces

Create a permanent locally managed tablespace:

Migration of Locally Managed Tablespaces

CALL DBMS_SPACE_ADMIN.

TABLESPACE_MIGRATE_TO_LOCAL(name,[unit,rfno])

CALL DBMS_SPACE_ADMIN.

TABLESPACE_MIGRATE_FROM_LOCAL(name)

Temporary Locally Managed Tablespaces

Create a temporary, locally managed tablespace:

CREATE TEMPORARY TABLESPACE user_temp_1 TEMPFILE `.....' EXTENT MANAGEMENT LOCAL [UNIFORM [SIZE 10M]];

9-8

Maintaining Temporary Locally Managed Tablespaces

ALTER TABLESPACE lmtemp ADD TEMPFILE

'/u02/lmtemp02.dbf' SIZE 2M;

ALTER DATABASE TEMPFILE

'/u02/lmtemp02.dbf' OFFLINE ONLINE;

ALTER DATABASE TEMPFILE

'/u02/lmtemp02.dbf' RESIZE 4M;

ALTER DATABASE TEMPFILE

'/u02/oracle/data/lmtemp02.dbf' DROP;

ORACLE

Locally Managed Tablespaces Views

- DBA_FREE_SPACE, DBA_EXTENTS
- DBA_TABLESPACES
- V\$TEMPFILE, V\$DATAFILE
- DBA_TEMP_FILES, DBA_DATA_FILES
- V\$TEMP_EXTENT_MAP
- V\$TEMP_EXTENT_POOL
- V\$TEMP_SPACE_HEADER

Data Transportation: Transportable Tablespaces

OLTP Staging Data warehouse Data marts Information distribution

Copying Tablespaces

- 1. Make tablespace read-only.
- 2. Export metadata from source.
- 3. Copy data files to target system.
- 4. Transfer export file.
- 5. Import metadata into target.
- 6. Make tablespace in target read-write, if necessary.

Exporting and Importing Metadata

exp \/ AS SYSDBA'

FILE=s980501.dmp

TRANSPORT_TABLESPACE=y

TABLESPACES=sales_ts

TRIGGERS=N CONSTRAINTS=N

imp `/ AS SYSDBA'

FILE=s980501.dmp

TRANSPORT_TABLESPACE=y

```
DATAFILES=(/disk1/sales01.dbf,
```

/disk2/sales02.dbf)

9-13

Transporting a Tablespace

9-14

Uses of Transportable Tablespaces

- Moves entire tablespaces data that do not contain SYS objects
- Supports media recovery
- Source and target databases must:
 - Be on the same operating system
 - Run Oracle8*i*, release 8.1, or above
 - Have the same block size
 - Use the same character sets
- Looks at the PLUGGABLE_SET_CHECK view

Transportable Tablespaces and Schema Objects

- Tablespaces transported in one run must be selfcontained.
- The following objects cannot be transported:
 - Snapshot and replication
 - Function-based indexes
 - Scoped REFs
 - Domain indexes
 - 8.0-compatible AQ with multiple recipients

Checking Transport Set

Copyright © Oracle Corporation, 2000. All rights reserved.

ORACLE

Read-Only Tablespaces

- Allow no DML against stored segments
- Very useful for transportable tablespaces
- The command occurs in two phases:
 - Prepare files for read-only
 - Wait until current transactions on the database complete

Summary

In this lesson, you should have learned the following:

- Locally managed tablespaces provide:
 - Better space management
 - Higher availability
- Transportable tablespaces provide:
 - Easy exchange of data between data marts and data warehouses
 - Archiving of OLTP data to storage or data warehouse
 - Publication of data with a database
- Read-only tablespaces can be readily prepared for transport.

ORACLE

Practice 9 Overview

This practice covers the following topics:

- Building a locally-managed tablespace
- Examining space allocation with uniform extent sizes
- Plugging the same tablespace in multiple databases at the same time

Database Resource Manager

Objectives

After completing this lesson, you should be able to do the following:

- List the features of the database resource manager
- Limit the use of resources using the database resource manager

Overview

- Manage mixed workload
- Control system performance

Copyright © Oracle Corporation, 2000. All rights reserved.

ORACLE

Resource Allocation Methods

Method	Resource Allocation	Recipient
Round-robin	CPU to sessions	Groups
Emphasis	CPU to groups	Plans
Absolute	Parallel degree	Plans

10-5

10-6

The Original Plan: SYSTEM_PLAN

Resource Consumer Group	Allocation Methods			
	P1CPU	P2CPU	P3CPU	P1 //
SYS_GROUP	100%	0%	0%	0
OTHER_GROUPS	0%	100%	0%	0
LOW_GROUP	0%	0%	100%	0

10-7

Using Subplans

10-8

Copyright © Oracle Corporation, 2000. All rights reserved.

ORACLE
Administering the Database Resource Manager

- 1. Assign the resource manager system privileges to the administrator.
- 2. Create resource objects with the package DBMS_RESOURCE_MANAGER:
 - Resource consumer groups
 - Resource plans
 - Resource plan directives
- 3. Assign users to groups with the package DBMS_RESOURCE_MANAGER_PRIVS.
- 4. Specify the plan to be used by the instance.

10-9

10-10

Assigning the Resource Manager Privilege

1. Assign the resource manager system privileges to the administrator.

```
DBMS_RESOURCE_MANAGER_PRIVS.
GRANT_SYSTEM_PRIVILEGE (
  grantee_name => 'SCOTT',
  privilege_name
  => 'ADMINISTER_RESOURCE_MANAGER',
  admin_option => FALSE );
```


10-11

Creating Database Resource Manager Objects

2. Create resource objects with the package DBMS_RESOURCE_MANAGER.

a. Create a pending area.

DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

b. Create resource consumer groups.

DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (
 consumer_group => 'OLTP',
 comment => 'Online users');

ORACLE

10-12

Creating Database Resource Manager Objects

c. Create resource plans.

DBMS_RESOURCE_MANAGER.CREATE_PLAN (

plan => 'NIGHT',

comment => 'DSS/Batch priority, ...');

d. Create resource plan directives.

DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
plan =>	'NIGHT',	
group_or_subplan =>	'SYS_GROUP',	
comment =>	····',	
cpu_p1 =>	100,	
<pre>parallel_degree_limit_p1 =></pre>	20);	

ORACLE

10-13

Creating Database Resource Manager Objects

e. Validate the pending area.

DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

f. Commit the pending area.

DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

10-14

10-15

Assigning Users to Consumer Groups

3. Assign users to groups.

DBMS_RESOURCE_MANAGER_PRIVS.

GRANT_SWITCH_CONSUMER_GROUP (

grantee_name => 'MOIRA',

consumer_group => 'OLTP',

grant_option => FALSE);

Set the initial consumer group for users.

DBMS_RESOURCE_MANAGER.
SET_INITIAL_CONSUMER_GROUP (
 user => 'MOIRA',
 consumer_group => 'OLTP');

ORACLE

10-16

Setting the Resource Plan for an Instance

4. Specify the plan to be used by the instance.

 Specify the RESOURCE_MANAGER_PLAN initialization parameter.

RESOURCE_MANAGER_PLAN=day

 Change the resource plan without shutting down and restarting the instance.

ALTER SYSTEM

SET RESOURCE_MANAGER_PLAN=night;

Changing a Consumer Group Within a Session

The user or the application can switch the current consumer group.

DBMS_SESSION.
SWITCH_CURRENT_CONSUMER_GROUP (
 new_consumer_group => 'DSS',
 old_consumer_group => v_old_group,
 initial_group_on_error => FALSE);

10-18

Changing Consumer Groups for Sessions

Can be set by DBA for a session

DBMS_RESOURCE_MANAGER.

SWITCH_CONSUMER_GROUP_FOR_SESS (

session_id => 7,

session_serial => 13,

consumer_group => 'OLTP');

Can be set by DBA for all sessions for a user

DBMS_RESOURCE_MANAGER.

SWITCH_CONSUMER_GROUP_FOR_USER (

user => 'MOIRA',

consumer_group => 'OLTP');

10-19

Copyright © Oracle Corporation, 2000. All rights reserved.

ORACLE

Database Resource Manager Information

- DBA_RSRC_PLANS: Plans and status
- DBA_RSRC_PLAN_DIRECTIVES: Plan directives
- DBA_RSRC_CONSUMER_GROUPS: Consumer groups
- DBA_RSRC_CONSUMER_GROUP_PRIVS: Users and roles
- DBA_USERS Column: INITIAL_RSRC_CONSUMER_GROUP
- DBA_RSRC_MANAGER_SYSTEM_PRIVS: Users and roles

10-20

10-21

10-22

Current Database Resource Manager Settings

- V\$SESSION: Contains the RESOURCE_CONSUMER_GROUP column that shows the current group for a session
- V\$RSRC_PLAN: A view that show the active resource plan
- V\$RSRC_CONSUMER_GROUP: A view that contains statistics for all active groups

In this lesson, you should have learned how to control the use of CPUs and the degree of parallelism by using the database resource manager.

10-24

Manageability Enhancements

Objectives

After completing this lesson, you should be able to do the following:

- Identify database limits
- Relocate and reorganize tables
- Remove unused columns from a table
- Define temporary tables
- Identify SQL*Loader enhancements
- Monitor long-running operations
- Change database character sets
- Define new constraints features
- Define new Export/Import features

Database Limits

Columns per table	1,000
Columns per index	32/30
CHAR, NCHAR	2,000 bytes
VARCHAR2, NVARCHAR2	4,000 bytes
CLOB, BLOB, BFILE	4 GB
Data files per database	65,533
Data files per tablespace	1,022
Tablespaces per database	65,533

Relocating and Reorganizing a Table

- Builds new segments and drops old segments
- Retains index definition, constraints, and grants on the table

Marking a Column as Unused

- Marks column as unused
- Completes the task quickly
- Does not release space
- Column not visible to users
- Is not reversible

ALTER TABLE orders

SET UNUSED COLUMN comments;

Removing a Column from a Table

ALTER TABLE orders

DROP COLUMN order_date

CASCADE CONSTRAINTS;

ALTER TABLE orders

DROP UNUSED COLUMNS;

Removing a Column from a Table: Minimizing Rollback Usage

Define number of rows for saving changes:

ALTER TABLE orders

DROP COLUMN order_date CHECKPOINT 1024;

Marks table INVALID until operation completes

Resume interrupted operation using:

ALTER TABLE orders

DROP COLUMNS CONTINUE;

11-7

Temporary Tables

- Retain data only for the duration of a transaction or session.
- Definitions persist in the data dictionary.
- Data is only visible to the session.
- Use sort space to store data.
- Allocate extents in user's temporary tablespace, if needed.
- DMLs do not generate redo.
- DMLs generate rollback.

Creating and Monitoring Temporary Tables

CREATE GLOBAL TEMPORARY TABLE emp_temp (eno NUMBER, ename VARCHAR2(20), sal NUMBER) ON COMMIT DELETE ROWS;

```
SELECT table_name, temporary, duration
FROM dba_tables
WHERE table_name='EMP_TEMP';
TABLE_NAME T DURATION
EMP_TEMP Y SYS$TRANSACTION
```


11-9

SQL*Loader Enhancements

- String delimited fields
- New variable-length field types that use lengthvalue pairs
- Use of compound predicates in NULLIF or DEFAULTIF clauses
- Increased record size limits
- Can load arbitrarily complex object-relational data
- OCI Direct Path API provided

11-10

SQL*Loader Example

```
LOAD DATA
INFILE 'company data.dat'
RECSEPARATOR ';'
FIELDS TERMINATED BY '::'
INTO TABLE DEPT (
 compname VARCHAR,
 loc VARCHAR NULLIF (compname=BLANKS AND loc=BLANKS),
 slogan VARCHARC(3),
 dept_mgr COLUMN OBJECT (name CHAR, empid INTEGER),
 resume CHAR DEFAULTIF resume=BLANKS,
 extfname1 FILLER CHAR(40),
 desc LOBFILE(extfname1) TERMINATED BY EOF,
 extfname2 FILLER CHAR(30),
pict BFILE(scott dir, extfname2)
)
```

11-11

Monitoring Long-Running Operations: Overview

- Many long-running database operations populate the v\$SESSION_LONGOPS view.
- Applications can also populate this view by using a new PL/SQL interface:

Monitoring Long-Running Operations

Obtain progress statistics

SELECT sid, serial#, opname, TO_CHAR(start_time,`HH24:MI:SS') "START", (sofar/totalwork)*100 "PERCENT_COMPLETE" FROM v\$session_longops;

SID	SERIAL#	OPNAME	START	PERCENT_
10	235	Sort Output	13:03:05	35.98098
10	235	Table Scan	13:02:56	90.56454
10	235	SQL Execution	13:02:56	60.25644

ORACLE

11-13

Changing Database Character Sets After Creation

Example of changing the database character set from US7ASCII to WE8IS08859P1:

SQL>	SHUTDOWN	IMMEDIATE;		or	NORMAL	
------	----------	------------	--	----	--------	--

<do a full backup>

SQL> STARTUP MOUNT;

SQL> ALTER SYSTEM ENABLE RESTRICTED SESSION;

SQL> ALTER SYSTEM SET JOB_QUEUE_PROCESSES=0;

SQL> ALTER DATABASE OPEN;

SQL> ALTER DATABASE CHARACTER SET WE8ISO8859P1;

SQL> SHUTDOWN IMMEDIATE; -- or NORMAL

SQL> STARTUP;

11-14

Deferred Constraint Checking

- Can a constraint can be deferred?
 - NOT DEFERRABLE (default)
 - DEFERRABLE
- The default behavior of the constraint:
 - INITIALLY IMMEDIATE (default)
 - INITIALLY DEFERRED
- Use SET CONSTRAINTS or ALTER SESSION SET CONSTRAINTS to change the behavior

Validating Constraints

- ENABLE/DISABLE affects future changes:
 - ENABLE to check future changes
 - DISABLE to stop checking future changes
- VALIDATE/NOVALIDATE affects current table data:
 - VALIDATE to check the current table data
 - NOVALIDATE to avoid checking the current table data

Copyright © Oracle Corporation, 2000. All rights reserved.

11-16

New Constraint Functionality: RELY Flag

- Lets DBA indicate validity of data without enabling or validating a constraint
- Used by query rewrite

ALTER TABLE state

ADD PRIMARY KEY(state_code) DISABLE NOVALIDATE;

ALTER TABLE state MODIFY PRIMARY KEY RELY;

11-17

Unique or Primary Key Constraint Using a Nonunique Index

- Enforce a unique or primary key (PK) constraint with a nonunique index.
- The nonunique index must have the unique or primary key columns as the prefixed columns.
- The columns in the index and constraint do not have to be in the same order.

```
CREATE TABLE acct
( acct_no NUMBER(10),
  customer_id NUMBER(10),
  acct_comment VARCHAR2(200),
  CONSTRAINT pk_cid_aid
  PRIMARY KEY(customer_id, acct_no) DISABLE);
```

CREATE INDEX I_ANO_CNO_ACOMM

```
ON acct(acct_no, customer_id, acct_comment);
```

Copyright © Oracle Corporation, 2000. All rights reserved.

ORACLE

Data Dictionary Changes

DBA_CONSTRAINTS new columns:

- DEFERRABLE indicates whether the constraint can be deferred.
- DEFERRED indicates whether the constraint is currently deferred.
- VALIDATED indicates whether the table data is validated.
- **RELY contains the setting of the RELY flag.**

Export

Export: Release 8.1.6.0.0 - Production on Wed Oct 6 15:23:43 1999 (c) Copyright 1999 Oracle Corporation. All rights reserved.

 Keyword De	scription (Default)	Keyword	Description (Default)	
USERID	username/password	FULL	export entire file (N)	
BUFFER	size of data buffer	OWNER	list of owner usernames	
FILE	output files (EXPDAT.DMP)	TABLES	list of table names	
COMPRESS	import into one extent (Y)	RECORDLENGTH	length of IO record	
GRANTS	export grants (Y)	INCTYPE	incremental export type	
INDEXES	export indexes (Y)	RECORD	track incr. export (Y)	
ROWS	export data rows (Y)	PARFILE	parameter filename	
CONSTRAINTS	export constraints (Y)	CONSISTENT	cross-table consistency	
LOG	log file of screen output	STATISTICS	analyze objects (ESTIMATE)	
DIRECT	direct path (N)	TRIGGERS	export triggers (Y)	
FEEDBACK display progress every x rows (0)				
FILESIZE maximum size of each dump file				
QUERY select clause used to export a subset of a table				
VOLSIZE number of bytes to write to each tape volume				
The following keywords only apply to transportable tablespaces				
TRANSPORT_TABLESPACE export transportable tablespace metadata (N)				
TABLESPACES list of tablespaces to transport				

Import

Import: Release 8.1.6.0.0 - Production on Wed Oct 6 15:26:12 1999
(c) Copyright 1999 Oracle Corporation. All rights reserved.

Keyword Description (Default) Keyword Description (Default)

USERID username/password FULL import entire file (N) BUFFER size of data buffer FROMUSER list of owner usernames FILE input files (EXPDAT.DMP) TOUSER list of usernames SHOW just list file contents (N) TABLES list of table names IGNORE ignore create errors (N) RECORDLENGTH length of IO record GRANTS import grants (Y) INCTYPE incremental import type INDEXES import indexes (Y) COMMIT commit array insert (N) ROWS import data rows (Y) PARFILE parameter filename LOG log file of screen output CONSTRAINTS import constraints (Y) DESTROY overwrite tablespace data file (N) INDEXFILE write table/index info to specified file SKIP UNUSABLE INDEXES skip maintenance of unusable indexes (N) ANALYZE execute ANALYZE statements in dump file (Y) FEEDBACK display progress every x rows(0) TOID NOVALIDATE skip validation of specified type ids FILESIZE maximum size of each dump file RECALCULATE STATISTICS recalculate statistics (N) VOLSIZE number of bytes in file on each volume of a file on tape TRANSPORT TABLESPACE transportable tablespace metadata (N) TABLESPACES tablespaces to be transported into database DATAFILES datafiles to be transported into database TTS_OWNERS users that own data in the transportable tablespace set

Summary

In this lesson, you should have learned how to:

- Identify new database limits
- Relocate and reorganize tables
- Drop columns
- Define temporary tables
- Identify the new SQL*Loader options
- Monitor long-running operations
- Change database character sets
- Identify new constraints features
- Identify new Export/Import features

Practice 11 Overview

This practice covers the following topics:

- Moving tables to different tablespaces
- Unusing columns
- Droping columns
- Creating temporary tables
- Deferring constraints checking
- Disabling constraints

11-23

Availability and Recoverability Enhancements

Objectives

After completing this lesson, you should be able to do the following:

- Learn RMAN new features
- Implement duplex and multiple archive logs
- Set up a standby database in sustained recovery mode
- Start up a database for read operations
- Suspend database I/Os
- Describe the functionality of LogMiner
- Implement fast-start fault recovery
- Manage corrupt block detection and repair
- Describe the new possibility of dynamically change the number of free lists

RMAN New Features

Version 8.1.6:

- The AUTOLOCATE option of the set command
- The CONFIGURE COMPATIBLE command
- The Alter Database Open reset logs
- The CHANGE DELETE, DELETE EXPIRED, and BACKUP DELETE INPUT commands can now remove catalog records rather than update them to status DELETED. This behavior depend on the compatibility of the recovery catalog.

RMAN New Features

Version 8.1.5:

- Media Management API, version 2.0
- The cross-check commands
- CREATE, DROP, UPGRADE CATALOG commands
- STARTUP, SHUTDOWN, MOUNT, OPEN commands
- Duplicate databases
- Node affinity recognition by RMAN in Oracle Parallel Server
- Duplex backup sets
- You can perform TSPITR without a RC
- New views: V\$BACKUP_SYNC_IO and V\$BACKUP_ASYNC_IO
- DBMS_RCVCAT.UNREGISTERDATABASE (8.0)
 12-4 Copyright © Oracle Corporation, 2000. All rights reserved.

Archiver Enhancements

- Multiple archive destinations: Local disk or remote database
- Multiple archive processes

ORACLE

Specifying Multiple Archive Locations

Specify up to five archival destinations by using LOG_ARCHIVE_DEST_n:

Either local disk or remote database

log_archive_dest_1 = "LOCATION=/archive1"

log_archive_dest_2 = "SERVICE=standby_db1"

• Use LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST:

log_archive_dest = /archive1/arch

log_archive_duplex_dest = /archive2/arch

Copyright © Oracle Corporation, 2000. All rights reserved.

12-7

Multiple Archive Options

- Set archive location as MANDATORY or OPTIONAL.
- Define time before retry in case of failures.

```
log_archive_dest_1="LOCATION=/archive/
MANDATORY REOPEN"
log_archive_dest_2="SERVICE=standby_db1
MANDATORY REOPEN=600"
log_archive_dest_3="LOCATION=/archive2/
OPTIONAL"
```


Specifying Minimum Number of Local Destinations

LOG_ARCHIVE_MIN_SUCCEED_ DEST parameter:

log_archive_min_succeed_dest = 2

- An online redo log group can be reused only if:
 - Archiving has been done to all mandatory locations
 - The number of local locations archived is greater than or equal to LOG_ARCHIVE_MIN_SUCCEED_ DEST

eserved. ORACLE

12-10

Controlling Archiving to a Destination

 An archival destination can be disabled by a new (dynamic) initialization parameter: LOG_ARCHIVE_DEST_STATE _n

log_archive_dest_state_2 = DEFER

log_archive_dest_state_3 = DEFER

Archiving to a destination can be enabled again:

log_archive_dest_state_2 = ENABLE

ALTER SYSTEM SET log_archive_dest_state_3 = ENABLE

12-11

Multiple Archive Log Processes

- Support multiple archive locations
- Increase archiving throughput
- Reduce the need to perform manual archives
- Controlled by new dynamic parameter:

LOG_ARCHIVE_MAX_PROCESSES

- Started if LOG_ARCHIVE_START=TRUE and automatic archiving is enabled
- Default value is 1

ORACLE

12-12

Controlling Archive Trace Information

- LOG_ARCHIVE_TRACE parameter
- Controls trace output for all archive processes and destinations
- Trace files stored in the USER_DUMP_DEST and BACKGROUND_DUMP_DEST directories
- Is system modifiable (ALTER SYSTEM)

Obtaining Archiving Information

V\$ARCHIVE DEST

- BINDING: Optional or mandatory
- **STATUS: Valid, inactive, deferred, error,** disabled, or bad parameter
- TARGET: Primary or standby
- FAIL_SEQUENCE: Log if error occurred
- ERROR: Error text
- **V\$ARCHIVE_PROCESSES**
 - **STATUS: Stopped, scheduled, starting, active,** stopping, or terminated
 - STATE: Busy or idle
 - LOG_SEQUENCE: Current log archived ORACLE

Copyright © Oracle Corporation, 2000. All rights reserved.

12-14

Standby Database Enhancements

12-16

Enabling Sustained Recovery at Standby Site

 Specify new initialization parameter STANDBY_ARCHIVE_DEST to store archives from primary site

standby_archive_dest=/primary_archive/

Enable sustained recovery

ALTER DATABASE RECOVER

MANAGED STANDBY DATABASE;

 Set a time-out, if necessary, to stop sustained recovery

ORACLE

12-17

Opening a Database for Read Operations

- Any database can be opened as a read-only database
- Standby databases can be used for reports or DSS operations
- A read-only database can be used to:
 - Execute queries
 - Make data files off-line or online

Disk sorts are only possible using locally managed tablespaces.

Using a Standby Database for Reads

- **1. Cancel sustained recovery.**
 - Logs received are stored, but not applied.

ALTER DATABASE RECOVER

MANAGED STANDBY DATABASE CANCEL [IMMEDIATE];

2. Open database in read-only mode.

ALTER DATABASE OPEN READ ONLY;

3. Restart sustained recovery, when needed, after ensuring that there are no active sessions.

Suspending and Resuming Databases

In order to backup, don't forget:

ALTER TABLESPACE ts_name BEGIN BACKUP;

Suspend I/O activity:

ALTER SYSTEM SUSPEND;

SELECT database_status FROM v\$instance;

- Users can still access cached data.
- Any new I/O is blocked.
- Resume database I/Os:

ALTER SYSTEM RESUME;

ORACLE

Analyzing Redo Log Files

- Track changes to database
- Undo changes to the database
- Perform tuning and capacity planning

Build LogMiner Dictionary File

- Source can be an Oracle8 database:
 - Same platform as the analyzing instance
 - Same character set
- File is used to resolve object names:
 - Perform this step when new objects are added.
- Directory must be specified using UTL_FILE_DIR:

```
dbms_logmnr_d.build(
```

```
'orcldict.ora','/oracle/database');
```


12-23

Specify Log Files to Analyze

- Online or archived files may be specified.
- Database does not need to be mounted.

1. Create a new list and specify first file:

dbms_logmnr.add_logfile('log1orc1.ora',

dbms_logmnr.NEW);

2. Specify additional files to be analyzed:

dbms_logmnr.add_logfile(

'log2orc1.ora', dbms_logmnr.ADDFILE);

12-24

Analyze Specified Files

- Initiate log analysis:
 - Extracts details of transactions that occurred between the times specified
 - Can also use System Change Number ranges

dbms_logmnr.start_logmnr(dictfilename=>'orc1dict.ora', starttime=>to_date('01/01/98:08AM','DD/MM/YY:HHAM'), endtime=>to_date('03/01/1998:09AM','DD/MM/YYYY:HHAM'));

Release resources:

dbms_logmnr.end_logmnr;

12-25

Viewing Log Information

V\$LOGMNR_CONTENTS.SQL_REDO column contains statements reflecting changes:

```
SELECT timestamp, username, sql_redo
FROM v$logmnr_contents
WHERE seg_name = `EMP';
TIMESTAMP USER SQL_REDO
01-JAN-98 SCOTT delete from EMP where rowid =
01-JAN-98 SCOTT insert into EMP(...) ...
02-JAN-98 SCOTT update EMP set SAL = ... where ...
```

12-27

Perform Logical Recovery

SQL_UNDO column shows statements that can be used to reverse the changes:

```
SELECT sql_redo, sql_undo
FROM v$logmnr_contents
WHERE seg_name = `EMP';
SQL REDO SQL UNDO
delete from EMP ... insert into EMP(...) ...
insert into EMP ... delete from EMP ...
update EMP set SAL = ... update EMP set SAL = ...
```

Copyright © Oracle Corporation, 2000. All rights reserved.

12 - 29

Obtaining Information About Logs Analyzed

- V\$LOGMNR_DICTIONARY
 - TIMESTAMP
 - FILENAME
- V\$LOGMNR_LOGS
 - LOG_ID, FILENAME
 - LOW_SCN, HIGH_SCN
 - LOW_TIME, HIGH_TIME
- V\$LOGMNR_PARAMETERS
- Arguments supplied during analysis

Copyright © Oracle Corporation, 2000. All rights reserved.

12-30

Initial Release of LogMiner Features and Limitations

- Records visible only to the analyzing session
- One row per redo record
- DML on scalar data and transaction control statements are supported
- DDL statements shown as DML on data dictionary
- SQL on chained or migrated data rows is not reconstructed
- Hex values for segment names shown if:
 - Object definition not in dictionary file
 - Changes are to clustered tables

ORACLE

Why Checkpointing?

Ensure all dirty buffers are written to disk:

Because of the LRU list, it could be possible that the oldest dirty buffer is never written because oldest does not mean least recently used.

• Faster Instance or Crash Recovery:

The Oracle server rolls forward only after the last checkpoint.

Fast-Start Checkpointing

New dynamic parameter to limit data file I/O during recovery:

fast_start_io_target = 1000

- Useful in establishing service level agreements with users
- Used in conjunction with other parameters to determine target for checkpointing

12-33

Use of FAST START IO TARGET

12-34

Other Factors Affecting Checkpointing

- A Target based on FAST_START_IO_TARGET
- **B** 90% of size of smallest redo log
- C End of the log LOG_CHECKPOINT_TIMEOUT seconds ago
- D LOG_CHECKPOINT_INTERVAL blocks from the end

Factors Influencing Time to Recover

- Fast-start recovery time is at best an estimate.
- Recovery may take longer because:
 - Checkpoint target changed only at specific time intervals
 - Additional recovery activities such as reading logs not accounted for
 - Recovery time may be faster if parallel recovery is used

Monitoring Bounded Recovery Time

- **Define FAST_START_IO_TARGET based on:**
 - Service level required
 - AVGIOTIM column in V\$FILESTAT
- Check impact of parameters from v\$INSTANCE_RECOVERY:
 - RECOVERY_ESTIMATED_IOS
 - TARGET_REDO_BLKS
 - LOG_FILE_SIZE_REDO_BLKS
 - LOG_CHKPT_TIMEOUT_REDO_BLKS
 - LOG_CHKPT_INTERVAL_REDO_BLKS
 - FAST_START_IO_TARGET_REDO_BLKS

12-37

Fast-Start Parallel Rollback

Controlling Fast-Start Parallel Rollback

Define dynamic parameter

FAST_START_PARALLEL_ROLLBACK:

Value	Maximum Parallel Recovery Servers
FALSE	None
LOW	# slaves no more than 2 * CPU_COUNT
HIGH	# slaves no more than 4 * CPU_COUNT

Monitoring Parallel Rollback

- V\$FAST_START_SERVERS
 - STATE: recovering or idle
 - PID, UNDOBLKSDONE
- V\$FAST_START _TRANSACTIONS
 - USN, SLT, SEQ: Transaction ID
 - UNDOBLKSDONE
 - UNDOBLKSTOTAL
 - CPUTIME: Time in seconds

12-40

Fast-Start On-Demand Rollback

Server process encountering data to be rolled back performs the following:

- Roll back the block containing the required row
- Hand off further recovery, which may be in parallel, to SMON

12-42

Detecting Block Corruption

New dynamic (session, system deferred) initialization parameter:

db_block_checking = true

- Performs logical block check on data and index blocks when they are changed
- Dumps trace information
- Raises ORA-1578 when trying to re-read an already found corrupted block
- On corruption detection, data is lost
- Check data off-line before using it
- In 8.1.6, this is always enabled on the SYSTEM tablespace.

Copyright © Oracle Corporation, 2000. All rights reserved.

Detecting Block Corruption Using DBMS_REPAIR

- Connect as user SYS.
- Create repair table:

dbms_repair.admin_tables('REPAIR_TABLE',

DBMS_REPAIR.REPAIR_TABLE,

DBMS_REPAIR.CREATE_ACTION, 'temp_data');

Check object for corruption:

dbms_repair.check_object('ORATRAIN',

'LOCATIONS', corrupt_count=>:cc);

- Populates repair table
- Can check table, partition or index

Copyright © Oracle Corporation, 2000. All rights reserved.

Making Objects Usable

Mark blocks as corrupt:

dbms_repair.fix_corrupt_blocks('ORATRAIN',

'LOCATIONS',fix_count=>:fc);

- Uses repair table to identify blocks
- Records time of fix in repair table
- Enable skipping of corrupt blocks:

```
dbms_repair.skip_corrupt_blocks(
```

```
'ORATRAIN', 'LOCATIONS');
```

Recover available data using table scan

Copyright © Oracle Corporation, 2000. All rights reserved.

Implications of Skipping Blocks

- All rows in blocks marked as corrupt are inaccessible
- Indexes may point to blocks marked corrupt
- Referential integrity constraints may be violated
- Disable and reenable constraints identify violations
- If the head of a freelist is corrupt, the freelist is initialized:
 - Use rebuild_freelists

12-48

Checking Index Entries Pointing to Rows in Corrupt Data Blocks

Create table to hold results:

dbms_repair.admin_tables('ORPHAN_TAB1',

DBMS_REPAIR.ORPHAN_TABLE,

DBMS_REPAIR.CREATE_ACTION, 'temp_data');

Check index:

dbms_repair.dump_orphan_keys('ORATRAIN',

'LOC_PK', orphan_table_name=>'ORPHAN_TAB1',

key_count=>:kc);

Populates orphan table

12-49

Limitations of DBMS REPAIR

- Tables with LOBs, nested tables, and VARRAYS can be analyzed, but out-of-line columns are ignored.
- Index-organized tables and LOB indexes cannot be analyzed.
- **DUMP_ORPHAN_KEYS does not operate on bitmap** and function-based indexes.
- DUMP_ORPHAN_KEYS only processes keys up to 3,950 bytes long.
- **Clusters are supported in the** SKIP_CORRUPT_BLOCKS and REBUILD_FREELISTS procedures only.

ORACLE

Adding Free Lists

Dynamically add or reduce process free lists:

ALTER TABLE emp STORAGE (FREELISTS 5);

- Requires an exclusive lock on the segment
- Can be done on any segment where the FREELISTS option was possible before

Summary

In this lesson, you should have learned how to:

- Explain RMAN new features
- Specify multiple archive log locations
- Automate standby database recovery
- Start up a read-only database
- Suspend database I/Os
- Analyze log files using LogMiner
- Implement fast-start fault recovery
- Detect corrupt blocks and recover them
- Change the segment's free lists number

Practice 12 Overview

This practice covers the following topics:

- Creating an RMAN catalog and using it for some basic commands
- Setting up multiple archive log locations
- Running queries in a read-only database
- Creating temporary locally-managed tablespaces
- Building LogMiner dictionary file
- Analyzing redo log information with LogMiner

Features of Net8

Objectives

After completing this lesson, you should be able to do the following:

- Describe the new service naming scheme
- Explain automatic registration
- Describe load balancing
- Configure the network for JServer
- Explain MTS new features introduced in 8.1.6

Automatic Listeners Registrations

- When started, PMON and Dispatchers register themselves to the listener (no listener.ora)
- Registration information:
 - Instance name
 - Service names
 - Instance and dispatchers load
- Registration can be done for one listener or multiple listeners (local or remote) by using:
 - LOCAL_LISTENER OF LISTENER
 - INSTANCE_NAME
 - SERVICE_NAMES

Service Names

- Before Oracle8*i*, SID was specified in connect descriptors.
- With Oracle8*i*:
 - SERVICE_NAME and INSTANCE_NAME should be used in connect descriptors.
 - Database service names:
 - SERVICE_NAME and INSTANCE_NAME can be used in init.ora files.
 - Dispatcher service names:
 - SERVICE can be used in the MTS_DISPATCHERS parameter.
 - MTS_SERVICE is obsolete.

Load Balancing Overview

- Client Load Balancing for multiple listeners distributes the load over multiple listeners.
- Connect-Time Failover for Multiple Listeners failover connection requests in case listeners are down.
- Connection load balancing balances:
 - The number of active connections among various nodes
 - The number of active connections among various instances
 - The number of active connections among various dispatchers for the same service

Connection Load Balancing

Client Load Balancing and Failover: Example

Enabling load balancing and failover in the

TNSNAMES.ORA file:

Net8 Assistant

13-11

Configuring the Network for JServer

- Network protocols include the following:
 - Net8 for Java stored procedures
 - IIOP for CORBA and EJBs
- IIOP requires multithreaded server.
- These components may require configuration:
 - Dispatchers in init.ora
 - Shared servers in init.ora
 - Listener in listener.ora

13-12

Configuration is best done with the Net8 Assistant.

ORACLE

Configuring the Network for Stored Procedures

listener.ora

```
(ADDRESS = (PROTOCOL = TCP)(HOST = ed-bssun8)
 (PORT = 1521))
(PROTOCOL_STACK = (PRESENTATION = TTC)
 (SESSION = NS)))
```

init.ora

Copyright © Oracle Corporation, 2000. All rights reserved.

ORACLE

Configuring the Network for IIOP

listener.ora

```
(ADDRESS = (PROTOCOL = TCP)(HOST = ed-bssun8)
        (PORT = 2481))
(PROTOCOL_STACK =
(PRESENTATION = GIOP)
(SESSION = RAW))
```

init.ora

```
MTS_DISPATCHERS= "(PROTOCOL=TCP)(DISPATCHERS=2)
(PRESENTATION=oracle.aurora.server.SGiopServer)"
MTS_SERVERS = 5
MTS_MAX_SERVERS = 20
```

ORACLE

MTS enhancement in 8.1.6

- MTS_CIRCUITS: Controls the maximum number of virtual circuits
- MTS_SESSIONS: Controls the maximum number of MTS sessions
- ALTER SYSTEM SHUTDOWN [IMMEDIATE]: Enables specific dispatcher shutdown
- INDEX attribute to the ALTER SYSTEM SET MTS_DISPATCHER command: Designates an entry in the initialization file

Summary

In this lesson, you should have learned the following:

- You can use service naming for load balancing and automatic registration.
- Automatic registration simplifies network configuration.
- MTS must be configured to use the IIOP protocol.

SQL*Plus, PL/SQL, and National Language Support Enhancements

Objectives

After completing this lesson, you should be able to do the following:

- Use SQL*Plus for database management
- Describe the use of PL/SQL for:
 - Event triggers
 - Autonomous transactions
 - Native Dynamic SQL
- Describe other PL/SQL enhancements
- Describe the National Language Support enhancements

Using SQL*Plus for Database Administration

- Server Manager functionality is moved into SQL*Plus.
- Migrate Server Manager scripts to SQL*Plus.
- Server Manager is no longer supported.
- Because CONNECT INTERNAL will no longer be supported after Oracle 8.1, you should start using CONNECT / AS SYSDBA instead

New Event Triggers

New triggering events:

- STARTUP
- SHUTDOWN
- SERVERERROR
- LOGON
- LOGOFF
- CREATE
- ALTER
- DROP
- ANALYZE*
- AUDIT*, NOAUDIT*
- COMMENT*
- GRANT*, REVOKE*
- RENAME*
- TRUNCATE*
- DDL*

New trigger levels:

- Database
- Schema

CREATE TRIGGER db_pin AFTER STARTUP ON DATABASE BEGIN sys.dbms_shared_pool.keep('SYS. STANDARD'); -- Add any others END;

Note: * is for 8.1.6 only

Copyright © Oracle Corporation, 2000. All rights reserved.

Autonomous Transactions

```
PROCEDURE atm trans
. . .
  log_card_usage (cardnum, loc);
  INSERT INTO txn VALUES (9001,1000,...);
END;
PROCEDURE log_card_usage
  ( p_cardno IN
                       NUMBER,
    p loc
              IN NUMBER )
TS
PRAGMA AUTONOMOUS TRANSACTION;
BEGIN
  INSERT INTO usage VALUES (p cardno, p loc);
  COMMIT;
END;
```


Other PL/SQL Enhancements

- Support for very large packages
- PL/SQL bulk binds
- Dynamic SQL in PL/SQL
- Parameter passing by reference
- PL/SQL package for REF-based operations
- Monitoring and analysis of program execution

National Language Support: New National Database Character Set in 8.0

A national database character set clause at database creation time has been added:

```
CREATE DATABASE U16
LOGFILE
GROUP 1 ('/DISK3/log1a.rdo','/DISK4/log1b.rdo')SIZE 1 M,
GROUP 2 ('/DISK3/log2a.rdo','/DISK4/log2b.rdo')SIZE 1 M
DATAFILE
'/DISK1/system01.dbf' size 50M autoextend on
CHARACTER SET US7ASCII
NATIONAL CHARACTER SET JA16SJISFIXED;
```


National Language Support: Euro Currency Symbol Support

Dual currency support (for euro):

ALTER SESSION SET NLS_DUAL_CURRENCY=`EUR';

• All participating member states have territory files updated to accommodate NLS_DUAL_CURRENCY parameter.

National Language Support: New Local Data

- Expanded Asian character set support: MS Windows Code Pages 932, 949, 936, 950 (Japanese, Korean, and simplified and traditional Chinese)
- Programming interfaces (OCI) provide cartridge developers and application developers access to international information and services.
- Fixed-width Unicode (UCS2) character support is provided in the following client interfaces: OCI, Pro*C/C++, and ODBC.
- Expanded NLS data has been included. New territories have been added.

National Language Support: Linguistic Index Support

High-performance with local sorting:

CREATE INDEX nls_ename ON

emp (NLSSORT(ename, `NLS_SORT = German'));

• NLS_COMP parameter for linguistic comparisons

Summary

In this lesson, you should have learned the following:

- SQL*Plus replaces Server Manager.
- PL/SQL event triggers include DB events, user events, and DDL events.
- PL/SQL supports Native Dynamic SQL.
- It is possible to have AUTONOMOUS PL/SQL blocks.
- National language support enhancements include:
 - Support for the euro currency symbol
 - Expanded territory support
 - Linguistic indexing

Advanced Queuing

Objectives

After completing this lesson, you should be able to do the following:

- List the features used to manage queue tables and queues
- Start a Queue Monitor process to support message expiration, retry, and delay
- Start an SNP process to propagate messages
- Create roles and objects to support Advanced Queuing (AQ)

15-3

Queuing Components

15-4

Flexibility to meet the application requirements:

- Programmatic interfaces for AQ:
 - PL/SQL using DBMS_AQADM and DBMS_AQ
 - C++ using OCI
 - C or C++ using the Pro*C/C++ precompiler
 - Visual Basic using Oracle Objects for OLE
 - Other languages using Oracle Objects for OLE
 - Java Native API or JMS API
- Structured payload using object types
- Message priority and ordering

Flexibility to meet the application requirements:

- Time delay or expiration
- Independent queue transactions
- Dequeue with browse, lock, remove, or remove_nodata
- Message grouping by process or transaction
- Multiple recipients
- SQL access to payload and properties
- Exception queues for error-handling
- Persistent or non-persistent queues

ORACLE

- Queue security at the object and system level
- AQ statistics:
 - Current state of the queuing system
 - History of each message
 - Propagation
- Interfaces to Oracle utilities:
 - Import/export done at queue table granularity
 - Oracle Enterprise Manager GUI
- Support for Oracle Parallel Server environments

AQ Implementation Tasks

- DBA configures the instance.
- DBA creates the AQ Administrator.
- AQ Administrator uses DBMS_AQADM to:
 - Create queuing objects
 - Grant privileges to AQ developers
- AQ developers use DBMS_AQ to:
 - Enqueue messages
 - Dequeue messages

DBA Configures the Instance

Timer processes:

- Required for messages that require a delay, expiration, or timed retention
- Example of init.ora parameter:

 $AQ_TM_PROCESSES = 1$

Job queue processes:

- Required to propagate queues
- Example of init.ora parameter:

JOB_QUEUE_PROCESSES = 2

DBA Creates the AQ Administrator

Create user AQ as the AQ Administrator:

```
CREATE USER aq IDENTIFIED BY aq;
GRANT AQ_ADMINISTRATOR_ROLE TO aq;
GRANT CONNECT, RESOURCE TO aq;
[EXECUTE DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE (
privilege => 'MANAGE_ANY',
grantee => 'AQ',
admin_option => FALSE );]
```

ved. ORACLE

15-11

Security in Oracle 8.0 and 8*i*

- In Oracle8*i*:
 - Compatibility queues: 8.0 and/or 8.1
 - AQ_USER_ROLE for user's schema 8.1 compatible queues only and any 8.0 compatibility queues
 - Execute on DBMS_AQADM to maintain user's AQ objects only
 - Execute on DBMS_AQ for user's schema queues only
 - New system privileges
 - New queues privileges
 - GRANT_TYPE_ACCESS is made obsolete
 - To migrate or downgrade compatibility, use DBMS_AQADM.MIGRATE

ORACLE

DBMS_AQADM Package

Categories of DBMS_AQADM procedures:

- Security
- Queue table maintenance
- Queue maintenance
- Subscriber maintenance
- Propagation maintenance

15-14

DBMS_AQ Package

ENQUEUE adds a message to a queue:

dbms_aq.enqueue (
queue_name	IN	VARCHAR2,
enqueue_options	IN	enqueue_option_t,
message_properties	IN	<pre>message_properties_t,</pre>
payload	IN	<object_type raw="">,</object_type>
msgid	OUT	RAW)

DEQUEUE retrieves a message from a queue:

dbms_aq.dequeue (
queue_name	IN VARCHAR2,
dequeue_options	IN dequeue_options_t,
message_properties	OUT message_properties_t,
payload	OUT <object_type_name>,</object_type_name>
msgid	OUT RAW)

LISTEN monitors multiple queues for a message.

15-15

Data Dictionary Views

- DBA_QUEUE_TABLES describes the names and types of all queue tables created in the database.
- DBA_QUEUES contains operational characteristics for every queue in a database.
- DBA_QUEUE_SCHEDULES describes the current schedules for propagating messages.
- QUEUE_PRIVILEGES describes queues for which the user is the grantor, grantee, or owner; or access to the queue is granted to an enabled role or PUBLIC.
- V\$AQ describes statistics for the queues in the database.

ORACLE

Other Queue Objects

CREATE QUEUE TABLE creates:

15-17

- aq\$<queue_table_name> is a read-only view.
- aq\$_<queue_table_name>_e is the default exception queue.
- aq\$_<queue_table_name>_t is an index for queue monitor operations.
- aq\$_<queue_table_name>_i is an index or an IOT for dequeues on multiple consumer queues.
- aq\$<queue_table_name>_s contains subscribers.
- aq\$<queue_table_name>_r contains rules.
- aq\$<<queue_table_name>_h contains history.

Copyright © Oracle Corporation, 2000. All rights reserved.

ORACLE

Export/Import

- Export is done at the queue table granularity
- Export in FULL or USER mode takes care of queues.
- When exporting in TABLE mode, the user must export manually all important tables (see previous slide).
- Ignore obsolete ROWID warnings for queues.
- Incremental exports are not supported.
- Try to avoid the IGNORE=Y parameter during import.

Summary

In this lesson, you should have learned the following:

- Oracle Advanced Queuing offers the ability to defer execution of work.
- DBA configures the database for queues by:
 - Setting AQ_TM_PROCESSES or JOB_QUEUE_PROCESSES
 - Creating the AQ Administrator
- The AQ Administrator uses package DBMS_AQADM.
- The AQ developer uses package DBMS_AQ.

Practice 15 Overview

This practice covers the following topics:

- Adding Time Manager processes
- Adding Job Queue processes
- Creating AQ administrator users
- Creating queues and queue tables
- Viewing queues data dictionary information
- Enqueing and dequeing messages

15-20

Database Security

Objectives

After completing this lesson, you should be able to do the following:

- Explain data encryption in tables
- Explain Unique Schemas and Schemas-Independent Users
- Describe N-Tier authentication
- Describe invoker's rights security management
- Implement application context areas
- Implement fine-grained access control

Data Encryption

- Encryption is easy, but key management is a killer!
- DBMS_OBFUSCATION_TOOLKIT package
 - DESEncrypt(input,key,encrypted_data)
 - DESDecrypt(input,key,decrypted_data)
- Created by:
 - dbmsobtk.sql (package specification)
 - prvtobtk.plb (package body)

Unique Schemas

- No direct connections through them
- Contain only objects and rights

CONNECT OE/OE;

ALTER SESSION SET CURRENT_SCHEMA=APP;

SELECT schemaname FROM V\$SESSION

WHERE username='OE';

SELECT SYS_CONTEXT('USERENV','CURRENT_SCHEMA')

FROM DUAL;

eserved. ORACLE

16-4

- Enables Enterprise Users to share a single schema
- Avoids the one-to-one mapping between Enterprise and Global Users
- Only available over SSL authentication of Enterprise Users

CREATE USER application_user IDENTIFIED GLOBALLY AS '';

16-5

N-tier Authentication/Authorization

- Limit the application user power
- Keep the client user identity

ALTER USER <client> GRANT CONNECT THROUGH <application> WITH ROLE <role>;

ALTER USER <client> REVOKE CONNECT

THROUGH <application> WITH ROLE <role>;

AUDIT <operation> BY <application> ON BEHALF OF <client>;

16-6

Enterprise User Management: Overview

Useful for large user communities accessing numerous databases and applications

- Enables single sign-on over Secure Socket Layer (SSL)
- Oracle Wallet Manager for n-tier authentication
- Integrate standard Lightweight Directory Access
 Protocol (LDAP) version 3 with Oracle8 release 8.1
- Support for RADIUS authentication
- Native authentication on Windows NT

Invoker's Rights

Fine-Grained Access Control Overview

- Associate security policies (implemented by functions) with tables or views
- Server automatically enforces security policies (no matter how data is accessed)
- Application context (optional) enables flexible access control definition

Application Context Features Overview

- The USERENV built-in context:
- Application-specific contexts:
 - Each application can have its own context, with its own attributes.
- Reparse any cursor using context information to see context modifications:
 - Context attributes are static.

16-10

Building Application Context

Create a context:

- Each context has unique name within the database.
- Database binds context name to context package that implements it.

Copyright © Oracle Corporation, 2000. All rights reserved.

ORACLE

Building Application Context

```
PROCEDURE set_cust_num IS custnum number
BEGIN
SELECT cust_no INTO custnum
FROM customers where username =
SYS_CONTEXT('USERENV','session_user');
DBMS_SESSION.SET_CONTEXT
('order_entry','cust_num', custnum);
END;
```

Create a Logon Trigger

GRANT EXECUTE ON secusr.oe_sec TO

Public;

CREATE OR REPLACE TRIGGER secusr.set_ctx

AFTER LOGON ON DATABASE

BEGIN

secusr.oe_sec.Set_Cust_Num;

END;

/

16-14

Implementing Fine-Grained Access Control

```
CREATE PACKAGE BODY oe security IS
  FUNCTION custnumsec
    RETURN VARCHAR2 IS
  BEGIN
    IF SYS_CONTEXT('order entry', 'rôle')=
     'customer'
    THEN return 'cust no = SYS CONTEXT(
             ''order entry'',''cust num'')';
    ELSIF SYS_CONTEXT('order_entry', 'role') ='clerk'
    THEN
      return 'sales region = SYS CONTEXT(
               ''order entry'',''region'')';
    ELSE return '';
    END IF;
  END;
END;
```

GRANT EXECUTE ON secusr.oe_security TO Public;

16-15

Copyright © Oracle Corporation, 2000. All rights reserved.

ORACLE

Implementing Fine-Grained Access Control

Associate policy package with tables and views by using PL/SQL package (DBMS_RLS):

- ADD_POLICY
- DROP_POLICY
- ENABLE_POLICY
- REFRESH_POLICY

```
DBMS_RLS.ADD_POLICY
('apps','orders','order_policy',
'secusr','oe_security.custnum_sec','select')
```

16-16

Using Fine-Grained Access Control

Direct or indirect access to tables with attached policy automatically invokes the policy:

- Data server calls package policy
- Package policy returns predicate (which uses application context)
- Data server rewrites query using predicate

Summary

In this lesson, you should have learned how to do the following:

- Implement fine-grained access control for application-specific access
- Select invoker's rights to control schema access from stored PL/SQL
- Manage Enterprise Users and Global Users using the new functionalities introduced in 8.1.6
- Encrypt and decrypt data in tables

